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of the Light-Footed Ridgway’s Rail Reflect 20 Years of
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By Amy G. Vandergast,! Julia G. Smith,' Anna Mitelberg," Dustin A. Wood," Kimberly A. Sawyer,2 and

Courtney J. Conway!

Abstract

Captive breeding and release programs aimed at recovery
of rare species can be informed by genetic data to help select
high-diversity source populations, make pairing decisions
to minimize inbreeding, and manage release strategies. We
developed a set of 54 microsatellite loci to assess genetic
structure and diversity across the United States range of the
Light-footed Ridgway’s Rail (Rallus obsoletus levipes), a
federally endangered marsh bird for which populations have
been augmented by a captive breeding program annually
since 2001. We identified three regional genetic clusters,
with the highest genetic diversity reported in the central
cluster, which included all sampled wetlands in north San
Diego County. Recent (2019-24) captive-breeding adults all
clustered within the northernmost cluster (Orange and Ventura
Counties), which was expected given that this cluster included
the source wetland for the captive breeding program. Gene
flow rates, which approximate the proportions of individuals
in a population originating from other populations, were
relatively high among clusters (4-24 percent) and may have
been enhanced through the release of captive-bred rails. Based
on the genetic data analyzed in a genetic rescue decision
framework, sourcing new breeding birds from the north San
Diego County cluster could provide the greatest genetic
diversity benefits. The northernmost cluster, which included
Mugu Lagoon and all sampled Orange County wetlands, was
considered the most in need of genetic rescue. Recent breeding
pairs in the captive breeding program have comparatively
low diversity and high interrelatedness. Sourcing birds from
wetlands with high genetic diversity and population sizes,

U.S. Geological Survey.

2Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho,
Moscow, Idaho.

assessing genetic relatedness before pairing, and focusing
releases in areas that have low estimates of genetic diversity
could improve the distribution of genetic diversity across wild
populations in the future.

Introduction

Genetic monitoring is frequently used along with
ecological monitoring tools to assess and manage populations
of endangered species (Schwartz and others, 2007; Antao
and others, 2011). Genetic diversity data can be particularly
informative for managing captive breeding and release
programs aimed at restoring declining species. The
maintenance of genetic diversity can reduce the potential for
inbreeding depression and improve fitness in the short term
(a few generations; Reed and Frankham, 2003; Spielman and
others, 2004; Markert and others, 2010), and preserve adaptive
potential in the long term (many generations; Kardos and
others, 2021). For these reasons, measuring the amount and
distribution of genetic diversity among wild populations can
help to identify appropriate source populations and release
sites to manage for diversity. In addition, genetic monitoring
pre- and post-release can be used along with mark-recapture,
telemetry, and other techniques to assess survival and
integration of released individuals, and their genes, into
wild populations (Bubac and others, 2019). Finally, genetic
relatedness information can be incorporated into studbook
management to help guide pairing decisions in captive settings
to ensure that inbreeding is minimized and that multiple
family lineages are consistently represented in captive
populations (Ivy and Lacy, 2010).
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Light-footed Ridgway’s Rails (Rallus obsoletus levipes;
hereafter rails) are restricted to coastal wetlands within a
small geographic range spanning from Ventura County,
California, to Ensenada, Baja California, Mexico (fig. 1;
Eddleman and Conway, 2020). The subspecies was listed as
federally endangered in 1969 (Secretary of the Interior, 1969),
state endangered in California in 1971, and was added to the
official list of at-risk species in Mexico in 2002 (Secretaria
del Medio Ambiente y Recursos Naturales, 2002). Annual
call-broadcast surveys throughout the subspecies’ U.S. range
began in 1980 and have continued to the present (Zembal
and others, 2024). During this period, total pair counts have
fluctuated from year to year, but have increased slightly since
range-wide counts began (U.S. Fish and Wildlife Service,

119° 118°

2020). These trends vary regionally, with an apparent increase
in north San Diego County marshes but an apparent decline
in Orange County (fig. 2); although changes in pair counts
over time were not tested statistically (Zembal and others,
2024). In 1989, genetic samples were obtained from four
consistently occupied populations (at that time) throughout the
rails’ range (Mugu Lagoon, Ventura County, Seal Beach and
Newport Bay, Orange County, and Tijuana Slough National
Wildlife Refuge (NWR), San Diego County; fig. 1). Genetic
analyses of these samples (Fleischer and others, 1995; Nusser
and others, 1996), reported low genetic diversity within
populations and suggested that movement of individual rails
from larger populations into smaller ones could be a possible
management strategy.
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Locations of wetlands where Light-footed Ridgway’s Rails (Rallus obsoletus levipes) were sampled in southern California for

this study between 2020 and 2022 (blue points) and in 1989 (Historical sampling location; yellow points).



350

300 — —

Pair counts of Light-footed Ridgway's rails

Captive breeding program year 2001 (year 1) to 2024 (year 24)

EXPLANATION

—o— Ventura County (Mugu Lagoon) —o— North San Diego County

—o— Orange County —o— South San Diego County

Figure 2. Annual pair counts of Light-footed Ridgway'’s Rails
(Rallus obsoletus levipes) over time between 2001 (year 1) and
2024 (year 24) summed by region (data taken from Zembal and
others, 2024). Points represent total pair counts, and lines are
locally weighted (LOESS) smoothers. The Orange County region
has declined, whereas north San Diego County has increased.
Mugu Lagoon (the only population in Ventura County) has remained
relatively low in comparison to all other regions.
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Starting in 2001, a captive-release program was initiated
with founders (birds and eggs) sourced from Newport Bay.
Subsequently, eggs from Newport Bay have been brought in
to replenish the breeding program (maintained at 3—6 pairs
annually) about every 2-3 generations. Juvenile rails from
this program have been released annually as part of species
recovery efforts, with over 600 individuals released across
southern California marshes between 2001 and 2023 (fig. 3).
All breeding birds in the captive program were either taken
from the Newport Bay wild population or from descendant
captive offspring. All released birds can be traced to 76 wild
founders through their pedigree between 2001 and 2023
(table 1.1).

Purpose and Scope

Although counts have been completed annually at most
occupied wetlands since the 1980s, monitoring of movement
and survivorship of released juvenile rails had not occurred
until very recently (Zembal and others, 2017; Sawyer, 2024;
Sawyer and Conway, in press). In addition, genetic monitoring
of wild populations and genetic assessment of captive birds
have been lacking until this study. Therefore, little is known
about the cumulative effects of releases on population genetic
structure and diversity of recipient populations. To address
these uncertainties, we developed a set of microsatellite
markers to allow for genetic monitoring of wild and captive
rails. We evaluated the recent (2020-22) genetic population
structure and diversity of rail populations throughout their
U.S. range. We also compared the recent genetic structure to
the pre-augmentation structure by comparing recent blood
samples with blood samples available from the initial 1989
genetic surveys. Moreover, we examined genetic connectivity
and diversity across the subspecies’ U.S. range to identify
extant populations with high genetic diversity that could be
considered for future captive-rearing sources.
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Figure 3. The number of Light-footed Ridgway’s Rails (Rallus obsoletus levipes) hatched and released from the captive breeding
program between 2001 (year 1) and 2023 (year 23) by wetland (colored bars) and grouped into geographic regions. Numbers in

parentheses are the total number of releases in each region.

Methods
Field Sampling

We visited and captured wild individuals at 17 wetlands
throughout the U.S. range for genetic sampling and banding
between 2020 and 2022. Sites were visited during the breeding
season, roughly between April and September of each year.
We used carpet traps (Harrity and Conway, 2020) with a
broadcast of Ridgway’s Rail vocalizations to lure rails to the
carpet traps (Pickens and King, 2013; Harrity and Conway,
2020). We removed rails from carpet traps immediately after
capture, and we measured, weighed, photographed, and

attached a federal leg band (Smith, 2013) to each rail. We
collected blood samples from each captured rail via metatarsal
venipuncture using a sterile, 26-gauge needle and transferred
to a GenSaver 2.0 (AHLSTROM, Escondido, California,

cat no. 8.566.0002.B-N) blood card with a non-heparinized
capillary tube (Thermo Fisher Scientific, Waltham,
Massachusetts, cat no. 22-260943). We then released rails at
the capture location. All fieldwork was authorized following
guidelines specified in Federal and State permits held by

C. Conway (Federal Endangered Species Permit TE039466;
Bird Banding Permit #22524; California Memorandum

of Understanding (SCP-S-193610002-20008-001), and as
approved by the University of Idaho Institutional Animal Care
and Use Committee (2015-51).



Sampling of Captive-Bred Rails

Beginning in 2019, we collected blood samples from all
captive-bred and released rails, and, when available, breeding
adults. Blood samples were not regularly taken from captive
rails before 2019. Rails were sampled before release, using
metatarsal venipuncture, as described in the “Field Sampling”
section; we attached a federal leg band (Smith, 2013) to each
released bird.

1989 Baseline Samples

We received archived blood and genomic
deoxyribonucleic acid (DNA) samples from the Smithsonian
Museum which were used in previous population genetic
analyses (Fleischer and others, 1995; Nusser and others,
1996). These samples were collected in the fall of 1989, before
the start of the captive breeding program from four wetlands
across the subspecies’ U.S. range: Mugu Lagoon, Seal Beach,
Newport Bay, and Tijuana Slough NWR (fig. 1; table 1.2).
Although the number of available historical samples per
wetland was small by contemporary standards, these samples
represent the best available baseline dataset for comparison
to recent genetic structure and diversity metrics. All samples
were sent to the Western Ecological Research Center’s
San Diego Field Station genetic laboratory for extraction
and amplification.

Marker Development

Microsatellite libraries were developed for R. obsoletus
at Cornell University’s Evolutionary Genetic Core Facility
using genomic DNA extracted from four individuals. The
Evolutionary Genetic Core Facility sequenced a tetrameric,
enriched genomic library on an [llumina MiSeq with paired
250 base-pair reads (Nali and others, 2014), used SeqMan
NGen (version 11, DNAStar, Madison, Wisconsin) to
generate a de novo assembly from the paired fastq files (raw
data), and used the program msatcommander 1.0.8 beta
(Faircloth, 2008) to scan for candidate microsatellite loci and
design primer pairs. To design a panel of highly multiplexed
microsatellite markers, we randomly selected and evaluated
approximately 500 candidate microsatellite loci (500 forward
primers tagged at the 5-prime end with the sequence
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG, and
500 reverse primers, tagged at the 5 end with the sequence
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG)

Methods 5

for multiplex polymerase chain reaction (PCR) suitability
using Multiple Primer Analyzer (MPA; Thermo Fisher
Scientific, Sunnyvale, California). We used the MPA

output in the package igraph (Csardi and Nepusz, 2006) to
cluster the loci into an arrangement that would minimize
primer-dimer formation. This process resulted in four
multiplexes, composed of 30—40 loci each. These loci were
individually amplified in two individuals, and only loci with
successful amplification in both samples (as confirmed by gel
electrophoresis) were retained in the final multiplexes. All
samples were genotyped using the resulting panel of 108 loci
(table 1.3) arranged into four multiplexes (Mpx1-4), as
described in the following section.

DNA Extraction, Amplification and Sequencing

We extracted genomic DNA from blood cards or capillary
tubes using the Puregene kit (QTAGEN, Germantown,
Maryland) according to the manufacturer’s protocol, with
minor modifications including the addition of Proteinase
K to cell lysis with an overnight incubation at 58 degrees
Celsius (°C), and final resuspension in 100 microliter (uL)
Tris Low ethylenediaminetetraacetic acid (EDTA; TLE)
buffer (10 millimolar [mM] Tris, 0.1 mM EDTA, pH 8.0).

We quantified extractions using Qubit Broad Range (Thermo
Fisher Scientific) and standardized to 10—40 nanograms

per microliter (ng/uL) before amplification with the Type-it
Microsatellite PCR Kit (QIAGEN). We amplified loci by
using four primer cocktails (Mpx1-4; table 1.3), with each
primer at a 1.6 micromolar (LM) concentration in the primer
cocktail. Each of four 10 pL PCR reactions contained 5 uL 2X
Type-it Master Mix, 1 uL of Mpx1, Mpx2, Mpx3 or Mpx4,
and 15-60 ng/uL DNA. Amplifications included 30 cycles

of 95 °C for 5 minutes, 94 °C for 30 seconds, 56 °C for

1.5 minutes, 72 °C for 1.5 minutes, followed by a 12 °C hold.
Upon completion, the four multiplexed PCRs per sample were
pooled together, and the pooled PCR product was barcoded
using Nextera N5/600 and N7/800 indexes to produce
individual dual-indexed amplicon libraries for each sample.
Individual sample libraries were then pooled together into

one tube per 96-well plate and bead-cleaned to remove primer
dimers. Pooled and bead-cleaned libraries from each plate

of sample libraries were combined in equimolar proportions
and sent for sequencing at MedGenome, Inc. (Foster City,
California) on the NovaSeq 6000 (Illumina, San Diego,
California), using the Illumina SP 300 cycle reagent kit v1.5.
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Bioinformatics

We used the Python script amplicon
(https://bitbucket.org/cornell_bioinformatics/amplicon)
to extract reads from the [llumina runs and assign them
to the appropriate locus and individual. Specifically, the
script (1) trims adapters and low-quality reads, (2) creates
contigs from overlapping reads (for paired-end sequencing),
(3) identifies reads corresponding to each locus, (4) collapses
identical reads for each individual, and (5) identifies the top
two haplotypes for individuals at all loci (in other words, their
diploid genotypes). We used the default options except for
the following parameters: -c¢ 1 (minimum number of samples
per haplotype), -a 0.001 (minimum minor allele frequency),
-175 (minimum haplotype length), -r 5 (maximum read
count ratio between the two alleles in each sample). We then
calculated the total number of reads per locus per individual,
whether a locus was heterozygous or homozygous (and if
heterozygous, the minimum number of minor allele reads per
locus per individual). We scored loci as missing data if the
total number of reads was less than (<) 200. Heterozygous
loci were recoded as homozygous if the minor allele read
count was low (<300), or if the total number of reads was low
(<500). Before population genetic analyses, we used the R
packages adegenet v. 2.1.10 (Jombart, 2008) and poppr v. 2.9.3
(Kamvar and others, 2014) to assess the quality of loci and
samples using several filters. First, we removed any locus with
greater than 10 percent missing data, and then removed any
individual samples with greater than 10 percent missing data.
Next, we applied a minor allele frequency cutoff (MAF=0.01)
to identify monomorphic or uninformative loci. Once these
loci and samples were removed, we used the R package
genepop V. 1.2.2 (Rousset, 2008) to evaluate the dataset for
linkage disequilibrium using the exact test for genotypic
linkage disequilibrium with 10,000 dememorizations and
5,000 iterations; the significance of linkage disequilibrium
was confirmed for loci with p-values below 0.0001. We also
used the method described by Brookfield (1996) to estimate
the frequency of null alleles for each locus with the R package
popgenreport (Adamack and Gruber, 2014). We retained
loci with null allele frequencies less than 0.2, following the
recommendations of Dakin and Avise (2004).

Population Genetic Dataset

During field sampling, we captured and sampled
hatch-year and adult rails. However, we removed hatch-year
birds from the population structure and diversity analyses
to avoid biases resulting from unequal sampling of family
groups and to focus on the adult breeding populations present
at the time of sampling. We included captive adults used in

the breeding program to represent the captive “population”
(hereafter “captive breeders”). We separated the captive
breeders into two temporal groups: (1) parents of the captive
offspring released before and during the wild sampling
period (2019-21; group I), and (2) captive breeders held in
the breeding program at the time of this report (2023-24;
group II). Group I birds were included along with wild birds
in structure and gene flow analyses to help evaluate the
influence of the breeding program on genetic structure and
diversity. Diversity metrics were calculated for groups I and
II to provide information relevant to the breeders in captive
breeding facilities at the time of this report. We analyzed
the 1989 baseline samples separately from recent samples
to compare population structure and diversity pre- and
post-augmentation.

Loci were screened for deviations from Hardy-Weinberg
equilibrium (HWE) at four wetland sites with greater than
20 samples (Newport Bay, Batiquitos Lagoon, San Elijo
Lagoon, Tijuana Slough NWR) using an exact test based
on 1,000 Monte Carlo permutations of alleles (Guo and
Thompson, 1992) and applying the Benjamini and Yekutieli
(2001) correction for multiple tests. We removed loci if they
deviated significantly (corrected p-value less than 0.05) from
HWE at three or more sites.

Population Structure and Gene Flow

We used multiple methods to assess population structure.
First, we used STRUCTURE (Pritchard and others, 2000) to
determine the supported number of genetic clusters (K) that
conform to populations in genetic equilibrium. We specified
a range for the maximum number of clusters that individuals
could be assigned (K=1-10) and completed 10 replicate runs
per K using 500,000 iterations of the Markov chain Monte
Carlo algorithm following a burn-in of 500,000 iterations
to verify consistency across chains. The optimal K was
inferred by comparing the results from the maximum mean
log-posterior probability for K estimated by STRUCTURE
and the change in K (A K) criterion (Evanno and others,
2005). Second, we used principal component analysis (PCA)
to visualize genotypes in multidimensional space with
adegenet v2.1.10 (Jombart, 2008), in R v4.1.2 (R Core Team,
2018). We used the program PopCluster (Wang, 2022a) to
estimate gene flow among populations. PopCluster provides
estimates of recent gene flow rates (last 3 generations) from
an admixture model. We first evaluated up to 10 clusters (K)
with 20 replicate runs. After selecting the optimal K, we ran
the PopCluster model with migration for 20 replicate runs to
estimate gene flow rates among clusters from the individual
admixture estimates.


https://bitbucket.org/cornell_bioinformatics/amplicon

We calculated allelic richness (A4r), private allelic richness
(PAr), observed heterozygosity (Ho) and unbiased expected
heterozygosity (He), and inbreeding coefficients across marsh
sites, and clusters and groups of captive breeders. There
was some geographic overlap between cluster assignments
in Mission Bay (Kendall-Frost Mission Bay Marsh Reserve
and San Diego River). For the purpose of reporting genetic
diversity indices by cluster, we grouped these two wetlands in
the south San Diego County cluster. The effective population
size (IV,) was estimated in NeEstimator v2 (Do and others,
2014) for each cluster and period. We used the linkage
disequilibrium method with monogamy and a minimum allele
frequency of 0.02, and calculated 95-percent confidence
intervals (CI) of point estimates by jackknifing across samples.

We compared genetic differentiation (Fg;), relatedness
(R), allelic richness (4r), and unbiased expected
heterozygosity (He) between the baseline and recent sample
periods by using group comparisons in FSTAT v2.9.4 (Goudet,
2001), with p-values derived from 10,000 permutations. We
restricted our analysis to the three wetlands that were sampled
in both periods (Mugu Lagoon, Newport Bay, Tijuana Slough
NWR). During the time of our field sampling, only a handful
of birds were observed in Seal Beach; we did not pursue
sampling there to avoid disturbing the remaining rails. We also
ran a PCA across paired wetlands to visualize any changes in
genetic clustering over time.

Decision Framework for Genetic Rescue

Following the decision framework presented in Frankham
and others (2017), we assessed whether populations met
certain criteria indicating genetic erosion and whether genetic
rescue could improve genetic diversity in local populations.
We calculated the mean inbreeding coefficient (F):

Hinbred

=1 Houtbred @
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where
Hinbred is the average heterozygosity of the receiver
(inbred) population, and
Houtbred is the average heterozygosity of the donor

(outbred) population.

F values greater than 0.1 indicate that genetic diversity
is sufficiently higher in donor population(s) to benefit the
receiver population (Frankham and others, 2017). We used our
estimates of expected heterozygosity to calculate F for each
regional cluster in relation to the following donors: (1) captive
breeders, (2) Orange County cluster, (3) north San Diego
County cluster, and (4) south San Diego County cluster.

Comparing Coancestry and Inbreeding
Coefficients from Studbook and Genetic Data

We calculated pedigree-based coancestry and inbreeding
coefficients for captive breeders using the R package
kinship2 (Sinnwell and others, 2014). We then estimated
the genetic-based relatedness and inbreeding coefficients for
captive breeders in the software EMIBD9 (Wang, 2022b).
The EMIBDO software implements a likelihood expectation
maximization (EM) method, updating allele frequencies and
identity-by-descent coefficients for each pair of sampled
individuals until convergence. The EM method estimates
relatedness and allele frequencies simultaneously from a
small sample of genotypes, in contrast to traditional methods,
which rely on unbiased allele frequencies obtained from a
large sample of unrelated genotypes (for example, relatedness
presented in table 1). We then compared the productivity,
pedigree-based metrics and genetic-based metrics for recent
breeding pairs.
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Results and Discussion

During locus and sample evaluations, we identified
17 loci with greater than 10 percent missing data and
24 additional loci that were monomorphic. We also identified
nine loci that deviated significantly from HWE, four loci
with significant linkage disequilibrium, and no loci with
null allele frequencies greater than 0.2. These 54 loci were
removed before further analysis. The final dataset retained the
remaining 54 loci and included 143 wild adult birds sampled
from 17 wetlands (table 1). We included 10 captive parents
of the offspring released just before and during the sampling
period (group 1; 2019-21) and 10 breeding adults in the
captive breeding program at the time of this report (group
I1; 2023-24). We also included 27 baseline samples from
four wetlands sampled in 1989, before augmentation efforts
(table 1). Genotype data are available as a USGS data release
in Mitelberg and others (2025).

Recent Population Structure

Structure analyses best supported three genetic clusters
across the range (fig. 4) that roughly corresponded to
sampled regions ([1] Orange County plus Mugu Lagoon
and the captive breeders, [2] north San Diego County plus
San Diego River, and [3] Kendall-Frost Mission Bay Marsh
Reserve and south San Diego County; fig. 5). Individuals of
mixed assignment were reported in all clusters, indicating
recent or ongoing dispersal and gene flow occur directly
among wetlands, or that gene flow is facilitated through the
efforts of the captive breeding program. Principal component
analysis also grouped individuals into three regional clusters

Results and Discussion 9

(fig. 64) along axes 1 (7 percent of the total genetic variation)
and 2 (6 percent of the variation), while axis 3 (5 percent

of the variation) separated individuals within marsh sites,
particularly within the Orange County cluster (fig. 63).
PopCluster also supported three clusters and estimated recent
gene flow rates among clusters ranging from 4.1 percent

(from north San Diego County to Orange County) up to

23.5 percent (from Orange County to north San Diego County;
table 2). Recent gene flow estimates among clusters were
high, especially into the north San Diego County cluster.
However, natural versus augmented levels of gene flow are
difficult to separate in this system given the approximately

20 years (10-20 generations) of captive breeding and releases
before genetic monitoring efforts. Higher rates of recent gene
flow (last 3 generations) from the Orange County cluster (the
source of the captive program) into the other two clusters
could reflect these captive release efforts. Recent telemetry
data indicate rail movement is usually localized. In a group of
transmittered wild (N=42) and captive released (N=46) hatch
year rails, only one captive rail moved between wetlands
(from Tijuana Slough NWR to the San Diego Bay NWR South
Bay Unit, about 4 kilometers [km]); all other rails stayed close
to the initial capture locations (Sawyer, 2024). Similar average
distances are reported from earlier studies, although occasional
long-distance movements of up to 258 km have been recorded
(U.S. Fish and Wildlife Service, 2020). The structuring of
individual wetlands into three broader genetic populations

that appear to be connected by moderate levels of gene flow
provides important context for population management,
supporting an inclusive regional approach consistent with
genetic structure, rather than focused on individual wetlands
as independent populations.
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Figure 4. Results of STRUCTURE analyses of Light-footed Ridgway's Rails (Rallus obsoletus levipes) supporting three genetic
clusters (K=3). A, Delta K (Evanno and others, 2005) for 1to 9 clusters (K). B, mean log-posterior probability of K(L/K]) from STRUCTURE

(Pritchard and others, 2000) for 1 to 10 clusters.
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Wetland'
EXPLANATION
I Cluster 1 I Cluster 2 I Cluster 3

'CAP, captive breeders group I; MUG, Mugu Lagoon; BOC, Bolsa Chica Ecological Reserve; UNB, Newport
Bay; SAA/HUB, Santa Ana River and Huntington Beach; BVL, Buena Vista Lagoon; AGH, Agua Hedionda;
BAT, Batiquitos Lagoon; SEL-E, San Elijo Lagoon (east of I-5); SEL-W, San Elijo Lagoon (west of -5); SDL,
San Dieguito Lagoon; LPM, Los Pefasquitos Marsh and Creek; KEF, Kendall-Frost Mission Bay Marsh
Reserve; SDR, San Diego River; SBM, San Diego Bay National Wildlife Refuge South Bay Unit; SWE,
Sweetwater Marsh; TSN, Tijuana Slough National Wildlife Refuge.

Figure 5. Individual assignment plot for three clusters estimated with STRUCTURE. Light-footed Ridgway’s Rails (Rallus obsoletus
levipes) from Ventura County (Mugu Lagoon), Orange County, and the captive breeders were mainly assigned to Cluster 1 (blue).
Cluster 2 (green) was mainly reported in north San Diego County wetlands. Birds from south San Diego County were mostly assigned to
Cluster 3 (purple). Mixed assignments indicate genetic exchange across clusters, and the effect of the captive breeding program.
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Figure 6. Principal component analysis (PCA) plots of major axes of all contemporary sampled Light-footed Ridgway's Rails (Rallus
obsoletus levipes). Points representing individuals are colored by wetland with standard ellipses around wetlands. A, PCA axes 1 and
2 roughly group wetlands into three overlapping regional clusters (Orange County plus Mugu Lagoon and the captive breeders; north
San Diego County; south San Diego County). Inset histograms show the proportions of variance explained by each vector, with plotted
vectors shaded black; B, PCA axis 3 (plotted with PCA axis 1) appears less geographically informative, and further separates some

individuals, particularly in the Orange County cluster.

Table 2. Estimated gene flow rates among regional populations of Light-footed Ridgway's Rails

(Rallus obsoletus levipes).

[Columns denote the source populations and rows the receiver populations. Proportions to and from the same
populations represent non-migrant sources. Sums greater than 1 indicate overall source populations]

To From Fr(?m north Fro_m south
Orange County San Diego County San Diego County
Orange County! 0.865 0.041 0.094
North San Diego County 0.235 0.656 0.11
South San Diego County 0.11 0.083 0.807
Sum 1.21 0.78 1.011

!Includes all birds sampled within Orange County and all birds sampled at Mugu Lagoon in Ventura County.
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Comparisons with Historical Samples

Comparing our recent samples to the 1989 baseline
samples across the same set of wetlands suggests that genetic
differentiation has declined slightly, relatedness has increased,
and allelic richness has decreased over time (table 3).
Although none of these changes were statistically significant,
the direction of these respective measures is consistent with a
small decline in overall genetic diversity in rail populations,
which is noteworthy given the increase in sample size in two
of three wetlands. The slight decline in Fy, may reflect the
effect of the captive-bred individuals being sourced from a
single site (Newport Bay) and released throughout the range
or could reflect an increase in naturally occurring dispersal
and gene flow among regions, facilitated by the increased
population sizes in the center of the range. The PCA of
baseline and contemporary samples separated sites spatially
along the primary axis (fig. 74). The second axis separated the
temporal sampling periods at Tijuana Slough NWR and the
third separated the temporal sampling periods within Mugu
Lagoon and Newport Bay (figs. 74, B). Mugu Lagoon seems
to be the most distinctive over time, with non-overlapping
point clouds (fig. 7B). Genetic differentiation over time
is consistent with genetic drift (loss of genetic diversity
over time), which is more extreme in smaller and more
isolated populations.

Genetic Diversity and Effective Population Size

By all measures, north San Diego County has the highest
genetic diversity of all sampled regions, followed by south San
Diego County, Orange County and, having the lowest genetic
diversity, Mugu Lagoon (table 1). Low genetic diversity
at Mugu Lagoon could reflect its position at the northern
range edge and consistently low survey numbers. Despite
augmentation attempts with more than 100 captive-reared
birds between 2001 and 2009, the maximum number of pairs
observed at Mugu Lagoon during the last two decades was

Table 3. Tests for differences in genetic differentiation (Fg;),
relatedness (R), allelic richness (Ar) and unbiased expected
heterozygosity (He) in populations of Light-footed Ridgway’s Rails
(Rallus obsoletus levipes) by period.

[P-values were all greater than 0.1 and were considered not statistically
significant. Abbreviations: MUG, Mugu Lagoon; TSN, Tijuana Slough
National Wildlife Refuge; UNB, Newport Bay]

Group Fgr R Ar He
Baseline (MUG, UNB, TSN) 0.081 0.053 1.834 0.335
Current (MUG, UNB, TSN) 0.071 0.196 1.756  0.329
P-value 0366 0.118 0.125 0.331

in the low 20s, and only a handful of pairs were observed
during the past few years (fig. 2; Zembal and others, 2024).
Newport Bay also appears to have relatively low levels of
genetic diversity compared with its baseline sample. Counts
during annual surveys have rapidly declined since 2017 in
Newport Bay and in surrounding wetlands in Orange County.
Declining numbers here have been attributed to increasing
tidal inundation (Zembal and others, 2024). We could not
estimate effective population size (V,) at Mugu Lagoon

due to low sample size. Among the other three regions, the
contemporary N, point estimate was lowest in Orange County
and highest in north San Diego County (table 4), which is
consistent with all other diversity metrics. Contemporary N,
point estimates were lower than baseline samples, although
CIs overlapped (table 4). General guidelines suggest N, should
be greater than 50-100 to avoid inbreeding, and greater than
500-1,000 to preserve allelic richness and long-term adaptive
potential (Frankham and others, 2014). Orange County may be
at or below these lower thresholds (upper 95-percent CI=113),
whereas north San Diego (upper 95-percent CI=486) and
south San Diego County (upper 95-percent CI=559) may be at
or below the upper thresholds.

Genetic Rescue

Frankham and others (2017) provides decision tables
for determining whether a population could benefit from
genetic rescue and state that appropriate source populations
should have higher heterozygosity than the receiver
population (£>0.1). Because it was estimated to have greater
heterozygosity than the other genetic clusters, the north
San Diego County cluster could be a genetically beneficial
source for all other regions examined, producing £>0.1 in
the receiver populations (table 5). Mugu Lagoon, with the
lowest heterozygosity of any site, could benefit from genetic
rescue from any other source (table 5). Finally, because the
captive breeders have low diversity when compared to wild
populations, augmentation results in negative F for all sites
except for Mugu Lagoon (table 5). New source populations
could improve diversity in the captive breeding program (see
the “Managing Genetic Diversity in the Captive Program”
section).

Whether or not wild regional clusters could benefit from
genetic rescue can also be assessed with information about
population size and isolation. Although Mugu Lagoon and the
Orange County cluster have low or declining survey numbers,
low effective population sizes, and are geographically more
isolated, the north and south San Diego County clusters have
larger survey numbers based on recent call-broadcast surveys
(fig. 3) and higher effective population sizes. Although gene
flow estimates among clusters were high, augmentation
through the captive release program could account for some of
this, and rates were lowest into the Orange County cluster.
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Figure 7. Principal component analysis (PCA) plots of historical baseline and recent samples of Light-footed Ridgway's Rails (Rallus

obsoletus levipes) colored by wetland. A, PCA axes 1 and 2 separate the northern and southern sites and historical and contemporary
samples in Tijuana Slough National Wildlife Refuge (TSN and TSN.HIST); B, PCA axis 3 separates baseline and recent samples from

Mugu Lagoon and Newport Bay, respectively.

Table 4. Linkage disequilibrium estimates

of genetic effective population size (N,) of
Light-footed Ridgway's Rails (Rallus obsoletus
levipes) populations assuming a monogamous
breeding system and using alleles with a
frequency of greater than 1 percent.

[Corresponding 95-percent confidence intervals (CI) were
jackknifed across samples. Estimates for Mugu Lagoon
could not be calculated (NC) because of low sample size.
An upper CI of infinity (INF) indicates that there is not
enough information in the dataset to estimate the upper
bound. This can occur when sample sizes are small or

when NV, is large. Abbreviation: —, no data]
Current N, Bas:lllne
H _ e
Region (95 péalr)cent (95-percent
cl)
Ventura County NC NC
(Mugu)
Orange County 45 (25-113) 140 (49—
INF)
North San 235 —
Diego County (148-486)
South San 115 915 (32—
Diego County (55-559) INF)

Table 5. Genetic rescue decision table for source populations of Light-footed
Ridgway's Rails (Rallus obsoletus levipes).

[In all cases, birds sourced from the north San Diego County Cluster could provide the

greatest potential improvements to genetic diversity. Abbreviations: F, inbreeding coefficient;
He, unbiased expected heterozygosity]

Fby Source Is the pl(:sptlllllt:l _
ot e
North South isolated very
Region He . Orange  San San small or
Captlve . . (no or I
County Diego Diego low small for
County County | gone multiple
flow)? genera-
) tions?
Ventura (Mugu 0.279 | 0.004 10.16  !'0.285 0.2 Yes Yes
Lagoon)
Orange County 0.332 | —0.185 0 10.16 0.047 Yes Yes
North San 0.389 | -0.391 -0.173 0 —0.118 No No
Diego
County
South San 0.348 | —0.348 —0.05 10.106 0O No No
Diego
County

ICombinations of source and receiver populations with F-values greater than 0.1 indicate an
improvement in genetic diversity.
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Managing Genetic Diversity in the
Captive Program

Adjustments to captive rearing source populations and
release strategies, informed by new empirical estimates
of population genetic diversity and structure, could help
preserve genetic diversity. The pool of captive breeders has
lower genetic diversity than all wild genetic clusters except
for Mugu Lagoon. Therefore, the recently released hatch
year birds likely added little or no genetic diversity benefit to
the receiver populations into which they have been released
(table 5). Two factors may contribute to this. First, breeding
birds for the captive program have been consistently sourced
from one wetland across the range (Newport Bay). However,
this wetland has recently declined in size and has low genetic
diversity and low effective population size, suggesting it
may benefit from genetic rescue itself (tables 4, 5). Second,
the captive breeding program is small, composed of up to
six pairs annually. Some of the recent breeding birds have
high inbreeding coefficients and some pairs have elevated
(non-zero) genetic relatedness, despite efforts to minimize
pairings between known relatives based on the pedigree
(table 6). These genetic estimates could indicate non-zero
relatedness among the wild ancestors. Given the small number
of breeding birds in the captive program at any one time,
efforts to rotate in wild birds more frequently could help to
incorporate new genetic diversity. Retaining later generations
of offspring in the breeding program could increase
relatedness, depending on pairings. Large differences in
productivity among breeding pairs may also skew the genetic
makeup of captive-released cohorts. This could be reduced
by limiting the number of clutches produced by each captive
pair each season. Limiting breeding windows, especially to the
beginning of the season, may also help increase the probability
of survival for captive-released juvenile rails. Analysis of
telemetry data indicated that captive rails released early in
the summer had higher survival rates than those released
later (Sawyer, 2024; Sawyer and Conway, in press). Finally,
ensuring receiver sites receive a mix of clutches produced by
unrelated pairs could decrease the overall relatedness of birds
released at a single site and season.

Wetlands in north San Diego County have the highest
heterozygosity, allelic richness, and private allelic richness
across all surveyed regions and the lowest relatedness.
Sourcing birds or eggs from the larger wetlands within the
north San Diego County cluster could provide the greatest
increase to the genetic diversity and representation within
the captive breeding population for future population
augmentation (table 4). Because relatedness values were
generally higher within than among wetlands even within the

same regional clusters, pairing birds sourced from different
wetlands instead of a single wetland could also help reduce
the chances of including closely related birds in the captive
program. Finally, genotyping all candidate parents could
directly estimate genetic relatedness and suggest pairings to
minimize inbreeding.

Wetland Restoration

Given that wetlands in north San Diego County appeared
largely unoccupied before the mid-2000s, it could be possible
that a combination of habitat restoration coupled with captive
releases (fig. 3) are responsible for the increase in numbers of
pairs and high genetic diversity in north San Diego County.

In addition, given estimated gene flow rates of 8—11 percent
between south and north San Diego County genetic clusters,

it is possible that natural dispersal of wild birds may be
sufficiently high to maintain genetic diversity and connectivity
across this part of the subspecies’ range.

Although opportunities to restore wetlands may be rare
throughout the northern part of the subspecies’ range, restored
wetlands could provide more stepping stones for increased
connectivity. In the more immediate time frame, our genetic
analyses suggest that Orange County and Mugu Lagoon
clusters could benefit from augmentation and genetic rescue
from a higher-diversity source population.

Another important factor in maintaining high diversity
is retaining large populations to minimize the erosion of local
genetic diversity. Habitat management and restoration can
assist in maintaining large populations and could become
even more critical given predicted sea-level rise, which may
threaten wetland habitat in areas without sufficient upland
habitat for marsh retreat (Osland and others, 2022), and may
already be affecting the population at Newport Bay (Zembal
and others, 2024). Models of California wetland vulnerabilities
to sea-level rise, including three marshes occupied by rails
(Newport Bay, Sweetwater, and Tijuana Slough NWR)
predicted significant loss of high and middle marsh habitat
by 2050 and between 50- and 100-percent conversion to
bare mudflats by 2100 under moderate to high sea-level rise
scenarios (Thorne and others, 2018). Survival of juvenile
rails is affected by elevation, and the timing and water level
at high tide (Sawyer, 2024; Sawyer and Conway, in press).
The abundance of raptors may also have a negative effect
on survival, especially for captive-released rails (Sawyer,
2024; Sawyer and Conway, in press). A recent 5-year study
of mortality in California Ridgway’s Rails in San Francisco
Bay indicated that avian predators accounted for most of the
observed mortalities (Casazza and others, 2016).
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Preliminary Conclusions and Future
Research Objectives

In collaboration with researchers from Mexico, USGS
has received samples from the southernmost part of the range
in Ensenada, Baja California, Mexico (Estero de Punta Banda
and Bahia de San Quintin). Genetic and genomic analyses of
these samples can help characterize genetic diversity across
the full subspecies range. A larger, genome-wide set of single
nucleotide polymorphisms (Peterson and others, 2012) may
provide greater sensitivity to discern any additional structure
among sampled wetlands, could help assess genomic diversity,
and may better resolve effective population sizes given small
sample sizes (Andrews and others, 2016). Nevertheless, results
to date suggest that the microsatellite loci described and
analyzed here identified regional patterns in genetic diversity
in wild populations and estimates of genetic relatedness and
inbreeding of captive rails. These markers could provide a
cost-effective tool to monitor genetic diversity in the breeding
program moving forward.
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Table 1.1.  Founder contribution to the release program by region and overall, expressed as percentage of the 655 Light-footed
Ridgway's Rails (Rallus obsoletus levipes) released in southern California wetlands between 2001 and 2024.

Year of first Year of last

Founder offspring offspring Mugu Lagoon  Orange County _North San _South San Perce_nt t(_)tal
released released Diego County  Diego County contribution
WILDS 2001 2005 0.88 0.38 0.88 0.53 2.67
WILD7 2001 2005 0.88 0.38 0.88 0.53 2.67
WILDI 2001 2005 0.88 0.38 0.88 0.46 2.60
WILD2 2001 2005 0.88 0.38 0.88 0.46 2.60
WILD3 2001 2006 1.35 0.11 0.50 0.39 2.35
WILD5 2001 2006 1.35 0.11 0.50 0.39 2.35
WILD4 2001 2006 1.35 0.11 0.50 0.39 2.35
WILD6 2001 2006 1.35 0.11 0.50 0.39 2.35
WILDSB2 2003 2003 0.00 0.53 0.00 0.00 0.53
WILDSBI1 2003 2003 0.00 0.53 0.00 0.00 0.53
WILD9 2003 2012 1.35 0.15 0.73 0.28 2.51
WILDI10 2003 2012 1.35 0.15 0.73 0.28 2.51
WILD14 2004 2008 0.11 0.00 0.00 0.00 0.11
WILD13 2004 2008 0.11 0.00 0.00 0.00 0.11
WILDI1 2004 2010 0.08 0.19 0.23 0.34 0.84
WILDI12 2004 2010 0.08 0.19 0.23 0.34 0.84
WILD18 2005 2007 0.08 0.00 0.04 0.19 0.31
WILD17 2005 2007 0.08 0.00 0.04 0.19 0.31
WILD24 2006 2013 0.84 0.36 0.88 0.43 2.51
WILD23 2006 2013 0.84 0.36 0.88 0.43 2.51
WILD27 2006 2014 0.23 0.61 0.97 1.11 291
WILD238 2006 2014 0.23 0.61 0.97 1.11 291
WILD19 2007 2009 0.11 0.00 0.11 0.08 0.31
WILD20 2007 2009 0.11 0.00 0.11 0.08 0.31
WILD22 2007 2012 0.27 0.19 0.34 0.31 1.11
WILD21 2007 2012 0.27 0.19 0.34 0.31 1.11
WILD25 2007 2012 0.11 0.00 0.11 0.08 0.31
WILD26 2007 2012 0.11 0.00 0.11 0.08 0.31
WILD15 2008 2009 0.04 0.08 0.00 0.00 0.11
WILDI16 2008 2009 0.04 0.08 0.00 0.00 0.11
WILD32 2008 2012 0.27 0.19 0.31 0.11 0.88
WILD31 2008 2012 0.27 0.19 0.31 0.11 0.88
WILD30 2008 2018 0.15 1.11 2.18 2.30 5.74
WILD29 2008 2018 0.15 1.11 2.18 2.30 5.74
WILD36 2009 2012 0.00 0.19 0.00 0.08 0.27

WILD35 2009 2012 0.00 0.19 0.00 0.08 0.27
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Table 1.1. Founder contribution to the release program by region and overall, expressed as percentage of the 655 Light-footed
Ridgway's Rails (Rallus obsoletus levipes) released in southern California wetlands between 2001 and 2024.—Continued

Founder Yz:lrs::ifl:;St Yzfa;;;:iLagﬂ Mugu Lagoon  Orange County N orth San S outh San Perce'nt tt_)tal
released released Diego County  Diego County contribution
WILD33 2009 2018 0.00 0.31 0.98 1.01 2.29
WILD34 2009 2018 0.00 0.31 0.98 1.01 2.29
WILD39 2010 2010 0.00 0.00 0.00 0.08 0.08
WILD40 2010 2010 0.00 0.00 0.00 0.08 0.08
WILD37 2010 2014 0.00 0.03 0.05 0.18 0.25
WILD38 2010 2014 0.00 0.03 0.05 0.18 0.25
WILD47 2011 2011 0.00 0.08 0.08 0.00 0.15
WILD48 2011 2011 0.00 0.08 0.08 0.00 0.15
WILDS1 2011 2012 0.00 0.19 0.08 0.00 0.27
WILD52 2011 2012 0.00 0.19 0.08 0.00 0.27
WILD49 2012 2012 0.00 0.08 0.00 0.00 0.08
WILDS50 2012 2012 0.00 0.08 0.00 0.00 0.08
WILDA41 2012 2015 0.00 0.08 0.31 0.08 0.46
WILD42 2012 2015 0.00 0.08 0.31 0.08 0.46
WILD L 2012 2016 0.00 0.04 0.69 0.11 0.84
WILD K 2012 2016 0.00 0.04 0.69 0.11 0.84
WILD46 2012 2016 0.00 0.04 0.69 0.11 0.84
WILD45 2012 2016 0.00 0.04 0.69 0.11 0.84
WILD56 2014 2014 0.00 0.00 0.08 0.00 0.08
WILD54 2014 2014 0.00 0.00 0.08 0.00 0.08
WILDS5 2014 2014 0.00 0.00 0.08 0.00 0.08
WILDS3 2014 2014 0.00 0.00 0.08 0.00 0.08
WILDS57 2014 2019 0.00 0.00 0.15 0.00 0.15
WILDS58 2014 2019 0.00 0.00 0.15 0.00 0.15
WILD I 2018 2019 0.00 0.00 0.18 0.20 0.38
WILD J 2018 2019 0.00 0.00 0.18 0.20 0.38
WILD66 2018 2023 0.03 0.34 0.94 2.39 3.71
WILDG65 2018 2023 0.03 0.34 0.94 2.39 3.71
WILD64 2018 2023 0.03 0.34 0.86 2.39 3.63
WILD63 2018 2023 0.03 0.34 0.86 2.39 3.63
WILD69 2018 2024 0.13 0.76 0.64 1.34 2.87
WILD68 2018 2024 0.13 0.84 0.56 1.34 2.87
WILD67 2018 2024 0.13 0.84 0.56 1.34 2.87
WILD70 2018 2024 0.13 0.76 0.64 1.34 2.87
UNK B 2019 2019 0.00 0.00 0.00 0.08 0.08
UNK C 2019 2019 0.00 0.00 0.00 0.08 0.08
WILD A 2020 2024 0.13 0.27 0.41 0.94 1.75
WILD B 2020 2024 0.13 0.27 0.41 0.94 1.75
WILD H 2022 2024 0.10 0.27 0.10 0.29 0.74
WILD G 2022 2024 0.10 0.27 0.10 0.29 0.74

All founders 2001 2024 17.25 16.49 30.99 35.27 100.00




Table 1.2. Baseline blood and DNA samples of Light-footed Ridgway's Rails (Rallus obsoletus levipes) collected in 1989 and provided

by R. Fleischer, Smithsonian Institution.

[DNA, deoxyribonucleic acid; ID, identification; NWR, National Wildlife Refuge]
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Samg:zt:e this Smnhsonllsn sample Sample type Site County
TSN _001 486 Blood (capillary) Tijuana Slough NWR San Diego
TSN_002 487 Blood (capillary) Tijuana Slough NWR San Diego
TSN _003 488 Blood (capillary) Tijuana Slough NWR San Diego
TSN_004 490 Blood (capillary) Tijuana Slough NWR San Diego
TSN_005 491 Blood (capillary) Tijuana Slough NWR San Diego
TSN_006 492 Blood (capillary) Tijuana Slough NWR San Diego
TSN _007 493 Blood (capillary) Tijuana Slough NWR San Diego
TSN_008 494 Blood (capillary) Tijuana Slough NWR San Diego
TSN_009 495 Blood (capillary) Tijuana Slough NWR San Diego
TSN _082 498 Blood (capillary) Tijuana Slough NWR San Diego
UNB_001 496 Extracted DNA Newport Bay Orange
MUG 001 497 Extracted DNA Mugu Lagoon Ventura
UNB 002 601 Extracted DNA Newport Bay Orange
UNB_003 602 Extracted DNA Newport Bay Orange
UNB 004 605 Extracted DNA Newport Bay Orange
UNB_005 606 Extracted DNA Newport Bay Orange
UNB_006 607 Extracted DNA Newport Bay Orange
UNB_007 608 Extracted DNA Newport Bay Orange
MUG 002 609 Extracted DNA Mugu Lagoon Ventura
MUG_003 613 Extracted DNA Mugu Lagoon Ventura
MUG 004 614 Extracted DNA Mugu Lagoon Ventura
UNB 008 616 Extracted DNA Newport Bay Orange
SEB 001 622 Extracted DNA Seal Beach Orange
SEB 002 623 Extracted DNA Seal Beach Orange
SEB 003 624 Extracted DNA Seal Beach Orange
SEB_004 626 Extracted DNA Seal Beach Orange
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DVVIOOHVIILILVLIOVOILIVLOODOVIVOVOVVIVLOLOLVOVOOILOODOODLODLOLO DHOHOILOOVVVLLLOILVVVIOVIVOVIVOVOVVIVIOLOLYOVIOLODOVIODOILODL AN 6TEl dOVYE
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DOHIOHOHOHIOHOVVILLVVOVIOVIVOVOHVVIVIOLOIVOVOOILOODODILOILOLO DOVILOLLVIVOLIDLODDOIVOVIVOHVOHVVIVIOLOIVOVILOOOVIOHDIOLOIDL AN T1S0T dovYd
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DIVOIIVIILLIDIIDLLOOVIVOVOVVIVIOLOLVOVOOILIODODDLODLIOLO DVOHVIILIOLVOLLLODIDLLLOODOVIVOVOHVVIVLIOLOLVOVILOOOVIDOILODL IxdN  pI1S dOVY
JVOHVOHLLOLLLOVIIOIVVIVIOVIOVOVOVVIVIOLOIVOVOOILIODODILODOIILD  HVVOHOIVOVIOVVOHVOVILLLIOVIVOVOVVIVIOLOLYVOVOLOIOVIODOILODL IXdN  €68% OV
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DVHVIOOHVOHOLIOLOLOLODOVIVOVOVVIVLOLOILVOVOOILIDODILODILILO DOVOHLVOHOHVIDHVVIVVOHVOHODVIVOVOVVIVLIOLOLYVOVILOOOVIOHOILOOL xdN €60 HOVY
DVHVOHVILIVLIIOVIDLOOHVOHOVIVOVOHVVIVIOLOIVOVOHODLIDHOOILODILOLD HHOIODIOHIDIDIIVIDHVIOVIVHVOVVIVLOLOIVOVILOIOVIHOIIODL 280 7189 4OV
DOIDOIVOLODOVDHVVILLVVVODOVOVOVOVVIVLOLOILVOVDODILOODDDILODIOLD ODOHHVHLIDLLIVOVOVHILOVOVOVOVOHVVIVLOLOLYOVIOLOIDVOODILODL XN 9659 OV
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