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Conversion Factors

International System of Units to U.S. customary units

Multiply By To obtain
Volume

liter (L) 33.81402 ounce, fluid (fl. 0z)

liter (L) 2.113 pint (pt)

liter (L) 1.057 quart (qt)

liter (L) 0.2642 gallon (gal)
Mass

gram (g) 0.03527 ounce, avoirdupois (0z)
Area

square kilometer (km?) 2471 acre

square kilometer (km?) 0.3861 square mile (mi?)

Supplemental Information

Concentrations of chemical constituents in water are given in micrograms per liter (pg/L) or
milligrams per liter (mg/L).

Abbreviations

ALC aquatic life criteria

CVAAS cold vapor atomic absorption spectrometry
CVAFS cold vapor atomic fluorescence spectrometry
DAL detection quantitation limit

DRB Delaware River Basin

EoC elements of concern

EPA U.S. Environmental Protection Agency

HHC human health criteria

ICP-MS inductively coupled plasma-mass spectrometry
ICP-OES inductively coupled plasma-optical emission spectrometry
ILRB [llinois River Basin

n number of observations

NHDPlus National Hydrography Dataset Plus

ucoL Upper Colorado River Basin

USGS U.S. Geological Survey

War Water Quality Portal



Chemical Notation

Al
As
CaCO,
Cd
Cr
Cu
Fe
Hg
Mn
Pb
Sh
Se
U
Zn

aluminum
arsenic
calcium carbonate
cadmium
chromium
copper
iron
mercury
manganese
lead
antimony
selenium
uranium

zinc






Select Elements of Concern in Surface Water of Three
Hydrologic Basins (Delaware River, lllinois River,

and Upper Colorado River)—Data Screening for the
Development of Spatial and Temporal Models

By Mark C. Marvin-DiPasquale, R. Blaine McCleskey, Samantha L. Sullivan, Jonathan Casey Root,
Serena M. Seawolf, Katherine M. Ransom, Susan A. Wherry, Evangelos Kakouros, and Shaun Baesman

Abstract

The report focuses on the screening of previously
published concentration data associated with 12 elements of
concern (aluminum, arsenic, cadmium, chromium, copper,
iron, mercury, manganese, lead, selenium, uranium, and
zinc) measured in stream surface waters of three hydrologic
basins (Delaware River Basin, Illinois River Basin, and the
Upper Colorado River Basin). The purpose of this analysis is
to determine what subsets of the original dataset (containing
more than 1,500,000 observations) may be most suitable
for each of two types of modeling efforts. The first type of
modeling envisions a machine learning approach to determine
which geospatial attributes are most significant in describing
the spatial distribution of elemental concentrations within
a basin. The second type of modeling envisions a stepwise
regression approach to develop multivariable models
that can be used to determine high resolution time-series
estimates of elemental concentrations or loads at discrete
U.S. Geological Survey real-time stream surface water sites.
These site-specific temporal models are based on continuous
measurements of available discharge and (or) in situ sensor
data (temperature, pH, turbidity, dissolved oxygen, specific
conductance, and (or) fluorescent dissolved organic matter) as
the explanatory variables. The data screening for both model
types considered historical trends in analytical methods and
detection quantitation limits, the extent of censored data,
data density, and environmental relevance with respect to
three U.S. Environmental Protection Agency water quality
thresholds (drinking water guidelines, human health criteria,
and aquatic life criteria). The result of this analysis was the
production of a final list of potential models deemed suitable
for further development based upon the data exclusion (or
inclusion) scheme developed herein for each model type. In
both cases, the final models included mostly the three crustal
elements (iron, manganese, and aluminum) that are found at
comparatively high concentrations in surface water, whereas
most of the more pernicious elements were excluded from the

final model lists owing to various data limitations. The one
exception to this was arsenic, for which the existing data were
sufficient at three U.S. Geological Survey real-time sites for
potential further development of time-series models.

Introduction

In the study of environmental contaminants, the direct
measurement of the contaminant of interest is often not
practical in situ, expensive in terms of analytical costs and
(or) human resources (for example, field sample collection),
involve long wait times for analytical results, or involve
large spatial scales that are difficult to sample in high spatial
resolution. In these cases, the development of “proxy”
measurements and (or) models can offer a valuable alternative,
where a proxy (also known as a surrogate) is a measurement
of a constituent, process, or metric that is simpler, cheaper, and
(or) more rapidly measured than the direct measurement of
the contaminant of interest. Proxy models might also include
geospatial data that can be used to estimate contaminant
concentrations and distribution at multiple spatial scales (U.S.
Geological Survey, 2023a).

The Proxies Project was designed to develop rapid and
(or) cost-effective approaches for monitoring, prediction, and
risk assessment of a range of aquatic contaminants at multiple
spatial scales (U.S. Geological Survey, 2023a). One focus area
of the project involves 12 elements of concern (EoC). The
primary geographic regions for this study are 3 hydrologic
basins (fig. 1), defined by the U.S. Geological Survey (USGS)
Next Generation Observing System and Integrated Water
Assessment Areas programs: the Delaware River Basin (DRB,
area=40,618 square kilometers [km?]), the Illinois River Basin
(ILRB, area=74,638 km?), and the Upper Colorado River
Basin (UCOL, area=46,270 km?) (USGS, 2021a, 2023b).

The study focuses on 12 EoC that were selected based on a
survey of Next Generation Observing System/Integrated Water
Assessment Areas basin coordinators and scientists who were
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Figure 1. Map showing the location of the three hydrologic basins: Delaware River Basin, Illinois River Basin, and Upper Colorado



most familiar with the stakeholder needs associated with each
basin. The list of 12 EoC includes: aluminum (Al), arsenic
(As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe),
mercury (Hg), manganese (Mn), lead (Pb), selenium (Se),
uranium (U), and zinc (Zn).

Two distinct proxy-based modeling approaches are
being pursued to better understand and estimate EoC
concentration dynamics at large spatial scales and in high
temporal resolution. The first model approach focuses on the
spatial distribution of EoC at the basin scale as a function of
geospatial attributes (geologic setting, soil characteristics,
ecoregion, land use, wildfire history, and the spatial
distribution of human infrastructure, population centers, and
mining areas). A random forest machine learning approach
is being pursued to determine which geospatial variables
most strongly correlate with the spatial patterns of individual
elements within a basin. The second model approach being
pursued uses stepwise regression to develop multivariable
relationships where the explanatory variables may include
various combinations of discharge and (or) water-quality
sensor data (for example, temperature, pH, dissolved oxygen,
specific conductance, turbidity, and (or) fluorescent dissolved
organic matter) collected at USGS real-time monitoring sites
(USGS, 2021b). The purpose of this regression approach is to
estimate EoC concentrations and (or) loads at high temporal
resolution at individual continuous monitoring sites in (near)
real-time (within hours).

Both modeling approaches rely on existing stream
surface water data retrieved from the Water Quality Portal
(WQP; https://www.waterqualitydata.us) and previously
published (Marvin-DiPasquale and others, 2022), which
included concentration data for the 12 EoC and the 3 basins
under consideration. With more than 1,500,000 observations
spanning a date range from 1900 to 2022, the resulting dataset
was screened (for example, excluded results associated
with groundwater, lakes, reservoirs, estuaries, and industrial
outfalls) and harmonized (unified data coding) with respect
to analytical matrix (filtered, unfiltered, and particulate),
analytical methods used, concentration units, and categories of
data censoring. To the extent available, discrete data associated
with ancillary properties (alkalinity, dissolved oxygen, pH,
temperature, specific conductance, suspended sediment
concentration, and turbidity) that were co-collected in the field
with the EoC samples were also retrieved from the WQP. The
complete EoC and ancillary dataset has been published as a
USGS data release (Marvin-DiPasquale and others, 2022).

In addition, to facilitate data exploration, an online tool was
developed, which allows the user to readily visualize the
spatial distribution of the EoC data as a function of element,
matrix, data source, date range, data censoring category, and
summary statistic (Marvin-DiPasquale and others, 2023).

The purpose of this report is to document the results
of a further screening of the previously published EoC
dataset (Marvin-DiPasquale and others, 2022), which was
undertaken to identify the models that are most viable and
environmentally relevant to pursue for both model types.

Introduction 3

Decisions regarding which data to retain or exclude for the
future modeling effort were based upon an examination of
multiple factors, including historical trends in methods used
and detection quantitation limits (DQL), the availability (or
lack thereof) of metadata associated with methods and DQL,
data density, the extent of censored data, and environmental
relevance with respect to three U.S. Environmental Protection
Agency water quality thresholds (drinking water guidelines,
human health criteria, and aquatic life criteria). This report is
divided into seven sections:

Section I (Data Distribution by Element, Fraction
and Hydrologic Basin) documents the data density
associated with the 12 EoC, by fraction and
study basin.

Section II (Analytical Methods and Detection
Quantitation Limits) documents: (a) the distribution of
analytical methods used by element and fraction; and
(b) changes over time for the methods used and the
reported DQL for each element. This second analysis
was performed to inform a reasonable temporal cut off
for the data used in the geospatial/machine learning
modeling.

Section IIT (Analysis of Censored Data) documents the
extent and type of data censoring encountered for each
element and fraction, by basin and across all basins, for
the 1990-2022 period. The analysis was performed to
inform the geospatial/machine learning modeling and
the real-time site temporal modeling.

Section IV (Median EoC Concentrations by Catchment)
supports the geospatial/machine learning modeling
effort and summarizes median concentrations for
each EoC (filtered and unfiltered fractions only) at
the catchment scale. Catchments represent small
hydrologic units and the unit scale for which most of
the National Hydrography Dataset Plus (NHDPlus)
geospatial data would be derived for the ultimate
modeling effort.

Section V (Decision Tree for Geospatial—Machine
Learning Models) employs a decision tree analysis of
the catchment median results for each of 72 possible
basin/element/fraction data groupings and categorizes
the results in terms of the viability of pursuing
each potential model, based on the data density, the
percentage of catchments with censored median
values, and the data distribution relative to established
U.S. Environmental Protection Agency (EPA) water
quality thresholds.

Section VI (Analysis of EoC Concentration Data at
USGS Real-Time Sites) analyzes how many samples
(and what element/fraction type) of the original WQP
data retrieval coincided with USGS real-time sites and
what specific discharge and (or) in situ sensor data are
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available for each of the sites identified. In addition,
for the purpose of prioritizing future modeling efforts,
this analysis also considers what percentage of the data
exceed specific EPA regulatory thresholds.

Section VII (Ongoing Modeling Efforts) describes the
currently underway spatial and temporal modeling
approaches in more detail and discusses the final list of
prioritized models in the context of the data screening
approach employed herein.

Although the results of the above analyses are discussed
and summarized in tables or illustrations within this report,
the underlying analytical results are provided in more
detailed data tables in a companion USGS data release
(Marvin-DiPasquale and others, 2025). For clarity, the
designation “DR_Table #” (where # can be any number from
1 to 7) is used herein when referring to tables provided in the
companion data release to differentiate from tables that are
referred to and provided within this report.

Section I: Data Distribution by Element,
Fraction and Hydrologic Basin

Retrieval of water-quality data from the WQP provide
more than 1,500,000 unique observations for 3 fractions
(filtered, unfiltered, and particulate) of the 12 elements
under study, across all 3 hydrologic basins (DRB, ILRB,
and UCOL) and over a 120-year time period (1900-2022)
(Marvin-DiPasquale and others, 2022). However, given the
diversity of Federal, State, and local/municipal agencies
that contribute to this immense data repository; the mix of
historical, provisional, and final/accepted data results; the
variation in analytical methods used and associated DQLs for
any given element; and the variation in the level of reporting
detail provided by the submitting laboratory or agency, it is
not surprising that a significant amount of data screening and
preliminary analysis is needed before various subsets of the
retrieved data can be used for eventual spatial and temporal
modeling.

The first assessment is a summary of the overall
distribution of sample counts associated with the data retrieved
(as published in Marvin-DiPasquale and others, 2022) by
element, fraction, and basin (table 1). Of the 3 hydrologic
basins, the ILRB yielded the most observations (n=641,118),
followed by the UCOL (n=548,199) and the DRB
(n=338,511). These observation totals include cases where
a sample was collected but no result was reported, typically
because the measured value was below the given DQL. Across
all basins, the element with the least observations was uranium
(n=3,599), followed by mercury (n=40,936). Iron yielded
the highest number of observations for the ILRB (n=75,037)
and the UCOL (n=72,637), whereas copper had the highest
number of observations in the DRB (#=49,108). An outcome
of this assessment was that, across individual elements and

basins, the relative number of observations associated with
the particulate fraction was small (less than [<] 3.6 percent)
compared with the filtered fraction (range from 11 to

77 percent) and unfiltered fraction (range from 23 to

88 percent). For all elements and basins (based on grand
totals), these percentages were: 47.6 percent, 0.7 percent,
and 51.7 percent for the filtered, particulate, and unfiltered
fractions, respectively. The implication for developing viable
spatial or temporal models is that the most data-rich models
would be those that focused on the filtered and (or) unfiltered
fraction data.

Section ll: Analytical Methods and
Detection Quantitation Limits

The next assessment of the data retrieved from the WQP
is an examination of the range of methods used to analyze
each of the 12 elements. To the extent that method information
reported in the WQP was available, the data coding for
analytical methods used was harmonized (made consistent) in
the initial data release (Marvin-DiPasquale and others, 2022)
in the column titled “ADDED Method Info.” The original
WQP metadata that informed this method harmonization
and coding step included that from the following four
columns: “ResultAnalyticalMethod.MethodIdentifier,”
“ResultAnalyticalMethod.MethodIdentifierContext,”
“ResultAnalyticalMethod.MethodName,” and
“MethodDescriptionText.” The authors ultimately identified
and coded for 23 method categories. For the purposes of the
data analysis presented in this report, we further combined
and harmonized the list of methods into 13 categories (table 2,
refer to the footnote in table 2) and did not include analyses
performed on the particulate fraction, given its low proportion
of the total dataset (refer to Section I). Instead, the analysis of
methods was done by combining the results for the filtered and
unfiltered surface water fractions for each element.

For the complete 1900-2023 dataset (excluding the
particulate fraction), 31.1 percent of the entries did not
report the methods used and were thus coded as method
UNKNOWN (table 2). For specific elements, the percentage
of the data coded as method UNKNOWN was as follows:

Al, 26.4 percent; As, 16.0 percent; Cd, 34.1 percent;

Cr, 45.0 percent; Cu, 30.3 percent; Fe, 35.3 percent;

Pb, 31.1 percent; Mn, 35.4 percent; Hg, 52.0 percent;

Se, 12.9 percent; U, 24.3 percent; and Zn, 30.3 percent.
Based on methods data that were reported, inductively
coupled plasma-optical emission spectrometry (ICP-OES)
was the most common method used to analyze for Al, Cd, Cr,
Cu, Fe, Mn, Pb, and Zn. Inductively coupled plasma-mass
spectrometry (ICP-MS) was the most commonly reported
method for As and Se, although the number of reports of
analysis by ICP-MS and ICP-OES were comparable for As,
Se and Pb. In contrast, ICP-MS was the dominant method
for analyzing U. Cold vapor atomic absorbance spectrometry
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Table 1. Summary of total observations by element, fraction, and basin (Delaware River, lllinois River, and Upper Colorado River),

1900-2022.

5

[The data presented represent a sample count summary of all (1900-2022) surface water elemental concentration data retrieved from the Water Quality Portal, as
reported in Marvin-DiPasquale and others (2022). The total sample count for each basin/element/fraction data grouping includes situations where no result value
was reported, although a sample was collected. A em dash (—) indicates that no samples were collected for that basin/element/fraction data grouping. n, number

of observations; %, percentage; Filt., filtered fraction; Part., particulate fraction; Unfilt., unfiltered fraction]

Element Filt. n % Part. n % Unfilt. n % Total n
Delaware River Basin

Aluminum (Al) 24,203 49.5 106 0.2 24,601 50.3 48,910
Arsenic (As) 10,193 47.0 262 1.2 11,212 51.7 21,667
Cadmium (Cd) 6,215 38.9 383 2.4 9,359 58.7 15,957
Chromium (Cr) 2,420 21.9 383 3.5 8,248 74.6 11,051
Copper (Cu) 22,716 46.3 438 0.9 25,954 52.9 49,108
Iron (Fe) 14,589 37.0 189 0.5 24,671 62.5 39,449
Lead (Pb) 21,207 455 467 1.0 24,932 53.5 46,606
Manganese (Mn) 13,083 39.0 435 1.3 20,065 59.7 33,583
Mercury (Hg) 1,704 17.0 291 2.9 8,024 80.1 10,019
Selenium (Se) 1,733 15.5 257 2.3 9,221 82.2 11,211
Uranium (U) 435 71.9 — 0.0 170 28.1 605
Zinc (Zn) 23,141 46.0 453 0.9 26,751 53.1 50,345

Basin Total 141,639 41.8 3,664 1.1 193,208 57.1 338,511

lllinois River Basin

Aluminum (Al) 27,867 475 344 0.6 30,485 51.9 58,696
Arsenic (As) 12,268 33. 493 1.4 23,440 64.7 36,201
Cadmium (Cd) 30,779 43.7 493 0.7 39,210 55.6 70,482
Chromium (Cr) 30,651 433 474 0.7 39,588 56.0 70,713
Copper (Cu) 31,049 42.9 647 0.9 40,760 56.3 72,456
Iron (Fe) 34,216 45.6 680 0.9 40,141 53.5 75,037
Lead (Pb) 30,978 42.8 615 0.9 40,720 56.3 72,313
Manganese (Mn) 32,888 46.3 475 0.7 37,676 53.0 71,039
Mercury (Hg) 2,343 11.0 162 0.8 18,806 88.2 21,311
Selenium (Se) 8,862 39.7 95 0.4 13,340 59.8 22,297
Uranium (U) 28 43.8 — 0.0 36 56.3 64
Zinc (Zn) 30,531 433 614 0.9 39,364 55.8 70,509

Basin Total 272,460 4.5 5,092 0.8 363,566 56.7 641,118

Upper Colorado River Basin

Aluminum (Al) 21,208 55.2 113 0.3 17,103 44.5 38,424
Arsenic (As) 23,305 52.1 214 0.5 21,216 474 44,735
Cadmium (Cd) 35,893 58.1 205 0.3 25,653 41.5 61,751
Chromium (Cr) 7,458 60.5 143 1.2 4,720 38.3 12,321
Copper (Cu) 36,297 58.8 212 0.3 25,185 40.8 61,694
Iron (Fe) 35,969 49.5 185 0.3 36,519 50.3 72,673
Lead (Pb) 35,316 57.5 266 0.4 25,874 42.1 61,456
Manganese (Mn) 40,266 58.9 243 0.4 27,817 40.7 68,326
Mercury (Hg) 4,782 49.8 220 2.3 4,604 47.9 9,606
Selenium (Se) 33,618 65.1 224 0.4 17,782 34.4 51,624
Uranium (U) 2,254 76.9 — 0.0 676 23.1 2,930
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Table 1. Summary of total observations by element, fraction, and basin (Delaware River, lllinois River, and Upper Colorado River),
1900-2022.—Continued

[The data presented represent a sample count summary of all (1900-2022) surface water elemental concentration data retrieved from the Water Quality Portal, as
reported in Marvin-DiPasquale and others (2022). The total sample count for each basin/element/fraction data grouping includes situations where no result value
was reported, although a sample was collected. A em dash (—) indicates that no samples were collected for that basin/element/fraction data grouping. n, number
of observations; %, percentage; Filt., filtered fraction; Part., particulate fraction; Unfilt., unfiltered fraction]

Element Filt. n % Part. n % Unfilt. n % Total n
Upper Colorado River Basin—Continued
Zinc (Zn) 36,521 58.3 309 0.5 25,829 41.2 62,659
Basin Total 312,887 57.1 2,334 0.4 232,978 425 548,199
Grand Total 726,986 47.6 11,090 0.7 789,752 51.7 1,527,828

Table 2. Summary of analytical methods, by element.

[Values represent the number of observations (n) and the percentage (%) of method types, by element, reported in Marvin-DiPasquale and others (2022). Method
categories were further harmonized from those reported in the original data release.! This analysis excludes methods associated with the particulate fraction.
Harmonized method codes are as follows: AAS, atomic absorption spectrometry; ASPEC, alpha spectrometry-chemical separation; COLOR, colorimetry;
CVAAS, cold vapor atomic absorption spectrometry; CVAFS, cold vapor atomic fluorescence spectrometry; FLUOR, fluorometry; HGAAS, hydride generation
atomic absorption spectrometry; ICP-MS, inductively coupled plasma-mass spectrometry; ICP-OES, inductively coupled plasma-optical emission spectrometry;
NCOUNT, delayed-neutron counting; PHOS, phosphorimetry (laser) phosphorescence; POT, potential dissolved metals. The method code UNKNOWN
indicates insufficient method information was provided from the original data source.]

Method n % Method n %
Aluminum Chromium——Continued
AAS 5,515 3.8 ICP-OES 37,563 40.4
COLOR 94 0.1 UNKOWN 41,861 45
ICP-MS 10,480 7.2 Total 93,085 100
ICP-OES 90,972 62.5 Copper
POT 50 0 AAS 3,025 1.7
UNKOWN 38,356 26.4 ICP-MS 33,491 18.4
Total 145,467 100 ICP-OES 90,382 49.7
Arsenic POT 2 0
AAS 4,570 4.5 UNKOWN 55,061 30.3
HGAAS 2,277 2.2 Total 181,961 100
ICP-MS 39,914 393 Iron
ICP-OES 38,594 38 AAS 2,077 1.1
UNKOWN 16,279 16 COLOR 59 0
Total 101,634 100 ICP-MS 5,879 3.2
Cadmium ICP-OES 112,452 60.4
AAS 3,782 2.6 POT 7 0
ICP-MS 27,650 18.8 UUNKOWN 65,631 353
ICP-OES 65,539 44.6 Total 186,105 100
POT 3 0 Lead
UNKOWN 50,135 34.1 AAS 7,198 4
Total 147,109 100 ICP-MS 51,186 28.6
Chromium ICP-OES 65,012 36.3
AAS 2,197 2.4 POT 3 0
COLOR 3 0 UNKOWN 55,628 31.1
ICP-MS 11,461 12.3 Total 179,027 100



Table 2. Summary of analytical methods, by element.—Continued
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[Values represent the number of observations (n) and the percentage (%) of method types, by element, reported in Marvin-DiPasquale and others (2022). Method
categories were further harmonized from those reported in the original data release.! This analysis excludes methods associated with the particulate fraction.
Harmonized method codes are as follows: AAS, atomic absorption spectrometry; ASPEC, alpha spectrometry-chemical separation; COLOR, colorimetry;
CVAAS, cold vapor atomic absorption spectrometry; CVAFS, cold vapor atomic fluorescence spectrometry; FLUOR, fluorometry; HGAAS, hydride generation
atomic absorption spectrometry; ICP-MS, inductively coupled plasma-mass spectrometry; ICP-OES, inductively coupled plasma-optical emission spectrometry;
NCOUNT, delayed-neutron counting; PHOS, phosphorimetry (laser) phosphorescence; POT, potential dissolved metals. The method code UNKNOWN
indicates insufficient method information was provided from the original data source.]

Method n % Method n %
Manganese Zinc
AAS 1,769 1 AAS 1,506 0.8
COLOR 12 0 ICP-MS 21,589 11.9
ICP-MS 19,092 11.1 ICP-OES 103,766 57
ICP-OES 90,171 52.5 POT 3 0
POT 3 0 UNKOWN 55,273 30.3
UNKOWN 60,748 35.4 Total 182,137 100
Total 171,795 100 IThere were 23 method codes presented in the harmonized data column
Mercu ry “ADDED_Method Info” in the original data report (Marvin-DiPasquale and
others, 2022). An additional round of code harmonizing and condensing was
CVAAS 16,068 39.9 performed for the data summary presented here. Methods codes in the original
CVAFS 3,012 7.5 report were further condensed as such: atomic absorption spectrometry
ICP-MS 232 0.6 (AAS) [includes AAS, AAS-Dig, AAS-ext, and GFAAS], FLUOR [includes
’ FLUOR, FLUOR-dir, and FLUOR-ext], IPC-MS [includes ICP-MS, and
UNKOWN 20,951 52 cICP-MS], ICP-OES [includes ICP-OES, DCP-AES, DCP-AES-dig, and
Total 40,263 100 ICP-AES], and UNKNOWN [includes NA and Unknown Method]. See
3 Marvin-DiPasquale and others (2022) for additional definitions of these
Selenium harmonized method codes.
AAS 4,443 53
COLOR 169 0.2
HGAAS 3,876 4.6
ICP-MS 33,703 39.9
ICP-OES 31,450 37.2
POT 3 0
UNKOWN 10,912 12.9
Total 84,556 100
Uranium
ASPEC 2 0.1
FLUOR 673 18.7
ICP-MS 1,938 53.8
NCOUNT 7 0.2
PHOS 105 2.9
UNKOWN 874 243
Total 3,599 100
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(CVAAS) was the dominant method for analyzing Hg,
followed by cold vapor atomic fluorescence spectrometry
(CVAFS).

Before the 1970s, the total number of observations
in the retrieved dataset was scant, with fewer than
40 observations for any given element between 1900 and
1969. It was not until the 1970s that any single element
exceeded 1,000 measurements. Furthermore, no specific
method information was provided for any of the data entries
before 1970. Figure 2 illustrates the temporal change in the
total number of elemental concentration data observations
(excluding the particulate fraction data) retrieved from the
WQP (Marvin-DiPasquale and others, 2022) since 1970
in decadal time steps (except for 2010-22). For 11 of the
12 elements, there was either a substantial increase or
a comparable count in the total number of observations
(n) in the database, with each successive period. The one
exception to this trend was for Hg, for which n decreased
nearly 50 percent between the 2000-09 and 2010-22 periods.
Similarly, the percentages for the reporting of the methods
used and the DQLs generally increased over time. For the
complete 1970-2022 time period, 31 percent of all data entries
(excluding the particulate fraction) did not report a method
and 40 percent did not report a DQL. However, by 2010-22,
most elements (except for Hg and U) had more than 90 percent
of the entries clearly identifying the methods used and 9
out of 12 had more than 70 percent of the entries reporting
DQL values (except for Fe, Mn, and Zn). Thus, although the
reporting of methods and DQL information increased over
time, this reporting was neither necessarily consistent across
element nor tightly coupled.

Based on the updated list of 13 method categories
(table 2), summary statistics were calculated for the DQL
data originally presented in Marvin-DiPasquale and others
(2022) to examine the change in methods used and DQLs
over time for specific elemental analyses. Summary statistics
include the number of observations () of each method by
decade (with the most recent temporal category as 2010-22)
and the following statistics for all reported DQL data (by
method, element, and period): mean, standard deviation,
geometric mean, and quantiles (10th, 25th, 50th, 75th, and
90th). The complete statistical summary output for this
analysis is available in DR_Table 1 (Marvin-DiPasquale and
others, 2025). The decadal analysis of specific methods and
associated DQLs excludes entries for which a DQL value was
not reported. Of the more than 908,400 data entries for which
DQL information was reported, 29.2 percent were coded as
method UNKNOWN.

The graphical presentation of the total number of
measurements with associated DQL data, by method, begins
with the 1970s, when 6 of the 12 EoC (Cr, Cu, Fe, Pb,

Mn, and Zn) were reported to have been analyzed using
ICP-OES (fig. 3). During the 1970s, most analyses were for
Pb (n=3,554), followed by Cu (n=2,339) and Hg (n=2,054).
It was not until the 1980s that the total number of analyses
exceeded 5,000 for half of the elements (Cd, Cr, Cu, Fe, Pb,

and Hg) and the list of methods employed (with DQL values
reported) expanded to include: AAS (for Al, Cd, Cr, Cu, Fe,
Pb, Mn, and Zn), CVAAS (for Hg), HGAAS (for As and

Se), ICP-OES (for Al, Cd, Cr, Cu, Fe, Pb, Mn, and Zn), and
PHOS (for U). In the 1990s, this list was expanded to include
ICP-MS for the analysis of Al, As, Cd, Cr, Cu Pb, Mn Se,

U, and Zn. In the 1980s and 1990s, the number of samples
reported with associated DQL values exceeded 5,000 for
most of the 12 EoC (except for As, Mn, Se, and U, and Al
during the 1980s). It was not until the 2000—09 period that
CVAFS first appeared as a significant method for analyzing
Hg and when all elements (except for U) exceeded 10,000
reported measurements. For the most recent period (2010-22),
the number of measurements with reported DQLs exceeded
30,000 for all 12 EoC, except for Hg and U. Over the same
1970-2022 period, the number of WQP data entries that
included DQL values but where the method was not identified
(coded as UNKNOWN) decreased over time (fig. 3) as follows
(as a percentage of all observations [#], by time period):
1970s (96.3 percent of n=17,705), 1980s (95.1 percent of
n=101,743), 1990s (77.1 percent of n=117,395), 2000s

(16.6 percent of n=290,617), and 201022 (3.1 percent of
n=380,707).

The results associated with the methods and DQL
analysis are tabulated in DR Table 1 (Marvin-DiPasquale and
others, 2025) and are graphically presented in figures 2 and 3.
The key results are: (a) a progressive increase over time in the
number of specific methods employed and clearly identified
between the 1970s and 201022 periods; (b) a more than
21-fold increase in the number of total analyses (from 17,705
to 380,707) where DQLs were reported over the same period;
and (c) a striking decrease (from 96.3 to 3.1 percent) in the
number of cases for which DQLs were reported but the actual
method used was not over the same 52-year span.

Median DQL values, by element, method (excluding
the UNKNOWN methods category), and time period
(from 1970 to 2022), are graphically presented in figure 4.
Although the individual plots depict substantial variation in
the data, several observations are offered. First, the absolute
range (from minimum to maximum, regardless of method)
in median DQLs for crustal elements like Al and Fe (both
1-50 micrograms per liter [pg/L]) was substantially higher
than for trace elements like Hg (0.01-0.10 pug/L) and U
(0.05-1.0 pg/L). These differences reflect the relative
abundance of the various elements in typical environmental
surface water samples, driven by the need to develop and
employ methods with appropriate DQLs that allow for
the detection of environmentally relevant concentrations.
Second, the relative range (maximum divided by minimum)
of median DQLs for this same time period (independent of
method) varied from tenfold for Hg (0.01-0.10 pg/L) and Cu
(1-10 pg/L) to more than 1,000 fold for Pb (0.2-200 pg/L),
with all other elements falling within this relative range of 10
to 1,000.
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Figure 3. Horizontal stacked bar plot showing the number of retrieved WQP database observations (n), by method and time period,
between 1970 and 2022. This data analysis includes results for filtered and unfiltered surface water samples (combined) and excludes
particulate fraction analyses. The analysis further excludes any data entries that did not include a detection quantitation limit (DQL)
value. For each panel, the x-axis was allowed to vary and was individually optimized to best allow for the visual discrimination of the
various method categories. The primary data for this plot are published in Marvin-DiPasquale and others (2022), with the detailed
statistical analysis summarized in DR_Table_1 (Marvin-DiPasquale and others, 2025).
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Finally, the apparent variation in median DQL values
for any individual element (fig. 4) may reflect several factors,
one of which is a shift over time in the dominant analytical
approach(es), with differing DQLs being reported to the WQP.
This could reflect overall changes in dominant analytical
methods used by the scientific community or changes over
time in the composition of the specific agencies (Federal,
State, and local) performing field sampling programs of
variable intensity, using various methods with variable DQLs,
and reporting the results to the WQP database. In either case
or in some combination, these types of analytical changes over
time would be reflected in the variability seen in the median
DQL results. For example, both As and Se exhibited a marked
increase in the number of analyses being run by ICP-MS
and ICP-OES since 1990 (fig. 3). However, the median DQL
for As was fivefold to tenfold lower for ICP-MS (1-2 ng/L)
compared with ICP-OES (10 pg/L). For Se, the median DQL
was also significantly lower for ICP-MS (1 pg/L) compared
with ICP-OES (7-20 pg/L) during the 1990-2009 period,
but the same for both methods (5 pg/L) during the 2010-22
period (fig. 4). The apparent increase in the median DQL for
Se using the ICP-MS method between the 1990-2009 and
2010-22 periods is reflective of data from various laboratories,
with differing DQL values dominating the data provided to
the WQP in subsequent periods, and not necessarily an actual
increase in DQL over time from a single laboratory. A second
example of the introduction of new method and its influence
on reported DQL values over time can be seen in the case of
Hg. Between 1980 and 1999, the single analytical method
for Hg reported in the retrieved dataset was CVAAS, with a
median DQL ranging from 0.06 to 0.1 ug/L. By the 2000s,
reports of the use of CVAFS for Hg analysis began appearing,
which is a method with a substantially lower median DQL
(0.01 pg/L) compared with CVAAS (fig. 4).

Another factor that likely drives some of the observed
trends in median DQL values over time is improvements
in the development of and adherence to standardized
laboratory and field sampling clean techniques and quality
assurance protocols. A suggested example of these types of
improvements may be the significant and permanent decrease
in the DQL values associated with the ICP-OES analysis of
Cr, Pb, and Zn after the 1970s (fig. 4).

A nonparametric Wilcoxon rank-sum statistical test was
performed on the element-specific DQL decadal geomean
values presented in DR_Table 1 (Marvin-DiPasquale
and others, 2025) for all identified method categories and
the UNKNOWN method category combined, with the
reported geomean values binned into pre- and post-1990
temporal groupings. Five of the 12 elements had statistically
significantly lower DQL values for the post-1990 grouping
(Cd, Cr, Cu, Pb, and Hg). The remaining seven elements
(Al As, Fe, Mn, Se, U, and Zn) had no significant difference
for the DQL decadal geomean values between the two
temporal groupings.

Although a more detailed examination of the changes in
analytical methods and DQL values associated with the EoC
data originally retrieved from the WQP (Marvin-DiPasquale
and others, 2022) is beyond the scope of this report,
the statistical summary analysis performed on that data
is presented in DR_Table 1 (Marvin-DiPasquale and
others, 2025) and is available for additional investigation.
Furthermore, the combination of more method-specific and
DQL-specific information being reported to the WQP since
the 1990s, along with lower DQL values observed for 5 of the
12 EoC since the 1990s, suggests that data collected before the
1990s may be of somewhat lesser value for future modeling
efforts.

Section lll. Analysis of Censored Data

A critical step in the preparation and consideration of the
surface water EoC concentration data retrieved from the WQP,
as it pertains to potential modeling efforts, is an analysis of
the extent and type of data censoring that exists in the dataset.
In this context, “censored data” refers to any concentration
result value that was either deemed to be above or below the
laboratory’s established concentration range of acceptable
results or was identified in some other way as being suspect
or nonreportable. There were six types of result value data
censoring that were identified in the EoC dataset published in
Marvin-DiPasquale and others (2022), which were harmonized
and categorized as: (a) left-censored with a negative value
reported, (b) left-censored with a positive value reported, (c)
left-censored with no value reported, (d) left-censored with a
zero (0) value reported, (e) right-censored, and (f) censored for
some other reason. The phrase “left-censored” indicates that
the value was below the reporting laboratory’s DQL, whereas
the phrase “right-censored” indicates that the value was above
the reporting laboratory’s upper reporting limit. In addition
to the above six categories of data censoring, the seventh
category in the harmonization scheme employed was “not
censored,” meaning that there was no form of data censoring
and that the reported value was presumed to be valid and
within the reporting limits for the laboratory submitting data
to the WQP.

An analysis of data censoring, within the context of
the above seven categories, was performed on the EoC
concentration data originally published in Marvin-DiPasquale
and others (2022) and summarized in DR Table 2
(Marvin-DiPasquale and others, 2025). This analysis consisted
of sample counts (and expressed as percentages) for each
censoring category, subset by each basin/element/fraction
data grouping for the complete 1900-2022 dataset, as well
as for the period before 1990 (pre-1990) and the period after
(and including) 1990 (post-1990). These additional pre- and
post-1990 analyses were completed based on the lower
percentages of methods and DQL values reported (fig. 2)
and the statistically higher median DQL values for several



elements in the pre-1990 period (refer to Section II), suggested
that the pre-1990 data may be of lesser or questionable value
for use in modeling compared with the post-1990 data.

The post-1990 period represented most (83 percent) of
the complete 1900-2022 dataset. There was a notable decrease
in the percentage of data that was censored (by using any
censoring category) between the pre-1990 and post-1990
periods. Specifically, across all elements and basins, filtered
samples decreased from 63 percent censored (pre-1990)
to 55 percent censored (post-1990), particulate samples
decreased from 31 percent censored (pre-1990) to 0.8 percent
censored (post-1990), and unfiltered samples decreased
from 54 percent censored (pre-1990) to 41 percent censored
(post-1990). These results suggest that generally lower
analytical detection limits in the post-1990 period across the
suite of elements under consideration.

The comparison of censored versus noncensored data
becomes more nuanced when broken down by the individual
EoC. Figure 5 depicts the relative percentages of the censored
(all censoring categories combined) and the noncensored
data, by basin/element/fraction data groupings (excluding
the particulate fraction) for the post-1990 period (only).

In nearly all cases, the percentage of censored data was
higher for filtered samples than for unfiltered samples. The
one consistent exception was in the case of Se, where the
percentage of censored data was consistently higher in the
unfiltered samples, for all three hydrologic basins. The crustal
elements Al and Fe also exhibited a lower percentage of
censored values in the unfiltered fraction compared with the
filtered fraction in the ILRB and the UCOL, but this difference
was not as pronounced in the DRB. For the filtered fraction,
the elements with the highest degree of censoring (greater
than [>] 75 percent), by basin, were as follows: Cd, Pb, and
U for the DRB; Cd, Cr, Pb, Hg, and Se for the ILRB; and

Cr, Pb, and Hg for the UCOL. For the unfiltered fraction, the
elements with the highest degree of censoring (>75 percent),
by basin, were as follows: Cd, Hg, and Se for the ILRB; and
Hg for the UCOL. There were no elements in the DRB for
which >75 percent of the unfiltered data was censored. For the
filtered fraction, the elements that had the lowest percentage
(<25 percent) of censored data, by basin, were as follows: Al,
Fe, and Mn for the DRB; Mn and U for the ILRB; Mn only
for the UCOL. For the unfiltered fraction, the elements that
had the lowest percentage (<25 percent) of censored data, by
basin, were as follows: Al, Fe, and Mn for the DRB; Al, Fe,
Mn, and U for the ILRB; Al, Fe, and Mn for the UCOL. The
observation that 100 percent of the U samples in the ILRB
post-1990 dataset were noncensored is based upon the fact that
there were only a few filtered (#=28) and unfiltered (n=36)
samples in this grouping, none of which were censored. This
is in comparison to the number of U samples in the post-1990
dataset in the DRB (n=321 filtered, n=1,484 unfiltered) and
the UCOL (n=170 filtered, n=648 unfiltered), all which had a
significant percentage of censored values.
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Section IV: Median EoC Concentrations
by Catchment

In preparation for modeling the spatial distribution of the
12 targeted EoC at the basin level, as a function of geospatial
attributes, several preliminary data cleaning, and screening
steps are required. The three overarching steps described are:
(a) the calculation of median concentration values for each
element/fraction at the catchment level; (b) the calculation of
a single censoring value for each basin/element/fraction data
grouping; and (c) the screening of these median concentration
data groupings with respect to data density and distribution,
and relative to established regulatory thresholds. This section
covers the first two of these process steps, whereas Section V
covers the third.

The geospatial data for the ongoing modeling effort are
derived mostly from databases in the NHDPlus framework
(U.S. Environmental Protection Agency, 2024), which provide
geospatial attribute data at the catchment spatial scale. Thus,
the first step in working with the published EoC concentration
data (Marvin-DiPasquale and others, 2022) was to convert
that site-specific point data to catchment scale data, after first
removing all EoC concentration data collected before 1990.
These calculations relate only to the 1990-2022 (post-1990)
subset of the original WQP data retrieval. Furthermore, only
filtered and unfiltered fraction data were considered in this
workflow; particulate fraction data were not considered.

For the purpose of spatially aggregating the EoC
concentration data, each discrete sampling location was
identified within a NHDPIlus defined catchment using ArcGIS
Pro (version 3.0; Esri, 2022). Samples that were coded as
“nondetect” and that also had no reported DQL were removed.
Catchments with fewer than three data entries (per element/
fraction data grouping) were also removed. No data were
removed based on the specific analytical method used. Median
concentration values were then calculated for each catchment/
element/fraction data grouping by using the Kaplan-Meier
statistical approach (Helsel, 2010), which estimates median
values more accurately when some values may be censored
and determines if the calculated median itself is censored.

All calculations associated with the catchment medians were
performed in R (version 4.3.2; R Core Team, 2024). Further
details for these preparatory data steps are described in the
metadata section of the companion data release for this
report, along with the tabular data associated with the median
concentration values for each catchment/element/fraction data
grouping, as presented in DR_Table 3 (Marvin-DiPasquale
and others, 2025). A graphical example of what these median
catchment results look like spatially is given for filtered
arsenic in all three hydrologic basins (fig. 6).

Given the variation in the degree of censored data
associated with individual elements and fractions for the
discrete measurements (refer to Section III), the calculated
median concentrations also exhibited a high degree of
variability with respect to censored values at the catchment
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Figure 5. Stacked bar plots of the percentage of censored and noncensored data post-1990, by element, basin, and fraction (filtered
and unfiltered). The primary data for this figure are published in Marvin-DiPasquale and others (2022), with the detailed statistical
analysis summarized in DR_Table_2 (Marvin-DiPasquale and others, 2025). The censored category depicted in this figure represents the
sum of all six censored data categories identified in Section Il of this report and reported in the above two data releases.
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Figure 6. Maps depicting the calculated median concentrations of filtered arsenic in surface water at the catchment scale for the
three hydrologic basins (Delaware River Basin, lllinois River Basin, and Upper Colorado River Basin). The data used in calculating these
median concentration values are restricted to data collected during the 1990-2022 period, as reported in the WQP (Marvin-DiPasquale
and others, 2022). Concentration units are in micrograms per liter (pg/L). The calculated medians for this figure are published in
DR_Table_3 (Marvin-DiPasquale and others, 2025).
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scale. Specifically, before determining a single censoring
value for each basin/element data grouping, the range in
the percentage of catchments with censored median values
was as follows for the 12 EoC (combining all basins and
both fractions): Al, 0.2-33.0 percent; As, 21.6—41.8 percent;
Cd, 30.6-80.7 percent; Cr, 26.3-86.9 percent;
Cu, 17.2-47.6 percent; Fe, 0.2-9.2 percent;
Pb,20.8-68.2 percent; Mn, 0-5.7 percent; Hg,44.8-94.5 percent;
Se, 31.6-88.6 percent; U, 0-72.2 percent; Zn, 11.8-29.6 percent.
The detailed tabular results of this assessment can be found in
DR Table 4 (Marvin-DiPasquale and others, 2025).

The machine learning modeling approach being
pursued deciphers which geospatial attributes (not presented
herein) are most strongly correlated with the basin-scale
spatial distribution of EoC concentrations requires a
single censoring value for each data grouping. Thus, each
grouping was recensored to a single value by first assessing
upper-end outlier median DQL catchment values (those
exceeding the 95-percent quantile) and then defining the
highest censoring value that was not an outlier as the single
censoring value for that basin/element/fraction grouping.
The upper-end outlier values were removed for the purposes
of modeling. Further details of this recensoring process
and the tabulated results can be found in DR Table 4
(Marvin-DiPasquale and others, 2025). The final range
in the percentage of catchments with censored median
values for the 12 EoC (combining all basins and both
fractions) was: Al, 10.6-99.6 percent; As, 98.2—100 percent;
Cd,92.7-100percent; Cr,99.6—100percent; Cu,91.8—100percent;
Fe, 0.2-89.8 percent; Pb, 60.2—100 percent; Mn, 0—74.5 percent;
Hg, 99.5-100 percent; Se, 67.5-100 percent; U, 0—100 percent;
Zn, 79.4-99.5 percent. Thus, recensoring each data grouping
to a single censoring value significantly increased the
percentage of catchments with censored median values. This
step reflects that for each grouping, the single recensoring
value is ultimately the highest nonoutlier censoring value
from among all the individual catchments that had censored
medians. One consequence of this machine learning approach
and the necessity of recensoring to a single value (per
element/fraction/basin) is associated with catchments that
had concentration medians below the recensoring value, but
not originally censored themselves. For these catchments,
their median values are reassigned at the single recensoring
limit, flipping their condition from not previously censored to
censored.

Section V: Decision Tree for
Geospatial—Machine Learning
Models

There are a total of 72 geospatial models possible by
using the 12 elements of concern, 2 fractions (filtered and
unfiltered), and 3 hydrological basins. Each of these basin/
element/fraction data groupings were screened for their
potential to be further pursued with a machine learning
modeling approach applied to geospatial attributes as
explanatory variables. A decision tree (fig. 7) was constructed
for this screening process. The decision tree has 5 steps
(STEP A, B, C1, C2, and D) and 5 potential outcomes (model
Categories 1, 2, 3, 4, and 5) (table 3). Each step poses a
“yes/no” question of the data. A detailed tabular summary
of the answers for each step and the resulting category code
for all 72 potential models can be found in DR Table 5
(Marvin-DiPasquale and others, 2025).

The input data for the decision tree are the median
catchment values for each basin/element/fraction grouping,
as detailed in DR_Table 3 (Marvin-DiPasquale and others,
2025) after applying the single recensoring value described in
Section IV and summarizing the final number of catchments
and the percentage of censored catchments for that grouping,
as detailed in DR_Table 4 (Marvin-DiPasquale and
others, 2025).

For data groupings with less than 30 percent of catchment
medians censored, and beginning with STEP C1, the decision
tree considers the data in the context of regulatory threshold
concentrations. Specifically, table 4 summarizes three
categories of EPA regulatory thresholds, which are based on:
(a) drinking water guidelines and standards, (b) human health
criteria (HHC) standards, and (c) aquatic life criteria (ALC)
standards (with acute and chronic thresholds). Although
there are drinking water standards for all 12 EoC under
consideration, only 5 elements have HHC thresholds (As, Cu,
Mn, Se, and Zn) and only 6 elements have ALC thresholds
(As, Cd, Hg, Fe, Pb, and Zn).

Of the 72 basin/element/fraction data groupings run
through the decision tree (fig. 7, table 3), 14 groupings
(19.4 percent) were categorized as Category 1 (“Do not
model” because of too few catchments) at STEP A. Of the
remaining 58 groupings, only 7 (9.7 percent of the original
72) were found to have less than 30 percent censored data at
STEP B and were thus shunted to STEP C1. Of the remaining
51 groupings, which had more than 30 percent censored data
at STEP B and were thus shunted to STEP C2, 5 groupings
(6.9 percent of the original 72) had between 30 and 70 percent
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Figure 7. Graphical illustration of the decision tree. This decision tree is used to screen the 72 basin/element/fraction data groupings
under consideration for their suitability to be modeled by using a machine learning approach applied to geospatial attributes as
explanatory variables. See table 3 for the definitions of the five steps (A, B, C1, C2, and D) and five model categories (1, 2, 3, 4, and 5)

depicted in this figure.

censored data and were thus designated as Category 3
(Classification model based on detected or not-detected; LOW
PRIORITY). The remaining 46 groupings (63.9 percent of

the original 72) that were shunted to STEP C2 had more than
70 percent censored data and were designated as Category 2
(Do not model; data are too imbalanced). The complete
breakdown of the decision tree results for each of the 72 basin/
element/fraction data groupings are presented in DR_Table 5
(Marvin-DiPasquale and others, 2025).

Of the 7 original 72 basin/element/fraction data groupings
that were shunted to STEP C1, which focuses on groupings
with less than 30 percent censored catchments and elemental
concentrations assessed relative to specific EPA water quality
thresholds (table 4), none of the groupings had all catchment

median concentration data below the relevant EPA threshold.
Thus, none of the 7 groupings that were assessed at STEP

C1 were designated as Category 4 (Classification model
based on a value below the regulatory value of interest; LOW
PRIORITY) and all 7 groupings were assessed at STEP D.
The decision tree results for this last step varied depending on
the EPA threshold in question. Although all the decision tree
results are fully detailed in DR_Table 5 (Marvin-DiPasquale
and others, 2025), a summary of results for Categories 3 and 5
are provided in table 5.

Given the 72 initial basin/element/fraction data groupings
and up to five EPA criteria per element/fraction category (for
example, Zn, table 4), the EoC data originally compiled from
the WQP (Marvin-DiPasquale and others, 2022) resulted in
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Table 3. Decision tree STEPS and categories.

[This table is associated with the illustration of the decision tree shown in figure 7 and provides the definitions of the five STEPS (A, B, C1, C2, and D) and
five resulting model categories (1, 2, 3, 4, and 5) depicted on that figure. The input data are the catchment specific median elements of concern concentrations
for each of the 72 potential basin/element/fraction data groupings, after a single censoring value has been defined for that specific data grouping. The catchment
median values and the recensoring values are provided in DR_Table 3 and DR_Table_4 (Marvin-DiPasquale and others, 2025). %, percent]

Step Question Yes No

A Are there more than 200 catchments for the Proceed to STEP B Category 1: Do not model
data grouping? (too few catchments).

B Is the percentage of censored catchments Proceed to STEP C2 Proceed to STEP C1
more than 30%?

C1 Is the maximum detected value greater than Proceed to STEP D Category 4: Classification model based
the regulatory value of interest? on a value below the regulatory value

of interest; LOW PRIORITY

C2 Is the percentage of censored catchments less ~ Category 3: Classification model based ~ Category 2: Do not model; data are too

than 70%? on detected or not-detected; imbalanced
LOW PRIORITY
D Is the percentage of catchments with median ~ Category 5: Classification model based  Category 2: Do not model; data are

concentrations above (or below) the regula-
tory threshold value between 30% and
70%?

on above or below the regulatory
value of interest; HIGH PRIORITY

too imbalanced

132 potential models that could be examined by using the
geospatial machine learning approach that is being considered
as part of the USGS Proxies Project (USGS, 2023a). The
purpose of the decision tree exercise was to rigorously
consider all these potential models with respect to data density,
the extent of censored data, and the relevance to specific EPA
water quality concentration thresholds for the 12 EoC. This
aimed to limit the number of models under consideration

to those that are most viable and environmentally relevant.
Table 5 reflects this final list of models for further
consideration.

In all, there are 6 models that are considered high priority
(Category 5) to the extent that the percentage of censored
catchments was less than 30 percent and that the number of
catchments was reasonably well balanced (30—70 percent
or 50 plus or minus [£] 20 percent) with respect to values
above or below the EPA criteria under consideration (table 5).
This type of data distribution lends itself most favorably to
a categorical (above versus below EPA threshold) machine
learning approach that could be coupled with geospatial
attribute data to explain the spatial distribution of the observed
catchment median EoC concentrations. These 6 models
were limited to 3 elements (Al, Mn, and Fe), all which are
found at comparatively high concentrations in surface waters
relative to the other 9 EoC under study. Five of the 6 models
were relative to EPA National Secondary Drinking Water
Regulations, which are nonenforceable, and 1 (ILRB/Mn/
unfiltered grouping) was related to the EPA HHC (organisms
only) guideline (tables 4 and 5).

There are five models that are considered low priority
(Category 3) since 30-70 percent of the catchments in the
data groupings are censored. Given this degree of censoring,

these groupings could lead to viable categorical (detect versus
nondetect) geospatial machine learning models but were not
further considered with respect to specific EPA threshold
concentrations. These five models also included Al, Mn, and
Fe, in addition to Pb and Se (table 5).

Section VI: Analysis of EoC
Concentration Data at USGS Real-Time
Sites

Fixed site time-series models represent a second model
type that the existing EoC concentration data retrieved from
the WQP (Marvin-DiPasquale and others, 2022) may readily
lend themselves to. These models leverage continuous
discharge and (or) water-quality sensor data from USGS
monitoring sites as the explanatory variables used to estimate
elemental concentrations or loads. For example, Mast (2018)
developed a suite of surface water models (for filtered and
unfiltered fractions) that estimated concentrations for 8 target
elements (Al, As, Cd, Cu, Fe, Pb, Mn, and Zn) based on
stream discharge and water-quality data (specific conductance,
pH, turbidity, and water temperature) at 9 sites in the Animas
and San Juan Rivers in Colorado. A few such models have
also been developed at USGS real-time monitoring sites that
provide computed continuous concentrations estimates for
target elements, including: for As at 2 sites in Kansas (USGS,
2024d); for As and antimony (Sb) at 4 sites in Idaho (Baldwin
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Table 4. U.S. Environmental Protection Agency regulatory concentration thresholds for 12 elements of concern.

[The table provides three general categories of U.S. Environmental Protection Agency (EPA) regulatory concentration thresholds for the 12 elements under
study, including: (a) based on drinking water (DW) guidelines and standards from EPA (2009); (b) based on the recommended water quality “human health
criteria” (HHC) from EPA (2023), which is given in terms of the consumption of both water and organisms or the consumption of organisms only; and (c) based
on the freshwater aquatic life criteria (ALC), with both acute and chronic values given from EPA (2022). Concentrations are given for either dissolved (filter
passing) or total (unfiltered) water, as appropriate, and in units of micrograms per liter (ug/L). An em dash (—) indicates that no regulatory threshold exists for
that element/fraction data grouping. See footnotes for additional information.]

Element Fraction Dwa HHC, water + organisme HHC, organism only® ALC, acutes ALC, chronicth
) Dissolved — — — — —
Aluminum
Total 2000 — — — —
) Dissolved — — — 340 150
Arsenic
Total 10¢ 0.018 0.14 — —
) Dissolved — — — 1.81 0.72i
Cadmium
Total 5¢ — — — —
. Dissolved — — — — —
Chromium
Total 100¢ — — — —
Dissolved — — — — —
Copper
Total 1,0000 1,300 — — —
Dissolved — — — 1.4 0.77
Mercury
Total 2¢ — — — —
Dissolved — — — — 1,000
Iron
Total 3000 — — — —
Dissolved — — — — —
Manganese
Total 500 50 100 — —
Dissolved — — — 651 2.51
Lead
Total 154 — — — —
) Dissolved — — — — —
Selenium
Total 50¢ 170 4,200 — —
. Dissolved — — — — —
Uranium
Total 30¢ — — — —
) Dissolved — — — — —
Zinc
Total 5,000 7,400 26,000 120 120

aSource: National Primary Drinking Water Regulation Table (EPA, 2009).

"Based on the National Secondary Drinking Water Regulations. Nonenforceable guidelines.

‘Based on the maximum contaminant level for drinking water. Enforceable standards.

dBased on the “Treatment Technique,” a required process intended to reduce the level of a contaminant in drinking water.
¢Source: National Recommended Water Quality Criteria—Human Health Criteria Table (EPA, 2023)

fSource: National Recommended Water Quality Criteria—Aquatic Life Criteria Table (EPA, 2022)

2Acute values are based upon the “Criterion Maximum Concentration.”

hChronic values are based upon the “Criterion Continuous Concentration.”

iFreshwater criteria are hardness-dependent and were normalized to a hardness of 100 mg/L as CaCO, to allow the presentation of representative criteria
values.
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Table 5. Summary of decision tree results for model Categories 3 and 5.

[This table represents a summary of a subset (Category 3 and 5 only) of the results more fully detailed in DR_Table 3, DR Table 4, and DR _Table 5
(Marvin-DiPasquale and others, 2025), which documents the results of the decision tree analysis (fig. 7, table 3) of the 72 basin/element/fraction data groupings
with respect to model categorization. The relevant U.S. Environmental Protection Agency (EPA) criteria, associated with Category 5 models, include those
associated with drinking water (DW) and the human health criteria (HHC, organisms only), as per table 4. Criteria threshold values are given in micrograms
per liter (ug/L). EPA criteria information is not applicable (NA) for Category 3 models based on the Decision Tree design. DRB, Delaware River Basin; ILRB,
Illinois River Basin; UCOL, Upper Colorado River Basin]

Percent of o Percent of -
. . EPA Criteria Decision tree .
Basin Element Fraction censored o catchments Priority
criteria threshold L category
catchments? above criteria®

DRB Manganese Filtered 31.5 NA NA NA 3 LOW
ILRB Manganese Filtered 31.1 NA NA NA 3 LOW
UCOL Aluminum Unfiltered 33.9 NA NA NA 3 LOW
UCOL Lead Unfiltered 60.2 NA NA NA 3 LOW
UCOL Selenium Filtered 67.5 NA NA NA 3 LOW
DRB Iron Unfiltered 16.9 DW 300 55.0 5 HIGH
ILRB Aluminum Unfiltered 10.6 DW 200 66.1 5 HIGH
ILRB Manganese Unfiltered 0.0 DwW 50 68.9 5 HIGH
ILRB Manganese Unfiltered 0.0 HHC 100 35.1 5 HIGH
UCOL Iron Unfiltered 154 DW 200 57.3 5 HIGH
UCOL Manganese Unfiltered 6.9 DW 50 40.7 5 HIGH

aPercentages after the recensoring, as derived from DR_Table 4 (Marvin-DiPasquale and others, 2025).

bCalculated from the data in DR_Table 3 (Marvin-DiPasquale and others, 2025).

and Etheridge, 2019; USGS, 2024b, c); and for Se estimated
from specific conductance at 9 sites in Colorado (Linard and
Schaffrath, 2014; USGS, 2024a).

The purpose of this preliminary assessment of the EoC
concentration data initially retrieved from the WQP data
(Marvin-DiPasquale and others, 2022) is to: (a) determine
which subset of sampling locations constitute USGS
continuous monitoring sites; (b) determine for each site which
continuous discharge measurements and (or) sensor data were
being collected during the period when discrete sampling
occurred for the various element/fraction data groupings; (c)
determine the number of discrete element/fraction samples
collected at each site and what percentage of these were
censored; and (d) determine what percentage of the EoC
concentration data exceeded the various EPA threshold values
given in table 4. The overarching goal of this assessment is to
identify all site/element/fraction data groupings where there
are enough noncensored data, which are environmentally
relevant with respect to EPA thresholds, to justify pursuing
time-series models that could potentially provide continuous
EoC concentration or load estimates.

Of the 9,856 unique sites in the original WQP data
retrieval, 4,480 (45 percent) were USGS surface water sites,
with the remainder being non-USGS sites. Of the USGS sites,
285 sites also had continuous discharge measurement and
(or) sensor data that overlapped in time with when discrete
EoC data were collected. Once this subset of USGS sites with

continuous data was identified, the date-time stamp of the
discrete EoC data was matched (within the closest 15 minutes)
to the site-specific continuous data, and the two datasets were
merged into an initial dataset that consisted of site-specific
discrete EoC concentration data and date-time matched
discharge and (or) sensor data. The following seven types of
continuous data were targeted: discharge, temperature, specific
conductance, dissolved oxygen, pH, turbidity, and fluorescent
dissolved organic matter.

After the initial merging of the discrete EoC
concentration data with the discharge and (or) sensor data, the
following three criteria were employed to remove individual
site/element/fraction data groupings that were deemed to be
of low quality with respect to data density, the percentage of
censored data, and (or) environmental relevance, as follows:

* Data groupings with fewer than 50 EoC measurements
were eliminated.

» Data groupings with greater than 25 percent censored
data were eliminated.

 Data groupings for which less than 10 percent of the
specific element concentrations were above any of the
EPA threshold concentrations given in table 4 were
eliminated.
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The final resulting dataset of merged EoC concentration
data and real-time site data, after screening by the above
criteria, is published as DR _Table 6 (Marvin-DiPasquale
and others, 2025). A data table derived from the information
compiled in DR Table 6 was then constructed in DR_Table 7
(Marvin-DiPasquale and others, 2025), which summarizes:

(a) the number of EoC results for each site/element/fraction
data groupings, (b) the number and percentage of censored
EoC results for each data groupings, (c) the number of paired
sensors values for each data grouping, and (d) which EPA
criteria was exceeded for each data grouping. A coding column
(Initial model variables) was added to DR_Table 7 that lists
which of the seven types of continuous data were available for
each site/element/fraction data grouping, after excluding those
continuous data types with fewer than 50 observations.

Each site/element/fraction data grouping given in
DR Table 7 (Marvin-DiPasquale and others, 2025) thus
represents a potential time-series model that could be further
explored. Based on the data exclusion criteria described above,
there were 177 data groupings at a total of 69 unique USGS
continuous monitoring sites. Of the 177 data groupings, 163
(92 percent) had discharge as the only continuous monitoring
variable, whereas the remaining 14 had 2 or more potential
modeling variables (table 6). Unlike the analysis performed
for the geospatial machine learning models, which included
data collected since 1990, this final merged dataset from

USGS real-time sites retained data as far back as 1981, as

the provenance of the elemental concentration data was well
known (all from the USGS) and well documented with respect
to the methods used and the DQLs reported. The 1981-89
period represented 10.1 percent of all the observations in DR
Table 6 (Marvin-DiPasquale and others, 2025).

The model screening results (table 6) lead to several
conclusions related to the potential for further EoC time-series
model development at USGS continuous monitoring sites.

For models with more than one potential explanatory

variable, there were: 5 final models at 3 unique sites within
the DRB that included 3 elements (As, Fe, and Mn); 8 final
models at 4 unique sites within the UCOL that included the
same 3 elements (As, Fe, and Mn); and only 1 final model

for 1 site within the ILRB, which was for As. Thus, out of

the 12 EoC that made up the initial list, only 3 (As, Fe, and
Mn) had sufficient data density (#>50) paired with at least

2 in situ continuous monitoring properties and a low enough
percentage of censored EoC measurements (<25 percent) to be
considered “high priority” with respect to furthering modeling
efforts. This <25 percent censoring level criterion was selected
based upon a study of data substitution methods that are most
appropriate given the extent of data censoring (Antweiler,
2015). That study concluded a simple data substitution

approach (reporting limit x g) is appropriate for datasets

Table 6. Summary of potential EoC time-series models at USGS continuous monitoring sites.

[This table is a subset of DR_Table 7 given in Marvin-DiPasquale and others (2025) and excludes site/element/fraction data groupings (the model Y variable)
with only one potential explanatory variable (the model X variable). EPA, U.S. Environmental Protection Agency; DW, drinking water (guideline or standard);
HHC, human health criteria; flow, stream discharge; SC, specific conductance; Temp, temperature; DO, dissolved oxygen; Turb, turbidity; HHC, human health

criteria; DW, drinking water

Station ID Element Fraction Initial model variables EPA criteria
Delaware River Basin
01463500 Arsenic Filtered Flow, SC, Temp, DO, pH, Turb HHC
01481000 Iron Unfiltered Flow, SC, Temp, DO, pH, Turb DW
01478245 Iron Unfiltered Flow, Turb DW
01481000 Manganese Unfiltered Flow, SC, Temp, DO, pH, Turb DW
01478245 Manganese Unfiltered Flow, Turb DW
lllinois River Basin
05586300 Arsenic Filtered Temp, DO HHC
Upper Colorado River Basin
09163500 Arsenic Filtered Flow, SC, Temp HHC
394220106431500 Iron Unfiltered Flow, SC, Temp DW
09041090 Iron Unfiltered Flow, SC, Temp DW
09041090 Manganese Filtered Flow, SC, Temp DW
394220106431500 Manganese Unfiltered Flow, SC, Temp DW
09041090 Manganese Unfiltered Flow, SC, Temp DW
09041400 Manganese Filtered Flow, SC, Temp, DO DW
09041400 Manganese Unfiltered Flow, SC, Temp, DO DW




22 Select EoC in Surface Water of Three Hydrologic Basins—Data Screening for Spatial and Temporal Models

with less than 25 percent censored data. It was determined
that applying this screening level to our final model list
made the most sense given the many hundreds of initial
potential models (unique site/element/fraction data groupings)
associated with USGS real-time monitoring sites and the
complexities involved with more advanced substitution
methods for datasets with >25 percent censored data.

Of the 3 elements that made the final list given in
table 6, Fe and Mn were identified as exceeding the drinking
water standard (table 4) for more than 10 percent of the
measurements in each data grouping, whereas As was
identified as exceeding the human health criteria (table 4) at
1 site in each of the three hydrologic basins. The EPA HHC for
As is particularly low (0.018 pg/L when consuming both water
and organisms and 0.14 pg/L when consuming organisms
only) compared to other elemental thresholds given in table 4,
owing to the known carcinogenic effects of this element (U.S.
Environmental Protection Agency [EPA], 2023). While the
HHC for As is based on unfiltered water samples (table 4), the
data associated with the three As models identified in table 6
was for filtered surface water samples. However, it stands to
reason that if unfiltered water samples had been collected,
those samples would have exceeded that same EPA HHC
threshold for As.

Section VII: Ongoing Modeling Efforts

The currently underway spatial modeling effort involves
a machine learning (random forest) analysis of hundreds of
possible geospatial attributes (not presented herein) obtained
from multiple geospatial data sources. These attributes may be
broadly classified as those associated with climate, ecoregion,
hydrology, landscape type, lithology, mining, population,
soil, topography, and wildfire. The goal of this analysis is to
identify those geospatial attributes that most strongly correlate
with the observed basin-scale distribution of catchment
median EoC concentrations (for example, fig. 6). In this model
formulation, the EoC catchment median concentration data
are considered the dependent variables, and the geospatial
attributes are the independent (explanatory) variables.
Individual catchment median values are categorized as being
either above or below the relevant EPA threshold of concern
to facilitate a “classification” style machine learning modeling
approach. Thus, for catchments within a study basin where no
data currently exist, the resulting list of the most significant
model-predicted geospatial attributes may be used to assess if
those catchments are likely to have EoC concentrations above
or below the relevant EPA threshold.

There are several limitations to the machine learning type
spatial models as envisioned and described above. The first
limitation is related to data density. Analysis of the complete
19002022 dataset, with respect to the evolution of methods
used, DQLs by method, data censoring, and the extent to
which methods and DQLs were reported, led to the conclusion

that data collected before 1990 (17 percent of the full
19002022 dataset) should be excluded from these machine
learning models. Furthermore, since the geospatial attributes
being considered are provided at the catchment spatial scale, it
was necessary to similarly condense the original site-specific
point data to the catchment scale. Thus, although any given
catchment may have contained dozens or hundreds of discrete
observations for a given metal/fraction, the calculation of a
single median value per catchment resulted in a significant
decrease in the number of observations within a given study
basin for any given metal/fraction data grouping.

The second limitation in assessing the spatial trends
and geospatial correlates of EoC concentrations at the basin
scale is associated with data censoring constraints. This
classification model machine learning approach necessitates
that only a single censoring value be used for any given basin/
element/fraction grouping. Thus, the recensoring of each
basin/element/fraction data grouping to a single censoring
value further limits the data resolution by forcing catchment
medians with values lower than the single basin-wide
recensoring value to be reclassified as left-censored (and
recoded with the recensoring value) when their values before
the recensoring step were not actually censored.

A third limitation of the spatial model assessment also
results from the need to work with catchment medians, as
opposed to the original discrete site-specific concentration
data. The calculation of catchment median concentration
values precludes any refined temporal analysis of the data, as
these medians reflect a single value over the whole 1990-2022
period under consideration. However, given the magnitude,
complexity, and diversity of the initial dataset, with respect
to the when and at what frequency discrete samples were
collected within a given catchment, it was concluded that
further temporal considerations were beyond the scope of what
is practical in the context of the primary goal, which is a better
understanding of the spatial distribution of the data based on
geospatial explanatory variables.

The approach to developing temporal models at
discrete USGS real-time monitoring sites differs from
that used for “spatial” models, as the temporal models
do not utilize machine learning but instead use stepwise
regression to develop empirical multivariable regression
equations. The approach competes all possible combinations
of a few potential explanatory variables to arrive at a top
model. As opposed to the hundreds of potential geospatial
explanatory variables used for the spatial models, the
temporal models rely solely on seven potential in situ
continuous measurements (discharge, pH, specific
conductance, temperature, dissolved oxygen, turbidity,
and (or) fluorescent dissolved organic matter) to the extent
available at a given USGS monitoring site. In addition to
these 7 primary X-variables, 4 data transformations of each

are calculated (X, l, In[X], [X]? [0.5]?), giving a total of as
many as 35 potent)igll explanatory variables as the starting
point for the competitive stepwise regression analysis. Top

model selection involves balancing the desire to minimize



unexplained error by selecting the highest adjusted-R?
(coefficient of determination) with the desire to have the most
parsimonious final model (that with the fewest model terms
necessary). In addition, criteria imposed upon the top model
selection process include: (a) verifying that all model terms,
including the intercept, are significant at p-value [p]<0.05
(the probability of committing a Type II error); (b) verifying
that individual model terms are not correlated (for example,
correlation coefficients among paired model terms is <0.7);
and (c) ensuring that the top model is not overparameterized
by limiting the number of model terms allowed to 1/20th the
number of total model observations.

In contrast to the spatial models, which excluded
pre-1990 data, the temporal models covered a slightly broader
time period (1981-2022). The reasoning for the broader time
period is because all of the data associated with the USGS
real-time site models were collected and analyzed by the
USGS and included more complete metadata information
regarding methods and DQLs and because continuous
monitoring data at the final subset of USGS sites date
back to 1981.

Most of the potential temporal models identified were
associated with exceedances of EPA drinking water guidelines
or standards, as opposed to exceedances of HHC or ALC
thresholds. This reflects the fact that not all the 12 elements
under consideration had listed HHC or ALC thresholds, in
addition to the fact that the drinking water thresholds were
generally lower than the HHC or ALC thresholds, when these
latter thresholds were listed. Furthermore, most (92 percent) of
the potential temporal models had discharge only as the single
continuous variable upon which to develop a model. Not
surprisingly, a cursory exploration of best-fit models with flow
as the only continuous variable suggests that a high degree
of unexplained error, and multivariable models appear much
more promising. This may limit how many of the potential
temporal models listed in DR_Table 7 (Marvin-DiPasquale
and others, 2025) will be sufficiently robust and useful for
estimating continuous elemental concentrations at USGS
continuous monitoring sites.

Summary

The report documents the methodical screening of
the stream surface water concentration data (more than
1.5 million observations) for 12 target elements of concern
(aluminum, arsenic, cadmium, chromium, copper, iron,
mercury, manganese, lead, selenium, uranium, and zinc)
in three hydrologic basins (Delaware River Basin, Illinois
River Basin and Upper Colorado River Basin). This data
screening exercise was focused on defining the subset of data
that are most appropriate for use in the further development
of two distinct model types, one spatial and one temporal,
each with different goals and considerations with respect to
data suitability. The ongoing spatial modeling focuses on a
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machine learning analysis of geospatial attributes that most
strongly correlates with the distribution of these elemental
concentrations at the basin scale. The temporal modeling
focuses on a multivariable stepwise modeling approach to
develop equations for generating high-resolution time-series
estimates of elemental concentrations at specific U.S.
Geological Survey continuous monitoring sites, based on
available discharge and (or) in situ sensor data.

Elemental concentrations were assessed with respect
to: (a) fraction type (filtered, particulate, unfiltered), (b)
analytical methods, (c) detection quantitation limits, (d) the
extent to which analytical methods and laboratory detection
quantitation limits values were reported, and (e) the extent to
which the elemental concentration data were censored in some
way. It was concluded that data associated with the particulate
fraction was too limited to use for either model type and
that data collected before 1990 would be of limited value
in developing the geospatial machine learning type models.
Data collected since 1990 were subsequently used to calculate
median concentration values at the hydrologic catchment
spatial scale. A decision tree was used to assess the suitability
of the catchment median concentration data for developing
the geospatial machine learning models, with a high priority
status given to data groupings that involved concentrations
that exceed known U.S. Environmental Protection Agency
thresholds for drinking water, human health and (or) aquatic
life. Out of 72 unique basin/element/fraction data groupings
considered, 5 were classified as low priority and 6 were
classified as high priority. Except for one low-priority data
grouping for Pb and another for Se, the final list of all viable
data groupings consisted of only 3 elements (Al, Fe, and Mn),
which are typically found to occur at higher concentrations
compared with the 9 other elements under consideration.

For the fixed-site time-series models, 177 site/element/
fraction data groupings, associated with 69 unique USGS
continuous monitoring sites, passed the screening criteria,
although most (92 percent) had discharge only as the single
variable. Of the remaining 8 percent (14 data groupings with 2
or more variables), As, Fe, and Mn were the 3 elements from
8 unique monitoring sites that warrant further investigation,
based on the selection criteria used (table 6).

It is yet to be determined how many or which of the
unique data groupings that have been identified in this report
as viable candidates for further modeling consideration will
result in final models that are of high value and acceptably
accurate. However, the data screening approach presented
herein provides a framework that itself can be of value when
considering similar geospatial machine learning models and
(or) time series models for other constituents of interest.
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