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Conversion Factors
International System of Units to U.S. customary units

Multiply By To obtain

Volume

liter (L) 33.81402 ounce, fluid (fl. oz)
liter (L) 2.113 pint (pt)
liter (L) 1.057 quart (qt)
liter (L) 0.2642 gallon (gal)

Mass

gram (g) 0.03527 ounce, avoirdupois (oz)
Area

square kilometer (km2) 247.1 acre
square kilometer (km2) 0.3861 square mile (mi2)

Supplemental Information
Concentrations of chemical constituents in water are given in micrograms per liter (µg/L) or 
milligrams per liter (mg/L).

Abbreviations
ALC	 aquatic life criteria

CVAAS	 cold vapor atomic absorption spectrometry

CVAFS	 cold vapor atomic fluorescence spectrometry

DQL	 detection quantitation limit

DRB	 Delaware River Basin

EoC	 elements of concern

EPA	 U.S. Environmental Protection Agency

HHC	 human health criteria

ICP-MS	 inductively coupled plasma-mass spectrometry

ICP-OES	 inductively coupled plasma-optical emission spectrometry

ILRB	 Illinois River Basin

n	 number of observations

NHDPlus	 National Hydrography Dataset Plus

UCOL	 Upper Colorado River Basin

USGS	 U.S. Geological Survey

WQP	 Water Quality Portal
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Chemical Notation
Al	 aluminum

As	 arsenic

CaCO3	 calcium carbonate

Cd	 cadmium	

Cr	 chromium

Cu	 copper

Fe	 iron

Hg	 mercury

Mn	 manganese

Pb	 lead

Sb	 antimony

Se	 selenium

U	 uranium

Zn	 zinc
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Abstract
The report focuses on the screening of previously 

published concentration data associated with 12 elements of 
concern (aluminum, arsenic, cadmium, chromium, copper, 
iron, mercury, manganese, lead, selenium, uranium, and 
zinc) measured in stream surface waters of three hydrologic 
basins (Delaware River Basin, Illinois River Basin, and the 
Upper Colorado River Basin). The purpose of this analysis is 
to determine what subsets of the original dataset (containing 
more than 1,500,000 observations) may be most suitable 
for each of two types of modeling efforts. The first type of 
modeling envisions a machine learning approach to determine 
which geospatial attributes are most significant in describing 
the spatial distribution of elemental concentrations within 
a basin. The second type of modeling envisions a stepwise 
regression approach to develop multivariable models 
that can be used to determine high resolution time-series 
estimates of elemental concentrations or loads at discrete 
U.S. Geological Survey real-time stream surface water sites. 
These site-specific temporal models are based on continuous 
measurements of available discharge and (or) in situ sensor 
data (temperature, pH, turbidity, dissolved oxygen, specific 
conductance, and (or) fluorescent dissolved organic matter) as 
the explanatory variables. The data screening for both model 
types considered historical trends in analytical methods and 
detection quantitation limits, the extent of censored data, 
data density, and environmental relevance with respect to 
three U.S. Environmental Protection Agency water quality 
thresholds (drinking water guidelines, human health criteria, 
and aquatic life criteria). The result of this analysis was the 
production of a final list of potential models deemed suitable 
for further development based upon the data exclusion (or 
inclusion) scheme developed herein for each model type. In 
both cases, the final models included mostly the three crustal 
elements (iron, manganese, and aluminum) that are found at 
comparatively high concentrations in surface water, whereas 
most of the more pernicious elements were excluded from the 

final model lists owing to various data limitations. The one 
exception to this was arsenic, for which the existing data were 
sufficient at three U.S. Geological Survey real-time sites for 
potential further development of time-series models.

Introduction
In the study of environmental contaminants, the direct 

measurement of the contaminant of interest is often not 
practical in situ, expensive in terms of analytical costs and 
(or) human resources (for example, field sample collection), 
involve long wait times for analytical results, or involve 
large spatial scales that are difficult to sample in high spatial 
resolution. In these cases, the development of “proxy” 
measurements and (or) models can offer a valuable alternative, 
where a proxy (also known as a surrogate) is a measurement 
of a constituent, process, or metric that is simpler, cheaper, and 
(or) more rapidly measured than the direct measurement of 
the contaminant of interest. Proxy models might also include 
geospatial data that can be used to estimate contaminant 
concentrations and distribution at multiple spatial scales (U.S. 
Geological Survey, 2023a).

The Proxies Project was designed to develop rapid and 
(or) cost-effective approaches for monitoring, prediction, and 
risk assessment of a range of aquatic contaminants at multiple 
spatial scales (U.S. Geological Survey, 2023a). One focus area 
of the project involves 12 elements of concern (EoC). The 
primary geographic regions for this study are 3 hydrologic 
basins (fig. 1), defined by the U.S. Geological Survey (USGS) 
Next Generation Observing System and Integrated Water 
Assessment Areas programs: the Delaware River Basin (DRB, 
area=40,618 square kilometers [km2]), the Illinois River Basin 
(ILRB, area=74,638 km2), and the Upper Colorado River 
Basin (UCOL, area=46,270 km2) (USGS, 2021a, 2023b). 
The study focuses on 12 EoC that were selected based on a 
survey of Next Generation Observing System/Integrated Water 
Assessment Areas basin coordinators and scientists who were 
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most familiar with the stakeholder needs associated with each 
basin. The list of 12 EoC includes: aluminum (Al), arsenic 
(As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), 
mercury (Hg), manganese (Mn), lead (Pb), selenium (Se), 
uranium (U), and zinc (Zn).

Two distinct proxy-based modeling approaches are 
being pursued to better understand and estimate EoC 
concentration dynamics at large spatial scales and in high 
temporal resolution. The first model approach focuses on the 
spatial distribution of EoC at the basin scale as a function of 
geospatial attributes (geologic setting, soil characteristics, 
ecoregion, land use, wildfire history, and the spatial 
distribution of human infrastructure, population centers, and 
mining areas). A random forest machine learning approach 
is being pursued to determine which geospatial variables 
most strongly correlate with the spatial patterns of individual 
elements within a basin. The second model approach being 
pursued uses stepwise regression to develop multivariable 
relationships where the explanatory variables may include 
various combinations of discharge and (or) water-quality 
sensor data (for example, temperature, pH, dissolved oxygen, 
specific conductance, turbidity, and (or) fluorescent dissolved 
organic matter) collected at USGS real-time monitoring sites 
(USGS, 2021b). The purpose of this regression approach is to 
estimate EoC concentrations and (or) loads at high temporal 
resolution at individual continuous monitoring sites in (near) 
real-time (within hours).

Both modeling approaches rely on existing stream 
surface water data retrieved from the Water Quality Portal 
(WQP; h​ttps://www​.waterqual​itydata.us) and previously 
published (Marvin-DiPasquale and others, 2022), which 
included concentration data for the 12 EoC and the 3 basins 
under consideration. With more than 1,500,000 observations 
spanning a date range from 1900 to 2022, the resulting dataset 
was screened (for example, excluded results associated 
with groundwater, lakes, reservoirs, estuaries, and industrial 
outfalls) and harmonized (unified data coding) with respect 
to analytical matrix (filtered, unfiltered, and particulate), 
analytical methods used, concentration units, and categories of 
data censoring. To the extent available, discrete data associated 
with ancillary properties (alkalinity, dissolved oxygen, pH, 
temperature, specific conductance, suspended sediment 
concentration, and turbidity) that were co-collected in the field 
with the EoC samples were also retrieved from the WQP. The 
complete EoC and ancillary dataset has been published as a 
USGS data release (Marvin-DiPasquale and others, 2022). 
In addition, to facilitate data exploration, an online tool was 
developed, which allows the user to readily visualize the 
spatial distribution of the EoC data as a function of element, 
matrix, data source, date range, data censoring category, and 
summary statistic (Marvin-DiPasquale and others, 2023).

The purpose of this report is to document the results 
of a further screening of the previously published EoC 
dataset (Marvin-DiPasquale and others, 2022), which was 
undertaken to identify the models that are most viable and 
environmentally relevant to pursue for both model types. 

Decisions regarding which data to retain or exclude for the 
future modeling effort were based upon an examination of 
multiple factors, including historical trends in methods used 
and detection quantitation limits (DQL), the availability (or 
lack thereof) of metadata associated with methods and DQL, 
data density, the extent of censored data, and environmental 
relevance with respect to three U.S. Environmental Protection 
Agency water quality thresholds (drinking water guidelines, 
human health criteria, and aquatic life criteria). This report is 
divided into seven sections:

Section I (Data Distribution by Element, Fraction 
and Hydrologic Basin) documents the data density 
associated with the 12 EoC, by fraction and 
study basin.

Section II (Analytical Methods and Detection 
Quantitation Limits) documents: (a) the distribution of 
analytical methods used by element and fraction; and 
(b) changes over time for the methods used and the 
reported DQL for each element. This second analysis 
was performed to inform a reasonable temporal cut off 
for the data used in the geospatial/machine learning 
modeling.

Section III (Analysis of Censored Data) documents the 
extent and type of data censoring encountered for each 
element and fraction, by basin and across all basins, for 
the 1990–2022 period. The analysis was performed to 
inform the geospatial/machine learning modeling and 
the real-time site temporal modeling.

Section IV (Median EoC Concentrations by Catchment) 
supports the geospatial/machine learning modeling 
effort and summarizes median concentrations for 
each EoC (filtered and unfiltered fractions only) at 
the catchment scale. Catchments represent small 
hydrologic units and the unit scale for which most of 
the National Hydrography Dataset Plus (NHDPlus) 
geospatial data would be derived for the ultimate 
modeling effort.

Section V (Decision Tree for Geospatial—Machine 
Learning Models) employs a decision tree analysis of 
the catchment median results for each of 72 possible 
basin/element/fraction data groupings and categorizes 
the results in terms of the viability of pursuing 
each potential model, based on the data density, the 
percentage of catchments with censored median 
values, and the data distribution relative to established 
U.S. Environmental Protection Agency (EPA) water 
quality thresholds.

Section VI (Analysis of EoC Concentration Data at 
USGS Real-Time Sites) analyzes how many samples 
(and what element/fraction type) of the original WQP 
data retrieval coincided with USGS real-time sites and 
what specific discharge and (or) in situ sensor data are 

https://www.waterqualitydata.us
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available for each of the sites identified. In addition, 
for the purpose of prioritizing future modeling efforts, 
this analysis also considers what percentage of the data 
exceed specific EPA regulatory thresholds.

Section VII (Ongoing Modeling Efforts) describes the 
currently underway spatial and temporal modeling 
approaches in more detail and discusses the final list of 
prioritized models in the context of the data screening 
approach employed herein.

Although the results of the above analyses are discussed 
and summarized in tables or illustrations within this report, 
the underlying analytical results are provided in more 
detailed data tables in a companion USGS data release 
(Marvin-DiPasquale and others, 2025). For clarity, the 
designation “DR_Table_#” (where # can be any number from 
1 to 7) is used herein when referring to tables provided in the 
companion data release to differentiate from tables that are 
referred to and provided within this report.

Section I: Data Distribution by Element, 
Fraction and Hydrologic Basin

Retrieval of water-quality data from the WQP provide 
more than 1,500,000 unique observations for 3 fractions 
(filtered, unfiltered, and particulate) of the 12 elements 
under study, across all 3 hydrologic basins (DRB, ILRB, 
and UCOL) and over a 120-year time period (1900–2022) 
(Marvin-DiPasquale and others, 2022). However, given the 
diversity of Federal, State, and local/municipal agencies 
that contribute to this immense data repository; the mix of 
historical, provisional, and final/accepted data results; the 
variation in analytical methods used and associated DQLs for 
any given element; and the variation in the level of reporting 
detail provided by the submitting laboratory or agency, it is 
not surprising that a significant amount of data screening and 
preliminary analysis is needed before various subsets of the 
retrieved data can be used for eventual spatial and temporal 
modeling.

The first assessment is a summary of the overall 
distribution of sample counts associated with the data retrieved 
(as published in Marvin-DiPasquale and others, 2022) by 
element, fraction, and basin (table 1). Of the 3 hydrologic 
basins, the ILRB yielded the most observations (n=641,118), 
followed by the UCOL (n=548,199) and the DRB 
(n=338,511). These observation totals include cases where 
a sample was collected but no result was reported, typically 
because the measured value was below the given DQL. Across 
all basins, the element with the least observations was uranium 
(n=3,599), followed by mercury (n=40,936). Iron yielded 
the highest number of observations for the ILRB (n=75,037) 
and the UCOL (n=72,637), whereas copper had the highest 
number of observations in the DRB (n=49,108). An outcome 
of this assessment was that, across individual elements and 

basins, the relative number of observations associated with 
the particulate fraction was small (less than [<] 3.6 percent) 
compared with the filtered fraction (range from 11 to 
77 percent) and unfiltered fraction (range from 23 to 
88 percent). For all elements and basins (based on grand 
totals), these percentages were: 47.6 percent, 0.7 percent, 
and 51.7 percent for the filtered, particulate, and unfiltered 
fractions, respectively. The implication for developing viable 
spatial or temporal models is that the most data-rich models 
would be those that focused on the filtered and (or) unfiltered 
fraction data.

Section II: Analytical Methods and 
Detection Quantitation Limits

The next assessment of the data retrieved from the WQP 
is an examination of the range of methods used to analyze 
each of the 12 elements. To the extent that method information 
reported in the WQP was available, the data coding for 
analytical methods used was harmonized (made consistent) in 
the initial data release (Marvin-DiPasquale and others, 2022) 
in the column titled “ADDED_Method_Info.” The original 
WQP metadata that informed this method harmonization 
and coding step included that from the following four 
columns: “ResultAnalyticalMethod.MethodIdentifier,” 
“ResultAnalyticalMethod.MethodIdentifierContext,” 
“ResultAnalyticalMethod.MethodName,” and 
“MethodDescriptionText.” The authors ultimately identified 
and coded for 23 method categories. For the purposes of the 
data analysis presented in this report, we further combined 
and harmonized the list of methods into 13 categories (table 2, 
refer to the footnote in table 2) and did not include analyses 
performed on the particulate fraction, given its low proportion 
of the total dataset (refer to Section I). Instead, the analysis of 
methods was done by combining the results for the filtered and 
unfiltered surface water fractions for each element.

For the complete 1900–2023 dataset (excluding the 
particulate fraction), 31.1 percent of the entries did not 
report the methods used and were thus coded as method 
UNKNOWN (table 2). For specific elements, the percentage 
of the data coded as method UNKNOWN was as follows: 
Al, 26.4 percent; As, 16.0 percent; Cd, 34.1 percent; 
Cr, 45.0 percent; Cu, 30.3 percent; Fe, 35.3 percent; 
Pb, 31.1 percent; Mn, 35.4 percent; Hg, 52.0 percent; 
Se, 12.9 percent; U, 24.3 percent; and Zn, 30.3 percent. 
Based on methods data that were reported, inductively 
coupled plasma-optical emission spectrometry (ICP-OES) 
was the most common method used to analyze for Al, Cd, Cr, 
Cu, Fe, Mn, Pb, and Zn. Inductively coupled plasma-mass 
spectrometry (ICP-MS) was the most commonly reported 
method for As and Se, although the number of reports of 
analysis by ICP-MS and ICP-OES were comparable for As, 
Se and Pb. In contrast, ICP-MS was the dominant method 
for analyzing U. Cold vapor atomic absorbance spectrometry 
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Table 1.  Summary of total observations by element, fraction, and basin (Delaware River, Illinois River, and Upper Colorado River), 
1900–2022.

[The data presented represent a sample count summary of all (1900–2022) surface water elemental concentration data retrieved from the Water Quality Portal, as 
reported in Marvin-DiPasquale and others (2022). The total sample count for each basin/element/fraction data grouping includes situations where no result value 
was reported, although a sample was collected. A em dash (—) indicates that no samples were collected for that basin/element/fraction data grouping. n, number 
of observations; %, percentage; Filt., filtered fraction; Part., particulate fraction; Unfilt., unfiltered fraction]

Element Filt. n % Part. n % Unfilt. n % Total n

Delaware River Basin

Aluminum (Al) 24,203 49.5 106 0.2 24,601 50.3 48,910
Arsenic (As) 10,193 47.0 262 1.2 11,212 51.7 21,667
Cadmium (Cd) 6,215 38.9 383 2.4 9,359 58.7 15,957
Chromium (Cr) 2,420 21.9 383 3.5 8,248 74.6 11,051
Copper (Cu) 22,716 46.3 438 0.9 25,954 52.9 49,108
Iron (Fe) 14,589 37.0 189 0.5 24,671 62.5 39,449
Lead (Pb) 21,207 45.5 467 1.0 24,932 53.5 46,606
Manganese (Mn) 13,083 39.0 435 1.3 20,065 59.7 33,583
Mercury (Hg) 1,704 17.0 291 2.9 8,024 80.1 10,019
Selenium (Se) 1,733 15.5 257 2.3 9,221 82.2 11,211
Uranium (U) 435 71.9 — 0.0 170 28.1 605
Zinc (Zn) 23,141 46.0 453 0.9 26,751 53.1 50,345

Basin Total 141,639 41.8 3,664 1.1 193,208 57.1 338,511
Illinois River Basin

Aluminum (Al) 27,867 47.5 344 0.6 30,485 51.9 58,696
Arsenic (As) 12,268 33. 493 1.4 23,440 64.7 36,201
Cadmium (Cd) 30,779 43.7 493 0.7 39,210 55.6 70,482
Chromium (Cr) 30,651 43.3 474 0.7 39,588 56.0 70,713
Copper (Cu) 31,049 42.9 647 0.9 40,760 56.3 72,456
Iron (Fe) 34,216 45.6 680 0.9 40,141 53.5 75,037
Lead (Pb) 30,978 42.8 615 0.9 40,720 56.3 72,313
Manganese (Mn) 32,888 46.3 475 0.7 37,676 53.0 71,039
Mercury (Hg) 2,343 11.0 162 0.8 18,806 88.2 21,311
Selenium (Se) 8,862 39.7 95 0.4 13,340 59.8 22,297
Uranium (U) 28 43.8 — 0.0 36 56.3 64
Zinc (Zn) 30,531 43.3 614 0.9 39,364 55.8 70,509

Basin Total 272,460 42.5 5,092 0.8 363,566 56.7 641,118
Upper Colorado River Basin

Aluminum (Al) 21,208 55.2 113 0.3 17,103 44.5 38,424
Arsenic (As) 23,305 52.1 214 0.5 21,216 47.4 44,735
Cadmium (Cd) 35,893 58.1 205 0.3 25,653 41.5 61,751
Chromium (Cr) 7,458 60.5 143 1.2 4,720 38.3 12,321
Copper (Cu) 36,297 58.8 212 0.3 25,185 40.8 61,694
Iron (Fe) 35,969 49.5 185 0.3 36,519 50.3 72,673
Lead (Pb) 35,316 57.5 266 0.4 25,874 42.1 61,456
Manganese (Mn) 40,266 58.9 243 0.4 27,817 40.7 68,326
Mercury (Hg) 4,782 49.8 220 2.3 4,604 47.9 9,606
Selenium (Se) 33,618 65.1 224 0.4 17,782 34.4 51,624
Uranium (U) 2,254 76.9 — 0.0 676 23.1 2,930
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Table 1.  Summary of total observations by element, fraction, and basin (Delaware River, Illinois River, and Upper Colorado River), 
1900–2022.—Continued

[The data presented represent a sample count summary of all (1900–2022) surface water elemental concentration data retrieved from the Water Quality Portal, as 
reported in Marvin-DiPasquale and others (2022). The total sample count for each basin/element/fraction data grouping includes situations where no result value 
was reported, although a sample was collected. A em dash (—) indicates that no samples were collected for that basin/element/fraction data grouping. n, number 
of observations; %, percentage; Filt., filtered fraction; Part., particulate fraction; Unfilt., unfiltered fraction]

Element Filt. n % Part. n % Unfilt. n % Total n

Upper Colorado River Basin—Continued

Zinc (Zn) 36,521 58.3 309 0.5 25,829 41.2 62,659
Basin Total 312,887 57.1 2,334 0.4 232,978 42.5 548,199

Grand Total 726,986 47.6 11,090 0.7 789,752 51.7 1,527,828

Method n %

Aluminum

AAS 5,515 3.8
COLOR 94 0.1
ICP-MS 10,480 7.2
ICP-OES 90,972 62.5
POT 50 0
UNKOWN 38,356 26.4

Total 145,467 100
Arsenic

AAS 4,570 4.5
HGAAS 2,277 2.2
ICP-MS 39,914 39.3
ICP-OES 38,594 38
UNKOWN 16,279 16

Total 101,634 100
Cadmium

AAS 3,782 2.6
ICP-MS 27,650 18.8
ICP-OES 65,539 44.6
POT 3 0
UNKOWN 50,135 34.1

Total 147,109 100
Chromium

AAS 2,197 2.4
COLOR 3 0
ICP-MS 11,461 12.3

Method n %

Chromium—Continued

ICP-OES 37,563 40.4
UNKOWN 41,861 45

Total 93,085 100
Copper

AAS 3,025 1.7
ICP-MS 33,491 18.4
ICP-OES 90,382 49.7
POT 2 0
UNKOWN 55,061 30.3

Total 181,961 100
Iron

AAS 2,077 1.1
COLOR 59 0
ICP-MS 5,879 3.2
ICP-OES 112,452 60.4
POT 7 0
UUNKOWN 65,631 35.3

Total 186,105 100
Lead

AAS 7,198 4
ICP-MS 51,186 28.6
ICP-OES 65,012 36.3
POT 3 0
UNKOWN 55,628 31.1

Total 179,027 100

Table 2.  Summary of analytical methods, by element.

[Values represent the number of observations (n) and the percentage (%) of method types, by element, reported in Marvin-DiPasquale and others (2022). Method 
categories were further harmonized from those reported in the original data release.1 This analysis excludes methods associated with the particulate fraction. 
Harmonized method codes are as follows: AAS, atomic absorption spectrometry; ASPEC, alpha spectrometry-chemical separation; COLOR, colorimetry; 
CVAAS, cold vapor atomic absorption spectrometry; CVAFS, cold vapor atomic fluorescence spectrometry; FLUOR, fluorometry; HGAAS, hydride generation 
atomic absorption spectrometry; ICP-MS, inductively coupled plasma-mass spectrometry; ICP-OES, inductively coupled plasma-optical emission spectrometry; 
NCOUNT, delayed-neutron counting; PHOS, phosphorimetry (laser) phosphorescence; POT, potential dissolved metals. The method code UNKNOWN 
indicates insufficient method information was provided from the original data source.]
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Method n %

Manganese

AAS 1,769 1
COLOR 12 0
ICP-MS 19,092 11.1
ICP-OES 90,171 52.5
POT 3 0
UNKOWN 60,748 35.4

Total 171,795 100
Mercury

CVAAS 16,068 39.9
CVAFS 3,012 7.5
ICP-MS 232 0.6
UNKOWN 20,951 52

Total 40,263 100
Selenium

AAS 4,443 5.3
COLOR 169 0.2
HGAAS 3,876 4.6
ICP-MS 33,703 39.9
ICP-OES 31,450 37.2
POT 3 0
UNKOWN 10,912 12.9

Total 84,556 100
Uranium

ASPEC 2 0.1
FLUOR 673 18.7
ICP-MS 1,938 53.8
NCOUNT 7 0.2
PHOS 105 2.9
UNKOWN 874 24.3

Total 3,599 100

Method n %

Zinc

AAS 1,506 0.8
ICP-MS 21,589 11.9
ICP-OES 103,766 57
POT 3 0
UNKOWN 55,273 30.3

Total 182,137 100

1There were 23 method codes presented in the harmonized data column 
“ADDED_Method_Info” in the original data report (Marvin-DiPasquale and 
others, 2022). An additional round of code harmonizing and condensing was 
performed for the data summary presented here. Methods codes in the original 
report were further condensed as such: atomic absorption spectrometry 
(AAS) [includes AAS, AAS-Dig, AAS-ext, and GFAAS], FLUOR [includes 
FLUOR, FLUOR-dir, and FLUOR-ext], IPC-MS [includes ICP-MS, and 
cICP-MS], ICP-OES [includes ICP-OES, DCP-AES, DCP-AES-dig, and 
ICP-AES], and UNKNOWN [includes NA and Unknown Method]. See 
Marvin-DiPasquale and others (2022) for additional definitions of these 
harmonized method codes.

Table 2.  Summary of analytical methods, by element.—Continued

[Values represent the number of observations (n) and the percentage (%) of method types, by element, reported in Marvin-DiPasquale and others (2022). Method 
categories were further harmonized from those reported in the original data release.1 This analysis excludes methods associated with the particulate fraction. 
Harmonized method codes are as follows: AAS, atomic absorption spectrometry; ASPEC, alpha spectrometry-chemical separation; COLOR, colorimetry; 
CVAAS, cold vapor atomic absorption spectrometry; CVAFS, cold vapor atomic fluorescence spectrometry; FLUOR, fluorometry; HGAAS, hydride generation 
atomic absorption spectrometry; ICP-MS, inductively coupled plasma-mass spectrometry; ICP-OES, inductively coupled plasma-optical emission spectrometry; 
NCOUNT, delayed-neutron counting; PHOS, phosphorimetry (laser) phosphorescence; POT, potential dissolved metals. The method code UNKNOWN 
indicates insufficient method information was provided from the original data source.]
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(CVAAS) was the dominant method for analyzing Hg, 
followed by cold vapor atomic fluorescence spectrometry 
(CVAFS).

Before the 1970s, the total number of observations 
in the retrieved dataset was scant, with fewer than 
40 observations for any given element between 1900 and 
1969. It was not until the 1970s that any single element 
exceeded 1,000 measurements. Furthermore, no specific 
method information was provided for any of the data entries 
before 1970. Figure 2 illustrates the temporal change in the 
total number of elemental concentration data observations 
(excluding the particulate fraction data) retrieved from the 
WQP (Marvin-DiPasquale and others, 2022) since 1970 
in decadal time steps (except for 2010–22). For 11 of the 
12 elements, there was either a substantial increase or 
a comparable count in the total number of observations 
(n) in the database, with each successive period. The one 
exception to this trend was for Hg, for which n decreased 
nearly 50 percent between the 2000–09 and 2010–22 periods. 
Similarly, the percentages for the reporting of the methods 
used and the DQLs generally increased over time. For the 
complete 1970–2022 time period, 31 percent of all data entries 
(excluding the particulate fraction) did not report a method 
and 40 percent did not report a DQL. However, by 2010–22, 
most elements (except for Hg and U) had more than 90 percent 
of the entries clearly identifying the methods used and 9 
out of 12 had more than 70 percent of the entries reporting 
DQL values (except for Fe, Mn, and Zn). Thus, although the 
reporting of methods and DQL information increased over 
time, this reporting was neither necessarily consistent across 
element nor tightly coupled.

Based on the updated list of 13 method categories 
(table 2), summary statistics were calculated for the DQL 
data originally presented in Marvin-DiPasquale and others 
(2022) to examine the change in methods used and DQLs 
over time for specific elemental analyses. Summary statistics 
include the number of observations (n) of each method by 
decade (with the most recent temporal category as 2010–22) 
and the following statistics for all reported DQL data (by 
method, element, and period): mean, standard deviation, 
geometric mean, and quantiles (10th, 25th, 50th, 75th, and 
90th). The complete statistical summary output for this 
analysis is available in DR_Table_1 (Marvin-DiPasquale and 
others, 2025). The decadal analysis of specific methods and 
associated DQLs excludes entries for which a DQL value was 
not reported. Of the more than 908,400 data entries for which 
DQL information was reported, 29.2 percent were coded as 
method UNKNOWN.

The graphical presentation of the total number of 
measurements with associated DQL data, by method, begins 
with the 1970s, when 6 of the 12 EoC (Cr, Cu, Fe, Pb, 
Mn, and Zn) were reported to have been analyzed using 
ICP-OES (fig. 3). During the 1970s, most analyses were for 
Pb (n=3,554), followed by Cu (n=2,339) and Hg (n=2,054). 
It was not until the 1980s that the total number of analyses 
exceeded 5,000 for half of the elements (Cd, Cr, Cu, Fe, Pb, 

and Hg) and the list of methods employed (with DQL values 
reported) expanded to include: AAS (for Al, Cd, Cr, Cu, Fe, 
Pb, Mn, and Zn), CVAAS (for Hg), HGAAS (for As and 
Se), ICP-OES (for Al, Cd, Cr, Cu, Fe, Pb, Mn, and Zn), and 
PHOS (for U). In the 1990s, this list was expanded to include 
ICP-MS for the analysis of Al, As, Cd, Cr, Cu Pb, Mn Se, 
U, and Zn. In the 1980s and 1990s, the number of samples 
reported with associated DQL values exceeded 5,000 for 
most of the 12 EoC (except for As, Mn, Se, and U, and Al 
during the 1980s). It was not until the 2000–09 period that 
CVAFS first appeared as a significant method for analyzing 
Hg and when all elements (except for U) exceeded 10,000 
reported measurements. For the most recent period (2010–22), 
the number of measurements with reported DQLs exceeded 
30,000 for all 12 EoC, except for Hg and U. Over the same 
1970–2022 period, the number of WQP data entries that 
included DQL values but where the method was not identified 
(coded as UNKNOWN) decreased over time (fig. 3) as follows 
(as a percentage of all observations [n], by time period): 
1970s (96.3 percent of n=17,705), 1980s (95.1 percent of 
n=101,743), 1990s (77.1 percent of n=117,395), 2000s 
(16.6 percent of n=290,617), and 2010–22 (3.1 percent of 
n=380,707).

The results associated with the methods and DQL 
analysis are tabulated in DR_Table_1 (Marvin-DiPasquale and 
others, 2025) and are graphically presented in figures 2 and 3. 
The key results are: (a) a progressive increase over time in the 
number of specific methods employed and clearly identified 
between the 1970s and 2010–22 periods; (b) a more than 
21-fold increase in the number of total analyses (from 17,705 
to 380,707) where DQLs were reported over the same period; 
and (c) a striking decrease (from 96.3 to 3.1 percent) in the 
number of cases for which DQLs were reported but the actual 
method used was not over the same 52-year span.

Median DQL values, by element, method (excluding 
the UNKNOWN methods category), and time period 
(from 1970 to 2022), are graphically presented in figure 4. 
Although the individual plots depict substantial variation in 
the data, several observations are offered. First, the absolute 
range (from minimum to maximum, regardless of method) 
in median DQLs for crustal elements like Al and Fe (both 
1–50 micrograms per liter [µg/L]) was substantially higher 
than for trace elements like Hg (0.01–0.10 µg/L) and U 
(0.05–1.0 µg/L). These differences reflect the relative 
abundance of the various elements in typical environmental 
surface water samples, driven by the need to develop and 
employ methods with appropriate DQLs that allow for 
the detection of environmentally relevant concentrations. 
Second, the relative range (maximum divided by minimum) 
of median DQLs for this same time period (independent of 
method) varied from tenfold for Hg (0.01–0.10 µg/L) and Cu 
(1–10 µg/L) to more than 1,000 fold for Pb (0.2–200 µg/L), 
with all other elements falling within this relative range of 10 
to 1,000.



Section II: Analytical Methods and Detection Quantitation Limits    9

D.  Chromium E.  Copper F.  Iron

G.  Lead H.  Manganese I.  Mercury

B.  ArsenicA.  Aluminum

J.  Selenium K.  Uranium L.  Zinc

C.  Cadmium

Time period

Kn
ow

n 
m

et
ho

ds
 o

r d
et

ec
tio

n 
qu

an
tit

at
io

n 
lim

its
 re

po
rte

d,
 in

 p
er

ce
nt

Ob
se

rv
at

io
ns

 (n
)

0

2×104

4×104

6×104

8×104

0

50

100

0

2×104

4×104

6×104

8×104

0

50

100

0

2×104

4×104

6×104

8×104

0

50

100

0

2×104

4×104

6×104

8×104

0

50

100

19
70

–79

19
80

–89

19
90

–99

20
00

–10

20
10

–22

19
70

–79

19
80

–89

19
90

–99

20
00

–10

20
10

–22

19
70

–79

19
80

–89

19
90

–99

20
00

–10

20
10

–22

EXPLANATION

Total number of observations (n)

Known detection quantitation 
limits (DQL), in percent 

Known methods, in percent 

Figure 2.  Time-series line plots showing the percentage of data for which specific methods and detection quantitation limits 
(DQLs) were identified for the 1970–79, 1980–89, 1990–99, 2000–10, and 2010–22 periods, by element. The left y-axis depicts the total 
number (n) of observations retrieved from the Water Quality Portal (excluding the particulate fraction). The right y-axis depicts the 
percentage (%) of the total values for which either methods or DQL information was reported. The data used for this plot are published 
in Marvin-DiPasquale and others (2022). 
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Figure 3.  Horizontal stacked bar plot showing the number of retrieved WQP database observations (n), by method and time period, 
between 1970 and 2022. This data analysis includes results for filtered and unfiltered surface water samples (combined) and excludes 
particulate fraction analyses. The analysis further excludes any data entries that did not include a detection quantitation limit (DQL) 
value. For each panel, the x-axis was allowed to vary and was individually optimized to best allow for the visual discrimination of the 
various method categories. The primary data for this plot are published in Marvin-DiPasquale and others (2022), with the detailed 
statistical analysis summarized in DR_Table_1 (Marvin-DiPasquale and others, 2025). 
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Figure 4.  Horizontal bar plot showing median detection quantitation limit (DQL) values for the 12 EoC, by method and time period, 
between 1970 and 2022. DQL units are in micrograms per liter (µg/L). Error bars represent the 25 percent–75 percent interquartile 
interval. The data analysis includes results for filtered and unfiltered surface water samples (combined) and excludes particulate 
fraction data. The analysis further excludes any data entries that did not include a DQL value. For each panel, the x-axis was allowed 
to vary and was individually optimized to best allow for the visual discrimination of the various method categories. The primary data 
for this plot are published in Marvin-DiPasquale and others (2022), with the detailed statistical analysis summarized in DR_Table_1 
(Marvin-DiPasquale and others, 2025). 
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Finally, the apparent variation in median DQL values 
for any individual element (fig. 4) may reflect several factors, 
one of which is a shift over time in the dominant analytical 
approach(es), with differing DQLs being reported to the WQP. 
This could reflect overall changes in dominant analytical 
methods used by the scientific community or changes over 
time in the composition of the specific agencies (Federal, 
State, and local) performing field sampling programs of 
variable intensity, using various methods with variable DQLs, 
and reporting the results to the WQP database. In either case 
or in some combination, these types of analytical changes over 
time would be reflected in the variability seen in the median 
DQL results. For example, both As and Se exhibited a marked 
increase in the number of analyses being run by ICP-MS 
and ICP-OES since 1990 (fig. 3). However, the median DQL 
for As was fivefold to tenfold lower for ICP-MS (1–2 µg/L) 
compared with ICP-OES (10 µg/L). For Se, the median DQL 
was also significantly lower for ICP-MS (1 µg/L) compared 
with ICP-OES (7–20 µg/L) during the 1990–2009 period, 
but the same for both methods (5 µg/L) during the 2010–22 
period (fig. 4). The apparent increase in the median DQL for 
Se using the ICP-MS method between the 1990–2009 and 
2010–22 periods is reflective of data from various laboratories, 
with differing DQL values dominating the data provided to 
the WQP in subsequent periods, and not necessarily an actual 
increase in DQL over time from a single laboratory. A second 
example of the introduction of new method and its influence 
on reported DQL values over time can be seen in the case of 
Hg. Between 1980 and 1999, the single analytical method 
for Hg reported in the retrieved dataset was CVAAS, with a 
median DQL ranging from 0.06 to 0.1 µg/L. By the 2000s, 
reports of the use of CVAFS for Hg analysis began appearing, 
which is a method with a substantially lower median DQL 
(0.01 µg/L) compared with CVAAS (fig. 4).

Another factor that likely drives some of the observed 
trends in median DQL values over time is improvements 
in the development of and adherence to standardized 
laboratory and field sampling clean techniques and quality 
assurance protocols. A suggested example of these types of 
improvements may be the significant and permanent decrease 
in the DQL values associated with the ICP-OES analysis of 
Cr, Pb, and Zn after the 1970s (fig. 4).

A nonparametric Wilcoxon rank-sum statistical test was 
performed on the element-specific DQL decadal geomean 
values presented in DR_Table_1 (Marvin-DiPasquale 
and others, 2025) for all identified method categories and 
the UNKNOWN method category combined, with the 
reported geomean values binned into pre- and post-1990 
temporal groupings. Five of the 12 elements had statistically 
significantly lower DQL values for the post-1990 grouping 
(Cd, Cr, Cu, Pb, and Hg). The remaining seven elements 
(Al, As, Fe, Mn, Se, U, and Zn) had no significant difference 
for the DQL decadal geomean values between the two 
temporal groupings.

Although a more detailed examination of the changes in 
analytical methods and DQL values associated with the EoC 
data originally retrieved from the WQP (Marvin-DiPasquale 
and others, 2022) is beyond the scope of this report, 
the statistical summary analysis performed on that data 
is presented in DR_Table_1 (Marvin-DiPasquale and 
others, 2025) and is available for additional investigation. 
Furthermore, the combination of more method-specific and 
DQL-specific information being reported to the WQP since 
the 1990s, along with lower DQL values observed for 5 of the 
12 EoC since the 1990s, suggests that data collected before the 
1990s may be of somewhat lesser value for future modeling 
efforts.

Section III. Analysis of Censored Data
A critical step in the preparation and consideration of the 

surface water EoC concentration data retrieved from the WQP, 
as it pertains to potential modeling efforts, is an analysis of 
the extent and type of data censoring that exists in the dataset. 
In this context, “censored data” refers to any concentration 
result value that was either deemed to be above or below the 
laboratory’s established concentration range of acceptable 
results or was identified in some other way as being suspect 
or nonreportable. There were six types of result value data 
censoring that were identified in the EoC dataset published in 
Marvin-DiPasquale and others (2022), which were harmonized 
and categorized as: (a) left-censored with a negative value 
reported, (b) left-censored with a positive value reported, (c) 
left-censored with no value reported, (d) left-censored with a 
zero (0) value reported, (e) right-censored, and (f) censored for 
some other reason. The phrase “left-censored” indicates that 
the value was below the reporting laboratory’s DQL, whereas 
the phrase “right-censored” indicates that the value was above 
the reporting laboratory’s upper reporting limit. In addition 
to the above six categories of data censoring, the seventh 
category in the harmonization scheme employed was “not 
censored,” meaning that there was no form of data censoring 
and that the reported value was presumed to be valid and 
within the reporting limits for the laboratory submitting data 
to the WQP.

An analysis of data censoring, within the context of 
the above seven categories, was performed on the EoC 
concentration data originally published in Marvin-DiPasquale 
and others (2022) and summarized in DR_Table_2 
(Marvin-DiPasquale and others, 2025). This analysis consisted 
of sample counts (and expressed as percentages) for each 
censoring category, subset by each basin/element/fraction 
data grouping for the complete 1900–2022 dataset, as well 
as for the period before 1990 (pre-1990) and the period after 
(and including) 1990 (post-1990). These additional pre- and 
post-1990 analyses were completed based on the lower 
percentages of methods and DQL values reported (fig. 2) 
and the statistically higher median DQL values for several 
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elements in the pre-1990 period (refer to Section II), suggested 
that the pre-1990 data may be of lesser or questionable value 
for use in modeling compared with the post-1990 data.

The post-1990 period represented most (83 percent) of 
the complete 1900–2022 dataset. There was a notable decrease 
in the percentage of data that was censored (by using any 
censoring category) between the pre-1990 and post-1990 
periods. Specifically, across all elements and basins, filtered 
samples decreased from 63 percent censored (pre-1990) 
to 55 percent censored (post-1990), particulate samples 
decreased from 31 percent censored (pre-1990) to 0.8 percent 
censored (post-1990), and unfiltered samples decreased 
from 54 percent censored (pre-1990) to 41 percent censored 
(post-1990). These results suggest that generally lower 
analytical detection limits in the post-1990 period across the 
suite of elements under consideration.

The comparison of censored versus noncensored data 
becomes more nuanced when broken down by the individual 
EoC. Figure 5 depicts the relative percentages of the censored 
(all censoring categories combined) and the noncensored 
data, by basin/element/fraction data groupings (excluding 
the particulate fraction) for the post-1990 period (only). 
In nearly all cases, the percentage of censored data was 
higher for filtered samples than for unfiltered samples. The 
one consistent exception was in the case of Se, where the 
percentage of censored data was consistently higher in the 
unfiltered samples, for all three hydrologic basins. The crustal 
elements Al and Fe also exhibited a lower percentage of 
censored values in the unfiltered fraction compared with the 
filtered fraction in the ILRB and the UCOL, but this difference 
was not as pronounced in the DRB. For the filtered fraction, 
the elements with the highest degree of censoring (greater 
than [>] 75 percent), by basin, were as follows: Cd, Pb, and 
U for the DRB; Cd, Cr, Pb, Hg, and Se for the ILRB; and 
Cr, Pb, and Hg for the UCOL. For the unfiltered fraction, the 
elements with the highest degree of censoring (>75 percent), 
by basin, were as follows: Cd, Hg, and Se for the ILRB; and 
Hg for the UCOL. There were no elements in the DRB for 
which >75 percent of the unfiltered data was censored. For the 
filtered fraction, the elements that had the lowest percentage 
(<25 percent) of censored data, by basin, were as follows: Al, 
Fe, and Mn for the DRB; Mn and U for the ILRB; Mn only 
for the UCOL. For the unfiltered fraction, the elements that 
had the lowest percentage (<25 percent) of censored data, by 
basin, were as follows: Al, Fe, and Mn for the DRB; Al, Fe, 
Mn, and U for the ILRB; Al, Fe, and Mn for the UCOL. The 
observation that 100 percent of the U samples in the ILRB 
post-1990 dataset were noncensored is based upon the fact that 
there were only a few filtered (n=28) and unfiltered (n=36) 
samples in this grouping, none of which were censored. This 
is in comparison to the number of U samples in the post-1990 
dataset in the DRB (n=321 filtered, n=1,484 unfiltered) and 
the UCOL (n=170 filtered, n=648 unfiltered), all which had a 
significant percentage of censored values.

Section IV: Median EoC Concentrations 
by Catchment

In preparation for modeling the spatial distribution of the 
12 targeted EoC at the basin level, as a function of geospatial 
attributes, several preliminary data cleaning, and screening 
steps are required. The three overarching steps described are: 
(a) the calculation of median concentration values for each 
element/fraction at the catchment level; (b) the calculation of 
a single censoring value for each basin/element/fraction data 
grouping; and (c) the screening of these median concentration 
data groupings with respect to data density and distribution, 
and relative to established regulatory thresholds. This section 
covers the first two of these process steps, whereas Section V 
covers the third.

The geospatial data for the ongoing modeling effort are 
derived mostly from databases in the NHDPlus framework 
(U.S. Environmental Protection Agency, 2024), which provide 
geospatial attribute data at the catchment spatial scale. Thus, 
the first step in working with the published EoC concentration 
data (Marvin-DiPasquale and others, 2022) was to convert 
that site-specific point data to catchment scale data, after first 
removing all EoC concentration data collected before 1990. 
These calculations relate only to the 1990–2022 (post-1990) 
subset of the original WQP data retrieval. Furthermore, only 
filtered and unfiltered fraction data were considered in this 
workflow; particulate fraction data were not considered.

For the purpose of spatially aggregating the EoC 
concentration data, each discrete sampling location was 
identified within a NHDPlus defined catchment using ArcGIS 
Pro (version 3.0; Esri, 2022). Samples that were coded as 
“nondetect” and that also had no reported DQL were removed. 
Catchments with fewer than three data entries (per element/
fraction data grouping) were also removed. No data were 
removed based on the specific analytical method used. Median 
concentration values were then calculated for each catchment/
element/fraction data grouping by using the Kaplan-Meier 
statistical approach (Helsel, 2010), which estimates median 
values more accurately when some values may be censored 
and determines if the calculated median itself is censored. 
All calculations associated with the catchment medians were 
performed in R (version 4.3.2; R Core Team, 2024). Further 
details for these preparatory data steps are described in the 
metadata section of the companion data release for this 
report, along with the tabular data associated with the median 
concentration values for each catchment/element/fraction data 
grouping, as presented in DR_Table_3 (Marvin-DiPasquale 
and others, 2025). A graphical example of what these median 
catchment results look like spatially is given for filtered 
arsenic in all three hydrologic basins (fig. 6).

Given the variation in the degree of censored data 
associated with individual elements and fractions for the 
discrete measurements (refer to Section III), the calculated 
median concentrations also exhibited a high degree of 
variability with respect to censored values at the catchment 
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A.  Filtered Delaware River Basin

C.  Filtered Illinois River Basin

E.  Filtered Upper Colorado River Basin

B.  Unfiltered Delaware River Basin

D.  Unfiltered Illinois River Basin

F.  Unfiltered Upper Colorado River Basin
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EXPLANATION

Figure 5.  Stacked bar plots of the percentage of censored and noncensored data post-1990, by element, basin, and fraction (filtered 
and unfiltered). The primary data for this figure are published in Marvin-DiPasquale and others (2022), with the detailed statistical 
analysis summarized in DR_Table_2 (Marvin-DiPasquale and others, 2025). The censored category depicted in this figure represents the 
sum of all six censored data categories identified in Section III of this report and reported in the above two data releases. 
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Figure 6.  Maps depicting the calculated median concentrations of filtered arsenic in surface water at the catchment scale for the 
three hydrologic basins (Delaware River Basin, Illinois River Basin, and Upper Colorado River Basin). The data used in calculating these 
median concentration values are restricted to data collected during the 1990–2022 period, as reported in the WQP (Marvin-DiPasquale 
and others, 2022). Concentration units are in micrograms per liter (µg/L). The calculated medians for this figure are published in 
DR_Table_3 (Marvin-DiPasquale and others, 2025). 
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scale. Specifically, before determining a single censoring 
value for each basin/element data grouping, the range in 
the percentage of catchments with censored median values 
was as follows for the 12 EoC (combining all basins and 
both fractions): Al, 0.2–33.0 percent; As, 21.6–41.8 percent;   
Cd, 30.6–80.7 percent; Cr, 26.3–86.9  percent;   
Cu, 17.2–47.6 percent;  Fe, 0.2–9.2 percent; 
Pb, 20.8–68.2 percent;  Mn, 0–5.7 percent; Hg, 44.8–94.5 percent; 
Se, 31.6–88.6 percent; U, 0–72.2 percent; Zn, 11.8–29.6 percent. 
The detailed tabular results of this assessment can be found in 
DR_Table_4 (Marvin-DiPasquale and others, 2025).

The machine learning modeling approach being 
pursued deciphers which geospatial attributes (not presented 
herein) are most strongly correlated with the basin-scale 
spatial distribution of EoC concentrations requires a 
single censoring value for each data grouping. Thus, each 
grouping was recensored to a single value by first assessing 
upper-end outlier median DQL catchment values (those 
exceeding the 95-percent quantile) and then defining the 
highest censoring value that was not an outlier as the single 
censoring value for that basin/element/fraction grouping. 
The upper-end outlier values were removed for the purposes 
of modeling. Further details of this recensoring process 
and the tabulated results can be found in DR_Table_4 
(Marvin-DiPasquale and others, 2025). The final range 
in the percentage of catchments with censored median 
values for the 12 EoC (combining all basins and both 
fractions) was: Al, 10.6–99.6 percent; As, 98.2–100 percent;  
Cd, 92.7–100 percent;    Cr, 99.6–100 percent;   Cu, 91.8–100 percent;  
Fe, 0.2–89.8 percent; Pb, 60.2–100 percent; Mn, 0–74.5 percent; 
Hg, 99.5–100 percent; Se, 67.5–100 percent; U, 0–100 percent; 
Zn, 79.4–99.5 percent. Thus, recensoring each data grouping 
to a single censoring value significantly increased the 
percentage of catchments with censored median values. This 
step reflects that for each grouping, the single recensoring 
value is ultimately the highest nonoutlier censoring value 
from among all the individual catchments that had censored 
medians. One consequence of this machine learning approach 
and the necessity of recensoring to a single value (per 
element/fraction/basin) is associated with catchments that 
had concentration medians below the recensoring value, but 
not originally censored themselves. For these catchments, 
their median values are reassigned at the single recensoring 
limit, flipping their condition from not previously censored to 
censored.

Section V: Decision Tree for 
Geospatial—Machine Learning 
Models

There are a total of 72 geospatial models possible by 
using the 12 elements of concern, 2 fractions (filtered and 
unfiltered), and 3 hydrological basins. Each of these basin/
element/fraction data groupings were screened for their 
potential to be further pursued with a machine learning 
modeling approach applied to geospatial attributes as 
explanatory variables. A decision tree (fig. 7) was constructed 
for this screening process. The decision tree has 5 steps 
(STEP A, B, C1, C2, and D) and 5 potential outcomes (model 
Categories 1, 2, 3, 4, and 5) (table 3). Each step poses a 
“yes/no” question of the data. A detailed tabular summary 
of the answers for each step and the resulting category code 
for all 72 potential models can be found in DR_Table_5 
(Marvin-DiPasquale and others, 2025).

The input data for the decision tree are the median 
catchment values for each basin/element/fraction grouping, 
as detailed in DR_Table_3 (Marvin-DiPasquale and others, 
2025) after applying the single recensoring value described in 
Section IV and summarizing the final number of catchments 
and the percentage of censored catchments for that grouping, 
as detailed in DR_Table_4 (Marvin-DiPasquale and 
others, 2025).

For data groupings with less than 30 percent of catchment 
medians censored, and beginning with STEP C1, the decision 
tree considers the data in the context of regulatory threshold 
concentrations. Specifically, table 4 summarizes three 
categories of EPA regulatory thresholds, which are based on: 
(a) drinking water guidelines and standards, (b) human health 
criteria (HHC) standards, and (c) aquatic life criteria (ALC) 
standards (with acute and chronic thresholds). Although 
there are drinking water standards for all 12 EoC under 
consideration, only 5 elements have HHC thresholds (As, Cu, 
Mn, Se, and Zn) and only 6 elements have ALC thresholds 
(As, Cd, Hg, Fe, Pb, and Zn).

Of the 72 basin/element/fraction data groupings run 
through the decision tree (fig. 7, table 3), 14 groupings 
(19.4 percent) were categorized as Category 1 (“Do not 
model” because of too few catchments) at STEP A. Of the 
remaining 58 groupings, only 7 (9.7 percent of the original 
72) were found to have less than 30 percent censored data at 
STEP B and were thus shunted to STEP C1. Of the remaining 
51 groupings, which had more than 30 percent censored data 
at STEP B and were thus shunted to STEP C2, 5 groupings 
(6.9 percent of the original 72) had between 30 and 70 percent 
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censored data and were thus designated as Category 3 
(Classification model based on detected or not-detected; LOW 
PRIORITY). The remaining 46 groupings (63.9 percent of 
the original 72) that were shunted to STEP C2 had more than 
70 percent censored data and were designated as Category 2 
(Do not model; data are too imbalanced). The complete 
breakdown of the decision tree results for each of the 72 basin/
element/fraction data groupings are presented in DR_Table_5 
(Marvin-DiPasquale and others, 2025).

Of the 7 original 72 basin/element/fraction data groupings 
that were shunted to STEP C1, which focuses on groupings 
with less than 30 percent censored catchments and elemental 
concentrations assessed relative to specific EPA water quality 
thresholds (table 4), none of the groupings had all catchment 

median concentration data below the relevant EPA threshold. 
Thus, none of the 7 groupings that were assessed at STEP 
C1 were designated as Category 4 (Classification model 
based on a value below the regulatory value of interest; LOW 
PRIORITY) and all 7 groupings were assessed at STEP D. 
The decision tree results for this last step varied depending on 
the EPA threshold in question. Although all the decision tree 
results are fully detailed in DR_Table_5 (Marvin-DiPasquale 
and others, 2025), a summary of results for Categories 3 and 5 
are provided in table 5.

Given the 72 initial basin/element/fraction data groupings 
and up to five EPA criteria per element/fraction category (for 
example, Zn, table 4), the EoC data originally compiled from 
the WQP (Marvin-DiPasquale and others, 2022) resulted in 

Input
data

Step A
YesNo

Category 1 Step B
YesNo

Step C2
YesNo

No Yes

Step D
YesNo

Step C1

Category 2 Category 3

Category 4

Category 2 Category 5

Figure 7.  Graphical illustration of the decision tree. This decision tree is used to screen the 72 basin/element/fraction data groupings 
under consideration for their suitability to be modeled by using a machine learning approach applied to geospatial attributes as 
explanatory variables. See table 3 for the definitions of the five steps (A, B, C1, C2, and D) and five model categories (1, 2, 3, 4, and 5) 
depicted in this figure. 
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132 potential models that could be examined by using the 
geospatial machine learning approach that is being considered 
as part of the USGS Proxies Project (USGS, 2023a). The 
purpose of the decision tree exercise was to rigorously 
consider all these potential models with respect to data density, 
the extent of censored data, and the relevance to specific EPA 
water quality concentration thresholds for the 12 EoC. This 
aimed to limit the number of models under consideration 
to those that are most viable and environmentally relevant. 
Table 5 reflects this final list of models for further 
consideration.

In all, there are 6 models that are considered high priority 
(Category 5) to the extent that the percentage of censored 
catchments was less than 30 percent and that the number of 
catchments was reasonably well balanced (30–70 percent 
or 50 plus or minus [±] 20 percent) with respect to values 
above or below the EPA criteria under consideration (table 5). 
This type of data distribution lends itself most favorably to 
a categorical (above versus below EPA threshold) machine 
learning approach that could be coupled with geospatial 
attribute data to explain the spatial distribution of the observed 
catchment median EoC concentrations. These 6 models 
were limited to 3 elements (Al, Mn, and Fe), all which are 
found at comparatively high concentrations in surface waters 
relative to the other 9 EoC under study. Five of the 6 models 
were relative to EPA National Secondary Drinking Water 
Regulations, which are nonenforceable, and 1 (ILRB/Mn/
unfiltered grouping) was related to the EPA HHC (organisms 
only) guideline (tables 4 and 5).

There are five models that are considered low priority 
(Category 3) since 30–70 percent of the catchments in the 
data groupings are censored. Given this degree of censoring, 

these groupings could lead to viable categorical (detect versus 
nondetect) geospatial machine learning models but were not 
further considered with respect to specific EPA threshold 
concentrations. These five models also included Al, Mn, and 
Fe, in addition to Pb and Se (table 5).

Section VI: Analysis of EoC 
Concentration Data at USGS Real-Time 
Sites

Fixed site time-series models represent a second model 
type that the existing EoC concentration data retrieved from 
the WQP (Marvin-DiPasquale and others, 2022) may readily 
lend themselves to. These models leverage continuous 
discharge and (or) water-quality sensor data from USGS 
monitoring sites as the explanatory variables used to estimate 
elemental concentrations or loads. For example, Mast (2018) 
developed a suite of surface water models (for filtered and 
unfiltered fractions) that estimated concentrations for 8 target 
elements (Al, As, Cd, Cu, Fe, Pb, Mn, and Zn) based on 
stream discharge and water-quality data (specific conductance, 
pH, turbidity, and water temperature) at 9 sites in the Animas 
and San Juan Rivers in Colorado. A few such models have 
also been developed at USGS real-time monitoring sites that 
provide computed continuous concentrations estimates for 
target elements, including: for As at 2 sites in Kansas (USGS, 
2024d); for As and antimony (Sb) at 4 sites in Idaho (Baldwin 

Table 3.  Decision tree STEPS and categories.

[This table is associated with the illustration of the decision tree shown in figure 7 and provides the definitions of the five STEPS (A, B, C1, C2, and D) and 
five resulting model categories (1, 2, 3, 4, and 5) depicted on that figure. The input data are the catchment specific median elements of concern concentrations 
for each of the 72 potential basin/element/fraction data groupings, after a single censoring value has been defined for that specific data grouping. The catchment 
median values and the recensoring values are provided in DR_Table_3 and DR_Table_4 (Marvin-DiPasquale and others, 2025). %, percent]

Step Question Yes No

A Are there more than 200 catchments for the 
data grouping?

Proceed to STEP B Category 1: Do not model  
(too few catchments).

B Is the percentage of censored catchments 
more than 30%?

Proceed to STEP C2 Proceed to STEP C1

C1 Is the maximum detected value greater than 
the regulatory value of interest?

Proceed to STEP D Category 4: Classification model based 
on a value below the regulatory value 
of interest; LOW PRIORITY

C2 Is the percentage of censored catchments less 
than 70%?

Category 3: Classification model based 
on detected or not-detected;  
LOW PRIORITY

Category 2: Do not model; data are too 
imbalanced

D Is the percentage of catchments with median 
concentrations above (or below) the regula-
tory threshold value between 30% and 
70%?

Category 5: Classification model based 
on above or below the regulatory 
value of interest; HIGH PRIORITY

Category 2: Do not model; data are  
too imbalanced
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Table 4.  U.S. Environmental Protection Agency regulatory concentration thresholds for 12 elements of concern.

[The table provides three general categories of U.S. Environmental Protection Agency (EPA) regulatory concentration thresholds for the 12 elements under 
study, including: (a) based on drinking water (DW) guidelines and standards from EPA (2009); (b) based on the recommended water quality “human health 
criteria” (HHC) from EPA (2023), which is given in terms of the consumption of both water and organisms or the consumption of organisms only; and (c) based 
on the freshwater aquatic life criteria (ALC), with both acute and chronic values given from EPA (2022). Concentrations are given for either dissolved (filter 
passing) or total (unfiltered) water, as appropriate, and in units of micrograms per liter (µg/L). An em dash (—) indicates that no regulatory threshold exists for 
that element/fraction data grouping. See footnotes for additional information.]

Element Fraction DWa HHC, water + organisme HHC, organism onlye ALC, acutef,g ALC, chronicf,h

Aluminum
Dissolved — — — — —
Total 200b — — — —

Arsenic
Dissolved — — — 340 150
Total 10c 0.018 0.14 — —

Cadmium
Dissolved — — — 1.8i 0.72i

Total 5c — — — —

Chromium
Dissolved — — — — —
Total 100c — — — —

Copper
Dissolved — — — — —
Total 1,000b 1,300 — — —

Mercury
Dissolved — — — 1.4 0.77
Total 2c — — — —

Iron
Dissolved — — — — 1,000
Total 300b — — — —

Manganese
Dissolved — — — — —
Total 50b 50 100 — —

Lead
Dissolved — — — 65i 2.5i

Total 15d — — — —

Selenium
Dissolved — — — — —
Total 50c 170 4,200 — —

Uranium
Dissolved — — — — —
Total 30c — — — —

Zinc
Dissolved — — — — —
Total 5,000b 7,400 26,000 120 120

aSource: National Primary Drinking Water Regulation Table (EPA, 2009).
bBased on the National Secondary Drinking Water Regulations. Nonenforceable guidelines.
cBased on the maximum contaminant level for drinking water. Enforceable standards.
dBased on the ”Treatment Technique,” a required process intended to reduce the level of a contaminant in drinking water.
eSource: National Recommended Water Quality Criteria—Human Health Criteria Table (EPA, 2023)
fSource: National Recommended Water Quality Criteria—Aquatic Life Criteria Table (EPA, 2022)
gAcute values are based upon the “Criterion Maximum Concentration.”
hChronic values are based upon the “Criterion Continuous Concentration.”
iFreshwater criteria are hardness-dependent and were normalized to a hardness of 100 mg/L as CaCO3 to allow the presentation of representative criteria 

values.
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and Etheridge, 2019; USGS, 2024b, c); and for Se estimated 
from specific conductance at 9 sites in Colorado (Linard and 
Schaffrath, 2014; USGS, 2024a).

The purpose of this preliminary assessment of the EoC 
concentration data initially retrieved from the WQP data 
(Marvin-DiPasquale and others, 2022) is to: (a) determine 
which subset of sampling locations constitute USGS 
continuous monitoring sites; (b) determine for each site which 
continuous discharge measurements and (or) sensor data were 
being collected during the period when discrete sampling 
occurred for the various element/fraction data groupings; (c) 
determine the number of discrete element/fraction samples 
collected at each site and what percentage of these were 
censored; and (d) determine what percentage of the EoC 
concentration data exceeded the various EPA threshold values 
given in table 4. The overarching goal of this assessment is to 
identify all site/element/fraction data groupings where there 
are enough noncensored data, which are environmentally 
relevant with respect to EPA thresholds, to justify pursuing 
time-series models that could potentially provide continuous 
EoC concentration or load estimates.

Of the 9,856 unique sites in the original WQP data 
retrieval, 4,480 (45 percent) were USGS surface water sites, 
with the remainder being non-USGS sites. Of the USGS sites, 
285 sites also had continuous discharge measurement and 
(or) sensor data that overlapped in time with when discrete 
EoC data were collected. Once this subset of USGS sites with 

continuous data was identified, the date-time stamp of the 
discrete EoC data was matched (within the closest 15 minutes) 
to the site-specific continuous data, and the two datasets were 
merged into an initial dataset that consisted of site-specific 
discrete EoC concentration data and date-time matched 
discharge and (or) sensor data. The following seven types of 
continuous data were targeted: discharge, temperature, specific 
conductance, dissolved oxygen, pH, turbidity, and fluorescent 
dissolved organic matter.

After the initial merging of the discrete EoC 
concentration data with the discharge and (or) sensor data, the 
following three criteria were employed to remove individual 
site/element/fraction data groupings that were deemed to be 
of low quality with respect to data density, the percentage of 
censored data, and (or) environmental relevance, as follows:

•	 Data groupings with fewer than 50 EoC measurements 
were eliminated.

•	 Data groupings with greater than 25 percent censored 
data were eliminated.

•	 Data groupings for which less than 10 percent of the 
specific element concentrations were above any of the 
EPA threshold concentrations given in table 4 were 
eliminated.

Table 5.  Summary of decision tree results for model Categories 3 and 5.

[This table represents a summary of a subset (Category 3 and 5 only) of the results more fully detailed in DR_Table_3, DR_Table_4, and DR_Table_5 
(Marvin-DiPasquale and others, 2025), which documents the results of the decision tree analysis (fig. 7, table 3) of the 72 basin/element/fraction data groupings 
with respect to model categorization. The relevant U.S. Environmental Protection Agency (EPA) criteria, associated with Category 5 models, include those 
associated with drinking water (DW) and the human health criteria (HHC, organisms only), as per table 4. Criteria threshold values are given in micrograms 
per liter (µg/L). EPA criteria information is not applicable (NA) for Category 3 models based on the Decision Tree design. DRB, Delaware River Basin; ILRB, 
Illinois River Basin; UCOL, Upper Colorado River Basin]

Basin Element Fraction
Percent of  
censored  

catchmentsa

EPA 
criteria

Criteria 
threshold

Percent of  
catchments  

above criteriab

Decision tree 
category

Priority

DRB Manganese Filtered 31.5 NA NA NA 3 LOW
ILRB Manganese Filtered 31.1 NA NA NA 3 LOW
UCOL Aluminum Unfiltered 33.9 NA NA NA 3 LOW
UCOL Lead Unfiltered 60.2 NA NA NA 3 LOW
UCOL Selenium Filtered 67.5 NA NA NA 3 LOW
DRB Iron Unfiltered 16.9 DW 300 55.0 5 HIGH
ILRB Aluminum Unfiltered 10.6 DW 200 66.1 5 HIGH
ILRB Manganese Unfiltered 0.0 DW 50 68.9 5 HIGH
ILRB Manganese Unfiltered 0.0 HHC 100 35.1 5 HIGH
UCOL Iron Unfiltered 15.4 DW 200 57.3 5 HIGH
UCOL Manganese Unfiltered 6.9 DW 50 40.7 5 HIGH

aPercentages after the recensoring, as derived from DR_Table_4 (Marvin-DiPasquale and others, 2025).
bCalculated from the data in DR_Table_3 (Marvin-DiPasquale and others, 2025).
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The final resulting dataset of merged EoC concentration 
data and real-time site data, after screening by the above 
criteria, is published as DR_Table_6 (Marvin-DiPasquale 
and others, 2025). A data table derived from the information 
compiled in DR_Table_6 was then constructed in DR_Table_7 
(Marvin-DiPasquale and others, 2025), which summarizes: 
(a) the number of EoC results for each site/element/fraction 
data groupings, (b) the number and percentage of censored 
EoC results for each data groupings, (c) the number of paired 
sensors values for each data grouping, and (d) which EPA 
criteria was exceeded for each data grouping. A coding column 
(Initial model variables) was added to DR_Table_7 that lists 
which of the seven types of continuous data were available for 
each site/element/fraction data grouping, after excluding those 
continuous data types with fewer than 50 observations.

Each site/element/fraction data grouping given in 
DR_Table_7 (Marvin-DiPasquale and others, 2025) thus 
represents a potential time-series model that could be further 
explored. Based on the data exclusion criteria described above, 
there were 177 data groupings at a total of 69 unique USGS 
continuous monitoring sites. Of the 177 data groupings, 163 
(92 percent) had discharge as the only continuous monitoring 
variable, whereas the remaining 14 had 2 or more potential 
modeling variables (table 6). Unlike the analysis performed 
for the geospatial machine learning models, which included 
data collected since 1990, this final merged dataset from 

USGS real-time sites retained data as far back as 1981, as 
the provenance of the elemental concentration data was well 
known (all from the USGS) and well documented with respect 
to the methods used and the DQLs reported. The 1981–89 
period represented 10.1 percent of all the observations in DR_
Table_6 (Marvin-DiPasquale and others, 2025).

The model screening results (table 6) lead to several 
conclusions related to the potential for further EoC time-series 
model development at USGS continuous monitoring sites. 
For models with more than one potential explanatory 
variable, there were: 5 final models at 3 unique sites within 
the DRB that included 3 elements (As, Fe, and Mn); 8 final 
models at 4 unique sites within the UCOL that included the 
same 3 elements (As, Fe, and Mn); and only 1 final model 
for 1 site within the ILRB, which was for As. Thus, out of 
the 12 EoC that made up the initial list, only 3 (As, Fe, and 
Mn) had sufficient data density (n>50) paired with at least 
2 in situ continuous monitoring properties and a low enough 
percentage of censored EoC measurements (<25 percent) to be 
considered “high priority” with respect to furthering modeling 
efforts. This <25 percent censoring level criterion was selected 
based upon a study of data substitution methods that are most 
appropriate given the extent of data censoring (Antweiler, 
2015). That study concluded a simple data substitution 

approach (​reporting limit x ​​√ 
_

 2 ​ _   2  ​​) is appropriate for datasets 

Table 6.  Summary of potential EoC time-series models at USGS continuous monitoring sites.

[This table is a subset of DR_Table_7 given in Marvin-DiPasquale and others (2025) and excludes site/element/fraction data groupings (the model Y variable) 
with only one potential explanatory variable (the model X variable). EPA, U.S. Environmental Protection Agency; DW, drinking water (guideline or standard); 
HHC, human health criteria; flow, stream discharge; SC, specific conductance; Temp, temperature; DO, dissolved oxygen; Turb, turbidity; HHC, human health 
criteria; DW, drinking water 

Station ID Element Fraction Initial model variables EPA criteria

Delaware River Basin

01463500 Arsenic Filtered Flow, SC, Temp, DO, pH, Turb HHC
01481000 Iron Unfiltered Flow, SC, Temp, DO, pH, Turb DW
01478245 Iron Unfiltered Flow, Turb DW
01481000 Manganese Unfiltered Flow, SC, Temp, DO, pH, Turb DW
01478245 Manganese Unfiltered Flow, Turb DW

Illinois River Basin

05586300 Arsenic Filtered Temp, DO HHC
Upper Colorado River Basin

09163500 Arsenic Filtered Flow, SC, Temp HHC
394220106431500 Iron Unfiltered Flow, SC, Temp DW
09041090 Iron Unfiltered Flow, SC, Temp DW
09041090 Manganese Filtered Flow, SC, Temp DW
394220106431500 Manganese Unfiltered Flow, SC, Temp DW
09041090 Manganese Unfiltered Flow, SC, Temp DW
09041400 Manganese Filtered Flow, SC, Temp, DO DW
09041400 Manganese Unfiltered Flow, SC, Temp, DO DW
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with less than 25 percent censored data. It was determined 
that applying this screening level to our final model list 
made the most sense given the many hundreds of initial 
potential models (unique site/element/fraction data groupings) 
associated with USGS real-time monitoring sites and the 
complexities involved with more advanced substitution 
methods for datasets with >25 percent censored data.

Of the 3 elements that made the final list given in 
table 6, Fe and Mn were identified as exceeding the drinking 
water standard (table 4) for more than 10 percent of the 
measurements in each data grouping, whereas As was 
identified as exceeding the human health criteria (table 4) at 
1 site in each of the three hydrologic basins. The EPA HHC for 
As is particularly low (0.018 µg/L when consuming both water 
and organisms and 0.14 µg/L when consuming organisms 
only) compared to other elemental thresholds given in table 4, 
owing to the known carcinogenic effects of this element (U.S. 
Environmental Protection Agency [EPA], 2023). While the 
HHC for As is based on unfiltered water samples (table 4), the 
data associated with the three As models identified in table 6 
was for filtered surface water samples. However, it stands to 
reason that if unfiltered water samples had been collected, 
those samples would have exceeded that same EPA HHC 
threshold for As.

Section VII: Ongoing Modeling Efforts
The currently underway spatial modeling effort involves 

a machine learning (random forest) analysis of hundreds of 
possible geospatial attributes (not presented herein) obtained 
from multiple geospatial data sources. These attributes may be 
broadly classified as those associated with climate, ecoregion, 
hydrology, landscape type, lithology, mining, population, 
soil, topography, and wildfire. The goal of this analysis is to 
identify those geospatial attributes that most strongly correlate 
with the observed basin-scale distribution of catchment 
median EoC concentrations (for example, fig. 6). In this model 
formulation, the EoC catchment median concentration data 
are considered the dependent variables, and the geospatial 
attributes are the independent (explanatory) variables. 
Individual catchment median values are categorized as being 
either above or below the relevant EPA threshold of concern 
to facilitate a “classification” style machine learning modeling 
approach. Thus, for catchments within a study basin where no 
data currently exist, the resulting list of the most significant 
model-predicted geospatial attributes may be used to assess if 
those catchments are likely to have EoC concentrations above 
or below the relevant EPA threshold.

There are several limitations to the machine learning type 
spatial models as envisioned and described above. The first 
limitation is related to data density. Analysis of the complete 
1900–2022 dataset, with respect to the evolution of methods 
used, DQLs by method, data censoring, and the extent to 
which methods and DQLs were reported, led to the conclusion 

that data collected before 1990 (17 percent of the full 
1900–2022 dataset) should be excluded from these machine 
learning models. Furthermore, since the geospatial attributes 
being considered are provided at the catchment spatial scale, it 
was necessary to similarly condense the original site-specific 
point data to the catchment scale. Thus, although any given 
catchment may have contained dozens or hundreds of discrete 
observations for a given metal/fraction, the calculation of a 
single median value per catchment resulted in a significant 
decrease in the number of observations within a given study 
basin for any given metal/fraction data grouping.

The second limitation in assessing the spatial trends 
and geospatial correlates of EoC concentrations at the basin 
scale is associated with data censoring constraints. This 
classification model machine learning approach necessitates 
that only a single censoring value be used for any given basin/
element/fraction grouping. Thus, the recensoring of each 
basin/element/fraction data grouping to a single censoring 
value further limits the data resolution by forcing catchment 
medians with values lower than the single basin-wide 
recensoring value to be reclassified as left-censored (and 
recoded with the recensoring value) when their values before 
the recensoring step were not actually censored.

A third limitation of the spatial model assessment also 
results from the need to work with catchment medians, as 
opposed to the original discrete site-specific concentration 
data. The calculation of catchment median concentration 
values precludes any refined temporal analysis of the data, as 
these medians reflect a single value over the whole 1990–2022 
period under consideration. However, given the magnitude, 
complexity, and diversity of the initial dataset, with respect 
to the when and at what frequency discrete samples were 
collected within a given catchment, it was concluded that 
further temporal considerations were beyond the scope of what 
is practical in the context of the primary goal, which is a better 
understanding of the spatial distribution of the data based on 
geospatial explanatory variables.

The approach to developing temporal models at 
discrete USGS real-time monitoring sites differs from 
that used for “spatial” models, as the temporal models 
do not utilize machine learning but instead use stepwise 
regression to develop empirical multivariable regression 
equations. The approach competes all possible combinations 
of a few potential explanatory variables to arrive at a top 
model. As opposed to the hundreds of potential geospatial 
explanatory variables used for the spatial models, the 
temporal models rely solely on seven potential in situ 
continuous measurements (discharge, pH, specific 
conductance, temperature, dissolved oxygen, turbidity, 
and (or) fluorescent dissolved organic matter) to the extent 
available at a given USGS monitoring site. In addition to 
these 7 primary X-variables, 4 data transformations of each 

are calculated (X, ​​ 1 _ X​​, ln[X], [X]2, [0.5]2), giving a total of as 
many as 35 potential explanatory variables as the starting 
point for the competitive stepwise regression analysis. Top 
model selection involves balancing the desire to minimize 
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unexplained error by selecting the highest adjusted-R2 
(coefficient of determination) with the desire to have the most 
parsimonious final model (that with the fewest model terms 
necessary). In addition, criteria imposed upon the top model 
selection process include: (a) verifying that all model terms, 
including the intercept, are significant at p-value [p]<0.05 
(the probability of committing a Type II error); (b) verifying 
that individual model terms are not correlated (for example, 
correlation coefficients among paired model terms is <0.7); 
and (c) ensuring that the top model is not overparameterized 
by limiting the number of model terms allowed to 1/20th the 
number of total model observations.

In contrast to the spatial models, which excluded 
pre-1990 data, the temporal models covered a slightly broader 
time period (1981–2022). The reasoning for the broader time 
period is because all of the data associated with the USGS 
real-time site models were collected and analyzed by the 
USGS and included more complete metadata information 
regarding methods and DQLs and because continuous 
monitoring data at the final subset of USGS sites date 
back to 1981.

Most of the potential temporal models identified were 
associated with exceedances of EPA drinking water guidelines 
or standards, as opposed to exceedances of HHC or ALC 
thresholds. This reflects the fact that not all the 12 elements 
under consideration had listed HHC or ALC thresholds, in 
addition to the fact that the drinking water thresholds were 
generally lower than the HHC or ALC thresholds, when these 
latter thresholds were listed. Furthermore, most (92 percent) of 
the potential temporal models had discharge only as the single 
continuous variable upon which to develop a model. Not 
surprisingly, a cursory exploration of best-fit models with flow 
as the only continuous variable suggests that a high degree 
of unexplained error, and multivariable models appear much 
more promising. This may limit how many of the potential 
temporal models listed in DR_Table_7 (Marvin-DiPasquale 
and others, 2025) will be sufficiently robust and useful for 
estimating continuous elemental concentrations at USGS 
continuous monitoring sites.

Summary
The report documents the methodical screening of 

the stream surface water concentration data (more than 
1.5 million observations) for 12 target elements of concern 
(aluminum, arsenic, cadmium, chromium, copper, iron, 
mercury, manganese, lead, selenium, uranium, and zinc) 
in three hydrologic basins (Delaware River Basin, Illinois 
River Basin and Upper Colorado River Basin). This data 
screening exercise was focused on defining the subset of data 
that are most appropriate for use in the further development 
of two distinct model types, one spatial and one temporal, 
each with different goals and considerations with respect to 
data suitability. The ongoing spatial modeling focuses on a 

machine learning analysis of geospatial attributes that most 
strongly correlates with the distribution of these elemental 
concentrations at the basin scale. The temporal modeling 
focuses on a multivariable stepwise modeling approach to 
develop equations for generating high-resolution time-series 
estimates of elemental concentrations at specific U.S. 
Geological Survey continuous monitoring sites, based on 
available discharge and (or) in situ sensor data.

Elemental concentrations were assessed with respect 
to: (a) fraction type (filtered, particulate, unfiltered), (b) 
analytical methods, (c) detection quantitation limits, (d) the 
extent to which analytical methods and laboratory detection 
quantitation limits values were reported, and (e) the extent to 
which the elemental concentration data were censored in some 
way. It was concluded that data associated with the particulate 
fraction was too limited to use for either model type and 
that data collected before 1990 would be of limited value 
in developing the geospatial machine learning type models. 
Data collected since 1990 were subsequently used to calculate 
median concentration values at the hydrologic catchment 
spatial scale. A decision tree was used to assess the suitability 
of the catchment median concentration data for developing 
the geospatial machine learning models, with a high priority 
status given to data groupings that involved concentrations 
that exceed known U.S. Environmental Protection Agency 
thresholds for drinking water, human health and (or) aquatic 
life. Out of 72 unique basin/element/fraction data groupings 
considered, 5 were classified as low priority and 6 were 
classified as high priority. Except for one low-priority data 
grouping for Pb and another for Se, the final list of all viable 
data groupings consisted of only 3 elements (Al, Fe, and Mn), 
which are typically found to occur at higher concentrations 
compared with the 9 other elements under consideration.

For the fixed-site time-series models, 177 site/element/
fraction data groupings, associated with 69 unique USGS 
continuous monitoring sites, passed the screening criteria, 
although most (92 percent) had discharge only as the single 
variable. Of the remaining 8 percent (14 data groupings with 2 
or more variables), As, Fe, and Mn were the 3 elements from 
8 unique monitoring sites that warrant further investigation, 
based on the selection criteria used (table 6).

It is yet to be determined how many or which of the 
unique data groupings that have been identified in this report 
as viable candidates for further modeling consideration will 
result in final models that are of high value and acceptably 
accurate. However, the data screening approach presented 
herein provides a framework that itself can be of value when 
considering similar geospatial machine learning models and 
(or) time series models for other constituents of interest.
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