[Data in metric tons, rare-earth-oxide (REO) equivalent, unless otherwise specified]

Domestic Production and Use: Rare earths were mined and processed domestically in 2024. An estimated 45,000 tons of REO in mineral concentrates were produced and were valued at \$260 million. Bastnaesite (or bastnäsite), a rare-earth fluorocarbonate mineral, was mined as a primary product at a mine in Mountain Pass, CA. Monazite, a phosphate mineral, was stockpiled as a separated concentrate or included as an accessory mineral in heavy-mineral-sand concentrates in the southeastern United States. Mixed rare-earth compounds also were produced in the Western United States. The estimated value of rare-earth compounds and metals imported by the United States in 2024 was \$170 million, an 11% decrease from \$186 million in 2023. The estimated leading domestic end use of rare earths was catalysts. Significant amounts of rare earths are imported as permanent magnets embedded in finished goods. Other end uses were ceramics and glass, metallurgical applications and alloys, and polishing.

<u>Salient Statistics—United States</u> : Production: ^e	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u>	<u>2024</u> e
Mineral concentrates ²	39,000	42,400	42,500	41,600	45,000
Compounds and metals		120	95	250	1,300
Imports: ^{e, 3}					
Compounds	6,510	7,690	10,700	8,920	8,000
Metals:					
Ferrocerium, alloys	270	330	395	259	220
Rare-earth metals, scandium, and yttrium	363	580	487	476	90
Exports: ^{e, 3}				~~ ~~ ~	
Ores and compounds	40,000	44,200	45,900	20,700	43,000
Metals:		005	4 500	0.47	4 4 9 9
Ferrocerium, alloys	626	825	1,520	817	1,100
Rare-earth metals, scandium, and yttrium	25	20	24	63	320
Consumption, apparent, compounds and metals ⁴	6,490	7,900	10,200	10,100	6,600
Price, average, dollars per kilogram: ⁵	2	2	1	1	1
Cerium oxide, 99.5% minimum Dysprosium oxide, 99.5% minimum	261	410	382	1 330	260
Europium oxide, 99.99% minimum	31	31	302	27	200
Lanthanum oxide, 99.5% minimum		2	1	1	21 1
Mischmetal, 65% cerium, 35% lanthanum	2 5	6	7	5	5
Neodymium oxide, 99.5% minimum	49	98	134	78	56
Terbium oxide, 99.99% minimum	670	1,346	2,051	1,298	810
Employment, mine and mill, annual average, number	185	293	350	450	570
Net import reliance ⁶ as a percentage of apparent consumption: ⁷					
Compounds and metals	100	>95	>95	>95	80
Mineral concentrates	E	E	E	E	E

<u>Recycling</u>: Limited quantities of rare earths were recovered from batteries, permanent magnets, and fluorescent lamps.

Import Sources (2020–23): Rare-earth compounds and metals: China,⁸ 70%; Malaysia, 13%; Japan, 6%; Estonia, 5%; and other, 6%. Compounds and metals imported from Estonia, Japan, and Malaysia were derived from mineral concentrates and chemical intermediates produced in Australia, China, and elsewhere.

<u>Tariff</u> : Item	Number	Normal Trade Relations 12–31–24
Rare-earth metals	2805.30.0000	5% ad valorem.
Cerium compounds	2846.10.0000	5.5% ad valorem.
Other rare-earth compounds:		
Oxides or chlorides	2846.90.2000	Free.
Carbonates	2846.90.8000	3.7% ad valorem.
Ferrocerium and other pyrophoric alloys	3606.90.3000	5.9% ad valorem.

Depletion Allowance: Monazite, 22% on thorium content and 14% on rare-earth content (domestic), 14% (foreign); bastnaesite and xenotime, 14% (domestic and foreign).

RARE EARTHS

<u>Government Stockpile</u>:⁹ In the addition to the materials listed below, the fiscal year (FY) 2024 and 2025 potential acquisitions included varying amounts of neodymium-praseodymium oxide, neodymium-iron-boron magnet block, and samarium-cobalt alloy.

	FY 2024		FY 20	25
Material	Potential acquisitions	Potential disposals	Potential acquisitions	Potential disposals
Cerium	550			
Lanthanum	1,300	—	1,100	—

Events, Trends, and Issues: Global mine production was estimated to have increased to 390,000 tons of REO equivalent largely owing to increased mining and processing in China, Nigeria, and Thailand.

<u>World Mine Production and Reserves</u>: Reserves for Russia, South Africa, the United States, and Vietnam were revised based on company and Government reports.

	Mine pr <u>2023</u>	Reserves ¹⁰	
United States	41,600	<u>2024</u> 45,000	1,900,000
Australia	¹¹ 16,000	¹¹ 13,000	¹² 5,700,000
Brazil	140	20	21,000,000
Burma	¹¹ 43,000	¹¹ 31,000	NA
Canada	·		830,000
China	¹³ 255,000	¹³ 270,000	44,000,000
Greenland	_	_	1,500,000
India	2,900	2,900	6,900,000
Madagascar	¹¹ 2,100	¹¹ 2,000	NA
Malaysia	¹¹ 310	¹¹ 130	NA
Nigeria	¹¹ 7,200	¹¹ 13,000	NA
Russia	2,500	2,500	3,800,000
South Africa	_	_	860,000
Tanzania	_	_	890,000
Thailand	¹¹ 3,600	¹¹ 13,000	4,500
Vietnam	¹¹ 300	¹¹ 300	3,500,000
Other	1,440	1,100	NA
World total (rounded)	376,000	390,000	>90,000,000

<u>World Resources</u>:¹⁰ Rare earths are relatively abundant in the Earth's crust, but minable concentrations are less common than for most other mineral commodities. In North America, measured and indicated resources of rare earths were estimated to include 3.6 million tons in the United States and more than 14 million tons in Canada.

Substitutes: Substitutes are available for many applications but generally are less effective.

^eEstimated. E Net exporter. NA Not available. — Zero.

¹Data include lanthanides and yttrium but exclude most scandium. See also the Scandium and Yttrium chapters.

²Excludes monazite concentrates for 2021–24.

³REO equivalent or content of various materials were estimated. Source: U.S. Census Bureau.

⁴Defined as production + imports – exports.

⁵Source: Argus Media Group, Argus Non-Ferrous Markets.

⁶Defined as imports – exports.

⁷In 2020, all domestic production of mineral concentrates was exported or held in inventory, and all compounds and metals consumed were assumed to be imported material.

⁸Includes Hong Kong.

⁹Gross weight. See Appendix B for definitions.

¹⁰See Appendix C for resource and reserve definitions and information concerning data sources.

¹¹Estimated based on reported import data for China. Source: Zen Innovations, Global Trade Tracker.

¹²For Australia, Joint Ore Reserves Committee-compliant or equivalent reserves were 3.3 million tons.

¹³Production quota; does not include undocumented production.