

COPPER

(Data in thousand metric tons, copper content, unless otherwise specified)

Domestic Production and Use: In 2025, the recoverable copper content of U.S. mine production was an estimated 1.0 million tons, a decrease of 5% from that in 2024, and was valued at an estimated \$11 billion, 10% greater than \$10.0 billion in 2024. Arizona was the leading copper-producing State and accounted for approximately 70% of domestic output; copper was also mined in Alaska, Michigan, Missouri, Montana, Nevada, New Mexico, and Utah. Copper was recovered or processed at 26 mines (17 of which accounted for more than 99% of mine production), 2 primary smelters, 2 secondary smelters, 2 primary electrolytic refineries, 14 electrowon refineries, and 4 secondary refineries. Refined copper and scrap were consumed at about 30 brass mills, 14 rod mills, and several hundred foundries and miscellaneous manufacturers. According to the Copper Development Association, copper and copper alloy products were used in building construction, 42%; electrical and electronic products, 23%; transportation equipment, 18%; consumer and general products, 10%; and industrial machinery and equipment, 7%.

Salient Statistics—United States:	2021	2022	2023	2024	2025^e
Production:					
Mine, recoverable	1,230	1,230	1,130	1,050	1,000
Refinery:					
Primary (from ore)	931	917	843	882	790
Secondary (from scrap)	49	40	39	39	60
Copper recovered from old (post-consumer) scrap ¹	169	152	137	^e 140	160
Imports for consumption:					
Ore and concentrate	11	12	3	(²)	(²)
Refined	919	732	771	903	1,700
Exports:					
Ore and concentrate	344	351	339	326	340
Refined	48	27	29	72	110
Consumption:					
Reported, refined copper	1,750	1,720	1,580	1,580	1,700
Apparent, primary refined copper and copper from old scrap ³	1,970	1,810	1,680	1,860	2,200
Price, annual average, cents per pound:					
U.S. producer, cathode (COMEX + premium)	432.3	410.8	395.3	431.8	490
COMEX, high-grade, first position	424.3	400.7	385.7	421.6	480
London Metal Exchange, grade A, cash	422.5	399.8	384.8	414.7	440
Stocks, refined, held by U.S. producers, consumers, and metal exchanges, yearend	117	84	128	123	450
Employment, mine and plant, number	11,400	12,000	12,600	13,000	13,000
Net import reliance ⁴ as a percentage of apparent consumption	44	41	42	45	57

Recycling: Old (post-consumer) scrap, converted to refined metal, alloys, and other forms, provided an estimated 160,000 tons of copper in 2025, and an estimated 760,000 tons of copper was recovered from new (manufacturing) scrap derived from fabricating operations. Brass and wire-rod mills accounted for approximately 80% of the total copper recovered from scrap. Copper recovered from scrap contributed about 30% of the U.S. copper supply.⁵

Import Sources (2021–24): Copper content of blister and anodes: Finland, 88%; Malaysia, 3%; United Kingdom, 3%; and other, 6%. Copper content of matte, ash, and precipitate: Canada, 52%; Belgium, 24%; Japan, 9%; Spain, 6%; and other, 9%. Copper content of ore and concentrate: Canada, >99%; and other, <1%. Copper content of scrap: Canada, 45%; Mexico, 43%; and other, 12%. Refined copper: Chile, 68%; Canada, 16%; Peru, 7%; Mexico, 6%; and other, 3%. Refined copper accounted for 88% of all unmanufactured copper imports.

Tariff: Item	Number	Normal Trade Relations 12–31–25
Copper ore and concentrate, copper content	2603.00.0010	1.7¢/kg on lead content.
Unrefined copper anodes for electrolytic refining	7402.00.0000	Free.
Refined copper and copper alloys, unwrought	7403.00.0000	1% ad valorem.
Copper scrap	7404.00.0000	Free.
Wire rod of refined copper	7408.11.0000	1% or 3% ad valorem.

Depletion Allowance: 15% (domestic), 14% (foreign).

Government Stockpile: None.

COPPER

Events, Trends, and Issues: In 2025, production of copper was affected by concentrator shutdowns and lower ore grades at multiple mines in the United States. Domestic output of refined copper decreased by an estimated 9% compared with that in 2024 owing to planned maintenance of both primary smelters. As of September, copper production started in 2025 at a new mine in Arizona, at a new secondary smelter in Georgia, and at a new secondary refinery in Kentucky. By yearend, one additional mine in Arizona was expected to begin commercial operations.

The COMEX copper price was projected to average a record high of \$4.80 per pound in 2025, 14% greater than \$4.22 per pound in 2024. Analysts attributed the increase primarily to uncertainty regarding the implementation of tariffs on U.S. imports of copper materials.

On November 7, 2025, the U.S. Final 2025 List of Critical Minerals was published in the Federal Register (90 FR 50494). The changes in the 2025 list from the prior list published in 2022 (87 FR 10381) were the addition of copper, lead, potash, rhenium, silicon, and silver, based on the U.S. Geological Survey (USGS) updated methodology for the 2025 list. As required by the Energy Act, public comment and interagency input were requested in response to the draft U.S. list of critical minerals published in the Federal Register (90 FR 41591). Based on that input, boron, metallurgical coal, phosphate rock, and uranium were also added.

World Mine and Refinery Production and Reserves: Reserves for Canada, Chile, Peru, Poland, and “Other countries” were revised based on company, Government, and industry association reports.

	Mine production		Refinery production		Reserves ⁶
	2024	2025 ^e	2024	2025 ^e	
United States	1,050	1,000	921	850	47,000
Australia	765	730	434	460	7100,000
Canada	515	500	324	320	7,000
Chile	5,510	5,300	1,940	1,700	180,000
China	1,840	1,800	12,400	14,000	41,000
Congo (Kinshasa)	2,990	3,200	2,560	2,800	80,000
Germany	—	—	597	610	—
India	27	23	545	620	2,200
Indonesia	1,010	710	349	400	21,000
Japan	—	—	1,570	1,400	—
Kazakhstan	724	710	498	500	20,000
Korea, Republic of	—	—	604	610	—
Mexico	717	690	489	480	53,000
Peru	2,740	2,700	385	340	85,000
Poland	400	410	589	560	33,000
Russia	1,020	1,300	896	950	80,000
Zambia	823	940	189	270	21,000
Other countries	2,850	3,000	2,310	2,100	210,000
World total (rounded)	23,000	23,000	27,600	29,000	980,000

World Resources:⁶ The most recent USGS assessment of global copper resources indicated that, as of 2015, identified resources contained 1.5 billion tons of unextracted copper (2.1 billion tons when past production of 600 million tons is included) and undiscovered resources contained an estimated 3.5 billion tons of copper.⁸

Substitutes: Aluminum substitutes for copper in automobile radiators, cooling and refrigeration tube, electrical equipment, and power cable. Optical fiber substitutes for copper in telecommunications applications, and plastics substitute for copper in drain pipe, plumbing fixtures, and water pipe. Titanium and steel are used in heat exchangers.

^eEstimated. — Zero.

¹Copper converted to refined metal, alloys, and other forms by brass and wire-rod mills, foundries, refineries, and other manufacturers.

²Less than ½ unit.

³Primary refined production + copper recovered from old scrap + refined imports – refined exports ± adjustments for refined copper stock changes.

⁴Defined as refined imports – refined exports ± adjustments for refined copper stock changes.

⁵Primary refined production + copper from old and new scrap + refined imports – refined exports ± adjustments for refined copper stock changes.

⁶See Appendix C for resource and reserve definitions and information concerning data sources.

⁷For Australia, Joint Ore Reserves Committee-compliant or equivalent reserves were 27 million tons.

⁸Source: Hammarstrom, J.M., Zientek, M.L., Parks, H.L., Dicken, C.L., and the U.S. Geological Survey Global Copper Mineral Resource

Assessment Team, 2019, Assessment of undiscovered copper resources of the world, 2015 (ver. 1.2, December 2021): U.S. Geological Survey Scientific Investigations Report 2018-5160, 619 p. (Accessed November 24, 2025, at <https://doi.org/10.3133/sir20185160>.)