

TANTALUM

(Data in metric tons, tantalum content, unless otherwise specified)

Domestic Production and Use: Tantalum has not been mined in the United States since 1959. Domestic tantalum resources are low grade; some are mineralogically complex, and most are not commercially recoverable. Companies in the United States produced tantalum alloys, capacitors, carbides, compounds, and tantalum metal from imported tantalum ores and concentrates and tantalum-containing materials. Tantalum metal and alloys were recovered from foreign and domestic scrap. Domestic tantalum consumption was not reported by consumers. The value of tantalum consumed in 2025 was estimated to be \$190 million as measured by the value of imports.

Salient Statistics—United States:	2021	2022	2023	2024	2025^e
Production:					
Mine	—	—	—	—	—
Secondary	NA	NA	NA	NA	NA
Imports for consumption ¹	1,330	1,720	1,110	1,070	1,300
Exports ¹	655	662	672	506	420
Shipments from Government stockpile ²	—10	—	NA	NA	NA
Consumption, apparent ³	663	1,060	440	566	890
Price, tantalite, annual average, dollars per kilogram of tantalum oxide (Ta ₂ O ₅) content ⁵	158	196	170	167	180
Net import reliance ⁶ as a percentage of apparent consumption	100	100	100	100	100

Recycling: Tantalum was recycled mostly from new scrap generated during the manufacture of tantalum-containing electronic components and from tantalum-containing cemented carbide and superalloy scrap. The amount of tantalum recycled was not available, but it may account for as much as 30% of consumption by domestic primary processors.

Import Sources (2021–24): Tantalum ores and concentrates: Australia, 64%; Congo (Kinshasa), 9%; Mozambique, 10%; United Arab Emirates, 5%; and other, 12%. Tantalum metal and powder: China,⁷ 47%; Germany, 25%; Kazakhstan, 16%; Thailand, 4%; and other, 8%. Tantalum waste and scrap: Indonesia, 18%; Republic of Korea, 18%; Japan, 12%; China,⁷ 8%; and other, 44%. Total: China,⁷ 22%; Australia, 14%; Germany, 11%; Indonesia, 7%; and other, 46%.

Tariff: Item	Number	Normal Trade Relations 12–31–25
Synthetic tantalum-niobium concentrates	2615.90.3000	Free.
Niobium ores and concentrates	2615.90.6030	Free.
Tantalum ores and concentrates	2615.90.6060	Free.
Tantalum oxide	2825.90.9000	3.7% ad valorem.
Potassium fluorotantalate	2826.90.9090	3.1% ad valorem.
Tantalum, unwrought:		
Powders	8103.20.0030	2.5% ad valorem.
Alloys and metal	8103.20.0090	2.5% ad valorem.
Tantalum, waste and scrap	8103.30.0000	Free.
Tantalum, wrought:		
Crucibles	8103.91.0000	4.4% ad valorem.
Other	8103.99.0000	4.4% ad valorem.

Depletion Allowance: 22% (domestic), 14% (foreign).

Government Stockpile:⁸

Material	FY 2025		FY 2026	
	Potential acquisitions	Potential disposals	Potential acquisitions	Potential disposals
Tantalum metal	29.26	0.09	NA	NA

Events, Trends, and Issues: In 2025, U.S. tantalum apparent consumption (measured in tantalum content) was estimated to be 890 tons, a 58% increase from that in 2024. The estimated U.S. imports for consumption for 2025 increased by 22%, and exports decreased by 17% in 2025 from that in 2024. The value of waste and scrap imports increased by 40%, whereas the value of primary metal decreased by 20% compared with that in 2024. As of November 2025, the average monthly price for tantalum ore was \$180 per kilogram of Ta₂O₅ content.

TANTALUM

In June, the U.S. Department of State reported that the Governments of Congo (Kinshasa) and Rwanda signed a peace agreement. The accord, mediated by the United States and observed by Qatar, called for ending support to nonstate armed groups, respecting territorial sovereignty, and establishing joint security and oversight mechanisms. If sustained, the agreement was expected to improve stability in eastern Congo (Kinshasa) and strengthen conditions for regional mineral trade, which included tantalum.

In September, the U.S. Defense Logistics Agency awarded an \$8.6 million delivery order to a company with tantalum processing operations in Boyertown, PA, to supply tantalum ingots for the National Defense Stockpile. The company also was awarded a separate 5-year contract for as much as \$100 million to maintain a domestic source of tantalum processed directly from ore for defense and aerospace applications. Tantalum ingots were used to produce high-temperature superalloys and metal powders for high-reliability electronic components.

World Mine Production and Reserves: Production in 2024 for Congo (Kinshasa) was revised significantly based on a Government report. Reserves for Australia and Russia were revised based on company and Government reports.

	Mine production ^e		Reserves ^g
	2024	2025 ^e	
United States	—	—	—
Australia	52	50	¹⁰ 120,000
Bolivia	2	2	NA
Brazil	¹¹ 210	190	40,000
Burundi	2	2	NA
China	76	80	240,000
Congo (Kinshasa)	1,270	1,300	NA
Ethiopia	40	40	NA
Mozambique	¹¹ 55	1	NA
Nigeria	390	390	NA
Russia	29	30	150
Rwanda	374	400	NA
World total (rounded)	2,500	2,500	NA

World Resources:^h Identified world resources of tantalum, most of which are in Australia, Brazil, Canada, and China, are considered adequate to supply projected needs. The United States has about 55,000 tons of tantalum resources in identified deposits, most of which were considered subeconomic at 2025 prices for tantalum.

Substitutes: The following materials can be substituted for tantalum, but performance loss or higher costs may ensue: niobium and tungsten in carbides; aluminum, ceramics, and niobium in electronic capacitors; glass, molybdenum, nickel, niobium, platinum, stainless steel, titanium, and zirconium in corrosion-resistant applications; and hafnium, iridium, molybdenum, niobium, rhenium, and tungsten in high-temperature applications.

^eEstimated. NA Not available. — Zero.

¹Imports and exports include the estimated tantalum content of synthetic tantalum-niobium concentrates, niobium and tantalum ores and concentrates, tantalum waste and scrap, unwrought tantalum alloys and powder, and other tantalum articles. Synthetic concentrates and niobium ores and concentrates were assumed to contain 50% Ta₂O₅. Tantalum ores and concentrates were assumed to contain 32% Ta₂O₅. Niobium ores and concentrates were assumed to contain 28% Ta₂O₅. Ta₂O₅ is 81.897% tantalum.

²Defined as change in total inventory from prior yearend inventory. If negative, increase in inventory. Beginning in 2023, Government stock changes no longer available.

³Defined for 2021–22 as production + imports – exports ± adjustments for Government and industry stock changes. Beginning in 2023, Government stock changes no longer included.

⁴Decrease in apparent consumption is due to a decline in imports for consumption caused by stockpiling in 2022.

⁵Sources: CRU Group (2021), the Institute for Rare Earths and Metals (2022–24), and Asian Metal (2025).

⁶Defined for 2021–22 as imports – exports ± adjustments for Government and industry stock changes. Beginning in 2023, Government stock changes no longer included.

⁷Includes Hong Kong.

⁸See Appendix B for definitions. For fiscal year 2026, the Annual Materials Plan was not released.

⁹See Appendix C for resource and reserve definitions and information concerning data sources.

¹⁰For Australia, Joint Ore Reserves Committee-compliant or equivalent reserves were 33,000 tons.

¹¹Reported.