

WOLLASTONITE

(Data in metric tons unless otherwise specified)

Domestic Production and Use: Wollastonite was mined by two companies in New York during 2025. U.S. production of wollastonite (sold or used by producers) was withheld to avoid disclosing company proprietary data but was estimated to have increased by 14% from that in 2024. Economic resources of wollastonite typically form because of thermal metamorphism of siliceous limestone during regional deformation or chemical alteration of limestone by siliceous hydrothermal fluids along faults or contacts with magmatic intrusions. Deposits of wollastonite have been identified in Arizona, California, Idaho, Nevada, New Mexico, New York, and Utah; however, New York is the only State where long-term continuous mining has taken place.

Ceramics (frits, sanitaryware, and tile), friction products (primarily brake linings), metallurgical applications (flux and conditioner), paint (architectural and industrial paints), plastics and rubber markets (thermoplastic and thermoset resins and elastomer compounds), and miscellaneous uses (including adhesives, concrete, glass, and sealants) accounted for wollastonite sales in the United States.

In ceramics, wollastonite decreases shrinkage and gas evolution during firing; increases green and fired strength; maintains brightness during firing; permits fast firing; and reduces cracking, crazing, and glaze defects. In metallurgical applications, wollastonite serves as a flux for welding, a source of calcium oxide, a slag conditioner, and protects the surface of molten metal during the continuous casting of steel. As an additive in paint, it improves the durability of the paint film, acts as a pH buffer, improves resistance to weathering, reduces gloss and pigment consumption, and acts as a flattening and suspending agent. In plastics, wollastonite improves tensile and flexural strength, reduces resin consumption, and improves thermal and dimensional stability at elevated temperatures. Surface treatments are used to improve the adhesion between wollastonite and the polymers to which it is added. As a substitute for asbestos in floor tiles, friction products, insulating board and panels, paint, plastics, and roofing products, wollastonite is resistant to chemical attack, stable at high temperatures, and improves flexural and tensile strength.

Salient Statistics—United States: The United States was a net exporter of wollastonite in 2025. Comprehensive trade data were not available for wollastonite because it is imported and exported under a generic Harmonized Tariff Schedule of the United States code and Schedule B number, respectively, that include multiple mineral commodities. Price data for wollastonite were unavailable. Products with finer grain sizes and acicular (highly elongated) particles sold for higher prices. Surface treatment, when necessary, also increased the selling price. Approximately 68 people were employed at wollastonite mines and mills in 2025 (excluding office workers) in the United States.

Recycling: None.

Import Sources (2021–24): Comprehensive trade data were not available, but wollastonite was primarily imported from China and India.

Tariff:	Item	Number	Normal Trade Relations
	Mineral substances not elsewhere specified or included	2530.90.8050	<u>12–31–25</u> Free.

Depletion Allowance: 10% (domestic and foreign).

Government Stockpile: None.

WOLLASTONITE

Events, Trends, and Issues: In March 2024, the U.S. Environmental Protection Agency (EPA) issued a final rule¹ that prohibited the commercial use, distribution in commerce, import, manufacturing, and processing of chrysotile for all asbestos-containing products that are still used in the United States: aftermarket automotive brakes and linings and other vehicle friction products, diaphragms used in the chloralkali industry, oilfield brake blocks, and sheet and other gaskets. The EPA ordered most uses of asbestos phased out from 6 months to 2 years after November 25, 2024, the effective date of the rule. This could lead to greater use of wollastonite in brake and friction products as a substitute for asbestos.

The production of motor vehicles, which contain wollastonite in friction products and plastic and rubber components, was approximately 15.5 million vehicles during 2024, and production was expected to remain at the same level in 2025. Construction starts of new housing units through August 2025 decreased by 5% compared with those during the same period in 2024. Sales of wollastonite for domestic construction-related markets, such as adhesives, caulk, cement board, ceramic tile, paints, stucco, and wallboard were estimated to have decreased. Sales of wollastonite were estimated to be slightly lower for crude steel production, which was 79.5 million tons during 2024 and was estimated to have decreased to 78 million tons during 2025.

Globally, ceramics, paint, and polymers (such as plastics and rubber) accounted for most wollastonite sales. Lesser global uses for wollastonite included miscellaneous construction products, friction materials, metallurgical applications, and paper.

World Mine Production and Reserves: Mine production data for China, Finland, and Mexico were revised based on company and Government reports. More countries than those listed may produce wollastonite; however, many countries do not publish wollastonite production data.

	Mine production ^e		Reserves ²
	2024	2025	
United States	W	W	World resources of wollastonite were
Canada	20,000	30,000	estimated to exceed 100 million tons.
China	600,000	600,000	Many deposits have been identified
India	115,000	120,000	but have not been surveyed
Mexico	112,000	100,000	sufficiently to quantify their reserves.
Other countries	11,000	11,000	
World total (rounded) ³	858,000	860,000	

World Resources:² Reliable estimates of wollastonite resources do not exist for most countries. Large deposits of wollastonite have been identified in China, Finland, India, Mexico, and the United States. Smaller, but significant, deposits have been identified in Canada, Chile, Kenya, Namibia, South Africa, Spain, Sudan, Tajikistan, Turkey, and Uzbekistan.

Substitutes: Wollastonite's acicular nature allows it to compete with other acicular materials, such as ceramic fiber, glass fiber, steel fiber, and several organic fibers, such as aramid, polyethylene, polypropylene, and polytetrafluoroethylene, in products where improvements in dimensional stability, flexural modulus, and heat deflection are sought. Wollastonite also competes with several nonfibrous minerals, such as kaolin, mica, and talc, which are added to plastics to increase flexural strength, and such minerals as barite, calcium carbonate, gypsum, and talc, which impart dimensional stability to plastics. In ceramics, wollastonite competes with carbonates, feldspar, lime, and silica as a source of calcium and silica. Its use in ceramics depends on the formulation of the ceramic body and the firing method.

^eEstimated. W Withheld to avoid disclosing company proprietary data.

¹Source: U.S. Environmental Protection Agency, 2024, Asbestos Part 1; Chrysotile Asbestos; Regulation of Certain Conditions of Use Under the Toxic Substances Control Act (TSCA); Federal Register, v. 89, no. 61, March 28, p. 21970–22010. (Accessed September 29, 2025, at <https://www.govinfo.gov/content/pkg/FR-2024-03-28/pdf/2024-05972.pdf>.)

²See Appendix C for resource and reserve definitions and information concerning data sources.

³Excludes U.S. production.