
MECHANICS OF THE PANAMA CANAL SLIDES. 

By GEORGE F. ~ECKER. 

PREFATORY NOTE. 

By GEORGE OTIS SMITH. 

This geophysical study of the Panama Canal 
slides is now presented for the reasons set forth 
in the following letter of transmittal: 

The DIRECTOR. 

SIR: 

I have the honor to transmit herewith a paper on the 
mechanics of the Panama Canal slides. It was prepared 
as a contribution to the report of the committee of the 
National Academy of Sciences on the Panama Canal slides, 
appointed at the instance of the President of the United 
States. 

As some delay is anticipated in completing the full re­
port, this chapter is now submitted for publication with 
the sanction of President C. R. Van Rise, chairman of the 
committee. 

Very truly, yours, 
GEORGE F. BECKER. 

Dr. Becker visited the Canal Zone in 1913 as 
a geologist of the United States Geological 
Survey and since that time has given the prob­
lem the benefit of his study. His appointment 
as a member of the committee of the National 
Academy of Sciences has made it appropriate 
for his conclusions, based upon his personal 
observations and already reported in part to 
the Canal Connnission, to be stated for the 
benefit of his associates and other American 
scientists and engineers. 

OBSERVATIONS ON THE SLIDES. 

Early in 1913, before water was admitted, I 
spent some weeks in examining the geology 
of the Culebra Cut, now officially known as the 
Gaillard Cut, with special reference to the origin 
of the landslides.1 These appear to me to be 
of two kinds--rnere superficial slips on joint 
planes or other slippery surfaces and deeper­
seated "breaks," as they are known by the 

1Ihad.thegreat advantage of Mr. Donald MacDonald's companion­
ship throughout these field studies. 

engineers. It is only with the latter that this 
paper is concerned. 

The breaks in their inception are marked on 
comparatively level banks by groups of cracks 
or narrow fissures nearly parallel to the cut, . 
and these almost immediately develop into 
series of step faults with small throws, many of 
them only a fraction of an inch in height, the 
hade where not vertical being invariably to­
ward the canal so far as I could observe.2 :Many 
of the steps of these faults are . only a _yard or 
two in width. There seems little order in the 
time of formation of the cracks; in some breaks 
groups of small faults first appear rather close 
to the cut, those at a greater distance from it 
developing later. In others the earliest cracks 
are hundreds of feet from the canal and the 
intermediate ground splits up afterward. In 
all the breaks which I could examine the first 
small movements involved no perceptible gap­
ing, or none of the same order of magnitude as 
the throws of the faults. At or about the same 
time as the cracks on the bank were formed 
nearly horizontal cracks also appeared in the 
cut near the bottom of the bank, but which 
of these were the earlier it seemed impossible 
to decide. 

After a break has made a fair start the cracks 
more remote from the cut gape and show under­
lying curved surfaces which reach the general 
level of the top of the bank nearly at right 
angles or crop out almost vertically, and at the 
outcrop the vertical cross section of such a 
surface shows a very moderate radius of curva­
ture. The surfaces of rupture are fairly 
smooth, many of them slickenslided a little 

2 Mr. MacDonald records that ''some of the blocks sank a little in front 
and tilted up in the rear, so that they were a yard above the front part 
of the block behind." This behavior was unusual, and I saw no in­
stances of it. Local inhomogeneities in the bank might perhaps bring 
about irregularities in surfaces of rupture which would account for excev­
tional throws of 2 or 3 feet. No other suggestion on this subject occurs 
to me. 
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below the outcrop, but not smooth enough to 
make accurate measurements of their radii of 
curvature practicable. As nearly as I could 
discover these radii measured between 100 and 
200 feet. Where these underlying surfaces are 
exposed to a considerable extent it is apparent 
that the radii of curvature increase rapidly 
with increasing -depth, and some exposures 
from which disintegrated material had been 
removed appeared to prove that as the cut is 
approached the radius of curvature becomes 
very large indeed. 

Movement of the slides perhaps never en­
tirely ceases, but it varies greatly in velocity, 
from a fraction of an inch a day to many yards. 
After considerable motion has taken place the 
sheets of rock are broken up and the external 
surface of the slide becomes as rough as a 
choppy sea. 

A certain amount of consolidation and of 
what might be called secondary cohesion some­
times occurs in a slowly moving slide of large 
dimensions after the material has been reduced 
to a chaotic condition. In such cases well­
developed curved surfaces of rupture and step 
faults form, indistinguishable in general char­
acter from the initial disturbances in the solid 
bank. This surprising fact indicates that 
definite mechanical laws of wide applicability 
underlie the formation of slides. I was witness 
to these phenomena in the Cucaracha slide, 
and they have made their appearance in other 
and more recent breaks. 

During the progress of a large slide upheaval 
of the bottom of the canal may take place from 
time to time, showing that deformation of the 
rocks extends to a certain depth below the 
deepest excavation; but this upheaval does not 
attend every spasm of activity in the slide, 
nor does the amount of material thrust up in­
dicate that deformation extends more than a 
few yards beneath the bottom of the canal. 
A layer of rock say a hundred feet in width, 
buckled by nearly horizontal pressure, would 
show, even if it were only a couple of yards in 
thickness, mounds of rubble as much as 20 or 
30 feet in height, or of the order of magnitude 
of the observed upthrusts. 

LIMITING DEPTH OF DISTURBANCE. 

To simplify the mechanical problem as much 
as possible, suppose the case of a level plain 
underlain to a great depth by an ideally ho-

mogeneous rock. At any depth in this rock 
the pressure will be hydrostatic and equal to 
the depth multiplied by the density. Suppose 
a narrow trench to b~ sunk vertically in this 
rock, the width being so small that caving of 
the sides can be prevented by mine timbering. 
Then, because of the one-sided relief of pressure 
there will be at the bottom of the cut a hori­
zontal stress, directed from the wall into the 
cut, which is equal to the product of the depth 
·and the density. This stress will tend to pro­
duce a horizontal shear and to drive the bot­
tom of the wall into the cut. If the cut is 
sunk deep enough, so deep that the stress is 
equal to the resistance of the rock to simple , 
shearing stress at the elastic limit, this defor­
mation will occur and the wall will bulge. 

This seems a rather hasty statement, but in 
the last section of this paper the strains are 
considered in detail; it is there shown that the 
elastic limit for simple shear would be reached 
long before the limit for mere linear compres­
sion, and that of all elementary resistances that 
resistance which opposes stress such as is ex­
erted by a pair of scissors is the weakest. 

Let the limiting depth at which this one 
species of flow makes its appearance be denoted 
by y17 so that if p is the density the hydro­
static pressure is py17 which is also the value 
of the shearing stress. 

CONDITIONS IN A WIDE CUT. 

The hypothesis of a narrow timbered cut 
was employed in finding the limiting depth, y 1, 

in order to avoid the complication of a caving 
bank. Let a wide cut be substituted, one a 
mile wide if the reader chooses, but let the bank 
be vertical. Then even before the depth y1 is 
attained any real rock wall would break down 
or cave. But imagine for a moment the rock 
replaced by a substance so tough that, though 
it would undergo permanent deformation at the 
same limit as the rock, it would hang on long 
enough to be studied. A ductile substance, 
such as wrought iron, would act in this way. 

Consider a surface of uniform deformation 
nearly as deep as y1 and extending into the 
wall. This surface will surely not be horizon­
tal, for such a strain would imply the expendi­
ture of an infinite amount of energy. 

Before caving oan take place in a homogene­
ous bank the material of the bank must be 
strained to its elastic limit. rfhe vertical cross 



MECHANICS OF THE PANAMA CANAL SLIDES. 255 

section of the bank must therefore include a 
line along which the strain is uniform. This 
line must reach the top of the bank somewhere, 
and it may be assumed that the line is curved, 
because that is a far more general hypothesis 
than that it is straight, besides being in har­
mony with observation. 

In fig. 22 OBO represents the bank and 
ABOD a part of the cut. The x axis, or OX, is 
taken at a depth y 1 from the original surface, 
and EO is a curved line along which the shearing 
stress is uniform. The problem is to find its 
equation. 

At any point the original hydrostatic pressure 
was (y1 -y)p, but excavation of the cut, having 
disturbed the original equilibrium and brought 
about strain reaching the elastic limit, has 
developed a shearing stress which is equal to 
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FIGURE 22.-Curve of uniform t an gential strain. 

(y1 -y)p per unit length and which is of itself 
inadequate to cause flow. But there is another 
manifestation of stress to be considered. The 
shearing stress is equivalent to a tension in the 
direction of the curve, say T per unit length. 
Let if; be the angle which the tangent to the 
curve makes at xy; let oif; be an elementary 
angle and os a corresponding arc. Then ele­
mentary mechanics shows that the tension, T, 
acting .along the arc os is equivalent to a 
normal pressure 1 Toif;. 

It has already been explained that py1 per 
unit length is the shearing stress needful to 
strain the mass to its elastic limit for simple 
shear. Hence if stress of this intensity is to be 
set up along the curve EO the following equa­
tion must hold good: 

Toif;+ (y1 -y) pos=y1 pos 

or, more briefly, 
T OS 
-=y-p oif; 

1 See 'l'ait, P. G., Properties of matt er, p. 2&1, 1894; or Lamb, H., 
Statics, p. 276, 1912. 

Here osjoif; is the radius of curvature) say R, 
while T j p is a constant characteristic of the 
material and essentially positive. It may 
therefore be replaced by b2

, and then 

which is the most general equation of the 
elastic curve. 

Replacing R by its value in terms of dyjdx 
and d2y/dx2 and integrating once gives 

y 2 = 0- 2b2 COS if; ___________ (1) 

where 0 is a constant of integration. The 
form of the curve depends on the value of 0. 
For the present pNblem it is evident that the 
curve can not cross the x axis and that y can not 
become negative, so that 0 must equal or ex­
ceed 2b2• It is easily proved that if 0= 2b2 the 
equation represents a curve coinciding with the 
x axis for an infinite distance. This is not a 
case to be considered, and therefore 0> 2b2

• 

The equation then represents the elastic curve 
of Euler's eighth class, a diagram of which is 
given in Thomson and Tait's "Natural philos­
ophy," § 611, figure 7. 

For some purposes equation (1) is conven­
ient enough. Thus if the ordinate of the point 
at which the tangent of the curve is vertical is 
called Yv, then O=yi; while if the ordinate at 
the point where the tangent is horizontal is y 0 , 

then y0
2 = Yv2 - 2b2• But values of the abscissae 

are not so simple. 
It is needless to say that the geometry of the 

elastic curve has been thoroughly known for a 
century and that this is no place to expound 
the subject. A few results, however, must be 
set down. By substituting 

where cp is a variable angle and 7c is the sine of 
a constant angle, it will be found that 

- 2b I Jc2 . z (2) Y - JC -y 1 - Sln cp- - - - - - - - - - -

Then also 

dx =cot if;dy == cot 2cpdy _______ (2a) 

and x takes the form of an elliptic integral. 
For purely practical reasons (the scope of 

tables of elliptic integrals) it is convenient to 
reckon x negatively, or to the left of the origin 
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in figure 23. Then, in the conventional termi­
nology of these integrals/ 

If, for example, the horizontal distance from 
the origin to the vertical tangent of the curve 
is required, if;= -n/2 and cp=7r/4, and the value 
of x can be computed from tables of elliptic in­
tegrals. Because of symmetry, positive values 
of x have the same absolute value as negative 
values.2 

The element of area of the curve, ydx, rs 
independent of k: 

ydx= 4b2 (sin2cp -~) dcp= b2 cos if;dif; 

so that 

Itt-ydx = b2 sin t/; _____________ ( 4) 

a result which can be found directly from (1) 
and (2a). 

The length of the curve counted from the 
horizontal point is given by 

-%=k{K- F (k,cp)} ___________ (5) 

and s/b is thus si1nply proportional to the first 
part of the value for - xjb. 

It should be remarked that b2 is an absolute 
constant dependent· only on the density and 
tenacity of the rock, so that geometrically b is 
the unit in which lengths are computed and b2 

the unit area. On the other hand, k varies 
from curve to curve of a family of curves, all 
of which share a common value of b, but as 7c 

· is the sine of an angle it can not exceed unity. 

_LIMITING VALUES OF k. 

It has already been pointed out that if 
0= 2b2 the elastic curve is a horizontal straight 
line coinciding with the x axis. The same 
equality implies that k is unity, and therefore; 
for the problem under discussion, k must al­
ways be the sine of an angle less than 1rj2. It 

1 For the meaning of the symbols in equation (3), see for example 
Peirce's "Short table of integrals." 

2 Equation (3) is substantially identical with that given by Lamb 
(Statics, p. 279), who, however, takes tha origin at a different point, 
making x and cp disappear toget:B.er, so that the y axis includes the maxi­
mum value of y. In (3) the origin is so transposed that x and ,p disap­
pear together, so that, as required for the problem in hand, they axis 
passes through the minimum value of y, or the point for which cp=7r/2. 

is equally evident that k can not vanish, for 
were it to do so the curve would intercept the 
vertical axis at an infinite distance. There are 
other reasons for supposing that k can not be 
very small, and these can be very briefly stated. 
In this discussion it has not been needful to 
consider any strains except those at the elastic 
limit, but the general theory of elastic strains 
shows that at the edge of a vertical cliff or 
bank there will be no strain at all, and for 
some distance from such an edge the strains 
will be exceedingly small. Hence strains reach­
ing the elastic limit are not to be considered 
near this edge. It might be possible, but it 
would not be worth while, to determine how 
near to this edge the elastic limit· could be 
reached. 

On the other hand, it is very important to 
consider how far back a curve of critical shear 
can reach, and this I believe to be a simple 
problem. From the manner in which the equa­
tion of the elastic curve was derived it is appar­
ent that the pressure due to tension is a second­
ary phenomenon due to elastic strain. It is 
unthinkable that this part of the pressure 
should exceed the whole pressure requisite to 
produce flow. But when the curve crops out 
on the bank at 90° to tlre horizontal, the pres­
sure due to tension at the outcrop exactly 
equals the critical tension, y1p. Hence for a 
given value of y1 the lowest possible curve is 
that which intersects the level bank at right 
angles. From this condition the maximum 
value of ~ can be determined. 

EXAMPLES OF SLIDE CURVES. 

In order to illustrate conditions resembling, 
to a first approximation, those met with in the 
Culebra Cut, I have computed a few values of 
the more important elements of the curves, and 
these are tabul~ted below. It is easy to see 
that only relatively large values of k =sin a are 
of interest and I have begun with a = 7 5°. 
Taking x1 as the abscissa of the vertical tan­
gent, it is found from equation (3), while if Yo is 
the value of the ordinate for x = o, y0/b = 2 cot a. 
Then y1

2/b2 =y0
2/b2 +2. The fundamental rela­

tion y/b =b/R makes it easy to find the radii of 
curvature answering to X1Y1 and XoYo· For the 
purpose of the diagram it is not requisite to 
compute other points; after describing an arc 
at the axis of symmetry with ~/band a second 



MECHANICS OF THE PANAMA CANAL SLIDES. 257 

arc at x1y1 with R 1/b, the two can be connected 
without serious error by the help of a curved 
ruler. 

Points on the elastic curve. 

k X1/b Yofb ytfb Rofb Rtfb 

--- ---

sin 75°---- _. 1. 3411 0.5358 1. 512 1. 866 0.661 
sin 80° ______ 1.7094 . 3526 1.458 2.836 0 686 
sin 85° - -- - - - 2.3728 .1750 1.425 5. 714 . 702 
sin 89° - - ---- 3.9690 . 0350 1. 415 28.570 . 707 
sin 90° ______ 

00 0 1. 414 00 . 707 

To estimate an appropriate value for b it is 
requisite to adopt some value for the resistance 
of the rock either to shearing stress or to crush­
ing. The ultimate resistance to crushing of 
such materials as soft-burned brick, inferior 
concrete, and the poorest sandstones is some­
what less than 3,000 pounds per square inch. 

X 
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FIGURE 23.-Elastic curve for a=75°, 80°, 85°, 89°. 

The Cucaracha formation is probably of similar 
strength, and I will assume its resistance to be 
2, 760 pounds. In the concluding section of 
thi~paper reasons are giv~n for supposing that 
6 ..j2 times the resistance to shear is about 
equal to the resistance to crushing; and this 
implies that for the Cucaracha the resistance to 
shear is 325 pounds per square inch. This is 
the weight of a column of rock of a density 2.5 
times that of water and 300 feet high. 

If the curve for which a= 89° is selected and 
y1 is taken as 300 feet, 

2 

b2 = 2 (l+~1 cot2a) 44,972; b=212 

By multiplying all the lengths given in the table 
by 212 a consistent set of values is obtained. 

In the diagram (fig. 23) the height of the 
bank above the x axis is taken as 300 feet and 
the curve for a=89° cuts it perpendicularly 
at a distance of 841 feet from the y axis. The 

curves for smaller valu~s of a give larger _values 
for y1 and therefore cut the 300-foot level at 
acute angles. 

According to the theory here set forth, a limit 
is set to the vertical height of a cliff or of any 
rock. Results obtained by the United States 
Geological Survey indicate that granites show 
resistances up to 34,000 pounds per square 
inch, which would correspond to a cliff 3,700 
feet high. The brow of El Capitan, in the 
Yosemite Valley, stands 3,100 feet above the 
valley, but the top of the dome, some 2,000 
feet bac.k from the brow, is about 500 feet 
higher. 

HYDROSTATIC ANALOGY. 

If two rectangular blocks of very clean glass 
are placed in a dish, parallel to one another, 
and if water is added until the faces of the 
blocks nearest together are wet to the top in 
consequence of capillarity, then the vertical 
cross section of the water surface between the 
blocks is the elastic curve represented by 
equations (2) and (3); the height of the blocks 
above the general water level is given by y1b, 
and the amount of water raised above this level 
by capillarity or surface tension is b2 per unit 
length for each wall of the channel between 
the blocks. If the surface tension is T and 
the density is p then Tfp= b2

• 

This system is in ~table equilibrium, the 
surface of the water is minimal for the bound­
ary conditions, and, as the equilibrium is stable, 
the gravitational potential is a minimum. 
The whole system may be supposed solidified 
without disturbance of equilibrium. One-half 
of this model, to the right or the left of the 
point at which the capillary curve is lowest, 
represents the mass beneath a slide on the 
Culebra Cut. The whole model represents the 
slide surfaces as they would be were the cut 
extremely narrow, provided that the material 
sliding in were removed as fast as it came until 
the slides ''died.'' 

This very perfect analogy and the theory of 
this paper seem to me to show that the profile 
of the bed or bottom of a straight watercourse 
or river, flowing through a homogeneous 
stretch of country, must tend to approach the 
elastic curve, and that this profile is also most 
suitable for a canal. 
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FORMATION OF RUPTURES. 

Thus far the discussion has been limited to 
conditions appropriate to incipient flow; the 
rock has been supposed strained to its elastic 
limit, but short of the point of rupture. In 
such materials as rocks, which are to be classi­
fied as brittle substances, the difference of 
stress between the so-called limit of solidity 
and the breaking point is . extremely small. 
Moreover, as a matter of course real rocks are 
not homogeneous. 

Suppose that the limit of solidity has been 
exceeded by a. minute stress increment, but 
that along some small arc of the elastic curve 
the rock were more brittle than elsewhere: 
then evidently a local crack would develop; 
the resistance along the entire curve would be 
diminished pro tanto; the stress on the re­
maining larger portion of the curve would be 
correspondingly increased; further rupture 
would follow; and, as it appears to me, the 
crack would extend from one end of the curve 
to the other in much less time than is required 
to state this conclusion. So, on a frozen lake, 
when a sudden fall of temperature occurs, a 
crack starts with a report at some point along 
the shore and tears, booming, across the ice 
sheet at a velocity approaching that of sound. 

If before rupture there is plastic flow along 
a given curve, then after rupture the overlying 
mass can move by gravity; for till rupture 
occurred motion was opposed by cohesion, and 
when this is overcome resistance is diminished. 
Thus there is a surplus of energy available to 
accomplish work. 

BULGING OF CANAL BOTTOM. 

The necessary and sufficient condition for 
flow is that Ry = b2 , and the smallest value 
which R can reach is R1 = b2/y1• The stresses 
which bring about this condition are due to 
the tendency of the cliff to settle down into 
the cut, and this tendency will persist until 
flow takes place along the basal curve for which 
1/; = 1r/2 at the outcrop. 

Strain can not be confined to levels above 
the bottom of the cut, for the moment the bank 
begins to sag, even within the elastic limit, ad­
joining masses are stressed to some extent, and 
these stresses must extend, with diminished 
intensity, to great distances. Thus even while 
the cut is shallow there must be elastic strains 

along the basal curve. As thJ depth of the 
cut increases the strain along this curve must 
increase until it approaches the elastic limit, 
both in the wall and below the cut in the plane 
of the wall. 

Now suppose that the cut is nearly but not 
quite down to the basal curve and that, by 
some local inequality in the resistance of the 
material on some part of the basal curve, or in 
consequence of some jar, due perhaps to move­
ments in the bank, a short local crack forms on 
some part of the basal curve: then the question 
arises whether or not this crack will spread. 
Movement of themass overlying the curve will 
be opposed by the horizon tal resistance to 
crushing or buckling of the mass underlying 
the floor of the cut and extending down to the 
curve; but when this stratum has been reduced 
to a very small thickness the crack may extend 
and cross the vertical, thus splitting off a layer 
of rock immediately beneath the cut. As has 
been pointed out above, the formation of a 
crack along the curve suddenly releases an 
amount of the energy of position of the bank 
corresponding to the cohesion which existed 
until the crack formed and spread. At the ex­
pense of this energy buckling or bulging of a 
thin bottom layer may take place. 

This seems to me an adequate qualitative 
explanation of the upheavals of the floor of 
the cut observed during the later part of the 
excavation. That shockhad something to do 
with these upheavals is suggested by the fact 
that continuous slow upheavals corresponding 
to the slower movements of the slides were not 

·observed. Upheavals accompanied on(y the 
spasmodic accelerations of slide movement. 
This phenomenon is a harbinger of what would 
occur if the cut were extended down to the full 
depth Yu for then the bottom and sides of the 
cut would ooze in, continuously by plastic flow. 

EFFECT OF THE FORM OF THE BANKS. 

To simplify discussion it has been assumed 
that the canal was a vertical cut through a flat 
country underlain by homogeneous rock, and 
of course these assumptions are · not in accord 
with the facts. But the country is rather flat; 
and as the .underlying rock is a solid mass, 
though not a strong one, the variability of 
load near the surface must be fairly well dis­
tributed at depths of more than 100 feet. 
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Until slides began to give trouble the banks 
of the cut were very steep-quite too steep, in 
fact, as everyone would now concede. It is 
well to consider what would have been the ef­
fect of giving the excavation lower slopes. 

The ordinary theory of earth pressures on 
retaining walls is based on the existence of an 
angle of rest in a pile of discrete particles. It 
appears to me to be totally inapplicable to con­
ditions in the Cucaracha formation, for the 
mere existence of breaks demonstrates that the 
mass possesses continuity. The rocks of the 
Culebra Cut behave very much as a mass of 
agar-agar jelly might do if a rectangular mold 
of this substance, a foot or so in depth, were 
turned out on a horizontal table. If the jelly 
were of the right degree of stiffness, the edges 
of the mass ·would first sag, and then breaks 
would make their appearance; but nothing re­
sembling a constant angle of rest would be 
developed. To work out a complete theory of 
the relief of pressure in such a jelly, or in the 
Cucaracha formation, due to an inclination of 
the walls, would probably be very difficult. 
Nevertheless, very simple considerations show 
that sloping the walls is an effectual method 
of reducing the pressure. 

If the Culebra Cut were replaced by an ex­
ceedingly strong wall, the pressure against the 
wall would be hydrostatic. For a small change 
of depth the increment of pressure would be 
p(y1 -y)d(y1 -y) , and the whole horizontal 
pressure from the surface to depth y1 - Yo 

would be i (y1 - Yo) 2
• 

Now, imagine a plane inclined to the hori­
zon at 45° and passing through the point 
x=o, y=y0 • This plane would cut off a 
triangular slab, say of unit thickness and of 
mass w =! p(y1 - Yo)2

• 

The amount of frictional resistance depends 
primarily upon normal pressure, so that if F is 
the frictional resistance and N the normal 
pressure 

F 
N=J.t=tan {} 

where J.t is the coefficient of sliding friction and 
{}the angle of friction. Now, F can not exceed 
the normal pressure N, which excites it, so 
that J.t can not exceed unity and {} can not ex­
ceed 45 °. Hence friction can not prevent 

movement on a slope of 45°. Thus if the tri­
angular mass of rock (or of jelly) were actually 
separated from the remainder of the mass, fric­
tion would not prevent it slipping down the 
steep slope. The tangential pressure which the 
mass w would exert on the 45 ° plane would be 
wf-J2, and this would be resolved into a ver­
tical pressure and a horizon tal pressure each 
equal to w/2. 

Thus of the whole hydrostatic horizontal 
thrust exerted against the vertical wall, just 
one-half is exerted by the triangular slab. 
Hence also sloping the bank of a cut at 45° 
would diminish the horizontal thrust to one­
half of its maximum value. 

It is not difficult to perceive by the further 
application of elementary statics that the 
thrust would be still more diminished by mak­
ing the slope smaller than 45°. 

The precaution of giving the banks a low 
slope might have prevented the occurrence of 
slides, but as a remedial measure, after breaks 
have developed to a considerable extent, it 
seems to me of little avail. After the basal 
curve has developed into a crack, the material 
overlying it is either in motion or in unstable 
equilibrium; and sooner or later all, or nearly 
all of it, will reach the bottom. Slides of origin 
similar to those of the Culebra Cut are by no 
means confined to the Canal Zone. In my 
opinion banks of cuts should be watched with 
extreme care, and the moment any cracks make 
their appearance all other work should be sus­
pended until a safe slope has been established. 
Breaks should be prevented, because they can 
not be cured. 

NOTE ON FINITE STRAINS. 

Plastic flow is continuous deformation with­
out change of density. It takes place at the 
so-called limit of solidity. During flow, there­
fore, a solid must be treated as compressed to 
a constant extent, and as the elasticity of 
volume is perfect, when stress is relieved the 
original volume is restored. In nearly all cases 
a solid mass undergoing flow is to be treated as 
incompressible. 

This limit of solidity depends on the type of 
strain to which the mass is subjected and to 
some extent on viscosity. It would also de­
pend on heterotropy, but this paper deals only 
with isotropic matter. 
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In any strain ellipsoid there are two sym­
metrically oriented sets of planes of maximum 
tangential strain or maximum slide. If the 
strain is a rotational one (so that the groups of 
material particles through which the ellipsoidal 
axes pass vary with the progress of the strain), 
then there is a difference in behavior of the mass 
on these two sets of planes. Along that set of 
geometrical planes which ro~ates more rapidly 
through the mass, or on which the material 
particles change more quickly, greater resist­
ance is offered to flow or rupture than on the 
other set, because the resistance to be over­
come is rigidity plus viscosity and because 
viscosity offers great resistance to a sudden 
stress but very small resistance to a stress 
slowly applied. 

In one strain, called simple shear, shearing 
motion, slide, or scission by various writers, 
there is one set of these planes which is :fixed 

their product is constant, and if all three diame­
ters pass through the same material particles at 
all stages of the strain, then this strain is a 
shear, though not a siJ:I?.ple shear but yet far 
simpler than a simple shear. Both ~trains are 
illustrated in figure 24. 

A pure shear may be conceived as the result-1 
ant of two scissions whose rotations are equal 
and opposite, a fact of which use may be made 
in the present discussion. 

If a cube of homogeneous isotropic matter is 
subjected to uniformly distributed pressure ori 
two opposite faces, or if the cube rests on al 

I 

rigid plane and carries a normal load or initial 
stress, P, then, no matter whether the load and 
the strain produced are infinitesimal or finite, 
just one-third of the load is employed in pro­
ducing cubical compression, the remaining 
two-thirds being employed in producing two 
pure shears at right angles to each other. 

r·········--~~~:.~~~-~-- - ···-- - ·····: 
I I 

' ' ,: 

_i_··------·----··-····------- ----------- --·--j 
FIGURE 24.-Diagram illustrating simple shear and shear, each of ratio 5/4. The broken lines show 

directions of maximum. tangential stram. 

relatively to the material, while the other set 
of planes of maximum tangential strain changes 
its position relatively to the material particles 
more rapidly than in any other strain. 

In scission, therefore, flow will be more easily 
produced on the fixed set of planes than in a 
strain of any other type; but on the other set 
of planes flow will be less easily produced in 
scission than in a strain of any other type. 
Scission is due to a couple acting against are­
sistance. It is the only strain produced in a 
rod of circular cross section when the rod is 
twisted about its axis. 

Irrotational or pure shear, usually denoted 
simply as shear, is the simplest conceivable 
deformation. If a sphere is so distorted that 
one diameter retains its length unaltered while 
two other orthogonal diameters, in a plane 
perpendicular to the first, are so changed that 

If the strain at the elastic limit is small and 
if P just exceeds the initial stress needful to 
produce this strain, the conditions for flow are 
fulfilled. But to produce yielding relative mo­
tion must take place parallel to four planes all 
of which are at or very close to inclinations of 
45 ° to the direction of the load. Suppose that 
there were only four planes of relative moti_on, 
each passing through two opposite edges of the 
cube; then if a face of the cube is assumed as 
the unit area, the area of each of the planes of 
relative motion will be {2, and to produce any 
yielding by shear the total area of relative mo­
tion must be at least 4{2 = 5.657. 

Now on each of these four surfaces the rela­
tive motion may be conceived as due to a scis­
sion, the four rotations of the scissions annulling 
one another by pairs. But if the cube were cut 
or permanently deformed by scission along a 
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plane parallel to any face the area of deforma­
tion would be only unity instead of 5.657. 

Call the load or initial stress, P, when just 
sufficient to induce flow by pure shears K, and 
let Ks be the tangential stress needful to induce 
incipient scission. Then it follows from the 
reasoning stated above that 

~- K i K=4-v2Ks, or Ks= 8.485 

so that if K is known a rational estimate of Ks 
can be made. 

Experimental data as to the relative values 
of K and Ks for stone, concrete, or brick are not 
to be had, so far as I know; but for these sub­
stances the limit of elastic strain and the break­
ing point lie very close together. According to 
Bauschinger the ultimate resistance to shearing 
of stone is a thirteenth of the resistance to 
crushing, and this substantially coincides with 
Von Bach's result for granite. Thus experi­
ment confirms the conclusion that relatively 
brittle substances will yield to shearing stresses 
very much less in tense than would be needed 
to produce flow by irrotational strains. 

As flow is thus dependent on the type of 
strain, it follows that flow on one set of planes 

of maximum tangential strain may be accom­
panied by no sensible plastic deformation on 
the opposite set or may there even be attended 
by rupture. 

SUMMARY. 

After describing the essential features of the breaks on 
the Culebra Cut the author points out that there is a limit 
to the depth of a vertical cut in an homogeneous isotropic 
mass, the upper surface of which is plane. This limit is 
that at which the pressure is sufficient to produce simple 
shear in the mass, and in a concluding note reasons are 
given for believing that 6-./2 multiplied by the resistance 
to such shear is about equal to the ultimate strength under 
linear compression. The depth at which one-sided relief 
of pressure will produce simple shear is called y1• 

It is shown that in such a bank the profile of a surface 
along which the mass is strained to the elastic limit must 
be a form of the elastic curve, the directrix of which lies 
at a depth Yt· 

The lowest or basal slide curve is one which intersects 
the horizontal bank at right angles. Examples are worked 
out for this and other cases. 

A complete analogy exists between the form of these 
curves and those whieh the surface of water assumes when 
it rises by capillarity between verti al, parallel glass plates. 

In view of these results the auth r discusses to some ex­
tent the formation of ruptures, t bulging of the canal 
bottom, and the effect upon pres ure of the form of the 
banks. A note on finite strains is laced at the end of the 
paper in order to facilitate skippi g. 
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