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SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1917.

BAKED SHALE AND SLAG FORMED BY THE BURNING OF COAL BEDS.

By G. SHERBURNE ROGERS.

INTRODUCTION.

The baking and reddening of large masses of
strata caused by the burning of coal beds is a
striking feature of the landscape in most of the
great western coal-bearing areas. The general
character and broader effects of the burning
have been described by many writers,! but
the fact that in places enough heat is generated
to fuse and thoroughly recrystallize the over-
lying shale and sandstone has received less
attention. Some of the natural slags thus
formed simulate somewhat abnormal igneous
rocks, but others consist largely of rare and
little known minerals. A wide range in the
mineral composition of such slags is to be ex-
pected, depending on the composition of the
original sediment and the conditions of fusion
and cooling. These products of purely thermal
metamorphism offer a fertile field for petro-
logic investigation.

The writer has observed the effects produced
by the burning of coal beds in several localities
in Montana, particularly along upper Tongue
River in the southern part of the State, in the
district lying southeast of the mouth of Bighorn
River, and in the Little Sheep Mountain coal
field north of Miles City. A number of speci-
mens of the rock formed have been examined
under the microscope, though time has not
been available for a systematic examination.
The writer is greatly indebted to Mr. E. S.
Larsen for assistance in the study of some of
the minerals.

1 Allen, J. A., Metamorphism produced by the burning of lignite beds
in Dakota and Montana territories: Boston Soc. Nat. Hist. Proc., vol.
16, p. 246, 1874. See also Lewis, Meriwether, and Clarke, William, His-
tory of the expedition under the command of Lewis and Clarke, vol. 1,
pp. 180, 189, Philadelphia, 1814; Hayden, F. V., Geological report of the
exploration on the Yellowstone and Missouri rivers, pp. 56-103, 1869;
and Dawson, G. M., Report on the geology and resources of the region
in the vicinity of the forty-ninth parallel, pp. 164-169, Montreal, 1875.

70460°—17

CAUSES OF BURNING.

Most writers on the burning of coal beds have
attempted to explain the mode of their igni-
tion, which they usually ascribe to lightning, to
prairie or forest fires, to the agency of man,
or to spontaneous combustion. All these
agencies have probably been effective in one
place or another.

Lightning has doubtless ignited some beds,
especially those exposed on the higher hills,
but it is apparently inadequate to account for
the burning of beds over great areas. There
are also well-authenticated reports of the igni-
tion of beds by prairie fires,* but it may well
be doubted whether this agency has often
been effective in the sparsely grassed badlands,
where burning is so common. Similarly, the
writer knows of one locality in which a bed of
coal 11 feet thick was ignited by the camp
fires of a round-up outfit, but much of the
burning evidently took place many thousands
of years ago and some of it probably dates back
to Pleistocene time.* Ignition from an ex-
traneous source is perfectly possible and may
be the most plausible explanation in any given
instance, but the fact that burning on the out-
crop is so common as to be actually charac-
teristic of the coal beds over an area greater
than 200,000 square miles indicates a more
widespread mode of origin and one less depen-
dent on special local conditions.

Ever since coal first became widely used as
fuel the possibility of its spontaneous com-
bustion has been recognized. Disastrous fires
have started through spontaneous combustion
in mines, many others at the surface in piles of

2 Allen, J. A., op. cit., p. 261.
3 Idem, p. 258. Also Collier, A. J., and Smith, C. D., The Miles
City coal field, Mont.: U. S. Geol. Survey Bull. 341, p. 45, 1909.

1



2 SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1917.

culm or slack coal, and others in stocks of coal
held in storage or wundergoing shipment,
especially at sea. Because of its economic im-
portance the phenomenon has been carefully
studied by many observers, and although there
is considerable disagreement as to detail the
main determining conditions have been well
outlined. Thus, it is generally recognized
that only coals that contain a moderate to high
proportion of volatile matter are subject to
spontaneous combustion; that the more finely
divided the coal the more liable it is to ignite;
and that a small increment of heat from an
outside source is an important contributing
cause.

Most of the coal in the Western States that
has burned at the outcrop is of lignitic or-sub-
bituminous grade; this coal when exposed to
the air loses moisture and tends to slack or
crumble to fragments. All freshly mined coal
absorbs oxygen and according to Lewes ! may,
if in fairly small fragments, absorb two to
three times its own volume. This absorption
of oxygen takes place at ordinary temperatures
but proceeds more rapidly at higher tempera-
tures, and as the process itself generates some
heat it is self-accelerating. The heat first gen-
erated may be due merely to the compression
of the gas, but a slow oxidation of resins or
unsaturated hydrocarbons in the coal, with the
formation of humic or other acids, probably
soon begins. The elaborate experiments of
Parr and Kressmann? indicate that this reac-
tion assumes positive activity at about 80° C.
With rise in temperature the occluded oxygen
becomes more active, combining with certain
hydrocarbons and converting them to carbon
dioxide and water. According to Parr and
Francis * this reaction begins only when the
coal becomes heated to 120° to 140° C., but it
represents a critical stage in the process of
oxidation, for so much heat is generated that
the temperature thereafter rises rapidly. At a
little over 200° C. autogenous oxidation begins
and at 350 to 450° C. actual ignition takes place.

1 Lewes, V. B., The carbonization of coal, p. 23, London, 1912. See
also Parr, S. W., and Barker, Perry, The occluded gasesin coal: Illinois
Univ. Eng. Exp. Sta. Bull. 32, 1909; White, David, The effect of oxygen
in coal: U, 8. Geol. Survey Bull. 382, pp. 63-71, 1909; and Chamberlin,
R. T., Notes on explosive mine gases and dusts: U. 8. Geol. Survey
Bull. 383, pp. 15, 60, 1909.

2 Parr, 8. W., and Kressmann, F. W., The spontaneous combustion
of coal: Illinois Univ. Eng. Exp. Sta. Bull. 46, pp. 24, 52, 1911.

3 Parr, 8. W., and Francis, C. K., The modification of Illinois coal by
low temperature distillation: Illinois Univ. Eng. Exp. Sta. Bull. 24,
1908.

According to experiments by Fayol,* however,
coal in a state of fine dust ignites at a much
lower temperature, gas coal igniting at 200° C.
and lignite at 150° C.

The oxidation of pyrite or marcasite in the
coal was once considered the chief cause of
spontaneous combustion, but it is now known
that coals practically free from iron sulphides
may spontaneously ignite. Some authorities
therefore hold that the influence of pyrite is
negligible and that at the most it merely
increases the general rise in temperature and by
swelling splits up the coal, thus exposing fresh
surfaces to the action of atmospheric oxygen.’
Parr and Kressmannufind, however, that the
oxidation of pyrite in.the presence of moisture
results in a distinct inerement of heat, and as
this reaction takes place at ordinary tempera-
ture they believe that it is one means by which
the mass is heated to the point at which active
oxidation of the coal itself commences. They
state that the oxidation of one-fifth of the
pyrite in a coal containing 6 per cent generates
sufficient heat to raise the temperature of the
mass 70° C., assuming no loss by radiation.t
As the conductivity of coal is very low com-
pared with that of the surrounding rocks, ac-
cording to figures given by Prestwich,” it seems
probable that loss of heat by radiation is slow
and that small amounts of heat generated
within the coal may well be conserved to pro-
duce far-reaching results.

It is generally recognized that the presence
of moisture favors spontaneous combustion.?
In fact, Dennstedt and Biinz,® as a result of ex-
periments, conclude that ‘‘self-ignition in-
creases in a ratio corresponding to the amount
of moisture [water of constitution] in air-dry
coal.”” Opinions differ, however, as to whether
its action is chiefly mechanical, catalytic, or
chemical. It is also known that inflammable
gases are occluded in coal, and though it may
be doubted that these gases are the direct cause
of spontaneous combustion it is evident that if
the coal is heated by oxidation to the tempera-
ture at which these gases can unite with atmos-

4 Fayol, Henri, Btudes sur I’altération et la combustion spontanée
de 1a houille exposée & 1’air: Soc. ind. min. Bull., 2d ser., vol. 8, pt. 3,
1879.

5 Lewes, V. B., op. cit., pp. 21-22.

¢ Parr, S. W., and Kressmann, F. W., op. cit., p. 34.

7 Boulton, W. 8., Practical coal mining, vol. 2, p. 331, London, 1907.

8 Parr, 8. W., and Kressmann, F. W., op. cit., p. 52.

9 Dennstedt, M., and Biinz, R., Die Gefahren der Steinkohle: Zeitschr.
angew. Chemie, vol. 21, p». 1825-1835, 1908.
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pheric oxygen they may become an important
contributing cause. Penhallow ! believes that
the burning of lignite beds is caused by the spon-
taneous ignition of escaping gases, particularly
sulphureted hydrogen, carbureted hydrogen
(methane %), and phosphureted hydrogen.

Analyses of lignite and coal from Montana and Wyoming.

Made at the Pittsburgh laboratory of the Bureau of Mines; F. M. Stan-
ton and A. C. Fieldner, chemists in charge.]

10898 | 649 | 17711 | 8465 | 14755
SAMPLE AS RECEIVED.
Proximate:
Moisture.......... 42.8 126.8|122.6(29.4]19.8
Volatile matter....| 25.7 | 32.8 | 81.9 | 25.4 | 80.7
Fixed carbon......[ 26.9 | 27.9 | 39.5 | 38.8 | 35.2
P (T 4.6 |12.5| 6.0| 6.4]|14.3
118 7o) 1) (SRS SR O EE ER .24/ .64/ .51 .87 1.50
Ultimate:
Hydrogen......... 7.21) 6.04|... .. |eeooifoaoo..
Carbon......coean-. 86. 21| 42,77« cinclpnesanfunwns
Nitrogen....c..ou.- 0] IR ) [ A
OXYZOR.: 5 oo mens B 08| B7. B3| s woss|rmmenalmmen =
British thermal units..| 6, 110| 7, 340| 8, 811| 7,170| 8, 579
Loss of moisture on air
drying....eeecvue..--{ 35.3 1 20.5 | 8.7 |19.3| 8.5
AIR-DRIED SAMPLE.
Proximate:
Moisture.......... 11.6 | 7.9|19.6 | 12.5 | 12.8
Volatile matter..... 89.7141.3]|83.1|81.4|383.5
Fixed carbon...... 41.5 | 35.1 | 41.1 |-48.1 | 38.5
b, - S . U 7.2115.7 6.2 8.0 15.7
Sulphur ................ .37 .81 .b3| .46] 1.64
Ultimate:
Hydrogen......... B. 0B 4. T8scecssilonmesfoss s
(670 4 0701 ¢ (RO R s B0 071 08: T4 & s mecleasnsalsvns as
Nitrogen........... B | R N |G
Oxygen........... 30.44| 24.28. ... .| feaao..
British thermal units...| 9, 440] 9, 238| 9, 153| 8, 880| 9, 376
LIGNITE OR COAL KNOWN TO BURN ON OUTCROP.
10898. Lignite from Culbertson lignite field, Mont. Red Bank open-cut

mine, sec. 10, T'. 28 N., R. 59 E. Fort Union formation.
Subbituminous coal from Buffalo coal field, Wyo. Mitchell mine,
sec. 26, T. 51 N., R. 82 W. Fort Union formation.
Subbituminous coal from Tullock Creek coal field, Mont.
pectinsec.30, T.1N., R.38 E. - Fort Union formation.
Subbituminous coal from Bull Mountain coal field, Mont. Mec-
Cleary prospect, sec. 26, T. 9 N., R. 30 E. Fort Union forma-
tion.

6469.

17711. Pros-

8465.

COAL NOWHERE BURNED ON OUTCROP.

14755. Subbituminous coal from Tullock Creek coal field, Mont. Pros-

pect 12 miles southeast of Bighorn. Lance formation.

It is evident from the foregoing summary
that both chemical and physical factors enter
into spontaneous combustion. As regards
chemical composition, coals highest in volatile
matter, moisture, and sulphur are most liable
thus to ignite. In the accompanying table the

1 Penhallow, D. P., Tertiary plants of British Columbia: Canada Geol.
Survey Pub. 1013, pp. 148-149, 1908.

chemical character of four typical coals that
have burned extensively on the outcrop is
shown by the first four analyses, and the char-
acter of a coal that has nowhere burned by the
last analysis. A considerable range in com-
position is shown by these analyses, though all
show high moisture and volatile matter but
fairly low sulphur. It will be noted that the
coal that has nowhere burned is much higher
in sulphur than any of the others; whether its
lack of tendency to burn is due to the offsetting
of this factor by the low percentage of mois-
ture and the high ash content is a matter of
conjecture.

The physical factors promoting spontaneous
combustion are a finely divided condition of
the coal, a slight increment of heat from an
outside source, and a sufficient volume of coal
to retard loss of heat by radiation. A pile of
coal exposed to the direct rays of the sun
would thus be liable to become heated and
finally ignite. In general, the outcrop of a
coal bed, even in the arid western coal fields,
weathers down slowly and is more or less
covered by talus, so that the oxidation of the
coal is too slow to generate much heat. Where
a young, rapidly cutting gulch intersects a
coal bed, however, a perpendicular face of coal
may be formed, and as this is undercut by the
stream a considerable mass of finely broken but
fairly fresh coal may accumulate at the base
of the bed. TUnder such conditions oxidation
would be fairly rapid, especially as the normal
temperature of the coal, if exposed to the direct
heat of the sun, would reach 130° F. (55° C.),
or more on summer afternoons.

In the writer’s opinion most of the burning
of western coal beds has been spontaneous and
has originated under conditions similar to those
just described. C. H. Wegemann,” who has
studied particularly the relation of topography
to burning, finds that burning is most prevalent
along rapidly cutting streams and believes
that it is partly a function of the character of
the topography. The writer has observed
beds actually burning at six localities, and in
all of them combustion evidently started in a
gulch on a small, rapidly cutting stream.
Field studies indicate that two other generali-
zations can be made: First, thin beds are less
commonly burned than thick ones, probably

2 Personal communication.
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because piles of coal large enough to retain
self-generated heat can not accumulate along
their outcrop; and second, beds of impure coal
burn less commonly than those of clean coal.

GENERAL EFFECTS OF BURNING ON THE OVER-
LYING STRATA.

The rocks overlying a burned-out coal bed
present widely different appearances, ranging
from reddened and only slightly hardened
shale or sandstone through vesicular glassy
slag to gray medium-grained rock. These
broader differences are due chiefly to the degree
of heat to which the material has been subjected,
and their relations to the coal bed may be
more clearly understood if the process of burn-
ing is briefly considered.

Whatever the cause of ignition, the com-
bustion apparently always starts at the surface
and spreads first along the outcrop. The
presence of the burning bed is disclosed by the
smoke and fumes which rise from it, and by
the heat at the surface of the earth near the
outerop or above the bed, which becomes so
intense that all vegetation is killed. As the
coal burns out the overburden generally caves,
and large fissures may be opened in the surface
of the ground above the bed. During this
stage of the burning the heat is for the most
part dissipated and the overlying strata are
only slightly affected. However, thin red
bands may be formed by the baking of clay
partings in the bed, and as these slump down
they become curiously contorted and form,
with white bands of ash or cinders, a structure
resembling somewhat that of a crumpled schist.
Plate I, B, shows a burning coal bed 11 feet
thick exposed on Custer Creek, near Yellow-
stone River, between Miles City and Terry,
Mont. To the left the bed is slowly burning
but has not perceptibly affected the overlying
sandstone; to the right it is entirely consumed
at the outcrop and the overburden has slumped
down irregularly.

As the burning progresses back from the
outcrop the heat is conserved and tends to act
more strongly on the overlying rocks, until
finally a point is reached where combustion is
smothered by the lack of oxygen. The under-
lying strata are scarcely affected, if at all, and
in many places the coal does not burn entirely
to the base of the bed. Baking and hardening
of the overlying strata doubtless begin a few

feet back from the outcrop, and as the coal
burns out and these beds cave they tend to
break into irregular fragments. Incipient fus-
ion may occur on the edges of these fragments,
which therefore have a tendency to cohere
and thus form a stable rock 30 or 40 per cent
of whose volume is air space. It is chiefly
through the crevices in this rock that oxygen
is supplied to the coal burning farther back.

How far the burning extends back from the
outcrop is a matter on which there is little
positive information. Field studies indicate
that a bed under 20 feet or less of cover may
burn out completely under large areas, and
similarly that all the coal underlying a small
butte or a narrow neck of land may burn out
even though the overburden is 100 feet or more
thick. Bowie! cites an instance in which
the coal burned out to a point almost 500 feet
from the outcrop, as ascertained in the course
of mining the unburned portion of the bed.
According to F. R. Clark,’> development at
Sunnyside, Utah, has shown that burning may
extend even farther back under high spurs
jutting out from the main ridge. In general,
however, where there is a cover of more than
50 or 100 feet, and where the outcrop of the
bed is fairly straight, it seems probable that
burning does not extend more than 200 or 300
feet back from the outcrop. ; ]

Although the rocks within a few feet of the
top of the burning bed may be partly fused,
those beyond are in general merely baked and
still further up are only slightly reddened.
The great bulk of the rock retains itsoriginal
texture, -and though much of the shale is vitri-
fied or hardened the sandy strata may be only
slightly affected. The most striking effect is
the reddening of the rock, which is due to the
action of moderate heat under conditions fav-
orable to simple oxidation and which there-
fore implies no very extensive chemical
changes.

Though fusion is for the most part confined
to the rocks directly above the burning bed,
it may locally extend many feet above. The
gases formed during combustion of the coal es- -
cape chiefly through fissures in the overlying
strata and apparently are hot enough to fuse
the rock thoroughly along their paths of escape.

1 Bowie, Alexander, The burning of coal bedsin place: Am. Inst. Min.
Eng. Trans., vol. 48, p. 181, 1915.
2 Personal communication.
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A. A CHIMNEY OR CORE OF HARD FUSED ROCK PROJECTING
THROUGH PARTLY BAKED STRATA NEAR MILES CITY.

Photograph by C. D. Smith.

T

B. COAL BED 11 FEET THICK ON CUSTER CREEK NEAR YELLOWSTONE RIVER
BETWEEN MILES CITY AND TERRY.

To the left the bed is slowly burning but has not yet perceptibly affected the overlying strata; to the
right it is entirely consumed, leaving only contorted white bands of ash and darker bands formed
by the baking of clay partings.

EFFECTS OF THE BURNING OF COAL BEDS IN EASTERN MONTANA,
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As the melting point of silica is above 1,600° C.,
however, it is highly improbable that this ac-
tion is accomplished by the spent gases, the
products of combustion, alone. Itisreasonable
to suppose that the coal itself becomes highly
heated, as well as the overlying rocks, and that
considerable distillation goes on a short dis-
tance back of the burning face. According to
Bowie,! in the King mine, on North Fork of
Gunnison River, Colo.,

the coal adjacent to the burned-out area seemed to have
its cohesive quality entirely destroyed. It was soft and
very easily mined but could not be utilized even for steam
fuel, as the volatile constituents of the coal seemed to

have been expelled by the heat. We had a zone of sev-
eral hundred feet of this kind of coal.

It is probable that the gases arising through
fissures in the overlying rocks contain a consid-
erable proportion of combustible matter, which
explodes or burns on reaching a supply of
oxygen, and that the intense heat necessary to
fuse rock 75 feet or more above the bed is thus
transmitted.

Apparently small fissures may control the
paths of the gases and thus start the formation
of well-defined chimneys. As the material
forming the immediate walls of the fissures
becomes molten it tends to sink and clog the
passage, so that the gases may be slightly
diverted and thus be caused to act on_a greater
volume of material. A similar effect is pro-
duced when a fissured zone rather than a single
fissure controls the escape of the gases. In this
case, however, the heat is less concentrated and
may not be sufficient to melt more than the
edges of the interfissural blocks. A single fis-
sure may lead to the formation of a core of
molten material extending many feet up
through partly baked rock, whereas a fissured
zone apparently produces a larger and less
sharply defined core of partly fused fragments.
On cooling, the fused or partly fused rock co-
heres and forms a roughly cylindrical mass of
hard “clinker.”” Chimney-shaped masses of
this kind resist erosion to a greater degree than
the partly baked strata around them and
weather to the curious pinnacles that commonly
surmount clinker bluffs or buttes (Pl. I, 4).

Aside from the strictly thermal effects of
the heated gases, they also play an important
part as reducing agents. As the combustion
of the coal takes place in a scanty supply of

1 Bowie, Alexander, op. cit., p. 182.

oxygen, a considerable proportion of carbon
monoxide is probably formed, and if the rock
is ferruginous the reducing action may be
very striking. Directly above the burning
bed and along the paths of the escaping gases
the iron is partly or wholly reduced and gray,
green, yellow, or black slag is formed. When
the reduction is partial magnetite may be pro-
duced, in some places in sufficient quantity
to affect the compass needle. When the rock
is thoroughly fused under reducing conditions,
however, a great deal of the ferrous iron formed
is taken up in the formation of new minerals
and a light-colored slag results. A reducing
atmosphere may also be developed in beds of
carbonaceous shale that are highly heated by
the burning coal bed, but most of the rock out-
side of the chimneys is merely baked under
oxidizing conditions to the characteristic red-
dish color.

PETROLOGIC CHARACTER OF THE ROCKS
FORMED.

CHARACTER OF THE ORIGINAL SEDIMENTARY
ROCKS.

Although the degree of heat and the rapidity
of cooling govern to a large extent the general
character of the materials formed, the funda-
mental factor is of course the composition of the
original rock. The coal-bearing formations of
the Western States are made up largely of shale
and sandstone. The shale may be yellow,
bluish or greenish gray, or brown and carbona-
ceous; less commonly it is reddish. The sand-
stone, which is usually gray, yellow, or brown,
is generally more or less arkosic and may carry
25 per cent or more of feldspar, hornblende or
pyroxene, and mica. Under the microscope
the rock from some localities or formations is
seen to be made up of predominantly angular
grains, and the feldspars and ferromagnesian
minerals are surprisingly fresh. In other
specimens, however, the grains are more
rounded, the feldspars kaolinized, and the
ferromagnesian minerals altered to chlorite or
serpentine. Accessory minerals,such as garnet,
zircon, and magnetite, are present in most of
the sandstone in minor quantity, and there is
usually much fine clayey interstitial material,
commonly iron stained. Some of the rocks
examined, notably those of the Lebo shale
member of the Fort Union formation (Ter-
tiary), are evidently derived from fairly basic
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igneous rocks and contain as much as 50 per
cent of chloritic material. Calcite oceurs in
many specimens, and in some localities the

e W T R 5. though beds
ocks are distinetly calcareous, thoug Y . . 4
rocks: = ‘e than 20 per cent of lime carbon- presence of hematite in the red areas und.mug3
i e e A e netite in the green and black. The rock is not

‘smooth like ordinary baked shale but is rough
and very finely vesicular like some kinds of
brick. Ordinarily the grain is so fine that
little can be made out under the microscope,
' though occasionally small areas .of 'umorphm.ls
glass may be seen. Some varieties contain
small grains of clayey material, reddish in the
center and surrounded by a gray or black zone.

surface on cooling, closely resembling L']m.t char-
acteristic of certain lavas. The rock is ll'l‘(‘.g}h
larly banded red and green or black, and thin
sccﬁons across the flow lines usually reveal the

ate are probably uncommon. ;

Although unfortunately only ge.nernhzed
data on the composition of the S(‘(lll‘flcllhll‘)"
rocks are available, the foregoing notes are suf- |
ficient to indicate that the rocks differ widely
in mineral and chemical character. Moreover,
variation in composition may be abrupt; con-
tiguous beds may be very different in character
and in many localities the same bed differs more

or less from point to point. GLASSY SLAG.
BAKED ROCK. Bodies of glassy slag large enough to be ob-

servable in the hand specimen apparently oceur
only near the top of the burning bed or in the
chimneys.  Entirely glassy slag is not common,
for where the heat is sufficient to cause com-
: : ; olete fusion cooling is generally slow enough
may be mottled in red and bright yellow, green, A Plete g 18 g MY ‘ éwf
E AR in | to allow more or less recrystallization. Most o
or black. The mottling is more common in | - : ‘
baked shale; the sandstone is generally altered  the true glass seems to oceur as small veinlots
shale; the sandstone is Ta re ; 3o g oy
ta “ ¢ Gt sk fed and & g)nl\ moderately | Penetrating crevices in the baked or vitrified
rm pinkish s only moderately , :
10 ndum (l) ! lp“ & (i S b o il it 'rock. The rock around the chimneys is gener-
rdened.  In general only the edges of the :
s ks 3 S (ally fractured or brecciated, and sudden set-
grains are fused and in many specimens no al- |

torati be detésted Bndar hasienscoe. | tling or caving apparently forces some of the
ation can be detected under the microscope. & P re 3
oo g I ' molten rock out into the crevices of this brec-

 clated mass, where it is more rapidly cooled.
' Insome places, however, conditions have led to
‘the sudden cooling of larger masses of the
' molten slag and good-sized specimens may oc-
casionally be found. Some of them resemble
|obsidian very closely, being perfectly glassy
and in spots highly vesicular. All of the speci-
mens seen by the writer are black, but translu-
cent in thin splinters.
In thin section this material appears as an
amorphous glass, generally containing a few
minute grains of a black mineral that is pre-
' sumably magnetite. One specimen is charac-
terized by a kind of spherulitic structure, as
'shown in the accompanying photomicrograph
| (PL II, 4).  Another shows a few clusters of
VITRIFIED SHALE.  acicular crystals too small to be identified, thus
In many localities the shale near the top of | illustrating the transition to the recrystallized
the burning bed or near the chimneys has been | Phases described below. ;
re.ndcr(jd pasty or molten and .has flowed RECRYSTALLIZED SLAG,
slightly. In some places the material has been -
rendered sufficiently fluid to develop a ropy| The rocks that have been thoroughly fused
1Zirkel, Ferdinand, Lehrbuch der Petrographie, Band 3, pp. 75-76 and COOled W’ltih S.'ufﬁc'lent Slowness to &uow
1894. References are given to earlier accounts, dealing mostly with oc- comp]et,e l‘ecrystalhzauon are of considerable
currences in European coal fields, petrographic interest, though constituting a

Shale or sandstone more or less baked con-
stitutes by far the largest part of the meta-
morphosed strata. Although the prevailing
colors are pink, red, or purplish red, the rocks

The shales apparently respond more readily
to the heat, losing their original texture and
becoming hard and massive. A splintery or
conchoidal fracture is not uncommon, even
where the rock retains clear impressions of fos-
sil leaves or invertebrates. Many specimens
resemble jasper, their appearance suggesting
the terms porzellanit and porzellanjaspis, under
which this material is deseribed by Zirkel.:
The mottled rock is probably produced by a
higher temperature, though its colors are due

“primarily to irregular oxidation of the iron.
As disclosed by the microscope the red color is
due to the formation of minute scales of hema-
tite, whereas the black and green areas contain
abundant small grains of magnetite.
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minor facies of the metamorphic products.
The recrystallized material is generally, if not
invariably, confined to the chimneys. As a
rule it is gray to dark greenish gray, and except
for its vesicularity is very similar in appearance
to a fairly basic igneous rock. The grain is gen-
erally fine, though in one specimen a crystal a
tenth of an inch in diameter resembling pyrox-
ene was observed. All gradations between
holocrystalline material and glassy slag may be
found, and in most of the specimens examined
a small amount of interstitial glass occurs. In
one slide remnants of the original quartz grains
appear together with amorphous glass and
small, slender newly formed crystals.

A specimen from Tongue River near the
Wyoming-Montana line (T. 9. S., R. 40 E.) was
studied under the microscope and found to con-
sist chiefly of diopside and basic plagioclase.
The mineral called diopside has the following
optical characters: Biaxial positive; axial angle
-about 60°; dispersion weak with red greater
than violet; extinction angle, 36°; and in-
dices of refraction about 1.675 and 1.702. The
plagioclase has a maximum extinction angle of
38° in microlites and refractive indices of 1.57
and 1.58, which indicate a basic labradorite or
bytownite of the approximate composition
Ab,An,. Asshownin the accompanying photo-
micrograph (Pl. II, B), the diopside crystals
have a tendency to form radiating groups, and
the plagioclase occurs in well-formed laths
and microlites. Some garnet, apparently al-
mandite, was observed, and magnetite in smal]
grains is fairly abundant. As near as can be
ascertained the rock from which this material
was derived is a sandy shale, consisting largely
of kaolin, feldspar, and altered ferromagnesian
minerals, together with subordinate quartz and
some calcite.

A specimen collected near the head of
Sarpy Creek (T. 1 N., R. 37 E.) resembles
the specimen from Tongue River megascopi-
cally, but under the microscope appears to be
a very different rock. A larger number of
minerals are present and the characters of the
most important of these do not correspond
with those of any of the ordinary rock-form-
ing minerals. The rock consists largely of
greenish phenocrysts—at first sight suggesting
epidote—set in a mosaic of colorless grains
resembling melilite. The optical characters
of the green mineral are as follows: Biaxial

(ol
{

positive; - axial angle nearly 90°; dispersion
strong, and red greater than violet; extinc-
tion angle 23°-25°; and indices of refraction
about 1.655 and 1.675. The mineral is pleo-
chroic, deep yellow to apple-green. These
properties indicate that it is not epidote and
suggest that it may be clinoenstatite. The
colorless mineral is biaxial negative in char-
acter, has a large axial angle, and has strong
dispersion, red being less than violet. Its
birefringence is about that of quartz, and its
refractive indices are about 1.615 and 1.625.
These properties suggest andalusite or some
form of wollastonite, though the mineral
does not resemble either of these in habit.
Two other minerals are present that could
not be identified. One is pleochroic, yellow
to colorless; it is uniaxial negative in char-
acter and its refractive indices are about 1.62
and 1.64. The other, which is not abundant,
is isotropic, colorless, and lacks cleavage; its
index of refraction is about 1.61. In addition
the rock contains a basic labradorite, occurring
in small but well-twinned laths, magnetite,
and a few grains of garnet, probably almandite.
Several rounded xenoliths of shale surrounded
by contact rims of the yellow and white
minerals already described were observed.
(See PL. II1.)

A specimen collected in T. 1 N., R. 36 E,,
not far from the one just described, appears
to have been derived from a more highly
aluminousshale. Itisonly partly recrystallized
and consists largely of glass, but acicular
crystals of sillimanite (fibrolite) are abundant,
and several grains of what seem to be cordierite
were observed. Spinel may be present but
could not be positively identified. Close to
the chimney in which this mineral occurs a
mass of specular hematite about a foot in
diameter was found. The hematite appears
to be closely associated with the chimney,
although it lay rather in the partly baked
shale through which the chimney projects.
This remarkable occurrence is discussed on
pages 9-10.

All the rocks described appear to be irregu-
lar in composition, and different portions of
the same specimen may contain different
minerals. It is probable that a detailed
study would reveal many more species, and
some have indeed been reported by other
observers. In slags from eastern Wyoming
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Bastin ! finds oligoclase, pyroxene, and cordi-
erite, in addition to magnetite and hematite.
He describes a vein of slag about one-tenth of
an inch in diameter penetrating red argillite
as follows:

In passing from the reddish argillite toward the center
of the vein the contact zone shows a gradual decrease
in the normal shale constituents and a development, in
increasing amount and coarseness, of purplish-blue
pleochroic cordierite. Next the coarser part of the
vein this mineral is present to the exclusion of all others.
In this contact zone the red iron oxide of the argillite
has been wholly reduced to magnetite. The central
portion of the vein is a somewhat vesicular, holocrystalline
mass, consisting of abundant magnetite in irregular
masses, some hematite, usually lining the vesicles and
following fractures, and abundant cordierite, feldspar,
and pyroxene.

Hibsch 2 has described similar material
from the Mittelgebirges (northern Bohemia)
under the name Kohlenbrandgesteine. In the
recrystallized specimens he finds magnetite,
cordierite, epidote in well-formed crystals,
plagioclase, tridymite, and abundant dark
grains that may belong to the spinel group.

CHEMICAL CHANGES.

The most widespread chemical change pro-
duced in the overlying strata by burning coal
beds is dehydration under conditions favor-
able to oxidation. This change affects chiefly
the limonite and the siderite or other ferrous
iron compounds, which are converted into
hematite, with consequent reddening of the
rock. Some of the hydrous silicates may be
partly or wholly dehydrated without fusion
under some conditions, but if this change
takes place it is difficult to detect. In one
specimen, however, the writer observed a large
fresh grain of green augite in a sandy shale
that had been baked but not fused. The
augite could not be a product of secondary
crystallization, and all the other constituents
of the rock were considerably altered. This
suggests that it may have been re-formed by
the dehydration of alteration products, such as
chlorite or serpentine, though the writer is
aware that such a process is not well supported
by laboratory results.®

1 Bastin, E. 8., Note on baked clays and natural slags in eastern
Wyoming: Jour. Geology, vol. 13, pp. 408412, 1905.

2 Hibsch, J. E., Geologische Karte des bohmischen Mittelgebirges:
Min. pet. Mitt., vol. 27, pp. 35-40, 1908.

3 Clarke, F. W., and Schneider, E. A., Experiments upon the con-
stitution of certain micas and chlorites: U. S. Geol. Survey Bull. 113,
pp. 27-33, 1893.

Within the chimneys and directly above the
burning bed, where the rocks are fused under
conditions favorable to reduction, more ex-
tensive changes take place. The conditions
are, of course, very different from those under
which igneous rocks are formed, and are anal-
ogous rather to those in the slag furnace.
The pressure is low, mineralizing . agents are
absent, and much of the water that the rocks
contained is doubtless quickly driven off.
The material involved, however, is different
from that which enters into the composition
of most furnace slags, being generally argil-
laceous rather than calcareous, and many of
the minerals formed are therefore probably
unlike those common in artificial slags. In
this connection the classic researches of Vogt
and Morozewicz, on prepared slags of known
composition, are of interest.

It is impracticable to correlate many pieces
of slag with the unaltered rock from which
they were derived, owing to the irregularity
in composition of the strata. Furthermore,
unless fusion is very complete and the molten
mass is well mixed its mineral composition
may also be irregular. However, the diopside-
plagioclase rock described above is evidently
derived from a sandy shale, and after micro-
scopic study a sample of this shale was analyzed
by the writer in the hope that the analysis as
recast might explain the mineral character of
the slag. The composition of the shale is
shown by analysis 1 in the accompanying table.

The sample analyzed had been partly baked,
which explains the ferric condition of nearly all
the iron. The analysis accounts in a general
way for the mineral composition of the slag,
indicating rather high iron, lime, and magnesia.
According to Morozewicz,* diopside or heden-
bergite is formed in a slag in which the molec-
ular ratio of Fe+Mg:Ca is less than 3:1.
This analysis shows a ratio of only 94 to 89,
or if all the iron is calculated as ferrous, of
140 : 89, and pyroxene of the diopside-heden-
bergite type is therefore to be expected.
According to the same investigator,® augite is
generally formed when the melt contains
more than 50 per cent of silica, and though no
augite was observed in this s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>