
NEW GRAPHIC METlfOD FOR DETERMINING THE DEPTH AND THICK~ 
NESS OF STRATA AND THE PROJECTION OF DIP. 

By HAROLD s. pALMER. 

INTRODUCTION. (NoTE.·--Diagram I may be used not only 
Geologists, b9th in the field and in the office, for the problem above stated but also to 

frequently encounter trigonometric problems obtain the difference in elevation between two 
the solution of which, though si1nple enough, points by omitting E and letting D equal the 
is somewhat laborious by the use of trigono- difference in elevation, H the horizontal dis­
metric and l~garithmic tables. Charts, tables, tance, and A the vertical angle.) · 
and diagrams of various types for facilitating II. To find the thickness of a stratum, given 
the computations have been published, and the dip of the stratum, the horizontal distance 
a new method may seem to be a superfluous across its outcrop at right angles to the strike, 
addition to the literature. llowever, it is felt and the difference in elevation of the upper 
that the simplicity and accuracy of diagrams and lower boundaries of the stratum. There 

FIGURE 15.-Diagram showing three cases in computing depth. 

suph as are presented in this paper warrant the 
addition. The alinement diagram. is used to a 
very considerable extent by engineers, espe­
cially mechanical engineers. The principle of 
the alinement diagram is explained herein, 
but rigorous demonstration is not attempted. 

Alinement diagrams are given for the follow­
ing problems, which are numbered to agree 
with the numbering of the diagrams. The 
charts published herewith are suitable for use. 

I. To find the depth to a stratum, given the 
dip of the stratum, the horizontal distance 
from the outcrop, and the difference in eleva­
tion between the outcrop and the point at 
which the depth is desired. (See fig. 15.) 
The formula is 

D=HtanA ± E ________ ____ (1 

in which D =depth to stratum, H =horizontal 
distance frorn the outcrop, A= dip, E = differ­
ence in elevation. 

are three cases, ~pending Otn the relation of the 
dip of the beds to the slope of the ground. 
(See fig. 16, a, b, and c.) 

Case 1, where the ground is level. By in­
spection of figure 16, a, it is seen that the 
fornmla is 

T= H sin A ____________ (2) 

in which T = thickness, H = horizontal distance 
from outcrop, and A= dip. 

Case 2, where the ground slopes opposite to 
the dip. In figure 16, b, 

but 

Now 

or, ·as 

T=m-+-l 

m=H sin A 

l=E cos A 

cos X ·= sin (90°- X) 

Z=E sin (90°-A) 
123 
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Therefo.re 

T = H sin A+ E sin (90° -A) _____ (3) 

in which T, H, and A have the same ~alues as 
before, and E is the difference in elevation. 

Case 3, where the ground slopes with the 
dip. In figure 16, c, T=m- l_; making .the same 
substitutions as in case 2, we find 

T=H sin A- E sin (90° -A) _____ (4) 

in which T, H, A; and E have the same values 
as before. 

H 

~ / T 

a 

c 

plane of a supposed structure section, is de­
sired. C is the desired projection of A. B is 
the angle between the plane of the section and 
the strike of the beds~ and angle PFS is a 
tight angle. The plane PFS is horizontal 
and the lines PQ, FG, and SR are normal to it 
and of equal length, so that the triangle QGR 
is also horizontal and is equal to PFS. 

Now, 
FS=PS sin B 

FS=FG cot A 

PS=PQ cot C 

Therefore 

FG cot A=PQ cot C sin B 
but · 

FG=PQ 
so 

cot A=cot C sin B · 

and, as the tangent is the re­
ciprocal of the cotangent, 

1 1 . B 
tan A= tan C sin 

tan C = tan A sin B ___ ( 5) 

FIGURE 16.-Diagram showing three cases in computing thickness. 

in which C =dip of the projected 
angle, A = dip of the bed, B = 
angle between strike and pl~ne 
of section. 

The above formula is strictly true only where 
the dip of the beds is greater than the slope of 
the ground. (See fig. 16, d.) Where the 
dip is less than the slope the formula becomes 

T=E sin (90° -A) ~H sin A _____ (4a) 

The difference is algebraic and not arithmetic, 
so that the formula is practically workable for 
either subcase. 

III. Projection of dips-that is, to find the 
slope of the trace of an inclined plane upon a 
vertical plane oblique to the strike. Consider 
figure 17, a, which is a plan or map; at A is. an 
inclined plane the strike and dip of which are 
shown in the conventional way, and along 
S-P is a vertical plane up~n which this dip is to 
be projected. B is the angle between the 
strike and the section plane. In figure 17, b, 
A is a dip whose projection on SPQR, the 

USE OF THE ALINEMENT DIAGRAMS. 

The alinement diagram is worked in an 
extremely simple way. The points on the 
outer scales representing the given quantities 
are joined by a line, and the unknown q uan­
tity, or result, is read at the intersection with 
the middle scale. Interpolation between the 
values marked on the scales is effected just as 
on a slide rule. · It is suggested that the edge 
of a draftsman's transparent triangle or a piece 
of slender black thread be used for projecting 
the cross line. · 

USE OF THE DEPTH DIAG~AM. 

In using the depth diagram (Pl. XIV and 
problem I), find the point on the left-hand scale 
that represents the distance from the outcrop 
to the point at which the depth is desired, and 
join it to the point on the right-hand scale that 
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represents the dip of the beds. At the inter­
section of the line determined by these points 
with the middle scale the depth may be read. 
The dotted line on Plate XIV shows the solu­
tion when the distance is 600 feet and the dip 
20°. The depth to the stratum is found to be 
2.20 feet. 

The above rule holds only if the surface is 
level. If the point at which the depth is to be 
determined is higher than the outcrop-, the 
difference in their elevation is added to the 
depth as read by the above-described method. 
If the outcrop is the higher of the two points, 
the difference of elevation is sub-
tracted from the reading. 

The diagram may be used for 
the converse problem, namely, to 
find the dip of the bed when the 
depth and distance from the out­
crop are given. In this case the 
given quantities are set on the 
middle and left scale, and the line 
joining them is produced till it 
cuts the right scale, at which the 
dip is read. Another converse 
problem arises when the distance 
from the outcrop is unknown but 
the dip and depth to the stratum 

the point on the left scale that represents the 
difference in elevation of the higher and lower 
boundaries of the outcrop, and at the inter­
section of the connecting line with the middle 
scale read the correction. The correction is 
added or subt racted as directed above. 

In Plate XV the broken line shows the ~t 
step in solving the problem when the hori­
zontal width of the outcrop is 600 feet and the 
dip is 20°. The thickness is read on the middle 
scale as 206 feet. The dashed line shows the 
correction to be introduced if the difference in 
elevation between the two edges of the out-

are known. In this case known 
points on the right and middle 

FIGURE 17.-Diagram for derivation of formula for projected dip. 

scale are joined by a line the extension of 
which gives the result at its· intersection with 
the left scale. 

USE OF THE THICKNESS DIAGRAM. 

In using the thickness diagram (Pl. X V and 
problem II), find the point on the left scale 
that represents the width of. the outcrop and 
join it to the point on the right scale that 
represents the dip of the beds. - At the inter­
section of the line determined by these points 
with the middle scale the thickness may be 
read. 

The above rule holds only if the surface is 
level. A correction must be added if the 
ground surface slopes in the opposite direction 
to the dip, and the same correction must be 
subtracted if the surface slope and the dip· are 
in the same direction. This is the correction 
E sin (90° -A) in formulas (3) and (4). Sub­
tract the dip from 90 ° and find the corre­
sponding point on the right scale. Join it to 

28288°-19-9 

crop is 50 feet. As there is no 50-foot gradua­
tion on the left scale, the decimal point is 
shifted to the right and the 500-foot gradua­
tion is joined by a line to the 70 ° mark on the 
left scale (90°-20°=70°). The reading is 470 
feet, but the decimal point must be shifted 
back, so the true correction is 4.7 feet. Then 
if the bed dips "into the hill" the thickness is 
206 + 47 = 253 feet; if it dips "with the hill" 
the thickness is 206-4 7 = 159 feet. 

Like the depth diagram, the thickness dia­
gram has converse uses, but they can be applied 
only when the ground surface is level. Thus 
if the width of the outcrop and thickness of the 
bed are known the dip can be computed, or if 
the dip and thickness are known the width of 
outcrop can be computed. 

USE OF THE PROJECTION DIAGRAM. 

In using the projection diagram (Pl. XVI 
and problem III) find the point on the left 
scale that represents the dip and the point on 
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the right scale that represents the angle be­
tween the strike and the plane upon which the 
dip is to be projected. Join these points by a 
line, and at its intersection with the middle 
scale read the projected dip. As this problem 
involves only one case there are no corrections 
to be added or subtracted. 

In Plate XVI the broken line shows the solu­
tion of the problem of projecting a dip of 43° 
upon a plane at an angle of 35 ° to the strike. 
The result, 28°, is read on the middle scale. 

As with the other diagrams, the converse 
problems may be solved. Thus, if the trace of 
a bed along a vertical plane and the angle be­
tween the strike and the vertical plane are set 
on the middle and right scales, respectively, 

10 

------

0 

good for only one formula, whereas the slide 
rule is applicable to many formulas. 

Consider figure 18, a, in which ab, cd, and ef 
are parallel lines cut by two secants, ace and 
bdf From e and f drop two line~, eg and hj, 
perpendicular to · ab. By inspection of the 
diagram it is seen that 

cd = Y2 ( ab + ef) 

This equation is equivalent to saying that 
the space cut off on the middle line is equal to 
half the sum of the spaces cut on the outer 
lines. 

Now, if, as in figure 18, b, the outer lines are 
graduated evenly with equal divisions and the 
middle line is graduated with divisions half as 
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FIGURE 18.-Diagram showing three stages in derivation of principle of the ~linement diagram. 

the dip of the plane may be read on the left 
scale. · Again, if the dip of a bed and the slope 
of its trace on a vertical plane are known, and 
these points are set on the left and middle 
scales, respectively, the angle between the 
strike and the vertical plane may be read on 
the tight scale. 

PRINCIPLE OF THE ALINEMENT DIAGRAM. 

The alinement diagram is a device by means 
of which certain arithmetic processes (addi­
tion, subtraction, multiplication, division, invo­
lutiqp., and evolution). may be mechanically 
or graphically performed. It is similar in prin­
ciple to the slide rule in that by means of it 
distances proportional to numbers . or to log a-

. rithms . are mechanically added; subtracted, 
multiplied, or divided, but this work is done by 
a different mechanical process. It differs fur­
ther from the slide rule in. that each diagram is 

great, addition can be graphically performed. 
The bases of the three scales are put on the 
same level for convenience only. The secant 
line is taken so as to cut off six divisions on 
the left scale and eight on the right scale. It 
must, perforce, cut 14 divisions on the middle 
scale, and the ·addition of 6 and 8 is graphically 
accomplished. 

It will be remembered that logarithms are 
essentially exponents (to the base 10 in the 
common system), and that multiplication is 
accomplished by adding the logarithms. This 
is by the algebraic law 

xmxn = x<m+n)---- - ~- ----- - ( 6) 

wh~ch may be verbally stated as follows: The 
multiplication of powers of the same quantity 
is effected by using the sum ·of the exponents 
as the exponent for the product. 

Now, if the markings of the scales are not 
equidistant as in figurel8, b,"but are laid off as 
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in figure 18, c, so that the distances from the 
base are proportiJnal to the logarithms of 
numbers, we can in effect add logarithms. 
But this is equiyalent to multiplying the 
numbers. -. In the figure the multiplication of 
4 and 5 is shown, the result being 20. In 
figure 18, c, the dli.stance on the outer scales 
proportional to a logarithmic difference equal 
to 1 is . 2 inches; olfl the middle scale it is half 
as great, or 1 inch.l 

The scales may be graduated in proportion 
to logarithms of tf·igonometric or other func­
tions as well as in proportion to logarithms of 
numbers. It is therefore possible to manipu­
late a variety of factors. 

Sometimes it is desirable to compress a scale, 
as for example a log. sin. scale in which the divi­
sions between 1° and 20° come relatively far 
apart. In the charrs here presented (Pls. XIV­
XVI) the scales for logarithms of numbers were 
drawn with a modulus 1 of 10 inches. A log. 
sin. scale with a modulus of 10 inches would 
have to be 17.5 inbhes long in order to range 
from 1° to 90°. 1log. tan. scale would have 
to be 35.2 inches lqng to range from 1° to 89°. 
When the moduli of the outer scales are not 
equal, the modulus of the middle scale is deter­
mined by the f<;>llo'fing formula, in which M3 = 
modulus of middle lscale, M1 =modulus of right 
scale, and M2 = moci:lu lus of left scale: 

At the same time, the middle scale must be 
shifted toward thJ

1
t outer scale which has the 

smaller modulus. The position of the middle 
scale is determined by the following equation, 
in which M1 and *2 have the same values as 
before, D 1 =distance from middle scale to right 
scale, and D2 =distance from middle scale to 
left scale. 

modulus t~at any two lines which intersect on 
one of th outer scales and cut off a distance 
on the mi dJe s.cale equal to its modulus wiJl 
also cut o a distance on the third scale equal 
to its mo ulus. 

Let M11 2 , and M3 be the moduli and D1 and 
D2 the di t ances of the outer scales from the 
middle se les. Assume the lettering as indi­
cated. 

B 

E 

A, G, ,.F' r ----:D2--- --~---~n,-- --?>j 

FIGURE 19.-Dr·agram for derivatjon of the interrelation of M1, M2, Ma, 
D1, and D2. 

Then i1 the triangles ACG and AEF 

:M3 J\1:1 
D2 =n1 +Dz 

and 
M3 (D1 +D2 ) =M1D2 

Si1nilar y in the triangles FCG and FBA 

Therefore 

and 

Ma Mz 
D1 D1 +D2 

M3 (D1 +D2) =M2D1 

M2D1 =MlD2 

D1 M1 
D2=M2 (q. e. d.) 

Taking this proportion by composition and 
transposi g, we have ' 

I g 1
= ~1 

- - - - - - - - - - - - - - - ( 8) M1 D 1 
2 2 

M1 +M~=D1 +D2 
The principles underlying this and . the last 

equation may be deduced from figure 19. The 
principles of the diagram require that the mid­
dle scale must be so placed and have such a 

1 The term "modulus" is used to mean the length on a scale propor­
tional to a unit difference of logarithms. For example, the outer scales 
in figure 18 are said to have~ modulus of 2 inches because the distance 
from the point representing 1 to the point representing 10 is 2 inches. 
The logarithm of 1 is 0.000 and the logarithm of 10 is 1.000, and the differ­
ence between these logarithms is unity. 

Now, in t e triangles FOG and FBA 

M3 Dt 
Mz Dl +D2 

Substitut · g from the prevwus equation, we 
have 
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and solving for M3, we have 

M = MtMz 
a Mt +M2 (q. e. d.) 

The length of any scale may be determined 
by the following equation: 

L=M (log F
1
-log F

2
) ________ (9) 

in which L =the length of the scale, M =its 
modulus, and F 1 and F 2 =the maximum and 
minimum values of the variable to be repre­
sented on the scale. 

This may be explained by an example. 
Suppose it is desired to fit a log. tan. scale 
into a space about 12 inches long. Let F 2 = 
tan 1°, and F 1 =tan 89°. Then 

log F2 =log tan 1°=8.2419 

log F1 =log tan 89° = 11.7581 
then 

log F1 -log F2 = 11.7581-8.2419 =3.5162 

and 

or 
L=M 3.5162 

L 
1\{=3.5162 

Substitute 12 for L: 

1\{=12--;.:-3.5162=3.41 + 

As an engineer's scale is used in drafting the 
scales and can be conveniently used only for 
:.noduli of 1, 1%, 2, 2.5, 373, or 5 inches or 
these lengths multi:Wied by 10, we choose a 

/ 

modulus of 3 73 inches, which is nearest to 
the inconvenient irrational decimal 3.41 +. 
Substitute 373 for M and we find L=373 X 

3.5162 = 11.72 inches. 

ACCURACY AND ADVANTAGES. 

The point may be raised that the calcula­
tions made by these charts. are not accurate, 
and in the strictest sense this is undoubtedly 
true. But there are two facts that should be 
borne in mind: (1) Measurements made by 

pacing or by a hand compass or clinometer are 
not accurate; (2) the surfaces with which the 
geologist deals are not true plan_es. Measure­
ments of angles are seldom accurate within 1°, 
which is approximately equivalent to an error 
of 1 per cent, and pacing under the ~ost fav­
orable conditions can not be trusted closer 
than to 1 per cent. The undulations of fault 
or bedding planes \vill usually introduce an 
error of the same or greater magnitude. There­
fore it is unsound logic to demand that the 
error in the calculations based upon such 
measurements be less than 1 per cent. If the 
chart is used with reasonable care, the error 
is somewhat less than 1 per cent and is there­
fore negligible. Moreover, the use of the chart 
gives less opportunity for the introduction of 
gross errors, such as come from a mistake in 
multiplication or in the addition of logarithms. 

The charts, therefore, have the following 
advantages over the other methods for solving 
these equations: 

1. They are more speedy. As a test of the 
speed of this method the writer used the first 
draft of the three charts for a series of test 
problems. The time required to solve the 
problems by means of the charts and by 
logarithms in the ordinary way was taken 
with a stop watch. It was found that the 
time with the charts ranged from one-sixth to 
one-fourth of that required by the logarithmic 
method. The test was fair to the logarithms, 
as the writer is reasonably proficient in their 
use. 

2. The chances of gross errors are eliminated. 
In the test mentioned in the preceding para­
graph the correctness of the answers was 
checked, and a mean error of about 0.2 per 
cent was found, with a maximum of 0.7 per 
cent. One gross error of about 40 per cent 
was made in one of the logarithmic solutions 
and was first dete'cted by the check given by 
the chart solution. 

3. It is unnecessary to keep the formula in 
mind, as it is incorporated in the construction 
of the chart. 
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