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FLOW RESISTANCE IN SINUOUS OR IRREGULAR CHANNELS

By LUNA B. LEOPOLD, RALPH A. BAGNOLD, M. GORDON WOLMAN, and LUCIEN M. BRUSH, JR.

ABSTRACT

The resistance to fully developed turbulent flow at constant 
depth in an open channel increases as the square of the mean 
velocity as long as the boundary conditions remain completely 
unchanged. The presence of the free water surface allows the 
possibility of departure from the relationship of resistance to the 
square of the velocity. Experimental evidence is given, which 
is in quantitative agreement with fluid dynamic theory, that 
such departure may be abrupt, with a marked increase of resist­ 
ance. These departures are observed under conditions of 
boundary and flow which occur commonly in natural rivers.

It is shown that the condition under which this discontinuous 
increase in resistance occurs is definable by the mean Froude 
number for the whole flow which may be as small as 0.4. At 
this initial state, the rate of resistance increase with the square 
of the velocity may be more than double.

The phenomenon, which is absent in straight uniform channels, 
is associated with excessive deformations of the free surface due 
to transverse deflections of the whole or a part of the flow by 
changes along the channel in the curvature of the flow boundary.

In the simple cases examined the critical Froude number at 
which the sudden jump occurs depends mainly on the ratio of 
channel width to mean radius of channel curvature, though the 
inclination of the banks appears also to have a minor effect.

Over the range of values of the above ratio usually to be found 
in natural rivers, the critical Froude number ranges between 0.4 
and 0.55. The possible significance is discussed of the remark­ 
able correspondence between this range of critical Froude 
number and the range of Froude number within which river 
flow at bankfull stage appears to be restricted.

PART 1. THE PROBLEM AND THE EXPERIMENTS

GENERAL STATEMENT

The resistance to flow in open channels is usually 
discussed by engineers in terms of a friction factor or 
coefficient. Though in American practice the factor 
most commonly employed is of the Manning type, this 
factor originates from the Chezy relation

where u is the mean velocity, R is the hydraulic mean 
depth, and s is the slope of the energy grade line.

The Chezy factor C provided a link between the 
impelling force and the unaccelerated velocity. This 
link was at the tune of its development perforce an 
empirical one. The nature of internal shear stresses 
within the flow, upon which the velocities of both 
turbulent and viscous flow depend, was unknown at 
that time. Thus the general relation

iPoc force

was used because it was believed consistent with the 
fundamental Newtonian concept that force equals the 
time-rate of change of fluid momentum.

The d'Arcy school employed the same concept by 
expressing all the various elements of resistance exerted

by closed pipes in terms of the velocity head, u2/2g. 
The total head could be conveniently written

where the friction factor, f, represented the uniformly 
distributed wall friction per unit length of straight pipe, 
I the pipe length under consideration, and ~2E the sum 
of the individual discrete resistances associated with 
various fittings.

For the case of open channels in steady uniform flow 
and considering only skin resistance, the discrete resist­ 
ances, E, being mostly of an indefinable nature, we get

H u*-j-JK=zr- I
I 2g 

Since the drop in head per unit length is s,

which is the simple Chezy formula.
It is now known that for fully developed turbulent 

flow, the Newtonian concept covers shear resistance as 
well as direct fluid-dynamic force. Thus the Chezy

ill
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formula becomes theoretically correct in that all resist­ 
ances, distributed or discrete, continue to vary as u2 
provided there is no change in any part oj the -How 
boundary as velocity is varied.

The application of the d'Arcy term "friction factor" 
beyond the context within which it was developed has 
tended to encourage the tacit assumption that flow 
resistance in open water courses is due principally to 
boundary friction associated with distributed skin 
roughness.

This simplified and traditional view of open-channel 
resistance disregards two facts. First, the "square- 
law" resistance may be appreciably increased, as it is 
in pipes, by the distortion of the flow at discrete bends 
and other large-scale channel irregularities. Second, 
such internal distortion is accompanied, inevitably, by 
some deformation of the free water surface* Such 
deformation invalidates the required condition that the 
whole boundary remains fixed and unchanging.

Thus the possibility exists that appreciable departures 
from the square-law relation may occur. Such depar­ 
tures need not be associated with the general resonance 
expected when Froude number has a value at or near 
unity.

"Resistance in open channels, like that in closed pipes, 
is composed in reality of at least three resistance ele­ 
ments of different kinds.

In a straight uniform pipe the whole of the resistance 
to flow may be assumed uniformly distributed along the 
flow as a skin resistance. Assuming fully developed 
turbulence, this skin resistance, expressed as force per 
unit boundary area, depends, for any given shape and 
size of cross section, only on the square of the flow 
velocity and on the roughness of the boundary surface. 
"Roughness may be considered to be measured by the 
mean size of distributed boundary irregularities which 
are small in relation to the pipe size.

In a run of piping, however, other additional resist­ 
ances are exerted at discrete points wherever any bound­ 
ary feature—bend, or other fitting—deflects the flow 
or part of it away from its former direction. In general 
any such deflection creates energy dissipation by eddy­ 
ing, secondary circulation, and increased shear rate. 
It is usual in pipe work to estimate each of these flow- 
deflecting resistances separately and to add their total 
to the resistance of the straight piping. This type of 
resistance we will refer to as internal distortion resistance*

There is a third and important kind of resistance, 
also applied at discrete places. It occurs when a sud­ 
den reduction in velocity is forcibly imposed upon the 
flow, as at the sudden expansion just beyond a par­ 
tially opened valve in a run of piping. The foot of 
a waterfall would be perhaps an extreme example in 
the case of open-channel flow.

When this kind of resistance occurs at the sudden 
expansion of a closed pipe, it is often called impact 
resistance, the mathematical expression for the result­ 
ing energy dissipation being of the same form as that 
for the dissipation resulting from inelastic solid-body 
impact.

A sudden forced reduction in flow velocity may be 
visualized as resulting in an abrupt telescoping of the 
streamlines, accompanied inevitably by violent local 
vorticity. This telescoping of streamlines may also 
result in violent vorticity due to internal breakaway 
or mushrooming not directly associated with a fixed 
boundary. This abrupt, discontinuous expansion of 
the streamlines is forced to take place when the flow 
is rigidly confined, as in a closed pipe, and must do 
so regardless of the oncoming velocity. The closed 
pipe does not permit any volume adjustment, so in 
this case this resistance element obeys the square-law. 
But owing to the volume adjustment permitted the 
flow in an open channel, a discontinuous telescoping 
and expansion of the streamlines becomes possible 
only when the oncoming flow is supercritical; that is, 
when its velocity exceeds that at which an increase 
of fluid pressure can be propagated upstream. No 
prior volume adjustment is then possible.

To avoid any ambiguity, this kind of resistance in 
open channels will in the present context be called 
spill resistance.

In natural river channels skin and internal distortion 
resistance are common, and it is probable that spill 
resistance is not uncommon in parts of the_flow, even 
though the mean river flow is subcritical (F less than 
unity). Yet, for practical reasons, distortion and spill 
resistances are largely overlooked because large-scale 
and discrete boundary irregularities which cause them 
in natural channels are not easily described in quanti­ 
tative terms; and therefore their resistance effects 
cannot easily be reduced to quantitative coefficients 
of useful form. Further, the ordinary laboratory 
flume in which much of the experimental work on 
open channels is conducted is straight and uniform 
and wholly devoid of the large-scale boundary irregu­ 
larities which cause distortion and spill resistance.

As a consequence, the general resistance coefficient 
is often thought of as synonymous with the skin fric­ 
tion of pipes, even when the worker is dealing with 
natural channels. The large-scale irregularities of 
natural channels are conspicuous features. Indeed, 
few river channels are straight for distances exceeding 
10 times the channel width (Leopold and Wblman, 
1957, p. 53), and undulations and protuberances on 
the banks exist even in reaches of channel which in 
plan view appear straight.

Einstein and Barbarossa (1952) made an important
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advance when they broke down natural channel rough­ 
ness into grain roughness and that caused by "sand 
bars, sand waves, and other irregularities of the chan­ 
nel" (p. 1125). These latter elements they considered 
analogous in a mathematical sense to a series of "uni­ 
formly sized and uniformly spaced protrusions of the 
stream bed, such as piles of single rocks" (p. 1125). 
In their analysis they postulated that the flow resistance 
created by these irregularities would be a function of 
sediment transport.

But relatively few experimental tests have been made 
under controlled conditions to assess the relative magni­ 
tude of resistance due to boundry irregularities of large- 
scale as compared with small roughness elements. Nor 
have tests been made to verify the assumption that the 
overall resistance of natural open channels that include 
such large irregularities varies as the square of the veloc­ 
ity through a wide range of velocities.

In the present paper some preliminary tests in the 
laboratory are described. The results suggest that the 
prevailing approach to resistance in natural rivers may 
be seriously oversimplified. The tests indicate that 
large boundary irregularities may greatly increase the 
square-law resistance over and above that attributable 
to boundary roughness. And further, in combination 
with the presence of a free water surface, these irregu­ 
larities, by the creation of a spill resistance, may under 
certain conditions give rise to an astonishingly large 
upward departure from the square-law at a threshold 
mean Froude number considerably less than unity.

The experiments were designed to explore the resist­ 
ance effects of only one simple type of boundary irregu­ 
larity that related to regular or repetitive sinuousity of 
a channel of uniform cross section. A mathematical 
model of flow under such conditions was not available 
when the experimental work was begun. A preliminary 
theoretical model was developed after the experimental 
results were complete, and for this reason it is the plan 
of the present paper to describe the experiments after 
a brief introductory discussion of flow in irregular chan­ 
nels. Following this is a presentation of a mathematical 
model which appears to explain many of the observed 
features. We conclude with a discussion of some pos­ 
sible implications of the theory in natural channels.

The sequence of development of the ideas will help 
explain why some phases of the experimental data are 
somewhat less complete than might be desired. The 
experiments should be viewed as preliminary, but they 
do imply that an extension of such investigations may 
yield interesting and informative results.

FLOW IN IRREGULAR OPEN CHANNELS

When flow in a shallow open channel is locally deflected 
around a bulge in the bank boundary, the local water

is subjected to radial accelerations. As a consequence 
of the requirement for constant pressure at the water 
surface, the radial forces are offset by an increase in 
the gravity head on the upstream and a decrease on the 
downstream side of the bulge. This creates a local fall 
in water-surface level, often large enough to be easily 
noticeable. An acceleration of local water along the 
direction of flow is also noticed, as the water flows 
through this area of local fall in water surface.

Provided the velocity of the accelerated water does 
not exceed T/gd, adjustments between velocity head 
and elevation head can take place with no energy loss 
specifically attributable to the deformation of the free 
surface.

But as the mean flow velocity is increased, a stage 
must be reached at which the accelerated local flow 
from high to low level begins to exceed the local prop­ 
agation velocity, i/gd. At this stage the Bernoulli 
adjustment ceases to be possible; that is, elevation 
head and velocity head cannot be interchanged smooth­ 
ly. "Rather, the local high velocity flow impinges 
violently on slower water downstream at the lower 
level, with the creation of spill resistance as previously 
defined, and with an inevitable dissipation of energy.

To describe the types of resistances in terms of 
shear stress, let ra represent the shear resulting from 
skin friction, and rt a distributed stress equivalent to 
the resistance from internal distortion of flow by bank 
irregularities or bulges. Both elements may be ex­ 
pected to increase as the square of the mean velocity, 
as in pipes. In terms of a mean distributed boundary 
stress, T—T3 -}-Ti and

where c is the overall resistance coefficient ( c=n=7^
\ Jo

which should remain constant for flow of constant 
cross section through a given channel.

When, however, the energy dissipation due to spill is 
introduced, an expression for an equivalent distributed 
boundary stress might be in the form T=r,+r<+T2 
where rg is the resistance due to energy dissipation in 
the spill process.

The total resistance, r, could no longer be expected 
to vary as the square of the mean velocity when rt is 
introduced, because, as mentioned earlier, spill 
resistance in an open channel cannot exist at low 
velocities but must start increasing from zero at some 
finite mean velocity at which parts of the flow become 
locally supercritical.

It is visualized that the extra resistance element 
rt is not directly related to wave phenomena, nor 
should it necessarily be connected with any resonance
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effect within the main flow as Froude number ap­ 
proaches unity. Rather, the elevations and depres­ 
sions of the water surface are the direct result of local 
radial accelerations, the positions of which are fixed by 
local curvatures of the bank. The positions do not 
depend on flow velocity and therefore cannot be re­ 
garded as standing waves. The velocity merely 
determines the amplitude of the local water surface 
dislevelment, and thus the magnitude of excess local 
velocities.

DESIGN OF EXPERIMENT

The preliminary object of the experiments was to 
gain some idea of the relative magnitudes of the 
resistance elements represented by TS due to skin 
friction and rt due to internal distortion of the flow. 
It was further desired to discover whether the expected 
sudden departure from the square-law due to the 
postulated element rz might be sufficiently pronounced 
to be detected. The experiments were therefore 
designed to contrive a quantitative separation of these 
elements from one another.

Each of these elements of stress represents equivalent 
distributed values of force per unit of boundary area. 
It was desired to determine the separate effects of 
these three resistances on the flow velocity in a channel 
having a uniform cross section but analogous in shape 
to that of a natural river.

A quantitative expression of the relation between 
mean velocity, u, and applied stress in a given channel 
cannot be derived analytically but only by experiment. 
Similarly, when the channel form is changed the new 
relation between u and applied stress can be determined 
only by experiment. But the two relations may be 
compared to determine the effect of the change made 
in the channel.

Skin resistance can be measured in a straight channel 
of uniform and definable roughness. The resistance 
due to internal distortion or eddies, ri} can be com­ 
pared with skin resistance, TS, only if the changes made 
in the channel do not alter either the flow cross section 
or the boundary texture roughness. Moreover, if it 
is desired to vary the type of channel irregularity, the 
effects can only be compared one to another if flow 
cross section and boundary roughness are again made 
identical.

This necessity unfortunately precludes the introduc­ 
tion of abrupt baffles into a straight channel, because 
any experimental variation of the size or spacing of 
the baffles in relation to the channel cross-sectional 
dimensions at once makes the cross section indeter­ 
minate.

The simplest definable type of nonuniformity whose 
variation does not affect the cross section is a regular 
sinuosity of channel course. This was the type adopted.

Other types suggest themselves, all of which involve 
definable fluctuation of the cross section along the 
flow about a constant mean shape, and should be 
practicable provided the repetition distances down­ 
stream are long compared to the cross-sectional di­ 
mensions and provided the "bulges" are reasonably 
streamline. For example, the channel bed can be 
corrugated, the banks remaining straight; or the bank 
sinuosities can be brought into phase, to cause alternate 
expansions and contractions; or both bed and banks 
can be corrugated.

The following simple method of estimating the 
relative values of the three forms of flow resistance is 
applicable when of necessity the channels, straight and 
sinuous, are in other respects identical, and when the 
flow depth is maintained constant, the flow being 
varied by varying the slope s only.

The skin resistance TS is measurable in the straight 
channel by pgRs. In figure 68 a hypothetical relation 
is suggested between pgRs and pu2 . Velocity, hydraulic 
mean depth, and slope can be measured in the experi­ 
mental setup. It is then assumed that TS represents 
the skin resistance of the sinuous channel when a small 
correction is made for the very minor extension in 
channel length. The postulated relation between TS 
and pu2 is represented by the straight line OA in figure 
68.

For the sinuous channel pgRs no longer gives the 
skin resistance only, but instead pgRs=Ts -\-Ti. In 
figure 68, a relation of rs +r* to pu2 would give the 
second straight line OB if the resistance rz were neg­ 
ligible. For any given value of pu2, Ti can be read off

I

Spilt resistance 
plus ti + T5

Internal distortion 
resistance T/ 
plus TS

Skin resistance, T5

FIGUEE 68.—Diagram showing postulated relation of stress, pgPs, to the square of 
flow velocity. The postulated types of resistances are indicated by the lines of 
different slopes. The abscissa, pu*, is also the product of pgR and the square of the 
Froude number.
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This channel was used to measure skin friction due to grain roughness for later comparison with resistance due to

channel sinuosity.

This channel has a repeating distance of 2 feet and a semiamplitude of 0.3 foot.

STRAIGHT AND SINUOUS CHANNELS MOLDED IN SAND IN FLUME
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the figure as BD—AD. If, as thought, TZ is appreciable 
beyond some finite value of pu2, E in figure 68, it should 
appear as a steepening of the line, sketched as EC in 
the figure. At higher values of pu2, rs can be read off 
the figure as CB.

Dividing both ordinate and abscissa by pgR, hy­ 
draulic mean depth being kept constant in the experi­ 
ment, the diagram is unaffected and the abscissa is 
then expressed in terms of F2 =u2fgR which is plotted 
againsts. The overall resistance coefficient c=fj2=g/C2 
is equal to the slope of the straight line OE in figure 68, 
which represents the linear relation between shear and 
the square of the velocity.

But the overall resistance coefficient will not be 
given by the changed slope of the curve beyond E. 
If such a resistance coefficient is required, it would at 
any given stage be proportional to the varying slope 
of a straight line OC. But since the elemental coeffi­ 
cients are no longer additive, they appear to serve no 
useful purpose in the present context.

EXPERIMENTAL CONDITIONS

A trapezoidal channel was moulded in noncohesive 
sand contained in a flume having a length of 52 feet 
and a width of 4 feet. The adjustable-slope flume in 
which a channel could be moulded, built by the Geo­ 
logical Survey in the hydraulics laboratory of the 
University of Maryland, is described elsewhere by 
Wolman and Brush 1 and is similar to the one used for 
previous experiments at the California Institute of 
Technology (Leopold and Wolman, 1957).

The sand in which the channel was formed had a 
median diameter of 0.0067 ft (2.00 mm) and was rather 
well sorted. The Trask sorting coefficient was 1.21.

In order to maintain a uniform cross section even 
around bends in the channel, the template used to mold 
the channel was not a thin plate but was turned on a 
wood lathe in a form resembling a round cake pan with 
sloping sides. All of the data discussed pertain to one 
cross-sectional shape made with the same template 
(see fig. 69).

i Wolman, M. Q., and Brush, Jr., L. M., Factors controlling the size and shape of 
stream channels in coarse noncohensive sands: U.S. Oeol. Survey Prof. Paper, in 
preparation.

In molding a straight channel the template was held 
rigidly in a carriage which rolled along the length of 
the flume. For a sinuous channel, the template was 
moved laterally by a mechanical linkage as it was 
pushed by hand along the length of the flume. Plate 
3 shows two of the channels thus formed

Because we desired to go to Froude numbers well 
above those observed in rivers and to maintain constant 
cross section of channel, it was necessary to prevent 
scour of grains. This was accomplished by spraying 
the molded channel with three thin coats of semigloss 
enamel paint. The grain roughness was still prominent 
and, in fact, the paint was so thin that it would not hold 
the grains indefinitely as the discharge was raised. The 
material used was fast-drying paint packaged in cans 
under pressure and equipped with a spray nozzle. It 
was found desirable to use a different color for each 
coat of paint, making it easy to see whether the new 
coat was of uniform thickness and covered the whole 
area.

The entrance consisted of a weir which discharged 
into a 2-foot approach channel having gradually 
converging metal sides terminating in a 4-foot reach of 
straight channel molded in the sand. The working 
length of channel was 46 feet. The discharge end of the 
flume was controlled by a vertically adjustable tailgate.

Water was delivered from a constant-head tank 
through, either a 2-inch or 1-inch pipe to the entrance- 
box of the flume. Discharge was measured by piezom­ 
eter tubes inserted in a 90° pipe bend, which was rated. 
Head was measured by a manometer containing carbon 
tetrachloride.

Elevations were measured by a point gage mounted 
on an overhead travelling carriage. The vernier could 
be read to 0.001 foot.

Runs were made for each of two depths of water. A 
run consisted of setting the flume to a desired slope, 
adjusting the discharge until the water depth in the 
channel was equal to the chosen value. Profile of the 
water surface was then measured to determine whether 
the water surface slope was parallel to the channel bed. 
Tailgate setting and discharge where then adjusted 
until the depth was the desired value and the flow

0.735 ft Water surface width, full depth

.625ft Water surface width,"half" depth
Water Wetted Area Hydraulic
depth perimeter mean depth

(ft) (ft) (ft8) (ft)

0.090
133

0.685
.825

0.045
.075

0.066
.090

FinuBB 69.—Cross section of all the channels used in the experiments. The two values of depth shown were used in each channel pattern investigated.
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uniform. The discharge was then determined from 
the manometer reading and the slope and depth 
recorded.

The experimental conditions investigated consisted 
of the following channel patterns, each one of which was

run at various discharges, and at each of the two chosen 
depths. The dimensions of the cross section at each 
depth are shown in figure 69 and the definitions of L 
and A can be seen on the sketches of sinuous channels 
in figures 70 and 71.

.008

o 
o 
u.
o: .006
ui
0.

.004

.002

STRAIGHT 
CHANNEL

y .

Depth (c 
(feet)

0.133
090

Channel 
Sinuous Straight

.2 .6 .8 1.0

0.010

.008

.006

.004

.002

7/

B

.2 .4 .6 1.0

0.010

.008

.006

- .004

.002

FIGURE 70.—Diagrams of channel slope, a, proportional to resisting stress, plotted against the square of the Proude number. Data for the two depths of flow used In the 
experiments are represented by different symbols. As a standard for comparison, mean lines for the straight channels are shown. A, Data for straight channel; 
B, sinuous channel having repeating length 4.00 ft, amplitude 0.30 ft; and C, sinuous channel having repeating length 3.87 ft, amplitude 0.64 ft
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0.012

.010

.008
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.002

0.012
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.008

.006

.004

.002
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Depth (tf) Channel 
(feet) Sinuous Straight

.—Diagrams of channel slope, a, proportional to resisting stress, plotted against the square of the Froude number. Data for the two depths of flow used In the 
experiments are represented by different symbols. As a standard for comparison, mean lines for the straight channels are shown on all the graphs. A, Sinuous channel 
having repeating length 2.12 ft, amplitude 0.30 ft; B, sinuous channel having repeating length 2.30 ft, amplitude 0.54 ft.

TABLE 1.—Characteristics of channel patterns investigated, 
expressed as length and amplitude of repeating sinuosities l

Series No.

70A. ._.__._.
7QB _________ _
70C__________
71A. ________
715 _____ __

Channel form

Straight channel __ ____
Sinuous channel____ _ ___

-__-_do.___________ ___ _
-___-do.__________________
_-__.do.__________________

Repeating 
distance 

(2 L, in feet)

4.00
3.87
2. 12
2.30

Amplitude 
(2 A, 

in feet)

0.30
.54
.30
.54

1 The geometry of sinous channel patterns has previously been discussed (Leopold 
and Wolman, 1957), in terms of a meander "wavelength" and "amplitude," using 
these terms as they are usually used to describe a sine curve. Since the presence of 
a free water surface admits the possibility of true wave effects being found relevant, 
in future discussions it may be advisable to reserve the term "wavelength" accord­ 
ingly. For meanders, the term "meander length" will, in the future, perhaps be 
better than "wavelength." Amplitude is synonymous with "width of meander 
belt." The molded curves of the present study are here described in terms of the 
ratio of repeating length to amplitude, where repeating length is analogous to 
"meander length," a downvalley straight line distance between symmetrically 
located points on successive channel curves. Amplitude is the total spread in height 
from wave crest to wave trough. L and A are respectively the semilength and 
semiamplitude.

The repeating distances shown above are average 
values for different curves along the length of the flume. 
Two basic lengths were molded, approximately 2 and 
4 feet, and the slight variation from these values oc­ 
curred in the molding of the channel. The bulge

forms were to the eye quite uniform, however, as can 
be seen in plate 3B.

EXPERIMENTAL RESULTS

The quantitative results are shown graphically in 
figures 70 and 71 in the form s plotted against F2 . Val­ 
ues of the stress element T and of u 2 can be obtained 
by multiplying by pgR (see fig. 68). The original data 
are tabulated in the appendix.

Some scatter of the plotted points will be noted. 
This we found is not in excess of the scatter expected 
from random errors involved in reading the discharges 
from the rating curve.

In spite of the scatter it is clear from the plots that 
the simple square-law relation expected for turbulent 
flow was obeyed in the straight channel and also at 
low Froude numbers in the sinuous channels. The 
smallest Reynolds number for the channel at the re­ 
duced depth and at the lowest mean velocities measured 
was 3600. It is possible that at these low velocities 
turbulence was not fully developed in the shallows 
over the inclined banks. However, the data for the
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straight channel as plotted in figure 70.A discloses no 
significant departure from the linear relation between 
mean stress and the square of the mean velocity. It 
seems unlikely, therefore, that Reynolds number effects 
enter significantly into the results obtained at higher 
velocities.

The square-law relation ceased to hold in the sinuous 
channels when a certain critical or threshold Froude 
number was exceeded. Beyond such a threshold the 
curves break sharply upward to a steeper slope, indi­ 
cating the onset of additional energy loss.

At values of F 2 below the threshold—that is, in the 
square-law region—an idea of the relative magnitude 
of the extra square-law resistance T{ introduced by 
channel curvature can be gained by considering the 
experimental values of the ratio T</TS ; that is, the 
ratio of internal distortion resistance to skin-resistance 
of the straight channel. This ratio is that of AB to 
AD in figure 68, and can be read off the plots of figures 
70 and 71. It is given in column 8 of table 2.

The variation of T</TS with flow depth is peculiar. 
In the absence of any theoretical understanding of the 
factors on which the square-law resistance of "irregular" 
channels depend, we offer no explanation. The general 
effect of the presence of irregularities is evidently very 
appreciable.

It will be noticed that the ratio TJ/T S tends generally 
to increase with the increase in sharpness of bend. 
This sharpness depends not only on the radius of curva­ 
ture but on the ratio of channel width to radius. This 
ratio, b/rm, is used throughout the present paper as an 
index of channel curvature. The quantity rm is the 
radius of a circle which passes through the centerline 
of the channel at the points of inflexion and maximum 
amplitude.

In figure 72 are plotted mean values of the ratio 
Ti/Tg for the two water depths. These mean values are 
plotted against mean values of the index of curvature, 
also computed as the mean value for the two water 
depths. The data appear in columns 9 and 10 of table 2.

TABLE 2.—Experimental values of ratio of internal distortion resistance, T», to skin resistance, 
Tt, in channels of various indices of curvature

1
Series of runs in 

figure No.

70J5__. _______________

70C'__________________

7l-l___-___-_- _______

71J5__. .__.__.______._

2

Semi- 
length 

(L, in feet)

2.00
2.00 
1. 93
1. 93 
1.06

. Do 
/ 1. 15
1 1. 15

3

Semi- 
amplitude 
(A, in feet)

0 15
15
27
27 
15
15
27
27

4

Mean 
radius 

(rm, in feet)

3.34
3.34 
1.87
1.87 
1.00
1.00
.74
.74

5

Surface 
width 

(&, in feet)

0 735
bzo 
735
b2o 
735
oJo 
735
oJo

6

Hydraulic 
mean depth 
(R, in feet)

0 09
Uoo
09
066 
09
Obo 
09
Uoo

7 

b/rm

0.22
. 19 
.39
. oo
.73
. \)£ 

1. 19
.99

8

T.-/T,

0
0 
.50
.43 

1.78
.43 

3. 11
2.19

9

Mean
b/rm

j 0.2

| .36

| . 68

} 1.09

10

Mean
T.-/T,

0

.46

1. 10

2.63

The data indicate that channel curvature alone can 
account for energy loss of the same order as that due to 
skin friction, and in tight curves may be double that 
quantity.

At values of F2 higher than the threshold the plots 
indicate an abrupt upward trend resembling that 
sketched in figure 68, but the experimental points do 
not provide any certain estimate of the abruptness of 
the departure from the square-law. A small but system­ 
atic trend will be noticed which suggests that the 
relation beyond the threshold value, F%, is curvilinear 
as indicated in figure 73, in which case the maximum 
gradient would occur at the point of departure, F%. 
That is, an actual discontinuity may occur. The theory 
to be outlined later suggests that this should be so.

Since the resistance to flow no longer obeys the square- 
law, the most useful way in which to discuss its varia­ 
tion in this region is in terms of the magnitude of the

change of gradient. In other words, the magnitude of 
the change in the rate of increase of resistance as F2 is 
increased.

If, as seems probable, the plots in this region are 
really curved, the relation will be as indicated in figure 
73. As that figure indicates, the change of gradient 
at the actual threshold F2e__ would be measured by 
ds{d(F'2)—dsld(F2),_where_F" refers to the Froude 
number just above Fc and F to that below.

The experimental values of the change of gradient 
are shown in column 7, and the relative values in column 
8 of table 3. For each channel pattern indicated by 
the series number, data are given for full water depth, 
5=0.09 feet, and reduced depth, 5=0.066 feet, if both 
are available.

In figure 74 the changes of gradient from column 7 
are shown plotted against the channel curvature crite­ 
rion b/rm. It will be seen that the results for the two
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WIDTH TO CURVATURE RATIO, -y-

FIOURE 72.—Experimental rrlation of ratio of internal distortion resistance, n, to 
skin resistance, r,. at various values of index of curvature.

steepest plots, series 7lB, which in table 3 have values 
of b/rm equal to 0.99 and 1.19, have too small ordinate 
values in figure 74A Estimates of gradients from 
plotted points are subject to rapidly increasing error as 
the general inclination steepens. In figure 7lB if the 
gradients shown in column 5 of table 3 had been deter­ 
mined from the initial slope of curves drawn through 
individual plotted points, the values in column 5 would 
have been appreciably larger, and in figure 74,4, the 
point 7lB marked with a circle would plot at an ordi­ 
nate value of 0.038. With this correction there appears 
to be a reasonably good correlation in figure 74-4 be­

tween the change of gradient and the index of curvature, 
b/rm.

Figure 74B shows the experimental variation of the 
threshold Fc2 with b/rm. The trend is consistent with 
the requirement on general grounds that Fc2 should 
approach unity as b/rm approaches zero (straight 
channel).

FIGURE 73.—Diagram showing postulated relation of channel slope, *, proportional 
to flow resistance, and square of mean Froude number, the relation becoming curvi­ 
linear above a threshold value, f*.

CHARACTER OP THE FLOW; DEFORMATION OF THE 
FREE SURFACE

CONDITIONS BELOW THRESHOLD VALUE

A lee eddy occupied the upstream portion of each 
re-entrant in cases of relatively high mean velocity and 
strong curvature. The eddy is shown in the surface

TABLE 3.—Values of threshold Froude number, Fc, for channels having various indices of curvature, b/rm 

[Columns 7 and 8 show abrupt jump in rates of resistance increase, and the threshold Froude number, F, (column 10), at which they occur]

1

Series of runs in 
figure No.

70B-. __ ______-___-.

70C---___- ___________

71A... ____.____.__._.

71B... ...............

2

Hydraulic 
mean

depth (12, 
in feet)

0.09
. ODD 
.09
. Uoo 
.09
. UDD 
.09
. ODD

3

b/rm

0.22
.19 
.39
. oo 
.73
. O-6

1.19
.99

4

Semi- 
length (L,

in feet)

2.00
2.00 
1.93
1.93 
1.06

. UD 
1.15
1.15

5

ds(d(F"*)

0. 0125
.010 
.023
.0195 
.056
.0375 
.072
.047

6

dsld(&)

0.0085
. UUo
.0135
.012 
.025
. Ui_i

.037

. U/yU

7

Difference, 
column 4

minus 
column 5

0.004
. UU—i
.0095
. UU75 
.031
.0255 
.035
. \J£l£l

8

Column 
7X100
dsld(F») 
(percent)

47. 1
£o. U 
70.4
D_k O

124.0
—fio

95
oo

9 

F»

0.37
. Oi

.31

. oJl 

.21

. _ii

. 16

. ID

10 

F.

0.61
KC. oo 

.56
ec. Oo

.46 jtf*

.40

.40
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FIGURE 74.—A. Experimental relation showing difference in rate of increase of 
resistance above and below threshold value of 7*, as a function of index of curvature. 
B. Experimental relation of square of threshold Froude number, ~f\ and index of 
channel curvature.

paths sketched in figure 75. The effect of this eddy is 
to restrict the flow to a narrower cross section and to 
create secondary circulations. These effects undoubt-

EXPLANATION OF FIGURE 75

FIGURE 75.—Sketches of flow features seen on water surface. The four diagrams are 
arranged with Froude number increasing from top to bottom. Serial numbers are 
listed, with accompanying data, in the appendix. 

A. Froude number below threshold value; no standing waves observed; eddies
are developed at concave bank near center of curvature.

B. Froude number near threshold. Standing waves developed just upstream of 
points of maximum amplitude. Eddies located between point of convex bank 
and position of maximum amplitude of concave bank.

C. Froude number slightly above threshold. Slanting waves developed. Eddies 
located downstream of point of inflection and upstream of position of maxi­ 
mum amplitude of concave bank.

D. Froude number well above threshold. Standing waves well developed. 
Prominently steepened water surface near convex bank just upstream of the 
nose of each point. Eddies just downstream of point and hugs convex bank.

Serial No. 45

I ft

F -- 0.33
u - .48fps

Fc -- .46
b/rm -- .62

Serial No. 68

I ft

Serial No. 51

I ft

In this sector water 
surface steepened 
near convex bank

F = 0.73 
u = l.24fps 

Fc = .43

Run No.89, data 
included in appendix

Explanation

Direction of surface streamline

X 
Standing wave on surface

Edge of eddy at surface

FIGURE 75
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edly are responsible for much of the increase in the 
square-law resistance. A quantitative statement of 
the limiting conditions at which the eddy first appears 
cannot be made from the available data.

In appearance, the effect of the eddy upon the flow 
was to reduce its real width and also to displace the 
phase of its sinuosity downstream with respect to the 
sinuosity of the channel banks, without however appre­ 
ciably affecting the mean curvature.

The water surface was undisturbed by any travelling 
deformations other than a general fine texture of sur­ 
face-tension ripples originating at the grain-roughness 
at the water's edge.

The inevitable difference of local pressures imme­ 
diately upstream and downstream of each bank 
convexity, which are due to the flow deflection, gave 
rise to slight local surface elevation upstream and a 
corresponding depression downstream. But the local 
current appeared to pass each bank convexity without 
any discontinuity in the streamlines.

CONDITIONS AT AND ABOVE THRESHOLD VALUE

The critical stage Fc as defined by the plots of figures 
70 and 71 coincided with the formation of a system of 
small standing waves shown on figure 75B located just 
downstream of the point of inflection of the bank 
curvature and at or about the estimated point of

inflection of the mean flow path. The crests of these 
wavelets, starting nearly normally to the waterline, 
curved downstream as shown, fading out as they did so.

The critical stage also coincided with a marked 
change in the appearance of the flow past each bank 
convexity. This now assumed the nature of a plunge, 
or spill, from high level to low, with a pronounced 
local acceleration and a pronounced disturbance below 
where the descending water met the main stream.

As the flow velocity was further increased, the 
general appearance of the water surface when one 
looked upstream resembled that of a mountain torrent 
where jets of water deflected by boulders at the stream 
bank impinge inwards upon the main flow.

Owing to the steepening of the local water surface 
slope past each bank convexity, the mounds and 
hollows were much more readily noticed. Figure 76 
shows the configuration of the water surface in detail 
for conditions approximating_closely to those of figure 
71^4, and at a stage when F2 was approximately_29 
percent in excess of F* (13 percent in excess of Fc). 
The surface contours have been drawn in planes parallel 
to that of the mean water surface; that is, having the 
same slope as the channel. It will be noticed that the 
surface pattern repeats itself in mirror image from one 
reach to the next.

0 =0.071 cfs

u = .947 fps

F* = .27
/T= .2.
5 = .0078 

2Z. =2.22 ft 
2X1 = .30ft

Contours on woter surface abqve datum
Drawn relative to sloping datum

of mean water surface

Contours on woter surface below datum
Drawn relative to sloping datum

of mean water surface

Observed elevotion, in feet obove datum

o 
Observed elevation, in feet below datum

---*• 
Path of surface floats

Small standing surface riffles

*A .73
FEET 

1.0 i-

.8

.6

.4

-2 -

O 1—

TIGURZ 76.—Topographic map of waier surface in sinuous channel at Froude number above threshold value. The datum Is a sloping plane parallel to and coinciding 
with the mean water surface elevation. The contour lines represent elevations above and depressions below that sloping plane.



122 PHYSIOGRAPHIC AND HYDRAULIC STUDIES OF RIVERS

By drawing the surface contour lines relative to the 
mean channel slope and then assuming the slope to be 
zero, the surface topography thus represented should 
be a reasonable approximation to that of an ideal 
frictionless liquid subjected to the radial accelerations 
imposed by the boundary curvature. The only implicit 
assumption made here is that resistances remain uni­ 
formly distributed.

The main features disclosed by this map are a pro­ 
nounced mound of water upstream of each bank con­ 
vexity, a pronounced hollow downstream of it, and an 
accelerated local flow from the mound towards the 
hollow.

A further feature which may be particularly noted is 
that the water surface remained free of any appreciable 
travelling distrubances. The deformations shown in 
the map were in fact static, located by the fixed curva­ 
tures of the banks, their locations being independent

of the mean velocity of the flow. The wholly static 
nature of the deformations appears to rule out 
wave propagation as an explanation of the energy 
dissipation which results in the extra resistance T».

After observing the superelevated and depressed areas 
of water surface associated with the bulge in the 
sinuous channel of the laboratory, we sought similar 
phenomena in the field. An example is shown in 
plate 4. The bulge was formed by a piece of sod col­ 
lapsing into the channel. The superelevated water 
surface upstream from the obstruction and a depressed 
surface just downstream were noticeable in the field and 
can be discerned in the photograph.

The characteristics mentioned above also applied to 
the field example: accelerated local flow from mound to 
hollow, static deformation—that is, not travelling with 
the flow, but associated with the obstruction.

PART 2. 4 THEORETICAL MODEL OF ENERGY LOSS IN CURVED CHANNELS

By RALPH A. BAGNOLD

FLUID-DYNAMIC CONSIDERATIONS

In the conventional straight channel the body-force 
acceleration is g, which remains constant in both 
magnitude and direction. But when the whole or a 
part of a liquid flowing steadily in an open channel is 
subject to transverse acceleration due to some large- 
scale irregularity in the bank configuration, the direc­ 
tion of the resultant body-force acceleration is no 
longer that of g, though its magnitude may for many 
practical purposes be taken as that of g. Changes 
in che direction of the resultant body-force acceleration 
along the channel give rise to certain special hydraulic 
conditions. Superelevation of the water surface along 
the concave bank is but one of the effects which are a 
matter of everyday observation. But these effects 
have not been investigated as extensively as their 
ubiquitous occurrence might warrant.

Transverse accelerations in the plane of the free 
surface occur whenever the local flow is deflected from a 
straight course by a boundary surface which has a 
curvature component in that plane. Such accelerations 
occur whenever one or both banks'of a stream has any 
kind of bulge. A single bulge, whether streamline or 
otherwise, deflects the streamlines in its neighborhood 
so as to create a reversal of their curvature. Thus 
the forces applied at the boundary which maintains 
the radial accelerations are reversed in sense. Be­ 
cause the pressures must be constant everywhere, the 
free water surface is successively elevated and de­ 
pressed. As a consequence the local water surface 
in the direction of local flow tends to fall steeply from a 
high to a low level as the flow passes the bulge.

In the case of a single bulge neither the pattern of the 
streamline curvature nor that of the velocity distribu­ 
tion is readily definable. Because the precise pattern 
of the surface elevation is doubtful, the dynamical 
effects of the local fall in level are not easy to investigate 
quantitatively. But consider the simpler case where 
the whole flow in a channel of uniform cross section 
is deflected around an S-bend of definable curvature. 
In figure 77 let the velocity u at any radius r, within the

FIGURE 77.—A sinuous channel showing the center of curvature of a bend and symbols 
designating the radii of curvature
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EXAMPLE OF SPILL PHENOMENON IN A NATURAL RIVER AS A RESULT OF A RANDOM BANK PROJECTION

Note turbulent zone (a) just downstream from tip of sod projection (b), where 
water has spilled from the superelevated position (c) into a depression. Stream 
is Baldwin Creek near Lander, Wyo., flowing somewhat less tban bankfull. Dis­

charge is 69 cfs. View is diagonally downstream. Projection is piece of sod bank 
which fell into channel. Its tip is about 3 feet from the average bank.
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width b=rt —r2 of the water surface, be defined as the 
tangential component at r. Further, let this velocity 
u be the mean of the velocity through the vertical 
depth at r. Thus defined, radial velocity components 
inward and outward due to internal motions cancel 
each other everywhere. It is further assumed that the 
flow is slow or subcritical; that is, u<j/gR or V</d.

And let it also be assumed that the flow as it ap­ 
proaches the section of curvature reversal has already 
reached a state of equilibrium under the constant 
applied forces due to the constant channel curvature. 
In this state the body-forces exerted on each unit mass 
of liquid at radius r consist of the acceleration g up­ 
wards, and the radial acceleration u 2jr horizontally 
inwards towards the center of channel curvature and 
therefore perpendicular to the local flow direction.

The resultant body-force is thus inclined to the fixed

vertical at an angle tan" 1 ( — j; a pendulum moving

with the local current is tilted through this angle, 
and the local horizontal plane is likewise tilted. But 
an observer in a closed vessel drifting with the local 
current would not notice any peculiarity because his 
axes of reference are also tilted.1

The gradient of the free surface at radius r, with 
respect to the fixed horizontal through the axis of chan­ 
nel curvature, is uz/gr. Thus the increase in the water 
surface level at radius r above that at the inner bank

1 C T u2 
radius rz is - I —

9Jr2 r

the whole width 6 is

dr. The total superelevation z over

,=! P1 !*!
9Jr~ r

dr

Beyond the section of curvature reversal the sense of 
the radial forces acting on the fluid from the banks is 
reversed. The high water level along what was the 
outer bank has to be lowered through the distance z; 
and the low level along the other bank has to be raised 
through the same distance.

The raising of level presents no problem. It is 
achieved progressively by an upward displacement of 
local water by the positive radial force of the inwardly 
advancing bank.

But the fall of level may cause a plunge or spill assum­ 
ing the nature of a collapse, depending on the velocity 
u attained in the fall z, and on the local depth d. In the

i The radial acceleration causes a small but real increase in the magnitude of "g", 
from g to

So the period of the pendulum is actually reduced, and the wave velocity T/gd is 
actually increased. But these changes are too small to be relevant in the present 
context.

event of such a spill, energy will be dissipated by local 
impact. The word "spill" is used here in the context 
described on page 112.

MAGNITUDE OF THE SUPERELEVATION IN A 
CONTINUING CHANNEL BEND

The pattern of the internal flow in a continuing bend 
of a river or canal is imperfectly known. Particularly is 
observational evidence incomplete on the variation of u 
over a cross section for channel curves of different radii.

But let u be some arbitrary f unction/(r) or r. Then, 
making a number of alternative reasonable assumptions 
as to/(r), it appears that although the transverse profile 
of the water-surface elevation varies in shape from func­ 
tion to function, the overall bank-to-bank supereleva­ 
tion z is remarkably independent of the function as- 
summed. For instance:

Case 1: Assume that the velocity u at various posi­ 
tions across the channel is constant and equal to 
the mean channel velocity u.

Then the equation for superelevation becomes

0 f'ldr . r=-2= —=ln
u Jr2 '

Because ri=rm-f-6/2 
and r2=rm—b/2

This case results in a logarithmic profile of water surface 
across the channel. 

Case 2: u varies as r.

Then

and

, u=— and rm=:
•m

£L=JL ri2~ 
u2 rm2 2

-- 9 z~~

The profile is the arc of a parabola having a vertical 
axis through the center of channel curvature.

Case 3: u constant everywhere, and flow such that 
the effective radius is constant at rm .

This case might possibly be approximate to flow in a 
channel consisting of a succession of short alternatively 
reversed arcs. It might also approximate local flow 
round a single bulge in one bank with suitable local 
values given to 6 and rm.

zr _r1 —r2_b 9 u2~~ rm ~~rm

The profile is now a straight line.
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Case 4: Whole discharge concentrated within a 
narrow midchannel zone. The profile is now steplike. 
But again

0 6

Case 5: As a realistic modification of case 4, the 
probable velocity profile can be sketched for the 
conditions of a sinuous channel.

Making allowance for: a narrowing of the flow by an 
eddy against the inner bank such as is shown in figure 
755, a reduction in velocity towards both flow boun­ 
daries because of friction, and for a consequent velocity 
increase towards the now modified midchannel radius, 
a graphical integration of v?jr gives a value to z which 
approximates very closely to that given by

z_= b_ 
9 u2 rm

(b and rm referring to the whole material channel).
The profile in case 5 resembles that of case 4 with 

the abrupt step smoothed out to a flattened S. This 
profile bears a reasonable resemblance to that indicated 
by the contours of the experimental water surface 
shown hi figure 76 if a transverse section is taken 
through the summit of the mound.

The choice of the expression most likely to give the 
true superelevation therefore seems to lie between 
b/rm and the log expression of case 1. And it happens 
that over a wide practical range of b/rm the log expression 
approximates very closely to b/rm itself. Thus

6/r. 0.1 0.2 0.4 0.6 0.8 1.0

In ———= 0.100 0.201 0.406 0.62 0.84 1.0982— or In

Finally, as experimental confirmation that the super­ 
elevation z is really given to a close approximation by 
v>2b/grm the evidence of figure 76 may be referred to. 
Under the experimental conditions u was 0.95 ft per 
sec, b was 0.735 ft, and rm was 1.0 ft. Whence uzb/grm = 
0<0206 ft. The measured superelevation, as given by 
the overall drop between the mound top and the 
bottom of the hollow indicated by the contours, is 
0.021 ft. In another experimental run at half depth 
(5=0.09 ft) not pictured here, v?b/grm = 0.0135 ft and 
the measured superelevation 0.013 ft. The agreement 
is well within the limits of experimental error.

It is sometimes assumed that the existence of a 
secondary circulation may greatly reduce the super­ 
elevation. But this seems unlikely. For whatever 
may be the internal motion the whole stream momen­ 
tum pub per unit depth must certainly be changing at 
the mean time rate u/rm. Hence the excess pressure

_O7

against the outer bank will be -—> and to oppose this aI'm

ti?b . 
superelevation — is required.

£frm

Data giving the surveyed water surface profiles across 
meander bends in rivers or across bends in canals are 
not published in detail. Leliavsky (1955, p. 124) states 
that leveling across the "Rhine confirmed a logarithmic 
variation analogous to case 1 above, but no data are 
given. In default of factual evidence, it will be assumed 
that the superelevation is given with fair accuracy by

z=u?b/grm

ENERGY CHANGES IN THE ZONE OF CURVATURE 
REVERSAL

Consider now the conditions in the transition zone 
in the neighborhood of the reversal of curvature, along 
that bank at which the water level falls.

There appear to be two rather different cases. Case 
A where this bank, locally, is inclined to the vertical; 
and case B where it is vertical.

Case A.—Banks inclined to the vertical. Let the 
following boundary conditions be assumed. The sur­ 
face width of the stream is uniform and has a value 
equal to b, as previously supposed. But the cross 
section may vary in shape from section to section and 
may be asymmetrical to any reasonable extent. De­ 
fining a reach as the curved channel between successive 
reversals of curvature, all the conditions, both of cross- 
sectional shape and of flow, are repeated from reach to 
reach, those in one reach being antisymmetrical, or in 
mirror image with respect to those in the next.

The asymmetry, and the variation, of the cross- 
sectional shape will affect the velocity distribution; but

U2 b
as shown previously, the distance z=— through which

9rm

the side-water falls is unlikely to be affected to any 
appreciable extent.

Consider an element 2, shown shaded in figure 78A, 
of discharge of this side-water flowing over the inclined 
bank. The lower sketch shows the element of discharge 
as it approaches the section Y—Y' where the curvature 
reverses. It is reasonable to assume that g_ remains 
continuous and constant from a point upstream at 
which the curved channel flow has developed its full 
water-surface superelevation, as far downstream as the 
section Y—Y'. This superelevation is equal to z/2 
above the mean level. Moreover, within this restricted 
zone the curvature is small and may be neglected. 
Hence, it is legitimate to compare the action of this 
element 2 to flow in a straight channel over a local 
broad-crested weir.
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of inflection point
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of inflection point
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FIGURE 78.—A (upper). Cross sections above and below point of Inflection of channel curvature showing superelevated and depressed water surface along a sloping bank, 
(lower) Longitudinal profile near bank through the same reach Indicating energy grade line (upper dashed curve), water surface, and channel bed. B, Same as A above 
but In a channel having vertical banks.

For lack of sufficiently definite knowledge of the 
distribution of flow velocity across a curved channel, 
let it be assumed as an approximation that the velocities 
HI and u2 of g in the equilibrium zones upstream and 
downstream of the transition zone may both be repre­ 
sented by the mean velocity u. And assuming that 
the inclined bank extends to a sufficient depth, the flow 
depth d of g will be the same both upstream and down­ 
stream of the transition zone, figure 7SA. Hence the 
total energy level H will have fallen, through the transi­ 
tion zone, by the same distance z as the water level, 
though without ultimate change in either velocity or 
flow depth.

Now if we consider the case of straight-channel flow 
over a broad-crested weir, the flow energy,

(1)
can be reduced without accompanying energy dissipa­ 
tion by spill only by the amount represented by the differ­ 
ence between HI upstream from the weir, and He over 
the crest, as shown in the longitudinal profile sketched 
at the bottom of figure 78A. The quantity Hc is the

energy level at critical depth and the minimum value 

of the quantity ~—\"d for constant g.

An expression for this critical energy level for abroad- 
crested weir is as follows. 

Assuming a constant discharge g,

(D

which substituted in the Bernouilli expression, equa­ 
tion (1) above, gives

To obtain the -minimnTn value, He, of the above, differ­ 
entiate and equate to zero.

d(d) 2g

and
9 9
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(2)

This merely states that the energy grade line over the 
weir at critical depth is half as high again as the water 
level dc .

In the present case, because q=ud 
then

(3)

The maximum energy removal which can take place 
without accompanying dissipation is therefore given 
by Hi— Hc, or

(4)

This amount of energy is not lost by the stream as a 
whole, for it is transferable across to the opposite bank. 

It may be noted here that the critical velocityue 
which occurs directly over a broad-crested weir in the 
case of a straight channel should occur in the present 
conditions at the section Y-Y' of curvature reversal, 
the dynamics involved in the reversal having here 
taken the place of the static thrust of the real weir. 
Thus the fall in water level should begin upstream of 
this point. This is consistent with the experimental 
evidence. The contour lines of figure 76 show the fall 
in level from the equilibrium state achieved at the top 
of the mound to begin well upstream of the local point 
of inflection. Moreover figure 75 shows a system of 
standing wavelets indicative of the critical state situated 
just at the point of inflection and of curvature reversal.

ENERGY DISSIPATION

If z does not exceed Hi—Hc, the stream should ex­ 
perience no real energy loss arising specifically from 
the local deformation of the free surface; and for 
constant depth the overall resistance to flow should in­ 
crease as the square of the mean velocity u.

But if z exceeds Hi—Hc, the excess energy removal 
z—(Hi—He) will be subject to dissipational loss. The 
descent of the side-water q will now assume the nature 
of a downward plunge or spill. How much of this 
excess energy removed from one side of the channel 
will be dissipated will depend on the conditions below 
where the plunging side-water meets the main stream. 
But it is relevant to express the whole of it in terms of 
measurable stream quantities.

U
3 /~9

U

Now

and

where

It*VU '

z—-

can be written d? F2

i/ 2
F2=— 

gd

Then if d be the mean flow depth of the stream, and 
letting

which is the excess energy to be removed, we have

(5)

It is now required to express the local d and F in terms 
of d and F. In this inclined bank case the local depth 
d is supposed independent of u. Let it also be assumed 
tentatively that d is independent of the channel 
curvature characteristic b/rm, being a function only of 
bank inclination and of its effect on the real frictional 
velocity gradient towards the water's edge. Then we 
can write d=ad where a is some numerical constant 
less than unity.

Thus

and

j?2 ~_.±_

d a

-=F2d

Thence
F2 __ (6a)

Case B. — Vertical banks. Because the local bank is 
vertical, figure 78B, in this case the equilibrium depth 
di upstream is not equal to d2 downstream as before, 
but d2=di—z. With the same approximation that 
U1 =u2=u, the required fall in the energy level is still 
z and equation 5 remains unchanged.

But d is now

and

F2=- F2
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Equation 5 now becomes 

b 2/3 (6b)
In each case the theoretical threshold values Fl of F2, 

at which a departure from the square law is to be 
expected, is obtained by equating the dimensionless 
quantity f to zero and solving for F2 by a simple 
graphical method. In case A some arbitrary assump­ 
tion must be made as to the value of a (see below).

COMPARISON WITH EXPERIMENT

The theoretical threshold values Fl of F2 are shown 
in figure 79, plotted against the channel characteristic

b/rm. The three continuous curves are obtained from 
equation 6a (inclined banks), for a=l, 0.8, and 0.5. 
The experimental values of Fl as read from the plots of 
figures are also shown. The precise experimental 
values of Fze for the longer channel radii are, however, 
difficult to determine from the plot; and these readings 
may be in appreciable error. The general trend of the 
theoretical FJ5 as the channel curvature is varied is 
nevertheless in remarkable agreement with experiment. 
The best fit for the particular cross-sectional shape of 
the experimental channel used appears to be that for 
a=0.8.

The broken curve of figure 79 is that obtained from 
equation 6b (rectangular channel). As will be seen, 
it approximates closely to the curve for equation 6a,

70A
Series number

o 
Runs at depth 0.133 ft

x 
Runs at depth .090ft

.4 .6 .8

WIDTH TO CURVATURE RATIO, b/rm

FIGURE 79.—Theoretical curves showing relation of square of threshold Froude number, JF«*, to index of channel curvature, for various assumed values of factor o. This 
factor is a measure of the limiting depth of water near a bank at which the local velocity ceases to approximate the mean flow velocity. Points plotted represent 
experimental values of F«* and b/rm for comparison with theory.
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for a=l. These two curves both give F\=\ for the 
extreme case of a straight channel, 6/rm=0; whereas 
for a straight channel with inclined banks, Fl is smaller, 
at Fl=a in the general case where a<l. This is 
consistent with the simplifying assumption made that 
ul =u; that is, bank friction causes negligible reduction 
in the velocity with decreasing depth. So a can be 
regarded as defining the limiting reduced depth near 
the bank at which, in practice, the local velocity 
ceases to approximate to u, owing to bank friction.

The family of continuous curves in figure 80 show 
the values of f according to equation 6a as F2 is increased 
above the threshold Fc2. The two broken curves show 
the corresponding values according to equation 6b for 
the rectangular channel. It will be noted that in both 
sets of curves the gradient d f/d (jp*2) has a finite and 
maximum value at the threshold f=0 and F2=Fe2. 
This again is wholly consistent with the experimental 
results. The finite value indicates that the gradient 
of the overall resistance to flow changes discontinuously

Inclined bank 
(solid line)

Vertical bank 
(dashed line)

0.9

O.I 0.2 0.4 0.8

FIGURE 80.—Theoretical curves of the relation of flow resistance to square of Froude 
number at values of ?2 higher than the threshold, "f£. Full lines represent condi­ 
tions with sloping channel bank, and dashed lines with vertical bank. Curves 
are developed for various values of curvature index, b[r m. In each case the zero 
ordinate value of f corresponds to the threshold value, FJ.

at F 2 as the experimental results show. And the sub­ 
sequent decrease of gradient as jF2 is increased above 
~F<? can indeed be detected in the experimental plots 
by a close inspection of the individual plotted points, 
though in the absence of theoretical support, this tend­ 
ency might well be taken as being due to systematic 
experimental error. The subsequent reversal of this 
tendency as shown by the plots to occur at still higher 
values of ~F2 may well be attributable to the onset of a 
general instability on the part of the whole flow as 
general resonance is approached towards F2=l.

The dimensionless quantity f bears the same relation 
to the specific and localized resisting force to which 
the local energy dissipation is equivalent as the dimen­ 
sionless quantity s bears to the overall resisting force 
acting on the whole flow.

Over the length L containing one reversal of channel 
curvature the local energy dissipation is measurable by 
(pgd£ ) X (-4') where A' is the effective cross-sectional 
area of the side-flow g. Over the same length of channel 
the overall energy dissipation is pgLsXA. So the 
ratio of the overall resistance to the specific localized 
part of it which appears when F*>FC2 is

s L A

assuming of course that the whole of the excess energy 
Sf is in fact dissipated.

Of particular relevance to the behavior of natural 
rivers is the magnitude of the discontinuous jump in 
the rate of resistance increase with velocity increase 
which occurs at the threshold stage defined by Fc2 .

From the experimental data the additional resisting 
force applied to the length L of the whole flow when 
F2 exceeds Fc2 is measureable from the plots by (stt — s ft) 
XpgAL (fig. 73). And in the limit when F2 is brought 
very close to F 2 the discontinuous change of gradient is

i d(F2)

where F1 refers to conditions immediately beyond the 
discontinuity and F to square-law conditions in which 
s/F2 is constant.

The corresponding theoretical change of gradient is

d(F2)

Hence theory may be compared with experiment by 
considering the values of A'/A in 

ds ds"" " L
^'_d(F' 2) d(F2) L 
A df 'd

(7)

d(F2)
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It would be difficult to predict the proportion of the 
excess energy frf (or £R if the hydraulic mean depth is 
preferred) which will be dissipated, because it cannot 
be assumed that the side-flow g is definably continuous 
below the critical depth de. Nor is it possible to cal­ 
culate the cross section A' involved, for this would 
require a knowledge of the actual distribution of the 
flow velocity over the channel section. From an 
inspection of the water surface map, figure 76, the area 
A' involved might be guessed as being between one- 
tenth and one-third of the whole area A. Thus if it is 
assumed that the whole of the excess energy frf is 
dissipated, then the expression on the right of equation 
7 when evaluated should give values between, say, 
0.1 and 0.3. And these values should be reasonably 
constant from one experimental channel to another.

From (6a)

df _b I 1.5 a 
~rm 2+3 a

6 1 . 0.431 , n Q /<rt= —— -+ _ . for a=0.8 (8)rm 2^(f 2)l v

The precise experimental values of ds/d(F'2) at the 
threshold stage Fe2 cannot be determined from the 
plots. And the alternative adoption of the mean 
gradient through all the plotted points may introduce 
appreciable error. With this understanding, the result­ 
ing values of A' I A, as given by equationj are shown in 
the following table. Values of df/d(F2) are wholly 
theoretical, having been calculated from equation 8 by 
giving Fe the appropriate theoretical values shown in 
figure 80.

TABLE 4.—Calculated fractions of cross section of flowing water within which energy loss occurs because of spill resistance

1

Series of runs in figure No.

70B_________-_.___ — ___________

70C_ _______ ____________________

71A....... .....................

71B__ _ -_-__.-.._ _ _____ _ _.

2

Hydraulic
mean

depth (R,
in feet)

0 09
066
09
U66
09
066

f 09
\ 066

3

b/rn

0 22
19
39
33
73
6_!

1 19
99

4

d«/d(F'»)

0 0125
010
023
195
056
Oo7o
072
047

5

ds/d(F2)

0. 0085
.008
.0135
.012
.025
.012
.037
.025

6

Difference,
column 4

minus
column 5

0.004
.002
.0095
.0075
.031
.0255
.035
.022

7

dr/d(F')

0. 60
. oo

1. 156
. oo/

1.515
. 345

2. 14
. oD

8

L/R

22.2
30.3
21.5
-Jo. O

11. 7
lo. 1
12.8
17.4

9

A.' I A.

0. 148
. 105
.176
.264
.242
. 60o
.209
.207

It will be seen from table 4 that the ratio A'fA does 
in fact lie within the range of values expected on the 
assumption that the greater part of the excess energy 
is dissipated in the impact of plunging side-flow g against 
the main stream. And on this assumption the extra 
resisting force predictable from fundamental principles 
is adequate to explain the facts.

DISCUSSION

The foregoing conceptual model, based on funda­ 
mental dynamic principles, appears capable of repro­ 
ducing all the salient experimental features. It ex­ 
plains the reason for the abrupt jump in the rate of 
increase of the flow resistance. It predicts correctly 
the threshold conditions at which this jump occurs, the 
magnitude of the extra resistance, and the general 
trend of its increase. The model also predicts the 
pattern and the scale of the water surface deformation.

The special case chosen is a simple one. But the 
underlying principles should apply to the effects of any 
single and discrete obstacle to the flow, provided the 
obstacle is such as to deflect some part of the flow

which has a velocity comparable with the datum ve­ 
locity u. The effect would not be expected to result 
from the existence of a small obstacle in a shallow 
depth close to the water's edge, for here the velocity 
of the deflected flow might well be considerably less 
than u.

The stage Fe2 at which a discontinuous jump occurs 
in the rate of increase of resistance appears to be deter­ 
mined by the shape of the obstacle as defined by the 
horizontal curvature of its boundary rather than by 
its size. For a small obstacle the relevant cross-sec­ 
tional area A' will be small in relation to the whole 
area A of the stream. But a number of small deflect­ 
ing obstacles in a given length of channel may well give 
rise to as large an extra resistance as a single bend in 
the whole channel.

Moreover, it follows from the theory that it is not 
necessary that the obstacle shall form a part of a bank 
boundary. It could as well take the form of an island. 
This leads to the interesting question: to what extent 
will the effect occur in the case of a submerged island, 
such as an isolated bank or dune? This again leads
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to a consideration of the effect of a meandering thalweg 
in an otherwise straight reach of river.

There thus appears to be scope for a great deal more 
experiment with fixed channels before conditions are 
further complicated by the presence of moving sedi­ 
ment.

A further interesting problem arises from the local­ 
ized nature of the effect. A discrete source of energy 
dissipation has been shown to occur, and this must in­ 
evitably be associated with an equal resisting force ap­

plied at the flow boundary. How far, and where, is 
this extra resisting force concentrated at discrete por­ 
tions of the boundary? It seems probable that if it is 
concentrated in the immediate neighborhood of the 
deflecting obstacle, which at low values of F would tend 
to protect the bank boundaries elsewhere, the obstacle 
would tend to be eroded away if above-threshold values 
of F were to be attained. As a consequence, the 
channel would widen.

PART 3. IMPLICATION OF THE RESULTS

APPLICATION OF EXPERIMENTS TO 
NATURAL CHANNELS

The present experiment appears to have a bearing on 
some aspects of the river width problem from two points 
of view. First, it was found in the experiments that an 
additional resistance became appreciable at a threshold 
defined in terms of the hydraulic Froude number, and 
that the threshold tended to be restricted to limited 
range of values. In most natural rivers, observed 
values of Froude number tend to be less than this 
threshold range of values. This warrants comment and 
further investigation. Second, the observation that 
spill resistance was associated with a concentration of 
stress on some portions of the channel boundary sug­ 
gests a mechanism which under certain conditions may 
contribute materially to adjustments in width of natural 
channels. These two inferences will now be discussed.

The mean Froude number of a river cross section 
expressed in terms of mean velocity and hydraulic 
radius is

_ u
F=

From the average change of velocity and depth (Leopold 
and Maddock, 1953) Jn a downstream direction, the 
downstream change of F with discharge can be expressed
as

With increasing discharge at a given stream cross 
section, on the other hand, Froude number increases as 
a power function of discharge, the exponent having an 
average value of 0.23. The value of F is thus greatest 
at high stage; that is, bankfull stage, and for head­ 
water streams. But even for such conditions, long 
reaches of natural channel practically never achieve 
critical flow (F=1.0) except in some streams whose 
beds are composed predominantly of sand. On the 
contrary, in most rivers values of Froude number are 
much less than unity. A sample of values which occur 
in rivers can be obtained from velocity and depth data 
compiled from gaging station data.

For the computation of bankfull value of F, it was

necessary to restrict the examples to those gaging sta­ 
tions for which an independent determination could be 
made of what discharge or stage represented bankfull 
conditions. These cases (see table 5) included stations 
at which the authors had made field surveys relating 
gage datum to flood-plain level, or where a "flood 
stage" had been determined by actual flood experience, 
or where flood frequency curves could be used to check 
determinations based on a channel cross section. Even 
with these restrictions the determinations of bankfull 
stage for 62 gaging stations in the United States are 
of varying reliability. Once the bankfull stage or dis­ 
charge has been chosen, data on velocity and mean 
depth are readily available. The reliability of the final 
values of F is limited principally in the choice of 
bankfull stage.

TABLE 5.—Frequency distribution of values of Froude number, F, 
for rivers at bankfull stage

Range off
Number
of cases

6
11
13
12
7
8
2
1 1
1
1 J

Percent
of cases

10
18
21
19
11
13
3

5

<0. 20
0. 20-. 25

. 26-. 30

. 31- 35

. 36-. 40

. 41-. 45

. 46-. 50

. 51-. 55

. 56-. 60
>. 60

62 100

Table 5 shows that there is no single value of Froude 
number around which a large percentage of the cases 
are clustered. The salient feature of the data is the 
fact that there is a sharp cutoff at a value of 0.45, 
with only 8 percent (5 stations) of the cases exceeding 
this value, and only one case exceeding 0.60.

Were the value of Froude number at bankfull stage 
a random consequence of various combinations of bank 
materials, river size, and other features representing the 
range of conditions included in the sample, an approxi­ 
mation of a statistically normal distribution curve 
would be expected. In contrast the data do not ap-
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proximate a normal distribution. The sharp diminu­ 
tion observed at a value of 0.45 suggests strongly that 
there exists some kind of threshold beyond which proc­ 
esses operating in a natural channel alter the hydraulic 
relations at channel cross sections in such a way that 
the velocity-to-depth ratio is reduced, and thus the 
Froude number is limited.

Now the range of threshold values, Fc, observed in 
the present experiments is from 0.40 to 0.61 (table 3). 
Beyond Fc spill resistance becomes an appreciable and 
sometimes a dominant part of the flow resistance. The 
coincidence of the range of Fc observed and the cutoff 
value of Froude number in natural rivers is remarkable. 
Some inferences may be drawn from the theory present­ 
ed previously which suggest that this coincidence is not 
merely fortuitous.

From equation 6a the graphs of figure 79 were plot­ 
ted showing the relation of the square of the threshold 
Froude number, F02, to the curvature criterion, b/rm, 
for various values of the parameter a. As explained, 
this parameter is defined as a=d/d, and represents the 
ratio of local depth, d, over an inclined bank to the 
mean depth of the whole channel, "d, beyond which the 
local near-bank velocity no longer is approximated by 
the mean flow velocity in the whole channel. Thus the 
parameter a depends on the relation between bank in­ 
clination and the effect of bank friction in reducing the 
local velocity over the inclined bank. For a given bank 
inclination, the smoother the bank surface the closer 
to the water's edge would the local velocity approxi­ 
mate the mean velocity of the channel; and thus the 
smaller would be the value of a. Looking at figure 79, 
one can see that for any value of 6/rm , the value of the 
threshold Froude number, Fc2, depends on the value of 
a, and by the above reasoning, depends then on the 
roughness of the bank boundary.

The experimental values of Fc2 plotted on figure 79 
suggest a value of a equal to 0.8 for the experimental 
channel. If in natural rivers the value of a were 
slightly smaller, the threshold Fe2 would be appreciably 
reduced, as can be seen in figure 79.

It seems possible that the wide range of values of 
Froude number shown for rivers in table 5 may be due 
to variations in bank roughness from river to river. 
Also differences in Reynolds number from river to 
river would probably cause some variation in a. High 
velocities would probably extend further toward the 
banks at high Reynolds number than at low, and to the 
extent that this were true, high Reynolds numbers 
would tend to be accompanied by lower values of a and 
Fe.

Thus, the theory suggests why the Froude numbers

for various rivers might vary through a range of values 
but are quite sharply limited by an upper value of 
about 0.45.

It is necessary to discuss the elements of a physical 
mechanism by which the onset of spill resistance would 
set the upper limit for Froude number in a river. The 
experiments suggest that this mechanism operates 
through the fact that spill resistance represents a local­ 
ized and concentrated dissipation of energy near the 
banks. It might be expected, therefore, that this local 
dissipation affects bank erosion, or erosion of the bulge 
or projection causing the spill process. Further, the 
energy dissipation increases rapidly after the threshold 
value of Froude number is exceeded, and thus the 
erosion process would probably tend to increase in 
intensity with increase in F above Fe.

SUMMARY

Little is known hi terms of quantitative mechanics 
about how river width is determined and maintained. 
Common observation indicates that among rivers of 
comparable discharge, those with cohesive banks tend 
to be narrow and deeper than those having sandy or 
less cohesive banks. Under certain conditions vege­ 
tation must exert an important control on river width 
by encroachment on bars or banks that then become 
stabilized by roots. The stems and exposed roots also 
locally reduce flow velocity and thus shield the bank 
materials from stress.

Even in the nearly ideal condition of cohesionless 
material, details of width-determining processes are but 
poorly known.

In general the experiments imply that an appreciable 
part of the whole flow resistance pgsR of an irregular 
channel is due to internal energy loss in eddies and 
vortices at local deflections. The thrusts are probably 
borne by the projecting portions of the banks. A con­ 
siderable portion of this thrust will consist of compo­ 
nents normal to the local boundary and therefore of a 
nonerosive nature.

As a result, the river bed on the whole must be 
relieved of a portion of the overall tractive stress pgsR. 
Certain small parts of the bed may experience an exces­ 
sive stress, but these may be expected to relieve them­ 
selves of the tangential component of this excess by 
receding as local depressions.

It may well be, therefore, that a river which is defi­ 
cient of bed material of large enough size to stabilize a 
straight channel may become stabilized in an irregular 
channel merely by creating random bank projections. 
In computing the bed stress necessary to dislodge bed 
material, the present experiments suggest that the stress
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at initial movement may in reality be less than the 
distributed stress given by pgsR.

The same reasoning may have implication to river 
meanders when the basic hydrodynamic mechanism 
becomes better understood. The meander form may 
represent one of the channel patterns to which the above 
generalization applies, only the random bank projections 
are replaced by somewhat symmetrical channel curves.

Finally, the experiments show that a great deal more 
needs to be known about open flow in irregular fixed 
channels in the absence of sediment movement, and 
that research on this subject might well proceed hand 
in hand with further research on sediment movement 
per se.
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APPENDIX

Flume data for fixed-grain channel having various sinuosities

Serial 
No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18
19 
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62

Dis­ 
charge 
(Q,in 
cfs)

0. 0255
.032
.038
.045
.052
.058
.062
.024
.0395
.055
.063
.082
. 103
.115

.017

.025

.031

.037

.042 

.047

.053

.059

.064

.0305

.043

.057

.068

.078

.087

.096

. 108

.115

.023

.030

.037

.042

.046

.051

.041

.055

.066

.077

.084

.092

.022

.028

.031

.033

.036

.0375

.04

.030

.038

.046

.051

.058

.061

.066

.019

.027

.029

.032

Center- 
line 

water 
depth 
(feet)

0.090
.090
.090
.090
.090
.090
.090
.133
.133
. 133
.133
.133
.133
.133

.090

.090

.090

.090

.090 

.090

.090

.090

.090

. 133

.133

.133

.133

. 133

.133

.133

. 133

. 133

.090

.090

.090

.090

.090

.090

.133

. 133

.133

.133

. 133

. 133

.090

.090

.090

.090

.090

.090

.090

. 133

. 133

. 133

. 133

.133

.133

.133

.090

.090

.090

.090

Hy­ 
draulic 
mean 
depth 
(R, in 
feet)

0.066
.066
.066
.066
.066
.066
.066
.090
.090
.090
.090
.090
.090
.090

.066

.066

.066

.066

.066 

.066

.066

.066

.066

.090

.090

.090

.090

.090

.090

.090

.090

.X)90

.066

.066

.066

.066

.066

.066

.090

.090

.090

.090

.090

.090

.066

.066

.066

.066

.066

.066

.066

.090

.090

.090

.090

.090

.090

.090

.066

.066

.066

.066

Water 
surface 

slope («)

0. 00125
. 00175
. 00295
. 00395
.00505
.0062
. 00725
.00033
.00097
. 00146
. 00216
. 00375
.0055
.00754

.00035

.00097

.00166

. 00246

. 00337 

. 00448

. 00559

. 00723

. 00853

.00036

.00097

.00156

. 00239

. 00319

. 00448

.00559

. 00723
. 00853

. 00124

. 00255

. 00370

. 00544

. 00686

. 00914

. 00124

. 00255

. 00370

. 00544

. 00686

. 00914

. 00112

. 00217

. 00297

. 00382

.0050

. 00654

.0080

. 00122

. 00224

. 00299

. 00396

. 00516

. 00658

.0081

.0022

.0042

.0058

.0072

Mean 
velocity 

(u,.in 
fps)

0.560
.703
.835
.989

1.14
1.27
1.36
.32
.53
.73
.84

1.09
1.37
1.53

.374

.549

.681

.813

.923 
1.03
1.16
1.30
1.41
.407
.573
.760
.907

1.04
1.16
1.28
1.44
1.53

.505

.659

.813

.923
1.01
1.12
.547
.733
.880

1.027
1.12
1. 227

.484

.615

.681

.725

.791

.824

.88

.400

.51

.61

.68

.77

.81

.88

.417

.593

.637

.703

w»

0.314
.494
.697
.978

1.30
1.61
1.85
.102
.28
.54
.71

1.20
1.89
2.34

. 140

.301

.464

.661

.852 
1.06
1.35
1.69
1.99
. 166
.328
.578
.823

1.08
1.35
1.64
2.07
2.34

.255

.434

.661

.852
1.02
1.25
.299
.537
.774

1.05
1.25
1.51

.234

.378

.464

.526

.626

.679

.774

. 16

.26

.38

.46

.60

.656

.774

.174

.352

.406

.494

&_«! *~gR

0.148
.233
.329
.461
.613
.759
.873
.035
.096
. 185
.243
.413
.65
.81

.066

. 142

.219

.312

.402 

.500

.637

.797

.939

.057

.113

. 199

.284

.372

.466

.566

.714

.807

. 120

.205

.312

.402

.481

.590

.103

.185

.267

.362

.431

.521

.110

. 178

.219

.248

.295

.320

.365

.055

.088

. 130

. 159

.206

.226

.267

.082

.166

. 192

.233

Froude 
number 

(*)

0.38
.48
.57
.68
.78
.87
.93
.187
.31
.43
.49
.64
.81
.90

.26

.38

.47

.56

.63 

.71

.79

.89

.97

.24

.34

.45

.53

.61

.68

.75

.84

.90

.35

.45

.56

.63

.69

.77

.32

.43

.52

.60

.66

.72

.33

.42

.47

.50

.54

.56

.60

.23

.30

.36

.40

.46

.48

.52

.29

.41

.44

.48

Temp­ 
erature (°F)

63
63
63
63
63
63
63
63
59
59
59
59
59
59

64
64
64
64
64 
64
64
64
64
64
64
64
64
64
64
64
64
64

66
66
66
66
66
66
66
66
66
66
66
66

60
60
60
60
60
60
60
60
60
60
60
60
60
60

64
64
64
64

Remarks

Data plotted in fig. 7QA. Straight
channel.

Data plotted in fig. 70B.
Repeating distance 2I/=4.00 ft.
Amplitude 2-4=0.30 ft.
Thalweg length =4.1 ft.
Sinuosity (thalweg length: valley 

length) = 1.024.

Data plotted in fig. 70C.
Repeating distance 2L=3.87 ft.
Amplitude 24=0.54 ft.
Thalweg length =4.09.
Sinuosity (thalweg length: valley

length) = 1.056.

Data plotted in fig. 71 A.
Repeating distance 2L=2.12 ft.
Amplitude 2-4=0.30 ft.
Thalweg length =2.22 ft.
Sinuosity (thalweg length: valley

length) = 1.048.

Data plotted in fig. 71B.
Repeating distance 2L=2.30 ft.
Amplitude 2-4=0.54 ft.
Thalweg length=2.60 ft.
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Flume data for fixed-grain channel having various sinuosities—Continued

Serial
No.

63
64
65
66
67
68
69
70
71

Dis­
charge
«?,in
cfs)

0.034
.033
.041
.050
.054
.055
.058
.0615
.062

Center-
line

water
depth
(feet)

0.090
. 133
. 133
. 133
. 133
. 133
. 133
. 133
. 133

Hy-
draulic
mean
depth
(R, in
feet)

0.066
.090
.090
.090
.090
.090
.090
.090
.090

Water
surface

slope (s)

0. 0086
.0022
.0039
.0057
.0072
.0078
.0088
.0102
.0118

Mean
velocity
(u, in
fps)

0.747
.440
. 547
.667
. 720
. 733
.773
.820
.827

u2

0.558
. 194
.299
.445
.518
.537
.598
.672
. 684

— ifi
F2 = J1

gR

0. 263
.067
. 103
. 153
. 179
. 185
.206
. 232
.236

Froude
number

(F)

0.51
.26
. 32
.39
.42
.43
.45
.48
.49

Temp­
erature(°F)

64
64
64
64
64
64
64
64
64

Remarks

Sinuosity (thalweg length: valley
length) = 1.1 3.

The following data were not included in the figures or analyses in the present paper because the number of runs in each channel was 
insufficient to define the relation between slope and square of Froude number. The data are published here for the record.

72
73
74

75
76

77
78

0.033
.041
.048

.041

.060

.078

.093

0.090
.090
.090

. 133

. 133

. 133

. 133

0.066
.066
.066

.090

.090

.090

.090

0. 00311
. 00566
.0095

. 00119

. 00311

. 00566

.0095

0.725
.90

1.054

. 547

.80

1.04
1.24

0.526
. 81

1. Ill

. 299

.64

1.08
1. 54

0. 248
. 382
.525

. 103

. 221

.372

.53

0.50
.62
.72

.32

.47

.61

.73

71
71
71

71
71

71
71

Sinuous channel.
Repeating distance 2L=4.00 ft.
Amplitude 24 = 1.14 ft.
Thalweg length =4. 71 ft.
Sinuosity (thalweg length: valley

length) = 1.178
Radius of curvature, rm =1.14 ft.
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