Geology and Paleontology
Of Canal Zone and
Adjoining Parts of Panama
Description of Tertiary Mollusks
(Gastropods: Vermetidae to Thaididae)

GEOLOGICAL SURVEY PROFESSIONAL PAPER 306-B
Geology and Paleontology
Of Canal Zone and
Adjoining Parts of Panama

Description of Tertiary Mollusks
(Gastropods: Vermetidae to Thaididae)

By W. P. Woodring

GEOLOGICAL SURVEY PROFESSIONAL PAPER 306-B

A contribution to the history of
the Panamá land bridge

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959
CONTENTS

Abstract 147
Introduction 147
Additions to annotated bibliography 148
Additions to localities at which fossils were collected 148
Faunal summaries of species 148
Eocene series 148
Gatunillo formation 148
Eocene or Oligocene series 149
Marine member of Bohio (?) formation 149
Oligocene series 149
Bohio formation 149
Caimito formation, exclusive of Madden basin 150
Oligocene and Miocene series 150
Caimito formation of Madden basin 150
Miocene series 150
Culebra formation, including Emperador limestone member 150
Cucaracha formation 150
La Boca marine member of Panamá formation 154
Gatun formation 154
Pliocene series 154
Chagres sandstone, including Toro limestone member 154
Description of Tertiary mollusks—Continued
Gastropods—Continued 154

Page | Description of Tertiary mollusks—Continued
| Gastropods—Continued
| Additional descriptions of species in families covered in chapter A | Page
| Family Trochidae 156
| Family Thiaridae 157
| Family Naticidae 158
| Family Turritellidae 160
| Families not covered in chapter A | 160
| Family Vermetidae 160
| Family Caecidae 162
| Family Architectonidae 163
| Family Helicidae 168
| Family Cerithiidae 170
| Family Epitonidae 182
| Family Strombidae 188
| Family Cypraeidae 193
| Family Ovulidae 196
| Family Atlantidae 197
| Family Cassididae 202
| Family Cassididae? 203
| Family Cymatiidae 207
| Family Bursidae 207
| Family Tonnidae 208
| Family Ficidae 210
| Family Muricidae 214
| Family Thaididae 222

References cited 224
Index 229

ILLUSTRATIONS

[All plates follow index]

PLATE 24. Middle Eocene mollusks from Gatunillo formation and Texas, late Eocene or early Oligocene mollusk from marine member of Bohio (?) formation and late Oligocene mollusk from Bohio formation.

25. Middle and late Eocene mollusks from Gatunillo formation, late Eocene or early Oligocene mollusk from marine member of Bohio (?) formation and late Oligocene mollusk from Bohio formation.

26. Late Oligocene mollusks from Bohio formation and middle member of Caimito formation in Gatun Lake area.

27. Late Oligocene mollusks from middle member of Caimito formation in Gatun Lake area and early Miocene mollusk from Culebra formation.

28. Early Miocene mollusks from Culebra formation, middle Miocene mollusks from Gatun formation and early Pliocene mollusk from Chagres sandstone.

29. Middle and late Miocene mollusks from Gatun formation and early Pliocene mollusks from Chagres sandstone.

30. Middle Miocene mollusks from Gatun formation and early Pliocene mollusk from Chagres sandstone.

31, 33, 36, 38. Middle and late Miocene mollusks from Gatun formation.

32, 35. Middle Miocene mollusks from Gatun formation.

34. Middle Miocene mollusks from Gatun formation and early Pliocene mollusk from Toro limestone member of Chagres sandstone.

37. Middle Miocene mollusk from Gatun formation and early Pliocene mollusks from Chagres sandstone and its Toro limestone member.
DESCRIPTION OF TERTIARY MOLLUSKS (GASTROPODS: VERMETIDAE TO THAIDIDAE)

By W. P. Woodring

ABSTRACT

The description of the mollusks found in the Tertiary deposits of the Canal Zone and adjoining parts of Panama—ranging in age from middle and late Eocene to early Pliocene—started in chapter A, is continued in the present chapter. A total of 104 species and subspecies in 17 families of gastropods (and seven additional species in four families already covered in chapter A) is considered. Ninety-three are formally described under separate headings; the other 18, all represented by inadequate material, are briefly described or merely mentioned.

Notable fossils from the Gatunillo formation, of middle and late Eocene age, include Diocerithium ame (a species of a new genus, evidently of Tethyan affinities, that reached southeastern United States during middle Eocene time), Oostrombus aff. O. chiracensis, Terebellium (Terebellium) procurnum, T. (Seraphs) belemnitum, Eotrichilus cf. E. gaudichaudi, Morum ("Oniscoidea") sp. (the earliest known American species of "Oniscoidea"), and Yasinia aff. Y. papentesta.

The late Eocene or early Oligocene marine member of the Bohio (?) formation has both Eocene and Oligocene faunal affinities, as shown by Architectonica aff. A. aleata, A. cf. A. fungina, Morum cf. M. antiquum, and Typhis aff. T. curvirostratus.

The Bohio formation of Barro Colorado Island, where only the upper part of the formation is exposed, yielded fossils of late Oligocene age, including Hemisinus oeciscus, Turritella bistorta (which seems to be the earliest known species of the T. ocyana group), Orthaulax cf. O. pugnax, and Gonosycyon epomis (the type of a new field genus). Orthaulax is an extinct endemic American genus that has an age range of late Oligocene to early Miocene. Orthaulax cf. O. pugnax also occurs in deposits of late Oligocene age in the Caimito formation of the Gatun Lake area and in the late Oligocene part of the Caimito formation of Madden basin, as well as in the upper part of the Bohio. Orthaulax cf. O. aquadulcis is found in the Culebra formation proper and in its Emperor limestone member, both of early Miocene age.

The upper Oligocene Calmito formation of the Gatun Lake area contains Ampullinopsis spenceri. Ampullinopsis is widely distributed in the Oligocene of western Europe, southeast United States, the Caribbean region, Central America, and northern South America, but recently has been found in the middle or upper Eocene of Florida.

Potamides suprasulcatus, which occurs in the lower Miocene Culebra formation, is found in the Dominican Republic, along the southern border of the Caribbean Sea from Trinidad to Colombia, and also in Ecuador and Peru. Its age range is late Oligocene to middle Miocene.

A new locality in the lower Miocene Cucaracha formation yielded fresh-water snails (Hemisinus aff. H. occidentalis), a crocodile tooth, turtle fragments, an incomplete mammal femur, and minute oögonia of a charophyte (Tectochara aff. T. escheri).

Almost half of the fossils described in the present chapter (44 species and subspecies) are from the richly fossiliferous middle and upper Miocene Gatun formation. They include two species now living in both the Caribbean Sea and the eastern Pacific Ocean (Architectonica nobilis and Murex recurvirostris); genera, subgenera and an unnamed species group that are no longer in the Caribbean Sea but survive in the eastern Pacific Ocean (Astronacus, Ochetoclava, Males, group of Ficus ventricosus and Cymia); and a genus (Sconsia) that formerly lived in both the eastern and the western Pacific Ocean but survives in the Caribbean Sea. Eupleura thompsoni is the first Caribbean species of the genus to be described.

The Chagres sandstone proper, of early Pliocene age, is noteworthy for its relatively large number of epitoniids: species of Epitonium, Stenomytis and Scyta. The fossils of the Chagres also include Bathygalea hadra, a species of a recently described moderately deepwater and deepwater cassid genus.

The 202 forms covered in chapters A and B are estimated to be less than a third of the total available molluscan fauna to be described.

INTRODUCTION

The description of the mollusks found in the Tertiary deposits of the Canal Zone and adjoining parts of Panama—ranging in age from middle and late Eocene to early Pliocene—started in chapter A, is continued in the present chapter. One hundred and eleven species and subspecies, including seven species in families covered in chapter A, are considered. Ninety-three are formally described and the other 18, represented by inadequate material, are briefly described or merely mentioned. The 202 forms so far covered in chapters A and B are estimated to be less than a third of the total available molluscan fauna to be described.

The arrangement of gastropod families adopted in chapter A, based on a combination of Pelseneer's classification and Pilsbry's arrangement for "Biological Abstracts," differs considerably from the arrangement in the Thiele-Wenz classification. The arrangement in the present chapter more closely follows the Thiele-Wenz classification. Though that classification is widely used, it has some unsatisfactory features. At all events, the present chapter completes the Archaeogastropoda of the Thiele-Wenz classification and includes two families of their Mesogastropoda: Mureidae and Thaididae.
The following new generic and subgeneric names are proposed:

Astronacus, subgenus of _Heliacus_, Heliacidae.
Type: _Heliacus planispira_ Pilsbry and Love, Recent, Mazatlán, México, p. 168. Gender masculine.

Dirocerithium Woodring and Stenzel, Cerithiidae, Cerithiinae.
Type: _Dirocerithium wechesense_ Stenzel, n. sp., middle Eocene, Texas, p. 172. Gender neuter.

Gonysycon, Ficidae.
Type: _Gonysycon epomis_ Woodring, n. sp., Bohio formation, Oligocene, p. 213. Gender neuter.

Pananwrex, subgenus of _PazieUa_, Muricidae, Muricinae.
Type: _Murex (Phyllonotus) gatunensis_ Brown and Pilsbry, Gatun formation, Miocene, p. 217. Gender masculine.

PilsbrytyphiS, subgenus of _Typhis_, Muricidae, Typhinae.
Type: _Typhis gabbi_ Brown and Pilsbry, Gatun formation, p. 220. Gender masculine.

ADDITIONS TO ANNOTATED BIBLIOGRAPHY
The following items should be added to the annotated bibliography on pages 5–10 of chapter A.

ADDITIONS TO LOCALITIES AT WHICH FOSSILS WERE COLLECTED
The following new localities at which fossils were collected should be added to those listed on pages 113–130 of chapter A.

<table>
<thead>
<tr>
<th>No. used in this report</th>
<th>USGS Genosote No.</th>
<th>Field No.</th>
<th>Description of locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>43a</td>
<td>RPP19</td>
<td></td>
<td>Bohio formation, Pacific coastal area, Panama</td>
</tr>
</tbody>
</table>

Eocene Series
Gatuncillo Formation
Most of the species from the Gatuncillo formation—and all those that are well preserved—are silicified fossils from locality 38 in the Río Casaya area. _Dirocerithium ame_ is a representative of a genus that is widely distributed in the middle Eocene of the Caribbean region and appeared in the middle Eocene of the Gulf coast of the United States. As the genus appeared earlier in the Caribbean region than in continental North America, it evidently was a migrant—a migrant of Tethyan affinities—from the Caribbean region. _Oostrombus_ aff. _O. chiraensis_, _Ectinochilus_ cf. _E. gaudichaudii_, and _Yasila_ aff. _Y. paytensis_ show Peruvian affinities. _Morum (“Onisoidia”)_ sp. is the earliest known American species of the subgenus “Onisoidia”.

FAUNAL SUMMARIES OF SPECIES
Aside from data covering larger Foraminifera from the Bohio formation at a new locality, faunal summaries and brief comments are presented only for the species covered in this report. As explained in chapter A (p. 4), a full discussion of the faunas, the age and correlation of the formations and the paleoecologic implications of the fossils is reserved for the final chapter.

Contrary to what was done in chapter A, the faunal tables list relative frequency, as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Number of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, rare</td>
<td>1–2</td>
</tr>
<tr>
<td>F, few</td>
<td>3–5</td>
</tr>
<tr>
<td>C, common</td>
<td>6–20</td>
</tr>
<tr>
<td>A, abundant</td>
<td>>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Number of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, rare</td>
<td>1–2</td>
</tr>
<tr>
<td>F, few</td>
<td>3–5</td>
</tr>
<tr>
<td>C, common</td>
<td>6–20</td>
</tr>
<tr>
<td>A, abundant</td>
<td>>20</td>
</tr>
</tbody>
</table>

Additions to localities at which fossils were collected—Con.

<table>
<thead>
<tr>
<th>No. used in this report</th>
<th>USGS Genosote No.</th>
<th>Field No.</th>
<th>Description of locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>122a</td>
<td>19966</td>
<td></td>
<td>Contractors Hill, west side of Gaillard Cut at continental divide, 10-centimeter fossiliferous layer in bentonitic clay, 7 to 9 meters above top of welded tuff. R. H. Stewart, 1956.</td>
</tr>
<tr>
<td>122b</td>
<td></td>
<td></td>
<td>Same locality, bentonitic clay about 10 meters above top of welded tuff. R. H. Stewart, 1956.</td>
</tr>
<tr>
<td>138b</td>
<td>19853</td>
<td></td>
<td>Lower part of Gatun formation</td>
</tr>
</tbody>
</table>

Mollusks from Gatuncillo formation (Vermetidae to Muricidae)

<table>
<thead>
<tr>
<th>Localities</th>
<th>Madden basin</th>
<th>Rio Agua Sucia area</th>
<th>Rio Frigol area</th>
<th>Rio Casaya area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Vermetid?, genus?</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Large cerithid, possibly Campanula.</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Cerithium sp. a</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Ditomoceras sp. b</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Discoceras ane Woodring, n. sp.</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Oostrombus aff. O. obliquus Oslen.</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Terebratula (Terebratula) procerum</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>(Strupe) belemnitellus Palmer</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Eucypraea aff. E. raadshofensis (d'Orbigny)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Cypraea sp.</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Cypresdilia aff. C. subelegans (Fretum)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Gogtus? G. g. novus (Sollasian)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Morum (“Oniscidia”) sp.</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Vania aff. V. polyedrus Osburn</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Eocene or Oligocene Series

Marine Member of Bohio (?) Formation

The mollusks of the marine member of the Bohio (?) formation have both Eocene and Oligocene affinities. **Architectonica aff. A. alveata** is closely related to an Eocene species from northeastern United States; **Architectonica** cf. **A. fungina** seems to be related to an Eocene species from the same region; and **Morum cf. M. antiquum** is similar to an Eocene European species. **Typhis aff. T. curvirostratus**, however, is closely allied to an Oligocene species of southeastern United States.

Mollusks from marine member of Bohio (?) formation (Vermetidae to Muricidae)

<table>
<thead>
<tr>
<th>Localities</th>
<th>Vamos Vamos</th>
<th>Paleotiquila Point</th>
<th>Trinidad Island</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40a</td>
<td>40d</td>
<td>41</td>
</tr>
<tr>
<td>Vermetid?, genus?</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Caracol? sp. a</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Architectonica (Stellatia) aff. A. alveata (Conrad)</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>cf. A. fungina (Conrad)</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Cerithium sp.</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Scalina? sp.</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Morum (“Oniscidia”) cf. M. antiquum (Bayman)</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Flora cf. F. mississippiensis Conrad</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Typhis (Lenaetypus) aff. T. curvirostratus Conrad</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

Oligocene Series

Bohio Formation

During the course of field work at the site of a proposed dam on Rio Lajas (the unnamed stream of plate 1 located 3.5 kilometers east of Las Cumbres, on the Transisthmian Highway), R. H. Stewart found foraminiferal calcareous sandstone at the base of the Bohio formation (locality 43a). W. S. Cole identified the following larger Foraminifera in a sample from this locality.

Larger Foraminifera from basal part of Bohio formation in Pacific coastal area at locality 43a

<table>
<thead>
<tr>
<th>Localities</th>
<th>42d</th>
<th>42f</th>
<th>42g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphinctolina sphinctina Woodring, n. sp.</td>
<td>R</td>
<td>C</td>
<td>?</td>
</tr>
<tr>
<td>Hyperturris (Lepidocyclina) canaliculata Woodring, n. sp.</td>
<td>R</td>
<td>C</td>
<td>?</td>
</tr>
<tr>
<td>Globularia (Globularia) aff. G. escheri (Dall)</td>
<td>R</td>
<td>C</td>
<td>?</td>
</tr>
<tr>
<td>Pseudoswartzia aff. P. pugnax (Gabb)</td>
<td>R</td>
<td>C</td>
<td>?</td>
</tr>
<tr>
<td>Turritella listrotja Woodring, n. sp.</td>
<td>R</td>
<td>C</td>
<td>?</td>
</tr>
<tr>
<td>Syncraterion (Heterostegina) parvula Cushman</td>
<td>R</td>
<td>C</td>
<td>?</td>
</tr>
<tr>
<td>Orthoceras cf. O. pugnax (Belginni)</td>
<td>R</td>
<td>C</td>
<td>?</td>
</tr>
<tr>
<td>Orthoceras aff. O. pugnax (Belginni)</td>
<td>R</td>
<td>C</td>
<td>?</td>
</tr>
<tr>
<td>Canavalia americana Woodring, n. sp.</td>
<td>R</td>
<td>C</td>
<td>?</td>
</tr>
</tbody>
</table>

Other species found include:

- **Architectonica** (as shown on plate 1) completely overlaps the Gatun area, one of which consists of a dense mat of large eupleidina Lepidocyclina.

In the Rio Lajas area, the Bohio formation overlaps part of the Gatuncillo and a short distance farther east (as shown on plate 1) completely overlaps the Gatuncillo and rests on the Cretaceous (?) basement. According to these new collections, the overlapping strata of the Bohio are of late Oligocene age, whereas in the Quebrancha syncline, the basal part of the Bohio is early Oligocene. Moreover, the upper part of the Bohio of the Pacific coastal area contains late Oligocene larger Foraminifera at localities 43 and 45.

The only molluscan faunas of considerable size from the Bohio formation—and the only faunas containing species described in the present chapter—were found in the upper part of the formation on Barro Colorado Island. The collections from Barro Colorado were received too late to be included in chapter A. The species in the families covered by chapter A, however, were listed on page 27. Five of those species (the first five of the following table) are described in the present chapter. These fossils from Barro Colorado are of late Oligocene age. **Turritella listrotja** evidently is the earliest species of the T. ocoyana group to be described. **Orthoceras** cf. **O. pugnae**, which also occurs in the Caimito formation of the Gatun Lake area and in the late Oligocene part of the Caimito formation of Madden basin, is a species of an extinct endemic American genus that has an age range of late Oligocene to early Miocene. **Gonysycyon epomis** is the type of a new fossil genus.
CAIMITO FORMATION, EXCLUSIVE OF MADDEN BASIN

The species in the following table occur in the middle member of the Caimito formation in the Gatun Lake area, in the undifferentiated Caimito of the Rio Mandinga area, and in the Quebrancha limestone member in the Caimito in the Quebrancha syncline. In these three areas the fossiliferous strata are of late Oligocene age.

Though *Ampullinopsis spenceri* was listed on page 31 of chapter A, it is described in the present chapter. The genus *Ampullinopsis* is widely distributed in the upper Oligocene deposits of the Caribbean region but in the area covered by the present report was found only on Pato Horqueto Island (locality 55b). The shallow-water deposits of the Caimito, like the upper part of the Bohio formation on Barro Colorado Island, contain *Orthaulax* cf. *O. pugnax*.

Mollusks from Caimito formation of Gatun Lake area, Rio Mandinga area and Quebrancha syncline (Naticidae to Ficidae)

<table>
<thead>
<tr>
<th>Localities</th>
<th>R</th>
<th>F</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatun Lake Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio Mandinga area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quebrancha syncline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54b</td>
<td>54j</td>
<td>54k</td>
<td>54l</td>
</tr>
<tr>
<td>55b</td>
<td>55c</td>
<td>55d</td>
<td>55e</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>57a</td>
<td>60</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OLIGOCENE AND MIocene SERIES

CAIMITO FORMATION OF MADDEN BASIN

Limestone in the pyroclastic-clay member of the Caimito formation of Madden basin, of late Oligocene age, yielded the following species:

Mollusks from limestone in pyroclastic-clay member of Caimito formation of Madden basin (Strombidae to Ficidae)

A few species in the families covered by this report were found in the early Miocene upper part of the Caimito formation in Madden basin. Locality 82a and probably localities 77 and 79 represent the calcareous sandstone member; the other localities represent the Alhajuela sandstone member, the youngest Tertiary strata in Madden basin.

Mollusks from upper part of Caimito formation of Madden basin (Vermetidae to Ficidae)

<table>
<thead>
<tr>
<th>Localities</th>
<th>77</th>
<th>79</th>
<th>85</th>
<th>85a</th>
<th>88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermetid, genus?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollus sp.</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Ficus carbasea micronematea (Brown and Pilsbry)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CUCARACHA FORMATION

In addition to the mammal femur mentioned on page 39, R. H. Stewart found a crocodile tooth and turtle fragments in the Cucaracha formation at locality 122b. At locality 122a he collected many crushed specimens of a fresh-water snail (*Hemisinus aff. H. oeciscus*), minute oogonia of a charophyte, (identified by E. E. Peck as *Tectochara aff. T. escfori*), and carbonized plant fragments. These fossils support the inference that much of the Cucaracha is nonmarine.
| Locality | 99a | 99b | 99c | 99d | 99e | 99f | 99g | 99h | 100 | 100a | 100b | 101 | 103 | 104a | 105 | 106 | 110 | 106 | 110a | 111 | 11b | 112 | 114 | 115a | 115b | 116 |
|----------|
| Vermetid, genus? | | |
| Architectonica (Pseudodentaria?) sp. | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
| Architectonica (Architectonica) cf. A. nobilis | R | R | | | | | R | | | | | | | | | | | | | | | | |
Mollusks from Gatun formation (Vermetidae to Thaididae)

[R, rare; F, few; C, common; A, abundant; sp., species unidentified; ?sp., genus doubtful, species unidentified]

LOCALITIES

<table>
<thead>
<tr>
<th></th>
<th>Lower part</th>
<th>Middle part</th>
<th>Eastern area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>135</td>
<td>136a</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

- *Petaloconchus* aflat. *P. floridanus* Olsson
- *Architectonica* (Architectonica) *nobilis* Nobilis
- *Heliacus (Astronacus) stonemanae* (Woodring)
- *Rhinoclavis (Ochetolava) costaricana* (Woodring, n. sp.)
- *Implications (Implications*) *nobilis* Nobilis
- *Epitonium (E.) ef. Epodon foliaceicostum* (d'Orbigny)
- *Epitonium (Asperiscala) cf. E. gabbi* Brown and Pilsbry
- *Epitonium (Asperiscala) cf. E. rushii* Brown and Pilsbry
- *Cyrtaconus (Cyrtaconus) henekeni* Sowles
- *Eocypraea (Apiocypraea) kennae* Woodring
- *Protatlanta (Atlantidea) lissa* (Woodring)
- *Semicostum (Semicostum) reclusa* (Guppy)
- *Cymatium (Septa) pileare henikon* (Woodring)
- *Cymatium? (Cymatium?) sp.*
- *Diatoms (Diatoms) demersa polunatens* Todd
- *Murex (Murex) recunirostris recurvitum* Brown and Pilsbry
GASTROPODS: VERMETIDAE TO THAIDIDAE

LOCALITIES

<table>
<thead>
<tr>
<th>Eastern area—Continued</th>
<th>Western area</th>
<th>Eastern area</th>
<th>Western area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle part—Continued</td>
<td>Upper part</td>
<td>Middle part—Continued</td>
<td>Upper part</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>155</th>
<th>156</th>
<th>157</th>
<th>158</th>
<th>159</th>
<th>160</th>
<th>Other Col.</th>
<th>161</th>
<th>162</th>
<th>163</th>
<th>164</th>
<th>165</th>
<th>166</th>
<th>167</th>
<th>168</th>
<th>169</th>
<th>170</th>
<th>171</th>
<th>172</th>
<th>173</th>
<th>174</th>
<th>175</th>
<th>176</th>
<th>177</th>
<th>178</th>
<th>179</th>
<th>180</th>
<th>181</th>
<th>182</th>
<th>183</th>
<th>184</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>F</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
GEOLOGY AND PALEONTOLOGY OF CANAL ZONE

LA BOCA MARINE MEMBER OF PANAMA FORMATION

Strombus sp. (locality 129a), Ficus? sp. (locality 131a), and Thais aff. T. melones (locality 123) are the ony mollusks from the La Boca marine member of the Panama formation in the families covered by this report.

GATUN FORMATION

Almost half (44 species and subspecies) of the fossils described in the present chapter were found in the richly fossiliferous Gatun formation. Helicarix stonemanae is an example of the faunal similarity between the lower part of the Gatun formation and the Cercado formation of the Dominican Republic. Eupleura thompsoni is the first Caribbean species of the genus to be described. The Gatun fossils include two species now living in both the Caribbean Sea and the eastern Pacific Ocean (Architectonica nobilis and Murex recurvirostris); genera, subgenera and an unnamed species group that are no longer in the Caribbean Sea but survive in the eastern Pacific Ocean (AstroTuzcus, Ocheclava, Malea, group of Ficus ventricosa and Cyria); and a genus (Sconsia) that formerly lived in both the eastern and the western Pacific Ocean but survives in the Caribbean Sea.

PLIOCENE SERIES

CHAGRES SANDSTONE, INCLUDING TORO LIMESTONE MEMBER

The Chagres sandstone, including the Toro limestone member, is notable for its relatively large number of epitonids. The fossils of the Chagres proper include Bathygalea hadra, a species of a recently described moderately deepwater and deepwater cassid genus.

DESCRIPTION OF TERTIARY MOLLUSKS—CONTINUED FROM CHAPTER A

GASTROPODS—CONTINUED FROM CHAPTER A

Types and other specimens of Toula's Gastropods from Gatun Formation

The fossils from the Gatun formation described by Franz Toula in 1909 and 1911 (in the publications listed on pages 6, 7, and 134 of chapter A of the present report) were deposited in the Technische Hochschule in Vienna. In the late 1920's the gastropods were borrowed by Dr. R. F. Rutsch, when he was on the staff of the Basel Naturhistorisches Museum and was working on Tertiary Caribbean faunas. Owing to the outbreak of World War II, the specimens were kept in Switzerland. When Dr. Rutsch moved to the University of Bern, the collection was transferred to that institution, but later was returned to Basel. At the suggestion of Dr. Rutsch in April 1957, I wrote to Dr. E. Gasche, Curator of the Geology Department of the Basel Museum, inquiring whether I could borrow the specimens. When Prof. A. Kieslinger, Director of the Geological Department of the Technische Hochschule, kindly gave his approval, they were forwarded to Washington, D.C., with the understanding that they are to be returned to the Technische Hochschule. They have been forwarded recently to that institution. The specimens have no catalog numbers, but the year when they were collected is entered on the labels. Three types and nine other figured specimens are missing. According to a communication from Prof. Kieslinger, the missing specimens are no longer in the collections of the Technische Hochschule, and he has been unsuccessful in attempting to locate them elsewhere.

As outlined by Toula (1909, p. 673–675; 1911, p. 487), the fossils were forwarded by W. Rowland, a former student of Prof. Toula and an engineer of the Isthmian Canal Commission. Rowland collected one lot in 1908 and a second in 1910. “Most” of them were collected at the Gatun Locks site or at the Gatun Dam Spillway. The locality for the remainder was not specified, but all the fossils evidently were found in the middle part of the Gatun formation. Toula (1909, p. 749–758) also examined fossils from the Gatun formation and Pleistocene deposits near Limon Bay in the collections of the Staatsmuseum in Munich. The Gatun fossils in the Munich Museum also evidently were found in the middle part of the Gatun formation.
The following comments cover Toula’s species in the families of gastropods described in chapter A of the present report. The page notation in parenthesis, following the name used by Toula, refers to chapter A. His remaining gastropods are to be taken up in systematic order in the present and later chapters.

Teinostoma cf. carinatum d’Orbigny (p. 89)
Toula, K. k. Geol. Reichsanstalt Jahrb., Band 61, p. 497, pl. 31, figs. 10a-c, 1911.

This minute vitrinitellid is missing. Principally on account of the fairly wide distribution of Teinostoma spermatica Woodring near Gatun (but not at the Gatun Locks or the Gatun Dam Spillway), Toula’s vitrinitellid was referred doubtfully to that species. It was pointed out, however, that his illustrations show an exposed spire and a peripheral carina, and that Pilsby thought Toula’s species is very similar to—perhaps identical with—d’Orbigny’s Recent Caribbean species. For other species Toula’s illustrations are trustworthy. Therefore Teinostoma aff. T. carinatum (d’Orbigny) presumably is to be added to the list of species from the middle part of the Gatun formation.

Cyclostrema quadrilineatum Toula (p. 78)
Toula, K. k. Geol. Reichsanstalt Jahrb., Band 61, p. 497, pl. 31, figs. 11a-c, 1911.

This species also is missing. The identification as Cyclostremicus pentagonus (Gabb) is based on Toula’s illustrations.

Crepidula gatunensis Toula (p. 79)
Toula, K. k. Geol. Reichsanstalt Jahrb., Band 61, p. 498, pl. 31, figs. 12a, b, 1911.

Crepidula gatunensis is the third missing species. Toula’s illustrations of the type, an immature specimen (length 2.8 mm, width 1.8 mm) suggest the species identified in the present report as Crepidula cf. C. maculosa Conrad. As pointed out on page 79, should additional material show that the slipper-shell from the Gatun formation needs a name, C. gatunensis is available.

Capulus? gatunensis Toula (p. 83)
Toula, K. k. Geol. Reichsanstalt Jahrb., Band 58, p. 692, pl. 25, fig. 1 (not fig. 2; see explanation of pl.), 1909.

The only specimen Toula had is the type, illustrated in lateral view. It is immature (length 11.7 mm, width 7.4 mm, height 7 mm) and poorly preserved—partly internal mold, partly inner shell and partly corroded outer shell. The corroded outer shell shows no sculpture, but toward the posterior margin, where the shell is almost or quite gone, there is a faint suggestion of radial sculpture. The part of the specimen that is internal mold shows the impression of what seems to be one side of the cup of Crucibulum. The specimen may be a species of Crucibulum that was crowded during growth and therefore laterally compressed. On page 83 of chapter A Capulus? gatunensis is doubtfully cited under Crucibulum springvaleense Rutsch, described in 1942. Examination of the type confirms Dr. Rutsch’s opinion that Toula’s species is unrecognizable. The only comment that can be added to the discussion on page 83 is that the remark concerning the absence of traces of strong sculpture is irrelevant in view of the absence of outer shell material toward the borders of the fossil. Capulus? gatunensis is considered to be a nomen dubium.

Capulus? sp. (p. 83)
Toula, K. k. Geol. Reichsanstalt Jahrb., Band 58, p. 692, pl. 25, fig. 2 (see explanation of pl.), 1909.

The figured specimen (length 14.5 mm, width 7.8 mm, height 8.3 mm), as surmised from the illustration, is a laterally compressed, poorly preserved, immature specimen of Crucibulum springvaleense Rutsch. Like the type of Capulus? gatunensis, it is partly internal mold, partly inner shell and partly corroded outer shell. The internal mold shows part of the impression of a Crucibulum cup, and on the right side the edge of corroded shell clearly shows coarse radial sculpture.

It should be noted that in the description of Capulus? sp., Toula included the dimensions of both that form and the type of Capulus? gatunensis. Furthermore, in the text, plate 25, figure 2 is erroneously cited for Capulus? gatunensis, whereas in the explanation of the plate that illustration is properly cited for Capulus? sp. Copies of the illustrations, agreeing with the explanation of the plate, are in the vials with the appropriate specimen.

Natica guppiana Toula (p. 86)
Toula, K. k. Geol. Reichsanstalt Jahrb., Band 58, p. 696, pl. 25, fig. 6, 1909.

Four specimens are in three lots, two collected in 1908 and one in 1910. The type (height 18.5 mm, diameter 17.6 mm) is the immature figured specimen of this species of Stigmaulax—the most widespread and must abundant of the Gatun naticids. A specimen of considerably larger size (height 30.5 mm, diameter 28.4 mm) was collected in 1910. Two other naticids in that lot represent Natica stenopa Woodring.

Operculum (sp.1) (p. 86)
Toula, K. k. Geol. Reichsanstalt Jahrb., Band 61, p. 511, pl. 31, fig. 26, 1911.

This naticid operculum is missing. There is no doubt, however, that it is the operculum which has
been found in place in the aperture of Toulas own species, "Natica" guppiana.

Sigaretus (Lupia) gatunensis Toul'a (p. 93)

Toul'a, K. k. Geol. Reichsanstalt Jahrb., Band 58, p. 697, pl. 28, figs. 3a–c, 1909.

Two specimens of this small (possibly on account of immaturity) greatly depressed species of Sinum are in the collection. The larger specimen (height 5.8 mm, diameter 22 mm) is an internal mold, to which patches of corroded shell are attached; the other is an internal mold that has less shell material. The larger was illustrated and is the type.

As noted on page 93 of chapter A, Sinum gatunense is not represented in the collections of the U. S. National Museum and Stanford University. Toula's inadequate specimens, and the fossils from the Bowden formation of Jamaica and the Cercado formation of the Dominican Republic, identified as S. gatunense, show no features to distinguish S. dodonum Gardner, found in the Shoal River formation of Florida, from S. gatunense. It has not yet been demonstrated, however, that any of these fossils can be distinguished from the Recent S. perspectivum (Say), except by their smaller size. S. perspectivum ranges from Virginia to the West Indies and is found in deposits of Pliocene age. The Recent Panamic S. noyesi Dall has somewhat weaker sculpture.

Turritella gabbi Toul'a (p. 102)

Rest type (height 24.5 mm, diameter 9.8 mm) consists of six intermediate whorls of the typical form of Turritella altitira Conrad, one of the most characteristic species in the Gatun formation. As on other specimens found in the lower half of the middle part of the formation, one of the minor spirals between the primaries is stronger and more coarsely noded than the others.

An impression of several whorls in oxidized sandstone, from which a mold was made, was also collected in 1908. Rowland forwarded to Toul'a in 1910 a four-whorled specimen, much larger than the other two.

Turritella conradi Toul'a (p. 108)

Toul'a, K. k. Geol. Reichsanstalt Jahrb., Band 58, p. 694, pl. 25, fig. 4, 1909.

Two specimens, both illustrated under the same figure designation, are in the type lot. The larger (4 whorls, height 34.5 mm, diameter 15.2 mm) is herewith designated the lectotype. As was evident from the illustrations, Turritella conradi is T. gatunensis Conrad, another characteristic species of the Gatun formation.
S. ephnidia is similar to the Recent S. depressa Dall (1889, p. 382), but is not as strongly turreted or as depressed. The Miocene Jamaican S. altiuscula Guppy (Woodring, 1928, p. 322, pl. 36, figs. 6–8; altiuscula by error) is considerably larger, less turreted, and has strongly coarsely noded umbical threads.

S. depressa was described as a variety of S. lacunella (Dall). The types of both forms, both dead shells, were dredged at a depth of 805 fathoms off Havana. S. depressa is represented, however, in a 20-fathom haul from Bimini Island in the Bahamas and S. lacunella is very common at depths of 20 to 100 fathoms along the coast of southern Florida.

Occurrence: Upper part of Bohio formation (late Oligocene), locality 42d.

Family THIARINAE

Subfamily THIARIDAE

Genus Hemisinus Swainson

Swainson, A treatise on malacology, pp. 190–200, 341, 1840.

Type (orthotype, p. 200): *Melania lineolata* Gray (cited as *Melania lineata* on p. 200 and as *Melania lineolata* on p. 341), Recent, Jamaica.

Subgenus Longiverena Pilsbry and Olsson

Type (logotype, Wenz, Handbuch der Palaeozoologie; Gastropoda, pt. 3, p. 719, 1939); *Hemisinus tuberculatus* (Wagner) (*Melania tuberculata* Wagner), Recent, Brazil.

Hemisinus tuberculatus was indicated as the type by Pilsbry and Olsson, but the term type was inadvertently omitted. To claim that that species is the monotype because it was the only species cited on page 11, where *Longiverena* was first mentioned, is a strained interpretation. Page precedence does not deserve the emphasis that is now being attached to it, for it is not real precedence.

The species of the subgenus *Longiverena* are elongate and have axial and spiral sculpture.

Hemisinus (Longiverena) oeciscus Woodring, n. sp.

Plate 25, figures 1–4, 9, 10

Of medium size, somewhat turreted, rapidly enlarging, spire whorls slightly inflated. Axial sculpture consisting of wide flat ribs, practically straight on early whorls, gently curved on later whorls, 12 or 13 on last few whorls. Ribs disappearing on body whorl or penultimate whorl, or represented only by low broad swellings on posterior part of whorl. Spiral sculpture consisting of low flat bands, separated by very narrow interspaces and overriding axial ribs without forming nodes, four or five on later spire whorls, generally absent on body whorl of large specimens, except seven or eight on anterior half of whorl. Posterior half of outer lip, as shown by growth lines (which have same curvature as axial ribs), forming a shallow wide indentation. Basal spout very narrow.

Height (incomplete) 12 mm, diameter (slightly increased by crushing) 6.5 mm (type). Height (incomplete) 15.2 mm, diameter (slightly increased by crushing) 8 mm (larger paratype).

Type: USNM 562558; 2 paratypes, USNM 562559; paratype, Stanford University.

Type locality: 42f (USGS 18886, Barro Colorado Island, northern part of island, stream southeast of Fuertes House, about 335 meters above mouth, from slide on west side of stream, Canal Zone), upper part of Bohio formation.

The type evidently is not mature, as less complete specimens indicate a size about a third larger. Though 18 specimens of this species were collected from the Bohio formation at locality 42f, where marine, brackish-water and fresh-water mollusks were found, none is well preserved. If all are properly referred to one species, both whorl profile and sculpture are variable. The body whorl of some incomplete large specimens has a strong concave construction adjoining the suture. The type shows the beginning of such a constriction (pl. 25, fig. 10). Both axial ribs and spiral bands tend to disappear on the body whorl. The most aberrant specimen, of which only a little more than two whorls remains, has almost coronate stubs of axial ribs adjoining a sutural constriction.

Hemisinus oeciscus appears to be an exceptional form of a group of Oligocene, Oligocene (?), and Miocene (?) species found in Cuba, Antigua, the Magdalena Valley of Colombia, the upper Amazon valley of Brazil and Peru, and Ecuador. It is most similar to the Oligocene Antiguan *H. atriformis* C. W. Cooke (1919, p. 118, pl. 3, figs. 4, 5), which also enlarges rapidly but has spirals that are somewhat swollen as they override the axial ribs. The axials and spirals of *H. atriformis* are persistent, and so are the axials and spirals of the other species of the group just mentioned, all of which are more elongate than *H. atriformis* and *H. oeciscus*.

Occurrence: Upper part of Bohio formation (late Oligocene), locality 42f.

Hemisinus (Longiverena) aff. H. oeciscus Woodring, n. sp.

Many specimens of a species of *Hemisinus* occur in bentonitic clay of the Cucaracha formation on the face of Contractors Hill, on the southwest side of the Pan-
ama Canal at the continental divide (pl. 2). As a result of compaction of the clay, all these fossils are flattened and none can be extracted from the rock. Only a small part of the shell material is preserved. In size, general outline and sculpture this species is unavailable or poorly shown on the fossils from the new material, however, shows some features that were tractors Hill, also contains minute charophyte oogonia, the welded tuff in the Cucaracha described on p. 54.

One of the large specimens is somewhat turreted. One of the large specimens cannot be determined, however, whether the spire of the specimens from the Cucaracha formation is somewhat turreted. One of the large specimens is 16 mm high and 7 mm in diameter, but the diameter is slightly increased by crushing.

These fossils were found by R. H. Stewart, of the Panama Canal Company, in a layer of fossiliferous clay (thickness 10 cm) 7 to 9 meters above the top of the welded tuff in the Cucaracha described on p. 54. The fossiliferous layer, which Mr. Stewart traced for a distance of about 155 meters across the face of Contractors Hill, also contains minute charophyte oogonia, identified by R. E. Peck as Tectochara aff. T. escheri (Braun), and carbonized plant fragments.

Occurrence: Cucaracha formation (early Miocene), locality 122a.

Family NATICIDAE

Subfamily GLOBULARINAE

Genus Globularia Swainson (see p. 94)

Subgenus Globularia s. s.

Globularia (Globularia) aff. G. fischeri (Dall)

Plate 26, figures 16, 18, 19

A moderately large, greatly inflated _Globularia_ is one of the most abundant species in the Bohio formation at locality 42d on Barro Colorado Island. About 40 specimens, ranging in height from 2.5 to 35 mm, were collected and more than that number were discarded as incomplete molds. This _Globularia_ is identified as the species from the Caimito and Culebra formations described in chapter A as _Globularia_ aff. _G. fischeri_. The new material, however, shows some features that were unavailable or poorly shown on the fossils from the Caimito and Culebra. These features indicate that the species of the Bohio formation, though closely allied to _G. fischeri_, can be distinguished from that form. Nevertheless it is not named as a new subspecies or species, for no adult specimen is well enough preserved to serve as a type. The only specimens retaining the greater part of the thin shell are immature, like that shown on plate 26, figure 16. Accentuated growth lines are much stronger than on _G. fischeri_; they are so strong and so evenly spaced that they practically constitute sculpture. The spire of immature shells is higher and more strongly turreted than that of _G. fischeri_. Some immature shells, like some immature shells of _G. fischeri_, show faint, nonpersistent widely spaced spirals.

Additional occurrence: Upper part of Bohio formation (late Oligocene), locality 42d.

Genus Pachycrommium Woodring (See p. 96)

Pachycrommium aff. P. guppyi (Gabb)

A minute shell (height 9.7 mm, diameter 5.5 mm), which shows part of the apertural features, and a small mold (height, minus early whorls, 20 mm, diameter 15.5 mm) were found in the upper part of the Bohio formation on Barro Colorado Island. The mold, which lacks the early whorls, resembles the high-spired globularine from the Culebra formation described as _Pachycrommium_ cf. _P. guppyi_ (p. 97 of chapter A, pl. 16, fig. 12), but is not quite as strongly shouldered. The minute shell has a higher and more slender spire than specimens of _P. guppyi_, the type of the genus, of the same size.

This material shows that a species of _Pachycrommium_, allied to _P. guppyi_, occurs in strata of late Oligocene age in the Canal Zone.

Occurrence: Upper part of Bohio formation (late Oligocene), locality 42d.

Genus Ampullinopsis Conrad

Type (monotype): Ampullinopsis mississippiensis (Conrad) (Natica mississippiensis Conrad), Oligocene, Mississippi.

Ampullinopsis is found in the Oligocene of western Europe, southeastern United States, the Caribbean region, Central America, and northern South America. It therefore is an expectable fossil in the Oligocene of the Canal Zone, but was not found there until fossils were collected from conglomerate of the Caimito formation on Pato Horqueto Island.

Despite statements to the contrary (Dall, 1909, p. 90), _Ampullinopsis_ is not known to occur on the Pacific coast of the United States or farther north. With the exception of _A. citrinensis_ Palmer (Richards and Palmer, 1933, p. 26, pl. 3, figs. 10, 11), from the middle or upper Eocene of Florida, in America the genus has an age range of early Oligocene to the early part of early Miocene. The very incomplete molds from the island of Anguilla doubtfully identified as _Ampullinopsis spenceri_ (C. W. Cooke, 1919, p. 124) probably repre-
sent *Globularia anguillana* (Cooke), which may be a synonym of *G. fischeri* (Dall).

Ampullinopsis spenceri (Cooke)

Plate 27, figures 2, 5, 7, 8

Ampullinopsis spenceri (Cooke), Woodring, U. S. Geol. Survey Prof. Paper 306, p. 31 (list), 1937 (Oligocene, Canal Zone).

Moderately large, moderately thick-shelled, low-spired, body whorl strongly inflated. Sutural channel deep, moderately wide. Outer border of sheath (shell layer emerging from umbilicus) marked by a well-defined rim, forming a shelf on well-preserved specimens. Lobe (downward extension of parietal callus) thick, generally completely closing umbilicus only at a late stage (height 47.5 mm), exceptionally closing it completely at an early stage (height 16 mm). Height (practically complete) 47.5 mm, diameter (incomplete) 42.5 mm (larger figured specimen). Height (practically complete) 36.5 mm, diameter (almost complete) 36.5 mm (smaller figured specimen).

Type material: 2 syntypes, USNM 167031.

Type locality: Antigua, Antigua formation.

The shells of *Ampullinopsis* are more or less similar wherever they are found and it still is uncertain how many species are to be recognized. The fossils from the Canal Zone are identified as *A. spenceri*, which was based on three specimens, all of which were illustrated. These three specimens have a well-defined rim, even the largest (C. W. Cooke, 1919, pl. 5, fig. 3), which is somewhat worn. In strength of rim, width and thickness of lobe, height of spire, and inflation of body whorl, the best preserved among 17 specimens collected in the Canal Zone closely resemble the better preserved of the two syntypes of *A. spenceri*. They have a slightly narrower sutural channel, however, and show no traces of faint spiral lineation. Such spiral lineation is not unusual among globularines and evidently is not a specific character. It is not shown by the largest Antiguan specimen, but its absence may be the result of wear. The larger figured specimen from the Canal Zone (the largest found) has a less distinct rim. It is worn, however, and has a badly damaged lobe.

A. spenceri is closely allied to the last surviving North American species, *A. amphora* (Heilprin) (1887, p. 112, pl. 16, fig. 50), of the lower Miocene Tampa limestone of Florida. As noted by Cooke, *A. amphora* has a higher spire. The type (height about 110 mm.), a less complete large specimen of comparable size (USNM 112947) and one of intermediate size have an open umbilicus and thinner lobe than *A. spenceri*. The type and a fragment in the U. S. National Museum have a sharply defined rim, but no rim is apparent on the large specimen just mentioned, which was worn and corroded before it was silicified. A larger suite from Florida may indicate that the Caribbean form is to be assigned to *A. amphora*.

A. mississippiensis (Conrad) (1848, p. 114, pl. 11, fig. 10), of the Vicksburg group, was the first American species to be named. The outer edge of the sheath of that species is marked by a bending and accentuation of the growth lines rather than by a rim, except near the base of the aperture where a rim is recognizable. The thick lobe generally closes the umbilicus at an early stage, even at a height of 14 mm. Of about 60 specimens examined, one (restored height about 22 mm.) has an incompletely closed umbilicus. The sutural channel on the later half of the body whorl of large specimens is wider than that of *A. spenceri* of the same size. As has long been recognized, *A. mississippiensis* closely resembles the Oligocene European *A. crassatina* (Lamarck). Perhaps they can be distinguished by the wider sutural channel on the body whorl of large specimens of the American form.

If *A. spenceri* occurs in Antigua and the Canal Zone, it is to be looked for elsewhere in the Caribbean region. No unequivocal examples have so far been found. The late Oligocene Puerto Rican "Natica (Ampullina?*) collazoensis Hubbard is practically unrecognizable as described and illustrated. An exceptionally well preserved large *Ampullinopsis* (height 73 mm), collected by A. D. Zapp and H. R. Bergquist in the type region of "Natica" collazoensis, can hardly be *A. spenceri*, despite the sharply defined rim and faint spiral lineation. The lobe is thin and overlaps the rim about halfway between the base of the aperture and its top, instead of at a point about four-fifths of the distance between the base and top. *Ampullinopsis*, possibly the species collected by Zapp and Bergquist, reaches an enormous size in Puerto Rico. Many years ago a resident of the island presented to David White, while he was Chief Geologist of the U. S. Geological Survey, a mold that has a diameter of about 185 mm. It was picked up at an unknown Puerto Rican locality and served as a door stop. A Miocene Fijian globularine of comparable size (diameter 142 to 215 mm) was described by Ladd (1934, p. 212, pl. 36, figs. 7, 8,
pl. 37, figs. 1, 2, pl. 38, fig. 1) as Globularia (Waluia) edwardsi.

Joukowsky’s “Ampullina” amphora was found in late Oligocene deposits in the Santiago area near Macaracas, in the interior of the Los Santos Peninsula of western Panamá. His description strongly suggests A. spenceri. The only available specimens, collected on a tributary of Rio Mariato, on the west side of the peninsula, are badly preserved. Though they have apertural features like those of A. spenceri, their body whorl is less inflated: Olsson’s Peruvian A. spenceri also has a slightly less inflated body whorl and the body whorl of a large Venezuelan form, A. santagana (F. Hodson) (Hodson, Hodson and Harris, 1927, p. 72, pl. 38, fig. 8, pl. 39, figs. 1, 2.), is decidedly less inflated. Perhaps the somewhat or markedly flattened body whorl of these fossils from Panamá, Perú, and Venezuela is the result of deformation. Insofar as they show other features, they are otherwise similar to A. spenceri.

A. spenceri is said to occur in deposits of late Eocene age in Perú (Stainforth, 1955, p. 2,076). Confirmation of this occurrence is desirable. The claim that Ampullinopsis is a brackish-water genus (Stainforth, 1953, p. 255) is based on no known justification.

Occurrence: Middle member of Caimito formation (late Oligocene), Gatun Lake area, locality 55b. Antigua formation (late Oligocene), Antigua. San Sebastián formation (late Oligocene), Puerto Rico (identification doubtful). Late Oligocene, Santiago area, Panamá (identification doubtful). Late Oligocene, Perú and Ecuador (identification doubtful).

Family TURRITELLIDAE

Genus Turritella Lamarck (see p. 97)

Subgenus? (Merriam’s T. ocoyana stock)

Turritella listrota Woodring, n. sp.

Plate 26, figures 1, 6, 7

Of medium size, slender, late whorls almost flat. Earliest preserved whorls sculptured with two primary spirals: one at middle of whorl, the other about halfway between it and anterior suture, the anterior one modifying whorl profile. Earliest preserved whorls also bearing very fine secondary spirals. With further growth, secondary spirals become as strong as the two original primaries. Late whorls almost flat, though constricted at sutures. Sculpture of late whorls consisting of seven to nine almost uniformly spaced primary spirals. A fine secondary is present in some interspaces and one or two generally stronger secondaries near anterior and posterior suture. Base sculptured with weak closely spaced spirals. Growth-line sinus very shallow and wide, the apex near anterior suture. Growth-line angle very wide.

Height (incomplete, 6 whorls) 35 mm, diameter 11 mm (type). Height (incomplete, 7 whorls) 18.5 mm, diameter 6.5 mm (paratype).

Type material: Type, USNM 562561; paratype, USNM 562562; paratype, Stanford University.

Type locality: 42d (USGS 18837, Barro Colorado Island, northern part of island, stream heading west of Miller Trail near Miller 17, about 100 meters above mouth, Canal Zone), upper part of Bohio formation.

Turritella listrota is fairly abundant at the type locality and is represented by a few doubtfully identified, poorly preserved fragments from locality 42g. Despite the almost flat outline of late whorls, this species is related to the early Miocene *T. venezuelana* Hodson and other species of the *T. ocoyana* group, and appears to be the earliest species of the group to be recognized. *T. venezuelana* occurs in the Culebra formation and is described in chapter A of the present report (p. 106, pl. 16, figs. 8, 9). Immature whorls of *T. listrota* enlarge less rapidly than those of *T. venezuelana* and are not as strongly carinate at the anterior primary spiral. *T. listrota* is larger and not only loses at an early stage the carina formed by the anterior primary spiral, but also soon loses the convex whorl profile. A form included in *T. venezuelana quirosana* by Hodson (1926, p. 34, pl. 22, fig. 9) has somewhat flattened whorls, but no form of that variable species has the strongly flattened whorls of *T. listrota*.

Similar larger and more convex-whorled species are found in the Miocene of Perú and Ecuador: *T. infracarinata* Grzybowski (Olsson, 1932, p. 196, pl. 22, fig. 8; Marks, 1951, p. 101, pl. 6, figs. 1, 14; p. 103, pl. 6, fig. 12) and *T. prenuncia* Spieker (Olsson, 1932, p. 193, pl. 23, figs. 8, 9).

Occurrence: Upper part of Bohio formation (late Oligocene), localities 42d, 42g (identification doubtful).

FAMILIES NOT COVERED IN CHAPTER A

Family VERMETIDAE

Unidentified or doubtful vermetids occur in the Gatuncillo formation, the marine member of the Bohio (?) formation, the Culebra formation, the Alhajuela sandstone member of the Caimito formation, and the Gatun formation.
Genus Serpulorbis Sassi

Type (monotype): Serpulorbis polyphragma Sassi (=Serpula arenaria Linne), Recent, Mediterranean Sea.

Chavan (1944, p. 335–338) has discussed the unsatisfactory status of Lemintina Risso, a name that has been used for this genus of vermetids (Woodring, 1928, p. 345). He found in the Paris Museum of Natural History the type material of Lemintina cuvieri Risso (the monotype of Lemintina), consisting of two broken tubes (Chavan, 1944, fig. 15), and concluded that the tubes are those of an annelid. Risso’s illustrations of a vermetid-like animal in and withdrawn from a tube, reproduced by Chavan (1944, fig. 3), cannot be taken seriously. Though the outline of the animal is vermetid, the foot bears a rosette that would be unique in a gastropod.

Serpulorbis papulosus (Guppy)

Plate 29, figure 13

Vermetus papulosus (Guppy), Geol. Soc. London Quart. Jour., v. 22, p. 292, pl. 17, fig. 3, 1866 (Miocene, Jamaica).

Serpulorbis papulosus (Guppy), Weisbord, Bull. Am. Paleontology, v. 14, no. 54, p. 35, pl. 8, fig. 13, 1929 (Miocene, Colombia).

Vermetus (Lemintina) papulosus Guppy, Rutsch, Schweizer. Palaeont. Gesell. Abh., Band 54, no. 3, p. 46, pl. 1, fig. 14, pl. 2, fig. 1, text fig. 6, 1984 (Miocene, Venezuela).

Relatively large, irregularly curved tubes. Sculpture very strong to subdued, dominated by widely spaced heavy spirals bearing widely spaced swollen knobs. Between the knobbed spirals are one to three crudely noded narrower spirals.

Length 37 mm, greatest diameter 9.5 mm (largest fragment). Length 16 mm, greatest diameter 8.8 mm (figured fragment).

Type: British Mus. (Natural Hist.), Geol. Dept. 64081.

Type locality: Jamaica (Bowden), Bowden formation.

The middle part of the Gatun formation yielded three short lengths of tubes representing late stages of a vermetid, identified as Serpulorbis papulosus on the basis of the widely spaced swollen knobs. As usual in vermetids, the sculpture is of variable strength depending on the growth stage. S. papulosus is widely distributed in the Miocene of the Caribbean region and is recorded from the Miocene of Florida. The swollen knobs distinguish it from S. graniferus (Say), from the Miocene of eastern and southeastern United States (Mansfield, 1930, p. 102, pl. 14, fig. 4), and the Recent West Indian species known as S. decussatus (Gmelin), which occurs in the Pliocene of Florida (Olsson and Harbison, 1953, p. 305, pl. 46, figs. 3–3c).

Occurrence: Middle part of Gatun formation (middle Miocene) eastern area, localities 155, 155c, 157. Bowden formation (middle Miocene), Jamaica. Miocone, Cuba. Cercado and Gurabo formations (middle Miocene), Dominican Republic. Middle Miocene, Columbia. Punta Gavilán formation (late Miocene), Venezuela. Brassó formation (early middle Miocene) and Springvale formation (late Miocene), Trinidad. Middle Miocene, Costa Rica. Shoal River formation (middle Miocene), Florida.

Genus Petaloconchus Lea

Type (monotype): Petaloconchus sculpturatus Lea, Miocene, Virginia.

The type species was not described when the generic name was proposed. According to Opinion 40 of the International Commission on Zoological Nomenclature, such names are nomenclaturally available. This is a legalistic matter, for the type species was described and illustrated three years later (Lea, 1846, p. 233, pl. 34, fig. 3).

Petaloconchus aff. P. floridanus Olsson and Harbison

Plate 29, figure 9

Small to moderately large tubes coiled in a short irregular open cylinder or in an irregular coil. Protoconch, presumably representing this species, consisting of at least three rapidly enlarging smooth whorls of hydroboid outline. Slender tube immediately following protoconch sculptured with very closely spaced axials. Later sculpture more or less reticulate, generally strong except toward apertural end of tube; consisting of moderately strong spirals and closely spaced axials, which are swollen as they cross the spirals. Columellar lamellae not present were columellar wall is exposed.

Height of coil 22 mm, greatest diameter of tube 6 mm (figured specimen).

The genus Petaloconchus is represented in the Gatun formation, but the representation is so meager that specific identification is uncertain. The figured irregular coil (locality 155b), an irregular cylinder (locality 155), and two short irregular cylinders seated on a Serpulorbis papulosus tube (locality 157) (all
from the middle part of the Gatun formation in the eastern area near Gatun) have strong more or less reticulate sculpture and none grew in a fairly regular cylinder. The sculpture and growth habit suggest the generally smaller *Petaloconchus floridanus* Olsson and Harbison (1953, p. 304, pl. 46, fig. 2, 2a). That species was based on Pliocene fossils from southern Florida and is still living in southern Florida and the West Indies. The names *P. varians* (d'Orbigny) (1834–47, p. 456, pl. 54, figs. 7–10) and *P. irregularis* (d'Orbigny) (1841–47(?), v. 1, p. 235, pl. 17, fig. 16) have been used for it, but according to d'Orbigny's illustrations his *Vermetus varians* may not be an appropriate name and his *Vermetus irregularis* certainly is not appropriate. Several protoconchs and the succeeding earliest sculptured tube are cemented to the figured specimen from the Gatun formation. Though they presumably represent the same species as the coil to which they are attached, they do not reach a stage advanced far enough to confirm the identification. The cast recorded by Brown and Pilsbry as *Petaloconchus domingensis* probably is the species identified as *P. aff. P. floridanus*.

A very small irregular coil from the middle part of the Gatun formation in the western area (locality 162), a small incomplete more regular coil ending in a straightened tube collected in the same region (locality 162a), and a larger irregular coil from the upper part in the eastern area (locality 178) have subdued sculpture. They are identified as *Petaloconchus* sp. They may be specimens of *P. aff. P. floridanus* that do not have typical sculpture or specimens of *P. sculpturatus* Lea (1846, p. 233, pl. 34, fig. 3) that do not have the typical growth habit. The typical growth habit of *P. sculpturatus*, the type of the genus, is a fairly regular open cylinder reaching a height of as much as 30 mm. The sculpture consists of weak crudely noded spirals, the nodes being more or less joined across the tube. The growth form, of course, ranges from fairly regular cylinders to irregular coils and the sculpture is of variable strength. It is not, however, as strong or as reticulate as that of *P. aff. P. floridanus*.

P. sculpturatus occurs in the Miocene of eastern and southeastern United States and in the Miocene of the Caribbean region (Dominican Republic, Puerto Rico, Costa Rica, Colombia, Venezuela). Miocene fossils from the northern part of the Dominican Republic were named *P. domingensis* at an early date (Sowerby, 1850, p. 51, pl. 10, fig. 9). That name has been used for Caribbean fossils as a separate species or as a subspecies of *P. sculpturatus*. Caribbean fossils, however, also have been assigned to the typical form of *P. sculpturatus*. So far no satisfactory basis for distinguishing *P. domingensis* has been pointed out. *P. alcimus* Mansfield (1925, p. 51, pl. 9, figs. 2–4), of the late Miocene Springvale formation of Trinidad, is characterized by large fairly regular cylinders and subdued sculpture. It may be treated as a subspecies of *P. sculpturatus*. Böse's illustrations of his *P. pulcher* (Böse, 1906, p. 32, pl. 3, figs. 22, 23; Miocene, Oaxaca, Mexico) suggest that it is *P. sculpturatus*.

P. sculpturatus occurs in both the Cercado and the Gurabo formations of the Dominican Republic, but is far more abundant in the Gurabo. That formation also has yielded another species: *P. laddfranklinae* Maury (1917, p. 128, pl. 22, fig. 12), which has slender, almost straight, twisted tubes arising from a small irregularly coiled base. The tubes are sculptured with sharply noded widely spaced spirals.

Occurrence: Middle part and possibly also upper part of Gatun formation (middle Miocene). Middle part, eastern area, localities 155, 155b, 157; western area, locality 162 (*Petaloconchus* sp.), 162a (*Petaloconchus* sp.). Upper part, eastern area, locality 178 (*Petaloconchus* sp.).

Family CAECIDAE

Genus Caecum Fleming

An incomplete and poorly preserved fossil collected at Vamos Vamos (locality 40d) suggests the occurrence of *Caecum* in the marine member of the Bohio (?) formation. Two species of the genus were found in the Gatun formation, but neither is represented by adequate material.

Caecum cf. C. regulare Carpenter

A small strongly curved tube, rapidly enlarging toward the anterior end, is sculptured with closely spaced annular rings that are wider near the anterior end than elsewhere. This tube represents the intermediate stage of a *Caecum* sculptured like the Recent West Indian species identified as *C. regulare*. The length of the fossil is 2 mm and the maximum diameter 0.5 mm.

C. regulare occurs in the Pliocene of southeastern United States (Olsson and Harbison, 1953, p. 317, pl. 45, figs. 2, 2a–c). A weakly sculptured, perhaps worn, early Miocene member of the *C. regulare* group from Trinidad has been named *C. properegulare* (Mansfield, 1925, p. 50, pl. 8, fig. 6).

Occurrence: Lower part of Gatun formation (middle Miocene), locality 138a.
GASTROPODS: VERMETIDAE TO THAIDIDAE

Meioceras of C. anellifer Pilsbry and Johnson

A minute imperfect tube (length 1.2 mm, maximum diameter 0.3 mm) evidently is immature. It is faintly sculptured with closely spaced, very low annular rings and closely spaced, very low axial ribs. The sculpture is so faint that it would disappear even with slight wear. The sculptural pattern suggests Caecum anellifer (Pilsbry, 1922, p. 378, fig. 18), which was based on a Miocene fossil collected by Gabb at an unknown locality in the Dominican Republic. A form comparable to C. anellifer is found in the Miocene of Jamaica (Woodring, 1928, p. 350, pl. 26, fig. 10).

Occurrence: Middle part of Gatun formation (middle Miocene), eastern area, locality 147i.

Genus Meioceras Carpenter

Type (logotype, Cossman, Essais de paléontochologie comparée, pt. 9, p. 154, 1912): Meioceras cornucopiae Carpenter, Recent, West Indies.

Meioceras amblyoceras Woodring, n. sp.

Plate 31, figure 1

Moderately arched, moderately inflated, greatest inflation at about anterior third of length. Anterior part rapidly tapering to form the narrow very oblique aperture. Plug flat, terminating in a sharp apex at dorsal edge.

Length 2.1 mm, diameter of aperture .5 mm (type).

Type: USNM 562591.

Type locality: 155a (USGS 16970, spoil dump of Gatun Third Locks excavation, units 11 and 12 of section [chapter A, p. 44], Canal Zone), middle part of Gatun formation.

Meioceras amblyoceras, like the other caecids, is represented by one specimen. It is the third species of the genus to be recognized in the Tertiary deposits of tropical America. It evidently is not closely allied to either of the other two species, both of Miocene age: the slightly inflated, dome-plugged Meioceras constrictum (Gabb) (Pilsbry, 1922, p. 378, fig. 17), from the Dominican Republic, and the Jamaican Meioceras apanium Woodring (1928, p. 351, pl. 26, figs. 11, 12), which has a bulging equator. Meioceras amblyoceras appears to be more closely allied to the Recent Caribbean and Floridian Meioceras nitidum (Stimpson). That species, however, has a less contracted aperture and a more convex plug. The degree of inflation of Meioceras nitidum is variable, ranging from less inflated than Meioceras amblyoceras to more inflated than it. Meioceras nitidum occurs in the Pliocene of southern Florida and has been recognized in the upper Miocene of western Florida (Mansfield, 1930, p. 102, pl. 14, fig. 6).

Occurrence: Middle part of Gatun formation (middle Miocene), eastern area, locality 155a.

Family ARCHITECTONICIDAE

Genus Architectonica Röding

Röding, Museum Boltenannum, p. 78, 1798.

Type (logotype, Gray, Zool. Soc. London Proc., p. 151, 1847; Architectonum by error): Architectonica perspectiva Röding (=Trochus perspectives Linné), Recent, tropical western Pacific Ocean.

Gray designated Trochus perspectives as the type without mentioning Röding's name for that species.

The genus Architectonica occurs in the marine member of the Bohio (?) formation, the Caimito, Culebra, and Gatun formations, and the Chagres sandstone, but the material from the Bohio (?) and Culebra formations is very meager.

Subgenus Stellaxis Dall

Type (orthotype): Solarium alveatum Conrad, Eocene, Southern United States.

Architectonica (Stellaxis) aff. A. alveata (Conrad)

Hill's principal Vamos Vamos collection includes a poorly preserved Architectonica (height 7 mm, diameter 15.3 mm). It has a peripheral cord and a cord on both dorsal and ventral surfaces adjoining the peripheral cord. The ventral cord is a little farther from the peripheral cord than that on the dorsal surface. The remainder of the shell is smooth, aside from poorly exposed coarse corrugations at the umbilical border. A better preserved half whorl of the same species was found near Palenquilla Point. It shows to good advantage the spiral cords and the coarse corrugations at the umbilical border. It also shows very faint microscopic spiral lineation on dorsal and ventral surfaces. The umbilical wall is inaccessible.

This species was labeled and listed by Dall as "Solarium" alveatum Conrad. Architectonica alveata occurs in the middle Eocene (Palmer, 1937, p. 173, pl. 19, figs. 8–18) and upper Eocene (Harris and Palmer, 1936–47, p. 276, pl. 32, figs. 9–11, 1947) of the Gulf coast of the United States. Early unworn whorls have weak retractive axial wrinkles, strongest at periphery and suture. The dorsal cord of the Canal Zone form is somewhat stronger than that of A. alveata, but the features of the Canal Zone form are too inadequately known for satisfactory evaluation. Nevertheless Dall's identification clearly indicates the affinities of this Architectonica and no species similar to A. alveata
has been found in the Oligocene of southeastern United States.

A poorly preserved specimen from the upper Eocene deposits of Columbia was identified as *A. alveata* (Clark, in Clark and Durham, 1946, p. 28, pl. 17, fig. 13). Another specimen from the same deposits, probably the same species, was described as *A. gabrielinesis* (Idem, p. 23, pl. 17, figs. 11, 12).

Occurrence: Marine member of Bohio (?) formation (late Eocene or early Oligocene), localities 40a, 41.

Subgenus?

Architectonica species

A small, presumably immature, poorly preserved *Architectonica* (height 2.7 mm, diameter 7.7 mm), also collected by Hill at Vamos Vamos, shows few characters. It has a blunt rounded periphery. Though the sculpture of the dorsal surface is obscure, a suggestion of retractive axial wrinkles can be made out. The ventral surface bears five shallow spiral grooves. The umbilical border is corrugated and the corrugations extend outward beyond the border with rapidly diminishing strength. The affinities of this species are undetermined. The specimen may be badly worn.

Occurrence: Marine member of Bohio (?) formation (late Eocene or early Oligocene), locality 40a.

Subgenus?

Architectonica cf. A. fungina (Conrad)

Three specimens of *Architectonica* collected by Hill at Vamos Vamos are assigned to three species. The third species is represented by a small specimen (height about 3.5 mm, diameter 7.5 mm). Much of the dorsal surface is exfoliated and the ventral surface is not exposed. The dorsal surface shows retractive axial wrinkles adjoining the suture. The periphery has a narrow slightly serrate cord. So far as it goes, this specimen is an *Architectonica* suggesting *A. fungina* (Conrad), a species found in the middle Eocene of southeastern United States (Palmer, 1937, p. 162, pl. 17, figs. 17, 21, 24). Similar species are unknown in the upper Eocene or Oligocene of that region.

Occurrence: Marine member of Bohio (?) formation (late Eocene or early Oligocene), locality 40a.

Subgenus Pseudotorinia? Sacco?

Sacco, I molluschi clei terreni terziarii del Piemonte e della Liguria, pt. 12, p. 66, 1892.

Type (orthotype): *Solarium obtusum* Bronn, Miocene and Pliocene, Italy.

Architectonica (Pseudotorinia) species

An incomplete and partly corroded *Architectonica* (height about 2.2 mm, diameter about 8 mm) from the Culebra formation is sculptured on both dorsal and ventral surfaces with narrow spiral cords overridden and noded by very narrow retractive axial threads. The sutural and peripheral cords are slightly wider than the others, not including the noded cord at the umbilical border, which is still wider. The reticulate sculpture suggests the subgenus *Pseudotorinia*.

Occurrence: Culebra formation (early Miocene), locality 114.

Subgenus Architectonica s. s.

Architectonica (Architectonica) rhicina Woodring, n. sp.

Plate 26, figures 4, 5, 10

Of medium size, umbilicus wide, peripheral cord overhanging base. Dorsal surface sculptured with four weakly noded spiral cords, not including peripheral cord. Peripheral cord weakly noded. On body whorl cords separated by intervals almost as wide as cords. Ventral surface sculptured with a narrow weakly noded spiral cord near periphery, separated by a smooth space from three more strongly noded cords of about same width as those on dorsal surface. Umbilicus bordered by very coarse corrugations seated on a low cord.

Height 9.5 mm, diameter 17.7 mm (type).

Type: USNM 562569.

Type locality: 56 (USGS 6025, about 200 yards (200 meters) south of southern end of switch at Bohio Ridge station, relocated Panama Railroad, Canal Zone), middle member of Caimito formation.

The type and two other specimens, one of which is a fragment, were collected from the Caimito formation at locality 56, on the Panama Railroad immediately southeast of Bohio Peninsula. Locality 56 is the type locality of *Operculinoides panamensis*, *Lepidocyclus panamensis*, now considered a synonym of *L. cannellei* (Cole, 1952 (1953), p. 18), and *Miogypsina panamensis*. The fragment represents a shell considerably larger than the type.

Architectonica rhicina is remotely allied to the Recent *A. nobilis* (Röding). The less elongate nodes on the more widely spaced spiral cords, the wide umbilicus, the very coarse corrugations bordering the umbilicus, and the smooth space on the ventral surface near the periphery show that it is not in the direct lineage of *A. nobilis*. The short nodes are like those of the early Miocene Brazilian *A. eudaidela* (Maury) (Maury, 1925a, p. 391, pl. 2, fig. 2), the ventral surface of which is unknown.

Occurrence: Middle member of Caimito formation (late Oligocene), locality 56.
Architectonica (Architectonica) of A. nobilis (Röding)

Fragmentary remains from the Culebra formation indicate the presence of an Architectonica (estimated height 10 mm, diameter about 23 mm) allied to A. nobilis, evidently more closely allied than A. rhicna. The dorsal surface is sculptured with closely spaced spiral cords bearing elongate nodes. Noded spiral cords also are visible on the ventral surface. Though the material is inadequate for identification, this species may be A. nobilis.

The middle member of the Caimito formation on Barro Colorado Island at localities 54h and 54k yielded incomplete specimens that have less elongate dorsal nodes. The relations of this form, listed as Architectonica sp., to that of the Culebra formation are undetermined.

Occurrence: Culebra formation (early Miocene), localities 99b, 99c, 100, 116.

Architectonica (Architectonica) nobilis nobilis Röding

Plate 19, figures 1-6, 10-12, 14-16

Solarium septilineare Nelson, Connecticut Acad. Arts Sci. Trans., v. 2, p. 11, pl. 6, fig. 11, 1870 (Miocene, Peru).

Solarium intraornatum White, Mus. Nac. Rio de Janeiro Arch., v. 7, p. 191, pl. 10, figs. 21, 22, 1887 (Miocene, Brazil).

Maury, Brazil Serv. Geol. Mineral. Mon. 4, p. 59, pl. 2, fig. 1, 1925 (Miocene, Brazil).

Solarium villarelooi Röse, Inst. Geol. México Bol. 22, p. 30, pl. 3, figs. 4-11, 1906 (Miocene, Mexico).

Solarium gatunense Toula, K. k. Geol. Reichsanstalt Jahrb., Band 58, p. 692, pl. 25, fig. 3, 1906 (Miocene, Canal Zone). L. Geol. Soc. China Bull., v. 9, p. 265, pl. 6, fig. 42, 1880 (Miocene, Canal Zone). Trechmann, Geol. Mag., v. 75, p. 549, pl. 21, figs. 21, 22, 1885 (Miocene, Carriacou).

Architectonica (Architectonica) nobilis quadriseriata (Sowerby), Woodring, Carnegie Inst. Washington Pub. 385, p. 354, pl. 27, figs. 5-7, 1928 (Miocene, Jamaica; additional citations).

Architectonica (Architectonica) sexlinearis corusca Olsson, Bull. Am. Paleontology, v. 19, no. 68, p. 214, pl. 21, figs. 5, 8, 9, 1932 (Miocene, Costa Rica, Perú). Marks, idem, v. 33, no. 139, p. 93, 1951 (Miocene, Ecuador).

Architectonica quadriseriata wallontensis Gardner, Idem, p. 587, pl. 55, figs. 8, 10, 1947 (Miocene, Florida).

Moderately large, ratio of height to diameter variable, umbilicus narrow to moderately wide. Protoconch 2½-whorled, the first 1½ whorls submerged and hyperstrophic, only the last whorl visible on dorsal surface. End of protoconch marked by very thin varix and abrupt beginning of sculpture. Sculpture consisting basically of a peripheral cord, four closely spaced dorsal cords and six closely spaced ventral cords, all cut into flat closely spaced nodes by narrow retractive axial grooves, except umbilical cord which is coarsely corrugated. At first sutured cord and outermost cord (not including peripheral cord, which also is strongly noded) stronger and more strongly noded than other two dorsal cords; and the two cords next to umbilical cord and outermost cord, which is narrow, more strongly set off and more strongly noded than other two ventral cords. With further growth dorsal cords more uniform. With still further growth nodes of dorsal and peripheral cords gradually suppressed, those on sutured cord generally suppressed last. On large shells outermost of four dorsal cords generally flanked by wider grooves than others and suture cord tends to be slightly wider than others. At intermediate growth stages nodding and strength of second, third and fourth cords from umbilical cord variable, but nodding generally decreasing outward and groove between third and fourth generally shallow; outermost
ventral cord strong and strongly noded. During late growth stages nodes gradually suppressed on second, third, fourth, and outermost cords beyond umbilical cord, those in second and outermost generally suppressed last; groove between third and fourth gradually suppressed. At all growth stages umbilical cord relatively wide and coarsely corrugated, and next cord more or less strongly nodded and set off by deep relatively wide grooves. Secondary spiral thread in first dorsal and ventral grooves from periphery absent or present. Secondary spiral thread in second dorsal and ventral grooves from periphery generally absent. In absence of secondary thread adjoining peripheral cord, outermost ventral cord well separated from peripheral cord or crowded against it. Microscopic spiral lineation visible on late whorls. Umbilical wall sculptured with arcuate growth threads and weak spiral threads.

Height 19.5 mm, diameter 41.2 mm (largest specimen). Height 16.5 mm, diameter 36.5 mm (largest figured specimen).

A widespread *Architectonica* in the Gatun formation is identified as the Recent Caribbean and Panamic *A. nobilis* proper. It is one of the relatively few species widely recognized as surviving on both Caribbean and Pacific coasts of Central America and ranges back to the early Miocene. A total of 181 specimens are available: 38 from the lower part of the Gatun, 106 from the middle part in the eastern area and one in the western area, 30 from the upper part in the eastern area and six in the western area. Numerous minute shells from locality 147b and a few from other localities show the partly hyperstrophic (partly inverted and pseudosinistral), typically architectonic protoconch.

Though details of the sculpture are variable, the basic plan is uniform and closely matches that of Recent shells. The principal variable details also can be matched, but the frequencies are different. A secondary dorsal spiral thread in the groove between the peripheral cord and the next cord and a similarly located ventral secondary are less frequent on the fossils than on Recent shells, as shown by the following table.

Frequency of secondary spiral threads in Architectonica nobilis

<table>
<thead>
<tr>
<th>Age</th>
<th>Number of specimens</th>
<th>Dorsal secondary spiral (percent)</th>
<th>Ventral secondary spiral (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent, Panamic region</td>
<td>85</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>Recent, Caribbean-western Atlantic region</td>
<td>54</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Miocene, Gatun formation</td>
<td>104</td>
<td>96</td>
<td>96</td>
</tr>
</tbody>
</table>

Three of the fossils have a secondary dorsal spiral thread in the second groove from the periphery and six have a secondary ventral spiral in the same position. None of the Recent shells examined has more than one dorsal or ventral secondary.

Thirty-six percent of the fossils that lack a secondary spiral in the outermost ventral groove have the outermost ventral cord crowded against the peripheral cord (pl. 29, fig. 2), whereas only one of the Recent shells (collected at Mazatlan, México, USNM 359846) is similarly sculptured. The crowding is due to widening of the peripheral or the outermost cord, or both. Two of the fossils show an extra ventral cord resulting from splitting of the fourth from the umbilical cord.

The stage at which nodes are suppressed is variable, particularly for ventral nodes, as shown by the illustrations. Comparable variation is shown by Recent shells. The suppression of ventral nodes follows an almost invariable pattern: first those of the fourth and third cords from the umbilical cord, then those of the fifth (outermost) and second. Those of the first cord are not suppressed and the cord itself is set off by deep relatively wide grooves. Recent shells show the same pattern, one of the striking similarities of fossil and living specimens. Suppression of ventral nodes is accompanied on fossil and Recent shells by suppression of the groove between the third and fourth cords from the umbilical cord.

On an aberrant fossil (locality 155c) the third, fourth, and fifth ventral cords and also the first and second dorsal are disintegrated into faint minor threads. The change in dorsal sculpture abruptly follows a break in the shell near the end of the penult whorl—a break concealed on the ventral surface by overlap of the body whorl—and therefore evidently is a deformity.

It is concluded that the paleontologists (Maury, Olson, Hodson, Hodson and Harris, Anderson, Rutsch, and Inomikado) who considered *Solarium gatunense* based on three specimens from the middle part of the Gatun formation in the eastern area, to be *Architectonica nobilis* were justified in adopting that view. Inasmuch as a named subspecies is recognized in the Chagres sandstone, the Gatun fossils are given the cumbersome designation *A. nobilis nobilis*.

Toula illustrated, under the same figure designation, two of three specimens of his *Solarium gatunense*. The larger illustrated specimen (height 17 mm, diameter 32.7 mm) is herewith designated the lectotype. It represents the prevailing form of *Architectonica nobilis* in the Gatun formation.

With two exceptions the fossils from the Gatun formation show no discernible correlation between sculptural details and stratigraphic or geographic occurrence. The first exception is shown by specimens from the lower part of the formation that lack a sec-
GASTROPODS: VERMETIDAE TO THAIDIDAE 167

ondary ventral thread (11 specimens). All have the outermost ventral cord crowded against the peripheral cord and have relatively strong ventral nodes. Moreover most of them have a relatively low height to diameter ratio. Similar specimens occur in the middle and upper Gatun of the eastern area (pl. 29, figs. 1–3), but the frequency is much lower: 16 and 29 percent, respectively. The same sculptural features are shown by the middle Miocene Costa Rican form described as _A. sexlinearis corusca_, which has also been recognized in the lower Miocene of Peru and the lower and middle Miocene of Ecuador. In the Gatun formation as well as in the type region in Costa Rica, such specimens—at least in collections that consist of more than one or two specimens—are associated with others that lack the crowded ventral cord and have either strong or suppressed ventral nodes. Association, of course, does not demonstrate a single breeding population. In view, however, of the demonstrable variation shown by the fossils, recognition of two named subspecies or varieties is rejected, at least for the Gatun formation. "Solarium" _sexlineare_ itself is considered a synonym of _A. nobilis_. The type lot of three worn specimens is available through the kindness of Dr. C. O. Dunbar. On the type, the small specimen (diameter about 25 mm) illustrated by Nelson and Olsson, and on a larger paratype the outermost ventral cord is crowded against the peripheral cord. The other paratype, which is still larger (diameter about 35 mm), has a secondary ventral and dorsal cord.

The second exception is shown by the six specimens from the upper part of the Gatun in the western area, assigned to the upper Miocene. Though six specimens are not an adequate sample, their ventral nodes are strongly suppressed, even at a diameter of 20 mm, and they have a narrow umbilical cord (pl. 29, fig. 15). A Recent shell from St. Thomas, West Indies (USNM 530927) and another from the Gulf of California (USNM 46297) show the same features.

"Solarium" _quadriseriatum_ is the earliest name proposed for Miocene Caribbean fossils that have the basic plan of _Architectonica nobilis_. It has been treated as a distinct species, a subspecies of _A. nobilis_, or suppressed in favor of _A. nobilis_. Treatment as a subspecies was based on grounds that fossils from the Dominican Republic (the type region) and Jamaica generally have a narrower umbilical cord than Recent shells and dorsal nodes that generally last until a later stage. That view was adopted without adequate consideration of the range of variation of fossil and Recent shells.

Fossils from formations of middle and late Miocene age in Florida and late Miocene in the Carolinas also are referred to _A. nobilis_. A small race from the Chipola formation of Florida, of early Miocene age, was named "Solarium granulatum" _chipolanum_ by Dall (Gardner, 1926–47, p. 587, pl. 58, figs. 1, 2, 1947). The type (diameter 15 mm) and six other specimens of comparable size have an extra ventral cord, either single or doubled by splitting.

Whether _A. nobilis_ arose in Caribbean or eastern Pacific waters is unknown. It is recognized in the lower Miocene of Haiti, Carriacou (the largest of the Grenadines, West Indies), Brazil, Ecuador, and Peru, and is represented by a small race in the lower Miocene of Venezuela and Florida. During middle Miocene time and thereafter it was widely distributed.

Occurrence: Lower, middle, and upper parts of Gatun formation (middle and late Miocene). Lower part, localities 136a, 137, 137a, 138, 138b, 139 (mold, _Architectonica_ sp.). Middle part, eastern area, localities 142, 146, 147b, 147f (immature, identification doubtful), 147g, 147h, 147i (immature, identification doubtful), 150a, 151, 153 (mold, identification doubtful), 153a, 155a, 155b, 155c, 157, 159; western area, locality 161c. Upper part, eastern area, localities 172, 173, 175, 176, 176a, 177b, 177c, 178; western area, localities 182, 182a, 183. Lower Miocene, Venezuela (small race), Brazil, Carriacou, Haiti, Florida (small race, _A. nobilis chipolanum_), Ecuador, Perú. Middle Miocene, Trinidad, Venezuela, northeastern and southwestern Colombia, Dominican Republic, Jamaica, southeastern Costa Rica, southeastern México, Florida, Ecuador, Perú. Upper Miocene, Trinidad, Venezuela, northwestern Panamá, Florida, North and South Carolina, Perú. Pliocene, Trinidad, Venezuela, southeastern Costa Rica, South Carolina, southwestern Panamá, Ecuador. Pleistocene, South Carolina, southwestern Panamá, Galapagos, Baja California. Recent, Cape Hatteras to Colombia; Magdalena Bay, Baja California, and Gulf of California to Nегritos, Perú.

Architectonica (_Architectonica_) _nobilis_ karsteni _Rutsch_
Plate 30, figures 1–3

Architectonica sexlinearis haughti _Marks_, Bull, Am. Paleontol. v. 33, no. 139, p. 93, pl. 2, figs. 2, 6, 1951 (Miocene, Ecuador).

Dorsal nodes and groove between second and third dorsal cords from peripheral cord suppressed at an early stage. At intermediate and late growth stages ventral surface sculptured with a relatively wide, coarsely corrugated umbilical cord and an outer non-noded cord, crowded against peripheral cord. Coarse
wrinkles extending outward from deep groove bounding umbilical cord and gradually disappearing outward.

Approximate height 23 mm, diameter 39.5 mm (largest specimen). Height 19 mm, diameter 37 mm (figured specimen).

Type: Basel Naturhistorisches Museum 142/1769.
Type locality: Punta Gavilán, Falcón, Venezuela, Punta Gavilán formation.

Four specimens from the Chagres sandstone are characterized by marked suppression of dorsal and ventral sculpture, particularly ventral. The largest specimen (locality 201) is poorly preserved and exfoliated, excepting patches of shell. The patches, however, show enough features for identification. Unlike Architectonica nobilis nobilis, these specimens have no strongly noded and strongly set off cord adjoining the umbilical cord. Instead of such a cord they have coarse wrinkles disappearing outward. Even at a diameter of 26.5 mm (the smallest specimen) they lack the first, second, third, and fourth cords from the umbilical cord shown by A. nobilis nobilis. Though the development of the ventral sculpture is unknown, the absence of the cords just mentioned is assumed to be a further development of the suppression of the groove between the third and fourth cords on some specimens of A. nobilis nobilis. The specimens from the Chagres sandstone also show at a diameter of about 20 mm suppression of the groove between the second and third dorsal cords from the peripheral cord. Three faint minor spiral threads are superimposed on the body whorl first dorsal cord of the figured specimen.

Though the Architectonica from the Chagres sandstone is referred to A. nobilis karsteni, suppression of sculpture is carried farther than in the type region of that subspecies. Two topotypes available through the kindness of Dr. R. Rutsch, agree with the illustration of the type in showing not quite completely suppressed grooves faintly outlining ventral cords and faint nodes on the early part of the outer ventral cord. As on the fossils from the Chagres sandstone, the surface adjoining the umbilical cord is wrinkled, rather than nodded, and the wrinkles fade outward. The type and topotypes also do not show suppression of the groove between the second and third dorsal cords. Rutsch (1934, p. 44), however, described as Architectonica sp. a poorly preserved specimen from Punta Gavilán showing that feature.

A. sexlinearis haughti, from the middle Miocene of Ecuador, has the essential features of A. nobilis karsteni and, like the fossils from the Chagres sandstone, has the groove between the second and third dorsal cords suppressed. A. nobilis karsteni also occurs in the upper Miocene of Toro Cay, Panamá (USGS 8326), and, as noted by Rutsch, in the Río Coatzacoalcos area, Isthmus of Tehuantepec, in the upper Miocene deposits containing the small, sharply carinate, delicately sculptured A. almagrensis (Böse) (Böse and Toula, 1910, p. 224, pl. 12, fig. 4). The fossils found in Ecuador, Venezuela, México, and Panamá may represent a single lineage or local races of A. nobilis that independently reached comparable stages in suppression of sculpture. The fossils from the Chagres sandstone evidently reached a more advanced stage of suppression than those from Ecuador, Venezuela, northwestern Panamá, and México. It is tempting to correlate the more advanced stage with the younger age assigned to the Chagres sandstone, but that correlation is premature. At all events A. nobilis karsteni is unknown in deposits younger than the Chagres.

Occurrence: Chagres sandstone (early Pliocene), localities 201, 203 (mold fragments, Architectonica sp.), 208. Daule formation (middle Miocene), Ecuador, Punta Gavilán formation (late Miocene), Venezuela. Deposits of late Miocene age, northwestern Panamá and southeastern México.

Family HELIACIDAE

Genus Heliacus d'Orbigny

Type (monotype): Heliacus heberti d'Orbigny (Solarium herberi Deshayes=Trochus cylindricus Gmelin), Recent, West Indies.

The names Heliacus and Torinia Gray were published in the same year. Though Torinia was listed by Gray as a nude name in 1840, it was first validated, but as a genus without assigned species, in 1849 (Iredale, 1913, pp. 296, 308). A species was assigned in 1847 when Trochus cylindraceus [Dillwyn] (=Trochus cylindricus Gmelin) was cited as the type (Gray, 1847, p. 151). In the absence of data concerning priority within the year 1842, Heliacus is given precedence, for in that year it was on a much more satisfactory footing than Torinia.

Subgenus Astronacus Woodring, n. subgen.

Type: Heliacus planispira Pilsbry and Lowe, Recent, Mazatlan, México.

Small or of medium size, flat-topped or low-spired, periphery bicarinate, umbilicus moderately wide. Protoconch consisting of about three whorls, all except the last whorl to 1½ whorls submerged and hyperstrophic. End of protoconch marked by very thin varix and beginning of sculpture. First one-fourth of first sculptured whorl, or less, more strongly inflated and more crudely sculptured than remaining sculptured whorls.
Dorsal surface sculptured with retractive axial threads, swollen to form nodes on peripheral cords and on a more or less distinct spiral cord adjoining groove at suture. Ventral surface sculptured with corrugated or noded spiral cords and axial threads between cords that are not closely spaced.

The most distinctive feature of *Helicetus* is the conical operculum, whereas the operculum of *Architectonica* is flat. The type species of *Helicetus* and other species of the subgenus *Helicetus* s.s. are moderately large, high-spired, narrowly umbilicate, and have a subangular periphery and noded, closely spaced spiral cords. Other Recent species assigned to *Helicetus*, for the most part without knowledge of the operculum, are small, low-spired, and more widely umbilicate. One of the small, low-spired species, the Caribbean *H. bisulcatus* (d'Orbigny), has a bicarinate periphery and a conical operculum. A feature shown by the type species of *Helicetus* and *H. bisulcatus* may prove to be of some value in generic assignment of small, low-spired fossil species: the greater inflation and cruder sculpture of the first one-fourth of the first sculptured whorl or less as compared with the remaining sculptured whorls, mentioned in the description of the subgenus *Astronacus*. The change in inflation and sculpture, which takes place abruptly, is more pronounced on the delicately sculptured species of *Astronacus* than on the more coarsely sculptured *H. cylindricus* and *H. bisulcatus*. A casual examination indicates that the early inflation and crude sculpture are not consistently shown by Recent species. They are, however, well shown by *H. infundibuliformis* (Gmelin) and *H. fenestratus* (Hinds), both from the western Pacific Ocean.

Astronacus is proposed for a minor group of low-spired, bicarinate species of *Helicetus*, characterized by strong dorsal axial sculpture. This minor group includes the type species, the two fossil species described in the present report, and *H. lowei* Durham (1950, p. 124, pl. 30, figs. 16–18), a Pleistocene species from Coronado Island, in the Gulf of California. The operculum of the type species is still unknown. The type species and a specimen of the fossil species *H. stonomanae* show under high magnification faint axial wrinkles on the protoconch as it emerges on the dorsal surface. Whether the faint wrinkles are of any taxonomic value is uncertain. They would be visible only on well-preserved protoconchs that are not even slightly worn. At all events, they are visible on a well-preserved protoconch of *H. fenestratus*.

The genus *Calodisculus* Rehder (1935, p. 129; type (orthotype), *Diocoelia retifera* Dall, Pliocene, Florida) probably is to be referred to the Helicidae, although the protoconch is only slightly hyperstrophic. Olsson and Harbison (1953, p. 309) thought *C. retiferus* is related to *Helicetus planispira*. *Calodisculus* has a wide sloping periphery, narrow base and coarsely noded sutural cord.

Helicetus (Astronacus) stonomanae (Maury)

Plate 30, figures 4, 7, 8

Small, very low-spired; umbilicus moderately wide. Upper peripheral cord slightly wider than lower. A little more than last whorl of protoconch visible on dorsal surface. Faint microscopic axial wrinkles visible on protoconch as it emerges. First one-fourth of first sculptured whorl inflated and crudely sculptured. Later dorsal sculpture consisting of closely spaced retractive axial threads, noded on well defined peripheral cord (upper peripheral cord of body whorl) and less strongly noded at very narrow groove adjoining suture to form a faintly outlined sutural cord. Faintly outlined spiral threads between sutural cord and periphery soon disappear. At later growth stage nodes near suture as strong as peripheral nodes, and axial threads noded at periphery and sutural groove alternate with threads that are noded at periphery but fail to reach sutural groove. Nodes of lower peripheral cord smaller and more numerous than those of upper peripheral cord. Space between the two cords bearing axial threads. Ventral surface sculptured with a narrow coarsely corrugated umbilical cord, set off by a deep groove and followed outward by a wide coarsely corrugated spiral cord and two very narrow noded spiral cords. Axial threads extending from lower peripheral cord to outer part of wide cord adjoining umbilical cord.

Height 2.3 mm, diameter 5 mm (largest specimen). Height 2.3 mm, diameter 4.2 mm (figured specimen).

Type: Cornell University 36924.

Type locality: Bluff 3, Cercado de Mao (long bluff on left bank of Rio Mao opposite Hato Viejo, about 5 kilometers above ford at Cercado de Mao), Dominican Republic, Cercado formation.

Three small specimens of this rare species were found in the lower part of the Gatun formation. They presumably are immature, as the diameter of the largest is only a third that of the type. The type and a small specimen from the type region, but not the type locality (USGS locality 8521, diameter 4.7 mm) indicate that as the shell enlarges the long radial threads are less swollen adjoining the suture than on the small fossils from the Canal Zone. The two specimens just men-
tioned, both from the Cercado formation, are the only ones known from the Dominican Republic.

Helicoceras stonemanae is closely related to *H. planispira* (Pilsbry and Lowe, 1932, p. 83, pl. 8, figs. 9–11), but is not flat-topped, and has a less distinct sutural cord, narrower umbilicus, and a wide ventral cord adjoining the umbilical cord. Though *H. lovei* Durham is not flat-topped, in other features it is similar to *H. planispira*. No species of Astronacus is known to have survived in the Caribbean region.

Occurrence: Lower part of Gatun formation (middle Miocene), localities 137a, 138, 138a. Cercado formation (middle Miocene), Dominican Republic.

Genus Heliacus Woodring, *n. sp.*

Plate 30, figures 9–11

Of medium size, moderately low-spired, umbilicus moderately wide. Upper peripheral cord slightly wider than lower, except near outer lip. Last 1 1/2 whors of protoconch visible on dorsal surface. About one-eighth of first sculptured whorl inflated and crudely sculptured. Later dorsal sculpture consisting of very narrow and very closely spaced retractive axial threads, swollen on well defined peripheral cord (upper peripheral cord of body whorl) to form fine nodes and less swollen at narrow groove adjoining suture. About half of axial threads reach sutural groove, the others falling short or joining a thread that reaches sutural groove. Axial threads and sutural groove gradually suppressed near outer lip, the axial threads being replaced by growth threads. Lower peripheral cord finely noded like upper peripheral cord; the two sets of nodes joined by axial threads. Ventral surface sculptured with a narrow corrugated umbilical cord, set off by a deep groove and followed outward by a wide nongrooved area, a narrow spiral cord and a very narrow spiral thread. Inner part of wide nongrooved area bearing corrugations. Outward from these corrugations ventral surface bearing axial threads like those on periphery and dorsal surface.

Height 5.3 mm, diameter 9.5 mm (type).

Type: USNM 562621.

Type locality: 173 (Stanford University 2654, Panama Railroad realignment cut about three-fourths of a mile (1 kilometer) north of north end of Gatun Third Locks excavation, Canal Zone. Lat 9°18' N., long 79°55' W., plus 200 feet [60 meters], upper part of Gatun formation.

The type and only specimen of this handsomely sculptured species was found by T. F. Thompson in the upper part of the Gatun formation at locality 173, between Gatun and Mount Hope. Though it is similar to *Helicoceras stonemanae* and *H. planispira* in general features, it is more finely sculptured and the ventral surface is more weekly sculptured. *H. stonemanae* and *H. planispira* may represent a single lineage, but it is unlikely that *H. anaglyptus* represents a direct offshoot from that lineage.

Occurrence: Upper part of Gatun formation (middle Miocene), eastern area, locality 173.

Family CERITHIDIDAE

Subfamily CERITHINAE

Unidentified cerithids are in the collections from the Gatuncillo formation, the marine member of the Bohio (?) formation, and the Culebra formation. The Gatuncillo fossils include molds of a few whors of a large species. Though it is listed as “large cerithid, possibly *Campanile*,” it is unidentifiable. The Gatuncillo also yielded two species of Cerithium in the unrestricted sense, both represented by fragments of a few whors. The species listed as “*Cerithium sp. a*” has strong spiral sculpture, but no axial sculpture, at least not on late whors; “*Cerithium sp. b*” is sculptured with moderately strong narrow axial and weak narrow spirals. The Bohio (?) specimens, which may represent two species, are small and slender. The Culebra formation yielded a large cerithid (height, 4 whors, 56 mm). It is so firmly encased in tough tuffaceous sandstone that only traces of the sculpture can be made out. Large cerithids are found in the upper Oligocene of southeastern United States and Puerto Rico and in the lower Miocene of the island of Anguilla. Their generic affinities are still undetermined. The sculpture and whorl profile of the Anguillan species, *Cerithium herculeanum* C. W. Cooke (1919, p. 116, pl. 1, fig. 7), suggests *Campanile*.

Genus Cerithium Bruguière

Bruguière, Encyclopédie méthodique, Histoire naturelle des vers, v. 1, p. xv, 1789 (genus without species).

Type (virtual tautotype): *Cerithium adansonii* Bruguière (idem, p. 479, 1792; Adanson's Le Cerite, which Adanson arranged under the genus Cerithium, cited in synonymy), Recent, Red Sea.

If the interpretation of virtual tautonymy, involving use of a pre-Linnaean vernacular name, is too strained, action by the International Commission on Zoological Nomenclature validating *Cerithium adansonii* as the type of *Cerithium* is desirable.

The former uncertainty concerning identification of *Cerithium adansonii* has been resolved by Fischer-Piette (1942, p. 250–253, pl. 8, figs. 16a, b), who found that Adanson's specimen of his Le Cerite is the Red Sea species named *Cerithium erythraeae* by Lamarck in 1822. Adanson's Le Cerite is considered
the lectotype of *A. adansonii*. The flaring outer lip, claw-like extension of the basal part of the outer lip, and relatively long siphonal canal are characteristic features of *Cerithium* s. s.

Subgenus Theridium Monterosato
Monteurosato, Naturalista Stelliano, year 9, no. 7, p. 163, 1890.

Type (orthotype): *Cerithium vulgatum* Bruguère, Recent, Mediterranean Sea.

The American Tertiary and Recent cerithids most closely allied to *Cerithium* s. s. represent *Thericium*. Though species of *Thericium* are widespread in the Miocene, none has so far been found in the Gatun formation.

Cerithium (Thericium) *mimeticum* Woodring, n. sp.

Plate 24, figures 3, 7

Small, moderately slender. Protoconch not preserved. Sculpture consisting of strong axial ribs and spiral cords. Early whorls bearing 7 to 10 widely spaced axial ribs; late whorls as many as 18 more closely spaced axial ribs. Spiral cords flat, somewhat swollen as they override axial ribs; four or five on late spire whorls, 11 to 13 on mature body whorl. Each space between spiral cords on spire whorls and on posterior part of body whorl bearing a wide flat secondary spiral. Primary and secondary spirals of some immature specimens of equal strength. Secondary spirals of anterior part of body whorl narrow or absent. Sutural spiral of late whorls strong and Striotorerebrum-like; on adult body whorl generally sculptured with more nodes than those formed by axial ribs. A varix appearing on intermediate whorls, but absent on some whorls, increasing in width on successive whorls. Terminal varix very wide, located opposite outer lip. Axial ribs subdued and closely spaced on terminal varix and between it and outer lip. Siphonal canal short, slightly bent backward. Parietal callus thick for size of shell, spreading over entire inner lip. Sutural angle of aperture sharply constricted by callus ridge to form a short posterior channel.

Height (incomplete) 18.5 mm, diameter 6.7 mm (type). Height (not quite complete) 15 mm, diameter 4.6 mm (paratype).

Type material: Type, USNM 562564; paratype USNM 562565; 2 paratypes, Stanford University.

Type locality: 42d (USGS 18837, Barro Colorado Island, northern part of island, stream heading west of Miller Trail near Miller 17, about 100 meters above mouth, Canal Zone), upper part of Bohio formation.

This small cerithid is the most abundant species at the type locality on Barro Colorado Island, in subgraywacke interbedded with conglomerate in the upper part of the Bohio formation. About 100 specimens are in the collection and numerous fragments of a few whorls were discarded. None of these fossils is complete. That deficiency is due, however, principally to difficulty in extraction from hard rock, rather than to incompleteness at time of burial.

Cerithium mimeticum is characterized by its Striotorerebrum-like sutural spiral. The principal variation affects the relative width of primary and secondary spirals. No closely allied fossil species in the Caribbean and adjoining regions and no closely allied species living in Caribbean or Panamic waters has been recognized. *C. portoricoensis* Hubbard (1920, p. 141, pl. 22, figs. 5, 6), from the early Miocene of Puerto Rico, has more numerous closely spaced axial ribs and a weaker sutural spiral.

Occurrence: Upper part of Bohio formation (late Oligocene), locality 42d.

Genus Rhinoclavis Swainson

Swainson, A treatise on malacology, p. 315, 1840.

Martyn's name *Clava* was formerly used for this genus, but his names are not consistently binomial.

Subgenus Ochetoclava Woodring

Type (orthotype): *Cerithium gemmatum* Hinds, Recent, tropical eastern Pacific Ocean.

Ochetoclava is represented by Miocene species in the Caribbean region and Florida, a Pliocene species in Florida, and the type species living in the Panamic province. The short siphonal canal, strongly ascending outer lip and correspondingly long apertural posterior channel, and strongly noded sculpture suggest that generic rank may be justified for this compact group of species.

Rhinoclavis (Ochetoclava) *costaricana canabina* Woodring, n. subsp.

Plate 38, figures 1, 2

Relatively large, slender. Protoconch not preserved. Sculpture consisting of wide closely spaced axial ribs, overriden by strongly noded spiral bands. Late spire whors bearing 22 to 24 axial ribs and three or four spiral bands; the spiral at posterior suture slightly wider than others. Last few adult whorls also bearing a very narrow secondary spiral in each interspace and
at sutural edge of sutural band. Varix appearing on last few adult whorls. Penultimate varix very heavy, located on apertural face of body whorl, about 110° from outer lip. Outer lip varicose, ascending almost to suture of preceding whorl. Median columnellar fold strong within aperture; fold bordering siphonal canal not as strong.

Height (incomplete) 35.5 mm, diameter 11.5 mm (type).

Type: USNM 562590.

Type locality: 155b (USGS 16949, spoil dump of Gatun Third Locks excavation, units 11 and 12 of section (chapter A, p. 44), Canal Zone), middle part of Gatun formation.

Rhinoclavis costaricana canabina is a slender subspecies of *R. costaricana* proper, which was described by Olsson (1922, p. 144, pl. 10, figs. 3, 4) and occurs in middle Miocene deposits in southeastern Costa Rica. It also is more slender than the Miocene Jamaican *R. costaricana stena* (Woodring) (1928, p. 335, pl. 25, figs. 7, 8), and has wider and stronger axial ribs than that subspecies. *R. venada* (Maury) (1925, p. 292, pl. 41, fig. 10), a middle Miocene species from Trinidad, has mature specimen was locality 162. Neither of the fossils from the type locality was buried soon after death. Both have a worn broken apex and both served as the attachment area for several *Septastrea*-like coral calices. An immature *Echinoclava* shell also was attached to the type.

Occurrence: Middle part of Gatun formation (middle Miocene), eastern area locality 155b; western area, locality 162.

Genus Dirocerithium Woodring and Stenzel, n. gen.

Type: *Dirocerithium wechesense* Stenzel, n. sp., middle Eocene, Texas.

Though the new name *Dirocerithium* appears in a publication by Woodring, the description of the new genus and the discussion were prepared jointly by Woodring and Stenzel, and the new name is to be attributed to them. The description of *D. wechesense* is by Stenzel, that of *D. ame* is by Woodring.

Dr. L. R. Cox, of the British Museum (Natural History), kindly loaned two topotypes of *Bellatara palaeochroma* and three of *B. gomphoceras*. We also are indebted to Mr. Herman Gunter, Director of the Florida Geological Survey, for the loan of the type of *B. citrina* and paratypes of *B. americana* and *B. floridana*.

Cerithids of moderate to moderately large (50 to 90 mm). Later half of body whorl generally more loosely coiled than spire whorls. Shell profile generally straight, or slightly concave. Spire whorls divided by a groove, or ledgelike groove, into a posterior band (sutural collar) and a generally wider anterior band. Early whorls sculptured with vertical or slightly protractive axial ribs and spiral grooves. Axial ribs disappearing at different growth stages in different species, those on sutural collar disappearing last. Spiral grooves also disappearing at different growth stages, the groove setting off sutural collar most persistent and generally extending to outer lip, or gradually disappearing on late spire whorls. Early sculptured whorls bearing narrow varices. Varices present or absent on early intermediate whorls. Mature shells generally bearing a low wide varix near end of penult whorl and a stronger varix on body whorl almost opposite outer lip. Aperture of varying width depending on presence or absence of slight varix-like swelling near outer lip. Outer lip moderately thick or thin, flaring, slightly indented, apex of indentation below sutural collar; anterior part scoop-shaped. Siphonal canal, of moderate length, strongly bent backward. Parietal callus spreading over inner lip. Posterior canal short and narrow.

The sutural collar, terebrid-like early sculpture, and scoop-shaped outer lip are characteristic features of *Dirocerithium*. Were it not for the varices, early whorls deprived of the aperture might be mistaken for those of *Strioterebrum*.

Dirocerithium appears to be an endemic American genus embracing species that have been referred to various genera. Their affinities were not understood until Palmer (Richards and Palmer, 1953, p. 17-21) assigned some of them to *Bellatara*, when it became evident that they have Tethyan affinities.

Dirocerithium appears to be an endemic American Texas as an invader during the middle part of middle Eocene time and eventually spread eastward to Florida, where the youngest species in southeastern United States (*D. americanum*) has recently been found. As the genus is known to occur in the early middle Eocene of the Caribbean region, it evidently invaded southeastern United States from the Caribbean region. Its roots are surmised to lie in the lower Eocene of the Caribbean or Mediterranean regions, but the lower Eocene molluscan fauna of the Mediterranean region is poorly known and that of the Caribbean region is practically unknown. *Dirocerithium* and *Bellatara* presumably had a common Tethyan ancestry, for they have the same apertural features and both lose early axial and spiral sculpture covering en-
tire spire whorls. *Bellatara*, however, lacks a sutural collar and late, or even intermediate, whorls bear spines which are very heavy on the penult whorl of the type species. Instead of a sutural collar, *Bellatara* has a low spiral thread at, or near, the anterior edge of spire whorls.

Bellatara (Strand, 1928, p. 39) was proposed as a substitute name for *Bellardia* Mayer (1870, p. 329), which is a homonym of *Bellardia* Robineau-Desvoidy, 1863. The type species, *Cerithium* (*Bellardia*) janus Mayer (the monotype of Mayer's *Bellardia*), occurs in middle Eocene strata at Monte Postale, Verona, Italy. According to European authors (de Gregorio, 1894 [1895], p. 3, 16; Oppenheim, 1896, p. 182; Cossmann, 1906, p. 69, footnote), "*Cerithium* palaeochroma" Bayan (1870, p. 478; 1870a, p. 35, pl. 1, figs. 1, 1a, 3), described in the same year and from the same locality, has precedence as the name for the type species. Bayan's illustrations of the type species are entirely satisfactory, but the publication in which they appeared (a lithographic reproduction of very neat script) is very rare. A copy is in Stenzel's personal library. Cossmann's illustrations (1906, pl. 2, figs. 6–8) are the best of those that are readily accessible (except for the early sculpture) and Malaroda's (1954, p. 47, pl. 2, fig. 12, pl. 3, figs. 1–4b, pl. 11, fig. 21) are the most recent.

"*Cerithium* vellicatum" Bellardi, from the upper Eocene of the French Riviera and the upper (?) Eocene of Yugoslavia (Oppenheim, 1901, p. 261, pl. 19, figs. 10, 11; Boussac, 1911, p. 288, pl. 15, figs. 1–11) is closely related to *Bellatara palaeochroma*. Boussac's series of illustrations show that the early whorls are sculptured with axial ribs and spiral threads, and intermediate and late whorls with blunt spines, but the spines on the penult whorl are not as heavy as those of *B. palaeochroma*.

At first glance "*Cerithium* gomphoceras" Bayan (1870, p. 478; 1870a, p. 29, pl. 1, fig. 2, pl. 2, figs. 3, 4; Malaroda, 1954, p. 47, pl. 2, figs. 14–18, pl. 6, figs. 1, 2, pl. 11, figs. 19, 27), a large species (height 100 mm, diameter 35 mm) associated with *Bellatara palaeochroma* at Monte Postale, appears to be a species of *Dirocerithium* that has the slightly concave outline and entirely smooth late whorls of *D. whitfieldi*. Bayan's plate 2, figure 3—the only illustration of a well preserved outer lip—and the growth lines on topotypes show a scooped-shaped outer lip like that of *Bellatara* and *Dirocerithium*, and his plate 2, figure 4 and a topotype show an axially sculptured sutural band on early whorls. What appears to be a sutural band on the late smooth whorls, however, is an entire whorl. Although the adult body whorl has a height of almost 40 mm, the height of the exposed part of spire whorls is only 5 to 7 mm; that is, the whorls are very tightly coiled. The tight coiling and high flat body whorl result in a long very narrow aperture. Unless a great deal of latitude is given to *Bellatara* and *Dirocerithium*, it does not seem to be proper to refer "*Cerithium* gomphoceras" to either, at least not in the restricted sense, although it is related to both.

d'Archiac and Haimé's (1853–54) illustrations of the species they described as "*Cerithium* subnudum" (p. 301, pl. 28, fig. 17), "*C." nudum?" (p. 304, pl. 29, fig. 4), "*Rostellaria* angistoma" (p. 314, pl. 30, figs. 14, 15), "*Terebra* contorta" (p. 321, pl. 31, fig. 18, pl. 33, fig. 10), and "*T." flemingi" (p. 322, pl. 31, fig. 17) suggest that earlier remote allies of *Bellatara* and *Dirocerithium* are found in West Pakistan. These cerithids, which were overnamed by d'Archiac and Haimé, have been discussed by Cossmann and Pissarro (1909, p. 54–66), Vredenburg (1928, p. 51–66), and Cox (1930, p. 146; 1931, p. 43). They occur in the Ranikot and Laki series, both of which appear be be of early Eocene age, although the Ranikot has been assigned to the Paleocene. "*Bellardia* indica" Douvillé (1928, p. 53, pl. 9, fig. 6) and "*B." vicina" Douvillé (idem, p. 53, pl. 9, fig. 7), from the early Paleocene of Sind, are melanopsine thiarids, now referred to *Pseudobellardia* (Cox, 1931, p. 46), described as a subgenus of *Pirena*.

The species of *Dirocerithium* now recognized, ranging in age from early middle Eocene to late Eocene, are listed in the table on page 174.

Dirocerithium vincentum, *D. wechesense*, and *D. aff. D. wechesense* are progressively younger and form a graded series in progressively earlier loss of axial and spiral sculpture; that is, they meet the requirements of a lineage. *D. americanum*, the youngest species in southeastern United States, however, does not fit into this lineage. In relative width of sutural collar and anterior band it resembles *D. wechesense*, but the axial sculpture, in the form of narrow wrinkles, seems to disappear at a later stage than that of *D. wechesense*. The slightly concave outline of *D. whitfieldi* indicates that it is not closely related to the other species in southeastern United States. It loses its sculpture at a very early stage and, unlike any other species of the genus, even loses its sutural collar.

D. ame is the only Caribbean species for which adequate material is available. It may possibly be a predecessor of *D. whitfieldi*. *D. mariense*, the oldest species of the genus, is characterized by a deep groove setting off the sutural collar. The early whorls are not preserved on the type, but a few additional whorls are preserved on a topotype collected by H. G. Kugler.
Species of the genus Dirocerithium

<table>
<thead>
<tr>
<th>Age</th>
<th>Southeastern United States</th>
<th>Caribbean region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Texas</td>
<td>Mississippi</td>
</tr>
<tr>
<td>Late</td>
<td>D. wechesense Stenzel, n. sp., Weches greensand member of Mount Selman formation.</td>
<td>D. whitfieldii (Heilprin), Gosport sand.</td>
</tr>
<tr>
<td>Middle</td>
<td>D. wechesense Stenzel, n. sp., Weches greensand member of Mount Selman formation.</td>
<td>D. vinctum (Whitfield), Winona sand member of Lisbon formation.</td>
</tr>
<tr>
<td>Early</td>
<td></td>
<td>D. vinctum (Whitfield), Lisbon formation.</td>
</tr>
</tbody>
</table>

1. *Clava* (*Ochetoclava*) *vincta* (Whitfield), Clark (Clark and Durham, 1946, p. 29, pl. 24, fig. 1, deposits of late Eocene age, Colombia).
2. *Boletaria schizifera* Heilprin (1879, p. 210, pl. 13, fig. 1, (Gosport sand), Claiborne, Alabama), *Cerithium schizifera* (Heilprin), Palmer (1947, p. 215, pl. 28, fig. 8, Gosport sand, Claiborne, Alabama).
3. *Haldora americana* Palmer (Richards and Palmer, 1953, p. 18, pl. 2, figs. 3, 9, 12, Avon Park limestone and Vernon’s Ingles formation, Florida).
4. *Cerithium vinctum* Whitfield (1865, p. 265, pl. 27, fig. 8, erroneously reported from Vicksburg, Mississippi, actually from Lisbon, Alabama; Gardner (1945, p. 158, pl. 14, figs. 3, 7, 8, type), *Clava* (*Ochetoclava*) *vincta* (Whitfield), Palmer (1927, p. 217 (part), pl. 29, figs. 7, 10, 11 (type), 18, not figs. 15, 16, 17, 19, Lisbon formation, Lisbon Alabama).
5. *Teretibrachia* sp., Woodring (Woodring and Davies, 1944, p. 373 (fig.), Charro Redondo limestone member of Cobre formation, Cuba).
6. *Cerithium* *aff. "O." *vinctum* Whitfield, Woodring (1952, p. 91 (mentioned), Charro Redondo limestone (member of Cobre formation), Cuba). Though the Charro Redondo limestone was given formation rank when the name was proposed and was considered of late Eocene age, it is now classified as a member of the Cobre formation and is assigned to the middle Eocene (Lewis and Straezek, 1955 (1956), pp. 250-252, table 1; Bermudez, 1950, p. 246).
7. *Morgania mariensis* Trechmann (1924, p. 13, pl. 2, fig. 3, Carbonaceous Shale, Jamaica). Trechmann thought that the fossils of the Carbonaceous Shale "appear to have affinity with forms in the Cuisian, Sparncian, or Thanetian, or with the Ranhkot beds", but its meager fauna indicates an age not older than early middle Eocene.
Although the axially sculptured whorls are missing, the axial sculpture disappears at an early stage. The deep groove setting off the sutural collar of the Columbian species indicates it may be allied to *D. mariense*. A large specimen in the collection of the Museum of Paleontology of the University of California (locality 19162), which is in better condition than Clark's, shows that the apical angle of the Columbian species is larger than that of *D. mariense*, and that the sutural band is wider and the groove setting it off is deeper. On the one specimen from Cuba the last two axially sculptured whorls, bearing relatively wide axial ribs and varices, are present. The axial sculpture disappears at a relatively late stage. The anterior band is only a little wider than the sutural collar, which is set off by a ledgelike groove.

Two cerithids associated with *D. americum* in Florida have been described as *Bellatara citrana* Palmer (Richards and Palmer, 1953, p. 18, pl. 2, fig. 8) and *Bellatara floridana* Palmer (idem, p. 19, pl. 2, figs. 10, 11, 13). *B. citrana* has relatively strong spiral sculpture, but no axial sculpture, on intermediate whorls. The irregular swellings of *B. floridana* suggest the much larger "*Cerithium* coracinum" Oppenheim (1901, p. 262, pl. 19, figs. 1–3), an upper (? Eocene species from Yugoslavia. These two species from Florida evidently do not represent *Dirocerithium* or *Bellatara*.

Dirocerithium wechesense Stenzel, n. sp.

[Description and comments prepared by H. B. Stenzel]

Vertagus wechesensis Stenzel, in Renick and Stenzel, Texas Univ., Bur. Econ. Geol., Bull. 3101, p. 87 (name only), pl. 6, fig. 8, 1963 (Eocene, Texas).

Bellatara wechesensis (Stenzel), Palmer, in Richards and Palmer, Florida Geol. Survey Bull. 35, p. 29 (name only), 1953 (Eocene, Texas).

Shell of medium size, slender; spire profile straight in juveniles, somewhat irregular in anterior part of fully adult shells; apical angle about 27°. Juvenile whorls nearly straight-sided, divided into a sutural collar and an anterior band about twice as wide as sutural collar; sculptured with numerous closely spaced slightly protractive axial ribs; two narrow spiral striae setting off sutural collar from anterior band of same whorl; three to four rounded spiral cords overrunning anterior band, but suppressed as they cross ribs and gradually disappearing about 15 mm from apex. Anterior band gradually losing sculpture and becoming smooth in early adult stage, but on sutural collar sculpture persisting until somewhat later stage and ribs changing to vertical closely spaced wrinkles before they too disappear. At that stage (early adult) anterior band 1½ times as wide as sutural collar. Relative width of sutural collar and anterior band changed only during very last stage, when coiling becomes irregular and whorl is angulated at division between sutural collar and anterior band. Spire varices in juvenile stage pronounced and somewhat bulbous; varices absent in early adult stage; in last stage varices consisting of irregular outbulgings which produce irregular rise and fall of suture. Aperture moderately wide; siphonal canal short and twisted; posterior canal simple, located at sutural collar; outer lip thick, generally broken; parietal callus moderately thick, bearing a spiral fold delimiting posterior canal; callus extending from parietal wall over inner lip to siphonal canal, where it forms a fold following twisted edge of canal.

Height (incomplete) 58 mm, diameter 24 mm (type).

Type: Type and paratypes temporarily in collection of H. B. Stenzel, Houston, Texas.

Type locality: Road cut on abandoned county road adjoining new Marquez-Centerville road (State Highway 7), 0.6 mile east of crossroads known as Robbins (crossing of Farm to Market road 39, or Jewett-Norman road), central Leon County, Tex., Stenzel's Viesca member of Weches formation (to which he assigns formation rank, instead of member rank in Mount Selman formation), middle Eocene (*Cubitospina smithvillensis* zone).

Dirocerithium wechesense is distinguished from *D. vinctum*, which evidently is its predecessor, by its larger size, the presence of two (not three) spiral striae separating the sutural collar and anterior band, the more conspicuous juvenile varices, the unequal width of sutural collar and anterior band on early adult whorls, and the earlier disappearance of the sculpture.

Occurrence: Weches greensand member of Mount Selman formation (middle Eocene), Robertson County northeastward to San Augustine County, Tex.

Dirocerithium ame Woodring, n. sp.

Plate 24, figures 15–18

Moderately large (restored height about 85 mm, diameter 30 mm), outline very slightly concave, later half of body whorl loosely coiled. Sutural collar of early whorls narrow, ½ to ⅔ as wide as anterior band. Early whorls also sculptured with practically vertical narrow axial ribs extending from suture to suture, and narrow spiral cords on anterior band. Axial sculpture and spiral sculpture, except for groove setting off sutural band, gradually disappearing about 20 mm from apex. Sutural collar gradually widening until
it is as wide as anterior band, or even a little wider, and groove dividing sutural collar and anterior band becoming ledge-like (ledge of shelf facing sutural collar). Early whorls bearing one or two varices. Varices persisting later than axial sculpture, but gradually disappearing on early intermediate whorls. A wide varix swelling, flattening posteriorly, about 180° in counter-clockwise direction from outer lip and another about 360° from outer lip. Anterior part of outer lip scoopshaped. Height (incomplete, 6 whorls) 64 mm, diameter 30 mm (largest specimen). Height (incomplete, 9 whorls) 52 mm, diameter 26 mm (type).

Type: USNM 562545; 3 paratypes USNM 562546; paratype, Stanford University.

Type locality: 38 (USGS 17166, Río Casaya area, Quebrada de Oro, a northwestward-flowing tributary of Río Casaya, 3.3 kilometers southeast of east end of Gamboa bridge, Canal Zone), Gatuncillo formation. The silicified Eocene fossils found on Quebrada de Oro include 36 incomplete specimens of this cerithid. Some are fragmentary remains of one or two whorls and many are somewhat riddled by a boring organism, probably a sponge. The only specimen that has a complete aperture is disfigured by a cluster of attached immature oyster shells (pl. 24, fig. 17). A few of the earliest whorls are not preserved on any of these fossils and their granular silica is not an effective medium for showing the sculpture of the early whorls that are preserved. Nevertheless it can be seen, especially on a small paratype (pl. 24, fig. 16) that the sutural collar of the early whorls is relatively very narrow and that the early sculpture is strikingly Strioterebrum-like, except for the varices. The outer lip shown on plate 24, figure 17 does not show the slight posterior indentation of Diurocerithium, but the edge of the lip is somewhat defective. The two wide varices of adult shells produce a dorso-ventral flattening of the shell and a pronounced constriction of the space occupied by the animal. The constriction is especially marked on shells that have the outer lip broken back a short distance from the aperture, which is the usual condition.

The slightly concave outline suggests that Diurocerithium ame may be more closely related to D. whitfieldi than to the other species. D. whitfieldi, however, has a larger apical angle, loses its sutural collar on the last few whorls, and lacks varices on the body and penult whorls. The only specimen at hand (collected from the Gosport sand at Claiborne, Ala., evidently a topotype) is badly worn and the tip is broken, but the axial sculpture seems to disappear at a later stage than on D. ame. Where the sutural collar disappears, the collar is about as wide as the anterior band and in that respect the two species are similar. D. americanum has a narrower apical angle that D. ame, lacks a slightly concave outline, and has a relatively narrower sutural collar on intermediate and late whorls.

Occurrence: Gatuncillo formation (middle Eocene), locality 38.

Subfamily POTAMIDINAE
Genus Potamides Brongniart

Type (monotype): Potamides lamarckii Brongniart, Oligocene, Paris basin.

Potamides suprasulcatus (Gabb)
Plate 28, figures 3-6

Corithium suprasulcatus Gabb, Am. Philos. Soc. Trans., n. s., v. 15, p. 237, 1873 (Oligocene?, Dominican Republic.)
Potamides ormei Maury, Bull. Am. Paleontology, v. 5, no. 29, p. 126, pl. 22, fig. 8, 1917 (Oligocene?, Dominican Republic.)
Potamides suprasulcatus (Gabb), Pilsbry, Acad. Nat. Sci. Phila. Proc., v. 73, p. 373, pl. 29, figs. 10, 11, 1922 (Oligocene?, Dominican Republic.)
Potamides ormei var. infraliratus Spieker, Johns Hopkins Univ. Studies in Geology, no. 3, p. 58, pl. 2, fig. 11, 1922 (Miocene, Peru.)
Potamides (Lampanella) ormei Maury, Welsbord, Bull. Am. Paleontology, v. 14, no. 54, p. 35, pl. 8, figs. 6, 7, 1929 (Miocene, Colombia.)
Potamides infraliratus Spieker, Olsson, Idem, v. 10, no. 68, p. 183, pl. 23, figs. 5, 12, 1932 (Miocene, Peru.)
Marks, Idem, v. 33, no. 139, p. 105, 1951 (Miocene, Ecuador.)

Of medium size, rapidly enlarging, spire whorls practically flat. Protoconch not preserved. Early whorls sculptured with a sutural spiral band and a wider anterior spiral band occupying remainder of whorl. Sutural spiral bearing strong nodes and anterior spiral bearing axial ribs aligned with the nodes. With further growth the wide anterior spiral is divided by a narrow groove into two closely spaced spirals, narrower than sutural spiral. Groove setting off sutural spiral wider than that between the two anterior spirals. On largest shell edge of a fourth spiral emerges at anterior suture. The three spirals of intermediate and late spire whors bearing strong nodes aligned in slightly arcuate axial series. Alignment of nodes on corresponding spirals of body whorl more strongly arcuate. Base of body whorl sculptured with six to eight additional narrow spirals (the number depending on size of shell), which are not noded, but are somewhat undulatory, less undulatory anteriorly. Aperture very heavily margined. Outer lip strongly varose, slightly ascending, bearing a shallow indentation, apex of which is opposite second spiral from suture. Siphonal canal very short, wide. Inner lip covered with thick callus.
GASTROPODS: VERMETIDAE TO THAIDIDAE

Height (incomplete) 30 mm, diameter (including varicoose outer lip) 17 mm (larger figured specimen). Height (incomplete) 21.8 mm, diameter (somewhat increased by crushing; including upper part of varicoose outer lip) 14.3 mm (smaller figured specimen).

Type locality: Dominican Republic (probably Tabera formation on Rio Yaque del Norte below Tabera).

This boldly sculptured potamidine cerithid is fairly common in calcareous sandstone of the Culebra formation, including the transition zone between the Culebra and Cucaracha formations. Fragments of a whorl or two—and most of these fossils are fragments—are readily identifiable. None of the specimens is complete and none has a complete aperture, but by using several specimens complete apertural features are available. Hedberg’s illustrations of eastern Venezuelan specimens show perfect apertures and Weisbord’s figure 7, illustrating a Colombian specimen, effectively shows growth lines.

Gabb’s type lot (his only lot) consists of 14 worn or somewhat worn specimens. The matrix is poorly sorted dirty gray sandstone containing subangular rock and mineral granules. A small collection of fossils from conglomerate and sandstone of the upper Oligocene Tabera formation on Rio Yaque del Norte below Baitoa (USGS locality 8557), in the Dominican Republic, includes an incomplete specimen of *P. suprasulcatus* (height, 6 whorls, 24.5 mm). Though the matrix of the type lot is not as coarse grained as that of the specimen from the Tabera formation, the unknown type locality may represent the Tabera on Rio Yaque del Norte somewhere downstream from Tabera. The type and only specimen of *P. ormei* was received from Gabb. In morphologic features, preservation, and matrix it is indistinguishable from specimens in Gabb’s type lot. It is practically a paratype of *P. suprasulcatus* and *P. ormei* is practically an objective synonym of *P. suprasulcatus*.

The apical angle of the fossils in the type lot (but not of the specimen from the Tabera formation) is slightly larger than that of the fossils from the Culebra formation and their sculpture is slightly coarser. Peruvian, Ecuadorian and Colombian representatives of this species are larger than those from other areas. The fossils from Perú and Ecuador have a decidedly larger apical angle and somewhat coarser sculpture than those from the Canal Zone, markedly coarser on the late whorls of large specimen. Should a name be considered advantageous for the Peruvian-Ecuadorian form, *Potamides suprasulcatus infralirratus* is available. There is, however, as much justification for a subspecific name for the relatively slender and more delicately sculptured Canal Zone form. Moreover, in width of apical angle and coarseness of sculpture, specimens from Colombia are intermediate between the Peruvian-Ecuadorian form and that in eastern Venezuela, which closely resembles the Canal Zone form. It is concluded that *P. suprasulcatus* is a variable species and Hedberg’s suppression of Spieker’s name, as well as Maury’s, is accepted. *P. suprasulcatus* therefore is widely distributed and occurs in deposits ranging in age from late Oligocene to middle Miocene. Though it is unrecorded from Trinidad, it is represented in the Brasso formation at Mayo Quarry, on the north side of the Central Range (USGS locality 19851), in a collection recently forwarded by H. G. Kugler. It occurs also in a mixed fresh-water and brackish-water fauna of Miocene age on Rio Carboneras in the Izabel area of eastern Guatemala (USGS loc. 10588).

P. suprasulcatus is not a typical *Potamides* in a narrowly restricted sense. The type of the genus is a small slender species (height 24 mm, diameter 8.5 mm). Nevertheless the type species and *P. suprasulcatus* have comparable apertural features and comparable basic sculpture. The absence of varices on the spire and opposite the outer lip, the shape of the outer lip, and the height and slope of the siphonal canal show similarities. The most marked differences are the heavy sculpture and heavily margined aperture of *P. suprasulcatus*, particularly the heavy outer lip. Close allies of that species have a thin or moderately thick outer lip: *P. roumaini* Pilsbry (1910, p. 487, fig. 1; Miocene, Haiti), *P. caobasensis* Pilsbry (idem, p. 488, fig. 2; Miocene, Haiti), *P. tippenhaueri* Woodring and Mansfield (Woodring, Brown, and Burbank, 1924, p. 611, pl. 16, figs. 3, 4; Miocene, Haiti), and *P. matsoni* Dall (1913, p. 281, pl. 21, figs. 1, 2, 7; Miocene, Louisiana, Texas). This group of potamidine cerithids failed to survive the Miocene. *P. matsoni* is a migrant in southeastern United States. It had no known predecessors in that region and left no known descendants there or elsewhere. It therefore is a useful guide for a brackish-water tongue in the Fleming formation as used in Louisiana and eastern Texas, designated the *Potamides matsoni* zone. At an outcrop locality in eastern Texas that zone has been dated by land vertebrates as late Miocene (Stenzel, Turner, and Hesse, 1944), but is now considered middle Miocene (Quinn, 1955, p. 70, 80).

Occurrence: Culebra formation (early Miocene), localities 103, 104a, 106, 108c, 110, 114, 115a, 115b. Tabera formation (late Oligocene), Dominican Republic. Brasso formation (early middle Miocene), Trinidad. Middle (?) Miocene part of Santa Inés group, eastern Venezuela. Middle Miocene, Colombia. Progreso and Daule formations (middle Miocene), Ecuador. So-called variegated beds of Zorritos group (middle Miocene), Perú. Miocene, Guatemala.
Genus Terebralia Swainson

Swainson, A treatise on malacology, p. 315, 1840.

Type (logotype, Sacco, molluschi del terreni terziarii del Piemonte e della Liguria, pt. 17, p. 51, 1895): *Terebralia palustris* (Linne*)* Recent, tropical western Pacific and Indian Oceans.

Until about the end of Miocene time *Terebralia* was widely distributed in Tertiary seas. Since then it has become restricted to the tropical western Pacific and Indian Oceans, where it is found in brackish-water mangrove-swamp communities. Miocene species from the Caribbean region are the only well authenticated American species. The following doubtfully identified *Terebralia* occurs in the Culebra formation in association with a close ally of *Littorina angulifera*, which lives in brackish inlets in modern Caribbean mangrove swamps.

Terebralia dentilabris (Gabb)!

Sandstone in the transition zone between the Culebra and Cucaracha formations, on the east side of the Canal at locality 110, yielded two specimens doubtfully identified as *Terebralia dentilabris*. These fossils are in poor condition. They are filled with hard calcite, lack an aperture, and the shell material is recrystallized to calcite, which is corroded. It can be seen, however, that the better preserved of the two represents a fairly large cerithid (height, 6½ whorls, 42 mm), the early whorls of which enlarge rapidly. The sculpture is strongly cancellate, consisting of narrow axial ribs, slightly arcuate on late whorls, and narrower spiral bands, slightly swollen as they override the ribs. Spire whorls bear four or five of these spiral bands. A heavy varix is apparent on at least the last three whorls.

The size, outline, sculpture, and heavy varices strongly suggest *Terebralia dentilabris* (Pilsbry, 1922, p. 374, pl. 29, figs. 6, 7), but the aperture and internal features are unknown. Though Pilsbry assigned Gabb's "*Cerithium* dentilabris to Potamides", he pointed out its similarity to the type species of *Terebralia* and later (Pilsbry and Harbison, 1933, p. 115) referred it to that genus. Two other species from the Dominican Republic also represent *Terebralia*: "*Cerithium* prismaticum" Gabb (Pilsbry, 1922, p. 373, pl. 29, fig. 12) and "*Potamides* gasterodon" Pilsbry and Johnson (idem, p. 374, pl. 82, figs. 5, 6). These three species, collected by Gabb at an unknown locality or localities, presumably are of Miocene age, probably early Miocene. "*Potamides* (Pyrazinus) bolivaren-sis" Weisbord (1929, p. 32, pl. 8, fig. 5), from the middle Miocene of Colombia and also found in the Miocene of eastern Venezuela (Hedberg, 1937, p. 2024, pl. 8, fig. 12), has no columnar fold—at all events the type and 3 specimens in the collections of the U. S. National Museum show none—but the type has a few internal tubercules opposite the only varix that can be examined. Despite the absence of a columnar fold, it is so similar to *Terebralia dentilabris* that it is improbable that the two forms are not closely related, if not the same species. A remarkable species from the late lower Miocene Chipola formation of Florida, described by Maury (1902, p. 66, pl. 28, figs. 2, 2a) as *Pyrazinus harriisi*, has the same type of sculpture as *Terebralia dentilabris*. Nevertheless its heavily margined aperture and deep indentation on the outer lip suggest that it is properly assigned to *Pyrazinus* (Heilprin, 1887, p. 115; type (monotype) *Pyrazinus campanulatus* Heilprin, Miocene, Florida). The earliest species of *Pyrazinus* are found in the early lower Miocene Tampa limestone of Florida and the last in the Pliocene Caloosahatchee marl of Florida.

Occurrence: Culebra formation (early Miocene), locality 110.

Subfamily BITTINAE

Genus Bittium Leach

Bittium scotti Brown and Pilsbry

Plate 28, figures 10, 11

Of medium size, slender, early sculptured whorls rapidly enlarging. Protoconch consisting of about three apparently smooth whorls. Sculpture consisting of relatively wide low axial ribs (12 to 15 on late spire whorls), overridden by narrow spiral threads (six to eight on late spire whorls). Some interspaces bear a very fine secondary spiral. Base of body whorl sculptured with four to six narrow spirals. Body whorl bearing one to three varices. Basal spout very narrow.

Height (not quite complete) 8 mm, diameter 3 mm (larger figured specimen). Height (practically complete) 7.2 mm, diameter 2.7 mm (smaller figured specimen).

Type locality: Lignitic layers near Tower N, Las Cascadas, Canal Zone (Culebra formation).

Bittium scotti is one of the few mollusks of the Culebra formation that has been described. It is fairly common to abundant in dark-colored carbonaceous shale and mudstone in the type region, the northernmost outcrop area of the Culebra formation in Gaillard Cut, where it can still be collected. Though many
specimens are available—for example about 100 from locality 100a—they leave much to be desired. The apertures are imperfect, the shell material is replaced by fragile gypsum, and adhering flakes of gypsum and particles of carbonaceous shale cannot be removed without damaging the fossils. Therefore the illustrations are poor. The syntypes are in the same condition.

B. scotti is more inflated than *B. permutabile* Dall (1890–1903, p. 272, pl. 21, fig. 17, 1892), of the Chipola formation of Florida, and has fewer and more widely spaced spirals.

Occurrence: Culebra formation (early Miocene), localities 99b, 100, 100a, 101.

Bittium nugatorium Brown and Pilsbry

Plate 38, figure 12

Small, slender, early whorls rapidly enlarging. Protoconch consisting of 3½ to 4 smooth whors. Two spirals appear gradually, followed by axial ribs. Later sculpture strongly reticulate. Axial ribs slightly arcuate, slightly wider than spiral threads, 16 to 19 on penult whorl. Spiral threads weakly nodded as they override ribs, increasing from two on first sculptured whorl to three on late whors. In addition, a weak very slightly noded spiral generally adjoins posterior suture and a narrow nonnoded spiral emerges at anterior suture on penult of large shells. Base of body whorl sculptured with five or six nonnoded spirals. Later half of body whorl bearing a varix. Axial ribs narrow and closely spaced between varix and outer lip. Outer lip slightly arcuate, the curvature the same as that of axial ribs. Basal spout short and narrow.

Height 5.7 mm, diameter 1.7 mm (largest specimen).

Height 4 mm diameter 1.4 mm (figured specimen).

Type: Acad. Nat. Sci. Phila. 1790.

Type locality: Gatun Locks excavation, Canal Zone, middle part of Gatun formation.

Though *Bittium nugatorium* occurs in the lower, middle, and upper parts of the Gatun formation and is fairly widespread in the middle part, is it abundant only at locality 155c. About 200 specimens from that locality show little variation. Elsewhere there is considerable variation in shell outline and in the presence or absence of a spiral at the posterior suture and its strength, if present. The outline ranges from slender to relatively inflated. Inflated shells, however, are rare.

No closely allied species have been recognized. Brown and Pilsbry compared *B. nugatorium* with *B. collinsi* (Gabb) (1881, p. 362, pl. 46, fig. 54) a Pliocene Costa Rican species. The type lot of *B. collinsi*, consisting of three incomplete specimens glued on a card, is very unsatisfactory. Their apical angle is wider than that of *B. nugatorium*. All except the earliest whors are sculptured with three spirals. The base is not preserved on any of the specimens now in the type lot.

Toula's *Cerithium* (*Bittium*) aff. *C. scabrum* is missing in his collection.

Bittium pericallum Woodring, n. sp.

Plate 38, figure 11

Small, very slender, evenly tapering whors slightly inflated. Protoconch consisting of 2½ to 3 smooth whors. Two spirals, median and anterior, appearing on first sculptured whorl. On second sculptured whorl two evenly spaced noded spirals appearing, the anterior one stronger. Later sculpture dominated by very strongly noded primary spirals. Late whors bearing three primary spirals, the anteriormost (continuation of early anterior noded spiral) strongest. A secondary spiral adjoining anterior suture and another between anterior and middle primary. Axial sculpture consisting of very strong nodes on primary spirals and slight swellings joining the nodes across interspaces and on secondary spirals; 13 to 15 nodes on late whors. Base of body whorl sculptured with five to seven narrow spirals. A varix appearing on body whorl and penult, and on one or two still earlier whors of some shells. Outer lip broken. Basal spout short and narrow.

Height 5.2 mm, diameter 1.5 mm (largest specimen).

Height 4.5 mm diameter 1.3 mm (type).

Type: USNM 503622; paratype, Stanford University.

Type locality: 177c (USGS 8855 [west side of Panama Railroad] opposite Mount Hope Cemetery, Canal Zone), upper part of Gatun formation.

Bittium pericallum was found at one locality, in the upper part of the Gatun formation at Mount Hope, where 10 specimens were collected. It is well characterized by the slender outline and sharply chiseled, very strongly noded sculpture. The slender outline suggests slender forms of *Alabina asperities* proper, the next species described. The sculpture of *B. pericallum*,

GASTROPODS: VERMETIDAE TO THAIDIDAE

179
however, is more strongly noded and the basal lip has a more distinct spout.

Occurrence: Upper part of Gatun formation, eastern area (middle Miocene), locality 177c.

Genus Alabina Dall

Dall, Nautilus, v. 15, no. 127, 1902.

Type (orthotype): Bittium cerithidioide (Dall) (Alaba cerithidioide Dall), Recent, North Carolina to West Indies.

Alabina asperoides asperoides (Gabb)

Plate 38, figures 8, 9

Bittium asperoides asperandum Pilsbry, Idem, p. 375, 1917 (Miocene, Dominican Republic).

Small or moderately small, slender to moderately slender, early sculptured whorls somewhat angulated by a median spiral, later whorls slightly to moderately inflated. Protoconch consisting of three rapidly enlarging smooth whorls. A median spiral gradually appearing on first sculptured whorl, followed immediately by an anterior spiral and later on same whorl by very narrow axial ribs, which form minute nodes on the spirals. These two spirals, still noded, are conspicuous on third or even fourth whorl. In meantime one or two other weaker spirals appearing. Sculpture of late whorls strong, coarse or moderately coarse, consisting of four or five noded spirals, or as many as six or seven less strongly noded spirals, and widely spaced, or relatively widely spaced, slightly arcuate axial ribs. Base of body whorl sculptured with five or six closely spaced spirals. One to three wide varices on body whorl; one or two on penult of some shells. Outer lip arcuate, edge generally broken. Basal lip slightly everted forming a weak shallow spout.

Height 3.1 mm, diameter 1.1 mm (larger figured specimen). Height 1.8 mm, diameter 0.9 mm (smaller figured specimen).

Type locality: Dominican Republic (probably Cercado formation).

This minute cerithid, which has a variable outline and variable Bittium-like sculpture, is discussed under Alabina asperoides canaliculata, the description of which follows.

Occurrence: Lower part of Gatun formation (middle Miocene) localities 136a, 138, 138a, 138b Cercado formation (middle Miocene), Dominican Republic.

Alabina asperoides canaliculata (Gabb)

Plate 38, figures 3–5

Alabina canaliculata (Gabb), Pilsbry, Acad. Nat. Sci. Phila. Proc., v. 73, p. 375, pl. 35, fig. 2, 1922 (Miocene, Dominican Republic).

Alabina angustior Pilsbry, idem, p. 376, pl. 35, fig. 3, 1922 (Miocene, Dominican Republic).

Small, moderately slender. Protoconch, early sculpture, varices and aperture as in A. asperoides proper. Sculpture gradually changing on fourth or fifth sculptured whorl to weak nonnoded closely crowded spirals (as many as nine), separated by narrow grooves, and very narrow generally very closely spaced slightly arcuate axial ribs. Spiral sculpture generally faint or absent on posterior part of last whorl or two.

Height 2.5 mm, diameter 1 mm (largest figured specimen).

Type locality: Dominican Republic (probably Cercado formation).

The names Alabina asperoides and A. asperoides canaliculata are used with some hesitation for a very variable Alabina from the Gatun formation. The variation affects outline (slender to moderately slender; slight to moderate whorl inflation) and sculpture (widely spaced to very closely spaced axial ribs; a few strong noded widely spaced spirals to suppressed closely spaced spirals). Shells that have suppressed spirals generally have very closely spaced axial ribs, but some have widely spaced axial ribs. The combination of strong spirals and very closely spaced axial ribs is not represented. The name A. asperoides is used for the strongly sculptured and intermediate forms and A. asperoides canaliculata for those that have suppressed spirals.

The greatest range of variation is shown by 21 specimens from the lower part of the Gatun formation, including A. asperoides proper and the variety A. asperoides canaliculata. A slender strongly sculptured form referred to A. asperoides proper (pl. 38, fig. 9), a less slender and less strongly sculptured form also assigned to A. asperoides proper (pl. 38, fig. 8), and the variety A. asperoides canaliculata (pl. 38, fig. 4), all from the same locality, have a very different appearance. Twenty specimens from the middle part of the Gatun represent the variety A. asperoides canaliculata. They begin where those from the lower Gatun stop in sup-
pression of spiral sculpture (pl. 38, fig. 3) and go farther (pl. 38, fig. 5).

In the following discussion strongly sculptured forms (like A. asperoides proper) are designated adamsi-like and those that have suppressed spirals (like A. asperoides canaliculata) are designated cerithidioides-like. Albabina adamsi and A. cerithidioides are the names for the corresponding Recent forms and are the earliest names.

“Bittium” boileaux Dall (1890-1903, p. 275, pl. 21, fig. 14, 1892), from the late lower Miocene Chipola formation of Florida, appears to be the earliest form of the ancestral stock of Albabina adamsi and A. cerithidioides. It was described and illustrated as circularly and coarsely and strongly sculptured. The type and other specimens in the collections of the U. S. National Museum are misplaced or lost. Though Dall mentioned variation in outline and sculpture, nothing in his description or comments indicates cerithidioides-like suppression of spiral sculpture.

The fauna of the early middle Miocene Cercado formation of the Dominican Republic includes adamsi-like and cerithidioides-like forms, which have been assigned to different genera: “Bittium” asperoides and Albabina canaliculata, respectively. Were it not for the large number of specimens—estimated to be 2,000—from one locality (USGS locality 8525 on Río Mao), it might not be apparent that they intergrade and are variable in other features. “Bittium” asperoides and intermediates are six times as abundant as Albabina canaliculata, which is given varietal rank under A. asperoides. It should be pointed out that “Bittium” asperoides has the aperture of Albabina; that is, the basal spout is less distinct than in Bittium. These shells from the Dominican Republic are slightly larger than those from the Canal Zone. Though hundreds of specimens from the Dominican Republic show the protoconch and early sculptured whorls, only exceptional specimens that escaped slight wear effectively show the two noded spirals of early sculptured whorls. Discounting wear, however, the two spirals are not as strong as those on the fossils from the Canal Zone. They have little effect on whorl profile and lose their distinctive features at an earlier stage. The late middle Miocene Gurabo formation yielded only two specimens. They are cerithidioides-like and have strong early spirals. The Canal Zone fossils named A. asperoides canaliculata are more similar to them than to the corresponding fossils from the Cercado formation.

A cerithidioides-like form in the late middle Miocene Bowden formation of Jamaica was named A. curta. It is slightly larger than A. asperoides canaliculata of the Dominican Republic and has strong early spirals and exceptionally heavy varices. Though the sculpture is variable, no adamsi-like form has been found at Bowden, as in the middle part of the Gatun formation and in the inadequate sample from the Gurabo formation.

Late Miocene deposits in western Florida (Mansfield’s Cancellaria zone) yielded adamsi-like and intermediate forms, for which three names were proposed: A. adamsi floridana (Mansfield, 1930, p. 99, pl. 13, figs. 2, 5), A. adamsi leonensis (idem, p. 99, pl. 13, fig. 3), A. adamsi harveyensis (idem, p. 100, pl. 13, fig. 6). Both adamsi-like and cerithidioides-like forms are found in the Pliocene Caloosahatchee marl of Florida. In fact, the names A. adamsi (Dall, 1890-1903, p. 276, 1892; Olsson and Harbison, 1953, p. 292, pl. 48, fig. 7) and A. cerithidioides (Dall, 1890-1903, p. 276, pl. 16, fig. 8, 1892; Olsson and Harbison, 1953, p. 292, pl. 48, fig. 9) were used for them. The two strong spirals are not noded on the first or first two sculptured whorls. If the material in the U. S. National Museum is representative, A. adamsi is more abundant and the two forms do not completely intergrade. Olsson and Harbison’s illustration of A. adamsi represents a slender shell, the lip of which presumably is defective and does not show the faint basal spout. They proposed the subgeneric name Caloosalba for A. adamsi.

“Alaba” adamsi and “Alaba” cerithidioides were briefly described in the same paragraph and neither was illustrated (Dall, 1889, p. 258). They have practically the same range from North Carolina to the West Indies. The type lot of “Alaba” adamsi, dredged at a depth of 15 fathoms off Cape Hatteras, consists of four specimens that have strong spiral sculpture and moderately strong closely spaced axials, which begin at a late stage on the third sculptured whorl. Lots from localities farther south have stronger axial sculpture. The type lot of “Alaba” cerithidioides, from a depth of 22 fathoms off Cape Lookout, consists of two worn specimens that have suppressed spirals and very closely spaced axials. On unworn shells from localities farther south the axials begin on the second or third sculptured whorl. Complete integration with “Alaba” adamsi is not apparent.

This brief survey, which does not pretend to be exhaustive and doubtless is oversimplified, indicates that early Miocene adamsi-like ancestors evolved by early middle Miocene time into a variable complex including adamsi-like and cerithidioides-like forms. By Pliocene time adamsi and cerithidioides lines emerged. Progressive changes in development of the sculpture are apparent in the variable complex and the two lines. The two early spirals become stronger and are conspicuous...
uous until a later growth stage and the axials begin at a later growth stage.

The names Alabina asperoides asperoides and A. asperoides canaliculata are not entirely satisfactory for the Canal Zone fossils. Nomenclatural treatment, however, is complicated by the practice of using Linnean trinomials for grades in single populations and for successive chronologic grades involving other characters. In development of sculpture the Canal Zone fossils appear to represent the grade reached by A. curta. Both A. canaliculata and A. curta would ordinarily be given subspecific rank under A. cerithidioides. That treatment would not provide for the contemporaneous adamsi-like form a name that shows its relation to the cerithidioides-like form. Until a better solution is apparent, the name A. curta, is suppressed.

Occurrence: Lower and middle parts of Gatun formation (middle Miocene). Lower part, localities 138, 138a. Middle part, eastern area, localities 147b, 147i; western area, localities 162, 170a. Cercedo and Gurabo formations (middle Miocene), Dominican Republic. Bowden formation (middle Miocene), Jamaica.

Family EPITONIIDAE
Genus Epitonium Röding

Röding, Museum Boltenianum, p. 91, 1798.
Type (logotype, Suter, Manual of New Zealand Mollusca, p. 319, 1913) : Epitonium scalaris Röding (= Turbo scalaris Linne), Recent, western Pacific Ocean.

Suter cited Turbo scalaris as the type without mentioning Röding’s name for “die echte Windeltreppe.”

A small epitonid, listed as Epitonium sp., is represented in calcareous sandstone of the Culebra formation by two incomplete whorls. The lamellae, where undamaged, are blade-like and no spiral sculpture is visible. Though the genus occurs in the Gatun formation and the Chagres sandstone, the material from those formations is meager.

Subgenus Epitonium s. s.

Epitonium (Epitonium) cf. E. foliaceicostum (d’Orbigny)

Plate 38, figures 13, 16

Small, moderately slender, imperforate, whors strongly inflated, deeply constricted at suture. Protoconch consisting of four slightly inflated smooth whors. Axial lamellae blade-like, the edge slightly bent backward, prolonged at shoulder of whorl to form a hook, slightly bent backward. Lamellae of successive whors coalesced at suture, seven lamellae on a whorl. Inner lip and lamellae coalesced.

Height (incomplete) 3.7 mm, diameter 2 mm (larger figured specimen: the largest specimen).

Three small specimens of this species are in the collection from the middle part of the Gatun formation at locality 147b, which includes numerous small shells of other genera. The largest doubtless is immature. Many of the lamellae are broken and fail to show the hook-like extension at the shoulder of the whorl. The lower part of the Gatun at locality 138a yielded a minute shell doubtfully identified as the same species. It consists of a 5-whorled protoconch and 1½ post-protoconch whors bearing 10 lamellae on a whorl. The lamellae are broken, but some show the base of a shoulder-hook.

The middle Gatun fossils are similar to the Recent Caribbean Epitonium foliaceicostum (d’Orbigny) (Clench and Turner, 1951, p. 273, pls. 123, 124), which reaches a height of about 18 mm. On the basis of the inadequate material now available, the fossils are more slender and their protoconch is more slender and has more inflated whors. An Epitonium also identified as E. cf. E. foliaceicostum occurs in the Pliocene of Florida (Olsson and Harbison, 1938, pl. 58, fig. 2).

The type of Epitonium is a large (height about 70 mm), deeply umbilicate species, the whors of which are in contact only at the lamellae and lack spiral sculpture. Nevertheless assignment of the small American umbilicate or imperforate species, the whors of most of which are in contact and all of which lack spiral sculpture, to subgenera other than Epitonium s.s. involves excessive dismemberment of a genus dismembered into many other subgenera—a view adopted by Clench and Turner in their recent review of the west Atlantic species, just cited. According to that view, the Miocene Jamaican species described as E. (Cycloscala) eumetrum, E. (Nitidoscala) aduncum, and E. (Nitidoscala) ventulum (Woodring, 1928, p. 396, 400–401) are to be referred to the subgenus Epitonium s.s.

Occurrence: Lower (identification doubtful) and middle parts of Gatun formation (middle Miocene). Lower part, locality 138a (identification doubtful). Middle part, eastern area, locality 147b.

Subgenus Asperiscala de Boury

Type (orthotype) : Scutaria bellastrata Carpenter, Recent, California.

A minute shell from the lower part of the Gatun formation at locality 138a, listed as Epitonium (Asperiscala) sp., consists of two whors following a four-whorled protoconch. The post-protoconch whors are sculptured with numerous low, thin axial lamellae, between which are very fine spiral threads.
Epitonium (Asperiscala) cf. E. gabi (de Boury)

Plate 38, figure 17

Small, slender, imperforate, whorls strongly inflated, deeply constricted at suture. Protoconch not preserved. Axial lamellae bent backward, prolonged at shoulder to form a low hook, slightly bent backward. At irregular intervals a lamella is varix-like. Lamellae of successive whorls coalesced at suture, eight lamellae on a whorl. Spaces between lamellae sculptured with relatively strong, narrow spiral threads and spaces between spiral threads bearing very fine microscopic axial threads. Aperture broken.

Height (incomplete) 3.9 mm, diameter 2 mm (figured specimen).

Only one middle Gatun specimen, broken at both ends and probably immature, is in the collections. Some of the lamellae are more or less broken. In sculpture and outline this species is comparable to Epitonium gabi (de Boury) (Woodring, 1928, p. 397, pl. 31, figs. 11, 12), but has more sharply sculptured spiral threads. E. gabi occurs in the middle Miocene of the Dominican Republic and Jamaica. The Recent E. novangliae (Couthouy) (Clench and Turner, 1952, p. 306, pls. 144-146), which ranges from Virginia to Brazil, reaches a height of 14 mm and like E. gabi has less sharply sculptured spiral threads, even on early whorls, than those of the middle Gatun fossil.

E. gabi has been assigned to the subgenus Spiniscala de Boury (Woodring, 1928, p. 397). For the time being, however, it is placed under Asperiscala to agree with Clench and Turner's tentative classification of similar Recent western Atlantic species (Clench and Turner, 1952, p. 290-319). Under that arrangement the other Miocene Jamaican species described under the subgenus Spiniscala and also those under the subgenera Hirtoscala and Striatscala (Woodring, 1928, pp. 397-399) are to be assigned to Asperiscala.

Occurrence: Middle part of Gatun formation (middle Miocene), eastern area, locality 147g.

Epitonium (Asperiscala) cf. E. rushii (Dall)

Plate 38, figure 22

Of medium size, slender, imperforate, whorls strongly inflated. Protoconch and aperture not preserved. Axial lamellae low, narrow, not uniformly aligned on successive whorls. At irregular intervals a lamella is varix-like. Eighteen lamellae on last preserved whorl. Spaces between lamellae sculptured with narrow spiral threads and spaces between spiral threads bearing obscure microscopic axial threads.

Height (incomplete) 4.6 mm, diameter 2.3 mm (figured specimen).

The single specimen of this species, from the upper part of the Gatun formation in the western area, is broken at both ends and is somewhat worn, so that some of the lamellae are worn down and the microscopic axial sculpture is obscure. In outline and type of sculpture it is similar to Epitonium rushii (Dall) (Clench and Turner, 1952, p. 296, pl. 136), a Recent species ranging from North Carolina to the Florida Keys at depths of 38 to 100 fathoms.

Occurrence: Upper part of Gatun formation, western area (late Miocene), locality 183.

Subgenus Depressiscala de Boury

Type (orthotype): Scalaria aurita Sowerby, Recent, Bay of Bengal.

Epitonium ("Depressiscala") eucteanum Woodring, n. sp.

Plate 28, figure 9

Large, very slender, imperforate, early post-protoconch whorls strongly inflated, later whorls slightly inflated. Protoconch and aperture not preserved. Axial lamellae low, narrow, widely spaced, slightly widened at suture, generally aligned on successive whorls and coalesced at suture, 11 or 12 on a whorl. At irregular intervals a lamella is slightly varix-like.

Height (incomplete) 28.3 mm, diameter (slightly increased by crushing) 7.8 mm (type).

Type: USNM 562637.

Type locality: 206b (USGS 16938, Caribbean coast near mouth of Rio Piña, road cut about 90 meters west of locality 206, Panama), Chagres sandstone.

Epitonium eucteanum, found in the Chagres sandstone, is a large slender species sculptured with low, narrow, widely spaced lamellae. No trace of spiral sculpture is discernible. Though the lamellae of the earliest preserved whorls are worn, it is unlikely that those of later whorls are modified by wear. The type is the only specimen.

This species is closely allied to the Recent E. scipio (Dall) (1889, p. 310), the only large specimen of which is the type, collected at Vera Cruz, Mexico. It is almost twice as large as E. scipio and its early postprotoconch whorls are more inflated than those of E. scipio. Clench and Turner (1952, p. 329, pi. 159) illustrated the type of E. scipio, identified it as E. nautiae (Mörch), and assigned that species to Depressiscala. No specimens of "Scalaria" aurita, the type of Depressiscala, are available. Sowerby's illustration (Sowerby, 1844, pl. 33, fig. 62) of the moderately slender, umbilicate "Scalaria" aurita, however, suggest that Depressiscala is not an appropriate name for E. scipio and E. eucteanum. Whether any of de Boury's
other numerous names is more appropriate is undetermined.

Occurrence: Chagres sandstone (early Pliocene), locality 206b.

Genus?

“Epitonium” species

Plate 37, figure 7

Of medium size, moderately slender, imperforate, moderately inflated, basal disk well defined. Protocone and aperture not preserved. Axial lamellae low, narrow, almost exactly axial in trend and arcuate, practically erect, not uniformly alined on successive whorls, 21 on last preserved whorl. Axial lamellae greatly suppressed on basal disk. Top of basal disk visible on part of penult whorl.

Height (incomplete) 7.5 mm, diameter 3.7 mm (figured specimen).

The Chagres sandstone yielded one incomplete specimen of this epitoid, which evidently is a new species and perhaps a new genus. It is remarkable in having almost exactly axial (instead of retractive), arcuate lamellae. No appropriate generic name is apparent for the combination of characters shown by this species: thin shell; low, narrow, arcuate lamellae of almost exactly axial trend; well defined basal disk on which the lamellae are greatly suppressed; and absence of spiral sculpture.

Occurrence: Chagres sandstone (early Pliocene), locality 206.

Genus Sthenorytis Conrad

Type (logotype, de Boury, Soc. Malacologica Italiana Bull., v. 14 (1889), p. 34, 1890) : *Scalaria expansa* Conrad, Miocene, Maryland.

Sthenorytis appeared in deposits of late Eocene age in America and Europe. The last European species are found in Pliocene deposits, but the genus survives in the western Atlantic and the eastern Pacific Oceans. A few Oligocene, Miocene, and Pliocene species are recorded from the Caribbean region.

Sthenorytis pernobilis (Fischer and Bernardi) !

Plate 34, figures 2, 3

Body whorl large, remainder of shell not preserved. Bearing 12 (possibly 13) relatively narrow, high axial lamellae, bent backward except on shoulder, where undamaged lamellae are almost erect and prolonged to form short hook. Very faint microscopic spiral striae and microscopic axial lineation visible in one inter-

lamellar space. Remainder of shell surface not well enough preserved to show such sculpture.

Height (incomplete) 31 mm, diameter 31.5 mm (figured specimen).

The only large *Sthenorytis* from the Canal Zone is the fragment that is the type and only specimen of Dall's provisionally named *“Epitonium” toroense insignis*. It was found in the Toro limestone member of the Chagres sandstone at Toro Point, the type locality of *Sthenorytis toroensis toroensis*, the next form described in the present report. The fragment consists of the greater part of the body whorl. As in other species of *Sthenorytis*, on the base of the body whorl the lamellae are abruptly bent and coalesced.

This fragment cannot be distinguished from the typical form of *S. pembrobilis* (Clench and Turner, 1950, p. 224, pl. 97). Indeed were it not so incomplete, unequivocal identification would be justified. *S. pernobilis* ranges from Cape Hatteras to the Lesser Antilles and has been dredged at depths of 73 to 805 fathoms. Some of the Recent shells are as fragmentary as the fossil and are more worn. Clench and Turner suggested that the 805-fathom depth is to be discounted as beyond the depth at which the species lives. Fresh shells, some of which contained soft parts, have a depth range of 73 to 120 fathoms. It is unlikely that the Toro limestone member of the Chagres sandstone represents such depths; in fact, it appears to represent shallow water.

S. paradisi (Hertlein and Strong) (1940-51, pt. 10, p. 90, pl. 3, fig. 7, 1951), living in the waters of Baja California, is closely related to *S. pembrobilis*.

Occurrence: Toro limestone member of Chagres sandstone (early Pliocene), locality 186.

Sthenorytis toroensis toroensis (Dall)

Plate 37, figures 2, 3, 11, 12

Sthenorytis chaperi de Boury, in Cossmann, Essais de paléoconchologie comparée, pt. 9, p. 177, pl. 5, fig. 7, August, 1913 (Pliocene, Canal Zone).

Sthenorytis toroensis (Dall), Dall, U. S. Nat. Mus. Proc., v. 66, art. 17, p. 27, pl. 18, fig. 5, 1925 (Pliocene, Canal Zone).

S. pembrobilis (Dall), Dall, U. S. Nat. Mus. Proc., v. 66, no. 6, p. 148, 1927 (Pliocene, Monserrate Island, Gulf of California).

Small, rapidly enlarging in diameter. Axial lamellae low, wide, strongly bent backward and flattened below shoulder, 8 to 10 on body whorl. At shoulder
lamellae more erect and extended to form short hook. Between shoulder and suture lamellae lower and not as strongly bent backward as below shoulder. On some shells a lamella is very wide and varix-like, but not higher than others. Well preserved interlamellar spaces show faint, irregularly spaced spiral striae and microscopic spiral lineation.

Height (incomplete) 19.2 mm, diameter 17.3 mm (type). Height (incomplete) 22.3 mm, diameter 20 mm (largest specimen).

Type and paratype: USNM 214345.

Type locality: 186 (USGS 6037, coquina limestone at Toro Point, Canal Zone), Toro limestone member of Chagres sandstone.

This small *Sthenorytis* is represented by 21 more or less damaged shells and fragments. These specimens are in three lots collected at different times at Toro Point, on the west side of Limon Bay opposite Colón. Though Toro Point is the general locality for the three collections, they may represent slightly different localities. MacDonald (1919, p. 545) specified that the type locality (USGS locality 6037) is a quarry one-third of a mile south of the southern end of Toro Point breakwater. Kenny’s Bluff, the type locality of “*Stenorytis* chaperi, presumably is the bluff at Toro Point.

Dall selected as the type lot two specimens from a collection of 14. The one he later illustrated is considered the type. It is a little smaller than the largest specimens, but is in better condition. The immature paratype is the most nearly complete specimen. The paratype and several other specimens have a very wide varix-like lamella. The paratype also shows the upper edge of a slightly swollen basal disk, similar to the more strongly swollen basal disk of very small shells of *Sthenorytis* *pernobilis*.

S. toroensis *toroensis* is smaller and more rapidly enlarging than *S. pernobilis*, and has fewer, wider, and more strongly flattened lamellae. For the size of the shell the shoulder hook is farther from the suture. Even at a height of 6 mm the body whorl of *S. pernobilis* bears 12 lamellae. Despite its well defined features, perhaps *S. toroensis* is to be treated as a subspecies of *S. pernobilis*. That a small, rapidly enlarging, nine-lamallae *Sthenorytis*, evidently a subspecies of *S. pernobilis*, is living off the Florida Keys is shown by a dead shell (incomplete height 26 mm, diameter 20 mm) dredged by Henderson at a depth of 98 fathoms off Key West. Though the lamellae are as wide as those of *S. toroensis* *toroensis*, they are not as strongly flattened. This shell was the home of a hermit crab, the remains of which are still in the shell. The same dredge haul also yielded a dead shell of the typical form of *S. pernobilis*. There is no assurance, however, that the two forms were associated during life. The status of the small form awaits the dredging of live, or at least fresh, shells.

S. ampla (Gabb) (Pilsbry, 1922, p. 388, pl. 34, fig. 29), a Miocene species from the Dominican Republic, enlarges rapidly and has 10 lamellae, but the lamellae are relatively narrow and not strongly flattened. The type (and only) specimen evidently is immature, as the basal disk is visible. *S. stearnsi* (Dall) (1890–1903, pt. 2, p. 245, pl. 21, fig. 4, 1892), a small rapidly enlarging late Pliocene species, is the only species of the genus to reach California. It bears seven lamellae that are not strongly flattened. The Pliocene fossil from Monserrate Island in the Gulf of California, listed as *Stenorytis toroensis*, is that species or a very closely related form. It is sculptured with 12 strongly flattened lamellae. The whorls are not turreted and the lamellae are not extended at the shoulder.

Occurrence: Toro limestone member of Chagres sandstone (early Pliocene), localities 186, 186a, 186b. Deposits of Pliocene age, Monserrate Island, Gulf of California (identification doubtful).

Stenorytis toroensis euthynta Woodring, n. subsp.

Plate 37, figures 1, 4, 5, 8

Of medium size, rapidly enlarging. Axial lamallae moderately wide, high, bent backward except on shoulder, where they are prolonged to form a practically erect hook. Between shoulder and suture lamellae lower than below shoulder. Body whorl bearing eight lamellae. Interlamellar spaces bearing more or less distinct low, irregularly spaced spiral bands and microscopic spiral striae.

Height (incomplete) 29.5 mm, diameter (incomplete) 24 mm (type). Height (incomplete) 23.2 mm, diameter 20.6 mm (paratype).

Type: USNM 562639; paratype, USNM 562640.

Type locality: 205 (USGS 8387, Caribbean coast between Río Chagres and Piña, near Piña, Canal Zone), Chagres sandstone.

Stenorytis toroensis euthynta, which occurs in the main body of the Chagres sandstone, is based on two specimens, both damaged. It is distinguished from *S. toroensis toroensis* by its larger size and higher, narrower, less flattened lamellae. Because of the larger size, the greater distance between the shoulder-hook and the suture, as compared with *S. pernobilis*, is more apparent than on *S. toroensis toroensis*. The paratype shows the edge of a faint basal disk, partly modified by slight wear.

The fauna of the Chagres sandstone proper indicates deposition in deeper water than the Toro limestone member at the base of the formation. Perhaps *S.*
toroensis euthynta is a deeper-water form of S. toroensis toroensis. At all events the form in the Chagres sandstone proper is most closely related to the small form in the Toro limestone member.

S. toroensis euthynta also occurs in the upper Miocene deposits of Valiente Peninsula, northwestern Panama (USGS locality 8322).

Occurrence: Chagres sandstone (early Pliocene), locality 205. Deposits of late Miocene age, northwestern Panama.

Genus Cirsotrema Möchth
Möchth, Catalogus conchyliorum, * * Comes de Yoldi, pt. 1, p. 49, 1832.
Type (monotype): Scalaria varicosa Lamarck, Recent, western Pacific Ocean.

Subgenus Cirsotremopsis Thiele
Type (orthotype): Scalaria cochlea Sowerby, Recent, West Africa.

Cirsotrema is a minor group characterized by a turreted outline and deep sutural channel. As outlined by Rehder (1945, p. 127-128), this minor group appeared in the middle Miocene of the Mediterranean region and is living in the Mediterranean Sea, West African waters, and the western Atlantic-Caribbean region. It appeared also in the middle Miocene of the Caribbean region and is living in the eastern Pacific Ocean (Cirsotrema togatum (Hertlein and Strong), 1940-51, pt. 10, p. 89, figs. 1, 5, 1951).

Cirsotrema (Cirsotrema) cf. C. arcella Rehder

Scalina, the availability of which was pointed out by Palmer, supplants Ferminoscala Dall (1908, p. 315; type (orthotype): Scala ferminiana Dall (Epitonium (Ferminoscala) ferminianum Dall), Recent, Baja California to Panama). It is unfortunate that “Scala” staminea was designated as the type, for that species is rare, so far known to be represented only by the type specimen, a fragment of a little more than one worn whorl, the suture of which apparently is shallower. The appearance of distinct axial lamella doubtless is due to wear.

Occurrence: Middle part of Gatun formation (middle Miocene), eastern area, locality 153.

Genus Scalina Conrad

Scalina has been living in American waters since middle Eocene time. Whether it is to be treated as a
removed from the sutural area without damaging the flattened dorso-ventrally. The rock matrix cannot be more worn than those from Jamaica and the early based on size and outline, sculpture of the main body identified as Scalina. The marine member of the Bohio(? formation at Vamos Vanos (localities 40a, 40d) yielded two incomplete specimens that have the outline and sculpture of a slender Scalina, but the basal disk is not preserved. This species is listed as Scalina? sp.

Scalina pseudoleroyi (Maury)
Plate 38, figures 6, 21

Ferninosaule pseudoleroyi (Maury), Woodring, Carnegie Inst. Washington Pub. 385, p. 402, pl. 32, figs. 3, 4, 1928 (Miocene, Jamaica; additional citations).

Moderately large, moderately slender. Earliest preserved whorls somewhat angulated, later whorls rounded and moderately inflated. Sculpture modified by wear. Undamaged axial lamellae slightly extended on shoulder. At irregular intervals, particularly on later half of body whorl of large specimens, a lamella is slightly wider than others. Primary spiral threads worn on periphery of whorls, six or seven on late whorls, not including several closely spaced weak threads between shoulder and suture. Secondary spirals microscopic, barely visible on primary spirals, stronger on spaces between them. Basal disk sculptured with subdued axial lamellae and closely spaced narrow spiral threads.

Height (incomplete) 35 mm, diameter 16 mm (largest specimen, figured).

Type: USNM 115437.

Type locality: Bowden, Jamaica, Bowden formation.

Seven incomplete, more or less worn shells are identified as Scalina pseudoleroyi. A very small specimen was found in the middle part of the Gatun formation in the eastern area, the others in the upper part of the formation in the eastern area. The identification is based on size and outline, sculpture of the main body of the shell and basal disk, and slight angulation of the earliest preserved whorls. The Canal Zone fossils are more worn than those from Jamaica and the early whorls increase more rapidly in diameter. The earliest preserved whorls of the figured specimen are somewhat flattened dorso-ventrally. The rock matrix cannot be removed from the sutural area without damaging the axial lamellae.

S. pseudoleroyi is more closely related to the eastern Pacific S. ferminiana (Dall) (1908, p. 316, pl. 8, fig. 8) than to either of the two species now living in the Caribbean Sea and the Gulf of Mexico. The early whors of S. pseudoleroyi are not as strongly angulated as those of S. ferminiana. S. ferminiana has been recognized in the Pliocene deposits of southwestern Panama (Olsson, 1942, p. 70, pl. 9, fig. 6).

Occurrence: Middle and upper parts of Gatun formation (middle Miocene). Middle part, eastern area, locality 147g. Upper part, eastern area, localities 175, 176. Bowden formation (middle Miocene), Jamaica.

Scalina weigandi (Boise)
Plate 29, figures 7, 8

Scala (Acrilla) weigandi Boise, K. k. Geol. Reichsanstalt Jahrb., Band 60, p. 228, pl. 12, fig. 8, 1910 (Miocene, Mexico).

Moderately large, moderately slender. Earliest preserved whors rapidly enlarging in diameter, very slightly angulated, later whors rounded and moderately inflated. Axial lamellae blade-like, extended on shoulder to form short hook. At irregular intervals a lamella is wider than others. Primary spiral threads strong, seven on late whors, not including several narrower and more closely spaced threads between shoulder and suture. Primary spirals and spaces between them bearing microscopic spiral threads and fainter microscopic axial threads. Axial lamellae relatively strongly on basal disk. Basal disk also bearing narrow closely spaced spiral threads and microscopic sculpture like that on main part of whorl.

Height (incomplete) 26.5 mm, diameter 14.5 mm (larger figured specimen).

Type: Geol. Bundesanstalt, Vienna.

Type locality: Kilometer 70, Tehuantepec Railroad, Vera Cruz, Mexico, deposits of late Miocene age.

This strongly sculpture Scalina is represented by three incomplete specimens from the Chagres sandstone. One is larger than those illustrated, but is in poor condition. No specimens from the type region of S. weigandi are available. According to Boise's illustration, the type is a small, rapidly enlarging shell that has strong sculpture, including relatively strong axial lamellae on the basal disk. The sculptural plan is the same as that of S. pseudoleroyi and there is a possibility that the sculptural difference between the two forms is a matter of wear. It seems to be unlikely, however, that wear would uniformly plane down the sculpture of large specimens. Nevertheless a small specimen (height of 10 whors 19.2 mm) from locality 208, doubtfully referred to S. weigandi, has uniformly reduced sculpture, including suppressed axial lamellae on the basal disk. Its early whors enlarge a little more rapidly than those of the Gatun fossils identified.
as *S. pseudoleroyi*. It may be pointed out that the fossils of the Chagres sandstone and at least part of the upper Miocene deposits in the Isthmus of Tehuantepec region indicate moderately deep water. *S. weigandi* is perhaps a moderately deep-water species closely allied to the shallower-water *S. pseudoleroyi*, if not a subspecies of that species.

The strong sculpture of *S. weigandi* suggests comparison with the Recent Caribbean *S. retifera* (Dall) (Clench and Turner, 1960, p. 243, p. 96, pl. 106, figs. 1-4), but the two species evidently are not closely related. *S. retifera* is smaller and more slender; its axial lamellae are scalloped as they override the primary spiral threads; and its basal disk is less strongly sculptured.

Occurrence: Chagres sandstone (early Pliocene), localities 206, 206a, 208 (identification doubtful).

Scalina cf. S. brunneopicta (Dall)

Plate 38, figures 7, 14

Small, very slender, turriteloid. Earliest preserved whorls rounded. Sculpture modified by wear. Axial lamellae worn on late whorls; worn remnants of strongest lamellae slightly scalloped on spiral threads. Spiral threads relatively strong, seven on late preserved whorls. Whorls also bearing microscopic spiral and axial sculpture. Basal disk sculptured with subduced axial lamellae, weak, closely spaced, narrow spiral threads, and microscopic spiral and axial threads.

Height (incomplete) 14 mm, diameter 5.2 mm (figured specimen).

Three small shells from the upper part of the Gatun formation in the western area are comparable in outline and sculpture to early whorls of the type and only specimen of *Scalina brunneopicta* (Dall, 1908, p. 316, pl. 8, fig. 10), a Recent species dredged off Baja California at a depth of 5 1/2 fathoms. The smallest fossil has distinct, though low, axial lamellae. On the other two, including the figured specimen, the lamellae are so faint, except on the basal disk, that the shells suggest a *Turritella* that has uniformly spaced growth lines unlike those of *Turritella*. Though the lamellae are worn, they evidently were very low and narrow before they were worn, for the spiral threads are not worn and the microscopic sculpture is intact. The lamellae of the type of *S. brunneopicta*, exaggerated in Dall’s illustration, are very low, aside from the usual slightly strengthened lamellae spaced at irregular intervals.

The Pliocene Ecuadorean *S. eleutheria* (Pilsbry and Olsson) (1941, p. 38, pl. 2, fig. 7) is a slender species closely related to *S. brunneopicta*.

Occurrence: Upper part of Gatun formation (late Miocene), western area, localities 179, 185.

Family STROMBIDAE

Genus Oostrombus Sacco

Type (orthotype): Strombus problematicus Michelotti, Oligocene, Italy.

Molds found in limestone of the Gatuncillo formation at localities 11 and 12 are listed as *Oostrombus?* sp. They may represent the following species, but are indeterminable.

Oostrombus aff. O. chiraensis (Olsson)

Plate 24, figures 1, 8, 9, 11

Of medium size, conical to triangular-conical. Early whorls high-spired, late whorls low-spired and strongly shouldered. Early whorls bearing three equally spaced, narrow, low varices, aligned or staggered on successive whorls. Between the varices lie very narrow, low axial ribs. Late whorls not sculptured, more or less smoothly rounded and *Conus*-like or bearing one to three broad swellings, which are strongest at shoulder and presumably cover unresorbed parietal calus pads. Tip of pillar moderately bent backward in *Strombus* fashion. Base of aperture unknown. Outer lip flaring, slightly ascending, but not reaching shoulder; its upper edge slightly concave, but not notched. Lower part of outer lip unknown. Parietal wall covered with a thick coat of callus, the edge of which is sharply defined. Callus thickened on upper part of parietal wall, near outer lip, to form a very thick pad.

Height (incomplete) 25 mm, diameter (incomplete) 32.8 mm (largest figured specimen). Height (incomplete) 40.2 mm, diameter (incomplete) 24.5 mm (figured specimen of intermediate size).

The silicified fossils from the Río Casaya area include 28 specimens of a strombid identified as *Oostrombus aff. O. chiraensis*. All are incomplete and many are small fragments. Two fragments, one of which is figured (pl. 24, fig. 8), show that the outer lip is wing-like, the upper edge of the lip extending far out from the callus pad on the parietal wall. The late whorls of some specimens are not as low-spired and *Conus*-like as those shown on plate 24, figure 9.

This strombid may be "*Strombus* chiraensis" (Olsson, 1931, p. 92, pl. 11, fig. 1), which occurs in the upper Eocene or lower Oligocene Chira shale of Peru, although the late spire whorls of *Oostrombus chiraensis* are concave between the shoulder and the suture. The fossils from both areas, however, are too incomplete.
for unequivocal identification of the Canal Zone species. The Eocene Colombian Strombus (Oostrombus? cadroensis Clark (Clark and Durham, 1946, p. 32, pl. 24, fig. 9) appears to be Oostrombus chiraensis. More complete specimens than Clark’s are now in the collections of the Museum of Paleontology of the University of California. The winglike outer lip is preserved on the largest (height 76 mm), which is much larger than the fossils from the Canal Zone. Nine Colombian specimens have practically flat-topped whorls, but on one the top of the whorls bulges slightly.

Despite the defective outer lips and apertures, the outline, unsculptured late whorls and thick parietal callus—especially thick on the upper part of the parietal wall—of the fossils from Perú, Colombia, and Panama strongly point to the Eocene and Oligocene Mediterranean genus Oostrombus, as suggested by Olsson for “Strombus” chiraensis. In fact, the fossils from Panamá are very similar to O. tournoueri (Bayan) (1870, p. 480; 1870a, p. 43, pl. 7, figs. 5, 6), which occurs in the middle Eocene strata at Ronca, Italy, and perhaps also at Monte Postale (O. cf. O. tournoueri (Bayan), Malaroda, 1954, p. 58, pl. 4, figs. 7, 9-12, 14, pl. 13, figs. 15, 22).

Oostrombus evidently is an early Tertiary genus. Sacco thought that Strombus gibberulus Linné, one of the numerous strombids living in the tropical western Pacific and Indian Oceans, is a Recent species of Oostrombus, presumably on account of the outline and sharply limited thick parietal callus. Strombus gibberulus, however, has a nonflaring outer lip, bearing a wide notch at the posterior end and a deep strombid notch near the anterior end, and its body whorl is weakly sculptured.

Despite records to the contrary, the genus Strombus is unknown in the Eocene of America. Strombus albirupianus Dall (1890-1903, p. 174, pl. 12, figs. 2, 10, 1890) was said to occur in limestone of Jackson age at Claiborne Bluff, Alabama, but really occurs in limestone of late Oligocene age at Jacksonboro, Georgia (idem, p. 1400, footnote, 1903). “Strombus” sp.? (Kellogg, 1926, p. 27, pl. 5, fig. 7), from the upper Eocene Castle Hayne limestone of North Carolina, does not have a backward bent pillar and therefore is rejected as a Strombus. The Eocene Peruvian “Strombus” burhinus Olsson (1929, p. 24, pl. 5, figs. 5, 6) lacks characteristic strombid features.

Occurrence: Gatuncillo formation (middle Eocene), locality 38.
Height (not quite complete) 59.5 mm, diameter 37.5 mm (larger figured specimen). Height (incomplete) 47.3 mm, diameter 32.3 mm (smaller figured specimen).

Type: Tech. Hochschule, Vienna.

Type locality: Presumably Gatun Locks excavation, Canal Zone, middle part of Gatun formation.

Strombus gatunensis occurs in the lower, middle, and upper parts of the Gatun formation and possibly in the Chagres sandstone. The only specimen from the Chagres is worn and incomplete. This *Strombus* is most widely distributed in the middle part of the Gatun in the eastern area, but is nowhere abundant. Two specimens from the lower part of the Gatun are available. One of these, collected at locality 138a, has somewhat stronger spirals on the penult whorl than other specimens and the withdrawal of the body-whorl suture from the shoulder of the penult is more marked than on specimens from the middle part of the formation. All mature body whors, however, have spiral sculpture only at the top and base. The weakest body-whorl spiral sculpture is shown by two well preserved specimens from the upper part of the formation in the western area, one of which is illustrated (pl. 38, figs. 20, 23). On both withdrawal of the body-whorl suture is as marked as on the lower Gatun fossil just mentioned. Miocene deposits in Costa Rica and on islands in Almirante Bay off the northwestern coast of Panamá, contain somewhat larger specimens, which also have very weak spiral sculpture on the body whorl but only slight body-whorl withdrawal from the suture.

The type of *S. gatunensis* (incomplete height 41.5 mm, incomplete diameter 30.7 mm), the illustrated specimen, closely resembles that shown on plate 38, figures 15, 19, but the shell is replaced by calcite and the early whorls are missing. Toula's *Strombus* sp. is an immature, and therefore strongly sculptured, specimen of *S. gatunensis*. His *Strombus* sp. indet. is missing.

Strombus gatunensis is perhaps most closely related to *S. bifrons* Sowerby (1850, p. 48, pl. 9, fig. 9), which occurs in the Gurabo formation of the Dominican Republic and the Bowden formation of Jamaica, both of middle Miocene age. *S. bifrons* has more widely spaced axial ribs on early whorls, spiral sculpture on the entire body whorl, and persistent shoulder spines. It also has a peculiar bulge on the body whorl beyond the apex of the shallow strombid notch.

Genus Orthaulax Gabb

Type (monotype): *Orthaulax inornatus* Gabb, Miocene, Dominican Republic.

Orthaulax is an endemic American genus found in the Caribbean region and its borders. It is recorded from Georgia, Alabama, Florida, Cuba, Jamaica, Haiti, Dominican Republic, Puerto Rico, Vieques, St. Croix, Anguilla, Antigua, México, Guatemala, Canal Zone, Venezuela, and Brazil. Twelve species and sub-species have been described, but some of them are purely nominal. *O. gabi*, the last species in southeastern United States, is the only species represented by a full suite of growth stages and is the only species well enough preserved to have an undamaged outer lip.

The genus appears throughout its known maximum geographic range (except Brazil) during late Oligocene time and survived until the end of early Miocene. That is, it occurs in three faunal zones: one late Oligocene and two early Miocene. As suggested by Davies (1935, p. 260), the massive shell of *Orthaulax*, strengthened by the thick parietal callus under the successively overlapping whorls, is reasonably interpreted as an adaptation to strongly surging water. Its wide distribution in the late Oligocene coincides with an equally wide development of coral reefs. It appears as suddenly as an invader and has no known immediate predecessors in the Caribbean region or elsewhere. Nevertheless it presumably arose from an *Oostrombus*-like ancestor in the Caribbean region. A suitable facies for immediate ancestors has not yet been found in the lower Oligocene deposits of that region.

A Japanese Eocene species has been described as *Orthaulax japonica* (Nagao, 1924, p. 15, pl. 1). It has been pointed out that the occurrence of this American genus in Japan should be deleted (Woodring, 1928, p. 91). The Japanese fossil is not a strombid; it evidently is a buccinid.

In the Canal Zone and adjoining parts of Panamá *Orthaulax* occurs in the upper Oligocene and the lower part of the lower Miocene. The material is very inadequate, too inadequate for illustrations. In fact, it is not suitable for much more than establishing the presence of the genus.
Gastropods: Vermetidae to Thaididae

Orthaulax cf. O. pugnax (Heilprin)

Orthaulax gabbi Dall, Cooke, U. S. Geol. Survey Prof. Paper 129, p. 29, 30 (USGS locality 5901), 1921 (Oligocene, Canal Zone).

Fragmentary remains of Orthaulax from the upper part of the Bohio formation on Barro Colorado Island, the middle member of the Caimito formation in the Gatun Lake area, and in limestone of the lower part of the Caimito in Madden basin are identified as Orthaulax cf. O. pugnax. Of the nine specimens, one of medium size (diameter 26 to 36 mm) from each area shows the shoulder outline, which is triangular. All except one of the few topotypes and other specimens of O. pugnax (Heilprin) (Dall, 1890–1908, p. 170, pl. 8, figs. 5, 8, 1890) in the collections of the U. S. National Museum have a triangular shoulder outline, formed by swellings produced by the thick callus pad on the posterior part of the parietal wall and two earlier concealed callus pads. The exception is an unusually well preserved topotype of medium size (diameter 25 mm), which has a circular outline. A fairly large specimen from Madden basin (diameter 52 mm) appears to be low-spired and circular. An axial section, however, shows that what appears to be shell outline is modified by hard fine-grained calcareous sediment.

O. gabbi Dall (1890–1908, p. 170, pl. 12, figs. 5–5b, 1890) has a triangular or circular outline. Immature shells are circular; a few of medium size are circular, but most are triangular; and mature shells are triangular. O. gabbi is more strongly shouldered than O. pugnax. As O. gabbi nears maturity, and at maturity, a bulging ridge projects from the shoulder between the swellings producing the triangular outline (Dall, 1890–1908, pl. 12, fig. 5b, 1890). Behind the ridge the shell is flattened or even concave. None of the large specimens, on which the shoulder ridge is particularly strong, has yet been illustrated. The lower part of the well preserved circular-shouldered topotype of O. pugnax is sculptured with closely spaced, narrow, weak spirals. O. gabbi has no spirals, but stronger spiral sculpture covering a larger part of the shell is present or absent on O. aguadillensis Maury.

O. pugnax is found in deposits of late Oligocene age in southeastern United States, northeastern México, and Antigua, and in the lower Miocene Tampa limestone of Florida (type locality). O. gabbi occurs in the lower Miocene Chipola formation of Florida, which is younger than the Tampa limestone.

Occurrence: Upper part of Bohio formation (late Oligocene), locality 42d. Middle member of Caimito formation (late Oligocene), Gatun Lake area, localities 57, 57a. Lower part of Caimito formation (late Oligocene), Madden basin, locality 71.

Orthaulax cf. O. aguadillensis Maury

Orthaulax gabbi Dall, Cooke, U. S. Geol. Survey Prof. Paper 129, p. 29, 30 (USGS localities 6515, 6019g “identification very doubtful”), 1921 (Miocene, Canal Zone).

The Culebra formation and its Emperador limestone member yielded six poorly preserved incomplete fossils (maximum diameter 55 mm) identified as Orthaulax cf. O. aguadillensis. The circular shoulder outline of the specimens that have a complete and unmodified outline and the thick parietal callus shows in axial section. O. aguadillensis has a circular shoulder outline at growth stages ranging in diameter from 15 to 100 mm. O. gabbi shows thick callus in an axial section passing through a shoulder swelling and thin callus in other axial sections (C. W. Cooke, 1921, pl. 3, fig. 7; pl. 4, fig. 4). Any random axial section of O. aguadillensis, however, shows thick callus (C. W. Cooke, 1921, pl. 4, figs. 5, 6; pl. 5, fig. 1b; Woodring, 1923, pl. 1, figs. 3, 4, 10, 11; pl. 2, fig. 4).

O. aguadillensis is widely distributed in both the lower and the upper early Miocene faunal zones. It has been recognized in Guatemala (identification doubtful), Cuba, Jamaica, Haiti, Dominican Republic, Puerto Rico (type locality), Viquez, St. Croix, and Anguilla (identification doubtful). The early Miocene Cuban O. bermudezi Clench and Aguayo (1989) seems to be O. aguadillensis. Unlike other fossils identified as O. aguadillensis, the type of O. bermudezi has part of the outer lip preserved. It is flaring and winglike, like that of many strombid gastropods.

Occurrence: Culebra formation (early Miocene), localities 90g, 115a. Emperador limestone member of Culebra formation (early Miocene), localities 119, 120.

Genus Terebellum Röding

Röding, Museum Botenianum, p. 135, 1798.

Both Terebellum nebulosum Röding and T. lineatum Röding are available as tautotype, for under both Bulla terebellum (Linne) is cited. This is a legalistic matter
of no importance, for both of Röding’s names refer to one species, *Terebellum terebellum* (Linne), the only Recent species of the genus.

Subgenus Terebellum s.s.

Terebellum (*Terebellum*) *procerum* Merian†

Plate 25, figures 5, 7

Large, moderately slender, high-spired. Height of spire whors increasing at moderate rate, except penult, the height of which increases very rapidly. Body whorl slightly inflated. Suture of body whorl rapidly descending, then straightening near outer lip. Outer lip and aperture unknown.

Height (incomplete) 53.5 mm, diameter (slightly increased by crushing) 17 mm (largest specimen). Height (incomplete) 43.7 mm, diameter (slightly increased by crushing) 16.5 mm (larger figured specimen).

Incomplete molds of a large *Terebellum* from limestone of the Gatuncillo formation at locality 12, so far as they go, closely resemble *T. subdistortum* Trechmann (1923, p. 349, pl. 18, figs. 8, 9), which was based on more complete molds from the middle Eocene Yellow Limestone of Jamaica. The largest mold collected at locality 12 would have a height of about 75 mm, if it were complete. As may be seen on Trechmann’s photographs, the outer lip of *T. subdistortum* extends upward, how far is not determinable on molds. The straightening of the body-whorl suture near the outer lip indicates that adult shells from Panamá also had an ascending outer lip. The outer lip of *T. fusiforme* Lamarck (Cossmann and Pissarro, 1910–13, pl. 31, fig. 158–1), a small slender Eocene European species, ascends the spire, but generally is partly broken. The sole surviving Recent species, *T. terebellum* (Linne), has a nonascending outer lip and an extension of the parietal callus borders the slit-like suture. *T. fusiforme* has a closely appressed suture not bordered by an extension of the parietal callus. It evidently is intermediate between *Terebellum* proper and the involute subgenus *Seraphs*, the slit under the extension of this outer lip corresponding to the slit-like suture of *T. terebellum*.

According to Rutsch (1931, p. 254, footnote), *T. subdistortum* is the species casually named *T. procerum* by Merian (1844, p. 64) at a much earlier date. Merian reported on a few Jamaican fossils attributed to the White Limestone of de la Beche, which included both the White Limestone and the Yellow Limestone of later usage. Merian’s species is unrecognizable on the basis of his one-sentence description “* * * has about the shape of *T. subulatum* Lam., but is almost twice as long and wide”. The type, in the collection of the Basel Naturhistorisches Museum, saves the name. The type and also the type of the Antiguan *Scalaria melanoidea*, described even more briefly at the same time, should be illustrated. As a matter of fact, *T. subdistortum* is not almost twice as large as *T. subulatum* (that is, *T. terebellum*); it is only slightly larger.

There are at least three species of *Terebellum* in the lower Tertiary limestones of Jamaica: *T. procerum* and two species collected by J. W. Spencer “near Port Antonio,” both represented by molds made up of milli­olid white limestone. One is high-spired and very slender; the other is low-spired and has a relatively strongly inflated body whorl.

T. procerum is the largest of the few American species of the subgenus *Terebellum* proper. The subgenus was widely distributed in the Eocene, survived until Oligocene time in America and Europe, and is now a relic in the tropical western Pacific Ocean, where one species survives.

Occurrence: Gatuncillo formation (late Eocene), locality 12.

Subgenus Seraphs Montfort

Type (orthotype): *Seraphs convolutus* (Lamarck) (*Terebellum convolutum* Lamarck), Eocene, Europe.

Terebellum (*Seraphs*) *belemnitum* Palmer†

Plate 25, figure 6

The silicified fossils collected in the Río Casaya area include three incomplete remains of a relatively large *Seraphs*. The figured specimen, which is the largest, is estimated to have had a height of about 55 mm when it was complete. This specimen shows the slit-like extension of the aperture and that the slit is bordered on the parietal wall by a ledge. It does not show any parietal callus, but the parietal callus of *Seraphs* is very thin. The type species of *Seraphs* and other species in western Europe do not have a ledge on the parietal wall; the wall extends smoothly under the outer lip.

These fossils are almost as large as the molds from the same formation identified as *Terebellum procerum* and have a similar outline. The molds, however, cannot be molds of the *Seraphs*, because one of the silici­fied shells of the *Seraphs* shows that it is involute at an early stage.

This involute *Terebellum* probably is *T. belemnitum* Palmer (Richards and Palmer, 1953, p. 25, pl. 3, figs. 9, 12), which occurs in the middle or upper Eocene of Florida. Though the figured Canal Zone specimen (the only large specimen showing the apical end of the shell) tapers a little more rapidly than the type of
GASTROPODS: VERMETIDAE TO THAIDIDAE

T. belemnitum, the Florida species has a ledge on the parietal wall.

Seraphs, like *Terebellum* proper, was widespread during the Eocene and less extensively distributed during the Oligocene. Unlike *Terebellum* proper, it failed to survive the Oligocene. *T. belemnitum* is the sole American species.

Occurrence: Gatuncillo formation (middle Eocene), locality 38.

Genus Ectinochilus Cossmann

Type (orthotype): *Strombus canalis* Lamarck, Eocene, Europe.

Ectinochilus cf. *E. gaudichaudi* (d’Orbigny)

Plate 25, figures 8, 14-16

Molds of a fairly large *Ectinochilus* are common in limestone of the Gatuncillo formation at some localities and a few molds of small specimens, presumably representing the same species, were found in sandstone. The molds collected from limestone show the general outline (approximate maximum dimensions: height 37 mm, diameter 14 mm). Some show a few of the relatively strong widely spaced axial ribs on the body whorl (pl. 25, fig. 15) and some show coarse spirals at the base of the body whorl. The total number of ribs on the body whorl is estimated to be 14. The ascending outer lip and accompanying slitlike extension of the aperture are preserved on one of the molds from sandstone (pl. 25, fig. 16). There is no strombid notch on the outer lip. This specimen and the other two small molds from sandstone show body-whorl axial ribs like those of the larger limestone molds, more numerous and more closely spaced axial ribs on at least two preceding whorls, coarse spirals on the basal third of the body whorl, and a suggestion of fine spirals on the remainder of the body whorl and on spire whorls.

Ectinochilus has been found in middle and upper Eocene deposits in Perú, Colombia, Venezuela, Trinidad, and Jamaica, and also in Southeastern United States and on the Pacific coast of United States. Most of the species from tropical America are not well known. The inadequate material from Panamá suggests a species that is more inflated and has stronger axial ribs than the typical form of the Peruvian *E. gaudichaudi* (d’Orbigny) (1842-47, p. 116, pl. 14, figs. 6-8; Olsson, 1928, p. 71, pl. 16, figs. 6, 7), and has stronger body-whorl axial ribs than *E. gaudichaudi* auilada Olsson (1928, p. 73, pl. 16, figs. 3, 4), a small form more strongly sculptured than the typical form.

Ectinochilus is another strombid genus that is widely distributed in the Eocene (Wrigley, 1938, p. 71). It survived until early Oligocene time in Europe. The species from Panamá, like other American species, is much larger than the European species.

Occurrence: Gatuncillo formation (late Eocene), localities 9, 11, 12, 34.

Family CYPRAEIDAE

Genus Cypraea Linné

Linné, Systema naturae, 10th ed., p. 718, 1758.

Type (logotype, Montfort, Conchyliologica systematica, v. 2, p. 651, 1810): *Cypraea tigris* Linné, Recent, tropical western Pacific Ocean. (Montfort spelled the generic name *Cypraea*.)

Molds of an unidentified small strongly inflated *Cypraea* (height 21 mm, lateral diameter 16 mm, dorsoventral diameter 10.5 mm) were found in limestone of the Gatuncillo formation at localities 11 and 12. Their exposed spire distinguishes them from molds of *Cyprædia* aff. *C. subelegans* (p. 196) that show no trace of sculpture. The two species are associated and have practically the same dimensions.

Subgenus?

Cypraea cf. *C. chilona* Dall

Incomplete molds of a wide *Cypraea*, strongly inflated dorsally, occur in strata of late Oligocene and early Miocene age. They suggest *Cypraea chilona* Dall (Gardner, 1926-47, p. 541, pl. 54, figs. 7, 9, 1947), of the lower Miocene Chipola formation of Florida. These molds are of medium size (approximate dimensions: height 32 mm, lateral diameter 26 mm, dorsoventral diameter 20 mm) and with one exception are smaller than *C. chilona*. The exception is a specimen from the Culebra formation which, were it complete, would have a height of about 42 mm, comparable to that of *C. chilona*.

The Anguilla formation of the island of Anguilla and the Guines limestone of Cuba, both of early Miocene age, have yielded similar molds (C. W. Cooke, 1919, p. 115).

C. chilona was referred to the genus *Cypræorbis* Conrad, subgenus *Proadusta* Sacco, by Schilder (1932, p. 125) and to *Cypræorbis*, as a subgenus of *Cypraea*, by Gardner.

Occurrence: Middle member of Caimito formation (late Oligocene), Gatun Lake area, locality 56. Quebrancha limestone member of Caimito formation (late Oligocene), locality 62. Lower part of Caimito formation (late Oligocene), Madden basin, locality 71. Culebra formation (early Miocene), localities 99g, 100b, 110. Emperador limestone member of Culebra formation (early Miocene), localities 119, 121.
Subgenus Muracypraea Woodring

Type (orthotype): Cypraea mus Linné, Recent, south border of Caribbean Sea.

As outlined in the publication just cited, Muracypraea was proposed for Cypraea mus and its fossil allies, for which the name Siphocypraea has been used erroneously. The American Tertiary species of Muracypraea represent the lineage of Cypraea henekenii Sowerby. That lineage appeared in strata of early Miocene age in Trinidad (C. henekenii), Venezuela (C. angustirima hyaena (Schilder), and Perú (C. angustirima Spieker) and reached its maximum distribution in the middle Miocene: in Jamaica (C. henekenii), the Dominican Republic (C. henekenii), Trinidad (C. henekenii), Venezuela (C. henekenii), Colombia (C. henekenii), the Canal Zone (C. henekenii), Costa Rica (C. henekenii), Ecuador (C. cf. C. henekenii), and Baja California (C. henekenii amandusi Hertlein and Jordan, which may be indistinguishable from C. henekenii proper). The known distribution in late Miocene time included Trinidad (C. henekenii), Venezuela (C. henekenii), and Panamá (C. henekenii, C. almirantensis Olsson), but during early Pliocene it dwindled to Venezuela (C. aff. C. henekenii) and Ecuador (C. cayapa Pilsbry and Olsson). C. mus is smaller than the species of the lineage of C. henekenii. It is not known to antedate the Pleistocene and its immediate predecessor has not been recognized. C. mus is found along the Caribbean coast of Colombia and Venezuela. That is, the geographic range of Muracypraea has steadily dwindled since middle Miocene time. Muracypraea reached the western Pacific Ocean during the Miocene. Martin's illustrations (1891-1922), p. 168, pl. 26, figs. 386, 386a, b, pl. 27, figs. 387, 387a, 388, 1899 indicate that his Cypraea murismilis, from the Miocene of Java, is closely allied to C. henekenii; in fact Vredenburg (1920, p. 95) claimed that it is C. henekenii.

Cypraea (Muracypraea) henekenii Sowerby

Plate 31, figures 6-10; plate 32, figures 1, 4, 6, 9

Cypraea henikeri Sowerby, Geol. Soc. London Quart. Jour., v. 6, p. 45, pl. 9, fig. 3, 1850 (Miocene, Dominican Republic; error for henekenii).

Cypraea caroniensis Maury, idem, p. 221, pl. 37, figs. 3, 5, 6, 1925 (Miocene, Trinidad).

Siphocypraea caroniensis (Maury), Schiller, idem, p. 24, figs. 29, 27, 1939 (Miocene, Trinidad).

Siphocypraea quagga Schilder, idem, p. 25, fig. 28, 1939 (Miocene, Venezuela).

Cypraea henekenii potrorum Ingram, Bull. Am. Paleontology, v. 24, no. 85, p. 5, pi. 1, figs. 8, 9, 1939 (Miocene, Dominican Republic).

Cypraea andersoni Ingram, idem, v. 31, no. 120, p. 42, pl. 2, fig. 2, 1947 (Miocene, Colombia). Ingram, Calif. Acad. Sci. Proc., 4th ser., v. 26, no. 6, p. 125, pl. 2, figs. 5, 7, 1948 (Miocene, Colombia).

Cypraea tuberciae Ingram, Bull. Am. Paleontology, v. 31, no. 120, p. 61, pl. 2, fig. 1, 1947 (Miocene, Colombia). Ingram, Calif. Acad. Sci. Proc., 4th ser., v. 26, no. 6, p. 125, pl. 2, figs. 9, 12, 1949 (Miocene, Colombia).

Cypraea projecta Ingram, Bull. Am. Paleontology, v. 31, no. 121, p. 5, pl. 1, figs. 4, 5, 1947 (Miocene, Colombia).

Cypraea grahami Ingram, idem, p. 6, pl. 2, figs. 6, 7, 1947 (Miocene, Venezuela).

Cypraea rugosa Ingram, idem, p. 7, pl. 2, figs. 8, 9, 1947 (Miocene, Venezuela; not C. rugosa Broderip, 1827).

Of medium size, pyriform, very wide, strongly inflated dorsally. Lips, sides, and posterior part of dorsal surface heavily enameled. Outer lip and sides smooth, roughened, or slightly corugated. Posterior part of dorsal surface smooth, roughened, warty, or bituberculate. Outer lip wide, slightly constricted near anterior end, bearing 17 or 18 short teeth on large specimens. Inner lip of large specimens bearing 13 to 16 short teeth. Fossula indistinct; wide, shallow, smooth. Aperture moderately wide. Siphonal canal long and deep, bordered on columellar side by a strong narrow terminal ridge and a weak ridge on outer lip. Outer and inner lips prolonged to form short flanges bordering siphonal canal or long flapslike flanges. Posterior outlet very deep and long, it sides indistinctly or strongly rimmed. Color pattern consisting of brownish motting on central part of dorsal surface and interrupted narrow brownish bands on sides of dorsal surface. The bands reaching ventral surface, but on inner lip, and on outer lip of some specimens, obscured by enamel. If present on outer lip, they are alined with teeth, except small anterior teeth.

Height 55.3 mm, lateral diameter 40.8 mm, dorsoventral diameter 29.3 mm (largest figured specimen from middle part of Gatun formation). Height 55.7
mm, lateral diameter 44 mm, dorsoventral diameter 32.5 mm (figured specimen from upper part of Gatun formation).

Type: British Museum (Natural History), Geol. Depart., Geol. Soc. London collection, 12772.

Type locality: Northern part of Dominican Republic (presumably Cercado or Gurabo formation, middle Miocene).

The trivial name of this species has been spelled in three ways: henikeri, henekeni, and henikeni. The original orthography was henikeri. That spelling was used consistently, both by Sowerby and by Moore in his accompanying paper, for the name of the British Army officer who was the collector of the first fossils from the present Dominican Republic to reach England. Three years later, however, the collector himself published an article on his observations in Santo Domingo and his name is printed T. S. Heneken (1853). He then was a Fellow of the Geological Society of London, which printed his paper. Mr. Arthur Greig, Assistant Secretary of the Society, kindly informs me that there is no doubt that the name was Col. T. S. Heneken, as that spelling appears in all of the records of the Society. Mr. Greig suggests "a reasonable explanation is that he sent the fossils and notes from San Domingo and, as he was personally unknown to Moore and Sowerby, they misread his handwriting." Though there is no internal evidence in the original account, the original orthography clearly was an unintentional error and alteration to henikeni is justified. To claim that the alteration is inadmissible because Sowerby did not state that the species (and three others) was named for the collector is unrealistic. Guppy and Gabb, who were the first to deal with the fossils named for Heneken, made the change without any comment, as though it were to be done as a matter of course. Maury (1917, p. 53) and Pilsbry (1922, p. 305) commented on the change in spelling. The third spelling, henikeni, evidently is a typographic error.

This variable species occurs in the three parts of the Gatun formation, but has not been found in the middle part in the western area or in the upper part in the eastern area. A total of 17 specimens, or parts of specimens, is available: eight from the lower part, seven from the middle part, and two from the upper part. The presence or absence of dorsal warts or tubercules, the length of the flanges bordering the siphonal canal, and the height of the rim bordering the posterior outlet are the most conspicuous expressions of variability. Shells that are only roughened are most common, but warty or tuberculate shells occur in the three parts of the formation. Variation affecting the flanges is well shown by two specimens collected at the Gatun Locks excavation (pl. 31, figs. 6–8). Though the short flanges of the larger specimen are intact, the longer flanges of the smaller specimen are broken back. The most extended flaplike flanges are shown by a specimen from the lower part of the Gatun (pl. 32, figs. 6, 9). Their anterior edge is nicked and therefore irregular in outline. Another specimen from the lower part of the Gatun has the highest rim bordering the posterior outlet (pl. 32, figs. 1, 4).

At least part of the color pattern is visible on almost all of these fossils. It is best shown on the two specimens from the Gatun Locks excavation just mentioned (pl. 31, figs. 6–8). They have well preserved smoothly polished enamel. Their pale ochrous overall color probably is a bleached version of the original color. Some specimens show a darker brownish background color.

The variability of Cypraea henekeni has resulted in excessive naming. Stiphocypraea isthmica was based on Brown and Pilsbry's remarks and illustration. Cypraea henekeni lacrumula, C. caroniensis and C. henekeni potreronis were based on features depending on the amount and shape of enamel on the posterior part of the dorsal surface. C. andersoni, C. tuberæa, and C. projecta occur in middle Miocene strata near Tuberá, Colombia. C. grahami and C. "rugosa" were found at the same locality on the island of Cubagá, off the coast of Venezuela. Some of the names in the synonymy may prove to be useful for local populations when adequate samples are available. Most of the names, however, are based on features shown by small samples from a single region.

With due regard for variability, Cypraea henekeni has an extensive distribution in Miocene deposits: in the Dominican Republic, Jamaica, Trinidad, Venezuela, Colombia, and the Canal Zone. It is recognized in the lower Miocene, is most widely distributed in the middle Miocene, and continues into the upper Miocene. In the type region Maury's collectors found C. henekeni in both the Cercado and Gurabo formations; the U. S. Geological Survey party only in the Gurabo formation. The species was well illustrated by Sowerby, except that on his illustration the aperture is too sinuous and the anterior construction of the outer lip is too pronounced. C. henekeni is rare in the Bowden formation of Jamaica. A few years ago C. B. Lewis, Director of the Institute of Jamaica, collected two fragments of a large specimen at Bowden.

Occurrence: Lower, middle, and upper parts of Gatun formation (middle and late Miocene). Lower part, localities 136a, 198, 138a. Middle part, eastern area, localities 155, 155a, 159b. Upper part, western area,
localities 182, 182a. Cercado and Gurabo formations (middle Miocene), Dominican Republic. Bowden formation (middle Miocene), Jamaica. Machapooire limestone (early Miocene), Brasso formation (middle Miocene), and Springvale formation (late Miocene), Trinidad. Deposits of middle and late Miocene age, Venezuela. Deposits of middle and late Miocene age, Colombia. Deposits of middle Miocene age, Costa Rica.

Family OVULIDAE

Genus Cypraea Swainson

Cypraea aff. C. subelegans (Trechmann)

Limestone of the Gatuncillo formation yielded molds of a strongly inflated Cypraea of medium size. The molds are involute and show some traces of cancellate sculpture, the axial threads being fainter than the spiral. The dimensions of the largest specimen are as follows: height 27.5 mm, lateral diameter 22 mm, dorsoventral diameter 16 mm. These molds strongly suggest Cypraea subelegans (Trechmann, 1923, p. 352, pl. 15, fig. 4), which was based on poorly preserved material from the middle Eocene Yellow Limestone of Jamaica. C. subelegans evidently is more closely related to the larger C. fenestralis (Conrad) (Harris and Palmer, 1946-47, p. 320, pl. 40, figs. 9, 10, 17, 18, 1947), an upper Eocene species from southeastern United States, than to the middle and upper Eocene European C. elegans (Sowerby), which is smaller and less inflated. Trechmann’s (1923, p. 352, pl. 15, figs. 5, 6) Cypraea cf. C. elegans, associated with C. subelegans in the Yellow Limestone, presumably is C. subelegans.

Occurrence: Gatuncillo formation (late Eocene), localities 11, 12.

Genus Eocypraea Cossmann

Cossmann, Essais de paléonconchologie comparée, pt. 5, p. 162, 1903.

Type (orthotype) : Cypraea insitata Lamarck, Eocene, western Europe.

Subgenus Apioocypraea Schilder

Type (orthotype) : Cypraea michaudiana Gratetluyp, Miocene, southwestern Europe.

Eocypraea (Apioocypraea) keenac Woodring, n. sp.

Plate 32, figures 8, 10

Very large, elongate ovate, moderately inflated, involute, thin-shelled. Outer lip moderately wide, its inner edge bearing about 37 teeth, which extend about a third of distance across lip. Anterior and apical parts of outer lip not preserved. Terminal ridge (on columellar side of siphonal canal) wide and swollen. Inner lip bearing a deep indentation adjoining terminal ridge, followed in succession by two short oblique teeth and a shallow indentation. Remainder of inner lip smooth, at least down to level of outer lip. Aperture very narrow. Posterior outlet evidently absent.

Height (not quite complete) 115 mm, lateral diameter (increased by dorsoventral crushing) 76 mm, dorsoventral diameter (diminished by dorsoventral crushing) 56 mm (type).

Type: USNM 562604.

Type locality: 155 (Stanford Univ. 2653, Gatun Third Locks excavation, lat. 9°16’ N., plus 4,700 feet (1,430 meters), long. 79°54’ W. plus 5,800 feet (1,770 meters), Canal Zone, units 11 and 12 of section (chapter A, p. 44), middle part of Gatun formation.

This remarkable fossil is one of the few undescribed large species from the middle part of the Gatun formation. The type, found by T. F. Thompson at the Gatun Third Locks excavation, is the only specimen. It was recognized as a new species by Miss Myra Keen, for whom it is named. The thin shell is crushed dorsoventrally and at numerous places is cracked, or cracked and displaced. Part of the shell on the dorsal surface and much of the outer lip are missing. The fine-grained mold, however, shows impressions of the missing teeth of the outer lip. Though the posterior part of the outer lip is missing, it evidently formed a low arch as it curved down to the concealed apex. There apparently was not even a poorly defined posterior outlet. Except at its anterior end, the inner lip is smooth, down to the level of the outer lip. It was not excavated to a lower level in order to leave support for the undamaged part of the outer lip and the mold where the shell is missing. If there were any teeth or tubercles on the apparently smooth part of the inner lip, they presumably would be visible at the level of the outer lip.

Despite its large size—seven times as large as the little Eocene type species of Eocypraea—the architectural plan of this species indicates alliance to Eocypraea. Eocypraea proper, however, is pyriform and has a low rim at the outer edge of the outer lip. It also has short teeth on the inner lip, a low callus swelling at the posterior end of the inner lip, and a narrow terminal ridge. European species of medium size, ranging in age from Oligocene to Pliocene, have been assigned to the subgenus Apioocypraea (Schilder, 1932, p. 219-223). According to Cossmann and Peyrot’s (1922, p. 357, pl. 9, figs. 22, 23, pl. 10, fig. 5; de-
scribed as *Cypraea* (Adusa) subamygdulum d'Orbigny) description and illustrations of the type species, typical *Apiocypraea* has no teeth on the posterior half of the inner lip, but the outer lip is rimmed and there is no indication of a wide swollen terminal ridge. A new subgeneric or generic name may be justified for *Eocypraea keenae*. A new name, however, should be based on more complete material.

The Miocene Venezuelan moderately large ovulid described as *Marginocypraea paraguana* by Ingram (1947, p. 3, pl. figs. 1, 2) is the only American fossil or living species with which *Eocypraea keenae* needs to be compared. The Venezuelan species has a thicker shell, rimmed outer lip, narrower terminal ridge, and teeth along the entire inner lip. It is the type of *Marginocypraea*. Despite the presence of teeth along the entire inner lip, *Marginocypraea paraguana* seems to be not far removed from *Apiocypraea*.

Occurrence: Middle part of Gatun formation (middle Miocene), eastern area, locality 155.

Family ATLANTIDAE

Genus Protatlanata Tesch

Protatlanata (Atlantidea) *lissa* (Woodring)

Plate 30, figures 5, 6

Of medium size, nautiloid. Early whorls deeply and asymmetrically recessed. Protoconch consisting of about two slowly enlarging whorls. Remaining three whorls rapidly enlarging and strongly inflated. Periphery of body whorl broadly rounded, early half bearing two very low faint ridges. Aperture broken. Height 2.5 mm, diameter 5 mm (figured specimen).

Type: USNM 369336.

Type locality: Bowden, Jamaica, Bowden formation.

Two specimens of this inflated heteropod, which has a rounded *Oxygyrus*-like periphery, were collected by Rowell and Hill many years ago at and near Mount Hope. One is fragmentary: half of an immature body whorl. The periphery of this fragment bears two faint grooves, instead of ridges, and obscure, somewhat oblique spiral undulations are visible on the sides. The figured specimen is larger than the type of *Protatlanata lissa* (diameter 2.8 mm), which does not show any indication of peripheral ridges or grooves. *P. rotundata* (Gabb) (Pilsbry, 1922, p. 314, fig. 15) has a similar outline, but is sculptured with microscopic spirals. It occurs in the Cercado formation of the Dominican Republic. The periphery of the type bears two faint grooves.

Whether the periphery of these two species bears two ridges or two grooves, or shows no indication of either evidently is determined by the state of shell preservation. The significance of the ridges (or grooves) is uncertain. They may mark the trace of the attachment of a cartilaginous keel split into two limbs at the apertural margin, or may possibly mark the borders of a shallow V-shaped apertural slit. The sides of the figured specimen show faint gently arcuate growth lines which stop at the ridges. There is a vague suggestion of V-shaped growth lines in the narrow space between the ridges, but they are too obscure for unqualified interpretation.

As suggested by Pilsbry, *P. souleyeti* (Smith) (Tesch, 1949, p. 13, figs. 4–6), the type and only species of the subgenus *Protatlanata* s.s., appears to be the most closely related Recent species. The early whorls of that species form a spire visible in apertural view and the periphery bears a very thin, transparent cartilaginous keel split at the aperture into two coalescing limbs. Until the features of *P. rotundata* and *P. lissa* are better known, *Atlantidea* is treated as a subgenus of *Protatlanata*.

Occurrence: Upper part of Gatun formation (middle Miocene), eastern area, localities 174, 177. Bowden formation (middle Miocene), Jamaica.

Family CASSIDIDAE

Genus Galeodea Link

Galeodea echinophora (Linne) (Buccinum echinophorum Linne) Recent, Mediterranean Sea and eastern Atlantic Ocean.

Galeodea cf. *G. nodosa* (Sander)

Plate 25, figures 18, 19

Moderately large, strongly inflated, shouldered, relatively high spired. Body whorl sculptured with four low spiral ridges, all except anteriormost of which bear strong blunt knobs; 12 knobs on ridge forming shoulder. Similar knobs on shoulder of spire whorls. Traces of narrow spiral threads and exaggerated growth lines visible between ridges. Aperture not preserved.

Height (incomplete) 46 mm, diameter (modified by crushing) 40 mm (figured specimen).
A crushed mold, to which some leached shell material is attached, was found in siltstone of the Gatun-cillo formation at locality 27 on the Transisthmian Highway. The mold presumably represents Galeodea, but the aperture is not preserved and generic assignment therefore is uncertain. The outline is modified by crushing. In apertural view the mold is somewhat turreted, but not in dorsal view.

If this fossil is a Galeodea, it is a moderately large species and appears to be more similar to *G. nodosa* (Solander) (Wrigley, 1934, p. 120, pl. 17, figs. 31, 32) than to described American species. The knobs of *G. nodosa* are more compressed axially than those of the fossil from Panamá. *G. nodosa* occurs in the middle and upper Eocene of western Europe from England to the Mediterranean region.

Occurrence: Gatuncillo formation (late Eocene), locality 27.

Genus Bathygalea Woodring and Olsson

Type (orthotype): *Cassis coronadoi* Crosse, Recent, north coast of Cuba, off Cape Fear, N. Car.

Subgenus Miogalea Woodring and Olsson

Type (orthotype): *Cassis (Phalium) dalli* Anderson, Miocene, Colombia.

Bathygalea (Miogalea) hadra Woodring and Olsson

Plate 37, figures 10, 13

Of medium size, moderately thick-shelled, Galeodea-like in outline, strongly shouldered at early stage, spire turreted. Varices absent, except for terminal varix. Protoconch worn, consisting of about three naticoid whorls. Body whorl bearing 10 sharply pointed knobs on shoulder. Three low swellings on body whorl, lower blunt knobs on early two-thirds of whorl. Spiral threads narrow, closely spaced on early whorls, closely spaced, but less uniform in width and spacing, on body whorl, in general widest on knob-bearing swellings. Axial sculpture limited to exaggerated growth lines and faint wrinkles at suture of late whorls. Microscopic spiral and axial lineation visible on faintly worn parts of shell. Outer lip moderately thick; its interior bearing short moderately strong ridges. Parietal callosus and shield thin. Siphonal canal and siphonal fasciole missing. Insertion of siphonal wide.

Height 43.7 mm, diameter 33.6 (type).

Type: USNM 562268.

Type locality: 208 (USGS 8437, Caribbean Coast at mouth of Río Indio, Panamá), Chagres sandstone.

The type and a small damaged shell were collected by Olsson at the mouth of Río Indio, 37 kilometers southwest of Colón, where the Chagres sandstone crops out (chapter A, fig. 3, p. 45). Part of the type (the part that was exposed when it was collected) is corroded and the entire shell is slightly or faintly worn. The siphonal canal and siphonal fasciole are missing on both specimens, but the wide insertion of the canal on the type shows that the canal itself was wide.

As pointed out when this species was described, it evidently is a direct descendant of *Bathygalea dalli* (Anderson) (Woodring and Olsson, 1957 [1958], p. 23, pl. 7, figs. 1–4, pl. 8, figs. 3, 4), the type of the subgenus *Miogalea*. *B. hadra*, the youngest known species of *Miogalea*, has a thinner shell, corresponding thinner outer lip, parietal callosus and shield, and weaker ridges on the interior of the outer lip.

Occurrence: Chagres sandstone (early Pliocene), locality 208.

Genus Semicassio Möhric

Möhrich, Catalogus conchyliorum * * * Comes de Yoldi, pt. 1, p. 112, 1852.

Type (logotype, Harris, Catalogue of Tertiary Mollusca in the Department of Geology, British Museum; pt. 1, Australasian Tertiary Mollusca, p. 198, 1897): *Cassia japonica* Reeves, Recent, Japan.

Subgenus Echinophoria Saaco

Sacco, I molluschi dei terreni terziarii del Piemonte e della Liguria, pt. 7, p. 89, 1890.

Wrigley (1934, p. 109, 129) proposed to treat *Echinophoria* as a small, strongly knobbed, Oligocene to Pliocene subgenus of *Semicassio*, which seems to be a satisfactory arrangement. For a further discussion of *Echinophoria* see Woodring and Olsson (1957 [1958], p. 25).

Semicassio (Echinophoria) apenes Woodring, n. sp.

Plate 26, figures 11, 17

Small, strongly inflated, weakly shouldered, spire low, conical. Varix preceding terminal varix present or absent on body whorl. Shoulder of body whorl marked by about 11 blunt knobs arranged along a low, obscure spiral band. Lower knobs on three or four other low spiral bands. Three or 4 narrower, but relatively wide, spiral bands between anteriormost knob-bearing band and base of body whorl. Three weakly nodded spiral bands lying between shoulder and suture,
the sutural band widest and most distinctly noded. Knob-bearing shoulder band of body-whorl forming a knob-bearing band at anterior edge of spire whorls. Three other poorly preserved, narrow, noded spirals on spire whorls. Apertural features missing.

Height (almost complete) 51 mm, diameter (incomplete) 22 mm (type).

Type: USNM 562370.

Type locality: 56 (USGS 6025, about 200 yards (200 meters) south of southern end of switch at Bohio Ridge station, relocated Panama Railroad, Canal Zone), middle member of Caimito formation.

MacDonald and Vaughan collected three poorly preserved specimens of this strongly knobbed cassid at the type locality. Despite the absence of the siphonal canal and siphonal fascicle, there seems to be no reasonable doubt that this species is to be referred to *Echinophoria*. Unlike the type of *Echinophoria*, *Semicassis apenes* has no shoulder on the penult whorl and a weak shoulder on the body whorl.

Occurrence: Middle member of Caimito formation (late Oligocene), Gatun Lake area, locality 56.

Semicassis (*Echinophoria*) species

Plate 26, figures 8, 12

Small, moderately inflated, strongly shouldered, spire turreted. Varix present or absent on penult whorl. Shoulder bearing strong blunt knobs, about 10 on body whorl. Body whorl bearing three other rows of somewhat lower knobs. Narrow spiral threads of unequal width closely spaced. Apertural features missing. Insertion of siphonal fascicle suggesting fascicle is inflated and limited posteriorly by a sharp narrow thread.

Height (incomplete) 30 mm, diameter (incomplete) 28.5 mm (most nearly complete specimen, figured).

Four specimens of a species of *Echinophoria*, all of which are incomplete and in poor condition, were recovered from the moderately deep-water facies of the Caimito formation on Barro Colorado Island. The shell is thinner than that of *Semicassis apenes*, and the late spire whorls and body whorl are strongly shouldered. In outline and emplacement of knobs the unnamed species is more similar to the type of *Echinophoria* than any other described American cassid. The knobbed shoulder of the fossils from Barro Colorado Island, however, appears at an earlier stage.

This is a new species, but none of the specimens is suitable as type material.

Occurrence: Middle member of Caimito formation (late Oligocene), Gatun Lake area, localities 54h, 54j, 54l.

Subgenus Tylocassis Woodring

Type (orthotype): *Buccinum inflatum* Shaw (=*Buccinum granulatum* Born), Recent, North Carolina to Brazil.

"*Buccinum* inflatum" is a large Caribbean form of the species for which Clench (1944, p. 6) adopted the name *Phalium* (*Semicassis*) *granulatum* (Born). Should Born's type be found at the Zoological Museum in Vienna, confirmation of the adoption of that name would be welcome.

Tylocassis was proposed for the Caribbean and eastern Pacific species of *Semicassis*, all of which have wart-like denticles on the outer part of the fully formed inner lip. Wrigley (1934, p. 109, footnote) pointed out that the Mediterranean and eastern Atlantic *Semicassis undulata* (Gmelin) (also known as *S. sulcosa* (Born)) belongs in this group of species. Unlike American waters, the Mediterranean Sea and eastern Atlantic Ocean harbors another group of *Semicassis*, represented by *S. saburon* (Bruguière), which has allies extending back at least to the Miocene. The earliest American species of *Tylocassis*, and apparently also the earliest European species, are of Miocene age.

Generic rank for both *Phalium* (Link, 1806-07, p. 112, 1807; type (logotype, Dall, 1909, p. 62) : *Phalium glaucum* (Linné) (*Buccinum glaucum* Linné), Recent western Pacific Ocean) and *Semicassis*, and subgeneric rank for *Tylocassis* represents a nomenclatural fragmentation of *Phalium*-like cassis which some paleontologists and zoologists are unable to accept. Nevertheless on the basis of the wart-like denticles, Clench (1944, p. 9) was enabled to conclude that an alleged Australian species presumably is a Caribbean species.

Semicassis (*Tylocassis*) cf. *S. aldrichi* (Dall)

The uppermost part of the Culebra formation in Gaillard Cut (the transition zone between the Culebra and Cucaracha formations) yielded four incomplete molds of a small, inflated, shouldered cassid (approximate dimensions: height 22 mm, diameter 17 mm). The shoulder is noded and below the shoulder the body whorl is sculptured with closely spaced spirals. There is little doubt that this species is a *Semicassis*, and the small size and noded shoulder suggest comparison with *S. aldrichi* (Dall) (Gardner, 1926-47, p. 536, pl. 54, fig. 6, 1947), an early *Tylocassis* from the lower Miocene Chipola formation of Florida. The wart-like denticles of the type and only specimen of *S. aldrichi* do not extend over the parietal wall as shown in Dall's illustration, reproduced by Gardner.
Occurrence: Culebra formation (early Miocene), localities 110, 111, 111b.

Semicassis (Tylocassis) reclusa (Guppy)

Plate 34, figures 1, 4-6

Cassidaria monilifera Guppy, Geol. Soc. London Quart. Jour., v. 22, p. 287, pl. 17, fig. 8, 1866 (Miocene, Jamaica). Not *Cassidaria monilifera* Sowerby, 1846.

Dolium? sp. indet., Toula, idem, Band 61, p. 500 (first paragraph under *Dolium (Maica)* sp.), 1911 (Miocene, Canal Zone).

Semicassis (Tylocassis) reclusa (Guppy), Woodring, Carnegie Inst. Washington Pub. 385, p. 207, pl. 19, figs. 7-9, pl. 20, figs. 1, 2, 1928 (Miocene, Jamaica; additional citations).

Of medium size, inflated, slightly shouldered or nonshouldered. Protoconch consisting of 3 1/2 naticoid whorls. Sculpture consisting of flat spiral bands separated by narrow grooves, some of which contain a secondary spiral. Spiral bands more or less weakly noded or undulated along retractive axial lines. Nodes most distinct on shoulder of shouldered specimen. Outer lip, siphonal canal, and siphonal fasciole not preserved. Inner lip incomplete, upper part bearing spirally arranged denticles. Parietal wall thinly glazed.

Height (incomplete) 34.5 mm, diameter (incomplete) 30 mm (largest specimen, figured).

Type: USNM 115505.

Type locality: Jamaica (Bowden), Bowden formation.

Though *Semicassis reclusa* occurs in the lower and middle parts of the Gatun formation, it is a rare species in the Canal Zone. All of the five specimens are incomplete. Toula’s *Dolium? (Endolium)* sp. indet. (three specimens) and his *Dolium* sp. indet. (one specimen) are poorly preserved, incomplete specimens of *S. reclusa*. The two that show the top of the body whorl are nonshouldered.

As elsewhere in the Miocene deposits of the Caribbean region, *S. reclusa* includes shouldered and nonshouldered forms. The shouldered form in the Canal Zone (pl. 34, figs. 1, 4) is slightly shouldered and noded, whereas in the Gurabo formation of the Dominican Republic it is strongly shouldered and noded. The shouldered form is similar to the Recent eastern Pacific *S. centiquadrata* (Valenciennes) and the nonshouldered form to the Recent *S. granulata* (Born).

Pilsbury (1922, p. 361) suggested *S. reclusa* is the ancestor of both Recent species. The Miocene species is much smaller than its probable descendants on both sides of Central America. *S. centiquadrata* (Pilsbury and Olsson, 1941 p. 40, pl. 8, fig. 2) and a very weakly shouldered form of that species (idem, p. 41, pl. 7, figs. 3, 6) occur in the Pliocene of Ecuador, and *S. granulata* in deposits of Pliocene age at Limón, Costa Rica.

A moderately large, relatively slender *Semicassis* that has weak axial sculpture is found in the upper Miocene Punta Gavilán formation of Venezuela and was described by Rutsch as *Phalium (Tylocassis) sulcosum senni* (Rutsch, 1934, p. 55, pl. 3, figs. 1, 2); that is, as a subspecies of the Recent Mediterranean-eastern Atlantic species. *Semicassis granulata* has a considerable range in degree of inflation and strength of axial sculpture. It is suggested that the Venezuelan fossil be considered a slender subspecies of *S. granulata* that is weakly sculptured axially and intermediate in size between *S. reclusa* and *S. granulata* proper.

Occurrence: Lower and middle parts of Gatun formation (middle Miocene). Lower part, localities 136a, 138 (fragment, identification doubtful). Middle part, eastern area, localities 147h, 160; western area, locality 161d (immature, identification doubtful).

Genus Sconsia Gray

Type (orthotype): *Cassidaria striata* Lamarck, Recent, southeastern Florida and Bahamas to Gulf of Mexico and West Indies.

Though *Sconsia* has Eocene predecessors in America and Europe (Pilsbury, 1922, p. 361; Woodring, 1928, p. 308; Wrigley, 1934, p. 114; Palmer, 1937, p. 253; Gardner, 1939, p. 27; age changed to early Oligocene, Gardner, 1948, p. 182) the earliest species in the restricted sense are of Oligocene age in southeastern United States (“Cassidaria linea” Conrad, 1848, p. 118, pl. 11, fig. 43; Vicksburg group, Mississippi) and of early Miocene age in the Caribbean region (*S. coelestina* Olsson, 1922, p. 138, pl. 12, fig. 7; Usacari shale, Costa Rica).

During Miocene time the genus gained a temporary footing in the Pacific Ocean, both in the western Pacific (Martin, 1891–1922, p. 158, pl. 26, figs. 366, 367, 1889) and in the eastern Pacific. It is represented in the lower Miocene of Ecuador (Marks, 1951, p. 107, pl. 7, fig. 14) and in the middle Miocene of the Darién area of Panama, where the Canal Zone form has been found (USGS locality 8477, Rio Tuyra). Mark’s illustration is poorly drawn, but his specimen, as he recognized, is a typical *Sconsia. S. striata*, which ranges from southeastern Florida and the Bahamas to the Gulf of
Mexico and the West Indies at depths of 35 to 255 fathoms, is the sole surviving species. Because it is obtainable only by dredging, it formerly was rare in museum collections, but now is more common as a result of shrimp trawling in the Gulf of Mexico.

Sconsia laevigata sublaevigata (Guppy)
Plate 34, figures 8, 9, plate 35, figures 1-4

Sconsia sublaevigata (Guppy), Böse, Inst. Geol. México Bol. 22, p. 36, pl. 4, figs. 9, 10, 1906 (Miocene, Mexico).

Leucozonia (Lagena) sp. aff. L. smaragdula Linné, Toula, K. k. Geol. Reichsanstalt, Jahrb., Band 58, p. 699, pl. 23, fig. 9, 1909 (Miocene, Canal Zone).

Sconsia (Sconsia) striata sublaevigata (Guppy), Woodring, Carnegie Inst. Washington Pub. 885, p. 309, pl. 20, figs. 3-6, 1929 (Miocene, Jamaica).

Moderately large, strongly inflated. Body whorl generally bearing a varix of variable strength 180° to 225° (in counter-clockwise direction) from outer lip. One or two low varices present or absent on penult whorl. Protoconch consisting of about three naticoid whorls. Spire whorls sculptured with narrow, closely spaced spiral bands and threads of unequal width and more or less exaggerated growth lines. Strength of body-whorl sculpture variable, but generally more or less reduced, particularly on middle part of whorl. Outer lip bearing strong ridges. Siphonal canal broken, evidently short and slightly notched. Siphonal fasciole barely swollen. Basal part of inner lip bearing strong ridges, the remainder and parietal wall bearing shorter ridges and irregular swellings. Parietal wall thinly glazed.

Height (incomplete) 57 mm, diameter (modified by crushing) 37.5 mm (largest figured specimen). Height 42 mm, diameter 26.5 mm (smallest figured specimen).

Type: British Mus. (Natural History), Geol. Depart. 64075.

Type locality: Jamaica (Bowden), Bowden formation.

Twenty-four specimens of a *Sconsia*, identified as *S. laevigata sublaevigata*, are available. They were found in the middle part of the Gatun formation in both the eastern and western areas and in the upper part of the eastern area; that is, in strata considered of late middle Miocene age. All except two of intermediate size are incomplete and the largest are distorted by crushing. The body-whorl sculpture is variable, but only one specimen (pl. 35, figs. 1, 2) has moderately strong sculpture. The degree of inflation appears to be fairly uniform. Comparison of the crushed large specimens, however, with large specimens from other localities is difficult. A shell of intermediate size (locality 155a) shows a color pattern of brownish, narrow, axial bands of irregular outline. Some specimens of the Recent *S. striata* (Lamarck) have a similar pattern, but the usual pattern of that species consists of spirally arranged more or less rectangular blotches.

Toula's *Leucozonia (Lagena) sp. aff. L. smaragdula* is an immature specimen (incomplete height 25.5 mm, diameter 18.6 mm) of *Sconsia laevigata sublaevigata* that has fairly strong sculpture, comparable to that of other immature specimens from the Canal Zone.

There are two groups of *Sconsia* in the late middle and upper Miocene deposits of the Caribbean region: the weakly sculptured, more or less strongly inflated *S. laevigata* (and its subspecies) and the strongly sculptured, moderately inflated *S. bocasensis*, which is considered a subspecies of *S. striata*.

S. laevigata laevigata (Sowerby) Maury, 1917, p. 111, pl. 19, fig. 2), the first Caribbean fossil form to be named, is widespread and abundant in the late middle Miocene Gurabo formation of the Dominican Republic and was chosen by Maury as the zonal index for the strata she later named as the Gurabo formation. It is weakly sculptured, greatly inflated, and the dorsal surface of the body whorl of large specimens and those of medium size is somewhat shouldered—a feature not shown in Maury's illustration, an apertural view. Though *S. sublaevigata* (Guppy), the form found in the late middle Miocene Bowden formation of Jamaica, has been treated as a subspecies of the Recent *S. striata*, subspecific assignment under *S. Laevigata* is a better arrangement. The Jamaican form is not as greatly inflated as *S. laevigata laevigata* and immature shells are more strongly sculptured. The dorsal surface of the one large topotype is not as distinctly shouldered. The type of *S. laevigata gabbi* Olsson (1922, p. 136, pl. 12, fig. 3) is from upper Miocene strata on Toro Cay, in the Bocas del Toro area of northwestern Panamá and southeastern Costa Rica. According to seven well preserved topotypes, that form like *S. laevigata laevigata*, is weakly sculptured and greatly inflated, but the dorsal surface is not as distinctly shouldered. It is more or less intermediate between *S. laevigata laevigata* and *S. laevigata sublaevigata*. *S. laevigata gabbi* also occurs in upper Miocene deposits on Water Cay, near Toro Cay, but fossils from the late middle Miocene of Río Banano and Río Bananito and the upper Miocene of Coco Plum (localities in the same area) are more similar to Canal Zone fossils. The name *S. laevigata sublaevigata* is adopted.
for the Canal Zone *Sconsia*, although the specimen shown on plate 35, figures 1, 2 is strongly sculptured at a later stage than Jamaican specimens and it is uncertain whether the dorsal surface of the large specimens (pl. 34, figs. 8, 9) was slightly shouldered before crushing.

The three forms so far discussed more or less intergrade and it may be a strained interpretation to attempt to distinguish them. If they are accepted, *S. laevigata* and *S. laevigata gabbi* have a restricted geographic distribution, whereas *S. laevigata sublaevigata* is more widely distributed. And if they are accepted, it follows from the next paragraph that three forms of *Sconsia* are represented in the late middle and upper Miocene strata of the Bocas del Toro area.

The strongly sculptured and moderately inflated *S. bocasensis* Olsson (1922, p. 137, pl. 12, figs. 12, 13; type locality Bocas Island or Isla de Colón) also occurs in the late middle and upper Miocene deposits of the Bocas del Toro area. Three well-preserved topotypes of late Miocene age and a late middle Miocene specimen from Río Estrella, in Costa Rica, indicate that *S. bocasensis* is a subspecies of *S. striata*. It is a little smaller than the typical Recent form, and has a more conspicuous sutural band and strong ridges on the entire parietal wall and columellar lip. *S. striata* proper occurs in Pliocene strata at Limón, Costa Rica. No other Miocene occurrence of a form of *S. striata* is known, unless the poorly preserved *Sconsia* from the upper Miocene Punta Gavilán formation of Venezuela, described by Rutsch (1934, p. 53, pi. 2, fig. 11) as *Sconsia cf. S. striata*, is that species. The sculpture of *S. striata* is stronger than suggested by Clench and Abbott's illustrations (Clench and Abbott, 1943, p. 6, pl. 4, figs. 1-4).

Occurrence: Middle and upper parts of Gatun formation (middle Miocene). Middle part, eastern area, localities 142, 155, 155a, 155b; western area, locality 161a. Upper part, eastern area, localities 173, 173, 176 (fragments, identification doubtful), 177 (immature, incomplete, identification doubtful), 177b, 177c (immature, incomplete, identification doubtful), 178. Deposits of middle and late Miocene age, northeastern Panamá and southeastern Costa Rica. Middle Miocene, southeastern Mexico. Bowden formation (middle Miocene), Jamaica. Middle Miocene, Colombia. Middle Miocene, Darién area, Panamá.

Family CASSIDIDAE?

Genus Morum Röding

Röding, Museum Boltenianum, p. 53, 1798.

Type (monotype): *Morum purpureum* Röding (=Strombus oniscus Linné), Recent, southeastern Florida and Bahamas to Brazil.

Morum in the restricted sense is unknown in the Caribbean region before Pliocene time.

Subgenus "Oniscidia Swainson"

Oniscidia has been used widely for the cancellate species of *Morum*. That name (Swainson, 1840, p. 299), however, was attributed by Swainson to *Sowerby*. As pointed out repeatedly, first by Herrmannsen (1846-52, v. 2, pp. 150, 151, 1847), it evidently is an error for *Sowerby*'s name *Oniscia*, which is cited elsewhere in Swainson's book, including an index citation for the page where *Oniscidia*, but not *Oniscia*, appears. *Oniscia* is a synonym of *Morum*. A Recent Japanese species of "Oniscidia" has been cited recently as *Morum (Onimusiro) grande* (A. Adams) in the explanation of a plate (Kira, 1954, p. 43). If *Onimusiro* has been properly published, it has not come to the attention of the compiler of the part of the Zoological Record dealing with mollusks.

"Oniscidia" is an ancient group, first appearing in the Eocene of the Caribbean and Mediterranean regions. The last European species are of Miocene age and the survivors are living in the Caribbean Sea and the western Pacific Ocean. The Recent species are larger than the American and European fossils. The Caribbean *Morum dennisoni* (Reeve) (Clench and Abbott, 1943, p. 5, pl. 4, fig. 5), a rare species living in moderately deep water, has weaker axial sculpture than the American fossils and the Recent western Pacific forms.

*Morum ("Oniscidia")" species

Plate 25, figures 11, 17

Small, slightly inflated, slightly shouldered, spire and dorsal part of body whorl not preserved. Axial ribs relatively wide, at least near outer lip, and widely spaced. Spiral cords swollen on axial ribs. Body whorl bearing eight axial ribs between outer and inner lips and 11 spiral cords from shoulder to siphonal fasciole. Axial ribs and spaces between them sculptured with fine axial lamellae. Outer lip thick and wide for size of shell; inner edge bearing ridges, which are subdued at anterior end and fade out at posterior end. Inner lip spreading widely over parietal wall; inner part bearing ridges, outer part bearing irregular denticles disappearing outward. Siphonal fasciole slightly inflated, its growth lines lamellar.

Height (incomplete) 21 mm, diameter (incomplete) 13.5 mm (figured specimen).

The fossiliferous limestone of the Gatuncillo formation in the Río Casaya area yielded a small incomplete specimen of "Oniscidia." Though it is too incomplete to determine its affinities, it is of special interest. Ac-
acording to current age assignments, it is the earliest American species.

Occurrence: Gatuncillo formation (middle Eocene), locality 38.

Morum ("Oniscidia") cf. **M. antiquum** (Bayan)

Plate 25, figures 12, 13

Small, moderately inflated, moderately shouldered, spire low. Sculpture strongly cancellate. Axial ribs narrow, widely spaced on spire whorls and beginning of body whorl, closely spaced on remainder of body whorl. Spiral cords noded on axial ribs. Body whorl bearing 16 axial ribs between outer and inner lips and 11 spiral cords on preserved part of body whorl on and below shoulder. Fine lamellar axial sculpture poorly preserved. Aperture greatly expanded. Outer lip thick and wide; inner edge bearing wide swellings. Inner lip spreading widely over parietal wall; inner part bearing ridges, outer part bearing irregular elongate denticles disappearing outward. Siphonal fascicle not preserved.

Height (incomplete) 21.5 mm, diameter 18.3 mm (figured specimen).

The axial groove in the apertural view (pl. 25, fig. 12) is due to a broken axial rib.

This strongly cancellate, low-spired species, evidently a new species, is represented by an incomplete specimen collected by Hill at Vamos Vamos. The sculpture suggests "Oniscia" antiqua Bayan (1870, p. 479; 1870a, p. 53, pl. 7, fig. 4), a species found in Eocene strata at Croce Grande and Val di Ciuppio, Italy. Bayan's illustration, however, shows narrower and more widely spaced axial ribs. *M. cf. M. antiquum* is less pyriform and more strongly shouldered than the upper Eocene or lower Oligocene Peruvian *Morum chiraense* Olsson (1931, p. 96, pl. 17, figs. 6, 8) and the upper Eocene Colombian *M. corrugatum* Clark (Clark and Durham, 1946, p. 34, pl. 21, figs. 5, 21). The Peruvian and Colombian forms may be found to represent the same species. "Athleta (Volutospina)" caracoli Anderson (1988, p. 19, pl. 1, fig. 5) is an earlier name for *M. corrugatum*, if not also for *M. chiraense*. The type of "Athleta" caracoli, which is unrecognizable on the basis of Anderson's illustration, was assigned to *Morum* and refigured by Clark (Clark and Durham, 1946, p. 35, pl. 21, fig. 12). It is in poor condition, but is a small, pyriform *Morum*.

Occurrence: Marine member of Bohio (?) formation (late Eocene or early Oligocene), locality 40a.

Morum ("Oniscidia") cf. **M. chipolanum** Maury

A small specimen (estimated height about 23 mm, diameter 16.8 mm), broken at both ends and otherwise defective, was found in the Culebra formation at a locality near Paraíso. It represents an "Oniscidia" characterized by strong axial ribs that are widely spaced on the later half of the body whorl, relatively strong axial lamellae, and strong, widely spaced spiral cords. The body whorl bears 11 axial ribs. The strength of the axial lamellae suggests that this "Oniscidia" is allied to *Morum chipolanum* Maury (1925a, pp. 115, 617, pl. 4, fig. 4; Gardner, 1926-47, p. 538, pl. 54, fig. 18, 1947), which has narrower and more closely spaced axial ribs and more closely spaced spiral cords. The typical form of *M. chipolanum* occurs in the lower Miocene Chipola formation of Florida. A very similar, perhaps identical, form from the Tampa limestone of Florida has been named *M. chipolanum tampanum* Mansfield (1937, p. 141). The type of that form—the specimen illustrated by Dall (1915, p. 85, pl. 12, fig. 28) as *M. domingense* (Sowerby)—is low-spired and has widely spaced axial ribs on the later half of the body whorl, as on the fragmentary specimen from the Culebra formation. Two other specimens, however, one of which was identified by Mansfield (1937, p. 141) as *Morum cf. M. chipolanum*, are more similar to the form from the Chipola formation. According to Maury's illustration, the axial ribs of the lower Miocene Brazilian *M. harrisi* Maury (1925a, p. 115, pl. 4, fig. 14) are narrow.

The name *Morum chipolanum*, which Maury attributed to Dall, was first published by Maury and the type is the specimen she illustrated. The name as used by Mansfield in 1937 was nude, but, unknown to him, it has been validated 12 years earlier. Dr. K. V. W. Palmer reports that the type is not in Maury's Chipola collection at the Paleontological Research Institution and was not sent to Rio de Janeiro. If it is not found at Cornell University, the specimen illustrated by Gardner and designated by her as the type is available as the neotype. The type is more inflated than Gardner's specimen or its proportions were not properly drawn.

Occurrence: Culebra formation (early Miocene), locality 114.

Family CYMATIIDAE

Poorly preserved immature cymatids, representing undetermined genera, occur in the marine member of the Bohio (?) formation, the Bohio formation of Barro Colorado Island, and the Caimito and Culebra formations.

Genus Cymatium Röding

Röding, Museum Boltenianum, p. 129, 1798.

Type (logotype, Dall, Smithsonian Misc. Coll., v. 47, no. 1475, p. 133, 1904): *Cymatium femorale* Röding (*Murex femorale* Linné), Recent, West Indies.
Subgenus Septa Perry

Perry, Arcana, pl. 2, fig. 2, 1810.

Type (monotypic): Septa scarlatina Perry = Murex rubecula Linne, Recent, Western Pacific Ocean.

As pointed out by Clench and Turner (1957, p. 214), Septa is available for the group of cymatids for which Schumacher's name Lampusia has long been used.

Cymatium (Septa) ogygium Woodring, n. sp.

Plate 27, figures 4, 6

Small, moderately inflated, slightly shouldered. Protoconch not preserved. Varices on all except earliest preserved whorl, very heavy, about two-thirds of a whorl apart. Body whorl slightly humped between outer lip and preceding varix. Sculpture consisting of heavy primary spiral cords, poorly preserved subdulted secondary spiral threads, and wide low axial ribs. Primary spirals swollen on varices and slightly swollen on axial ribs. Three primary spirals on spire whorls and a narrower more subdulted spiral between shoulder and suture; six on body whorl. Seven axial ribs between varices, subdulted on body whorl. Secondary spirals slightly noded. Outer lip very heavy, interior bearing seven heavy ridges. Inner lip bearing short ridges. Tip of siphonal canal broken.

Height (almost complete) 40 mm, diameter 23 mm (type).

Type: USNM 562573.

Type locality: 55b (USGS 18847, Pato Horqueto Island, south coast about 75 meters west of southeast end of island, Canal Zone), middle member of Caimito formation.

The type and only specimen of this small Cymatium was found in a conglomerate lens interbedded with siltstone of the middle member of the Caimito formation on Pato Horqueto Island. It was somewhat battered before fossilization. The broken apex is smoothly worn. The subdulted secondary spirals are best preserved on the sides of varices, where they were protected.

Cymatium ogygium is the oldest species of the genus so far found in the Caribbean region. It is smaller and less humpd than the Recent Caribbean and western Pacific species long known as C. chlorostomum (Lamarck), and has narrower and more subdulted secondary spirals. The name C. nicobaricum (Röding) has recently been resurrected for that Recent species (Clench and Turner, 1957, p. 210).

Occurrence: Middle member of Caimito formation (late Oligocene), Gatun Lake area, locality 55b.

Cymatium (Septa) pileare henicum Woodring, n. subsp.

Plate 36, figures 1, 4

Of medium size, moderately inflated, moderately shouldered. Protoconch not preserved. Varices on last four whorls, about two-thirds of a whorl apart. Body whorl humped between outer lip and preceding varix. Sculpture consisting of closely spaced spiral cords and threads, low wide axial ribs, and fine axial threads. Primary spiral cords swollen on varices and axial ribs. Three primary spirals (antiormost partly overlapped) on spire whors and five on body whorl; posteriormost forming shoulder. Axial ribs ending on shoulder; five ribs between varices, the last of the five subdulted and subdivided into minor riblets at beginning and end of body whorl. Fine axial threads conspicuous and forming fine nodes on spirals of earliest preserved whors, subdulted on late whors. Interior of outer lip bearing seven long heavy ridges; the second, third, fourth and fifth from anterior end doubled at edge of lip. Inner lip bearing narrow ridges. Siphonal canal broken.

Height (incomplete) 53.5 mm, diameter 28 mm (type).

Type: USNM 562584.

Type locality: 136a (Stanford University 2611, Transisthmian Highway, lat. 9°21' N., plus 1,100 feet (335 meters), long. 79°49' W., Panamá; same as USGS 16192), lower part of Gatun formation.

The type, collected by T. F. Thompson from the lower part of the Gatun formation, is the only specimen of this cymatid. It is considered a subspecies of the widely distributed Recent Cymatium pileare (Linne), perhaps representing a stage earlier than the appearance of uniform paired ridges, or denticles, on the interior of the outer lip. The later whors of the fossil also have more subdulted fine axial threads and correspondingly subdulted nodes on the spirals. The subdulting of the fine axials does not appear to be a matter of wear.

A specimen of C. pileare, which, like some Recent shells, has subdulted axial ribs but strong fine axial threads, is in a lot of Gatun fossils collected by W. S. Standifer at the Gatun Locks excavation in 1909, when the excavating was in progress (locality 159). A little muddy matrix, unlike the matrix of the Gatun fossils, remains on this fossil, which presumably is of Pleistocene age. The north end of the excavation penetrated fossiliferous Pleistocene strata. C. pileare, however, has been recognized in the Gurabo formation of the Dominican Republic (Maury, 1917, p. 105) and in the Gabb collection of Miocene fossils from that country.
Distorsio (Rhysema) decussata gatunensis Toula

Plate 34, figures 7, 10, plate 38, figure 5

Distorsio (Distortrix, Pers.) gatunensis Toula, K k. Geol. Reichsanstalt Jahrb., Band 58, p. 700, pl. 25, fig. 10, 1909
(Miocene, Canal Zone).

(Miocene, Canal Zone).

Distorsio decussatus gatunensis Toula, Rutsch, Eclogae Geol. Helvetiae, Band 23, pp. 606, 614, pl. 17, fig. 9 (type), 1930

Distorsio decussatus cf. gatunensis Toula, Rutsch, Eclogae Geol. Helvetiae, Band 23, p. 610, pl. 17, fig. 7, 1930
(Miocene, Venezuela).

(Miocene, Jamacia; = small form of D. clathrata (Lamarck)).

not Distorsio aff. gatunensis Toula, Weisbord, Bull. Am. Paleontol. v. 14, no. 54, p. 41, pl. 8, fig. 3, 1929
(Miocene, Colombia; = small form of D. clathrata (Lamarck)).

not Distorsio aff. gatunensis Toula, Li, Geol. Soc. China Bull., v. 9, p. 299, pl. 7, fig. 54, 1930

Moderately large, strongly humped. Protoconch large, low-spired, strongly tilted, consisting of 3½ whorls, rapidly enlarging in diameter, last whorl strongly inflated. End of protoconch marked by abrupt appearance of reticulate sculpture: four spiral cords, nodded by axial ribs. Anteriormost spiral overlapped as first sculptured whorl straightens out and generally overlapped on other spire whors, except midway between varices of succeeding whors. First varix appearing on third sculptured whorl. Later whors progressively more strongly humped and shouldered between varices, which are about two-thirds of a whorl apart. The two primary spirals on shoulder of humped and shouldered whors more closely spaced than others. Body whorl sculptured with 11 to 15 primary spirals. Primary spirals faintly doubled on late spire whors and posterior part of body whorl. Secondary spirals subdue, generally more conspicuous between shoulder and suture. Axial ribs widely spaced on late whors, except those immediately preceding varices and outer lip; subdue between primary spirals on humped part.
of body whorl. Microscopic spiral and axial lineation apparent on unworn surfaces. Denticles on outer part of inner lip elongate and irregular. Parietal wall bearing two elongate oblique denticles. Siphonal canal moderately long, moderately recurved, tip broken.

Height (almost complete) 50.5 mm, diameter 30.3 mm (largest specimen, figured).

Type: Tech. Hochschule, Vienna.

Type locality: Presumably Gatun Locks excavation, Canal Zone, middle part of Gatun formation.

Distorsio decussata gatunensis is widely distributed in the three parts of the Gatun formation and an incomplete, doubtfully identified specimen was found in the Chagres sandstone. Twenty-one specimens are in the collections from the Gatun. The type is an immature specimen (height 32.2 mm, diameter 20 mm) not much more than half as large as that shown on plate 54, figures 7, 10.

The most distinctive feature of this *Distorsio* is the large, lowspired strongly tilted protoconch (pl. 36, fig. 5), whereas the protoconch of *D. decussata* proper is smaller, highspired, and not tilted. The protoconch of the Recent Caribbean *D. clathrata* is tilted, but is not as strongly tilted, and is smaller and highspired. On account of the distinctive protoconch, Pilbsry gave specific rank to *D. gatunensis*. On the basis of the apertural features and sculpture, however, it is a small subspecies of the Recent Panamic *D. decussata* (Valenciennes) (Pilsbry and Olsson, 1941, p. 40, pl. 5, fig. 9), an arrangement proposed by Rutsch. Despite the protoconch, it is unlikely that the aperture and sculpture belie the affinities. This fossil subspecies may be present in the middle Miocene of Colombia, the upper Miocene of Toro Cay, Panamá, and the upper(?!) Miocene of Falcón, Venezuela, but those occurrences are unsupported by data concerning the protoconch.

D. decussata gatunensis has more subdued secondary spirals than *D. decussata simillima* (Sowerby), which occurs in the middle Miocene of the Dominican Republic and Jamaica, and in the middle and upper Miocene of the Bocas del Toro area (Maury, 1917, p. 107, pl. 17, figs. 4, 5; Woodring, 1928, p. 300, pl. 18, figs. 7–9, pl. 19, fig. 1; Olsson, 1929, p. 133). Moreover, the protoconch of *D. decussata simillima* is like that of *D. decussata* proper. The incomplete fossil from the Chagres sandstone has a relatively strong secondary spiral above the shoulder and may represent *D. decussata simillima*. As pointed out by Pilbsry (1922, p. 356) and as recorded by Gabb (1881, p. 353), *D. decussata simillima* survived until Pliocene time in Costa Rica, but no representative of that species group is now living in Caribbean or adjoining waters.

Dall (1889, p. 222) realized that two forms of *Distorsio* are living in the western Atlantic Ocean: the large, smoothly humped, and evenly reticulate *D. clathrata* (Lamarck) (Dall's *D. reticulata*), ranging from Cape Lookout to the Gulf of Mexico and Venezuela, and the small, abruptly humped, unevenly reticulate, and short-canaled *D. constricta mcgintyi* Emerson and Puffer (Dall's *D. reticulata clathrata*), ranging from Cape Hatteras to southeastern Florida and the Gulf of Mexico. The affinities of the small form were not realized until Olsson and McGinty (1951, p. 26, pl. 1, figs. 5, 6) described it as *D. constricta floridana* (Broderip). *D. constricta floridana* is a homonym of *"Personella" floridana* Gardiner (1926–47, p. 555, pl. 53, fig 8, 1947), a small *Distorsio* (apparently a small form of the *D. decussata* group) from the middle Miocene of Florida, and has been renamed *D. mcgintyi* (Emerson and Puffer, 1953, p. 101). Pilsbry and Olsson (1941, p 40, pl. 5, fig. 12) had pointed out that *D. constricta* is abruptly humped and has a short, strongly recurved siphonal canal and small denticles on the outer part of the inner lip and on the parietal wall above an elongate oblique denticle. The slightly swollen siphonal fasciole also is more distinctly set off than that of other American species. *D. mcgintyi* indeed appears to be a small subspecies of *D. constricta* that has elongate denticles, instead of small denticles, on the outer part of the inner lip. If its affinities have been properly determined, a still unknown predecessor is to be looked for in the Miocene or lower Pliocene of the Caribbean region. Olsson and McGinty thought that *D. simillima* is a predecessor, but that form is very closely related to *D. decussata*.

The erroneous designation of the representative of *D. clathrata* in the Bowden formation of Jamaica as *D. clathratus gatunensis* was corrected by Rutsch.

Occurrence: Lower, middle, and upper parts of Gatun formation (middle and late Miocene). Lower part, localities 136a, 138, 138a. Middle part, eastern area, localities 142, 147g (mold and partial impression, identification doubtful), 155, 155b; western area, locality 161b. Upper part, eastern area, localities 171, 175, 176a, 177, 177b; western area, localities 182a, 183, 185. Chagres sandstone (early Pliocene), locality 208 (identification doubtful). Middle Miocene, Colombia (identification doubtful). Deposits of late Miocene age, northwestern Panamá (identification doubtful). Deposits of late(?) Miocene age, Falcón, Venezuela (identification doubtful).
Family BURSIDAE

Genus Bursa Röding

Röding, Museum Boltenianum, p. 128, 1798.

Jousseaume cited Murex bufonius as the type. For a formal designation, however, one of Röding's species should be designated. Röding cited Murex bufonius under Bursa mammata and B. monitata. Smith used the expression "Jousseaume selected from the species quoted by Bolten [Röding], B. bufonia Gmelin (=mammata Bolten) as the type".

Subgenus Colubrella Fischer

Fischer, Manuel de conchyliologique, p. 556, 1884.

Type (monotype): Ranella candida Lamarck (=Murex conditus Gmelina), Recent, western Pacific Ocean.

Colubrella appears to be an appropriate name for moderately large, somewhat compressed or rounded species of Bursa that have varices offset somewhat on successive whorls (or practically alined), more or less closely spaced noded spirals, and a pad on the parietal wall bordering the posterior canal. The most satisfactory illustrations of the type species, which evidently is rare and not represented in the collections of the U. S. National Museum, are those published by Kiener (1841, p. 35, pl. 13, fig. 1).

Bursa (Colubrella) caelata amphitrites Maury

Plate 28, figures 1, 2, 7, 8

Moderately large, rounded, strongly shoudered. Protoconch consisting of 31/2 naticoid whorls, all, except first, rapidly enlarging in diameter. Faint traces of axial and spiral sculpture visible on early whorls of least worn protoconchs. End of protoconch marked by abrupt appearance of six strongly noded spirals, the third from anterior edge of whorl (corresponding to shoulder spiral of succeeding whorls) a little wider than others. First varix appearing 270° to 315° from beginning of first sculptured whorl. Two strongly pinched varices on succeeding whorls. Varices practically alined or slightly offset on spire whorls, moderately offset on body whorl. Shoulder appearing immediately after first varix. Shoulder nodes strong and widely spaced. Nodes closely spaced on narrow closely spaced spirals above and below shoulder. Eight narrow noded spirals between shoulder and siphonal fasciole on body whorl of moderately large specimen. Fine undulated spiral threads between noded spirals. Microscopic axial and spiral threads, forming clothlike texture, preserved on unworn surfaces. Outer lip flaring, strongly set off from adjoining varix. Trace of outer lip and posterior canal well marked in corresponding position near earlier varices. Posterior canal deep. Denticles on outer part of inner lip elongate.

Height (almost complete, tip of siphonal canal broken) 45 mm, diameter 30 mm (largest specimen, figured). Height 29.6 mm, diameter 20 mm (smaller figured specimen).

Type: Cornell University 36819.

Type locality: Rio Amina between Hato Viejo and Potrero, Dominican Republic, Gurabo formation.

Nine specimens of Bursa caelata amphitrites were found in the Gatun formation: four in the lower part and five in the middle part in the eastern area. The small figured specimen (pl. 28, figs. 1, 2) and other small specimens have coarsely noded spirals alternating with minor finely noded spirals below the shoulder, like those on large specimens from the Dominican Republic. On the only moderately large specimen (pl. 28, figs. 7, 8) and on some small specimens the noded spirals below the shoulder are of practically uniform width and nodding, except for a few moderately coarse nodes on the second spiral below the shoulder immediately following the earlier varix on the body whorl. The varices are practically alined on spire whorls and moderately offset on the body whorl. On the type, however, they are strongly offset on the body whorl and on two other large specimens from the type region they are strongly offset throughout. Rutsch realized that his B. albifasciata boussingaulti is very closely related to B. caelata amphitrites and his illustrations suggest that it is that form.

These fossils from the Canal Zone, Dominican Republic, and Venezuela are Miocene representatives of a species complex, or a group of very closely allied species, now represented in the Panamic region by B. caelata (Broderip) (Broderip and Sowerby, 1832, p. 179; Reeve, 1844, pl. 3, species 10; type locality Panama City), in the Caribbean Sea by a form for which the name B. ponderosa (Reeve) (1944, pl. 3, species 14; type locality unknown) has been used, and in the eastern Atlantic Ocean by the very coarsely noded B. pusculosa (Reeve) (1844, pl. 3, species 11; type locality Ascension Island). Though the sculpture of the fossils and of Recent Caribbean and Panamic shells is variable, the fossils consistently have conspicuous minor finely noded spirals. Such spirals are absent or less...
conspicuous on six Recent Caribbean shells and on all except one of 38 Recent Panamic shells. The exception is a shell collected at Venado Beach, Canal Zone (USNM 589628). On some Recent shells, especially large shells, wartlike denticles as well as more elongate denticles are present on the outer part of the inner lip, but that feature is variable. There is some justification for Morrison’s (1949, p. 12) view that the same name is to be used for B. amphitrites and the Recent Panamic and Caribbean forms. He adopted for them the name B. corrugata (Perry) (1811, pl. 5, fig. 1; type locality unknown). Perry’s illustration suggests a coarsely noded Caribbean or eastern Atlantic shell. In view of the uncertain status of Perry’s name, Broderip’s name is used for the American species complex and Maury’s name is given subspecific rank, despite the occurrence of a Panamic shell that closely resembles the fossils. Regardless of what names are used, Morrison’s treatment calls attention to tho Miocene appearance of a lineage that survived without any significant modification on both sides of Central America.

The sculpture of the fossils from the Canal Zone is much like that of B. cubaniana (d’Orbigny) (1841–47(?), v. 2, p. 165, pl. 23, fig. 24), also living in the Caribbean Sea. The varices of that species are less strongly pinched and more nearly alined. Its outer lip also is not as strongly flared or as strongly set off from the varix, and the trace of earlier lips and posterior canals is correspondingly suppressed.

Occurrence: Lower and middle parts of Gatun formation (middle Miocene). Lower part, locality 138. Middle part, eastern area, localities 155, 155b, 157. Cercado and Gurabo formation (middle Miocene), Dominican Republic. Punta Gavilán formation (late Miocene), Venezuela.

Family TONNIDAE

Genus Malea Valenciennes

Valenciennes, in Humboldt and Bonpland, Voyage aux régions équinoxiales du nouveau continent; Recueil d’observations de zoologie et d’anatomi Comparée, tome 2, p. 324, 1832.

Type (logotype, Herrmannsen, Indicis generum malacozoorum, Band 2, p. 13, 1847) : Malea latilabris Valenciennes (= Cassis ringens Swainson). Recent, Baja California to Peru.

The lower Miocene part of the Ciamito formation in Madden basin, at localities 79, 82a, and 85a, yielded unidentified small toniid molds. One of these molds (locality 79) shows that the outer lip was strongly constricted and therefore can be accepted as Malea. The others, though probably the same species, are listed as Malea? sp.

Malea camura Guppy

Plate 33, figures 1–4.

Dolium (Malea) sp., Toula, K. k. Geol. Reichsanstalt Jahrb., Band 61, p. 300, pl. 30, fig. 7, 1911 (Miocene, Canal Zone).

Malea elliptica Pilsby and Johnson, Olsson, Bull. Am. Paleontology, v. 9, no. 99, p. 139, pl. 12, fig. 2, 1922 (Miocene, Costa Rica, Panama).

Moderately large, rapidly enlarging in diameter, slightly to distinctly shouldered. Protoconch consisting of about three smooth naticoid whorls. Sculpture consisting of low spiral bands, which are wider than the grooves between them, or near shoulder are of about same width as grooves; 16 to 18 bands on body whorl from shoulder to siphonal fasciole, three or four on antepenult from shoulder to suture of body whorl. In addition one to three narrow bands between shoulder and suture on body whorl and penult. First two sculptured whorls, or a little more, bearing one or two fine secondary spiral threads between the narrow bands and retractive exaggerated growth threads. Well preserved shells show microscopic spiral lineation. Apertural face of outer lip relatively narrow. Apertural features of columellar lip and parietal wall not clearly shown. Height (slightly reduced by crushing) 105 mm, diameter (increased by crushing) 83 mm (largest specimen, figured). Height (incomplete) 75 mm, diameter 56 mm (smaller figured specimen).

Type: British Museum (Natural History), Geol. Depart. 64076.

Type locality: Jamaica (Bowden), Bowden formation.

A moderately large Malea occurs in the Gatun formation: in the three parts of the formation, and in both eastern and western areas of the middle and upper parts. It is most widespread in the middle part in the eastern area and was, in fact, among the first of the fossils to be recorded near Gatun. Almost three-quarters of the 33 specimens from the entire formation are molds or shell fragments, all of which are listed with various qualifications depending on how much they show.
Toula had four fragments of this species, all presumably from the same small shell. He illustrated two of these fragments, one of which shows the apertural face of the outer lip.

This *Malea* is identified as *M. camura*. Though *M. camura* is very closely allied to *M. ringens* (Swainson), the type of the genus (a Recent species ranging from Magdalena Bay, Baja California, to Perú), it may be distinguished from the Recent species by its smaller size and, as pointed out by Pilsbry (1922, p. 363), by the narrower and less flattened apertural face of the outer lip. No large specimens of *M. camura* have so far been found at Bowden, Jamaica, the type locality. The largest so far known have a height of between 35 and 40 mm. The largest from the Dominican Republic range from 60 to 70 mm; the largest from the Canal Zone measures 105 mm. *M. ringens* reaches a height of 190 mm. The *Malea* from the Gatun formation has been claimed to be more distinctly shouldered than *M. camura* (Woodring, 1928, p. 312). Though no available specimens of Jamaican and Dominican Republic fossils are as distinctly shouldered as the most strongly shouldered Canal Zone fossils, the degree of shouldering of those fossils is variable and *M. ringens* includes both rounded and shouldered forms.

A mold collected at the Gatun Locks excavation (locality 159b, which also yielded the crushed shell shown on plate 33, figures 1, 2) and a mold in the collection of the Academy of Natural Sciences of Philadelphia (1728) show an unusual feature: a deep impression of an outer lip preceding the terminal lip. That is, the earlier outer lip was not absorbed when shell growth was resumed. No such varix has been observed on any Recent or other fossil specimen of *Malea* that was examined.

According to present identifications, *M. camura* is the most widely distributed of the Miocene species of *Malea* in the Caribbean region. It has been suggested that *M. goliath* Pilsbry and Johnson (Pilsbry, 1922, p. 363, pl. 29, fig. 1, 9) is a large form of *M. camura* (Woodring, 1928, p. 312). Though *M. goliath* has a relatively narrow outer lip, like *M. camura*, it is not known that the narrow spiral grooves of the type of *M. goliath* represent a variable feature. *M. goliath* is the largest Caribbean form (height 129 mm). *M. elliptica* Pilsbry and Johnson (Pilsbry, 1922, p. 363, pl. 29, fig. 3) is high spired and relatively slender. Both of the preceding two species have been recognized only in the Gabb collection of Miocene Dominican Republic fossils. Their locality and horizon therefore are unknown. *M. ringens densecostata* (Rutsch) (1884, p. 60, pl. 3, figs. 6, 7) an upper Miocene Venezuelan form, has the outline and narrow outer lip of *M. camura*, but is sculptured with about 25 closely spaced spiral bands and even the siphonal fasciole is strongly banded. Subspecific rank under *M. camura* may be better for this form. Rutsch, however, preferred subspecific rank under *M. ringens* for *M. camura* itself. Anderson's (1939, p. 140, pl. 12, figs. 3-6) *M. ringens*, from the middle Miocene of Colombia, should be compared with *M. densecostata*.

In both America and Europe the earliest species of *Malea* are of Miocene age. The youngest Caribbean species also are Miocene, whereas in the Mediterranean region the genus survived until Pliocene time. The genus did not reach southeastern United States, but in Miocene time reached the Colorado Desert, in southern California. Two species survive in the present seas: *M. ringens* in the eastern Pacific and *M. pomum* (Linne) in the western Pacific.

Occurrence: Lower, middle, and upper parts of Gatun formation (middle and late Miocene). Lower part, localities 136 (mold, *Malea?* sp.), 136a, 138. Middle part, eastern area, localities 141 (molds, identification doubtful), 143 (molds, identification doubtful), 146 (mold, *Malea?* sp.), 147 (mold, identification doubtful), 147h (mold, *Malea?* sp.), 150 (immature, identification doubtful), 153 (molds, identification doubtful), 155, 156 (molds and incomplete replaced shell, identification doubtful), 156b, 159c; western area, localities 161a (fragment, identification doubtful), 162a (immature and incomplete, identification doubtful), 168. Upper part, eastern area, localities 171, 175 (fragment, *Malea?* sp.); western area, locality 182. Middle Miocene, Costa Rica. Deposits of late Miocene age, northwestern Panamá. Bowden formation (middle Miocene), Jamaica. Cercado and Gurabo formations (middle Miocene), Dominican Republic. Records from deposits of early Miocene age in Cuba, Puerto Rico, and Trinidad, and of Miocene age in Peru, all based on molds, need confirmation.

Malea? of *M. elliptica* Pilsbry and Johnson

Plate 31, figures 2, 5

Small, relatively slender, high spired, slightly shouldered. Protoconch consisting of three smooth naticoid whors. Body whorl sculptured with 16 low spiral bands, wider than the grooves between them except near siphonal fasciole, and two very narrow spiral bands between the poorly defined shoulder and suture. Penult sculptured with four spiral bands and two threads between shoulder and suture. Penult and earlier sculptured whorls also bearing a fine secondary spiral thread between the bands and retractive exaggerated growth threads. This spiral and axial microscopic sculpture fainter on body whorl, except a relatively strong secondary spiral in anteriormost two

Height (not quite complete) 30 mm, diameter 16.8 mm (figured specimen).

A small, evidently immature, tonnid in a Stanford University collection, found by T. F. Thompson in the middle part of the Gatun formation at the Gatun Third Locks site, may represent _Malea_ or _Tonna_ (Brünnich, 1771, p. 248; type (logotype, Suter, 1913, p. 314): _Buccinum galea_ Linné, Recent, West Indies, western Atlantic and western Pacific Oceans; see Opinion 237, International Commission on Zoological Nomenclature). The unarmed aperture indicate _Tonna_, but the small shell probably is an immature _Malea_ in an unarmed state following absorption of the apertural armature. The outline suggests the Recent Caribbean _Tonna_ generally known as _T. perdix_ (Linné), but now designated _T. maculosa_ (Dillwyn) (Turner, 1948, p. 169). The Recent species, however, has a less inflated siphonal fasciole, no suggestion of a shoulder, and fainter microscopic sculpture. The widely distributed _T. galea_ (Linné), the only other Recent Caribbean species, has an inflated siphonal fasciole and microscopic sculpture comparable to that of the Canal Zone fossil, but the entire shell is greatly inflated and low spired. If the fossil is a _Malea_, it is allied to the relatively slender high spired _M. elliptica_, already mentioned in the discussion of _M. camara_.

Tonna is unknown in the Miocene of America and Europe. Böse's undescribed Mexican _Dolium cf. galea_ (Linné) (Böse, 1906, p. 87), which he assigned to the Pliocene, appears to be the only Tertiary Caribbean record. d'Orbigny's Cuban _Dolium perdix_ "Lamarck" (d'Orbigny, 1852(†), p. 34, figs. 2, 3) and _Dolium sagrae_ d'Orbigny (Idem, p. 34, pl. 3, figs. 4, 5), which evidently is _Tonna galea_, presumably are Pleistocene.

Occurrence: Middle part of Gatun formation (middle Miocene), eastern area, locality 155.

Family FICIDAE

Genus Ficus Röding

Röding, Museum Boltenhainum, p. 148, 1798.

Röding cited _Bulla fuscus_ under _F. communis_ and _F. variegata_. The gender of _Ficus_ is feminine.

It has long been recognized that the Miocene species of _Ficus_ in the Caribbean region may be classified in two groups: the group of _F. communis_ Röding—formerly known as _F. papyratia_ (Say)—and the group of _F. ventricosa_ (Sowerby). The primary spirals of the _F. communis_ group are moderately strong and relatively closely spaced, whereas those of the _F. ventricosa_ group are strong and widely spaced. The patterns of the two end members (the species for which the groups are named) stand in marked contrast, but some fossil species have an intermediate pattern. The _F. communis_ group survived in the western Atlantic Ocean, the _F. ventricosa_ group in the eastern Pacific Ocean.

In the Canal Zone and adjoining parts of Panamá the two groups are represented as early as late Oligocene time and the _F. ventricosa_ group survived as late as early Pliocene time. The late Eocene or early Oligocene deposits contain a species that may belong in a group of high-spired late Eocene and Oligocene species typified by _F. mississippiensis_ Conrad.

Group of Ficus mississippiensis

Ficus cf. F. mississippiensis Conrad

Hill collected at Vamos Vamos a poorly preserved incomplete small ficid (height of body whorl less part of siphonal canal 15 mm). The primary spirals are strong and relatively widely spaced and the secondary spirals evidently are very fine. There is a suggestion of fine nodes at the intersection of primary spirals and poorly preserved axial threads. The spire is not preserved.

The degree of inflation and the sculptural pattern, so far as it can be made out, suggest the high-spired _Ficus mississippiensis_ Conrad, which occurs in the Vicksburg group and has close allies in the upper Eocene of Southeastern United (Harris and Palmer, 1946-47, p. 322-326) and in the upper Eocene or lower Oligocene of Peru (_F. chiraensis_ Olsson, 1931, p. 97, pl. 18, figs. 10, 12).

Occurrence: Marine member of Bohio(?) formation (late Eocene or early Oligocene), locality 40a.

Group of Ficus communis

Ficus cf. F. pilskyri (B. Smith)

Small, strongly inflated, spire rising well above body whorl. Protoconch consisting of about two whorls, initial whorl small. Protoconch and early part of first sculptured whorl slightly tilted. Earliest axial threads closely spaced, strongly retractive. Primary spirals relatively closely spaced. Secondary spirals consisting of one rank almost as strong as primaries and forming almost evenly reticulate sculpture with axial threads, or consisting of two slightly different
ranks. Spirals faintly noded by the narrow axial threads. Siphonal canal broken.

Height (incomplete) 34.5 mm, diameter (increased by crushing) 27 mm (largest specimen).

Two incomplete specimens from the Caimito formation on Barro Colorado Island and one from the upper part of the Gatun formation in the eastern area, all of which retain only patches of shell, are identified as *Ficus cf. F. pilsbryi* (B. Smith). They are too imperfect for certain identification. Though it is doubtful whether the fossils from the two formations represent the same form, their protoconch and sculptural pattern are similar and they evidently are members of the same lineage. The early retractive threads are converted into threads of axial trend after about a half whorl on the form from the Gatun formation, which presumably also is represented by the mold, now unavailable, mentioned by Brown and Pilsbry.

These fossils have a slightly higher spire than *F. pilsbryi* (Woodring, 1928, p. 313, pl. 20, fig. 9, pl. 21, figs. 1, 2) and the initial whorl of their protoconch is smaller. *F. pilsbryi* occurs in the Bowden formation of Jamaica and the Cercado formation of the Dominican Republic. The fossils from the Canal Zone may be more closely related to the lower Miocene Brazilian *F. paraensis* White, which, according to Maury’s illustration, has a higher spire than *F. pilsbryi* (Maury, 1925a, p. 123, pl. 5, figs. 10, 12).

The upper part of the Caimito formation in Madden basin at locality 77 (a submerged locality probably representing the calcareous sandstone member) yielded a small mold listed as *Ficus sp.* The primary spirals are closely spaced, suggesting that this *Ficus* is a member of the *F. communis* group, possibly another representative of the lineage just described.

Occurrence: Middle member of Caimito formation (late Oligocene), Gatun Lake area, localities 56. Caimito formation (late Oligocene), Rio Caraba area, locality 60.

Ficus carbasea carbasea (Guppy)

Plate 36, figures 10, 13

Ficus mississippiensis (Conrad), Guppy, Geol. Soc. London Quart. Jour., v. 32, p. 525, 1876 (Miocene, Dominican Republic).

Pyrrula trinitaria Maury, idem, p. 222, pl. 41, figs. 9, 12, 1925 (Miocene, Trinidad).

Ficus colombiana Anderson, Calif. Acad. Sci Proc., 4th ser., v. 18, no. 4, p. 143, pl. 13, figs. 1, 2, 1929 (Miocene, Colombia).

Ficus aff. ventricosa (Sowerby), Rutsch, Schweizer. Palaeont. Gesell. Abh., Band 54, p. 92, pl. 3, fig. 8, text fig. 8, 1944 (Miocene, Venezuela).

Moderately large, strongly inflated, spire low. Protoconch consisting of about 1½ whorls, initial whorl moderately small. Protoconch and early part of first sculptured whorl slightly tilted. Earliest axial threads relatively widely spaced, strongly retractive. Primary spirals strong, widely spaced. Three to seven secondary spirals between primaries. Secondary spirals generally of equal width in sets of three, a middle one slightly wider than others in sets of more than three. Spirals faintly noded by narrow axial threads. Siphonal canal broken.

Height (incomplete) 53 mm, diameter 34.5 mm (figured specimen).

Type: USNM 115509.

Type locality: Savanetta [Savaneta], Trinidad, Caroni series [Savaneta River, about 5.6 kilometers northeast of Forres Park, Springvale formation].

Ficids found in the Alhajuela sandstone member of
the Caimito formation, the middle part of the Gatun formation in the eastern area, the upper part of the Gatun in the western area, and the Chagres sandstone are referred to *Ficus carbasea carbasea*. Though 13 specimens are available, only four (all in collections from the upper part of the Gatun) are more or less complete shells. The others are molds or molds that include some shell material. The molds, however, show at least some sculpture. The largest, a little larger than the figured specimen, were found in the Alhajuela sandstone member of the Caimito and the Chagres sandstone. The strength and spacing of primary and secondary spirals are variable. The early axial threads are preserved on two shells, both from the upper part of the Gatun. They are more widely spaced than those on a specimen from Springvale Quarry, Trinidad. The first sculptured whorl of the type is poorly preserved.

Toula's *Ficula* (*Pygula*) sp. cf. *F. condita* is small and incomplete (height 10 mm, diameter 12 mm), but shows the sculpture of the *Ficus ventricosa* group and is identified as an immature specimen of *F. carbasea carbasea*.

The type locality of *F. carbasea* is "Savanetta," Trinidad. According to a communication from H. G. Kugler, "Savanetta" evidently is the locality where the fossiliferous sandstone near the top of the Springvale formation crosses Savaneta River, about 5.6 kilometers northeast of Forres Park. In other words, the type locality is at or near the Brechin Castle Estate locality shown by Rutsch in his account of Springvale fossils (Rutsch, 1942, fig. 1, p. 150; according to Kugler, Couva River of fig. 1 should read Savaneta River). *F. carbasea* was found at the Brechin Castle Estate locality (Rutsch, 1942, p. 144). The type has an ochreous color and ochreous, shelly, granule sandstone matrix, like fossils from Springvale Quarry, which is 1.6 kilometers northeast of Forres Park, where the same fossiliferous sandstone is exposed.

The type is exceptional in one feature: the body whorl is sharply angulated at the posteriormost primary spiral near the suture, as shown in Guppy’s illustration. The sharpest angulation was formed later than what appears to be a break in the shell and therefore may be a deformity. The angulation is not shown by four topotypes forwarded by H. G. Kugler or by 11 other specimens from the Springvale formation at other localities.

F. trinitaria (type locality Springvale Quarry), was named on the grounds that it has five or seven secondary spirals between primaries, whereas *F. carbasea* has three. The specimen illustrated by Maury as her figure 12 is designated the lectotype (Paleontological Research Inst. 1088). Both the lectotype and Maury’s other illustrated specimen have three to seven secondary spirals, but if more than three are present, three generally are stronger than the others. Rutsch has already pointed out that single specimens from the Springvale formation bear three to seven—the range shown by the fossils from the Canal Zone and nearby localities in Panamá.

Guppy’s record of *F. carbasea* in the Anguilla formation of the island of Anguilla needs confirmation. A few fragments from the Cercado formation of the Dominican Republic without much doubt represent *F. carbasea carbasea* and a specimen in better condition is in the Gabb collection of fossils from that country. Böse’s illustrations of his *Pyrula papyrata* strongly suggest *F. carbasea carbasea*. The type of *Ficus colombiana* is poorly preserved, but the paratype has the outline and sculpture of *F. carbasea carbasea*.

F. carbasea carbasea is very similar to *F. ventricosa* (Sowerby), which ranges from southern Baja California to Ecuador. *F. ventricosa* is twice as large and the anterior half of the body whorl of immature shells of the same size as *F. carbasea carbasea* is more strongly constricted. A species of the *F. ventricosa* group has been recognized in the upper Miocene of Florida (Olsson and Harbison, 1953, p. 259).

Occurrence: Alhajuela sandstone member of Caimito formation (early Miocene), Madden basin, locality 88. Middle and upper parts of Gatun formation (middle and late Miocene). Middle part, eastern area, localities 146 (identification doubtful), 147a, 160. Upper part, western area, localities 182, 185. Chagres sandstone (early Pliocene), localities 199, 201. Middle Miocene, southeastern México (identification doubtful). Miocene, Dominican Republic. Middle Miocene, Colombia. Punta Gavilán formation (late Miocene), Venezuela. Springvale formation (late Miocene), Trinidad.

pi. carbasea micronematia (Brown and Pilsbry)

Plate 27, figures 1, 3

Pygula peruviana Spilker, Johns Hopkins Univ., Studies in Geol., no. 3, p. 54, pl. 2, figs. 5, 6, 1922 (Miocene, Peru).

Small, moderately inflated, spire low. Protoconch not preserved. Primary spirals moderately strong and moderately widely spaced. Three to seven (generally three) secondary spirals between primaries. Spirals faintly noded by narrow axial threads. Siphonal canal broken.
GASTROPODS: VERMETIDAE TO THAIDIDAE

Height (incomplete) 35 mm, diameter 27.5 mm (largest specimen). Height (incomplete) 25.8 mm, diameter 21.5 mm (figured specimen).

Type locality: Peoden bed in Culebra Cut near Tower N, Las Cascadas, Canal Zone [Emperador limestone member of Culebra formation].

Ficus carbasea micronematica is represented by 15 specimens from the Culebra formation proper and one from the Emperador limestone member. All, like the type, are poorly preserved. This unsatisfactory material indicates that _F. micronematica_ is a small subspecies of _F. carbasea_ and that arrangement is adopted, although the protoconch and early sculpture are unknown. Most of the specimens are not as slender as that figured. The upper part of the spire of the figured specimen appears to be bulbous, but the spire is damaged and the shell material of the tip is replaced and worn. Three molds from the upper Oligocene part of the Caimito formation in Madden basin, which are in even poorer condition than the fossils from the Culebra formation, are identified as *Ficis* cf. _F. carbasea micronematica_.

No features are apparent to distinguish *F. peruviana* from _F. carbasea micronematica_. The protoconch of the type (and only specimen) of _F. peruviana_ is slightly tilted and consists of two whorls. _F. woodringi_ Olsson (1931, p. 98, pl. 18, fig. 8), which occurs in the upper Oligocene Heath formation of Peru, may be the predecessor of _F. carbasea micronematica_. The anterior part of the shell of _F. woodringi_ is more constricted and a central secondary spiral is stronger than the other secondary spirals.

_Ficus* cf. _F. carbasea micronematica_ (upper Oligocene), _F. carbasea micronematica_ (early part of lower Miocene), _F. carbasea carbasea_ (later part of lower Miocene to lower Pliocene), and _F. ventricosa_ (Pliocene, Ecuador, and Recent) are reasonably interpreted as a lineage and are graded in size. Lineages of a duration from late Oligocene to early Pliocene are unusual in the faunas studied for the present report.

Occurrence: Limestone lenses in pyroclastic-clay member, lower part of Caimito formation (early Oligocene), Madden basin, localities 71, 73 (*Ficus* cf. _F. carbasea micronematica_, both localities). Culebra formation (early Miocene), localities 99c, 99d, 99f, 99g, 99h, 102, 111b, 114, 115a. Emperador limestone member of Culebra formation (early Miocene), locality 120. Lower part of Zorritos formation (early Miocene), Perú.

Genus Gonysycon Woodring, n. gen.

_Type:* _Gonysycon* _epomis_ Woodring, n. sp., Oligocene, Canal Zone.

Small, outline *Ficus*-like but shouldered, spire low. Protoconch unknown. Spire whorls sculptured with narrow axial ribs gradually reduced on body whorl and disappearing on later half of body whorl. Closely spaced axial threads conspicuous on body whorl. Spiral threads overriding ribs, on later half of body whorl combined with the narrower and more closely spaced axial threads to form *Ficus*-like reticulate sculpture. Spiral threads faintly noded by axial threads. Anterior part of body whorl strongly constricted. Siphonal canal apparently relatively short.

The outline and late sculpture indicate that *Gonysycon* is a small, shouldered, low-spired, axially ribbed formid. The axial ribs, however, are lost on the later half of the body whorl, which has *Ficus*-like reticulate sculpture. Though only three poorly preserved specimens are available, the combination of characters seems to be distinctive. The low spire, shoulder and strong constriction of the anterior part of the body whorl distinguish *Gonysycon* from _Fulguroficus_ Sacco (1891, p. 41; type (orthotype): _Pyrula burdigalensis_ Sowerby, Miocene, Southwestern Europe). The typical form of the type species of _Fulguroficus_ is noded on and below the shoulder. The combination of nodes and high spire of _Fulguroficus_ recall the noded species of the Eocene high-spired, more slender genus _Ficopsis_ Conrad (1866, p. 100; type (logotype, Stewart, 1927, p. 375): _Hemifusus remondii_ Gabb, Eocene, California). Both _Fulguroficus burdigalensis_ and the noded species of _Ficopsis_ have axial ribs on the early whorls, whereas the sculpture of the early whorls of the large and very heavily noded genus _Trophosycon_ Cooper (1894, p. 53; type (monotype): _Agasoma_ (Trophosycon) _berrnianum_ Cooper, Miocene, California) is *Ficus*-like.

Gonysycon _epomis_ Woodring, n. sp.

_Plate 26, figures 9, 13–15

Penultimate whorl sculptured with about 13 axial ribs, some of which are not preserved. Tip of siphonal canal missing. For other features see description of genus.

Height (incomplete 26.2 mm, diameter 17.3 mm (type).

Type material: Type, USNM 562566; paratype USNM 562567.

Type locality: 42d (USGS 18837, Barro Colorado Island, northern part of island, stream heading west of
Miller Trail near Miller 17, about 100 meters above mouth, Canal Zone), upper part of Bohio formation.

The two specimens of this species—the type and the more strongly shouldered paratype—are incomplete and much of the shell material is missing. No closely related species, other than the next species, has been recognized.

Occurrence: Upper part of Bohio formation (late Oligocene), locality 42d.

Gonysycon cf. G. epomis Woodring, n. sp.

An incomplete specimen (spire and posterior part of body whorl) of another species of Gonysycon was found in the Bohio formation on Barro Colorado Island, but not in association with G. epomis. It is in poorer condition than the specimens of G. epomis. Only traces of axial ribs remain on the spire whorls and none is visible on the body whorl, which has a diameter of 17.5 mm. This species is not as strongly shouldered as G. epomis.

Occurrence: Bohio formation (late Oligocene), locality 42g.

Family MURICIDAE
Subfamily MURICINAE

Fragmentary remains from the marine member of the Bohio (?) formation, and the Bohio and Culebra formations probably represent muricine genera.

Genus Murex Linne

Linne, Systema naturae, 10th ed., p. 746, 1758.

Subgenus Murex s. s.

Murex (Murex) recurvirostris recurvirostris Broderip

Plate 35, figures 5, 8, plate 36, figures 11, 12

Murex (Murex) woodringi Clench and Perez Farfante, Johnsonia, v. 1, no. 17, p. 9, pl. 4, figs. 1-3, 1945 (Recent, Jamaica, northern South America).

Murex woodringi Clench and Perez Farfante, Aguayo, Soc. Malacologica Carlos de la Torre Revista, v. 6, p. 63 (list), 1948 (Miocene, Cuba).

Of medium size, moderately spinose. Protoconch slender, consisting of 2% whorls, initial whorl small; or consisting of 1¾ whorls, initial whorl large. End of protoconch, as in all muricine gastropods, marked by narrow varix. Sculpture of early post-protoconch whorls consisting of closely spaced, wide axial ribs, three spiral threads, and a very narrow spiral thread near posterior suture. First varix appearing on third or fourth sculptured whorl. Varices strongly pinched, a little ahead of corresponding varix on preceding whorl. At first two axial ribs between varices, later three, and still later three to five; generally four. On largest shell ribs of body whorl narrow and suppressed, the number indefinite, but more than five. On late whorls primary and secondary spirals alternating. Primary spiral on shoulder forming short backward-bent spine on varices; another spine at base of varices on spire whorls. Body whorl varices bearing four to six spines. Spines generally more or less broken. Edge of outer lip scalloped by elongate interior denticles. Siphonal canal moderately long, narrow, straight, tip broken, outer side bearing one spine. Inner lip weakly denticate or smooth. Parietal wall bearing an elongate posterior denticle.

Height (incomplete) 45.8 mm, diameter (including terminal varix and its broken shoulder spine) 27.5 mm (largest specimen, figured).

Type locality: Gulf of Nicoya, Costa Rica, Recent.

Murex recurvirostris recurvirostris occurs in the lower, middle, and upper parts of the Gatun formation, but is nowhere abundant. It is represented by 10 specimens. The larger figured specimen (the largest of the fossils) has exceptionally suppressed axial ribs on the body whorl. The apertural face of the smaller figured specimen is greatly worn. The roof of the siphonal canal, leaving only a narrow slit open, is well preserved on one shell (locality 157). A 2¾-whorled acutely tapering protoconch is preserved on two of the fossils from the middle part of the Gatun, whereas the single specimen from the upper part of the formation has a 1¾-whorled blunt protoconch. The two kinds of protoconch, however, are not correlated with differences at later growth stages.

M. recurvirostris is another example of a species that appeared in the Miocene and survived on both sides of Central America. It is widely distributed in the Miocene of the Caribbean region. A relatively small and light-colored Recent form, found along the coasts of Florida and the Bahamas, and apparently southward to Yucatan and eastward to Hispaniola, is now known as M. recurvirostris rubidus F. C. Baker (Clench and Perez Farfante, 1945, p. 6, pl. 3, figs. 1–7). A small-apertured light-colored form dredged off Yucatan has been named M. recurvirostris sallasi Rehder and Abbott (1951, p. 58, pl. 9, figs. 7, 8). Clench and Perez Farfante
GASTROPODS: VERMETIDAE TO THAIDIDAE

(1945, p. 9) thought that a worn dark-colored shell from Santa Marta, Colombia, may be *M. recurvoirostris recurvoirostris*. The collections of the U. S. National Museum contain numerous more or less dark-colored shells from British Honduras, Panamá, Colombia, and Trinidad. These shells appear to be indistinguishable from the eastern Pacific *M. recurvoirostris recurvoirostris*. It is doubtful whether *M. woodringi* Clench and Pérez Farfante (1945, p. 9, pl. 4, figs. 1–3; type locality Jamaica) can be distinguished from the shells ranging from Central America to Trinidad. Clench and Pérez Farfante suggested that the Miocene Jamaican *Murex* described as *M. recurvoirostris* is *M. woodringi*. The Jamaican fossils are indeed very similar to Jamaican Recent shells. The number of ribs between varices, emphasized in the description of *M. woodringi*, is variable in fossils and in Recent shells from both sides of Central America, ranging from two to five, or even more. *M. antillarum* Hinds, with which Rutsch suggested the Jamaican fossil form should be compared, is larger, more spinose, and has a longer bent siphonal canal.

Murex (Murex?) cf. *M. polynematicus* Brown and Pilsbry

Two poorly preserved, relatively small specimens (restored height about 40 mm, restored diameter about 20 mm) from the uppermost part of the Culebra formation, including the transition zone between the Culebra and Cucaracha formations, are identified as *Murex* cf. *M. polynematicus*. The shell material is corroded on one, and what remains on the other is replaced by secondary calcite. The varices, axial ribs, and spiral sculpture, so far as shown, suggest a species comparable to *M. polynematicus*, the next species described.

Occurrence: Culebra formation (early Miocene), localities 110, 114.
The Miocene species has less strongly pinched varices and more numerous, more closely spaced spirals. It hardly is the predecessor of the Recent species. *M. polynematicus* is more closely allied to the early Miocene *M. dasus* Gardner (1926–47, p. 518, pl. 53, fig. 4, 1947), a small species from the Chipola formation of Florida that has the same sculptural plan and same apertural features. In fact, *M. dasus* is almost indistinguishable from small specimens of *M. polynematicus*, except that *M. dasus* has stronger secondary axial sculpture. The *M. dasus—M. polynematicus* lineage left no known descendants.

Subgenus Chicoreus Montfort

Type (orthotype): *Chicoreus ramosus* Montfort (= *Murex brevifrons* Lamarck), Recent, southern Florida to northern South America.

Murex (Chicoreus) brevifrons Lamarck

Plate 35, figures 11–13

Maury, Brazil Serv. Geol. Mineral. Mon. 4, p. 130, pl. 6, fig. 9, 1925 (Miocene, Brazil; figured specimen, Miocene, Dominican Republic).

Murex cornurectus Guppy, Geol. Soc. London Quart. Jour., v. 32, p. 521, pl. 28, fig. 4, 1876 (Miocene, Dominican Republic).

Murex (Phyllonotus) cornurectus Guppy, Maury, idem, v. 5, no. 29, p. 103, pl. 16, figs. 9, 10, 1917 (Miocene, Dominican Republic).

Clench and Pérez Farrants, Johnsonia, v. 1, no. 17, p. 28, pl. 15, figs. 1, 2, pl. 16, figs. 1, 2, 1945 (Recent, southern Florida to British Guiana).

Murex venezuelanus F. Hodson, Bull. Am. Paleontology, v. 16, no. 59, p. 37, pl. 18, fig. 1, pl. 19, figs. 1, 3, 1951 (Miocene, Venezuela).

Moderately large, strongly-shouldered, profusely spinose, but spines broken. Protoconch worn and broken. Early post-protoconch whorls not shouldered, sculptured with wide, strongly swollen axial ribs and three or four spiral threads. First varix appearing on about third sculptured whorl. Varices moderately pinched, well ahead of varix on preceding whorl. At first two or three axial ribs between varices, later two, and finally one swollen rib not reaching suture. Spiral sculpture of all except earliest sculptured whorls consisting of closely spaced threads of different rank, minutely noded by minute, scalloped axial threads. Varices profusely spinose; spines on shoulder heaviest and presumably longest. Borders of aperture missing or poorly preserved. Base of siphonal canal wide, remainder broken.

Height (incomplete) 54.5 mm, diameter (including terminal varix and broken spine) 33.5 mm (largest specimen, figured).

Type locality (designated by Clench and Pérez Farrants): St. Thomas, Virgin Islands, Recent.

An immature shell (height 18.3 mm), a fragment of six whorls (pl. 35, fig. 12), and a moderately large shell (pl. 35, figs. 11, 13), all collected at the Gatun Third Locks excavation, are identified as *Murex brevifrons*. The moderately large specimen is heavily incrusted by a bryozoan and adhering hard calcareous mud, and part of the shell is peeled off. By itself this specimen could not be unequivocally identified. There is no reasonable doubt, however, that the smaller shells, which have the early and intermediate sculpture of *M. brevifrons*, represent the same species and the encrusted shell has the outline, numerous varical spines, and wide siphonal-canal insertion of *M. brevifrons*.

This species is recorded from lower (molds and impressions only), middle, and upper Miocene deposits in the Caribbean region, generally under the name of *M. cornurectus*. Everyone who has dealt with *M. cornurectus* realized that it is, or probably is, *M. brevifrons*, and Pilsbry and also Maury in her publication on Brazil suppressed Guppy's name. The largest Miocene fossils examined (those from the Cercado and Gurabo formations of the Dominican Republic), however, have a maximum height of about 80 mm, whereas Recent shells reach a height of 100 to 150 mm. A shell (incomplete height 107 mm) from deposits of Pliocene age at Cabo Blanco, Venezuela, is comparable in size to large Recent shells. The spines of fossils are almost invariably more or less broken, but Guppy's illustration of the type of *M. cornurectus* shows a shoulder spine on the terminal varix as long as that of Recent shells. *M. brevifrons* now ranges from southern Florida southward through the West Indies to northern South America.

M. venezuelanus, from the middle Miocene of Falcón, Venezuela, evidently is *M. brevifrons*, but many of the spines are broken.

Occurrence: Middle part of Gatun formation (middle Miocene), localities 155, 155b, 155c. Quebradillas limestone (early Miocene), Puerto Rico. Pirabas for-
mation (early Miocene), Brazil. Cercado and Gurabo formations (middle Miocene), Dominican Republic. Middle Miocene, Costa Rica. Middle Miocene, Falcón, Venezuela. Springvale formation (late Miocene), Trinidad. Deposits of Pliocene age, Venezuela. Pliocene, southern Florida to northern South America.

Type: Murex pazi Crosse, Recent, West Indies.

The subgenus *Paziella* s.s., characterized by long slender spines on the shoulder and siphonal fasciole and by very weak spiral sculpture, is unknown as a fossil. As suggested by Rehder (1946, p. 143), it may be a deep-water offshoot from the subgenus *Dallimurex*.

Subgenus *Panamurex* Woodring, n. subgen.

Type: *Murex (Phyllonotus) gatunensis* Brown and Pilsbry, Miocene, Canal Zone.

Of medium size, strongly shouldered. Axial sculpture consisting of sharp-edged varices, which bear a short, slender, erect spine on spiral cord at shoulder. Spiral sculpture strong, consisting of cords and threads. Interior of outer lip bearing strong elongate denticles or ridges. Siphonal canal moderately long, bent backward. Basal part of inner lip bearing three to five elongate denticles.

The strong spiral sculpture, strong elongate denticles or ridges on the interior of the outer lip, and the elongate denticles on the basal part of the inner lip distinguish *Panamurex* from the subgenus *Dallimurex* Rehder (1946, p. 142); type (orthotype): *Murex nuttingi* Dall (Clench and Pérez Farfante, 1945, p. 49, pl. 25, fig. 5), Recent, Florida Keys).

Both *Dallimurex* and *Panamurex* appeared in late early Miocene time. They are associated in the Chipola formation of Florida: *Paziella (Dallimurex) lychnia* Gardner (1926-47, p. 523, figs. 12, 13, 1947) and *Paziella (Dallimurex) fusinoides* Gardner (idem, p. 524, pl. 52, figs. 39, 42), respectively. "Muriopsis" lac- copola Gardner (idem, p. 520, pl. 52, figs. 40, 41), which occurs with *P. fusinoides*, evidently is that species.

Dallimurex is the group of muricine gastropods for which the name "Muriopsis" has been used (Woodring, 1928, p. 291), although it was realized that name is unsuitable. Species of *Dallimurex*, all of which have very weak to moderate spiral sculpture, are fairly widespread in the middle and upper Miocene of the Caribbean region: "Murex" collatus Guuppy (Woodring, 1928, p. 291, pl. 17, figs. 10, 11; Jamaica), "Trophon" dominicensis Gabb (Pilsbry, 1922, p. 354, pl. 28, figs. 2, 3; Dominican Republic), "Murex (Trophon)" vernerii Touula (1911, p. 479, pl. 29, fig. 9; Tehuantepec), "Muri­ copsis" sp. (Woodring, 1928, p. 292, pl. 18, fig. 1; Jamaica), and an undescribed slender, high-whorled species from Tehuantepec (USGS locality 10361). In addition to the type species, dredged at depths of 15 to 100 fathoms near Key West, Fla., *Dallimurex* survives in Caribbean waters, where it is represented by three small, moderately deep-water species: "Murex" hystricinus Dall (Clench and Pérez Farfante, 1945, p. 45, pl. 24, figs. 4-7; south of Cuba and Lesser Antilles, 148 to 254 fathoms) "Eupleura" stimpsonii Dall (1889, p. 204; Barbados, 100 fathoms), and "Murex (Murex sul)" car­ nicolor Clench and Pérez Farfante (1945, p. 48, pl. 25, figs. 1-4; Lesser Antilles, 88 to 103 fathoms). *Panamurex*, on the contrary, is rare and is not known to have survived beyond late middle Miocene time.

Genus Paziella Jousseaume

Jousseaume, Le Naturaliste, 2nd year, no. 42, p. 335, 1180.

Type (monotype): *Murex pazi* Crosse, Recent, West Indies.

Paziella (Panamurex) gatunensis (Brown and Pilsbry) Brown and Pilsbry, Idem, v. 64, p. 503 (list), 1913 (Miocene, Canal Zone).

Paziella gatunensis Brown and Pilsbry, Idem, v. 69, p. 34 (list), 1917 (Miocene, Colombia).

Relatively large, strongly shouldered, strongly sculptured spirally. Protoconch slender, consisting of 3½ whorls. End of protoconch marked by narrow varix. Sculpture of first post-protoconch whorl consisting of narrow varices. Two wide, but weak, spiral cords appear on second whorl. Varices and spiral cords gradually strengthened. Late whorls bearing seven sharp-edged varices, strong spiral cords, and narrow spiral threads between them. Varices bearing a short, slender, erect spine on spiral cord at shoulder and forward-directed extensions (generally more or less damaged) on four or five body-whorl spiral cords below shoulder. Edge of outer lip frilled by the spine and extensions; interior bearing strong, elongate denticles or longer ridges well within aperture. Siphonal canal moderately long, wide at insertion, bent backward. Siphonal fasciole sculptured with a row of lamellar spines aligned with varices. Basal part of inner lip bearing three to five strong, elongate denticles.

Height (incomplete) 35 mm, diameter (incomplete, including terminal varix and its shoulder spine) 25 mm, restored diameter about 26 mm (largest specimen, figured). Height 27 mm, diameter (including terminal varix and its shoulder spine) 14.7 mm (larger figured specimen).

Type locality: Gatun Locks excavation, middle part of Gatun formation.
218

Paetiella gatunensis is found in the middle part of the Gatun formation, in both eastern and western areas, and in the upper part in the eastern area. The 12 specimens are damaged or fragmentary, with the exception of three immature shells from locality 155c, one of which is illustrated (pl. 35, figs. 9, 10). In 1913 Brown and Plisky identified this species in a collection from the Emperador limestone member of the Culebra formation, and Pilsbry and Brown later listed it from middle Miocene deposits in Colombia. These specimens were not found during a recent visit at the Academy of Natural Sciences of Philadelphia, although they doubtless are still in the Academy's collections. A somewhat worn specimen is in a collection of middle Miocene fossils from the Darién area (USGS locality 8477). The weaker spirals of the Darién specimen presumably are the result of wear.

A very closely related undescribed species, more slender than P. gatunensis and not quite so strongly sculptured, occurs in the Gurabo formation of the Dominican Republic (USGS locality 8544). P. gatunensis is larger, more inflated, and more strongly shouldered than the late early Miocene *P. fusinoides* Gardner, and has more numerous minor spirals. The early lower Miocene *"Murex spinulosa"* Heilprin (1887, p. 108, pl. 15, fig. 41; Tampa limestone, Florida; not *Murex spinulosus* Deshayes, 1835), with which Brown and Pilsbry compared *P. gatunensis*, evidently represents a different muricid genus.

Occurrence: Emperador limestone member of Culebra formation (early Miocene; Brown and Pilsbry's record). Middle and upper parts of Gatun formation (middle Miocene). Middle part, eastern area, localities 155, 155b, 155c, 157; western area locality 161a. Upper part, eastern area, localities 163, 173, 175, 176. Middle Miocene, Darién area, Panamá. Middle Miocene, Colombia (Pilsbry and Brown's record).

Genus Yasila Olsson

Type (orthotype): *Yasila paytensis* Olsson, Eocene, Perú.

The genus *Yasila* embraces small, or moderately small, early Tertiary species that have a short siphonal canal, heavy axial ribs, and a low columellar fold at the insertion of the siphonal canal. The columellar fold is similar to that of some other muricid genera and of genera in other families, notably buccinid and nassarid genera. The only species of the genus so far recognized are found in the Eocene of Perú and the Canal Zone and the Eocene or Oligocene of Perú.

Yasila aff. *Y. paytensis* Olsson

Plate 24, figures 4, 5

Height (incomplete) 18.5 mm, diameter 12.5 mm (figured specimen).

Yasila aff. Y. paytensis is larger than *Y. paytensis* Olsson (1930, p. 60, pl. 11, figs. 11, 16-18; upper Eocene, Perú) and *Y. chiraensis* Olsson (1931, p. 104, pl. 14, figs. 9, 11; upper Eocene or lower Oligocene, Perú) and its whorls are constricted above the shoulder. It is a new species, but no suitable type material is available. That the figured specimen is immature is shown by a fragment, which is the only other specimen. The fine sculpture is not well reproduced by the granular silica replacing the shell.

Occurrence: Gatuncillo formation (middle Eocene), Río Casaya area, locality 38.

Genus Eupleura H. and A. Adams

In his widely used volumes of the Handbuch der Paläozoologie covering the prosobranch gastropods, Wenz placed *Eupleura* in the subfamily Drupinae (the group for which the family name Thaididae is used in the present report) of the family Muricidae. *Eupleura* is muricine in shell and opercular characters. The radular dentition, however, is like that of *Uroslpinae* and *Ocnebrn* (Troschel, 1866-91, pl. 11, figs. 13, 14, 20, 1869).

Eupleura thompsoni Woodring, n. sp.

Plate 36, figures 6-9

Relatively large, strongly inflated, distinctly but not strongly shouldered. Protoconch blunt-tipped, 2½-whorled, smoothly tapering; a narrow spiral thread at anterior suture on last 1½ whorls. First post-proto-
conch whorl sculptured with narrow axial lamellae—the first strongly arcuate, the others moderately arcuate—and two low spiral cords. Lamellae slightly overlapping last protoconch whorl. Lamellae gradually widening, but remaining as sharp-edged lamellae up to first varix, which appears on penult or preceding whorl of mature shells. Two varices to a whorl, almost directly opposite each other, but each one later than corresponding varix on preceding whorl. Original lamellae transformed between varices into low swollen ribs, not reaching posterior suture and on body whorl disappearing below periphery. Three or four ribs between varices, generally three, and invariably three between last two varices of mature shells. A rib between early varices rarely has a lamellar edge of outer shell material. Body whorl of mature shells sculptured with seven main spiral cords, the posteriormost faint between last two varices, and as many as five somewhat narrower spiral threads on pillar, fading out anteriorly. Posteriormost spiral cord forming short spine on outer lip; others forming blunt spines or projections; spines generally more or less broken. Interior of outer lip bearing six strong denticles well within aperture. Siphonal canal moderately long, narrow, slightly bent backward; tip broken. Next to last varix forming low lamella on siphonal fasciole.

Height (not quite complete) 45.7 mm, diameter (including last two varices) 29.5 mm (largest specimen, type).

Type: USNM 562387.

Type locality: 136a (Stanford University 2611, Transisthmian Highway, lat. 9°21' N. plus 1,100 feet (335 meters), long. 79°49', W., Panama; same as USGS 16912), lower part of Gatun formation. The type (and only specimen) may be immature (height 14.7 mm). No varix precedes the terminal varix and that varix is preceded by only one nonlamellar axial rib. The slightly earlier, small "Murex" wannacula Dall (1915, p. 74, pl. 13, fig. 11; Tampa limestone, Florida), which was assigned to *Eupleura* by Mansfield (1937, p. 132), lacks heavy varices, even a heavy varix at the outer lip, and lacks strong denticles on the interior of the outer lip. It is not a *Eupleura*.

Eupleura thompsoni is named for T. F. Thompson, formerly Chief of the Geological Section, Special Engineering Division, Panama Canal Company, who collected many of the fossils from the Gatun formation described in the present series of report, including species not represented in collections other than his.

Occurrence: Lower and middle parts of Gatun formation (middle Miocene). Lower part, localities 136, 136a, 137, 137a, 138a, 138b. Middle part, eastern area,
locality 155. Deposits of middle and late (†) Miocene age, northeastern Colombia.

Subfamily TYPHINAE

Keen's 1944 review is an indispensable starting point for a study of typhine gastropods.

Genus Typhis Montfort

Type (orthotype): Typhis tubifer (Rolley) (Murca tubifer Rolley) = Purpura tubifer Bruguière, Eocene and Oligocene, Western Europe.

Winckworth (1945, p. 143–144) and Clench (1947, p. 63–64) have discussed the action by the International Commission on Zoological Momenclature that may be needed to validate Purpura tubifer Bruguière, 1789, with Bucinum persicum Linne as the type. Otherwise it may be argued that Typhis is an objective synonym of Purpura Bruguière, 1792, (monotype, Purpura tubifer Bruguière).

Wrigley (1880, p. 112) thought that Typhis tubifer should take the trivial name of “Murca” pungens Solander, described at an earlier date. On the basis of Solander's illustration, that view was rejected by Keen (1944, p. 53). Wrigley's T. pungens doubtless is T. tubifer. According to his records, it occurs in the middle Eocene of the Paris basin, the upper Eocene and lower Oligocene of England, and the entire Oligocene of Germany.

Sugenus Pilsbrytyphis Woodring, n. subgen.

Type: Typhis gabbi Brown and Pilsbry, Miocene, Canal Zone.

Five varices to a whorl. Tubes midway between varices, slightly bent backward. All except earliest whorls bearing irregular axially wrinkled and pitted sculpture. Aperture small. Siphonal canal short, moderately bent.

According to Keen's arrangement (1944, p. 52), Typhis gabbi keys out to the sugenus Typhina (Jousseaume, 1880, p. 335; type (orthotype): Typhis belcheri Broderip, Recent, West Africa). She allowed considerable latitude in assigning species to Typhina, a view that has to be adopted to avoid numerous monotypic, or almost monotypic, groups. Of the six species grouped with the type species, none has the long strongly bent siphonal canal of the type species and only two (Typhis dentatus Conrad, upper Eocene, Mississippi, and T. bivaricatus Verco, Recent, South Australia) have varices slightly frilled by weak spirals, like the type species. One of those two, T. bivaricatus has an exceptional feature: double varices. Though a conservative attitude in delimiting the subgenera of Typhis is commendable, the remarkable peanut-shell sculpture (minus the cross bars) of T. gabbi cannot be compared with that of any other typhine gastropod. The subgeneric name Pilsbrytyphis is proposed for it. It is unlikely that a species like T. gabbi arose from Typhina in a single step. Indeed, an undescribed weakly sculptured species represents an intermediate stage, but it is of the same age as T. gabbi.

The name Pilsbrytyphis is a tribute to the late Dr. Henry A. Pilsbry, of the Academy of Natural Sciences of Philadelphia, a friend and wise counselor for 40 years. He adequately described the sculpture of the type species.

Typhis (Pilsbrytyphis) gabbi Brown and Pilsbry

Plate 32, figures 2, 3, 5, 7

Height (practically complete) 20.6 mm, diameter 11 mm (larger figured specimen).

Type locality: Gatun Locks excavation, middle part of Gatun formation.

The type of Typhis gabbi and an immature specimen were recovered from the middle part of the Gatun formation in the eastern area, and 18 specimens were found in the upper part in the eastern area. All are quite uniform. Except for the sculpture, this species is remotely similar to T. harriisi Olsson (Mansfield, 1930, p. 83, pl. 11, fig. 6), a late Miocene species from Florida, but is more slender, and has a deep channel, instead of a shelf, adjoining the suture and a smaller aperture.

An undescribed more weakly sculptured species—the only other species of Pilsbrytyphis now known—occurs in the middle Miocene of the Darién area in eastern Panamá (USGS locality 8477).
Occurrence: Middle and upper parts of Gatun formation (middle Miocene). Middle part, localities 147g, Gatun Locks excavation (Brown and Pilsbry's record). Upper part, eastern area, localities 175, 176, 176a, 177b.

Subgenus Talityphis Jousseaume

Jousseaume, Rev. Mag. Zoologie, 42nd year, 3rd ser., v. 7, p. 388, 1879 (1881 (?)).

Type (orthotype): *Typhis expansus* Sowerby, Recent, locality unknown (presumably West Indies).

The region where *Typhis expansus* occurs was unknown until Olsson collected at Monte Cristi, on the north coast of the Dominican Republic, specimens closely resembling Sowerby's illustration (Keen, 1943, p. 53). Until then it was thought that *Talityphis* is extinct in the Caribbean region.

Talityphis appears in Florida and Haiti in late early Miocene time; reached its widest distribution in the middle Miocene: Florida, Jamaica, Dominican Republic, Trinidad, Colombia, and California; and survives in the Caribbean and Panamic regions.

Typhis (Talityphis) *alatus obesus* Gabb

Plate 31, figures 3, 4

Moderately large, greatly inflated, strongly shouldered, spire moderately low. Protoconch relatively large, consisting of about 1½ whorls. Whorls bearing four or five lamellar varices, ending on shoulder in blunt hollow spine. Tubes almost midway between varices, but closer to preceding varix. Suture extending from aboral side of varix to base of whorl. Another suture extending from spine of preceding varix to aboral side of tube and along adoral side of low partition abutting against preceding whorl. Tubes and spines generally broken to base. Spiral sculpture absent on spire, except for pinching at shoulder. Body whorl below shoulder bearing four weak spiral threads, most conspicuous on flank of terminal varix. Aperture moderately large. Terminal varix greatly expanded, its edge strongly frilled by the four spiral threads; basal part bearing three other weak frills. Siphonal canal evidently short, tip broken.

Height (not quite complete) 29.4 mm, diameter 22.3 mm (figured specimen).

Type locality: Dominican Republic, Miocene.

A relatively large specimen of *Typhis alatus obesus* was found in the lower part of the Gatun formation and the same form was recorded from the middle part in the eastern area by Brown and Pilsbry as *T. alatus*. The suture extending from a tube to the preceding varix is almost obliterated on the specimen from the lower part of the formation.

The status of *T. alatus* Sowerby (1850, p. 48, pi. 10, fig. 4) and *T. obesus* still is as uncertain as it was when the matter was discussed in 1928 (Woodring, 1928, p. 294). For the time being *T. obesus* is treated as an inflated relatively low-spired subspecies of *T. alatus*, as was done by Dall in 1890. Both forms were collected in the Dominican Republic. Though they presumably occur in the Cercado or Gurabo formations, they were not found by the Maury or U. S. Geological Survey expeditions in either.

The *Typhis* from the lower Miocene Chipola formation of Florida, identified by Dall and Gardner as *T. alatus obesus*, is smaller than middle and late Miocene Caribbean specimens and has somewhat weaker spiral sculpture, but agrees in essential features. *T. pertinus* Gardner (1926-47, p. 528, pi. 53, fig. 14, 1947), from the middle Miocene Shool River formation of Florida, is small, slender, and high spired. It probably is closely related to *T. alatus*. Maury's *T. alatus obesus*, found in the Manzanilla formation of Trinidad, has a higher spire and stronger spiral sculpture than *T. alatus obesus* of the present report.

Typhis alatus obesus closely resembles the Recent Panamic *T. latipennis* Dall (Keen, 1943, p. 53, pi. 3, figs. 17, 21, 24, 25), but has stronger spiral sculpture.

Occurrence: Lower and middle parts of Gatun formation (middle Miocene). Lower part locality 136. Middle part, eastern area (Brown and Pilsbry's record). Chipola formation (early Miocene), Florida. Bowdon formation (middle Miocene), Jamaica. Miocene (presumably middle), Dominican Republic. Deposits of late Miocene age, northwestern Panama.
Subgenus Laevityphis Cossmann
Cossmann, Essais de paléontochologie comparée, pt. 5, p. 59, 1903.
Type (orthotype) : Typhis coronarius Deshayes, Eocene, Paris basin [=T. muticus (J. de C. Sowerby)].

According to Wrigley (1930, p. 113), Typhis coronarius, a rare species in the Cuisian of the Paris basin, is the same as T. muticus, which occurs in the London clay of England.

Laevityphis has a range of Eocene to Recent. In the Caribbean and nearby regions it is found in deposits of late Eocene, late Eocene or early Oligocene, and early and middle Miocene age.

Typhis (Laevityphis) aff. T. curvirostratus Conrad
Plate 24, figures 2, 6

Of medium size, slender, strongly turreted. Early whorls missing. Body whorl bearing four or five swollen varices forming blunt spines on shoulder. Partitions extending up from varices and forming flattened scales on preceding whorl. Tubes broken, located almost halfway between varices, but closer to succeeding varix, seated on adoral side of low, swollen axial ribs. Siphonal canal broken.

Height (incomplete) 12.6 mm, diameter 9.6 mm (figured specimen).

The one specimen of this species, from the marine member of the Bohio(?) formation at the submerged Vamos Vamos locality, is incomplete but shows the essential features. It probably is a new species and is closely related to T. curvirostratus Conrad (1848, p. 116, pl. 11, fig. 29), an Oligocene species found in Mississippi and northeastern Mexico. It is distinguished from Conrad's species by its heavier axial ribs extending down from the aboral side of the tubes and by the stronger flattening of the posterior part of the partitions extending upward from the varices. The species from the Canal Zone also has stronger tube-bearing axial ribs than T. thygas Olsson (1930, p. 58, pl. 12, fig. 6), which is found in the upper Eocene Talara formation of Peru.

Occurrence: Marine member of Bohio(?) formation (late Eocene or early Oligocene), locality 40d.

Family THAIDIDAE
Genus Thais Röding
Röding, Museum Boltenianum, p. 54, 1798.

Though Iredale's (1915, p. 472) designation of "T. neritoideus=M. fucus Gmel." as the type species has the same effect as Stewart's, Murex neritoideus was not mentioned by Röding. Murex neritoideus has been discussed recently by Dodge (1957, p. 131).

Subgenus Stramonita Schumacher
Schumacher, Essai d’un nouveau système des habitations des vers testacés, p. 226, 1817.
Type (logotype, Gray, Zool. Soc. London Proc., p. 138 (Stamonita by error), 1847 : Buccinum haemastoma Linne, Recent, eastern Atlantic Ocean, eastern Pacific Ocean.

Thais (Stramonita) aff. T. haemastoma (Linne)
Plate 28, figures 13, 14

Small (immature), strongly shouldered. Early whorls worn. Body whorl bearing a row of low, blunt nodes on shoulder and a row of smaller, lower nodes below shoulder. Spiral sculpture consisting of narrow bands and threads of variable width. Outer lip broken back.

Height (incomplete) 20 mm, diameter 13.2 mm. (figured specimen).

A worn, incomplete, immature specimen of Thais, the only representative of the genus in the Gatun formation, was collected from the Turritetta-bearing siltstone at locality 155c, at the top of the Gatun Third Locks excavation (unit 12b of section on page 44 of chapter A). Though it is poorly preserved, it evidently is closely related to T. haemastoma (Linne) (Clench, 1947, p. 73, pl. 36, figs. 1–6), a Recent species occurring in the Carribbean region, as well as in the eastern Atlantic and the eastern Pacific Oceans. Perhaps, however, it is more closely related to T. rustica (Lamarck) (Clench, 1947, p. 80, pl. 39, figs. 4–6, 8, 10), also a Recent species found throughout the Caribbean region. Those two Recent species themselves are closely related. As pointed out by Clench (1947, p. 82), T. rustica generally is smaller, is more strongly noded, and generally has an inner set of ridges on the interior of the outer lip well within the aperture. The fossil from the Gatun formation is immature and its outer lip is broken back. Therefore its closest affinities are indeterminable. In view of the occurrence of T. haemastoma on both sides of Central America, that species is expectable as a Miocene fossil in the Caribbean region.

Both T. haemastoma and T. rustica are intertidal species and live on rocks or reefs. Like other intertidal rock-dwelling mollusks, the genus is rare in the Miocene deposits of the Caribbean region. At locality 155c the worn broken specimen is associated with a large fauna indicating deposition at a depth considerably greater than shallow water.

Occurrence: Middle part of Gatun formation (middle Miocene), eastern area, locality 155c.
Subgenus Vasula Möhr

Mörch, Malakozoologische Blätter, Band 7, p. 99, 1860. Type (monotype): Purpura (Vasula) melones Duclos (Purpura melones Duclos), Recent, Mexico to Peru and Galápagos.

Thais (Vasula) aff. T. melones (Duclos)

Of medium size, greatly inflated, spire low, shoulder rounded. Early whorls missing. Intermediate whorls worn, but showing low, small nodes, which disappear on late whorls. Intermediate and late whorls too worn to show spiral sculpture. Outer lip broken back and aperture filled with hard limestone.

Height (incomplete) 39.5 mm, diameter (incomplete) 26 mm.

The coralliferous limestone at the base of the La Boca marine member of the Panamá formation on Río Masambí in the Gaillard Cut area yielded a poorly preserved, incomplete, squat, round-shouldered specimen of Thais. It is greatly worn and partly covered with a calcareous crust, except the intermediate whorls on one side. Despite its imperfections, the fossil evidently is allied to the Recent Panamic T. melones (Duclos) (Hertlein and Strong, 1955, p. 260), also known as T. crassa (Blainville). T. melones ranges from Mexico to Peru and the Galápagos. Many specimens that reach museums are almost, or quite, as worn as the fossil, as the species lives in the intertidal zone on rocks or under stones.

There is no analog of T. melones in Caribbean waters.

Occurrence: La Boca marine member of Panamá formation (early Miocene), locality 123.

Genus Cymia Möhr

Mörch cited Humphrey’s anonymous usage of Cuma on page 35 of the Museum Calonnianum, published in 1797, and also Swainson’s usage. Although he did not state that he rejected Humphrey’s name, his proposal of Cymia as a substitute name for Cuma, invalidated by Milne Edward’s usage in 1828, could refer only to Swainson’s Cuma. The type of Cymia therefore is the monotype of Swainson’s Cuma. As a matter of fact, the Museum Calonnianum was rejected as a basis for any nomenclatural work in Opinion 51, issued by the International Commission on Zoological Nomenclature in 1912.

Cymia is one of the numerous genera formerly widely distributed in the Caribbean region and elsewhere in Atlantic waters, but now surviving only in the eastern Pacific Ocean. Miocene species of Cymia s.s. are found in Hispaniola, Venezuela, Colombia, Panamá, Perú and Baja California, as well as in New Jersey, southwestern France and Italy. The youngest eastern Atlantic species occurs in strata at Point Courbaril in southwestern Trinidad near the Pitch Lake. Though the fossiliferous strata at Point Courbaril have been referred to the Oligocene (Maury, 1912, p. 25) and to the Pliocene (Maury, 1925, p. 17), they probably are of early Pliocene age (Kugler, 1953, p. 55). C. woodi (Gabb), which is found in the middle Miocene of New Jersey—far north of the expected range of the genus—is the only species of Cymia s.s. from eastern North America. C. caloosana Tucker and Wilson (1933, p. 9, pl. 2, fig. 8), a Pliocene species from Florida, evidently is a species of a buccinid genus. Despite records of fossil and Recent species of Cymia from the western Pacific Ocean, C. tectum, the type of the genus, is the only surviving species. Its radula has been described by A. H. Cooke (1919, p. 107, fig. 31).

In both America and Europe small species of the genus appeared during Oligocene time. “Triton” subaleveatum Conrad (1849, p. 207), found in the Vicksburg group of Mississippi, is the monotype of Tritonopsis Conrad (1865, p. 20), a subgenus of Cymia characterized by a slightly notched siphonal canal, slightly swollen siphonal fasciole, the persistence of reticulate sculpture to a late stage, and the absence of spines. The Stampian European Cymia monoplex (Deshayes) (Cossmann, 1903, p. 74, pl. 3, fig. 16) and the Oligocene Mexican Cymia sp. (Gardner, 1945, p. 186) have the deeply notched siphonal canal and strongly swollen siphonal fasciole of Cymia s.s. Though the columella of the Mexican species was not exposed when Gardner identified it, it has the columellar fold of Cymia. The status of C. berryi Olsson (1931, p. 105, pl. 18, fig. 6), an Oligocene Peruvian species is uncertain, as the columella is unknown.

Subgenus Cymia s.s.

Cymia (Cymia) chelona Woodring, a. sp.

Plate 28, figures 12, 15

Large, whors strongly angulated, strongly spinose at angulation, body whorl relatively loosely coiled. Protoconch missing. Earliest preserved post-protoconch whors angulated near anterior suture, sculptured with three spiral cords and narrower axial threads, forming a reticulate network. Later whors bearing strong, blunt spines at angulation and sculptured with closely spaced narrow spiral cords and growth lines that are finely, or microscopically, lamellar. Below angulation some spiral cords wider and heavier than others. Trace of anal fasciole on body whorl (as outlined by lamellar growth lines) progres-
sively more deeply notched near outer lip. Edge of outer lip not preserved. Interior of outer lip bearing short, strong ridges. Siphonal canal deeply notched. Siphonal fascicle swollen, strongly lamellar. Columellar fold strong even at aperture.

Height (almost complete) 76.7 mm, diameter (including spines) 51.5 mm (type).

Type: USNM 562590; two paratypes, Stanford University.

Type locality: 136 (USGS 16912, north side of Transisthmian Highway, knob about 30 meters north of highway, 1.2 kilometers northwest of Sabanita, Panama), lower part of Gatun formation.

Cymia cheloma is represented by six specimens, all from the lower part of the Gatun formation at localities 136 and 136a. (Those two localities actually are two collections from the same locality, or practically the same locality.) This species is one of the most conspicuous of the fossils found in the lower part of the Gatun, but not in other parts of the formation; in fact, the genus itself was not found in other parts of the formation. It belongs to a group of large or moderately large, strongly spinose species that have a deep anal notch at maturity and a relatively loosely coiled body whorl. This group of species is found in the southern part of the Caribbean region and in the eastern Pacific region: Trinidad, Venezuela, Colombia, the Canal Zone, the Darién area of Panamá, Perú and Baja California. These species, with the exception of one from Trinidad—*Cymia brightoniana* Maury (1925, p. 215), now considered of early Pliocene age, the youngest species of *Cymia* in western Atlantic waters—are of early and middle Miocene age. The anal notch is much deeper than that of the type species of the genus. Were it not for the variable depth of the notch in other smaller Miocene Caribbean species, a subgeneric name would be justified for this group of species.

C. cheloma is most closely related to *C. buchiavacana* H. K. Hodson (Hodson and Hodson, 1931, p. 38, pl. 18, fig. 4, pl. 22, fig. 2), which occurs in the middle Miocene of Venezuela and in deposits of the same age in the Darién area of Panamá (USGS localities 8433, 8477). The spines of the Gatun species are not as strongly compressed in a plane parallel to the angulation of the whorl and the spiral cords above the angulation are narrower.

Occurrence: Lower part of Gatun formation (middle Miocene), localities 136, 136a.

REFERENCES CITED

1849, Descriptions of new fossil and Recent shells of the United States: idem, p. 207-209.

1866, Further observations on Mr. Gabb's Paleontology of California: idem, v. 2, p. 97-100.

1911, Conchologie néogénique de l'Aquitaine; monographie des fossiles éocènes (étage Aquitaine, v. 2, 22 p., 65 pis., Bordeaux.

Douvillé, Henri, 1929, Les couches à Cardita beaumonti; pt. 2, Les couches à Cardita beaumonti dans le Sind: Geol. Sur-
GASTROPODS: VERMETIDAE TO THAIDIDAE

—1901, Uber einige alttertiare Faunen der osterrichisch-

ungarischen Monarchie: Beitr. Paläont. Geol. Österreich-

Ungarns, Band 13, p. 145-377, pls. 11-19, figs. 11-18.

Orbigny, Alcide d', 1834-47, Voyage dans l'Amérique Méridi-

ionale, v. 5, Mollusques, 758 p., 85 pls., Paris and Strasbour.
—1841-47 (?), Mollusques, de la Sagra, Ramon. Histoire

physique, politique, et naturelle de l'Ile de Cuba, v. I, 264 p.,

—1842-47, Voyage dans l'Amérique Méridionale, v. 3, pt. 4,

Paléontologie, 188 p., 1842; v. 8, Atlas, 22 pls., 1847.
—1852 (?), Paléontologie de l'Ile de Cuba, de la Sagra, Ramon.

Palmer, K. V. W., 1937, The Claibornian Scaphopoda, Gastro-

podas, and dibranchele Cephalopods of the southern United

Perry, George, 1811, Conchology or the natural history of shells,

and explanation, London.

—1922, Revision of W. M. Gabb's Tertiary Mollusca of

Santo Domingo: idem, v. 73, p. 305-455, pls. 16-47, 48 fgs.

Pilsbry, H. A., and Harbison, Anne, 1933, Notes on the Miocene

of southern New Jersey: idem, v. 85, p. 107-120, pls. 3-5, 1 fg.

American mollusks collected by H. N. Lowe, 1929-31: idem,

v. 84, p. 33-144, pls. 1-17.

Pilsbry, H. A., and Olson, A. A., 1941, A Pliocene fauna from

western Ecuador: idem, v. 84, p. 107-120, pis. 3-5, 5 fgs.

Plummer, L. A., 1844, Conchologia iconica, v. 2; monograph of the

genus Ranella, 8 pls. and unnumbered text, London.

Rehder, H. A., 1935, New Caribbean marine shells: Nautilus,

v. 45, p. 127-150, pl. 7.
—1945, Two new species of Cirsotrema (Epitonididae)

from Florida: Biological Soc. Washington Proc., v. 58,

p. 127-130.
—1946, Notes on some groups in the Muricidae of the west

Atlantic, with description of a new subspecies: Nautilus, v.

59, p. 142-145.

Rehder, H. A., and Abbott, R. T., 1951, Some new and interesting

mollusks from the deeper waters of the Gulf of Mexico:

Soc. Malacologica Carlos de la Torre Revista, v. 8, p. 53-66,

pls. 8, 9.

from Citrus and Levy Counties, Florida: Fla. Board Con-

Turner, R. D., 1948, The family Tonnidae in the western At-

Vredenburg, E., 1920, Classification of the Recent and fossil

Cypraeidae: Geol. Survey India Records, v. 51, p. 65-152.
—1929, Supplement to the Mollusca of the Ranikot series:

Geol. Survey India, Palaeontologia Indica, n. s., v. 10,

Mem. 4, 75 p., 9 pls.

Welsbord, N. E., 1929, Miocene Mollusca of northern Colom-

Whitefield, R. H., 1865, Descriptions of new species of Eocene

Winckworth, R., 1945, The types of the Boltenian genera:

Malacological Soc. London Proc., v. 28, p. 139-146.

Woodring, W. P., 1923, Tertiary mollusks of the genus Orthau-

laoe from the Republic of Haiti, Porto Rico, and Cuba: U. S.

Natl. Mus. Proc., v. 64, p. 1-12, pls. 1, 2.
—1928, Miocene molluscs from Bowden, Jamaica: pt. 2,

Gastropods and discussion of results: Carnegie Inst. Wash-

ington Pub. 385, 564 p., 40 pls.
—1932, A Nerinea from southwestern Oriente Province,

Cuba: Jour. Paleontology, v. 26, p. 69-92, pl. 11.

Woodring, W. P., Brown, J. S., and Burbank, W. S., 1924, Geol-

ogy of the Republic of Haiti: Republic of Haiti Geol. Sur-

vey, 631 p., 49 pls., 37 fgs.

Sacco, Frederico, 1891, I molluschi dei terreni terziari del Piemonte e della Liguria, pt. 8, 112 p., 2 pls.

Schilder, F. A., 1932, Fossilium catalogus, I, Animalia, pt. 55;

Cypracea, 276 p.

Sowerby, G. B., Jr., 1844, Monograph of the genus Scalaria, in

Thessaurus conchylorum, v. I, p. 83-108 (second set of

pages so numbered), pls. 32-35.
—1850, Descriptions of new species of fossil shells found

6, p. 44-53, pls. 9, 10.

Stainforth, R. M., 1933, The basis of Paleogene correlation of

Stewart, R. B., 1927, Gabb's California fossil type gastropods:

Strand, Embrl, 1928, Miscellanea nomenclatorica zoologica et

e palaeontologica: Arch. Naturgesch., 92nd year (1926), pt.

A, no. 8, p. 30-75.

Suter, Henry, 1913, Manual of the New Zealand Mollusca, 1,120

p., 72 pls., Wellington.

Swainson, William, 1840, A treatise on malacology, 419 p., 130

fags., London.

pls., 44 fgs., Copenhagen.

Toula, Franz, 1911, Nachträge zur Jungtertiären (pliocänen)

Fauna von Tehuantepec: K. k. Geol. Reichsanstalt Jahrb.,

Band 61, p. 473-486, pl. 29, 2 fgs.

Trechmann, C. T., 1923, The Yellow Limestone of Jamaica and its

—1924, The Carbonaceous Shale or Richmond formation of

Troschel, F. H., 1866-91, Das Gebias der Schnecken zur Be-

gründung einer natürlichen Classification, 409 p., 32 pls.,

Berlin.

Tucker, H. I., and Wilson, Druid, 1933, A second contribution to

the Neogene paleontology of south Florida: Bull. Am.

Paleontology, v. 18, no. 66, 20 p., 4 pls.

Turner, R. D., 1948, The family Tonnidae in the western At-

Trechmann, C. T., 1923, The Yellow Limestone of Jamaica and its

—1924, The Carbonaceous Shale or Richmond formation of

Troschel, F. H., 1866-91, Das Gebias der Schnecken zur Be-

gründung einer natürlichen Classification, 409 p., 32 pls.,

Berlin.

——— 1934, English Eocene and Oligocene Cassididae, with notes on the nomenclature and morphology of the family: idem, v. 21, p. 108-130, pls. 15-17.

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerithium parva</td>
<td>163</td>
</tr>
<tr>
<td>"Cerithium" pustulatum</td>
<td>176</td>
</tr>
<tr>
<td>subulatum</td>
<td>172</td>
</tr>
<tr>
<td>cerithium</td>
<td>174</td>
</tr>
<tr>
<td>"Cerithium" aff. "C." subulatum</td>
<td>174</td>
</tr>
<tr>
<td>Cerithium vulgatum</td>
<td>170</td>
</tr>
<tr>
<td>sp. a</td>
<td>170</td>
</tr>
<tr>
<td>sp. b</td>
<td>169</td>
</tr>
<tr>
<td>(Belleria) renata</td>
<td>168</td>
</tr>
<tr>
<td>(Belleria) aff. C. subulatum</td>
<td>170</td>
</tr>
<tr>
<td>(Belleria) muriaticum</td>
<td>149, 171, pl. 24</td>
</tr>
<tr>
<td>(Belleria) n. sp.</td>
<td>171</td>
</tr>
<tr>
<td>Clages sandstone, including Toro limestone member</td>
<td>154</td>
</tr>
<tr>
<td>claparisi</td>
<td>166</td>
</tr>
<tr>
<td>chelona, Cyphoma (Cyphoma)</td>
<td>152, 228-228, pl. 28</td>
</tr>
<tr>
<td>Chitonia</td>
<td>216</td>
</tr>
<tr>
<td>ramona</td>
<td>216</td>
</tr>
<tr>
<td>chilona, Cypraea</td>
<td>193</td>
</tr>
<tr>
<td>Cypraea cf.</td>
<td>150, 151, 158</td>
</tr>
<tr>
<td>chilona, Architectonica natalia</td>
<td>157</td>
</tr>
<tr>
<td>chipolana, Meioceras</td>
<td>156</td>
</tr>
<tr>
<td>("Ostreidia") cf.</td>
<td>150, 158</td>
</tr>
<tr>
<td>"Solarium granulatum"</td>
<td>167</td>
</tr>
<tr>
<td>chipolana tuscanus, Meioceras</td>
<td>158</td>
</tr>
<tr>
<td>chisipera, Murex</td>
<td>171</td>
</tr>
<tr>
<td>chinensis, Ficus</td>
<td>210</td>
</tr>
<tr>
<td>Ostreomurina</td>
<td>192, 199</td>
</tr>
<tr>
<td>Ostreomurina aff.</td>
<td>148, 149, 150-150, pl. 24</td>
</tr>
<tr>
<td>"Strombus"</td>
<td>188, 189</td>
</tr>
<tr>
<td>Yasila</td>
<td>218</td>
</tr>
<tr>
<td>chlorostoma, Cypraea</td>
<td>204</td>
</tr>
<tr>
<td>cypraea, Meioceras</td>
<td>153</td>
</tr>
<tr>
<td>Cylindrichromis</td>
<td>158</td>
</tr>
<tr>
<td>arctica</td>
<td>186</td>
</tr>
<tr>
<td>dillii</td>
<td>186</td>
</tr>
<tr>
<td>tamara, Meioceras</td>
<td>186</td>
</tr>
<tr>
<td>topatica</td>
<td>186</td>
</tr>
<tr>
<td>(Cylindrichromis) cf. C. arctica</td>
<td>152, 158, pl. 35</td>
</tr>
<tr>
<td>Cylindrichromis</td>
<td>158</td>
</tr>
<tr>
<td>citrina, Bellaria</td>
<td>172, 173</td>
</tr>
<tr>
<td>cinnamala, Ampullinae</td>
<td>158</td>
</tr>
<tr>
<td>clathrata, Diastoria</td>
<td>205, 206</td>
</tr>
<tr>
<td>ratilata</td>
<td>205</td>
</tr>
<tr>
<td>clathratula, Terebellum</td>
<td>205</td>
</tr>
<tr>
<td>clathrotus geotrama, Diastoria</td>
<td>205</td>
</tr>
<tr>
<td>(Diastoria)</td>
<td>205</td>
</tr>
<tr>
<td>Clara</td>
<td>171</td>
</tr>
<tr>
<td>("Ostreoides") inedia</td>
<td>148, 150, 151, 158</td>
</tr>
<tr>
<td>(Ostreoides) aff. inedia</td>
<td>174</td>
</tr>
<tr>
<td>clavata, Meuseter</td>
<td>205</td>
</tr>
<tr>
<td>enchyla, Spondylus</td>
<td>171</td>
</tr>
<tr>
<td>oxela, Spondylus</td>
<td>170</td>
</tr>
<tr>
<td>oxela, Spondylus</td>
<td>200</td>
</tr>
<tr>
<td>Seminaea</td>
<td>200</td>
</tr>
<tr>
<td>collatilibia, "Murex"</td>
<td>217</td>
</tr>
<tr>
<td>collumine, "Terebrina" (Ampullinae)</td>
<td>159</td>
</tr>
<tr>
<td>collumine, Meiosis</td>
<td>179</td>
</tr>
<tr>
<td>colombiana, Cibes</td>
<td>211, 212</td>
</tr>
<tr>
<td>Calcolithina</td>
<td>207</td>
</tr>
<tr>
<td>communis, Flues</td>
<td>211, 212</td>
</tr>
<tr>
<td>condita, Plicula (Pyro) sp.</td>
<td>211, 212</td>
</tr>
<tr>
<td>condita, Meuseter</td>
<td>207</td>
</tr>
<tr>
<td>cordati, "Turritella"</td>
<td>156</td>
</tr>
<tr>
<td>constricta, Diastoria</td>
<td>204</td>
</tr>
<tr>
<td>floridana, Diastoria</td>
<td>206</td>
</tr>
<tr>
<td>megalopygi, Diastoria</td>
<td>206</td>
</tr>
<tr>
<td>constricti, Meoceras</td>
<td>103</td>
</tr>
<tr>
<td>constricta, "Cerithium"</td>
<td>173</td>
</tr>
<tr>
<td>Conus teredolus</td>
<td>191</td>
</tr>
<tr>
<td>conusulatum, Terebellum</td>
<td>192</td>
</tr>
<tr>
<td>conusulatum, Terebellina</td>
<td>192</td>
</tr>
<tr>
<td>conusulatum, Meiochaos</td>
<td>103</td>
</tr>
<tr>
<td>conusulatum, "Cerithium"</td>
<td>206</td>
</tr>
<tr>
<td>conusulatum, Meioceras</td>
<td>103</td>
</tr>
<tr>
<td>conusulatum, Meuseter</td>
<td>216</td>
</tr>
<tr>
<td>(Cylindrichromis)</td>
<td>218</td>
</tr>
<tr>
<td>coronado, Canis</td>
<td>189</td>
</tr>
<tr>
<td>coronarius, Cypraea</td>
<td>222</td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Helenia—Continued</td>
<td>Page</td>
</tr>
<tr>
<td>stromeanae</td>
<td>184, 169, 170</td>
</tr>
<tr>
<td>(Astronacus) amygladus</td>
<td>182, 170, pl. 20</td>
</tr>
<tr>
<td>Cypraea</td>
<td>182, 170, pl. 20</td>
</tr>
<tr>
<td>Hemiastrea remonditi</td>
<td>213</td>
</tr>
<tr>
<td>Hemiinaeus</td>
<td>127</td>
</tr>
<tr>
<td>antifrons</td>
<td>127</td>
</tr>
<tr>
<td>Hesiodata</td>
<td>158</td>
</tr>
<tr>
<td>aff. H. oecicus</td>
<td>158</td>
</tr>
<tr>
<td>tuberculata</td>
<td>157</td>
</tr>
<tr>
<td>(Longitornacia) oecicus</td>
<td>157</td>
</tr>
<tr>
<td>aff. H. oecicus</td>
<td>157-158</td>
</tr>
<tr>
<td>henekeni, Cypraea</td>
<td>194, 195</td>
</tr>
<tr>
<td>Cypraea aff.</td>
<td>194, 195</td>
</tr>
<tr>
<td>Cypraea cf.</td>
<td>194, 195</td>
</tr>
<tr>
<td>Cypraea (Muramtrupe)</td>
<td>152, 184-196, pl. 31, pl. 32</td>
</tr>
<tr>
<td>amandul, Cypraea</td>
<td>194, 195</td>
</tr>
<tr>
<td>laevigata, Sconsia</td>
<td>194, 195</td>
</tr>
<tr>
<td>poterons, Cypraea</td>
<td>194, 195</td>
</tr>
<tr>
<td>henicium, Cymatium (Septa) pisae</td>
<td>152, 184-196, pl. 31, pl. 32</td>
</tr>
<tr>
<td>heninei, Cypraea heninei</td>
<td>194, 195</td>
</tr>
<tr>
<td>Henieter, Cypraea</td>
<td>194, 195</td>
</tr>
<tr>
<td>Siphocypraea</td>
<td>194</td>
</tr>
<tr>
<td>herberti, Solatium</td>
<td>168</td>
</tr>
<tr>
<td>haeccosus C. Creticum</td>
<td>168</td>
</tr>
<tr>
<td>Heterostegina panamensis</td>
<td>149</td>
</tr>
<tr>
<td>Histrocosul</td>
<td>183</td>
</tr>
<tr>
<td>hyman, Cypraea angustirima</td>
<td>194</td>
</tr>
<tr>
<td>hystricinus, "Murz"</td>
<td>217</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>indices, "Bellardia"</td>
<td>173</td>
</tr>
<tr>
<td>inula, Cypraea</td>
<td>173</td>
</tr>
<tr>
<td>inulos, "Buccinium"</td>
<td>199</td>
</tr>
<tr>
<td>infracarinata, Turritella</td>
<td>160</td>
</tr>
<tr>
<td>infratubulata, Potamides</td>
<td>176</td>
</tr>
<tr>
<td>ornal</td>
<td>178</td>
</tr>
<tr>
<td>suprasculatus</td>
<td>177</td>
</tr>
<tr>
<td>infululibitra, Helicas</td>
<td>169</td>
</tr>
<tr>
<td>intermedium, Buccinium</td>
<td>190</td>
</tr>
<tr>
<td>insige, "Epitonium" toresem</td>
<td>190</td>
</tr>
<tr>
<td>intermediate, Buccinium</td>
<td>198</td>
</tr>
<tr>
<td>intrasutum, Solatium</td>
<td>165</td>
</tr>
<tr>
<td>Introduction</td>
<td>167-148</td>
</tr>
<tr>
<td>irregulares, Petaloconchus</td>
<td>162</td>
</tr>
<tr>
<td>Vertetis</td>
<td>194, 195</td>
</tr>
<tr>
<td>Isthmicas, Siphocypraea</td>
<td>194, 195</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>junus, Cymatium (Bellardis)</td>
<td>173</td>
</tr>
<tr>
<td>Jasper, Coelina</td>
<td>199</td>
</tr>
<tr>
<td>Orthobula</td>
<td>190</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>kartzeni, Architectonica nobilis</td>
<td>150, 151, 166-173, pl. 30</td>
</tr>
<tr>
<td>(Architectonica) nobilis</td>
<td>154, 156, 157, 158, pl. 30</td>
</tr>
<tr>
<td>kenneae, Bocyprae (Apolocyprae)</td>
<td>152, 169-197, pl. 22</td>
</tr>
<tr>
<td>kernusim, "Apolocula" (Tropocula)</td>
<td>213</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>La Bona mariae member of Panamia formation</td>
<td>154</td>
</tr>
<tr>
<td>lacopa, "Muricyprae"</td>
<td>217</td>
</tr>
<tr>
<td>lacinval, Cypraea lacinval</td>
<td>194, 195</td>
</tr>
<tr>
<td>lacinval, Solatia</td>
<td>194, 195</td>
</tr>
<tr>
<td>laddfrankiae, Petaloconchus</td>
<td>162</td>
</tr>
<tr>
<td>larenae, Sconsia</td>
<td>201</td>
</tr>
<tr>
<td>lareae, Cymatium</td>
<td>201</td>
</tr>
<tr>
<td>gobbi, Sconsia</td>
<td>201</td>
</tr>
<tr>
<td>lainea, Sconsia</td>
<td>201, 202</td>
</tr>
<tr>
<td>malalora, Sconsia</td>
<td>152, 160-160, pl. 34, pl. 35</td>
</tr>
<tr>
<td>Lamellility</td>
<td>197</td>
</tr>
<tr>
<td>lamomontii, Atlantia</td>
<td>197</td>
</tr>
<tr>
<td>lamorci, Patellinae</td>
<td>176</td>
</tr>
<tr>
<td>amplexus</td>
<td>204</td>
</tr>
<tr>
<td>lamelle, Patellinae</td>
<td>206</td>
</tr>
<tr>
<td>latipennis, Typhis</td>
<td>221</td>
</tr>
<tr>
<td>Leminia</td>
<td>161</td>
</tr>
<tr>
<td>cutores</td>
<td>161</td>
</tr>
<tr>
<td>populus</td>
<td>161</td>
</tr>
</tbody>
</table>

<p>	Index
lease, Thais	222
lemis, Alabile cedral	181
Lepetimna, Leptina	164
pinnatula	149
patrua	149
sigalos	149
(Belcherina) cerulea	149
(Nephropettea) vanamani	149
Lencorina (Leonca) sp. aff. L. smaragdula	201
lineata, Melania	191
lineata, Hemiinaeus	191
Melania	191
"Otiadlias"	200
liss, Alitama (Alitama)	197
Pret tissu (Tissu)	152, 157, pl. 30
Laters, Turritella	149, 160, pl. 36
Littorina angulosa	178
longicosta, Formularia	205
Longicosta	187
longicosta	190, 170
lycinis, Pauza (Dallaires)	247
mucosa, Solatia	155
mucosa, Solatia	155
Tonma	210
magnifica, Solatia	157
Melan	104, 309, 309, pl. 19
melan	152, 398-399, pl. 35
densoconula	209
elliptica	208, 309, 310
Melan sp.	208, 309, 310
micromaria, Thora	156
Margaritale	207
Marginocyprea	197
paraguana	197
marinae, Denticrillum	163, 174, 175
marinae, Marginca	174
matooni, Patellinae	177
napitargos, Dallaire	206
castorius	206
Melanoceras	163
ontoceras	150, 151, 166, pl. 31
ornamentum	163
conscicarium	163
paraceras	150, 151, 166, pl. 31
masticum, Cyprea	163
masticum, Cyprea	163
minima, Denticrillum	197
mutoona, Patellinae	192
melusa, Purpura	222
(Vanilla) aff.	223
merochoceras, Mickey	224
merochoceras, Mickey	224
mutoona, Patellinae	192
mutoona, Patellinae	192
mylonites, Solatia	210
micacheadus, Cyprea	196
micenaecies, Micras	213
corbean	190, 191, 212, 213
cf. F. corbean	190, 213
Pyrula	212
mites, Turritella	155
nicoeces, Marginica (Therictum)	149, 171, pl. 24
micones series	150-154
Morulae	198
n迪士a, Supcalista	194
nizzas, Amphilopoda	158, 159
Picta	210, 211
fiesco	149, 201
Nites	158
<table>
<thead>
<tr>
<th>Planispira, Helicarion</th>
<th>155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pliocene series</td>
<td></td>
</tr>
<tr>
<td>Pilsbryi, Ficus</td>
<td></td>
</tr>
<tr>
<td>perspective, Trochus</td>
<td></td>
</tr>
<tr>
<td>perspectivum, Sinum</td>
<td></td>
</tr>
<tr>
<td>perspectiva, Architectonica</td>
<td></td>
</tr>
<tr>
<td>persicum, Buccinum</td>
<td></td>
</tr>
<tr>
<td>pericattum, Bittium</td>
<td></td>
</tr>
<tr>
<td>perdix, Dolium</td>
<td></td>
</tr>
<tr>
<td>pazi, Murex</td>
<td></td>
</tr>
<tr>
<td>Pazella</td>
<td></td>
</tr>
<tr>
<td>Pazella t.</td>
<td></td>
</tr>
<tr>
<td>fastinoides</td>
<td></td>
</tr>
<tr>
<td>(Dollimurex) fastinoides</td>
<td></td>
</tr>
<tr>
<td>pithula, (Panamure) patuensata</td>
<td></td>
</tr>
<tr>
<td>piten, Murex</td>
<td></td>
</tr>
<tr>
<td>pentapora, Cyathetium</td>
<td></td>
</tr>
<tr>
<td>perdit, Dolium</td>
<td></td>
</tr>
<tr>
<td>Torna</td>
<td></td>
</tr>
<tr>
<td>pericalium, Bittium</td>
<td></td>
</tr>
<tr>
<td>permutabile, Bittium</td>
<td></td>
</tr>
<tr>
<td>pernubilla, Sheneroria</td>
<td></td>
</tr>
<tr>
<td>pernubillit, Sheneroria</td>
<td></td>
</tr>
<tr>
<td>perticum, Bucinum</td>
<td></td>
</tr>
<tr>
<td>Perisphinctes</td>
<td></td>
</tr>
<tr>
<td>“Persenella” foridana</td>
<td></td>
</tr>
<tr>
<td>perspective, Architectonica</td>
<td></td>
</tr>
<tr>
<td>perspective, Sinum</td>
<td></td>
</tr>
<tr>
<td>perspective, Thyphilia</td>
<td></td>
</tr>
<tr>
<td>peruviana, Ficus</td>
<td></td>
</tr>
<tr>
<td>Pyrula</td>
<td></td>
</tr>
<tr>
<td>Potamocorbula</td>
<td></td>
</tr>
<tr>
<td>albostrigos, 162</td>
<td></td>
</tr>
<tr>
<td>dorongenesis, 162</td>
<td></td>
</tr>
<tr>
<td>floridusma</td>
<td></td>
</tr>
<tr>
<td>aff. P. floridusma</td>
<td></td>
</tr>
<tr>
<td>frisera</td>
<td></td>
</tr>
<tr>
<td>lododfrahlinata</td>
<td></td>
</tr>
<tr>
<td>pulcher</td>
<td></td>
</tr>
<tr>
<td>sculpturasus</td>
<td></td>
</tr>
<tr>
<td>varia</td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td></td>
</tr>
<tr>
<td>Phialium</td>
<td></td>
</tr>
<tr>
<td>placentum</td>
<td></td>
</tr>
<tr>
<td>(Senokosia) granulatum</td>
<td></td>
</tr>
<tr>
<td>pilcarios, Cymatium</td>
<td></td>
</tr>
<tr>
<td>Piliora, Cymatium</td>
<td></td>
</tr>
<tr>
<td>Plicaria</td>
<td></td>
</tr>
<tr>
<td>Plica, Ficus</td>
<td></td>
</tr>
<tr>
<td>Ficus</td>
<td></td>
</tr>
<tr>
<td>Pilocoryphita</td>
<td></td>
</tr>
<tr>
<td>Pirena</td>
<td></td>
</tr>
<tr>
<td>planispira, Holacoccus</td>
<td></td>
</tr>
<tr>
<td>Pliocene series</td>
<td></td>
</tr>
<tr>
<td>polymastica Murex</td>
<td></td>
</tr>
<tr>
<td>(Murex?)</td>
<td></td>
</tr>
<tr>
<td>Murex (Murex?) cf.</td>
<td></td>
</tr>
</tbody>
</table>
Scalina? (Tylocassis?)
Sericula, Leucozonia (Lagena)
PLATES 24–38
Figure 1, 8, 9, 11. Oostrombus aff. O. chiraensis Olsson (p. 188).

Locality 38. Gatuncillo formation, middle Eocene. USNM 562547.
1. Height (incomplete) 40.2 mm, diameter (incomplete) 24.5 mm.
8. Fragment showing upper part of outer lip. Height 17.5 mm, diameter 25 mm.
9. Height (incomplete) 25 mm, diameter (incomplete) 32.8 mm.
11. Height (incomplete) 17.9 mm, diameter 11.4 mm.

2, 6. Typhis (Laevityphis) aff. T. curvirostratus Conrad (p. 222).
Height (incomplete) 12.6 mm, diameter 9.6 mm. Locality 40d. Marine member of Bohio(?) formation. USNM 562556.

3, 7. Cerithium (Thericium) mimeticum Woodring, n. sp. (p. 171).
Locality 42d. Bohio formation.
3. Paratype. Height (not quite complete) 15 mm, diameter 4.6 mm. USNM 562565.
7. Type. Height (incomplete) 18.5 mm, diameter 6.7 mm. USNM 562564.

4, 5. Yasila aff. Y. paytensis Olsson (p. 218).
Height (incomplete) 18.5 mm, diameter 12.5 mm. Locality 38. Gatuncillo formation, middle Eocene. USNM 562555.

10, 12-14. Dirocerithium wechesense Stenzel, n. sp. (p. 175).
Roadcut on abandoned county road adjoining new Marquez-Centerville road (State Highway 7), .6 mile east of crossroads known as Robbins (crossing of Farm to Market road 39, or Jewett-Normangee road), central Leon County, Tex. Stenzel's Viesca member of Weches formation [Weches greensand member of Mount Selman formation], middle Eocene. Collection of H. B. Stenzel.
10. Paratype. Height (almost complete) 36 mm, diameter 13 mm.
12, 13. Type. Height (incomplete) 58 mm, diameter 24 mm.
14. Paratype. Height (almost complete) 15 mm, diameter 5.8 mm.

15-18. Dirocerithium ante Woodring, n. sp. (p. 175).
Locality 38. Gatuncillo formation, middle Eocene.
15. Type. Height (incomplete) 52 mm, diameter 20 mm. USNM 562545.
16. Height (incomplete) 5.9 mm, diameter 3.9 mm.
17. Height (incomplete) 34.6 mm, diameter 21 mm.
18. Height (incomplete) 40.5 mm, diameter 17.5 mm.
MIDDLE EOCENE MOLLUSKS FROM GATUNCILLO FORMATION AND TEXAS, LATE EOCENE OR EARLY OLIGOCENE MOLLUSK FROM MARINE MEMBER OF BOHIO(?) FORMATION, AND LATE OLIGOCENE MOLLUSK FROM BOHIO FORMATION
MIDDLE AND LATE EOCENE MOLLUSKS FROM GATUNCILLO FORMATION, LATE EOCENE OR EARLY Oligocene MOLLUSK FROM MARINE MEMBER OF BOHIO(?) FORMATION AND LATE OLIGOCENE MOLLUSKS FROM BOHIO FORMATION
PLATE 25

Figure 1–4, 9, 10. *Hemisinus* (*Longiverena*) oeciscus Woodring, n. sp. (p. 157).

Locality 42f. Bohio formation.

1, 3, 4, 9. Paratypes. USNM 562559.

1, 4. Height (incomplete) 15.2 mm, diameter (slightly increased by crushing) 8 mm.

3, 9. Height (incomplete) 13 mm, diameter (slightly increased by crushing) 7 mm.

2, 10. Type. Height (incomplete) 12 mm, diameter (slightly increased by crushing) 6.5 mm. USNM 562558.

Locality 12. Gatuncillo formation, late Eocene. USNM 562548.

5. Height (incomplete) 29.5 mm, diameter (slightly increased by crushing) 14 mm.

7. Height (incomplete) 43.7 mm, diameter (slightly increased by crushing) 16.5 mm.

Height (incomplete) 37.3 mm, diameter 14.5 mm. Locality 38. Gatuncillo formation, middle Eocene. USNM 562549.

Gatuncillo formation, late Eocene.

8, 14. Height (incomplete) 26 mm, diameter 12.8 mm. Locality 11. USNM 562550.

15. Height (incomplete) 21 mm, diameter 9.5 mm. Locality 9. USNM 562551.

16. Height (incomplete) 7.1 mm, diameter 5.7 mm. Locality 34. USNM 562552.

Height (incomplete) 21 mm, diameter (incomplete) 13.5 mm. Locality 38. Gatuncillo formation, middle Eocene. USNM 562554.

Height (incomplete) 21.5 mm, diameter 18.3 mm. Locality 40a. Marine member of Bohio(?) formation, late Eocene or early Oligocene. USNM 135212.

Height (incomplete) 46 mm, diameter (modified by crushing) 40 mm. Locality 27. Gatuncillo formation, late Eocene. USNM 562553.
PLATE 26

Figure 1, 6, 7. *Turritella listrota* Woodring, n. sp. (p. 160).
Locality 42d. Bohio formation.
1. Paratype. Height (incomplete) 18.5 mm, diameter 6.5 mm. USNM 562562.
6. Type. Height (incomplete) 35 mm, diameter 11 mm. USNM 562561.
7. Height (incomplete) 4.7 mm, diameter 2.2 mm. USNM 562563.
2, 3. *Soraliella ephnidia* Woodring, n. sp. (p. 156).
Type. Height 3.5 mm, diameter 3.6 mm. Locality 42d. Bohio formation. USNM 562557.
4, 5, 10. *Architectonica (Architectonica) rhicna* Woodring, n. sp. (p. 164).
Type. Height 9.5 mm, diameter 17.7 mm. Locality 56. Middle member of Caimito formation. USNM 562569.
8, 12. *Semicassis (Echinophoria)* sp. (p. 199).
Middle member of Caimito formation.
8. Height (incomplete) 30 mm, diameter (incomplete) 23.5 mm. Locality 54j. USNM 562572.
12. Height (incomplete) 27.7 mm, diameter (incomplete) 24.3 mm. Locality 54h. USNM 562571.
Locality 42d. Bohio formation.
9, 15. Paratype. Height (incomplete) 23 mm, diameter 18.3 mm. USNM 562567.
13, 14. Type. Height (incomplete) 26.2 mm, diameter 17.3 mm. USNM 562566.
11, 17. *Semicassis (Echinophoria) apenes* Woodring, n. sp. (p. 198).
Type. Height (almost complete) 31 mm, diameter (incomplete) 22 mm. Locality 56. Middle member of
Caimito formation. USNM 562570.
16, 18, 19. *Globularia (Globularia)* aff. *G. fischeri* (Dall) (p. 158).
Locality 42d. Bohio formation. USNM 562560.
16. Height 15.3 mm, diameter 13 mm.
18, 19. Height 27 mm, diameter 28 mm.
LATE OLIGOCENE MOLLUSKS FROM BOHIO FORMATION AND MIDDLE MEMBER OF CAIMITO FORMATION IN GATUN LAKE AREA
LATE OLIGOCENE MOLLUSKS FROM MIDDLE MEMBER OF CAIMITO FORMATION IN GATUN LAKE AREA AND EARLY MIocene MOLLUSK FROM CULEBRA FORMATION
PLATE 27

Figure 1, 3. *Ficus carbasea micronematica* (Brown and Pilsbry) (p. 212).
Height (incomplete) 25.8 mm, diameter 21.5 mm. Locality 99d. Culebra formation. USNM 562577.

2, 5, 7, 8. *Ampullinopsis spenceri* (Cooke) (p. 159).
Locality 55b. Middle member of Caimito formation. USNM 562568.
2, 5. Height (practically complete) 36.5 mm, diameter (almost complete) 36.5 mm.
7, 8. Height (practically complete) 47.5 mm, diameter (incomplete) 42.5 mm.

4, 6. *Cymatium (Septa) ogygium* Woodring, n. sp. (p. 204).
Type. Height (almost complete) 40 mm, diameter 28 mm. Locality 55b. Middle member of Caimito formation.
USNM 562573.
PLATE 28

FIGURE 1, 2, 7, 8. Bursa (Colubrellina) caelata amphitrites Maury (p. 207).
Middle part of Gatun formation.
1, 2. Height 29.6 mm, diameter 20 mm. Locality 157. USNM 562609.
7, 8. Height (almost complete, tip of siphonal canal broken) 45 mm, diameter 30 mm. Locality 155b. USNM 562608.

3–6. Potamides suprasulcatus (Gabb) (p. 176).
Culebra formation.
3, 5, 6. Height (incomplete) 30 mm, diameter (including varicose outer lip) 17 mm. Locality 104a. USNM 562574.
4. Height (incomplete) 21.8 mm, diameter (somewhat increased by crushing; including upper part of varicose outer lip) 14.3 mm. Locality 115b. USNM 562575.

9. Epitonium ("Depressiscala") eucteanum Woodring, n. sp. (p. 183).
Type. Height (incomplete) 28.3 mm, diameter (slightly increased by crushing) 7.8 mm. Locality 206b. Chagres sandstone. USNM 562637.

Locality 100a. Culebra formation. USNM 562576.
10. Height (practically complete) 7.2 mm, diameter 2.7 mm.
11. Height (not quite complete) 8 mm, diameter 3 mm.

12, 15. Cymia (Cymia) cheloma Woodring, n. sp. (p. 223).
Type. Height (almost complete) 76.7 mm, diameter (including spines) 51.5 mm. Locality 136. Lower part of Gatun formation. USNM 562590.

Height (incomplete) 20 mm, diameter 13.2 mm. Locality 155c. Middle part of Gatun formation. USNM 562618.
EARLY MIocene MOLLUSKS FROM CULEBRA FORMATION, MIDDLE MIocene MOLLUSKS FROM GATUN FORMATION AND EARLY PLIOCENE MOLLUSK FROM CHAGRES SANDSTONE
MIDDLE AND LATE MIocene MOLLUSKS FROM GATUN FORMATION AND EARLY PLIOCENE MOLLUSKS FROM CHAGRES SANDSTONE
PLATE 29

Figure 1-6, 10-12, 14-16. Architectonica (Architectonica) nobilis nobilis Röding (p. 165).

1-3. Height 19 mm, diameter 31 mm. Locality 175. Upper part of Gatun formation, eastern area, middle Miocene. USNM 562620.

4-6. Height 16 mm, diameter 31.3 mm. Locality 157. Middle part of Gatun formation, middle Miocene. USNM 562598.

10, 11, 16. Height 16.5 mm, diameter 36.5 mm. Locality 155b. Middle part of Gatun formation, middle Miocene. USNM 562597.

12, 14, 15. Height 18 mm, diameter 35.8 mm. Locality 183. Upper part of Gatun formation, western area, late Miocene. USNM 562629.

7, 8. Scalina weigandi (Böse) (p. 187).

Chagres sandstone.

7. Height (incomplete) 26.5 mm, diameter 14.5 mm. Locality 206a. USNM 562641.

8. Height (incomplete) 19.7 mm, diameter 14 mm. Locality 206. USNM 562642.

Height of coil 22 mm, greatest diameter of tube 6 mm. Locality 155b. Middle part of Gatun formation, middle Miocene. USNM 562596.

13. Serpulorbis papulosus (Guppy) (p. 161).

Length 16 mm, greatest diameter 8.8 mm. Locality 155e. Middle part of Gatun formation, middle Miocene. USNM 562595.
PLATE 30

Figure 1–3. *Architectonica (Architectonica) nobilis karsteni* Rutsch (p. 167).
Height 19 mm, diameter 37 mm. Locality 208. Chagres sandstone. USNM 562636.

4, 7, 8. *Helicac (Astronacus) stonemanae* (Maury) (p. 169).
Height 2.3 mm, diameter 4.2 mm. Locality 138. Lower part of Gatun formation. USNM 562592.

Height 2.5 mm, diameter 5 mm. Locality 177. Upper part of Gatun formation, eastern area. USNM 113858.

Type. Height 5.3 mm, diameter 9.5 mm. Locality 173. Upper part of Gatun formation, eastern area. USNM 562621.
MIDDLE MIocene MOLLUSks FROM GATUN FORMATION AND EARLY PLIOCENE MOLLUSk FROM CHAGRES SANDSTONE
MIDDLE AND LATE MIocene MOLLUSKS FROM GATUN FORMATION
PLATE 31

Figure 1. *Meioceras amblyoceras* Woodring, n. sp. (p. 163).
Type. Length 2.1 mm, diameter of aperture 0.5 mm. Locality 155a. Middle part of Gatun formation, middle Miocene. USNM 562591.

Height (not quite complete) 30 mm, diameter 16.8 mm. Locality 155. Middle part of Gatun formation, middle Miocene. USNM 562610.

3, 4. *Typhis (Talithyphus) aloitus obesus* Gabb (p. 221).
Height (not quite complete) 29.4 mm, diameter 22.3 mm. Locality 136. Lower part of Gatun formation, middle Miocene. USNM 562589.

6–10. *Cypraea (Muracypraea) henekeni* Sowerby (p. 194).
6–8. Locality 159b. Middle part of Gatun formation, middle Miocene. USNM 562603.
6, 7. Height 55.3 mm, lateral diameter 40.8 mm, dorsoventral diameter 29.3 mm.
8. Height (not quite complete) 48 mm, lateral diameter 39 mm, dorsoventral diameter 27.7 mm.
9, 10. Height 55.7 mm, lateral diameter 44 mm, dorsoventral diameter 32.5 mm. Locality 182a. Upper part of Gatun formation, western area, late Miocene. USNM 562633.
Figure 1, 4, 6, 9. *Cypraea (Muraepyraea) henekeni* Sowerby (p. 194).

Lower part of Gatun formation.

1, 4. Height (incomplete) 53 mm, lateral diameter 44 mm, dorsoventral diameter 31 mm. Locality 136a. USNM 562581.

6, 9. Height (not quite complete) 45.3 mm, lateral diameter 36.5 mm, dorsoventral diameter 24.5 mm. Locality 138a. USNM 562582.

Upper part of Gatun formation, eastern area.

2, 3. Height 9.5 mm, diameter 7.8 mm. Locality 176. USNM 562628.

5, 7. Height (practically complete) 20.6 mm, diameter 11 mm. Locality 175. USNM 562627.

8, 10. *Eocypraea (Apiocypraeae?) keenae* Woodring, n. sp. (p. 196).

Type. Height (not quite complete) 115 mm, lateral diameter (increased by dorsoventral crushing) 78 mm, dorsoventral diameter (diminished by dorsoventral crushing) 56 mm. Locality 155. Middle part of Gatun formation. USNM 562604.
MIDDLE MIocene MOLLUSKS FROM GATUN FORMATION
MIDDLE AND LATE MIocene MOLLUSKS FROM GATUN FORMATION
PLATE 33

Figure 1–4. *Malea camura* Guppy (p. 208).

1, 2. Height (slightly reduced by crushing) 105 mm, diameter (increased by crushing) 83 mm. Locality 159b. Middle part of Gatun formation, middle Miocene. USNM 562611.

3, 4. Height (incomplete) 75 mm, diameter 56 mm. Locality 182. Upper part of Gatun formation, western area, late Miocene. USNM 562634.
PLATE 34

Figure 1, 4-6. *Semicassis (Tylocassis) reclusa* (Guppy) (p. 200).

1, 4. Height (incomplete) 25.3 mm, diameter (incomplete) 23 mm. Locality 136a. Lower part of Gatun formation. USNM 562583.

5, 6. Height (incomplete) 34.5 mm, diameter (incomplete) 30 mm. Locality 147h. Middle part of Gatun formation. USNM 562605.

2, 3. *Sthenorytis pernobilis* (Fischer and Bernardi)? (p. 184).
 Height (incomplete) 31 mm, diameter 31.5 mm. Locality 186. Toro limestone member of Chagres sandstone. USNM 214346.

7, 10. *Distorsio (Rhysema) decussata gatunensis* Toula (p. 205).
 Height (almost complete) 50.5 mm, diameter 30.3 mm. Locality 155. Middle part of Gatun formation. USNM 562607.

8, 9. *Sconsia laevigata sublaevigata* (Guppy) (p. 201).
 Height (incomplete) 57 mm, diameter (modified by crushing) 37.5 mm. Locality 175. Upper part of Gatun formation, eastern area. USNM 562625.
MIDDLE MIocene MOLLUSKS FROM GATUN FORMATION AND EARLY Pliocene MOLLUSK FROM TORO LIMESTONE MEMBER OF CHAGRES SANDSTONE
MIDDLE MIocene MOLLUSKS FROM GATUN FORMATION
PLATE 35

FIGURE 1–4. Sconsia laevigata sublaevigata (Guppy) (p. 201).

1, 2. Height (incomplete) 43.8 mm, diameter (incomplete) 27 mm. Locality 173. Upper part of Gatun formation, eastern area. USNM 562624.

3, 4. Height 42 mm, diameter 26.5 mm. Locality 155b. Middle part of Gatun formation. USNM 562606.

5, 8. *Murex (Murex) recurvoirostris recurvoirostris* Broderip (p. 214).

Height (incomplete) 45.8 mm, diameter (including terminal varix and its broken shoulder spine) 27.5 mm. Locality 155. Middle part of Gatun formation. USNM 562612.

6, 7, 9, 10. *Paziella (Panamurex) yatunensis* (Brown and Pilsbry) (p. 217).

Middle part of Gatun formation.

6, 7. Height (incomplete) 35 mm, diameter (including terminal varix and its shoulder spine) 23 mm. Locality 155b. USNM 562616.

9, 10. Height 27 mm, diameter (including terminal varix and its shoulder spine) 14.7 mm. Locality 155c. USNM 562617.

Middle part of Gatun formation.

11, 13. Height (incomplete) 54.5 mm, diameter (including terminal varix and broken spine) 35.5 mm. Locality 155.

12. Height (incomplete) 25.3 mm, diameter (incomplete) 18.5 mm. Locality 155b.
Figure 1, 4. Cymatium (Septa) pileare henicum Woodring, n. subsp. (p. 204).
Type. Height (incomplete) 53.5 mm, diameter 28 mm.
Locality 136a. Lower part of Gatun formation, middle Miocene. USNM 562584.

Height (incomplete) 48.7 mm, diameter (including terminal varix and its shoulder spine) 29.7 mm. Locality 138a.
Lower part of Gatun formation, middle Miocene. USNM 562586.

5. Distorsio (Rhysema) decussata gatunensis Toula (p. 205).
Protoconch. Height 1.6 mm, diameter 2 mm. Locality 142. Middle part of Gatun formation, middle Miocene.
Locality 142. Stanford Univ.

6–9. Eupleura thompsoni Woodring, n. sp. (p. 218).
Locality 136a. Lower part of Gatun formation, middle Miocene.
6, 9. Type. Height (not quite complete) 45.7 mm, diameter (including last 2 varices) 29.5 mm.
7, 8. Height (almost complete) 40 mm, diameter (including last 2 varices) 24.3 mm.

10, 13. Ficus carbasea carbasea (Guppy) (p. 211).
Height (incomplete) 53 mm, diameter 34.5 mm. Locality 182. Upper part of Gatun formation, western area, late Miocene.
USNM 562635.

11, 12. Murex (Murex) recurvoirostris recurvoirostris Broderip (p. 214).
Height (not quite complete) 38.8 mm, diameter (including terminal varix and its broken shoulder spine) 21.3 mm.
Locality 157. Middle part of Gatun formation, middle Miocene.
MIDDLE AND LATE MIocene MOLLUSKS FROM GATUN FORMATION
MIDDLE MIocene MOLLUSK FROM Gatun FORMATION AND EARLY Pliocene MOLLUSKS FROM Chagres Sandstone AND ITS TOrO LImestone MEMBER
PLATE 37

Figure 1, 4, 5, 8. Sthenorytis toroensis euthynota Woodring, n. subsp. (p. 185).
 Locality 205. Chagres sandstone.
 1, 4. Type. Height (incomplete) 29.5 mm, diameter (incomplete) 24 mm. USNM 562639.
 5, 8. Paratype. Height (incomplete) 23.2 mm, diameter 20.6 mm. USNM 562640.

2, 3, 11, 12. Sthenorytis toroensis toroensis (Dall) (p. 184).
 Locality 186. Toro limestone member of Chagres sandstone. USNM 214345.
 2, 3. Type. Height (incomplete) 19.2 mm, diameter 17.3 mm.
 11, 12. Paratype. Height (not quite complete) 17.8 mm, diameter 14.3 mm.

 Height (incomplete) 54.5 mm, diameter (including terminal varix and its broken shoulder spine) 33.7 mm.
 Lower part of Gatun formation. USNM 562585.

 Height (incomplete) 7.5 mm, diameter 3.7 mm. Locality 206. Chagres sandstone. USNM 562638.

10, 13. Bathygalea (Miogalea) hadra Woodring and Olsson (p. 198).
 Type. Height 43.7 mm, diameter 33.6 mm. Locality 208. Chagres sandstone. USNM 562268.
PLATE 38

FIGURE 1, 2. *Rhinoclavis (Ochetoclava) costaricana canabina* Woodring, n. subsp. (p. 171).
 Type. Height (incomplete) 35.5 mm, diameter 11.5 mm. Locality 115b. Middle part of Gatun formation, middle Miocene. USNM 562599.

3-5. *Alabina asperoides canaliculata* (Gabb) (p. 180).
 3. Height 2.3 mm, diameter 0.8 mm. Locality 170a. Middle part of Gatun formation, middle Miocene. USNM 562619.
 4. Height 2.4 mm, diameter 1 mm. Locality 138a. Lower part of Gatun formation, middle Miocene. USNM 562594.
 5. Height 2.5 mm, diameter 1 mm. Locality 147b. Middle part of Gatun formation, middle Miocene. USNM 562601.

 Height (incomplete) 35 mm, diameter 16 mm. Locality 175. Upper part of Gatun formation, eastern area, middle Miocene. USNM 562623

7, 14. *Scalina* cf. *S. brunneopecta* (Dall) (p. 188).
 Height (incomplete) 14 mm, diameter 5.2 mm. Locality 179. Upper part of Gatun formation, western area, late Miocene. USNM 562631.

8, 9. *Alabina asperoides asperoides* (Gabb) (p. 180).
 Locality 138a. Lower part of Gatun formation, middle Miocene. USNM 562593.
 8. Height 1.8 mm, diameter 0.9 mm.
 9. Height 3.1 mm, diameter 1.1 mm.

 Height (incomplete) 29 mm, diameter (incomplete) 13 mm. Locality 153. Middle part of Gatun formation, middle Miocene. USNM 562588.

11. *Bittium pericallum* Woodring, n. sp. (p. 179).
 Type. Height 4.5 mm, diameter 1.3 mm. Locality 177c. Upper part of Gatun formation, eastern area, middle Miocene. USNM 562622.

 Height 4 mm, diameter 1.4 mm. Locality 155c. Middle part of Gatun formation, middle Miocene. USNM 562600.

 12. Height 2.5 mm, diameter 1 mm.
 15. Height (incomplete) 3.7 mm, diameter 2 mm.

15, 19, 20, 23. *Strombus gatunensis* Toula (p. 189).
 15, 19. Height (incomplete) 47.3 mm, diameter 32.3 mm. Locality 155. Middle part of Gatun formation, middle Miocene. USNM 562592.
 20, 23. Height (not quite complete) 59.5 mm, diameter 37.5 mm. Locality 182a. Upper part of Gatun formation, western area, late Miocene. USNM 562632.

 Height 3.0 mm, diameter 2 mm. Locality 147g. Middle part of Gatun formation, middle Miocene. USNM 562579.

 Height (incomplete) 4.6 mm, diameter 2.3 mm. Locality 183. Upper part of Gatun formation, western area, late Miocene. USNM 562630.
MIDDLE AND LATE MIOCENE MOLLUSKS FROM GATUN FORMATION