Geology of Part of the Horseshoe Atoll in Scurry and Kent Counties, Texas

GEOLOGICAL SURVEY PROFESSIONAL PAPER 315-A

Prepared in cooperation with the Bureau of Economic Geology
The University of Texas
Geology of Part of the Horseshoe Atoll in Scurry and Kent Counties, Texas

By PHILIP T. STAFFORD

PENNYSYLVANIAN AND LOWER PERMIAN ROCKS OF PARTS OF WEST AND CENTRAL TEXAS

GEOLOGICAL SURVEY PROFESSIONAL PAPER 315-A

Prepared in cooperation with the Bureau of Economic Geology
The University of Texas

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959
CONTENTS

Abstract .. 1
Introduction .. 1
Acknowledgments .. 3
Methods of study .. 3
Stratigraphy .. 5
 Regional stratigraphic relationships 5
 Stratigraphy of rocks below the atoll 5
 Stratigraphy of rocks in the atoll 5
 Stratigraphy of rocks above the atoll 8
Characteristics of the reef rock 9
 Lithologic components 9
 Chemical composition .. 9
 Porosity and permeability 10
Zonation of the atoll .. 10
Paleontology .. 10
 Age of the atoll ... 10
 Faunal associations .. 11

Structure ... 11
Geologic history .. 12
Applicability of reef definition to the Horseshoe atoll ... 12
Reef growth and sedimentation 14
Development of the Horseshoe atoll 15
Oil and gas .. 15
History of development 15
Reservoirs .. 16
Source of the oil ... 16
Economic aspects of porosity zonation 17
Literature cited .. 17
Index .. 19

ILLUSTRATIONS

[Plates 1, 2, and 4-9 are in pocket]

PLATE 1. Map showing contours on the top of the Horseshoe atoll in parts of Scurry, Kent, Borden, and Garza Counties, Tex.
2. Map showing contours on the top of rocks of Strawn age and thicknesses of rocks of Bend and Strawn age in parts of Scurry, Kent, Borden, and Garza Counties, Tex.
3. Photographs of a core from the Horseshoe atoll in Scurry County, illustrating calcilutite, calcarenite, and calcirudite.
4. Correlation of data from Chapman & McFarlin Producing Co.'s No. 25 (Cogdell) well in Kent County, showing radioactivity log, microlog, porosity, insoluble residue, lithologic character, and age.
5. Map showing areas of oil production, index to wells, and lines of cross sections in parts of Scurry, Kent, Borden, and Garza Counties, Tex.
6. Cross sections showing porous zones and stratigraphic relationships of the reef complex in Scurry County.
7. Map showing contours on top of limestone of the Mississippian (?) system and the thickness of limestone assigned to the Pennsylvanian and lower part of the Permian system in parts of Scurry, Kent, Borden, and Garza Counties, Tex.
8. Map showing contours on top of rocks of Canyon age in parts of Scurry, Kent, Borden, and Garza Counties, Tex.
9. Map showing contours on top of rocks approximately equivalent in age to the Coleman Junction limestone member of the Putnam formation in parts of Scurry, Kent, Borden, and Garza Counties, Tex.

FIGURE 1. Index map of part of western Texas, showing the area of this report and the location of major geologic features...... 2
2. Quantitative evaluation of microlog classifications in terms of effective porosities .. 4
3. Quantitative evaluation of microlog classifications in terms of permeabilities ... 4
4. Cross section showing stratigraphic relationships of rocks of the Ordovician, Mississippian (?), Pennsylvanian, and Permian rocks ... 7
5. Composite electrical and lithologic log from Scurry and Kent Counties, showing Ordovician, Mississippian (?), Pennsylvanian, and Permian rocks ... 8

TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Quantitative comparison of microlog classifications with laboratory analyses of effective porosity and permeability</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Correlation chart of Mississippian (?), Pennsylvanian, and Permian rocks in Scurry and Kent Counties</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Oil production from reef limestone ..</td>
<td>16</td>
</tr>
<tr>
<td>4.</td>
<td>Oil production from nonreef rocks of Wolfcamp age ...</td>
<td>16</td>
</tr>
</tbody>
</table>

III
ABSTRACT

The subsurface Horseshoe atoll is an arcuate accumulation of fossiliferous limestone 70 to 90 miles across in the northern part of the Midland basin, in western Texas. The stratigraphy, the lithologic character of the rocks, and the petroleum reservoirs of the southeastern part of the atoll in Scurry County and parts of adjacent counties are described herein.

Rocks of Strawn, Canyon, and Cisco ages, belonging to the Pennsylvanian system, and rocks of Wolfcamp age, belonging to the Permian system, form the Horseshoe atoll. Reworking of these rocks at several times during the growth of the atoll has resulted in the formation of large amounts of limestone breccia, in the mixing of the fusulinid faunas used to date the rocks, and in the complex age relations between rocks in different parts of the atoll. Thin beds of shale within this limestone mass are the only lithologic units that can be correlated for any appreciable distance in the atoll, but studies of micrologs from wells penetrating the atoll have revealed many zones of low porosity that can be correlated with reasonable certainty over much of the area described in this report.

The atoll rests on a platform of bedded limestone and shale, which has been designated as equivalent in age to the Bend and Strawn groups of the Pennsylvanian system. It is covered mainly by shale, which has been designated as equivalent in age to the Wolfcamp series of the Permian system and is partly equivalent in age to the youngest rocks within the atoll.

Reworking of the rocks, the complex distribution of rocks of different ages, the presence of thin beds of shale, and the stratification of porosity in the atoll suggest that this structure has many of the characteristics of a reef. Its growth in the Midland basin was apparently cyclic and may have been related to changes of sea level during the Late Pennsylvanian and early Permian periods.

Oil is contained in porous zones within the atoll, mainly in reservoirs in hills along the crest of the structure where the overlying shale formed an impervious cap, but some is found in the lower part of the limestone mass where the reasons for the oil traps are not as apparent. The source of the oil was probably the shale of Wolfcamp age that surrounds the atoll.

INTRODUCTION

The Horseshoe atoll, which has been identified and described by Adams and others (1951), Heck and others (1952), and Anderson (1953), is a subsurface accumulation of limestone in the northern part of the Midland basin in western Texas (fig. 1). The atoll has an east-to-west diameter of about 90 miles and a north-to-south diameter of about 70 miles. This report describes the part of the atoll and its lagoon-like area that lies in Scurry and southern Kent Counties and in adjacent parts of Borden and Garza Counties.

The arcuate mass of fossiliferous limestone of Pennsylvanian and Permian ages that constitutes the Horseshoe atoll is very irregular in shape. Its surface contains buried hills, depressions, and irregular reentrants, and its flanks slope gently away from the crest on both sides. The area covered by this report includes the highest part of the atoll, the top of which is 3,738 to 5,900 feet below sea level and about 6,150 to 7,900 feet below the ground surface (pl. 1).

The terms "atoll" and "reef" have generally been applied to this subsurface accumulation of limestone, although as noted by Heck and others (1952, p. 5) the limestone does not contain large amounts of readily recognizable frame-building reef organisms. Evidence indicates that this limestone feature may have had most of the characteristics of a reef during the time of its growth, and therefore the use of the terms "atoll" and "reef" is appropriate.

This report is the result of geologic investigations made during the period from 1950 to 1953 by the U. S. Geological Survey in cooperation with the Bureau of Economic Geology of The University of Texas, as part of a regional study of the Horseshoe atoll. It summarizes the available information on the thickness, age, and characteristics of the rocks in and near the southeastern part of this limestone mass and information on the distribution of petroleum in the atoll. The report incorporates the results of studies made by Heck and others (1952), Rothrock (1952), Bergenback and Ter-
Figure 1.—Index map of part of western Texas showing the area of this report and the location of major geologic features.
riere (1953), and Rothrock and others (1953), which have dealt with some aspects of the geology of the atoll in Scurry County. It includes new information and interpretations based on additional studies of the data used for previous reports and new data acquired after the earlier reports were prepared for publication. The new information on porous zones in the atoll may be helpful in oil-recovery operations, and the new interpretations on the growth of this structure may aid in developing concepts of environmental conditions in the Midland basin during the Pennsylvanian period.

Inasmuch as the Horseshoe atoll is entirely a subsurface feature, the information and interpretations contained in this report are based entirely on the study of cores, well cuttings, radioactivity logs, and electrical logs. Detailed megascopic and petrographic descriptions were made from cores of 79 wells in the mapped area. Where cores were not available, sample logs from wells drilled by rotary methods were used to obtain lithologic data. About 2,750 electrical and radioactivity logs were studied to determine the lithologic characteristics of the atoll and the surrounding rocks and to extend the correlations of rock units into areas in which cores or samples were not available. Age determinations were based on the study of fusulinids in cores from 52 wells in the area. This report incorporates subsurface information available before August 1, 1953.

ACKNOWLEDGMENTS

This investigation was made possible by the cooperation of many organizations and individuals. Cores of wells penetrating the atoll were contributed by the following companies: Chapman & McFarlin Producing Co., Cities Service Oil Co., General Crude Oil Co., Hiawatha Oil Co., Lone Star Producing Co., Montex Drilling Co., Ohio Oil Co., Pan-American Producing Co., Phillips Petroleum Co., Slick-Moorman Oil Co., Standard Oil Co. of Texas, Stanolind Oil and Gas Co., Sun Oil Co., Sunray Oil Corp., Tidewater Oil Co., and Wilshire Oil Co.

R. V. Hollingsworth, of the Paleontological Laboratory at Midland, Tex., furnished fusulinid determinations and other data from wells in this area from which cores were not available. Without much of this data many details of the stratigraphy and geologic history could not have been worked out. Donald A. Myers and Keith A. Yenne, of the U. S. Geological Survey, identified the fusulinids from cores. The Bureau of Economic Geology of The University of Texas, John T. Lonsdale, director, provided financial assistance and laboratory space for this investigation.

METHODS OF STUDY

Initial studies of the Horseshoe atoll in Scurry County made use of standard techniques and methods of subsurface investigation. Conventional electrical and radioactivity logs, representing about 99 percent of the bore holes, were studied and correlated. For a discussion of the electrical log, see Stratton and Ford, 1950; for a discussion of the radioactivity log, see Mercier, 1950. Cores were studied both megascopically and with a microscope. Fusulinids were collected and age determinations were made. The data obtained from these studies were compiled and analyzed in an attempt to find answers to the problems of how the reef grew and why the oil is present within the atoll. This work indicated that there were no diagnostic lithologic or stratigraphic features that could be correlated over large parts of the atoll and used to reconstruct the geologic history.

The microlog, which is a resistivity curve developed primarily to determine relative permeability, was then studied to determine if it could be used to show zonation of porosity or permeability. (For a discussion of the microlog, see Doll, 1950.) An evaluation of the micrologs of wells penetrating the atoll was made by comparing them with quantitative analyses for permeability and effective porosity. These analyses, available for cores from 53 wells, confirmed the usefulness of the interpretations of the micrologs and furnished semi-quantitative values for the microlog permeability classifications. The core analyses for permeability and porosity were compared with permeability classifications for corresponding intervals designated on the micrologs by the categories "good," "fair," or "broken" permeability, or with the impervious rock. The comparisons were tabulated according to both millidarcys of permeability and percentages of effective porosity. Cumulative curves were prepared to show the ranges in value of the permeability and porosity for each of the microlog classifications (fig. 2 and 3).

The comparison of the microlog permeability classifications with laboratory analyses of the effective porosity of corresponding cores showed that although each microlog classification includes a wide range of actual porosity values, most of the comparisons give actual values consistent with the terminology of the microlog categories. Thus, 89 percent of the cores of reef limestone classed as "good" on the micrologs showed effective porosity of 4 to 30 percent; whereas only 11 percent showed effective porosity of less than 4 percent. The average effective porosity of all rocks classed as "good" was 10.5 percent. In contrast to these values, 86 percent of the cores classed as "fair" and 70 percent...
of the cores classed as "broken", showed effective porosities ranging from 0 to 4 percent. The average effective porosities for these categories were 3.2 and 3.8 percent, respectively. In the impervious category 84 percent of the comparisons showed effective porosities ranging from 0 to 4 percent, and the remaining 16 percent of the comparisons ranged from 4 to 17 percent.

Comparison of the microlog categories with analyses of permeability indicates similar but less definitive results. The cumulative curves in figure 3 show that 70 percent of the rock having a microlog classification of "good" had greater than 1 millidarcy of permeability, whereas only 2 percent of the rock classed as "fair", 35 percent classed as "broken", and 23 percent classed as impervious have greater than 1 millidarcy. The difference is more marked when the high permeabilities known to be the result of cracks and fractures are eliminated, as shown in table 1.

In most wells, however, these variables were of sufficient constancy so that a range of porosity values for each microlog classification could be established. The cross sections in plate 6 show correlations of porosity data taken from micrologs. The porous limestone shown on the cross sections may generally be considered to have porosity of 4.5 percent or greater.

In most wells, however, these variables were of sufficient constancy so that a range of porosity values for each microlog classification could be established. The cross sections in plate 6 show correlations of porosity data taken from micrologs. The porous limestone shown on the cross sections may generally be considered to have porosity of 4.5 percent or greater.
Micrologs were available for approximately four-fifths of the bore holes and radioactivity logs for approximately one-fourth of the holes. The porosity indicated by the radioactivity logs was computed by methods described by Bush (1950) and Bush and Mar dock (1951). Only very slight differences in the exact position of the porous zones were found when both micrologs and radioactivity logs were available for the same bore hole.

The data obtained from study of the micrologs, radioactivity logs, fusulinids, and the lithologic character of the samples were plotted and correlated. Cross sections showing porous zones in the atoll and structure contour and thickness maps were then prepared. The correlations made possible by this technique were the only ones that gave consistent and reliable results.

STRATIGRAPHY

REGIONAL STRATIGRAPHIC RELATIONSHIPS

The Midland basin, which contains the Horseshoe atoll, is bounded on the west by the Central basin platform, on the north by the Matador arch, and on the east by the so-called Eastern platform (fig. 1). The Midland basin contains a relatively thin sequence of rocks assigned to the Pennsylvanian system and a relatively thick sequence of rocks designated as equivalent in age to the Wolfcamp series of the Permian system, as compared with the so-called Eastern platform. In most of the Midland basin, the rocks belonging to the Pennsylvanian system consist of nonfossiliferous shale and siltstone, and those equivalent to the Wolfcamp series of the Permian system consist of shale, sandstone, and fossiliferous limestone. On the Eastern platform the rocks belonging to both systems contain an abundance of fossils and consist of sandstone, shale, and limestone.

The Horseshoe atoll is an accumulation mainly of fossiliferous limestone belonging to the Pennsylvanian and Permian systems in the northern part of the Midland basin. This limestone has been assigned to the Strawn, Canyon, and Cisco age units of the Pennsylvanian system and to the Wolfcamp age unit of the Permian system by Heck and others (1952), and by Rothrock and others (1953). The dominantly carbonate rocks in the atoll have an aggregate thickness of more than 1,500 feet in central Scurry County, on the east side of the atoll, and 3,000 feet in Dawson County, on the south side, as much as 15 times the aggregate thickness of the dominantly noncarbonate rocks of the same ages in adjacent parts of the Midland basin.

Correlation of the Pennsylvanian and Permian rocks in Scurry and southern Kent Counties with those of other areas is given in table 2.

STRATIGRAPHY OF ROCKS BELOW THE ATOLL

Sedimentary rocks underlying the atoll in the area included in this report have been assigned to the Ordovician, Mississippian, and Pennsylvanian systems by geologists of the petroleum industry.

The oldest sedimentary rock underlying this part of the atoll is dolomite belonging to the Ellenburger group, which has been assigned to the Ordovician system (fig. 4). This rock is overlain unconformably by limestone having a maximum thickness of 225 feet. This limestone has tentatively been assigned to the Mississippian system, but inasmuch as conclusive evidence of its age is not available, it is designated in this report as Mississippian(?). Examination of rotary well cuttings shows that this rock is mostly light-gray to light-brown finely crystalline to medium-crystalline limestone containing large amounts of chert; in part it is argillaceous and glauconitic. It is generally overlain unconformably by Pennsylvanian rocks of Bend and of Strawn age. In some places where rocks of Bend age may be absent, rocks of Strawn age may lie on the Mississippian(?).

Rocks below the atoll belonging to the Pennsylvanian system have a maximum thickness of about 150 feet in this area. Rocks of Bend age consist of bedded limestone and shale as much as 80 feet thick. These rocks are not everywhere present; they appear to remnants of a once thicker and more widespread unit. Where present, they lie unconformably on rocks of the Mississippian(?) system. Lateral correlation of these rocks of Bend age is difficult because of wide spacing of bore holes penetrating the beds and because of their similarity to overlying rocks of Strawn age. Rocks of Strawn age below the atoll consist mainly of bedded limestone, but also include many thin beds of shale. This limestone ranges from 40 to 100 feet in thickness. In Scurry County and adjacent areas the bedded limestone grades upward into the reef limestone of the atoll.

STRATIGRAPHY OF ROCKS IN THE ATOLL

The rocks in the Horseshoe atoll belong to the Pennsylvanian and Permian systems, and reach a maximum thickness of approximately 1,700 feet in the area covered by this report. Most of the atoll consists of limestone, but a few thin beds of shale are present. In this paper the term "reef complex" (Henson, 1950, p. 215-216; Newell and others, 1953, p. 48) is used to refer to the entire limestone-shale mass (the Horseshoe atoll), including all detrital limestones and genetically related rocks. The term does not refer to the bedded limestone and shale of Bend and early Strawn age underlying the atoll.
TABLE 2.—Correlation chart of Mississippian(?), Pennsylvanian, and Permian rocks in Scurry and Kent Counties, Tex.
[Correlation of this area with other areas is based mainly on paleontological (fusilinid) data]

<table>
<thead>
<tr>
<th>System</th>
<th>Horseshoe aroll area (this report)</th>
<th>North-central Texas</th>
<th>Ardmore basin, southern Oklahoma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rock type</td>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Permian</td>
<td>Bedded carbonate and terrigenous rocks</td>
<td>Leonard series</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wolfcamp series</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reef complex (mainly nonbedded limestone)</td>
<td>Cisco series</td>
<td>Virgil series</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canyon series</td>
<td>Missouri series</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strawn series</td>
<td>Des Moines series</td>
</tr>
<tr>
<td></td>
<td>Bedded limestone</td>
<td>Lampasas series</td>
<td>Lampasas series</td>
</tr>
<tr>
<td></td>
<td>Limestone and shale</td>
<td>Bend group</td>
<td>Bend group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Morrow series</td>
<td>Morrow series</td>
</tr>
<tr>
<td>Mississippian</td>
<td>Limestone</td>
<td>Mississippian(?) system</td>
<td>Mississippian system</td>
</tr>
</tbody>
</table>

1 Tentatively assigned to the Mississippian system by geologists of the petroleum industry, although conclusive evidence of its age is not available.
FIGURE 4.—Cross section A-A' showing stratigraphic relationships of rocks of the Ordovician, Mississippian(?), Pennsylvanian, and Permian systems in Scurry County, Tex.
The rocks of the atoll are considered to be equivalent in age to the Strawn, Canyon, and Cisco groups of the Pennsylvanian and to the Wolfcamp of the Permian (see table 2). Ages of different parts of the reef complex have been determined by study of the Fusulinidae, but the age relationships are complex and the rocks are difficult to correlate because fossils from older parts of the limestone mass have been reworked and incorporated into younger parts of the atoll. For example, fragments of reef limestone that contain fusulinids of Canyon age are too often found in carbonate matrices that contain fusulinids of Cisco age. Careful study of cores of limestone breccia believed to be of Cisco age shows that fusulinids of Canyon age are present only in the fragments, whereas fusulinids of Cisco age are found only in the matrix.

Fragmental debris eroded from higher and older parts of the atoll has accumulated on both flanks of this structure and has been scattered laterally for many miles from the crest of the atoll and locally incorporated into shale of Wolfcamp age adjacent to the atoll. The mixture of older and younger fusulinid faunas has resulted in difficult problems of correlation and age determination of rocks on the flanks of the reef.

Rocks of Strawn age in the atoll have a maximum thickness of 750 feet. The combined thicknesses of these rocks and rocks of Bend and Strawn age underlying the atoll are shown in plate 2. Reef rocks of Canyon age lie unconformably on rocks of Strawn age, and have a maximum thickness of 750 feet. Rocks of Cisco age in the atoll, which lie unconformably on rocks of Canyon age, are locally as much as 500 feet thick, but in many places in the atoll no reef limestone of Cisco age is present. Reef rocks of Wolfcamp age, which reach a maximum thickness of 85 feet in this area, are probably present only in a few isolated places, as indicated by the stratigraphic relations based on fusulinids and other data used for correlation and dating of the atoll.

STRATIGRAPHY OF ROCKS ABOVE THE ATOLL

Most of the rocks immediately surrounding and overlying the Horseshoe atoll are equivalent to the Wolfcamp series of the Permian system. In the eastern part of the area, however, seaward from the atoll, a few hundred feet of shale may be of Cisco age.

The rocks of Wolfcamp age overlying the atoll reach a maximum thickness of more than 3,350 feet. The lower 1,500 feet or less of these rocks consists of shale, siltstone, sandstone, and limestone (fig. 5), whereas the upper part consists entirely of limestone and shale. Lithologic units in the lower 1,500 feet of rocks of

FIGURE 5.—Composite electrical and lithologic log from Scurry and Kent Counties, Tex., showing Ordovician, Mississippian(?), Pennsylvanian, and Permian rocks.
Wolfcamp age are not persistent, and because of the general lithologic characteristics, apparent primary structural features, and general stratigraphic relationships, it seems likely that these rocks were deposited as deltaic sediments. Lithologic units in the upper part are laterally more uniform in thickness and lithology and can be traced throughout the mapped area. The age of the rocks equivalent to the upper part of the Wolfcamp has been assigned by paleontologists on the basis of fusulinid determinations.

Rocks overlying the upper part of the rocks of Wolfcamp age consist of dolomite, limestone, and shale. These rocks have been designated as equivalent to the Leonard series of the Permian system on the basis of fusulinid determinations.

CHARACTERISTICS OF THE REEF ROCK
LITHOLOGIC COMPONENTS

The limestone of the Horseshoe atoll is composed of organic debris bonded by crystalline calcite and by lithified carbonate mud (Rothrock and others, 1953). The organic debris consists of the hard parts of marine animals, most of which have been broken and ground into fragments ranging in size from a few millimeters to submicroscopic particles. These lithified aggregates are classified according to grain size into three types after Grabau, as described by Pettijohn (1949, p. 300-307): calcilutite (limestone composed of particles of clay size), calcarenite (limestone composed of particles of sand size), and calcirudite (limestone composed of particles greater than sand size). Typical specimens of these three lithologic types are shown in plate 3.

The calcilutite consists mainly of submicroscopic particles but commonly contains some coarser unsorted organic debris. Some of the fine material is pulverized organic debris, some may be chemically precipitated ooze, some or most of it may have been precipitated by blue-green algae. Approximately one-third of the core examined consists of calcilutite.

The calcarenite is composed mainly of well-rounded to angular fragments 1/16 mm to 2 mm in diameter. Fragments of reef limestone larger than 2 mm, oolites, and pisolites are present in small amounts. The calcarenite grades into calcilutite and calcirudite. It makes up about one-half of the core examined.

The calcirudite is composed of angular fragments larger than 2 mm in diameter in a matrix of lime sand or lime mud. The matrix commonly contains admixed argillaceous material, and in a few places is composed almost entirely of shale. The calcirudite consists of two main types: organic fragments and fragments of older reef limestone. The finer grained calcirudite is usually composed of both organic and older reef limestone fragments in approximately equal amounts; the coarser-grained calcirudite usually contains more reef fragments than organic fragments. Fragments of reef limestone in most calcirudite are angular and undoubtedly were lithified before breakage and redeposition. Calcirudite is the least common but most distinctive of the three textural varieties of limestone. It is present in about one-sixth of the total footage of core examined.

Sorting and clearly-defined bedding planes are almost everywhere poor to lacking in the limestone. None of the calcarenite or calcilutite in the cores could be definitely traced from well to well; the calcirudite could be traced only when fusulinid and microlog determinations were made. These formal and physical characteristics are discussed in the section on zonation of the atoll.

The shale of the reef complex is dark gray to black because of a high percentage of bituminous material. Locally unsorted carbonate debris and concentrations of pyrite are common. The shale is present as tongues that project into the limestone from the shale surrounding the atoll, as thin lenses and beds which can generally be traced over widespread areas within the body of the atoll, and as stringers from a few millimeters to a few centimeters thick which cannot be traced from well to well. The thin lenses of shale within the body of the reef complex are always present in certain fairly well defined zones, which are discussed in the part of the text on zonation.

A comprehensive description of the lithology of the reef complex has been presented by Bergenbäck and Terriere (1953).

CHEMICAL COMPOSITION

Chemical analyses of cores from the atoll show that except for argillaceous limestone in certain well-defined zones, the limestone is almost pure calcium carbonate (pls. 4 and 5, well 1).

An average of 2.05 percent of insoluble residue is shown by 135 analyses of core taken from Chapman & McFarlin Producing Company's No. 25 Cogdell well in the reef complex. An average of considerably less than 1 percent of insoluble residue, however, is present in the more porous zones of the reef, as most of the analyses containing over 2 percent of insoluble material are in zones of relatively low porosity. These zones of relatively low porosity have time significance when correlated with paleontological data. Thus, it appears that the high amount of insoluble residue in the less porous of these zones was the result of an in-
crease in terrigenous material coming into this area during certain times.

POROSITY AND PERMEABILITY

The effective porosity of the reef limestone, determined by core analyses, generally ranges from almost zero to 30 percent, and averages about 6 percent when viewed megascopically. Openings in cores of the limestone appear to range in size from tiny openings of pinpoint size to vugs 5 cm in diameter, but most of the openings are smaller than 3 mm in diameter.

Originally, the clastic limestone in the atoll was probably very porous. It is probable that most of the primary interstitial pore space was subsequently filled with calcium carbonate cement. Eventually, leaching formed the secondary porosity now present in the limestone. Only a relatively insignificant amount of primary porosity exists in the reef limestone, such as that found in the hollow interiors of some shells.

The permeability of the reef limestone, as determined by laboratory analyses, generally ranges from a few hundredths to 85 millidarcys with an average of about 4.5 millidarcys (measured horizontally to air). Permeability measured vertically to air has a range of values that is considerably less. This average and range of values does not include those relatively high permeabilities which are known to have been caused by open cracks, fractures, and joints in the limestone.

ZONATION OF THE ATOLL

Rothrock and others (1953) in a discussion of the zonal arrangement of the reef complex in Scurry County presented a map showing contours on the top and the base of an "intermediate zone." This "intermediate zone" was based on differences in lithologic character and effective porosity of the reef limestone. The zone as presented in that publication was a reasonable interpretation on the basis of the data which were then available and the criteria that were used. Additional data and detailed study have indicated, however, that as many as three distinct zones of low porosity were included as part of the "intermediate zone," and that the relationships of this zone to the standard geologic time units were not entirely correct. In the following discussion, therefore, some revisions of the zonation of the reef complex have been made.

Two distinct types of zones appear to be present in the reef complex: zones consisting of relatively large amounts of rocks having low porosity and zones consisting of relatively large amounts of rocks having high porosity. Both types of zones, as shown in cross sections B-B' through E-E' (pl. 6), are based on porosity determinations from micrologs and neutron curves, the stratigraphic distribution of shale and calcirudite, and age determinations. The utility of the microlog as an indicator of semiquantitative porosity values of the reef limestone has been previously discussed in the section on methods of study.

Zones of low porosity consist mainly of reef limestone of low effective porosity (less than 4.5 percent). Study of cores and insoluble residues indicates that zones of this type contain one or more thin beds of shale and more argillaceous material than the zones of high porosity. Calcirudite consisting of older reef fragments makes up as much as 60 percent of the rock.

Zones of high porosity consist mainly of reef limestone of high effective porosity (greater than 4.5 percent). They contain neither calcirudite made of older reef fragments nor beds of shale; they have a relatively small amount of insoluble residue (usually less than 1 percent).

Faunal horizons which are plotted relative to the porosity zones show that these zones of low porosity and high porosity are definitely related to the standard units of the Pennsylvanian and Permian(?) systems. The cross sections B-B' through E-E' (pl. 6) show the relationships of effective porosity to thin beds of shale and to age. Evidence indicates that rocks containing fusulinids typical of the Canyon group have two zones of low porosity and two of high porosity, that rocks containing fusulinids typical of the Cisco group have two zones of low porosity and one zone of high porosity, and that rocks containing fusulinids typical of the Wolfcamp series have but one zone of low porosity.

Some zones can be traced throughout the area covered by this report; others have limited distribution, either having been eroded in places or never deposited. The difference in these low-porosity and high-porosity zones is the result of a varied and complex geologic history which is discussed in the section on history of the reef complex. Economic aspects of the zonation are covered in the section on oil and gas.

PALEONTOLOGY

AGE OF THE ATOLL

The presence of several species of fusulinids belonging to the genus Fusulina indicates that much of the reef limestone is of Strawn age. Reef limestone of Canyon age is indicated by the presence of Triticites cf. T. irregularis (Schellwein and Staff) and other species of Triticites which are typical of the Canyon group in outcropping rocks of north-central Texas. Fusulinids of Cisco age are represented by forms which belong to the group of Triticites ventricosus (Meek and...
May have been overlooked in the methods of study that core footage. Productidae, Athyridae, and Rhynchofiner grained parts of the reef limestone. Foraminifera other than fusulinids were resemble commonest, although encrusting and ramose types are present. Bryozoa were found in the wayland shale member of the Graham formation in north-central Texas. Fusulinids of Wolfcamp age were found in cores from several wells. The diagnostic fusulinid Schwaegerina sp. (now known as Pseudofusulina sp.), was reported (Heck, Yenne, and Henbest, 1952) from the Wilshire Oil Co.'s No. 8 Lunsford well (pl. 5, well 43). As previously stated, age determinations of parts of the atoll containing large amounts of calcirudite have been complicated by the presence of reworked fusulinid faunas.

FAUNAL ASSOCIATIONS

The faunal associations and ecology of the reef were determined from a megascopic study of cores from 78 wells. The major faunal groups in the atoll are echinoderms, foraminifers, brachiopods, bryozoans, coelenterates, and mollusks. The commonest group is the Echinodermata, which were noted in about 80 percent of the core footage. The echinoderms are represented by abundant crinoid columnals, by a few crinoidal calyx plates and arm segments, and by echinoid spines. Fusulinids were observed in about 75 percent of the core footage. Foraminifera other than Fusulinids were noted in about 10 percent of the footage. This figure is probably low as many of the smaller Foraminifera may have been overlooked in the methods of study that were employed. Numerous small, irregular tubelike bodies resembling Calcitornella have been found in the finer grained parts of the reef limestone.

Brachiopods were noted in about 50 percent of the core footage. Productidae, Athyridae, and Rhynchospirinidae are common. Discinoid brachiopods are fairly common in the argillaceous beds in the atoll, but have not been noted elsewhere. Bryozoans were found in about 25 percent of the core footage. The large amount of bryozoan debris observed in thin sections suggests that they were probably more numerous than megascopic descriptions indicate. Fenestellid bryozoans are commonest, although encrusting and ramose types are present.

Coelenterates are of minor importance in the atoll, although they were found in about 10 percent of the core footage. They are represented by tetracorals that resemble Lophophyllidium and colonial corals that resemble Chaetetes.

Mollusca were observed in about 10 percent of the core footage. Gastropods are the most common and have a random distribution. Ammonoids are most common in the shale and argillaceous limestone, but they are present also in the purer limestone. Pelecypods, represented by the Pectinacea, generally are present in the shale.

Other faunal groups were observed in less than 1 percent of the core footage. These groups consist of the arthropods, represented by ostracodes and very rarely by trilobite fragments; vertebrates, represented by fish scales; Porifera, represented by sponge spicules; and conodonts.

Algae may have been present, but only a few identifiable traces have been observed. Bergenback and Tereire (1953, p. 1017) state that no evidence of algae was found in the reef in Scurry County. However, re-evaluation of the organic content of the core which they studied suggests that some of the calcareous material may be of algal origin. Elliot and Kim (1952) in a study of core from a well in Terry County, Tex., indicated algae as being the most abundant of all the organisms present in the reef complex.

STRUCTURE

The sedimentary rocks underlying the atoll in this area have a general west-southwest dip averaging about 30 feet per mile. This tilting is best portrayed by the upper surface of rocks assigned to the Mississippian (?) system (pl. 7). Structural relations of the rocks throughout the northern part of the Midland basin suggest that the time of most of the tilting was post-Paleozoic.

The structure of the rocks of the atoll is obscured by the complex distribution of rock types, resulting mainly from nontectonic processes. The progressive development of the atoll, as shown by contours on the tops of rocks of the Strawn age (pl. 2) and Canyon age (pl. 8), and on the top of the atoll (pl. 1), is mainly a result of the interaction of deposition and erosion. Each of the structure-contour maps shows a similar type of irregular surface, upon which younger sediments were deposited. A general west-southwest tilting has been superimposed upon these surfaces. The thin beds of shale within the atoll, some of which have wide lateral extent, reveal little deformation except for the effects of differential compaction and regional tilting.

The contours on the top of rocks overlying the atoll (pl. 9) show the effects of differential compaction and regional tilting of the post-reef rocks. The top of the late Mississippian post-reef limestones is approximately equivalent in age to the Coleman Junction limestone member of the Putnam formation. The selection for contouring was made because it is the oldest post-
of compaction are subordinated to the effects of initial
dip steeply in a westerly direction and there the effects
of compaction are subordinated to the effects of initial dip and westward tilting.

Anticlinal structures in the beds of sandstone and
limestone, which are stratigraphically between the reef complex and the Coleman Junction limestone member, were formed by differential compaction over the Hor­

The reef bed that can be traced throughout the mapped area. In the southwestern part of the area this bed dips steeply in a westerly direction and there the effects of compaction are subordinated to the effects of initial dip and westward tilting.

Structures of the rocks which are exposed at the surface do not reflect the topography of the buried atoll. Some structures in rocks of post-Wolfcamp (Permian) age in the subsurface, however, may have been partly formed by differential compaction over the Horse­

The Horseshoe atoll was most likely a rigid wave­

A rigid structure—composed of the calcareous skeletons of: 1) colonial and commensal animals or plants, whether algae, corals, stromatoporoids, mollusks, bryozoans, or others, inter­

MacNeil (1954) defines an organic reef as—

1) colonial and commensal animals or plants, whether algae, corals, stromatoporoids, mollusks, bryozoans, or others, interlocked or cemented together by growth; 2) all detrital mate­

Bioherm is restricted by MacNeil (1954, p. 390) to those structures which are essentially growth lattices, ancient or modern.

MacNeil (1954, p. 390) defines an organic reef as—

... a reef formed by living organisms and their remains. An organic reef may consist of a bioherm alone, particularly if it barely reaches the surface, or if there is a b-rock reef flat, only the outer edge may be a bioherm, the remainder consist­

It seems to this writer that the definitions of reef, bank, organic reef, organic bank, and bioherm, as given by MacNeil (1954), are the most useful definitions re­

The Horseshoe atoll was most likely a rigid wave­resistant structure. During the Late Pennsylvanian and early Permian it was a prominent submarine feature having its crest at times as much as 1,550 feet above the surrounding floor of the Midland basin (pls. 1, 2, and 8). Thick masses of calcirudite, composed of fragments of preexisting reef rock, on the seaward or convex side of the atoll indicate that the reef complex was subjected to fragmentation by a powerful erosional agent. Inasmuch as the atoll accumulated in a marine

GEOLOGIC HISTORY

APPLICABILITY OF REEF DEFINITION TO THE HORSESHOE ATOLL

Because of certain characteristics of the Horseshoe atoll, applicability of the terms “reef” and “atoll” to this carbonate mass may be questioned. The relation­ships of the different lithologic types in the Horseshoe atoll are unlike those of any reef described in the literature. Rock composed of a growth lattice of or­

Vertical or greater than vertical boundaries. Detrital materials derived from the biotic community, which do not contribute to the building of the near sea level component, such as those settling in the lagoon or on the steep submarine slope, though not reef in the navigator’s sense, are nevertheless an impor­tant part of the reef structure, and in a buried reef would be more related in composition, texture, porosity, and genesis to the reef than to any surrounding rock.

MacNeil (1954, p. 399) in the same paper also gives a more concise definition of an organic reef:

... a reef formed by living organisms and their remains. An organic reef may consist of a bioherm alone, particularly if it barely reaches the surface, or if there is a b-rock reef flat, only the outer edge may be a bioherm, the remainder consist­

It seems to this writer that the definitions of reef, bank, organic reef, organic bank, and bioherm, as given by MacNeil (1954), are the most useful definitions re­

The Horseshoe atoll was most likely a rigid wave­
C. CALCIRUDITE CONSISTING OF PREEXISTING REEF LIMESTONE FRAGMENTS.

D. CALCIRUDITE CONSISTING OF ORGANIC FRAGMENTS.

CORE FROM THE HORSESHOE ATOLL IN SCURRY COUNTY, TEX., ILLUSTRATING ROCK TYPES.
environment, it seems most logical to attribute this fragmentation to the action of strong waves, and it would seem probable, therefore, that the atoll was a rigid mass of firmly-cemented rock.

The first constituent of an organic reef according to MacNeil’s definition—the calcareous skeletons of colonial and commensal animals or plants—is represented in the Horseshoe atoll by crinoids, bryozoans, corals, brachiopods, mollusks, and possibly by algae. These fossil remains, however, were nowhere observed as being interlocked and cemented together by growth (unless some of the colonial corals having growth form similar to that of Chaetetes might be regarded as such—and these were very rare). Entire skeletons of corals (including tetracorals), brachiopods, mollusks, and individual bryozoans are present in the core. Entire skeletons of crinoids were not observed.

The second constituent of an organic reef—the detrital material derived from the breaking up of the organisms—forms most of the atoll. As previously noted, the limestone of the Horseshoe atoll is composed of organic debris bonded by crystalline calcite and by lithified carbonate mud. This organic debris, generally ranging from submicroscopic to a few millimeters in grain size, appears to be composed largely of crinoid and bryozoan fragments. Brachiopod, coral, and mollusk fragments are present in lesser amounts. However, additional petrographic study and identification of the detrital material is needed for an accurate quantitative appraisal of the organic content.

The third constituent of an organic reef—the remains of organisms which normally live in, on, or near the organic lattice—is represented by fusulinids and other Foraminifera, which were observed in about 75 percent of the core footage. In places, the fusulinids constitute all of the rock except for the matrix of crystalline calcite cement.

It would appear from observing the organic content of the reef complex that the requirement of a lattice or rigid organic framework is not met. MacNeil has recently noted, however, the predominance of detrital materials over growth lattice in modern atolls. He says (1954, p. 387):

It is now known that, contrary to long-standing belief, the growth lattice of living organisms may be a subordinate constituent of atolls and other large reefs, and that detrital material derived by the forced movement and breaking up of algae and corals and the frequently more abundant skeletons of Foraminifera are a major if not a predominant part of modern reefs.

Ladd (1950, p. 204) has also called attention to the small amount of rigid framework in some larger recent reefs.

In recent years—having examined some of the larger recent reefs and having done some diving and dredging in their lagoons and on their outer slopes—the writer has come to realize that though the rigid framework is a very essential part of a reef—like the walls and rim of a pail that holds water—it may quantitatively be very unimportant and only in rare elevated reefs is it preserved and satisfactorily exposed.

Fairbridge (1950, p. 330) noted the same relationship in the reefs of Australia.

In both living and ancient reefs the proportion of actual colonial corals grown in situ is extremely small in relation to the enormous quantities of “coralline” sedimentary debris.

MacNeil (1954, p. 388) notes the presence only of detrital material in raised reef platforms in the northern Marshalls.

In the northern Marshalls there are many remnants of elevated reef flats, most of which form the cores of vegetated islands. Strata of different texture, hardness, and weathering properties were observed in many of these raised reef platforms. All were composed of detrital materials.

Elsewhere, MacNeil states (1954, p. 391):

As a result of his later work, however, Ladd became one of the first to realize that reef rock does not always contain recognizable corals or algae. Ladd and Tracey (1949) came to the conclusion that even some noncoralliferous limestones might be of reef origin and that they could have been bound on the outer side by biohermal structures that would naturally be the first part to be eroded away on exposure.

Twenhofel noted the presence of fragmented organic material in ancient reefs. He says (1950, p. 183):

After the deaths of the reef-builders, their constructions may be riddled by boring organisms in their search for food or to construct cavities in which to live. In this way the framework of the structure may be greatly impaired and reduced in part to calcareous sand and mud, and this destruction may be so complete that the resulting materials may show little evidence of having been a rigid framework.

Elsewhere, Twenhofel and Shrock (1935, p. 245–247) state, concerning Bryozoa:

In the Ordovician of some parts of the world certain genera (Batostoma) are responsible for the construction of low bioherms.

Indirectly, the bushy zoaria must have served an important part in deposition on certain bottoms by checking the currents and causing deposition of materials in suspension or in solution. On the steep peripheral slopes of ancient coral reefs, where they appear to have grown in great profusion, they almost certainly played an important role in intercepting the reef mud and sand.... It is considered probable that predators and scavengers were responsible for much of the fragmentation and in some cases almost complete destruction of delicate zoaria which are apparent among fossil accumulations.

It is obvious from these statements that many modern reefs and atolls consist largely of detrital reef rock. It is believed by this writer that the Horseshoe atoll had a complex geologic history, probably involving nur-
BEEF GROWTH AND SEDIMENTATION

Any analysis of the history of the Horseshoe atoll must consider the following facts:

1. The atoll is a buried carbonate mass having hundreds of feet of relief and is surrounded and overlain by younger terrigenous rocks.
2. The reef complex consists largely of detrital reef limestone.
3. The flanks of the atoll dip more gently than those noted in most reefs.
4. Limestone debris is spread laterally at least 15 miles from the crest of the atoll into terrigenous rocks that are younger than the reef complex.
5. Fusulinid faunas indicate reworking of older rocks into younger sediments.
6. Large amounts of calcirudite, composed of fragments of older reef rock, are present at certain stratigraphic positions in parts of the atoll that would normally be considered the reef core.
7. Terrigenous rocks of Wolfcamp age lie on an irregular surface, which is developed on reef limestone of Strawn, Canyon, Cisco, and Wolfcamp age.
8. Reef limestone of Wolfcamp age in the atoll is in contact with reef rocks of Strawn, Canyon, or Cisco age at different places.

Cyclical deposition in the Pennsylvanian and early Permian has been described by many writers. Wanless and Shepard (1938), Wanless (1950), and Wanless and Patterson (1951) have interpreted these cycles as being related to eustatic changes of sea level. The rocks of Pennsylvanian and Wolfcamp age of north-central Texas exhibit similar cyclic deposition in which the marine deposits of each cycle were generally thicker and the nonmarine deposits thinner than those in eastern United States (Lee, Nickell, Williams, and Henbest, 1938).

Burnside (in press) considers the history of the Pennsylvanian and Wolfcamp in the southern part of the Horseshoe atoll as a time of cyclical growth and deposition controlled by eustatic changes of sea level. The geologic history as presented by Burnside appears to be applicable also to the eastern part of the atoll.

Two interpretations of reef growth can be postulated. The first maintains that topographic relief of the atoll was caused by rapid subsidence below the biotic zone, and thus normal reef growth was restricted to smaller areas along the crestline of the atoll. However, this interpretation does not account for these facts:

1. Large amounts of calcirudite composed of older reef rock, which are present at certain stratigraphic positions in the atoll.
2. Reworked fusulinid faunas of older reef rocks which are included with those of younger reef rocks.

The second interpretation is one which maintains that the topography of the atoll resulted from erosion, modified by reef growth, which left the present hills, depressions, and valleys on the surface of the atoll. The sequence of events appears to have been alternating submersion and exposure of the reef complex and may be summarized as follows:

1. Normal reef growth and deposition took place just below sea level.
2. Sea level was lowered and the atoll emerged.
3. The islands (emergent atoll) were subjected to wave action and subaerial erosion; large wave-cut benches and a topography of hills and valleys were formed. Leaching of the older rocks by circulating meteoric waters possibly aided by humic acids caused the development of secondary porosity. Terrigenous clay-sized materials and reef breccia were deposited on the wave-cut benches and other submarine features. Normal reef growth was limited to the flanks of the islands.
4. Sea level rose, covering most or all emergent parts of the atoll. As the water level rose, terrigenous muds and reef breccia continued to be deposited in lessening amounts on the wave-cut benches and in the low areas of the eroded surface. Normal reef growth became more widespread as marine life flourished. As much as several hundred feet of reef limestone accumulated, the most pronounced growth usually taking place on the old
The first well drilled to rocks below those of Leonard age in a test for oil in the area described in this report was Humble Oil & Refining Company's No. 1 Davis well (pl. 5, well 93). This hole was drilled to a total depth of 8,027 feet (5,614 feet below sea level) in the Ellenburger group (Ordovician) and was abandoned in January 28, 1947.

The first well in the mapped area that produced oil from the Horseshoe atoll was Sun Oil and Humble C '1 and Refining Cos.’ No. 1 Schattel well (pl. 5, well 94), which was completed on July 16, 1948. By the end of that year four widely separated wells were producing oil from the reef rock. Numerous other oil discoveries
in the atoll were made in 1949 and subsequent years. Exploitation of the fields producing from the reef rocks continued at a rapidly increasing pace through 1950. Since 1950 the number of holes drilled each year has decreased, but exploration still remains at a high level.

On August 1, 1953, oil was being produced from 26 reservoirs at four stratigraphic positions in the atoll; one additional reservoir had been abandoned. Production of oil from the reservoirs (pl. 5) is tabulated below.

Table 3. Oil production from reef limestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Wells producing at end of year</th>
<th>Oil production (barrels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948</td>
<td>4</td>
<td>24,550</td>
</tr>
<tr>
<td>1949</td>
<td>315</td>
<td>4,249,645</td>
</tr>
<tr>
<td>1950</td>
<td>1,641</td>
<td>38,112,461</td>
</tr>
<tr>
<td>1951</td>
<td>1,952</td>
<td>49,749,313</td>
</tr>
<tr>
<td>1952</td>
<td>2,065</td>
<td>47,393,572</td>
</tr>
</tbody>
</table>

Oil was first produced from nonreef rocks of Wolfcamp age in April 1950. Most oil discoveries in the nonreef rocks of Wolfcamp age have resulted from studies of subsurface data obtained during development of the fields producing from the reef rocks.

On August 1, 1953, oil was being produced from eight reservoirs at four stratigraphic positions in the rocks of Wolfcamp age overlying the atoll.

Production of oil from these reservoirs (pl. 5) is tabulated below:

Table 4. Oil production from nonreef rocks of Wolfcamp age

<table>
<thead>
<tr>
<th>Year</th>
<th>Wells producing at end of year</th>
<th>Oil production (barrels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>3</td>
<td>52,060</td>
</tr>
<tr>
<td>1951</td>
<td>48</td>
<td>407,614</td>
</tr>
<tr>
<td>1952</td>
<td>125</td>
<td>2,045,340</td>
</tr>
</tbody>
</table>

Free gas caps do not exist in any of the reservoirs in the atoll nor in the postreef rocks of Wolfcamp age. The only gas production has been solution gas incidental to oil production and estimates of the quantities produced are not available. Oil is also produced in this area from rocks of the Ordovician and Mississippian (?) systems and from those of Leonard and Guadalupe ages of the Permian system; discussion of the fields and reservoirs in these rocks is beyond the scope of this report. For a more comprehensive summary of the distribution and production of oil in the area, see Stafford (1957).

RESERVOIRS

Oil is produced from four stratigraphic positions within the Horseshoe atoll. These are commonly called the Canyon and Strawn zones B, C, and D reef-reservoir rocks (fig. 5). Production is from reef limestone of Strawn, Canyon, Cisco, and Wolfcamp age in the so-called Canyon reef reservoirs, and from reef limestone of early Strawn age in the so-called Strawn zones B, C, and D reservoirs. The oil in the so-called Canyon reservoirs is trapped in the higher parts of the atoll, which are overlain by impervious shale (fig. 4). The age of the rocks in which the oil is found differ considerably from place to place, but in general the oil-water interface is in progressively older rocks to the northeast.

The reasons for most of the traps forming the so-called Strawn zones B, C, and D reservoirs have not been determined. Inasmuch as all oil accumulations in the lower reservoirs are in porous zones which are overlain by younger rocks of the atoll, an updip decrease in porosity and permeability is the factor controlling accumulation at some places; other traps may be a combination of porosity changes and anticlinal structures involving zones of porous and relatively nonporous reef rock.

Oil is produced from four stratigraphic positions in nonreef rocks of Wolfcamp age overlying the Horseshoe atoll. These are commonly called the C-an, Cogdell, Fuller, and Wolfcamp reservoir rocks (fig. 5). The traps forming the so-called Cisco sandstone, Cogdell limestone, and Fuller sandstone reservoir rocks in the Wolfcamp series overlying the atoll were apparently caused by flexures resulting from differential compaction of the terrigenous deposits over the Horseshoe atoll. In the Cisco sandstone of local usage, however, some accumulation of oil was caused by the lenticular nature of some of the porous sandstones within the body of the bituminous shales of Wolfcamp age. The oil in the so-called Wolfcamp limestone reservoir accumulated in traps caused primarily by updip decrease in permeability and porosity.

SOURCE OF THE OIL

The source of the oil in the reef reservoir is a matter of much importance in the search for petroleum. The oil could not have originated within the atoll inasmuch as the porosity of the reef is almost entirely secondary (Bergenback and Terriere, 1953, p. 1023). It must, therefore, have migrated into it from an external source. In the reef reservoirs this migration must have occurred after each reservoir had been covered by an impervious seal of terrigenous sediments composed mainly of clay-sized material. The oil could not have migrated from rocks at older stratigraphic and lower structural positions because at all places impermeable and nonporous rocks separate the older nonreef rocks from the reef rocks.
According to Grout (1932, p. 387), if a shale has an initial porosity of 50 percent in the first 100 feet, an overburden of 1,000 feet will reduce that porosity to about 30 percent; 2,000 feet to about 23 percent; 3,000 feet to about 18 percent; and 8,000 feet to about 8 percent. The decrease in porosity and volume represents fluids squeezed out of the shale. The migration of the fluids from source rock to reservoir rock therefore may have been accomplished by the compaction of the source rocks with the inherent loss of fluids in the process of compaction. It is probable that both water and oil were squeezed out of the compacted shales. These fluids might have migrated into the porous parts of the leached reef rocks. Therefore, the shales in the terrigenous rocks which enclose the reef rocks are considered to be the most likely source of the oil in the reef rocks.

The process of compaction probably began during early Wolfcamp time before the dead reef was completely covered with terrigenous rocks. Differential separation of the oil and water in the reef rocks probably occurred as soon as a reservoir was effectively sealed by the covering impervious shales. The source of the oil in the postreef reservoirs of Wolfcamp age is probably also the shale that surrounds both the reef and postreef reservoir rocks.

ECONOMIC ASPECTS OF POROSITY ZONATION

The expansion of gas from solution is the main source of reservoir energy in the reef rock. Little water drive or encroachment of water is evident. Most of the oil reservoirs of the atoll are interconnected with terrigenous rocks. Differential porosity zones that have relatively high porosity and permeability are in direct contact with the oil-water interface. The decrease in porosity and volume represents fluids squeezed out of the shale. The migration of the fluids from source rock to reservoir rock therefore may have been accomplished by the compaction of the source rocks with the inherent loss of fluids in the process of compaction. It is probable that both water and oil were squeezed out of the compacted shales. These fluids might have migrated into the porous parts of the leached reef rocks. Therefore, the shales in the terrigenous rocks which enclose the reef rocks are considered to be the most likely source of the oil in the reef rocks.

The process of compaction probably began during early Wolfcamp time before the dead reef was completely covered with terrigenous rocks. Differential separation of the oil and water in the reef rocks probably occurred as soon as a reservoir was effectively sealed by the covering impervious shales. The source of the oil in the postreef reservoirs of Wolfcamp age is probably also the shale that surrounds both the reef and postreef reservoir rocks.

LITERATURE CITED

Burnside, R. J., Geology of part of the Horseshoe atoll in Borden and Howard Counties, Texas: U. S. Geol. Survey Prof. Paper 315-B. (In press.)

Bush, R. E., 1950, Porosities can be obtained from radioactivity in West Texas: Oil and Gas J., v. 37, no. 51, p. 155-165.

INDEX

Abstract .. 1
Age of rocks in the area ... 5, 6, 7
Algae, occurrence ... 11, 13
precipitation by .. 11
Ammnoniids .. 11
Anticlinal structure .. 12, 16
Arthropods .. 11
Atoll, defined .. 1, 12
Bank, definition referred to .. 12
Bend series ... 5, 6, 7, 15
Bioform .. 12, 13
Bilaminar material in the shale ... 9, 12, 13
Calcite, crystalline .. 9, 12
Calcemaria ... 5
Canyon series .. 5, 6, 7, 8, 13, 15
Carbonate mud, lithified ... 9, 12
Central basin platform, boundary of Midland basin 5
Chert .. 11, 13
Chonetes .. 9
Coccoliths ... 9
Cactinid valves ... 5
Coral frame-building ... 12
Coral reef .. 5
Coral reef, defined .. 5
Coral reef, frame-building ... 1
Cordell reservoir rocks .. 16
Coleman Junction limestone member of the Putnam formation 11, 12
Colonial or commensal animals ... 9
Conodonts ... 11
Conoids ... 11
Coral frame-building .. 12
Coral reef .. 5
Correlation of rocks, in Sourcy and Kent Counties 6, 8
in the reef .. 5
on the flanks of the reef ... 8
Correlation problems .. 5, 8
Crinoids ... 11
Crinoid columns .. 9
Crinoids ... 13
Cyclical deposition .. 14
Ditratal limestone .. 12, 14
Differential compaction ... 10
Dinomchod brachiopods .. 11
Dunkerkeilla sp ... 11
Eastern platform, boundary of Midland basin 5
Echinoderms ... 11
Effective porosity, determined from micrologs and quantitative analyses of cores .. 5, 4
Electrical logs, correlated .. 3
Ellenburger group .. 6, 7, 15
Eolian deposits, features .. 40-41
Eustatic changes of sea level ... 14
Fenestroid bryozoa .. 11
Fish scales ... 11
Fossils ... 11
Framework, remains .. 14
Fuller reservoir rocks ... 16
Fusulinids, occurrence of the genus ... 10
Fusulinids ... 3, 5, 11, 13, 14
Gaspar County, oil in .. 16
Gastropods .. 11
Haptis acids ... 14, 15
Impervious shale ... 10
Insoluble residue, percent on analysis .. 9, 10
Kent County, oil in .. 16
Lampasas series ... 15
Leaching .. 14
Leonard series ... 6, 7, 8, 9
Limestone ductile .. 13
Lithologic character of sample, correlated 5
Lutophyllum ... 5
Massive arch, boundary of Midland basin 5
Meteoric waters .. 18
Microfossil availability of .. 12
use of .. 3
Microfossil classification .. 10
Midland basin, location ... 5
Mississippian formation ... 1
Mollusks ... 11, 13
Neosauropsid rocks ... 16
Oil accumulation .. 16
Oil-water interface ... 16
Oil-water interface ... 16
Openings in the cores, pinpoint size .. 10
Ostracods ... 11
Ostracodes ... 12
Permeability, categories ... 3
determined from micrologs and quantitative analyses of cores 3, 4
Permeability of the limestone ... 10
Permian rocks ... 5, 7
Pesticides .. 11
Plants, asamended together .. 12
Poriferans ... 11
Porosity, high .. 10
Porosity, low ... 10
Porosity, secondary .. 10
Porous limestone, porosity of .. 4
Primary pores, importance of new information on position 5, 15
Productidae .. 11
Pseudofusulinida sp ... 11
Putnam formation .. 4
Pyrite concentrations in the shale .. 9
Radiocytene logs, correlated ... 3
use in determining position of porous zones 5
Reef, defined ... 12
Reef complex, defined .. 8
Reef core ... 7
Reef core, stratigraphy ... 7
Reef core ... 8
Reef system .. 5
Reef system, stratigraphy ... 7
Reef core ... 8
Reef-resistant rocks ... 15
Rocks of Horseshoe Atoll, Midland basin, and Eastern platform, compared .. 5
Schmageria sp .. 11
Scoria in the limestone ... 9
Source of oil .. 18
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratigraphy of rocks, in the atoll</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>overlying the atoll</td>
<td>6, 7, 8</td>
</tr>
<tr>
<td>underlying the atoll</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>Strawn series</td>
<td>5, 6, 7, 8, 13, 15, 16</td>
</tr>
<tr>
<td>Terrigenous material</td>
<td>14, 15</td>
</tr>
<tr>
<td>Thickness of rocks, in Scurry and Dawson Counties, compared</td>
<td>5</td>
</tr>
<tr>
<td>in the atoll</td>
<td>8, pl. 2</td>
</tr>
<tr>
<td>overlying the atoll</td>
<td>8-9</td>
</tr>
<tr>
<td>underlying the atoll</td>
<td>5</td>
</tr>
<tr>
<td>Topographic relief</td>
<td>14</td>
</tr>
<tr>
<td>Trilobite fragments</td>
<td>11</td>
</tr>
<tr>
<td>Triticites irregularis</td>
<td>10</td>
</tr>
<tr>
<td>ventricosus</td>
<td>10, 11</td>
</tr>
<tr>
<td>sp.</td>
<td>10</td>
</tr>
<tr>
<td>Vugs in the cores</td>
<td>10</td>
</tr>
<tr>
<td>Water drive</td>
<td>16</td>
</tr>
<tr>
<td>Wayland shale member of Graham formation</td>
<td>11</td>
</tr>
<tr>
<td>Wolfcamp series</td>
<td>5, 6, 7, 8, 13, 15</td>
</tr>
<tr>
<td>Zones, in the Strawn series</td>
<td>8</td>
</tr>
<tr>
<td>intermediate</td>
<td>10</td>
</tr>
<tr>
<td>of high porosity</td>
<td>10</td>
</tr>
<tr>
<td>of low porosity</td>
<td>10</td>
</tr>
</tbody>
</table>