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THE SOUTH SILVERTON MINING AREA, SAN JUAN COUNTY, COLORADO

ANALYSIS OF PLASTIC DEFORMATION ACCORDING TO VON MISES' THEORY, WITH 

APPLICATION TO THE SOUTH SILVERTON AREA, SAN JUAN COUNTY, COLORADO

By DAVID J. VARNES

ABSTRACT

The patterns of faults in the South Silverton mining area 
are analyzed according to Von Mises' theory of plasticity in 
plane strain. Initial sections are devoted to standard deriva­ 
tions of basic equations concerning stress, to criteria of fail­ 
ure, and to plastic stress-strain relations in plane strain. 
Generalized differential equations are derived for slip lines in 
polar coordinates and applied in the later sections of the 
report to the two basic problems presented by the Silverton 
district.

The first problem is that of determining the slip-line pattern 
to be expected if a wedge is compressed in plane strain so that 
material flows toward the large end. This simulates the in­ 
ferred mode of deformation in the western part of the district. 
The orientation of certain faults are used as boundary condi­ 
tions for solution of the differential equations and the whole of 
the slip-line field is reconstructed from partial knowledge of 
the fault system. Equations for the conjugate shears are 
exponential in form. A compatible velocity field is derived.

The second problem is that of constructing the slip-line field 
generated by radial stresses, in plane strain, within a segment 
of a ring around the southeast border of the subsided block of 
the Silverton caldera. The geometry of certain faults is again 
used to reconstruct the whole theoretical pattern. Although 
the equations of the slip lines are exponential in form, they 
represent orthogonal epicycloids and hypocycloids. The distri­ 
bution of stresses required to form the slip lines in the eastern 
district are computed. They appear compatible with stresses 
to be expected due to wedging of a graben area at the north­ 
east corner of the subsided block.

Theoretical slip-line fields for both the western and eastern 
parts of the district are compared with the actual fault pat­ 
tern. Although there are differences, the agreement is, on the 
whole, satisfactory.

INTRODUCTION

An examination of the mining area southeast of 
Silverton, Colo., indicated that the veins and faults 
form a pattern that might be amenable to theoreti­ 
cal analysis. The present paper, which is a compan­ 
ion report to that on the general geology and ore 
deposits of the area (Prof. Paper 378-A), presents

one of the several possible types of analyses that 
may be applied to a study of the fault pattern.

The purpose of such an analysis is to better under­ 
stand the mechanical system within which the faults 
were formed. If one or several theoretical systems 
may be found that simulate the relations observed 
in the field to a reasonable degree, it may then be 
possible to make inferences or extrapolations re­ 
garding features that cannot be observed directly. 
For example, if the interest is in ores that occur in 
veins along faults and if the complete pattern of 
faults can be inferred from exposures of parts of the 
pattern, then this inferred pattern perhaps may be 
used to advantage in exploring areas that are less 
well known or covered by younger deposits.

This analysis of the Silverton fault systems seeks 
to test the possibility that some information about 
the whole of a fault pattern within a structural unit 
may be derived from knowledge only of certain parts. 
Because the analysis is essentially the solution of a 
boundary-value problem, the type of information 
derived from the solution depends upon the type of 
information that is put in. Several approaches are 
possible; the emphasis in this report is upon orienta­ 
tion of faults. The strikes of faults along certain 
lines, which are generally the boundaries of the struc­ 
tural units, are known. From these partial data the 
full theoretical pattern of strikes of faults in the 
interior of the units is derived by analysis. The pat­ 
tern of theoretical strikes of faults is then compared 
with the actual pattern by direct superposition on 
the geologic map. By this kind of test, some opinion 
may be formed concerning the usefulness of this 
particular type of analysis to the study of other 
fault systems where the full pattern is not actually 
known.

This analysis differs in several respects from the

B-l
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types of theoretical analyses of geologic structures 
that have appeared with increasing excellence and 
frequency in the geological literature. It is, first of 
all, a specific study in which analysis is applied to 
actual structures in a relatively small area, rather 
than to idealized or generalized classes of geologic 
structures. The absence of scale models or other 
experimental methods of study that might be used 
to supplement the theoretical results is perhaps a 
disadvantage; but it is hoped that, if so, this de­ 
ficiency is in part made up by direct comparison 
with nature.

Further, the analysis proceeds from a formal 
theory of plasticity that allows permanent deforma­ 
tion, rather than from the theory of elasticity, which 
excludes faulting or any other type of permanent 
deformation. Perhaps this is a matter having more 
logical import than practical necessity, since the 
usual procedure of mentally transforming principal 
shear-stress trajectories in an elastic medium into 
real faults in a permanently deformed medium has 
been used with some success. Yet, it seems prudent 
to avoid this logical hiatus, if possible, and to explore 
the use of theories of plasticity that actually may 
admit discontinuities, even though at present these 
theories perhaps incorporate other features that are 
not wholly satisfactory.

Finally, the South Silverton analysis differs sig­ 
nificantly from others in the type of information that 
is regarded as "known." All theoretical analyses of 
fault patterns with which the writer is familiar 
specify either stresses or displacements upon the 
boundaries. From these the regions that are poten­ 
tially unstable according to an assumed yield cri­ 
terion are calculated, and the directions of potential 
faults are drawn at some constant angle to the tra­ 
jectories of principal stress. In the present analysis 
the orientation of faults at the boundaries of struc­ 
tural units is considered to be known. Through the 
yield criterion, this may be translated in to the angle 
y between the algebraically largest principal stress 
and the coordinate system. The angle y then be­ 
comes the fundamental unknown in the boundary- 
value problem. The assumption of a certain distri­ 
bution to the values of y upon the boundaries does 
not require specification of the exact magnitude of 
all normal stresses or strains, but it does determine 
the general form of the equations by which they may 
be expressed. Once y has been solved for through­ 
out the body the expressions for the stresses and 
strains may be derived. Included in the derived ex­ 
pressions for stresses are constants whose values 
may be determined from other information at hand.

The compatibility of the derived stress and strain 
or of strain-rate fields must be checked.

Stresses are quantities that cannot be observed 
directly; their direction and magnitude may only 
be inferred from their effects. Therefore, the method 
of analyzing fault patterns in this paper in which 
the observed orientation of faults at certain bound­ 
aries is used to reconstruct the whole potential fault 
pattern within the boundaries, appears to be more 
direct, in situations where it can be applied, than 
methods that depend upon complete knowledge of 
boundary stresses.

The theoretical analysis of plastic deformation 
proceeds from a choice among several types of 
"ideal" materials. The specific properties of these 
ideal materials are determined fundamentally by 
the assumption of certain mathematical relations 
involving, for instance, the stresses and the stress- 
strain relations at the beginning of plastic deforma­ 
tion. The consequences of these assumptions are 
then followed out, leading to an analysis of the ex­ 
pected behavior of the ideal substance under various 
stress systems. An interpretation may then be made 
as to whether the ideal material represents any real 
material to a tolerable degree of accuracy.

Since analyses of ideal materials furnish, at best, 
only approximations to the behavior of real mate­ 
rials, it is naturally advantageous to begin with the 
simplest mathematical assumptions for stress-strain 
relations and for the stresses at the yield point. The 
simple theory then may be elaborated as necessary 
to bring it more into agreement with observation. 
The simplest and most thoroughly studied theory, 
which is adopted for use in this report, is that de­ 
veloped independently by Levy (1870) and by Von 
Mises (1913). The choice of the Levy-Mises' theory 
was also influenced by the fact that it leads to sys­ 
tems of shear fractures, in plane strain, that inter­ 
sect at right angles. The strikes of principal conju­ 
gate faults in the Silverton area do, in fact, intersect 
at nearly right angles. An analysis based upon 
Coulomb's yield criterion, but with a small angle 
of internal friction (3°), appears to be even more 
appropriate for some parts of the Silverton area.

This report can be divided into three main parts. 
The first is a section in which notations and sign 
conventions are presented and the fundamental 
equations pertaining to stress and strain and to 
stress-strain relations of an ideal material in the 
elastic state are derived. In the second section, the 
concept of plastic, or permanent, deformation is 
introduced, and the derivations are continued with 
emphasis on those parts that lead to differential
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equations for slip lines. To illustrate an application 
to a particularly simple boundary-value problem in 
cartesian coordinates, the slip lines, stresses, and 
velocities in Prandtl's compressed strip are derived. 
The applicable equations (on the summary line of 
plate 1) are next reiterated in polar coordinates 
because the polar coordinate system better fits the 
curved and inclined boundaries of the structural 
units in the Silverton area. The derivation of slip 
lines and stresses are based on two assumptions, 
which, farther on, are to be applied respectively to 
the two parts of the Silverton area. The derivations 
in this section are then terminated at the point where 
detailed boundary conditions must be inserted in 
order to reach a solution. The third section contains 
the analysis of actual fault patterns in the mapped 
area.

Some of the mathematical manipulations are a 
little complicated, and several digressions into points 
of general interest tend to obscure the main thread 
of the argument. Hence the reader may wish to 
refer occasionally to plates 1 and 2, which show the 
operations diagrammatically.

It is a pleasure to acknowledge the help of many 
people who are concerned with the mechanics of 
rock deformation. The continued and patient inter­ 
est of my colleagues, E. B. Eckel, W. S. Burbank, 
and James Gilluly, has been an essential aid. At a 
very early stage in the analysis the writer corre­ 
sponded with A. Nadai. After the analysis was sub­ 
stantially complete, the results were discussed with 
M. K. Hubbert, John Handin, D. V. Higgs, and, par­ 
ticularly, H. Ode of the Shell Development Co.; and 
with Professors W. F. Brace and E. Orowan of the 
Massachusetts Institute of Technology; with Pro­ 
fessors D. C. Drucker, R. T. Shield, and E. T. Onat 
of Brown University, and Professor D. T. Griggs of 
the University of California, Los Angeles. The writer 
is indebted to all those mentioned for suggestions, 
stimulation, and criticism.

The geological fieldwork on which this analysis is 
based was done with financial cooperation from the 
Colorado State Geological Survey Board and the 
Colorado Metal Mining Fund.

PRINCIPAL FEATURES OF THE THEORY 
OF ELASTICITY

STRESS 

TYPES OF STRESS

Stress is the intensity of force, measured in terms 
of force per unit area of the surface upon which 
it acts, such as pounds per square inch or kilograms 
per square centimeter. The magnitude of stress at a 
point is more precisely defined as the limit of the

ratio of force to area as the area around the point 
becomes infinitesimally small.

In investigating the stresses within a body subject 
to external or internal forces, it is convenient to 
imagine that the measurements of stress are made 
upon an infinitesimal surface. However complicated 
the forces may be that are applied to the body, the 
internal stresses can always be resolved into two 
kinds: normal stress, either tension or compression, 
that acts perpendicular to the imaginary reference 
surface, and shearing stress that acts in the plane 
of the reference surface. As this small surface is 
imagined to move about and turn within the body, 
the normal and shearing stresses on it will vary in 
a continuous and regular manner, assuming that the 
body under stress is itself free from discontinuities. 
If the small surface be kept at a point and rotated 
about an axis in its plane, the amounts of normal 
and shearing stress vary both in absolute magnitude 
and in their ratio to each other, according to the 
angle at which the surface lies. Stress at a point 
cannot, therefore, be represented adequately by a 
single vector of a certain magnitude and direction. 
Stress is a physical quantity of higher complexity 
than a vector; it is a tensor, and it can be defined 
only by stating its components in some coordinate 
system. The state of stress at a point is completely 
defined in cartesian coordinates, for example, if the 
nine normal and shear stress components acting on 
three mutually perpendicular faces of a small cubic 
element around the point are known.

A variety of notations for stress have been, and 
still are, used in various countries and by various 
workers. The notation used in this paper follows 
that which appears to be gaining some measure of 
acceptance. In it, normal stresses are designated by 
the Greek letter sigma (<r) and shear stresses by 
the Greek letter tau (T) . The direction of stress is 
indicated by a subscript. Normal stress is positive 
if it produces tension and is negative if it produces 
compression. This convention of sign is commonly 
reversed by some writers, especially in the field of 
engineering.

The components of shear stress that act parallel 
with coordinate axes are designated by appropriate 
subscripts. In three dimensional cartesian coordi­ 
nates, the first subscript of ryg indicates that the 
shear operates in a plane that is normal to the y 
axis; the second subscript indicates that, within this 
plane, the line of action of rys is parallel with the z 
axis. The sign of shearing stress is taken to be 
positive if it produces a counterclockwise moment 
about an interior point as viewed from the positive 
end of a coordinate axis. Figure 1 shows stresses
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FIGURE 1. Stresses on a cubical element in equilibrium.

on a cubical element in equilibrium. The shear stress 
Tye is shown acting in the positive direction and is 
opposed by rzy acting in the negative direction. This 
convention for the sign of shear is different from 
that of Timoshenko (1934, p. 4), who adopts the 
convention that all stresses as shown in figure 1 
are positive. Timoshenko's convention is not con­ 
sistent, however, with the sign of shear stress de­ 
termined from the construction of Mohr's circle.

Of the nine stress components shown in figure 1, 
three are necessarily of the same absolute magni­ 
tude:

(1.1)
(1.2)

\T,,\ = \ T» \. (1.3)

The six quantities om <ry, a,, rxy, ryzy and rzx, if 
known, completely determine the state of stress.

This paper will be concerned mostly with stress 
analysis in two dimensions, either in the x, y plane 
of x, y, z space, or in the r, 0 plane of r, 0, z space. 
Under these conditions it will be assumed that trx 
and <ry, or o> and &$, do not vary along the z coordi­ 
nate, and the displacements of all points are confined 
to the planes perpendicular to z. This is known as a 
state of plane deformation or plane strain.

Stresses within the interior of a body may orig­ 
inate in several ways. They may be generated by 
forces applied to the surface if the body is pre­ 
vented from moving. There are also body forces 
that depend upon fundamental properties of matter 
and act throughout the interior of the body. The 
most familiar are those of gravity and inertia, which 
affect each particle independently of the stresses due 
to boundary forces. Electrical and magnetic fields

also may produce body forces in certain materials. 
Hydrostatic pressure, flow or fluid through a perme­ 
able material, of flow of heat produce interior 
stresses that usually must be considered separately 
from stresses due to boundary forces. The presence 
of body forces complicates some of the mathematical 
operations in stress analysis.

VARIATION WITH ORIENTATION OF STRESS AT A 
POINT

The components of stress that act on any particu­ 
lar plane are related through certain basic equations 
to the stresses that act on other planes at other 
orientations. The triangle shown in figure 2 repre­ 
sents the plan view of a very small prism of unit 
thickness in the z direction. Assume that the top 
and bottom planes of the triangle parallel to the x, y 
plane of the paper are free from shearing stress 
(conditions of plane stress or plane strain). Then 
only the stresses shown need be considered in de^ 
termining equilibrium of the element in the x, y 
plane. Assume also that the stress components * , ay, 
and rxy are known at point O, and the problem is to 
determine what 0-^ and r^ are on some other plane, 
say AB, which is oriented so that its normal makes 
an angle p with the x axis. The prism is so small 
that the variation of the stresses along the sides from 
point O may be neglected and the stresses that really 
act at O are shown as acting on the midpoints of 
the sides of the triangle. As dx and dy become in- 
finitesimally small, the relations between the stresses 
on the triangle become the relations between stresses 
on planes at various orientations at a point.

According to the adopted convention, rxy in this 
diagram is positive, ryx is negative but of the same 
absolute magnitude as TW and TA has as yet an un­ 
known sign. Assume for the time being both o^ and 
TO. are directed as shown.

' xy

+ 1.5 +0.5

0

2 Stress 
-1 units

+0.5

FIGURE 2. Stresses on a triangular element in equilibrium.
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The stresses o> and T> must be such that the tri­ 
angular element shall remain in static equilibrium. 
The condition of equilibrium is satisfied if

-f- 0V i °*   ffv o i  
I     n     COS 6(4 -f- Txy Sinp n I n

and TU. acts clockwise in amount
~ °v

sin 2/i + cos =  0.68.

(2.1)

(2.2)

To find the value of p, say // that gives the ex­ 
treme value (maximum or minimum) of <r, let the 
partial derivative of o- with respect to p be zero :

3 = 0 = -2

which reduces to

sin 2p' + 2-rxy cos (2.3)

 ~  = tan 2/i' at an extreme value of ff. (2.4)

At M = P', T has the value of
ffx   ffyV =         sm *' + cos = 0. (2.5)

Under a given state of stress there are two values 
of p. that define planes on which extreme values of a 
and zero of T act. This can be seen from equation 2.4 
in which tan 2p has identical values at /* = /*' and 
p. = / -f 90°. The two values / and p' + 90° define 
two mutually perpendicular planes, called the prin­ 
cipal planes. The normal stresses acting on these 
planes are called principal stresses.

The algebraically largest principal stress (tension 
is positive) is designated <n; the algebraically least 
principal stress is designated o-3 . The intermediate 
principal stress, <r2 , acts in a direction perpendicular 
to the plane that includes the lines of action of 01 
and 0-3.

Similarly, to find the value of p, say p", that gives 
extreme values of shearing stress, let

which reduces to
2 TIC i/

 =  cot2/'. (2.7)
ffx    <Ty

Equating 2.7 and 2.4 gives
tan 2/n' =  cot 2^",

which reduces to
^i" = /   45°, at extreme values of T. (2.8)

Shear stresses, therefore, reach their maximum 
values on planes that make angles of 45° with the 
principal planes.

The coordinates x and y can be chosen in any 
arbitrary direction relative to the stress field. Equa­ 
tions 2.1 and 2.2 may therefore be regarded in a 
more general sense as defining the normal and shear 
stress on any plane whose normal makes an angle /*

with one of another pair of mutually perpendicular 
planes, if the stresses on the latter pair of planes is 
known, and as the means for transforming expres­ 
sions for stress components from one orthogonal 
coordinate system to another.

To particularize a, let o- be 01, the algebraically 
largest principal stress. The angle p will have in 
this instance the special value p', which henceforth 
in this paper will be designated as y.

The angle y is measured counterclockwise from 
the positive direction of the x axis to the direction 
of action of 01. Equations 2.1 and 2.2 can then be 
rewritten as:

o, + °x ~°v cos 2y + rxv sin 2-y (2.9)2
ffx   ffy

sin 2y + rxv cos 2y. (2.10)

The other and algebraically least principal stress, 
0-3, acts on a plane that is oriented at y + 90° to the 
plane on which <n acts, hence:

cos 2y   Tsy sin 2y (2.11) 

cos 27. (2.12)T = 0 =

2

  sin 2y  

Transferring
x "

to the left in equation 2.9,

squaring 2.9, squaring 2.10, and adding gives
ffx + ffy \ 2 __ ( ffx   ffy   2    ) - (    2 (2.13)

Treating equations 2.11 and 2.12 similarly gives

+r%. (2.14)

Because o-i is defined as the algebraically largest 
principal stress, these last two equations may be 
written in the following form:

ffx + ffy

, -t- (2.15)

On the other hand, o-i, o-3 , and y, may be known and 
(TO,, o-y, and rxy may be the unknown stresses to be 
determined. In this event, expressions for <rm <rv, 
and rxy, in terms of principal stresses can be obtained 
by a series of algebraic manipulations on equations 
2.9, 2.10, and 2.11 to yield

ffl "" ffa ff" ""
v cos 2y + TV,, sin 2-y. (2.17)

Next, multiply 2.10 by cos 2y, and 2.17 by sin 2y, 
and add, giving

 ^^=^-sin 27 = ^ (2.18)
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Multiply 2.10 by (  sin 2y ) and 2.17 by cos 2y and 
add, giving

<Tl   ffs Ox   ffy
COS 2y = (2.19)2 WD *' - 2

Note that by adding 2.15 and 2.16 one may obtain
<T1 + <T3 = ffx + ff v. (2.20)

The mutually perpendicular axes, x and y, have 
no fixed relation to the directions of o-i an o-3 (y does 
not appear in equation 2.20). Therefore, equation 
2.20 states that the sum of normal stresses on mu­ 
tually perpendicular planes is a constant, at any 
given point, no matter how these pairs of planes 
may be oriented. In mathematical terminology, the 
sum of normal stresses is an invariant of the stress 
tensor under the operation of coordinate transforma­ 
tion.

Substituting equation 2.20 into 2.19 gives
ffl -{- ffs

ffi + ffs , [ ___

cos 2y,

COS 27

and, as before,

sin 2y.

(2.21)

(2.22)

(2.18)

The relations among the stresses on various planes 
and the angle between the planes, as expressed in 
all of the preceding equations, can be most clearly

visualized through a graphical construction devised 
by Otto Mohr (1882) and shown in figure 3.

Figure 3 is a graph, constructed in o- and r co­ 
ordinates, which shows the stresses on the triangular 
element in the real physical x, y plane of figure 2. 
Every point on the circle 0' in figure 3 represents 
the stress on a line such as OA or AB in figure 2. 
The o- and T coordinates of the point on the circle 
give the magnitude of the stresses that operate on 
the line. Such lines in figure 2 are, of course, actually 
projections of planes that are parallel to the z axis. 
Figure 3A is constructed by plotting the point A' 
according to the known stress on OA shown in figure 
2. That is, ax is equal to plus 1.5 units and rxy is equal 
to plus 0.5 units (positive rxy is plotted downward). 
Point Bf is plotted in the same way, according to the 
stresses on OB. A circle is then drawn through Af 
and Bf from a center 0' on the o- axis. The stresses 
on a line AB, whose normal makes an angle /* with the 
x axis in figure 2, are given by the point C" in figure 
3A. Point C' is located on the circle at an angle 2/x, 
measured counterclockwise from CXA'. By plotting 
+ T downward, the angle 2p. may be laid off from 
O'A' in the same sense as p in figure 2. The coordi­ 
nates of C" may also be computed from equations 2.1 
and 2.2. The magnitudes of principal stresses are

First shear direction

= 1.00

Second principal
Jane or section^ ^t»_ Fj rst principal 

45° / lUJ-1^ direction or axis
(Line of action of cr.) 

cr3 =o. 29rr
Second shear

di 
= 1.0

First principal plane 
or section

\Second principal direction

A

2 Stress 
j units

B
FIGURE 3. A, Mohr's circle of stress. B, Physical plane (x, y) corresponding to stress plane (a, T) shown on A.
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given by ai equal to IF and cr3 equal to IG. Maximum 
shearing stress is equal to the radius of the circle.

Point C" also may be located graphically in another 
way. This method makes use of an actual physical 
relationship between figure 2 and figure 3A. Point P 
in figure 3A has an important property, namely, that 
if a line is drawn through P parallel to any line 
through or bounding the body in figure 2, this line in 
figure 3A will intersect the stress circle at coordinates 
which specify the stress acting upon the line in fig­ 
ure 2. Thus, if PC' is drawn parallel to AC, point C' 
defines the stresses on AC. Point P is called the pole 
of the stress circle.

The relationship between the actual physical dia­ 
gram shown in figure 2 and the representation of 
stress in figure 3A perhaps may be seen more clearly 
by reference to figure 3#. In figure 3# all the traces 
of the various planes are shown in their actual orien­ 
tations with the actual stresses operating on them. 
Corresponding lines in figures 2 and 3 are parallel. 
For instance, a line through P and F in figure 3A 
gives the orientation of the line upon which o-i acts 
(normal to the line of action of <TI). This line is 
shown as line P'F' in figure 3#. In addition, figure 
3# shows the conventions adopted in this paper for 
first and second principal planes and directions of 
first and second shears.

If the quantities ai, a3 and y are given, one may 
determine <rx, vy and r^ either by computing from 
equations 2.21, 2.22 and 2.18 or by the following 
graphical procedure. Lay off, as in figure 3A, the 
values o-i and <r3 on the o- axis and construct the circle 
passing through F and G. Next, lay off 2y clockwise 
from the line O'F. The line oriented at 2y from O'F 
meets the circle at A', which gives the value for <rx 
and Toy. Next, lay off the line O'H = (cos 2y) (ai- 
0-3)/2 from the center 0', in the opposite direction 
from O'H, to locate point /, and erect a perpendicu­ 
lar to the a axis from /  in the opposite direction to 
HA'. This line meets the circle at B'. Point B' de­ 
fines the stresses ay and ryx.

In the parts of this paper that deal with the analy­ 
sis of actual geologic structures, considerable atten­ 
tion is given to determining the equations of pairs 
of lines across which the principal stresses or the 
shearing stresses have extreme values. These are 
called, respectively, the principal-stress trajectories 
and the maximum-shearing-stress trajectories. As 
shown in figure 3#, the angle y defines the direction 
of action of ^ at any point. This direction is the 
first principal direction, or axis, and also the tangent 
to the principal-stress trajectory across which o-3 
acts, or along which <n acts. Thus, if y is known at

each point, a differential equation may be written for 
the stress trajectory. If the equation of the trajec­ 
tory along which o-i acts (o-i trajectory) is expressed 
as a function,

» = /<*), (2.23) 
then:
slope of stress trajectory

__ df(x) 
dx (2 '24)

Using the connection between y and stresses, the 
slope of the o-i stress trajectory may also be written
as

Txy

dx
(2-25)

If expressions for the stresses ax, vy and TXV can be 
written in terms of x and y, then equation 2.25 be­ 
comes a differential equation in x and y only, the 
solution of which gives the equation of the ai trajec­ 
tory.

The differential equation of a trajectory of maxi­ 
mum shear may be derived in a similar manner. If 
the equation of the trajectory of the first shear direc­ 
tion is expressed as a function

y = F(x), (2.26) 
then:

the slope of first shear trajectory
__ dF(x) 

dx
_ cos 27

I   sin 27 '

= tan (7 + 45°) (2.27) 

(2.28)

or, in terms of stresses, 
dF(x) _

dx (2.29)

STRESSES IN STATIC EQUILIBRIUM

The preceding development showed how the 
stresses at a point vary with the orientation of the 
plane on which they are measured. These relations 
permit the determination of the angle y if the stresses 
are known at the point. But, in order to write the 
differential equation for the stress or shear trajec­ 
tories in terms of x and y, it clearly must be known 
how y or the stresses vary with the coordinates.

One of the fundamental mathematical expressions 
for determining the distribution of stresses, both in 
the theory of elasticity and in the theory of plasticity, 
states that each part of a stressed body remains in 
static equilibrium. If the stresses on each small ele­ 
ment of a body are to balance each other so that the 
element does not accelerate, then certain simple rela­ 
tions must prevail between the stresses in various 
directions. Expressed in differential equations, these 
relations form the foundations for further analysis.
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dy
X

dx

^T?" + ̂

dy

6T,~yx dx0 
(x,Y\

oa-y dity + ^x~~

FIGURE 4. Stresses on a small rectangular element in static equilibrium in 
plane strain or plane stress.

The equations of equilibrium are derived by re­ 
quiring all the stresses on an infinitesimally small 
piece of the body to be in static equilibrium. For 
convenience, the boundaries of the small element 
are made parallel to the coordinate system in use. 
Suppose that the symmetry of the whole stressed 
body makes it convenient to use rectangular x, y 
coordinates. Consider the stresses acting upon the 
midpoints of the sides dx and dy of the very small 
rectangle shown in figure 4. All stresses are shown 
in their positive directions. Let the stresses at point
O be and TVX and let X and Y be the com­
ponents of body force per unit volume. The force 
on each .side will be the average stress, at midpoint, 
multiplied by the area of that side. The thickness 
of the rectangle in the z direction is taken to be 
equal to unity.

Stresses acting in the x, y plane, but on planes 
perpendicular to z (rzx, rzy), are assumed not to 
change through the thickness of the elemental rec­ 
tangular prism; that is, 'dr^/'dz = 0, 'dr^/'dz = 0, 
and these stresses do not enter into the considera­ 
tion of equilibrium of the element in figure 4. As 
will be shown later, this is equivalent to assuming 
a state of plane strain or of plane stress.

The forces summed in the x direction and equated 
to zero reduce to:

dx dy "T" A '

Since TVX =   TW 3.1 becomes
dffx drXy
dx + dii + x -

(3.1)

(3.2)

Similar summing of forces in the y direction yields:

^+^+F = 0. (S.3, 

By extension of the same method, and this time

considering all the stresses on the rectangular prism, 
it may be shown that the corresponding equations of 
equilibrium for stresses in three dimensions are:

dffx 
dx

dx

dz

dz

X = 0.

r = o. 

z = o.

(3.4)

dz ' dx ' dy

These relations were first developed by Cauchy 
about 1828. Analogous equations of equilibrium can 
be developed for other coordinate systems. The equa­ 
tions of equilibrium pertain only to stresses. They 
contain no commitment about mode of deformation 
and hence may be applied to any region of an elastic 
or plastic body in which the expressed derivatives 
are continuous.

STRAIN 

DEFINITIONS AND NOTATION

Strain is the measure of intensity of deformation. 
Strain due to tension or compression is measured by 
elongation or shortening per unit of length; strain 
due to shear is measured by the change in the orig­ 
inal angle between two planes. When loads are im­ 
posed on a body, each interior point undergoes a 
small displacement u, which in general, varies in 
direction and magnitude from place to place. This 
displacement has components ux, uy, and uz parallel 
to a cartesian coordinate as shown for point O in 
figure 5. Elastic displacement varies continuously 
with the coordinates, so that the displacement of 
a neighboring point P will in general be somewhat 
different from that at O and the matter between O' 
and P' is put into a state of strain.

Consider the displacements of the points O, A, B 
and P of figure 6 in two-dimensional strain. After

FIGURE 5. Components of displacement in strain as point O moves to O' 
and a neighboring point P moves to P'.
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Oy rirsi principal m
*. , strain axis /

_/___£--£.    ;/» X ZL

Scale 0.2 Strain units

A B
FIGURE 6. A, Homogeneous infinitesimal strain of a rectangle OAPB into a parallelogram O' A' P' B'. B, Mohr's circle for strains.

deformation, the points are at 0', A', B' and P', re­ 
spectively.

The x component of displacement at P (x + A x, 
y + A y) can be determined from that at 0 (x, y) 
according to Taylor's theorem. Where ua = f (x, y) 
and (UB) o denotes Ua, at 0 and («O P denotes u,, at P 
we may write

  (ut ) 0 "dx "dy

+   third derivatives and cubes of deltas

where the dots indicate terms of increasingly higher 
derivatives and powers. All derivatives must exist 
and be continuous. Taylor's theorem is not restricted 
to small Ax and Ay, but we shall assume that 
Ax and Ay are so small that their products, squares, 
and higher powers are negligible compared to the 
quantities themselves. In other words, we investi­ 
gate strain in the immediate vicinity of 0. Accord­ 
ing to Taylor's theorem, the displacement (U^A at 
A, becomes, since Ay vanishes, simply

The strain of line OA during deformation may be 
defined as

O'A' - OA
strain of OA =

OA

The length O'A' is given by
O'A' = [(0'A") a + (A'A'TP,

but the quantity (A' A") 2 may be neglected because 
it is certainly smaller than ( Ay) 2 . 
Hence:

O'A' = O'A'   OA'"   (w,)o

"dx

and
strain of OA =

Introducing the notation for strain we may define 
the x component of strain at 0 as

"dx

and, similarly,

The change in direction of the line OA to the posi­ 
tion O'A' is given by the angle A" O' A', which if 
small, is closely approximated by its tangent, so that
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similarly,
dux

dux

The change in angle

AOB - A'O'B' = ^Uy ,
dx dy

represents a shearing strain denoted by yxy. The 
shearing strain is positive if the initial right angle 
becomes smaller and negative if it becomes larger. 
The quantities 3w»/3y and 'ftUy/'dx are, in general, 
not equal. To restore the angle A'O'B' to a position 
symmetric with the x and y axis it would be neces­ 
sary to rotate it counterclockwise as a rigid body 
through a small angle w given by

dux duy
dy dx 1

If tS = 0 the deformation is said to be irrotational. 
The definitions of strain components in three 

dimensions are
duf. duv du,,
dx dy

duv duy
dz 

, du,, . (4.1)
dy dx " dz dx dz dy

Considering again the two-dimensional strain of 
OP in figure 6A, it may be seen that the new length 
of OP is given by

(O'P')" = (O'C) 2 + (CP'Y, (4.2) 
and the strain e of OP is given by

O'P' - OP
OP (4.3)

Following more or less the derivation presented 
by Jaeger (1956, p. 38-40), we may write equation 
4.2 as

(O'P') = f 
[_

AX l 
\

1 +

dx dy
Ay T

d(uv ) 0 \ , d(uv ) 0 (4.4)

In the expansion of equation 4.4 the products and 
squares of the derivatives of (ua ) 0 and (uy ) 0 are 
neglected. This restricts the discussion to infinitesi­ 
mal strains. The products and squares of A# and A# 
here may not be neglected because either a product 
or square of these quantities occurs in every term. 
If the symbols for strain are introduced, we have
(O'P') 2 = (A*) 2 + (Ay) 2 + 2e. (Ax) 2 + 2ev (Ay) 2 +

2AxAyyxv. (4.5)

Now, let
Ax = OP COS M> 
Ay = OP sin M% 

and the square root of equation 4.5 be taken, again

neglecting squares and products of strains. The re­ 
sult is

O'P' = OP + OP (e, COS2 * + ey Sin2 * +

sin ^ cos  *  y*v ). (4.6)

From equation 4.3, the strain of OP (whose direc­ 
tion is *) is now

e^ = ef cos2 Mr + ey sin2 ^ + 7*» sin Mr cos M', (4.7)

e,   ev cos 2 * + 7., sin 2 (4.8)

By neglecting the terms involving products and 
squares of Az and A# in Taylor's theorem, in effect, 
we specified that displacements can be expressed as 
linear functions of the coordinates. If the body is 
so strained that displacements can be expressed in 
this way, the strain is said to be homogeneous. The 
characteristics of homogeneous strain (in three di­ 
mensions) are listed by Love (1944, p. 36-37) as 
follows :
(i) Straight lines remain straight, (ii) Parallel lines remain 
parallel, (iii) All straight lines in the same direction are 
extended, or contracted, in the same ratio, (iv) A sphere is 
transformed into an ellipsoid, and any three orthogonal diam­ 
eters of the sphere are transformed into three conjugate 
diameters of the ellipsoid, (v) Any ellipsoid of a certain shape 
and orientation is transformed into a sphere, and any set of 
conjugate diameters of the ellipsoid is transformed into a set 
of orthogonal diameters of the sphere, (vi) There is one set of 
three orthogonal lines in the unstrained state which remain 
orthogonal after the strain ; the directions of these lines are in 
general altered by the strain. In the unstrained state they 
are the principal axes of the ellipsoid referred to in (v) ; in 
the strained state, they are the principal axes of the ellipsoid 
referred to in (iv) * * *

The strain shown in figure 6A is not only assumed 
to be homogeneous in the vicinity of point 0 but it 
is also infinitesimal, since the squares and products 
of the strains themselves are neglected. It will be 
understood that the expressions for strain derived 
in this section refer only to homogenous infinitesimal 
strain at a point.

By using the first three of the characteristics 
listed by Love, one may develop the expression for 
the shearing strain y^, which is associated with the 
direction OP determined by *. The shearing strain 
y^ is defined as the change in angle between lines 
originally oriented at * and * -f 90°. In figure 6 A, 
this is angle POD minus angle P'0'.D'. Point D is de­ 
termined by the intersection of a line from 0 perpen­ 
dicular to OP with a line from B parallel with OP. 
Line DG is drawn parallel with the x axis. After 
strain points E, F, and G are at E', F' and G', whose 
locations are determined by the relations:

O'E' = O'F' = A'G' = O'E'. (4.9)
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The new position of D now lies on the prolonga­ 
tion of G'E'. Since BD is parallel to OP, the new 
position of D also lies on a line from B' parallel to 
P'O'. Thus, D' is located. The shearing strain is 
angle POD minus angle P'O'D'.

In the triangle O'D'F'
(D'F'Y = (O'D'Y + (O'F'Y - 2(0'fl')(0'F') cos (F'O'D').

(4.10) 
However, 

angle F'O'D' = P'O'D'

D'F' = DF(1 + e,) 
DF = BP = OA

O'D' =OD(l + e ^+90. ) = OA sin * (1 + 
O'F' = OF (1 + e^) = OA cos *  (1 + e^).

Hence (4.10) becomes

- 2 (OA) 2 sin *  cos % (1 + e^) (1 + e*+90 <> ) cos (90°   7^).

(4.11)

The expression ^+90.can be obtained from (4.7) 
through substitution of * + 90° for ty. If products 
and squares of strains are neglected, and if y* is so 
small that sin y* = y* the shearing strain is given 
by:

(4.12)

Equations 4.8 and 4.12 define extensions and 
shears on an arbitrary plane, oriented at angle <l> to 
the x axis, in terms of the strain components in the 
coordinate directions. These equations are of the 
same form as equations 2.1 and 2.2 that defined 
normal shearing stresses on a plane whose normal is 
inclined at an angle p. with the x axis, in terms of 
stress components in the coordinate directions. Note, 
however, that y* and yxy are each multiplied by one- 
half.

This formal correspondence allows us to infer at 
once that the form of the relations among stresses 
obtained by use of the equation 2.2 is also true for 
relations among strains. Strains reach extreme 
values that may be designated as ei, eg, and ymax at 
certain values of *; e* + q, = «i + £3> and the rela­ 
tions between strains may be represented by Mohr's 
circle in (e, y/2) coordinates as in figure 65. The 
angle *' is the angle between the x axis and the 
direction of ci, the greatest elongation.

Figure 6B is constructed as if the strains actually 
shown in figure 6A were infinitesimal instead of 
finite. Thus

2.30 - 2.00 
2.00  = +.15

3.20 - 3.00
3.00 = +'67 

7., = 15° = .262 radians.

The circle in figure 6£ also has a pole. Lines 
drawn through the pole intersect the strain circle at 
coordinates which define the strain in the direction 
of the line. The line pole-o. in figure 6B is parallel 
to OA in figure 6A, the line pole-p is parallel to OP, 
the line pole-m is parallel to Om and so on. If the 
strains in figure 6A were infinitesimal, the coor­ 
dinates of p would give the values of e* and y*/2 that 
might be obtained by measuring lines and angles in 
figure 6A.

The strains actually shown in figure 6A are, of 
course, exaggerated in order to be seen and are hence 
rather large. It may be instructive to compare the 
strains of OP as shown in figure 6A with those com­ 
puted from equations 4.8 and 4.12 and with those 
measured from Mohr's circle.

«*-  --

Strains shown on 
figure 6A

+ 0.224

-5°40' =   0.099 radians

Strains com­ 
puted from 
equations 

4.8 and 4.12

+ 0.214 

- .0887

Strains meas­ 
ured from 

Mohr's circle

+ 0.214 

- .088

Comparison of these figures will give some idea of 
the error involved in applying the formulas for infini­ 
tesimal homogeneous strains to finite homogeneous 
strains.

It is important to observe that if the tensor of 
stress and the tensor of strain are coaxial, then ** = 
y. The axes of principal stress and of principal strain 
then coincide. This is equivalent to stating that 
stresses are related to strains by a scalar factor, not 
a vector. The factor may be a constant, as in elas­ 
ticity, or a scalar function of the coordinates, as in 
Von Mises' theory of plasticity. The principal axis 
of stress and strain are, in general, not coincident 
unless the material is isotropic.

STRESS-STRAIN RELATIONS IN THE ELASTIC STATE

If an isotropic, perfectly elastic, rectangular prism 
with sides parallel to x, y, and z is submitted to a 
uniform stress ax, the unit elongation is given by 
Hooke's law

E (5.1)

in which E is the modulus of elasticity for material 
under tension, or Young's modulus. The material 
simultaneously contracts equal amounts in the y



B-12 THE SOUTH SILVERTON MINING AREA, SAN JUAN COUNTY, COLORADO

and z directions as it elongates in the x direction. 
The contractions are given by

E (5.2)

in which v is Poisson's ratio.
If the prism is subjected to three principal axial 

stresses <rx , a-y , and o>, the strains corresponding to 
each stress may be superposed, and the result is:

e. = (HE) [>, - v(*9 + <r,)L 7,y - rxv/G

 V = (HE) [<rv - v(<rx + <r,)], 7V, = Ty,/G (5.3)

Conversely, expressions for stresses in terms of 
strains are given by :

<Ty = \e + 2Gey 
<TZ = \e + 2Gez 

in which 

E

(5.4)

G-

\   

and

= modulus of elasticity for material under shear,
vE

(5.5)(1 +  )(!- 2.) >

e   ex + ev + e« = volume strain.

CONDITION OF COMPATIBILITY

The six components of strain given in equation 4.1 
are functions of only three components of displace­ 
ment Us, uy, Ug. Hence, the components of strain can­ 
not be independent of each other. The relations be­ 
tween the various components of strains can be 
determined from equations 4.1 by differentiating 
 X twice with respect to y, ey twice with respect to x, 
and yw once with respect to y and once with respect 
to x. The result is the first of the six equations 
given below: the others are obtained by similar oper­ 
ations, as explained by Timoshenko (1934, p. 196).

0) 0) 'dx'dy '

- +

'dy'dz 

3%

9 
"dx

'dy'dz

5 "dy 

' ~~^  +

+ 
*-/ car __ ~^~r  'dx'dz "dxdy

__ 9 /'~~dz\ "dx

(6.1)
Equations 6.1 express the mutual compatability 

of the components of strain. By means of the rela­ 
tion between stress and strain given by Hooke's law, 
the condition of compatibility in elasticity can also 
be expressed in terms of stresses. If body forces are 
absent or constant, these expressions are, according 
to Timoshenko (1934, p. 198) :

O2C' O2 O 
0 & O O

in which

and

'

=0 (6.2)

(6.3)

(6.4)

The six equations of compatibility 6.2 and the 
three equations of equilibrium 3.4 furnish nine 
equations containing six unknowns a-^, a-y, <rs, r^, 
ryz, rxz> Theoretically, at least, the means are thereby 
at hand to solve for the stresses completely, provided 
that the conditions of stress or strain on the bound­ 
aries are known. The boundary conditions are used 
to evaluate the constants of integration that appear 
in the solution.

The solution of these second-order partial-differ­ 
ential equations may present difficult mathematical 
problems. A direct method of simplification is to 
restrict the analysis to two dimensions. In two- 
dimensional analysis a further choice is to be made 
between analysis for a state of plane strain and 
analysis for a state of plane stress.

PLANE STRAIN AND PLANE STRESS

Plane strain and plane stress are hypothetical 
states assumed to exist for the purpose of practical 
analysis. The assumption of one or the other of 
these ideal conditions greatly simplifies the mathe­ 
matics in problems of stress and strain, and, since 
they represent broad classes of practical problems 
to a considerable degree of accuracy, these concepts 
have been widely used.

In plane strain one assumes the existence of a 
direction such that all deformation is confined to 
planes that are perpendicular to this direction, and 
further, that the stresses and strains do not vary 
with distance along this direction. Rectangular co­ 
ordinates are usually chosen so that this direction 
parallels the z axis. The principal strain  S vanishes. 
We have from equations 4.1 and the last of equa­ 
tions 5.3, and if E remains finite,

"du.

a,   v(a!C + ffy ),

Plane strain 

  n

Tmz   0

o

-ST to T, e, 7) = 0. (7.1)

A state of plane strain is more or less closely 
approached in sections distant from the ends of a
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long cylindrical or prismatic body loaded by forces 
that are normal to the long axis and do not vary 
along its length.

The equations of equilibrium 3.4 become, in the 
state of plane strain, respectively:

?>x ' 'dy
"dffy , "^>Txy

"dy "dx Equilibrium in plane strain

The stress-strain relations of equation 5.3 become:

- , a, -

Stress-strain in plane strain 
(strains in terms of stresses)

(7.3)

e z = 0

7*1, = 2(1 + V) T* V /E,

or, from equation 5.4:
a.   X(e. +   ) + 2Gex

ffv = \( ex +   ) + 2 G ev stress-strain in plane strain
<r z = X(ea! + ej,) (stresses in terms of strains)
rxv = G yxv. (7.4)

In a state of plane stress, one of the principal 
normal stresses vanishes. The direction of zero prin­ 
cipal stress is again taken as parallel to the z axis. 
All stresses act in planes perpendicular to z, hence

*. = (>,
rxa = 0,7*z  = 0 Plane stress
rvs = 0,7,, - 0. (7.5)

It is usually further assumed that the other stress 
components do not vary with distance along z.

The equations of equilibrium and stress-strain re­ 
lations are, respectively:

"dx~ +
Equilibrium in plane stress

(7.6)

  V<TV } Stress-strain relations in
  v<rx ) plane stress (strains in
x + (ry) terms of stresses)

yxv = (1/G) rxy, (7.7)

ffx = \e + 2G ex = 2G(ex   es ) Stress-strain relations in
<jv = \e + 2G ey   2G(ev   e s ) plane stress (stresses in
\e =  2G ez terms of strains)

T,y = G 7,v. (7.8)

THE STRESS FUNCTION

To assume that a state either of plane stress 
or of plane strain exists also allows considerable 
simplification of the compatibility equations. The 
equations of equilibrium may be combined with the 
equations of compatibility to form a single equation

valid for both plane stress and plane strain, provid­ 
ing that body forces are zero or are constant. If body 
forces are zero this equation is:

= 0, (8.1)

in which F is Airy's stress function, which is related 
to stresses by the expressions

dy- ' ffv - "dx2 and r^s, = 'dx'dy ' (8.2)

The problem of elastic-stress analysis then be­ 
comes one of finding an expression for F, in terms 
of the coordinates, that both satisfies the stress-func­ 
tion equation and which yields stresses that satisfy 
the known boundary conditions.

As there are an infinite number of solutions to 
the stress-function equation, the selection of the one 
that satisfies actual conditions may present a great 
deal of difficulty. A number of rigorous solutions 
have been obtained for problems that involve rela­ 
tively simple geometric shapes or relatively simple 
distributions of boundary and body forces. Various 
approximate methods may be employed if the mathe­ 
matical difficulties of a rigorous solution are very 
great. Some solutions in the form of infinite series 
have been obtained that fulfill the requirements to a 
satisfactory degree of accuracy. The usual proce­ 
dure is to try a first expression for F (say FI) . The 
computed boundary stresses are then compared with 
information that may be available concerning the 
real boundary stresses. If the two do not agree, 
another function F2 is added to FI to remove part 
or all of the discrepancy and the process repeated 
until either an exact solution is obtained or the in­ 
creasing complexity of the expression begins to out­ 
weigh the advantage of greater accuracy. Most rig­ 
orous or semirigorous solutions result in very 
complicated expressions for stresses that are best 
presented in the form of tables or graphs.

In engineering practice, elasticity analyses are 
usually made to determine the stresses expected to 
act on or within an elastic structure. By use of the 
elastic constants of the materials, strains may also 
be calculated. In geology, elasticity analyses are 
more often used to explain the pattern of deforma­ 
tion of masses of rock than to compute stresses. 
Geologists have been, therefore, primarily interested 
either in the directions of principal stress, if poten­ 
tial failure is by tension, or in the directions of maxi­ 
mum shearing stress, if potential failure is by flow- 
age or faulting.

Examples of the use of Airy's elastic-stress func­ 
tion in analysis of large-scale geologic structures 
have been presented by Hafner (1951), possibly for
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the first time in American geological literature. Such 
analyses of elastic-stress distribution should be con­ 
tinued. But the theoretical bases should also be more 
closely examined as investigations progress from 
studies of elasticity to studies of geologic structures 
that involve finite and permanent deformation. Some 
of the features of permanent or plastic deformation 
are considered in the following section.

THE PLASTIC STATE

DEFINITIONS

The concept of the plastic state originates in the 
observation that the response of many solid materials 
to uniaxial stress changes greatly in character, and 
more or less abruptly, when the load reaches a cer­ 
tain value. For example, the load-deformation curve 
for a wire or rod of ductile metal under tension may 
have the general shape shown in figure 7. In the 
range OP the material conforms to Hooke's law 
(strain is proportional to stress), and the original 
shape and volume is recovered upon release of stress. 
At point P, the proportional limit, the relation of 
stress to strain becomes nonlinear. The proportional 
limit is usually close to the elastic limit, E, beyond 
which there is permanent deformation. By definition, 
the material becomes plastic if stressed beyond the 
elastic limit. The yield strength is taken as equal to 
the stress at which a specified amount of permanent 
strain, say 0.002, occurs. Some materials, such as 
mild steel, have a well-defined yield point, Y, at which 
an increase in deformation occurs without an in­ 
crease in stress, and the stress-strain curve has an 
abrupt flexure. The stress-strain curve for many 
materials continues to rise beyond the yield point 
along the line YA but at a slope that is much flatter

Deformation

B
FIGURE 7. Graphs of stress-strain relations. A, A real material under ten­ 

sion showing linear elasticity in the range OP. At P, the proportional 
limit, Hooke's law fails. Nonlinear elasticity may be shown in the range 
PE. Beyond E, the elastic limit, deformation is not fully recovered upon 
release of stress. The yield point, Y, defines the stress at which & specific 
amount of permanent deformation remains. Material work hardens in 
range YA. B, An ideal plastic material; deformation proceeds at a con­ 
stant load, B. Elastic strain BY is negligible compared to plastic strain 
YA.

than the slope in the elastic range. Materials for 
which the curve continues upward, although at a 
flatter slope, are said to strain harden.

Strain hardening introduces considerable compli- 
:ation into the analytic analysis of plastic deforma­ 

tion. The theory of plastic deformation used in this 
paper has been most thoroughly developed for ideal 
materials that do not strain harden and that have 
stress-strain diagrams with abrupt flattening of the 
type shown in figure IB. It will be assumed, simply 
for the purpose of simplifying the mathematics of 
analysis, that such ideally plastic material may rep­ 
resent the rocks in the South Silverton area to a 
rough first approximation; and further, that the 
elastic deformation BY is negligible compared to the 
permanent deformation YA.

Two other factors, derived largely from experi­ 
mental observation, must enter into the concept of 
the ideal plastic state. The first is that crystalline 
metals do not undergo any appreciable permanent 
change of volume as the result of plastic deforma­ 
tion. This statement does not apply to particulate 
bodies, such as loose sand, but it will be assumed to 
hold for dense polycrystalline aggregates of min­ 
erals, and hence to the rocks of the South Silverton 
area. The second observation is that plastic defor­ 
mation in crystalline solids is often accompanied by 
the appearance of physical discontinuities along 
which abrupt relative displacements occur. It will 
be assumed that the faults observed in the rocks of 
the South Silverton area are analogous to such "slip- 
lines" in deformed metals and that their arrange­ 
ment may be determined by analysis of ideal plastic 
deformation.

Finally, the plastic state must be regarded as one 
in which continuous internal changes occur. If in­ 
crease of stress is halted while a body is still in the 
elastic state all change ceases, and analyses may be 
made of the stresses and strains in that constant 
state. Furthermore, the work that has gone into pro­ 
ducing elastic deformation can be recovered quanti­ 
tatively. If the body is being deformed plastically, 
however, internal changes in the relative positions 
of particles may continue although the boundary 
loads are held constant. The work expended in plas­ 
tic deformation, however, goes into producing dis­ 
order in lattices, into producing new surfaces, and 
into heat, and cannot be recovered. Even if defor­ 
mation is so slow that inertial forces may be 
neglected, it is still necessary to use a quasi-dynamic 
approach to analysis; that is, the continuous changes 
in the internal geometry of the body from one par­ 
ticular stage to the next succeeding stage must be
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considered. Evidently, then, the relations between 
stress and strain in the plastic state must be incre­ 
mental in form and connect the stresses at each 
stage with small changes in deformation.

The basic concept of a plastic state has been out­ 
lined above in a rather unsophisticated fashion. It 
is now necessary to define more closely the conditions 
under which such a state may be reached and the 
properties of a body in that state. In the section 
that follows various criteria for defining the failure 
of elasticity are presented; next, the stress-strain 
relations used in the ideal plastic state are stated; 
and finally the method of computing slip-line fields 
is indicated.

CRITERIA OF FAILURE

Many criteria for expressing mathematically a 
state of plasticity or failure have been proposed by 
engineers and physicists. A few are manifestly more 
successful than others, but even the best are gen­ 
erally restricted in their application to certain broad 
classes of materials. No one theory appears to fit 
all the test results on all materials under all testing 
conditions. Some of the various criteria are briefly 
described below. For more details the reader is 
referred to Marin (1935), Nadai (1950), Hubbert 
(1951), and Robertson (1955).
1. Maximum principal-stress criterion

\n\=K. (9.1)

Failure occurs when the maximum principal 
stress reaches a certain value, whatever the other 
principal stresses may be, provided the latter are 
smaller in absolute value. This criterion is un­ 
successful because, contrary to experience, it 
predicts failure under three equal compressive 
principal stresses (hydrostatic pressure) or three 
equal tensile principal stresses.

2. Maximum strain criterion. Failure occurs when 
the elastic strain reaches a certain value.

ei = K, (9.2) 
This criterion also appears faulty, if applied to 
material under hydrostatic pressure, because 
even very high hydrostatic pressures do not cause 
permanent deformation.

3. Maximum strain-energy-of-distortion criterion. 
Flow occurs at a constant maximum value of the 
strain energy of distortion. This quantity is 
obtained by subtracting the elastic energy of 
volume dilatation from the total elastic energy 
stored in the material.

(<n - ffzY + (ff2 - <r3 ) 2 + (<r. - cri) 2 = 6k": (9.3)

Nadai (1950, p. 210) expresses this criterion in

terms of a quantity that he calls octahedral shear 
stress

TO = constant = [(<n   <r2) 2 +
(n _  ,)' + (n - crx) 2] */3. (9.4)

This criterion applies well to the yielding of 
ductile metals.

4. Maximum shear-stress criterion. Failure by flow 
or by rupture occurs when the maximum shear 
stress reaches a constant value, which is charac­ 
teristic for each material.

Tm«= («ri-«r,)/2 = fc. (9.5)

The intermediate principal stress can have any 
value between 01 and o-3 . This criterion agrees 
satisfactorily with the results of experiments on 
ductile metals. This is Tresca's criterion and is 
equivalent to Von Mises' criterion in plain strain.

5. Mohr*s criterion. Failure occurs when the shear 
stress along the planes of potential slip reaches 
a certain value. This critical shear-stress value 
TC depends on the normal stress an acting upon 
the same planes.

T. = /<*.). (9.6) 
Mohr's criterion can be expressed in several ways, 

according to the type of function f(an) selected. One 
of the forms used widely, and more or less success­ 
fully, in the study of brittle, cohesive, or loose mate­ 
rials is that proposed long ago by Coulomb (1776). 
It states that the limiting or critical shear stress rc 
has a value of:

Tc = c + <r»tan0. (9.7) 
In this expression, c is regarded as a constant that 

is characteristic of the material and is often referred 
to as cohesion, an is the normal compressive stress 
on a potential slip plane, and <f> is the so-called angle 
of internal friction.

Figure 8 illustrates a state of stress at the incep­ 
tion of failure," according to the Coulomb criterion. 
Any state of stress represented by a circle that is 
tangent to the lines ED and EDf (fig. 8A) produces 
failure, whereas any state of stress represented by a 
circle wholly within the envelope DED' does not. 
Moreover, the orientation of planes along which fail­ 
ure occurs are defined by the points of tangency TI 
and T2. These planes, shown in figure 8C as P' T\ 
and Pf Tz, are inclined at an angle of 45°   (<£/2) 
with the axis of greatest pressure, <r3 . This may be 
readily seen because triangle OT^E (fig. 8A) re­ 
quires that

or
2a + 90° + £ = 180'

= 45° - (9.8)



B-16 THE SOUTH SILVERTON MINING AREA, SAN JUAN COUNTY, COLORADO
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FIGURE 8. State of stress at the inception of failure, according to the Coulomb criterion. A, Mohr's stress circle and envelope DED' of stress circles that 
produce failure. B, Diagram of a sample being sheared under stress system shown in A. C, Physical plane (x, y) corresponding to stress plane (<r, T) of A.
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In effect, failure does not occur along planes of 
maximum shear stress because there is too much 
f rictional resistance along these planes. As the angle 
between the plane and the line of action of as is de­ 
creased, however, the f rictional resistances due to an 
decreases rapidly but the shear stress, although also 
decreasing, remains moderately high. At a certain 
angle, a, the shearing stress equals the sum of co­ 
hesion and frictional resistance and the system is 
no longer stable.

It is also assumed that the planes of failure are 
parallel to the axis of intermediate stress, a2, and 
that 0-2 has no effect upon the orientation of failure 
lines. Figure SB shows some of the planes of figure 
8C arranged into a triangular element (stippled) 
representing one-half of a specimen failing under 
compression.

The criterion of a straight-line envelope, of slope 
<t>, becomes invalid near the point E. That is, brittle 
materials under tension, actually break at right an­ 
gles to CT!, the greatest tension, rather than obliquely 
to it, as they do under shear. Various other types 
of envelopes have been proposed to avoid this diffi­ 
culty, for instance, the parabola shown in figure 9 
would intersect the a axis at a right angle, implying 
tensile fracture with y = 0.

The maximum shear-stress criterion, in which the 
envelopes are horizontal lines, rmax = ±k, is shown 
in figure 10.
6. Robertson's criterion. E. C. Robertson (1955, p. 

1303-1305), pointed out that a fairly satisfactory 
expression for the rupture strength of silicate 
rocks is given by:

(9.9)Tmax = ffn

or
(<ri   <r3 ) = fc(<ri + ff2 + <r*)/3, (9.10)

where <rm is the mean stress and k is about equal 
to one, except for certain types of tests in which 
one of the principal stresses is zero. 

7. Other criteria. Other criteria and mechanisms 
have been proposed by many workers. Among 
the better known is that of Griffith (see Nadai, 
1950, p. 196-198; and Ode, 1956), who investi­ 
gated the effect of small cracks, flaws, or foreign 
bodies upon the strength of amorphous materials. 
N. W. Taylor (1947) has also proposed a cri­ 
terion that relates the stress required to break a 
brittle material under simple tension to the dura­ 
tion of application of stress. 

It should be emphasized that the laws governing 
fracture and flow of solids are still imperfectly un­ 
derstood. Internal flaws and duration of stress are 
but two of many factors that influence fracture, in

addition to the overall relations of principal stress. 
Temperature and chemical action of fluids have po­ 
tent effects on the strength and on the mechanical 
type of failure of many geologic materials. All these 
factors well may have influenced the fracturing of 
rocks in the South Silverton mining district. Their 
significance in altering the theoretical fracture pat­ 
tern can scarcely be estimated.

RELATION BETWEEN LOAD AND DEFORMATION IN 
THE PLASTIC STATE

The criteria of failure listed in the preceding sec­ 
tion are concerned almost exclusively with relations 
between stresses at the time of yielding. They say 
nothing about possible modes of deformation after 
the plastic state is attained, nor do they make evi­ 
dent any particular relations between stresses and 
strains in the plastic state.

The relations between stress and strain in the plas­ 
tic state are fundamentally different from those in 
the elastic state. The nature of those differences and 
the way in which plastic state stress-strain relations 
may allow for finite deformation has been clearly 
presented in a paper by Prager (1956, p. 64-66), to 
which the reader is referred.

There are two principal difficulties. The first is 
the mathematical complexity that arises when finite 
rather than infinitesimal strains are measured with 
reference to the stress-free state. The second is how 
to express strain when a body is undergoing both 
elastic and plastic deformation, particularly if defor­ 
mations in the plastic zone are constrained by 
adjacent parts that have not yet reached the yield 
limit. The first difficulty is overcome by expressing 
the relation between stress and the rate of strain 
rather than between stress and strain itself. In this 
way stress is related to increments of strain pro­ 
duced between the instants t and t -f- dt rather than 
the total strain since application of load. The second 
difficulty can be met by including both the recover­ 
able and irrecoverable strains in a single relation to 
stress. Several such expressions have been used but 
they lead to rather formidable mathematical compli­ 
cations. In practice, the elastic-state strains are 
generally neglected, and in the simpler analyses it 
is assumed that the material does not work harden.

Some years before this study was made it was 
found that the problem of determining a plastic 
stress-strain relation was also related to the choice 
of a proper yield criterion and to the necessity of 
providing for discontinuities in deformation. Sev­ 
eral relations between stress and increment of plas­ 
tic strain have been proposed. The one that appears 
to satisfy the requirements most successfully, at
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T
FIGURE 9. A, Parabolic envelope of stress circles. Circle with center at A represents failure under tensile stress, <7i = St, as   0 

as shown in B. Stress circle for tensile failure is tangent to parabola at vertex. Circle with center at B has radius of curvature 
equal to that of parabola at vertex and is the largest stress circle for tensile failure. All larger circles contact parabola off the 
<7 axis and represent failure due to shear. Circle with center at C represents failure under uniaxial compression. Failure occurs 
along on one or the other of two planes, say O' T^ in C, which are inclined at 90   a to ffi axis. In this instance the ratio 
of strength in compression to strength in tension is Se/St   3.95.



ANALYSIS OF PLASTIC DEFORMATION ACCORDING TO VON MISES' THEORY B-19

FIGURE 10. Stress circle envelopes for criterion of constant maximum shear 
stress. Tresca's criterion or Von Mises' criterion for plane strain.

least when applied to unconstrained plane strain and 
when used with the yield criterion of maximum 
strain energy of distortion, is that of Levy and Von 
Mises, already referred to. The Levy-Mises' theory 
assumes (1) that the elastic-state part of strain is 
so small that it may be neglected relative to the per­ 
manent, or plastic state part, (2) plastic deforma­ 
tion does not result in a permanent change of volume,
(3) the rate of change of the deviator part of strain 
is proportional to the deviator part of stress, and
(4) the principal axis of stress deviators and strain- 
rate deviators remain parallel during the plastic de­ 
formation of isotropic material. The deviator of 
stress is that part of the stress tensor which remains 
after substraction of the hydrostatic part (average 
pressure or tension). Similarly, the deviator of 
strain is that part of the strain tensor remaining 
after subtraction of the average strain. Denoting 
elastic strains by one prime and plastic strains by a 
double prime, condition (1) above may be stated as:

(10.1)
(10.2)

e' = 0

total strain = e = e' + e" = e". 
Condition (2) may be stated as:

Condition (3) may be stated as:
d t   er " 4- e/' + « Tt( ex    §  

" = 0.

9,

(10.3)

(10.4)

in which L is a positive scalar quantity that may 
vary in space and time. L must be positive in order 
that work be done on rather than received from, 
the deforming body.

Writing e, for d^/dt, s,, and so on, for the com­ 
ponents of the deviators of strain and stress, and 
inserting equation 10.3 gives for equation 10.4 and

the other plastic stress-strain relations the following 
equations (Prager and Hodge, 1951, p. 30) :

= Lsx 7l,z = 2L

£  = Lsy y,x = 2L TZ* (10.5)

e« = LiSa 7*5, = 2L Txy

These are the plastic stress-strain relations that 
replace the elastic stress-strain relations of equa­ 
tions 5.1-5.3. The quantities ca, 8a, and so on, in each 
equation are vector components of the respective 
strain-rate and stress-deviator tensors. Their con­ 
nection by means of a scalar variable requires that 
the vectors of strain rate and of stress deviation be 
parallel and that the tensors of strain rate and stress 
deviation be coaxial.

Strain-rate components are defined as below:

e* = ~JT~ dt
__d_f_

dt \ "dx

and similarly,

ev  

dyyil _
dt \ "dy

-f- -) = ' 'dy I~r (10.6)

\J {/ X i

=~ST +

It will be noted that the plastic-strain-rate com­ 
ponents are defined by the derivatives of velocity 
components in a manner exactly analogous to the 
definition of elastic strains in terms of derivatives of 
displacements. The element of time actually enters 
in only as a convenient parameter to express the 
progress of deformation, that is, to indicate an incre­ 
ment of strain at a particular point as deformation 
proceeds. This increment of strain applies to a par­ 
ticular point that is watched during deformation 
and is not to be confused with variations in strain 
that may be noted between the one (x, y) point and 
another at any instant of time. Any quantity, such 
as a particular dimension of the deforming body, 
that increases monotonously during the process of 
plastic deformation might be used instead of time.

For plane strain

therefore

ez = 0 and, since L =4= 0

ffx -\- ffy
(10.7)
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This is analogous to the corresponding expression 
for uz in the equations for elastic plane strain 7.1 if v 
= y%. In fact, if Poisson's ratio v is taken equal to 
one-half the elastic equations in three dimensions 
5.3 lead to such expressions as

3 e* =~ZE~ Sx (10.8)

that superficially resemble their counterparts in 
10.5. It would appear more logical, however, in 
analyzing a body of ideal plastic material with a 
sharp yield point to not attempt to interpret the 
plastic state as one in which the elastic constants 
v and E have certain values or tend toward certain 
limits.

GENERALIZED EXPRESSION FOR SLIP LINES IN PLANE 
PLASTIC STRAIN (CARTESIAN COORDINATES)

In this section the method of determining princi­ 
pal shear-stress trajectories or "slip-lines" will be 
presented very briefly, under the assumptions that 
the body analyzed yields according to the criteria 
of maximum strain energy of distortion, and that the 
stress-strain relations are those of Levy-Mises given 
in equations 10.5. In terms of stresses and velocities 
in plane strain we have the following relations and 
conditions to consider: 
(a) Definitions of strain rates

^r 
OX

7 »_  ^ ** "dx

= 0

(b) Stress-strain rate relations

ex   LSx 7]/z = 2Z/ Tyz   0 Tye  =  0

 V = LSy Vzx = 2L Tsx =0 Tzx = 0

6jr = LlSz = 0 "fry    2L Txv

s, = Q.

(c) Definition of deviators of stress
(11.2)

Sv  

B ' 2
x -\- ffjf + <>"* __ ffy   

(11.3)

(d) Static equilibrium (neglecting body forces)
O *^
n/Tw fir*,.

= 0"dy

"dy "dx (11.4)

(e) Yield condition. In the state of plane strain in 
which the z axis is normal to the plane being 
considered, vz is the intermediate principal 
stress and equation 9.3 becomes

=*-. (11.5)

(f) Relations between principal stresses and co­ 
ordinate stresses in a plane, same, respectively, 
as equations 2.9, 2.11 or 2.21, 2.22 and 2.18

Tx ~T"
|'

  ffy
cos

-f-

-  - cos 2y    rxy sin 2j, (11.6)

or
fl"! + <^3 I ffl    V* nffx     g   '   n   cos 2j

ffi -j- ffz _ <fi   ffs ffv =   n     5   COS 2j

. 
sm 27- (11.7)

(g) The angle y is measured counterclockwise from 
the positive direction of the x axis to the line of 
action of <n, the algebraically largest principal 
stress.

In plane strain the yield criterion of maximum 
strain energy of distortion becomes the same as the 
maximum shear stress criterion, equation 9.5. In 
other words, the condition of plasticity is attained 
only if the shear stress is at a maximum, and this 
occurs only along trajectories of maximum shear 
stress. Therefore, plastic deformation, as herein de­ 
fined, occurs only along trajectories of maximum 
shear.

The slope of the first shear trajectory is, as given 
in equation 2.28,

dy cos 2j
(2 '28)dx~ 1 - sin 27 ' 

and the problem of constructing principal shear- 
stress trajectories reduces to the determination of y 
as a function of x and y, so that equation 2.28 may 
be integrated.

For the determination of y there are the two 
equilibrium equations 11.4, the yield condition equa­ 
tion 11.5, and the connections between y and the 
stresses in equations 11.6 or 11.7. In order to reduce 
these six equations in six unknowns (a^, vy, T^, <n, 
0-3, y) to one equation in y, we introduce first a new 
variable w, which denotes half the sum of the normal 
stresses. Making use of equation 2.20, u> may be 
written :

-f- g»_
~2 ~~ (11.8)
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By use of the yield condition equation 11.5, equa­ 
tions 11.7 now become :

<r,   a + k COS 27 (11.9) 

ffv = a   k COS 27 (11.10)

rxy = k sin 27. (11.11)

In order that the reader may conveniently compare 
the results of the following section, on Prandtl's 
compressed strip, with those given by Nadai (1950, 
p. 533-538), the angle j3, which is the angle that the 
first maximum shear trajectory makes with the x 
axis will be used instead of y. The angle ft is defined 
as in figure 35 by

0 = 7 + 45°. (11.12)

Equations 11.9, 11.10 and 11.11 become
ffx = w + k sin 2/3 (11.13)
<yv = a   k sin 20 (11.14)

TXV =   k cos 20. (11.15)

These last three equations, when substituted into 
the equations of equilibrium, 11.4, give

(n

- k (sin 20) - k (cos 20) = 0. (11.17)

Differentiating equation 11.16 with respect to y 
and equation 11.17 with respect to x and subtracting 
eliminates &> and gives:

O2 O2

(sin 2^ ~ ~ (cos

or, in terms of stresses,

< cos 2^ =

= 0. (11.19)

If the indicated differentiations are performed, 
equation 11.18 becomes

sm
2 cos 20 = 0. (11.20)

This is a nonlinear partial differential equation of 
the second order. A solution of this equation that 
satisfies the prescribed boundary conditions gener­ 
ally presents great difficulty unless the angle ft is 
some simple function of the coordinates. If the 
boundary conditions are in the form of prescribed 
stresses or velocities, the actual boundaries of the 
region undergoing plastic deformation are generally 
unknown, although the shape of the plastic-elastic 
boundary often may be inferred if the body and loads 
are symmetrical. Some useful solutions may be de­ 
rived under the simplifying assumption that ft (or 
Txy ) is a function only of one or the other of the 
coordinates.

The equation of the first shear trajectory is de­ 
termined through the relation that the slope of the 
trajectory is equal to the tangent of ft.

dx = tan 0  
1   cos 20. 

sin 20
sin 20

1 + cos 20 (11.21)

If a relation between ft and x and y can be found 
from equation 11.20, then substitution into equation 
11.21 will give a relation between x and y which is 
the equation of one family of the slip-line field. It is 
usually neither feasible nor necessary to thus elim­ 
inate ft. More commonly the equations are integrated 
with ft left in, and the expressions for the slip lines 
are derived in parametric form, in which ft (or y) 
is the parameter.

PRANDTL'S COMPRESSED STRIP 

STATEMENT OF THE PROBLEM

To illustrate the method of plastic analysis we 
will take the solution to Prandtl's problem of a com­ 
pressed strip in which a plastic mass is squeezed 
between very long, perfectly rough, rigid, parallel 
plates in plane strain (Prandtl, 1923). The problems 
offered by fracturing in the South Silverton area 
may be regarded as complex variations of Prandtl's 
problem, in which the boundaries are inclined and 
curved.

The plastic mass is free to move only in the x and 
y plane, as shown in figure 11. The slip-line field 
will be examined in a region, R, that is sufficiently 
far removed from the y axis (where the movement 
changes direction) and from the ends (where the 
edges introduce complications) so that the mode of 
the deformation is more or less independent of the 
precise position of R along the x axis. Shear stress

Rigid

Row

Rigid

Pressure

Plastic

Pressure

FIGURE 11. Physical arrangement in Prandtl's plastic strip compressed be­ 
tween rigid plates. In the region R, considerably removed from either the 
center or the ends, the shearing stress next to the plates is constant and 
the region R is in a state of plane strain.
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on the plates is at the maximum, and the convention 
for sign of shear stress gives

TVX   -}-k, TIV =.  k, at y = a 
Tyu -=2  k, Txy   -\-k, at y    a.

The shear stress is constant along the top and bot­ 
tom surfaces of R. This is generalized by assuming 
that rxy is constant along any line parallel to the x 
axis; that is,

"dx -= 0. (12.1)

From equations 11.15 and 12.1 we see that ft must be 
a function of y only and equation 11.18 then reduces 
to

-(cos 2,3) = 0 (12.2) ay- 

cos, 2p = dy + d. (12.3)

Figure 12 shows the directions of maximum shear 
and principal stress on small rectangular elements 
in equilibrium lying next to each rigid plate and on 
the x axis. A first shear trajectory will have the 
orientation of side 1 of these rectangles and may 
be expected to form a continuous curve through 
points A, B, and C. At these points equation 12.3 
has the respective values of:
Point A  1 =   da + C2 
Point B 0 = 0 + C2 
Point C 1 = da + d.

The values d = I/a and C2 = 0, substituted into 
equation 12.3, give

cos 2/3 = yla. (12.4)

SLIP LINES

Differentiating equation 12.4 gives
  2a sin 2j9d/3 = dy. (13.1)

From equation 11.21, the differential equation of 
the first shear trajectory is

dy

N. j

Rigid rough plate \.T,=T,/V=+>('
>_ £\J    Y* I u-n

c

( 

_J

7

7

/'
/ <

1 1

k ''"
B^\ o~t

| yr+45°

i

°v\

Rigid rough plate

'

FIGURE 12. Directions of principal stress and maximum shear on rectangu­ 
lar elements lying next to each rigid plate and on the x axis of Prandtl's 
compressed plastic strip. First maximum shear stress trajectory is in­ 
dicated by 1.

in which the subscript indicates that the slope is of 
first shear trajectory.

In terms of the parameter ft, and using equation 
13.1, equation 13.2 may be written

dx = dy + cos 
sin 2/3

x =  a (2j3 + sin 2/3) + a constant, 
and, as before,

= _2« (1 + cos 2/3) d]8.

. (13.3)

Equations 13.3 define families of half a cycloid 
described by a point on the circumference of a circle 
of radius a as it rolls to the right along the line y = 
  a, through half a revolution. The generating point 
starts on the line y =   a. The angle ft varies from 
+ 90° at y =   a to 0° at y = + a.

The differential equation of the orthogonal sec­ 
ond-shear trajectory is

(dy
da; efce

When integrated, the equations of the second- 
shear trajectory are

x = a (2/3'   sin 2/3') -f a constant

', (13.4)

in which
/3' = 7   45°

and ft' varies from Q aty =   aio   90° at y = a. 
One member of each cycloidal set is generated for 

each value of the constants in equations 13.3 and 
13.4. The center of the plate is taken at the point 
where a cycloid of the first shear trajectory, for 
which the value of the constant is zero, crosses the x 
axis. The center will then be at x     a [(v/2) -f~
i],y-o.

The complete slip-line pattern is shown in fig­ 
ure 13.

STRESSES

From equations 11.15 and 12.4, we have
r., = -*_*-,

a 
which differentiated gives

and
3r^_= 0. (14.1)

Placing these derivatives of r^ into the equations 
of equilibrium 11.4 and integrating gives

«r. = kx/a + /t (y) + D (14.2) 
<7V = /, (x) + E, (14.3) 

where D and E are constants of integration, and /j 
(y) and /2 (#) are unknown functions of y and x.
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FIGURE) 13. Net of principal shear-stress trajectories in a strip of infinite 
length compressed in plane strain between rough rigid plates. In the re­ 
gion R, at some distance from center and the ends, 'drxy/'dx   0 and 
the curves are mutually orthogonal cycloids. Rigid wedges (ruled) remain 
at the center.

Subtracting equation 11.14 from equation 11.13 
gives

ff,   ffy = 2k sin 2/3, (14.4) 
and substituting the expressions for 0-^ and <ry given 
by equations 14.2 and 14.3 into equation 14.4 yields

kx/a + A (y) - /2 (a?) + D   E = 2k sin 2/3. (14.5) 
Because ft is a function of y only, we have

My) = 2k sin 2/3 (14.6) 
MX) - kx/a (14.7)

E = D, 
and the expressions for stresses become

<r« = kx/a + 2k sin 2/3 + D (14.8) 
ffy = kx/a + D (14.9) 

Ttr = -k cos 2/3, (14.10) 
or, in terms of x and y,

ffx = fcx/a + 2k (1 - yVa8)* + D (14.11)
<r, = kx/a + D (14.12)

Txv  -ky/a. (14.13)

The stress deviations are, from equations 11.3, 14.8 
and 14.9,

«. = (<r. - <r,)/2 = +fc (1 - t/Va")* (14.14) 

Sy = -8. = -k (1 - y'/a')*. (14.15)

The positive sign is chosen for the term to the one- 
half power in equations 14.11 and 14.14 because /8 
varies between 90° and 0°, hence sin 2/8 is every­ 
where positive.

The expression for <rv in equation 14.12 shows that 
trv consists of a tension that increases linearly with x, 
plus the constant D. Because the strip is specified 
to be under compression, D obviously must be nega­ 
tive and of greater magnitude than kx/a all along 
the bearing surface between the plates and the com­ 
pressed strip. The pressure on the bearing surface 
thus decreases linearly going in the x direction, and 
becomes zero at some value of x that is determined 
by the value of D. In actual application of the method 
to the South Silverton area, the region in which 
tensile stress is not allowed will be defined, thereby 
fixing a lower limit on the constant of integration.

VELOCITY FIELD

The relative displacements and velocities of parti­ 
cles in a plastically deforming mass need also to be 
investigated before a field of principal shear-stress 
trajectories and the associated stress field can be 
regarded as valid during actual deformation. This 
phase of plasticity analysis has been largely 
neglected until recent years, but much present re­ 
search, both theoretical and experimental, is devoted 
to defining velocity fields that are also compatible 
with slip-line fields and stress fields.

One of the principal difficulties lies in allowing for 
discontinuities in the velocities. The discontinuities 
are, of course, sites of abrupt differential movement, 
or faults, in the geologic sense. The differential equa­ 
tions which describe velocities may allow for such 
discontinuities only if the equations are "hyperbolic." 
A general discussion of hyperbolic equations is be­ 
yond the scope of this report; the reader is referred 
to Hill (1950), Prager and Hodge (1951) and to 
Ode (1960). However, the problem of providing for 
hyperbolic velocity equations becomes linked with 
stresses through the relations of stress to rate-of- 
strain. The stress equations are, in turn, determined 
by the equations of equilibrium and the yield condi­ 
tion. This has led to re-examination of yield condi­ 
tions to see which will lead back, finally, to hyper­ 
bolic expressions for velocities. Problems of plane 
stress have proved considerably more difficult than 
problems of plane strain.

In plane strain, if Von Mises' yield condition and 
relations of stress to rate of strain are used, velocity 
discontinuities must coincide with lines of maximum 
shear stress. The converse, that all trajectories of 
maximum shear stress are also sites of differential 
displacement is not true. The particular principal 
shear-stress trajectories that coincide with faults 
are determined by the geometry of the body and the 
motions that are allowed or imposed upon its bound­ 
aries.

In short, all velocity discontinuities follow trajec­ 
tories of maximum shear stress (or their envelopes) 
even though not all trajectories of maximum shear 
stress may become velocity discontinuities or faults. 
Hence the computation of lines of maximum shear 
stress (slip lines) appears to form only a reasonable 
starting point in the analysis of faulting. The de­ 
termination of which trajectories of maximum shear 
stress are to become velocity discontinuities, or 
faults, at any particular stage of deformation re­ 
mains largely unexplored as a field of research. But 
if faulting has already occurred, the determination 
of the pattern of maximum-shear-stress trajectories 
at the time of faulting may greatly aid in extending
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the known fault pattern into covered areas and help 
interpret the observed differential displacements.

Prandtl's problem of the compressed strip has re­ 
ceived particular attention from Hill (1950), Hodge
(1950), Hill, Lee, and Tupper (1951), Green (1954), 
Alexander (1955) and many others. Prandtl did not 
consider the problem of displacements. These later 
workers found that the mode of internal deforma­ 
tion, including shape of the slip lines, the amount of 
differential displacement along slip lines, and the 
location of slip lines along which actual differential 
displacement may occur depend upon the conditions 
at the end of the strip, particularly the conditions 
of lateral restraint; upon the ratio of the length of 
the strip to its width; and upon the coefficient of 
friction along the contact with the pressing plates.

Prandtl's cycloidal principal shear-stress trajec­ 
tories, or slip lines, lead to pressure distributions, 
except near the free edge, that are close to more 
accurate results obtained by Hill, Lee, and Tupper
(1951) through numerical integration and by re­ 
fined analytical methods. Prandtl's solution applies 
to a strip of infinite length with no commitments 
about the conditions of end restraint, whereas Hill, 
Lee, and Tupper analyzed a strip that overhangs the 
bearing plates and in which the length-width ratio 
of the region under compression is 6.72. The pattern 
of slip lines developed by Hill, Lee, and Tupper also 
appear to be cycloidal in form except near the free 
edge. These authors believed that Prandtl's solution 
could be made more satisfactory if stresses on the 
free edge were chosen so that their resultant was 
zero. Thus, some distance from the end, the Prandtl 
solution of pressure distribution would approach 
their solution in which the edge constraint actually 
was zero.

Now consider the velocity expressions that may 
be associated with Prandtl's cycloidal field of maxi­ 
mum shear-stress trajectories. The plates that 
squeeze the plastic mass must remain parallel and 
the velocities with which the upper plate moves 
downward and the lower plate moves upward are 
the constants  U and U, respectively. Under these 
conditions of uniform movement of the plates in the 
y direction, we may expect that the y component of 
velocity within the deforming mass will be substan­ 
tially independent of x at some distance from the 
center and ends. Assume, therefore, that, within 
the region R under consideration,

.= 0. (15.1)

Therefore, vy is some function of y only, say A (y), 
and, from the relations in equations 11.1 and 11.2,

dvv d.t\(y) _ _ (15.2)
dy dy

The factor L also must be a function of y only be­ 
cause sy (equation 14.15) is a function of y only.

From the condition of no permanent volume 
change we have

"dvx _ dvv _ dMy)
"dx "dy dy

which, upon integration with respect to x, gives

(15.3)

x + My) + Q, (15.4)

where /2 (y} is another function of y, and Q is a con­ 
stant. Differentiating equation 15.4, now, with re­ 
spect to y yields

|-)- * - ~ j* > i ' (15'5 > dy dy2 dy

An expression for the partial derivative of vx 
with respect to y may be found by another method 
through the relations of shear-stress to rate of strain, 
equation 11.2, and the expression for shear stress 
(14.13) :

If the expressions for ^v 
15.6 are equated, we have

-=  2Lky/a. (15.6)

in equations 15.5 and

+ = -ZLkyla. (15.7)
dy"~ ' dy

Because it has been established that L is not a 
function of x, the above equality is not valid unless 
the coefficient of x on the left side vanishes, giving

= o, (15.8)dy2 dy-

which has the general solution
vy = Ny + M,

where N and M are constants. The constants are 
determined by the boundary conditions

at y = 0 vv = 0 (by symmetry) 
at y = a, vy =  U, 

therefore,

AT = 0
N= -U/a

fi(y) = vv = -Uy/a. (15.9) 
Expressions for L and vx may now be developed. 

Equations 15.3 and 15.9 give

"dx "dy a

From equations 11.1, 11.2 and 14.14 we have

(15.10)

Equating 15.10 and 15.11 gives
UL--

ak (1 - y*/a2 )*

(15.11)

(15.12)



ANALYSIS OF PLASTIC DEFORMATION ACCORDING TO VON MISES' THEORY B-25

The coefficient of x vanished in equation 15.7, so 
substituting the value for L just obtained into equa­ 
tion 15.7 and integrating gives

My) = 2U (1 - y2/a2 ) * + a constant. (15.13)

By letting the constant of equation 15.13 be ab­ 
sorbed by Q of equation 15.4 we have

v.= Ux/a + 2U (1 - r/a2 )"4 + Q (15.14) 
vv =-Uy/a. (15.15)

The above expressions for velocities are the same 
as those credited by Prager and Hodge (1951, p. 
152) to Prandtl (1923), except that the equations 
as given by Prager and Hodge do not include the 
constant Q. Prager and Hodge do not, however, 
show a derivation of the velocity expressions, and 
the paper of Prandtl that they cite apparently does 
not mention velocities. Hill (1950, p. 233) gives, 
also without derivation, a possible expression for 
vx similar to equation 15.14 that does include a con­ 
stant, and which he credits to an unpublished work 
of Nadai. More recently, Green (1954) has shown, 
by the method of hodographs, that Nadai's proposed 
expression for vx and, hence, equation 15.14 is unique 
for a region in which Prandtl's cyloids define the 
slip-line field.

The constant Q plays an important part in the 
expression of vx, analogous to the constant D in the 
expression for stresses. Following the work of Hill 
(1950, p. 234), an expression for Q may be derived 
from the requirement that the rate of displacement 
of material across a vertical section at x   a con­ 
stant, say Xi, is equal to the rate at which material 
lying toward the center from the vertical section is 
displaced by the plates. This requires that

vr dy = [si + a (1 + W2)] U, (15.16)

from which it may be shown that
Q/U = l. (15.17) 

The final expressions for velocity are then
vx = U [(a/a) +2(1- y'/a')* + 1] (15.18) 
vy =-Uy/a (15.19)

at the edges y = a and y =   a
vx = U[(x/a) + 1], (15.20)

whereas in the adjacent rigid plate vx = 0. 
Thus the upper and lower contacts between the 
plates and the plastic strip are true velocity discon­ 
tinuities across which the velocity vx changes 
abruptly. The material slips along the plates, and 
particles in the interior that lay originally along a 
vertical line are displaced, as has been shown by 
Hill, into the arc of an ellipse.

Although the velocity equations may not be ex­

pected to hold near the center of the plate, the value 
of Vg, at the point y = o, x =   a (1+ w/2), which 
is at the tips of the shaded central rigid wedges in 
figure 13, as computed from equation 15.18 is:

vx = U (2 - 7T/2) = .43*7. (15.21)

This non-zero value for vx at the center of the 
block, although of doubtful validity, suggests that 
the points of the rigid wedges may become plastic 
as they are pressed together and that the newly gen­ 
erated plastic material moves away from the center.

FORMULAS IN POLAR COORDINATES

The mathematical expressions that describe the 
behavior of a stressed body have been given in ref­ 
erence to rectangular (x, y) cartesian coordinates 
because the operations using this type of coordinate 
system are simpler than those using any other. It 
is apparent, however, that the solution of boundary- 
value problems, in which information for the solu­ 
tion of differential equations is at hand only along 
certain physical boundaries, may be greatly simpli­ 
fied by making the coordinate system geometrically 
similar to the boundaries of the body to be analyzed. 
The areas of interest in the South Silverton problem 
can be solved most readily by the use of (r, 9) polar 
coordinates. The results obtained so far in cartesian 
coordinates need modification in order to be used 
in the polar-coordinate system.

STRESS NOTATION AND EQUILIBRIUM EQUATIONS

The notation for two-dimensional stresses in the 
polar coordinate system is analogous to the notation 
for those in the rectangular cartesian coordinate 
system. The positive direction of normal stresses, 
the positive direction of rr<?, and a trajectory of first 
maximum-shear-stress are shown in figure 14.

As in the cartesian coordinate system, shears on 
adjoining faces of a rectangular element are equal

First maximum  
shear-stress trajectory

FIGURE 14. Stresses on a small triangular element in polar coordinates, show­ 
ing orientation of positive normal stress, positive shear stress, rre, and a 
first trajectory of maximum shear stress.
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in magnitude and opposite in sign, Tdr =   Tf.6 . The 
distance r is measured positively away from the 
origin and the angle 9 must be measured counter­ 
clockwise from the reference radius at 9 = 0°.

All expressions pertaining to stress at a point can 
be obtained simply by substituting o> for o> and <JQ 
for cry . In particular, the expressions for the varia­ 
tion of stress with orientation of the plane on which 
it is measured, equations 2.21, 2.22 and 2.18, become

cos 27

ffi -\-ffa ffi   ffacre      _        _  COS 27

sin 27,

(16.1)

(16.2)

(16.3)

where y is the angle measured counterclockwise from 
the direction of r to the direction of action of <TL. 
Equations 2.20 and 11.8 become

ff! -f ffs = ffr + ffe = 2w. (16.4)

The expressions for the change of stress from 
point to point, that is, the equations of equilibrium, 
are of somewhat different form in polar coordinates. 
If body forces are not included, the equations are

"dffe

+ 3(9

"dr

+ ff r   ffe = 0

+ 2rr9 = 0.

(16.5)

(16.6)

Although the derivation of these equations will 
not be given here, the method used is basically the 
same as that used for cartesian coordinates. Total 
forces acting on a quadrilateral element in the r 
direction are equated to give equation 16.5 and total 
forces acting in the 9 direction are equated to give 
equations 16.6. The expressions are somewhat more 
complicated than those for cartesian coordinates, 
owing to the curved and inclined boundaries. Many 
texts give this derivation, but that presented by 
Frocht (1941, p. 51-54) can be especially recom­ 
mended for its clarity.

STRAIN AND VELOCITIES

If the components of displacement in the r and 9 
directions are called ur and Ue, respectively, the com­ 
ponents of strain are then

"due

_ "bUr . "blip _ Ue

rde dr r

(17.1)

(17.2)

(17.3)

A derivation of these strain components is given 
by Timoshenko (1934, p. 62-63).

Velocities and strain rates are given by

 r =

ee =

dt
due

dt

V r . "dVe

 r rde
"dVr . "dVe Ve

rde "dr r '

(17.5) 

(17.6) 

(17.7) 

(17.8)

RELATIONS OF PLASTIC STRESS TO RATE OF STRAIN 
IN PLANE STRAIN

The relations of plastic-stress deviation to rate 
of strain for plane strain in terms of polar coordi­ 
nates are taken to be analogous to equation 11.2 and 
are written as:

(18.1)

(18.2)

(18.3)

_ Vr I 'dve
  r rde

in which

ffr -\- ffe -\- ffs

 2  d8.4)

ffr   ffe-   2  ' (18<5)

This manner of writing relations of plastic stress to 
rate of strain in terms of polar coordinates does not 
appear explicitly in the textbooks examined, but it 
would seem to be a logical extension from the carte­ 
sian form.

Von Mises' yield criterion in plane strain remains

(18.6)

Substitution of equation 18.6 into equation 16.1 
to 16.3 and 18.1 to 18.5 gives

3 r = k cos 2y =  j-

se =   kcos2y =

Thus,
Tr e = k sin 2y  =.

er   ee = 2kL COS 2y 

yre = 2kL sin 2y

yrg
    = tan 2y.

2L

(18.7)

(18.8)

(18.9)

(18.10)

(18.11)

(18.12)

Where y is a function of 9 only, equation 18.12
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requires that if yre and (e"r   e#) contain r at all, 
they must contain it as a factor that will cancel in 
their quotient. Thus,

2kL sin £7 = y r e   A/i(0)/i(r) 

ZkL cos 27 = e,.   « = A/2 (0)/i(r).

And thus:

(18.13)

(18.14)

^- 2ksin2y ~" 2fecos27 ' (18.15) 

and, if y is a function of r only or of 0 only, L may, in 
either case be a product (some function of 6 only) 
times (some function of r only).

GENERALIZED EXPRESSIONS FOR SLIP LINES IN 
PLANE PLASTIC STRAIN

By use of equations 16.1, 16.2, 16.3, 16.4 and 18.6, 
the expressions for stresses in plane plastic strain 
become

<rr = w + kcos2y (19.1)

<Te   a   k COS 27 (19.2)

ire = fc sin 2-y. (19.3) 
Substitution of the above expressions in to the 

equations of equilibrium 16.5 and 16.6 gives

  ( w + fc cos 27 ) + -^-(fc sin 27) + 2fe cos 2y = 0 (19.4)

and

(w   k cos 27) + r sin 27) + k sin 27 = 0. (19.5)

Differentiating equations 19.4 with respect to 0 
and equation 19.5 with respect to r gives

(19.6)

and

(cos2<y)
O

Dividing equation 19.6 by r and subtracting equation 
19.7 eliminates o> ; k cancels out, giving

(19.8)

-3 "dr = 0.

A solution to this equation in the form y = f (r, 0) 
is valid throughout the plastic region. The angle y 
is also related to the slope of the first principal-shear
trajectory because the slope of first slip line = r -^

dr
= tan fi = tan (y + 45°). (19.9)

By trigonometric relations,

. t . tan (7 v ' '

therefore,

AK0 . 45 ) =
1 + sin 27        

cos 27 or =
cos 27

1   sin

or

d6 =
cos 27 dr

1  sin 27 r v 
The integration of equation 19.11 leads to the rela­ 

tion between r and 0 along the first family of slip 
lines; that is, to the equation of these lines in refer­ 
ence to polar coordinates. This integration is evi­ 
dently considerably simplified if y in equation 19.11 
is either a function of r only or of 0 only, because 
the variables r and 0 can then be completely separa- 
ated.

The analyses of the western and eastern parts of 
the South Silverton area, described in the section on 
application, are made, respectively, under the as­ 
sumptions that y is a function of 9 only and that y 
is a function of r only. The nature of these functions 
is determined by equation 19.8. Since these particu­ 
lar examples will be used farther along, the conse­ 
quences of the two assumptions are examined in 
some detail below.

If y (and thus rre) is assumed to be a function of 0 
only, then

= 0,

and equation 19.8 reduces to

d dj

(19.12)

: 0. (19.13)

Integrating equation 19.13 once gives

cos 27^7   , 
= C   cos 27' 1S a constant- (19.14)

From equation 19.lib we know that along the first 
slip line

dri __ d& (1   sin 27) 
n ~ cos 27 ' (19.15)

Substitution of equation 19.14 into equation 19.15 
eliminates do and gives

2 C   cos 27
or

Ti

(sin 27) 2dy 
C   cos 27

(sin 27) 2dy

(19.16a)

(19.16b)2 C   cos 27 2 cos 27   C

Equations 19.14 and 19.16 are the differential 
equations of the first family of slip lines in plane 
plastic strain in terms of y, under the assumption 
that y (and therefore rre) is a function of 6 only.
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Equation 19.14 may be transformed (Pierce, 1929, 
p. 42 formula 304) into

= e + D = -7 +
2d7

(19.17)  cos £7
where D is constant. The constant D will always be 
associated with the complete integration of the terms 
in equations 19.17, and only those. Because expres­ 
sions involving several integrals in various combina­ 
tions will become common farther along, care must 
be taken to associate each integration with its own 
constant.

The remaining integral in equation 19.17 may be 
evaluated, again according to Pierce (1929, p. 41, 
formula 300), as

/ C - cos £7
2

~ V C2 

1

£

£

, V C2 - 1 tan 7
-, tail

V 1-
C2 luy « V 1 -

, V 1c2 Uuh

. «4-v,l,-l -

C- 1

C2 tan 7 + C  
C2 tan 7   C +

- C2 tan 7
C- 1

- C2 tan 7 .

(19.18) 

1
1 
(19.19)

(19.20)

MQ O1 \

These formulas are valid in the range
   7T < £7 < 7T.

The one that is to be used depends upon the value 
of C for the particular problem at hand; if C is great­ 
er than one, equation 19.18 should be used to avoid 
having negative quantities under the radical sign. 
The restriction that 2y must lie between   TT and 
-f- TT presents no problem because the angle between 
any point on Mohr's circle and the -f- o- axis will be 
found to be either less than * if measured counter­ 
clockwise, or no more negative than   it if measured 
clockwise.

The integration of equation 19.16 leads to

In n -In M +ln V±(C-cos27) = T/C-cos 27 '

in which M is an arbitrary constant associated only 
with the integration of terms of the left side of the 
above equations and In denotes the natural, or Na­ 
pierian logarithm. The plus-or-minus sign under 
the radical sign indicates that either the plus sign 
or the minus sign may be chosen, depending upon 
the relative values of C and cos 2y, so that (C   cos 
2y) is always positive and the square root is real. 
Taking the exponential of both sides of the above 
equation reduces the equation to

First shear line r± =
M

V ±(C-cos27 ) CJS

(19.22)
which expresses r in terms of y along the first family

of slip lines under the condition that 'dy/'dr = 0. This 
formula again contains the integral that takes vari­ 
ous forms, and the generalized derivation for this case 
is now carried as far as it can be until further infor­ 
mation on C can be supplied.

Along the second shear line we have
de

slope of second shear line = r2

By trigonometric relations
cos 27

= tan a = tan (7   45° ). 
(19.23)

tan (7   45°) =  

Therefore,
1 + sin £7   

cos £7

1   sin £7 
cos £7 (19.24)

de =  
or

and

or

sin £7 TS

1   sin £7 dr$ 
cos £7 r2

1 + sin £7
Tz cos £7 

cos £7

de,

dB.

(19.25)

(19.£6a)

(19.26b)rz ~ ~~ 1   sin £7 
Substituting the value do from equations 19.14 into 
equation 19.26a gives

dr2 1 2dy 1 (sin £7) £^7

or

r2 ~~ £ C   cos £7

2dy

£ C   cos £7
(19.27a)

(sin £7) 2dy
  ~~ 2 C   cos £7 cos £7   C

(19.£7b)

which, when integrated, gives for the second slip line

-
- V ±(C-cos£7) exp

F-   f
[_ 2JC-

(19.28)

The parametric expression for 0 is the same 
(19.17) for both the first and the second shear lines.

If y (or rre} is assumed to be a function of r only, 
then

37

and (19.8) reduces to

"de

d2 d 
r-^r(sin27 ) + 3 -^

= 0,

(sin £7) = 0.

(19.29)

(19.30)

Equation 19.30 may be integrated completely to give
sin 27 = (G/r*) + H, (19.31)

where G and H are constants.
Differentiating equation 19.31 once with respect to
r gives

cos 27C?7 _ dr 
sin 27   H r

(19.32)
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Substitution of equation 19.32 into first equation of 
19.11 gives

2dT (sin 2T ) 2^7
w - - sin 27 _ H sin 2T - H

along the first slip line.

Equation 19.33 can be altered somewhat to give
2^7

(19.33

4 - '- 2 J sin 27-H (19 '34)

along the first slip line. Here N is a constant. 
The remaining integral, like that of equation 19.17, 
can take several forms depending upon the value of 
H. The integration of equation 19.34 is valid only 
in the range    * < 2y < TT.

The equation of the second shear line can be ob­ 
tained by substituting equation 19.32 into equation 
19.26b instead of into 19.11. This gives

2^7 2 sin 27^7
2de ~ sin 2T - H sin 2y - H

along the second shear line, 
which may be reduced to

, + *  = -=-_,.tf^ii
along the second shear line.

f 2dy
J sin 2y  2y-H'

(19.35)

(19.36)

GENERALIZED EXPRESSIONS FOR STRESSES IN 
PLANE PLASTIC STRAIN

As shown by equations 19.1 to 19.3, expressions 
for stresses in terms of r and 9 can be written if « 
and y are given in terms of r and 0. The preceding 
section has shown how to obtain a differential rela­ 
tion between y and 0 (equation 19.14) if y is a func­ 
tion of 6 only, or a simple relation between y and r 
(equation 19.31) if y is a function of r only. The 
corresponding relations between « and r and 0 will 
be shown in this section.

If y is a function of r only, equation 19.6 reduces to

= 0, (20.1)

and, if y is a function of 6 only, equation 19.7 reduces 
to

03

W - (20.2)"drdQ = 0.

So, in either case, « is some function that satisfies 
equation 20.2, provided that r 4= 0, if y is a function 
of r only. 
The general solution of equation 20.2 is

a = (function of r) + (function of 6). (20.3)
If y is a function of r only, m can be of the form

w = (function of r, or 7, or both) + (function of 0).
(20.4)

and, if y is a function of 0 only, « can be of the form
w = (function of r) + (function of 9, or 7, or both).

(20.5)

These relations are useful as a check on the form 
of expressions for « in the solution of particular 
problems.

We can go considerably farther in determining 
the nature of the functions in equations 20.3 to 20.5 
by integrating equations 19.4 and 19.5.

Under the assumption that y is a function of 9 
only, equation 19.4 becomes

= 0. (20.6)

-j£- from equation 19.14Substituting the value of
u/u

into equation 20.6 gives

^ =  ZkC/r. (20.7)

Also, if y is a function of 9 only, equation 19.5 be­ 
comes

 do
=   2kCsin2y/cos 2y.

w

The total differential of « is

(20.8)

dw = r̂ dr + ^j-de. (20.9)

Substituting equations 20.7, 20.8, and 19.14 into 
equation 20.9 gives

^-kC* Sin?2d:.., (20.10)

which may be integrated directly to give

= -2Cfclnr-Cfcln[±(C-cos27)L --=

(20.11)

where 2kE is another constant.
Equation 20.11 evidently is of the form predicted 

by equation 20.5. Having this expression for w , one 
may compute ar and <r# from equations 19.1 and 19.2.

If y is a function of r only, equations 19.4 and 19.5 
become, respectively

r~£-   2kr sin 27 -77 + 2k cos 27 = 0, (20.12)

and

-~ + 2kr cos 27 -^ + 2k sin 27 = 0. (20.13)

Substituting the expression for dy/dr from equation 
19.32 into equation 20.13 gives

~ = -2kH. (20.14)

Rearranging equation 20.12 gives

-7^- = 2k sin 27 -^r   2   cos 27. (20.15)

Substitution of equations 20.14 and 20.15, and 19.32 
into equation 20.9 yields

COS2 27^7
= -2kHdO + 2k sin 2ydy + 2k sin 2y -

/on -ie\(20'16)
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Integration of equation 20.16 gives

(20.17)

which may be reduced to the more tractable form

=- 7-

(20.18)

This expression contains the many-form integral 
of the equation 19.34, and again the final integration 
must be left until the boundary values of y are known 
for a particular problem.

There is a strong similarity between the expres­ 
sions for slip lines and the expressions for stresses, 
which is due to a fundamental property of slip lines 
that is worth discussing.

For example, when y is a function of 0 only, we 
have, from equation 20.10,

da =  2kC
dr   kC 2 sin 2ydy

C   cos 2y '

But from equations 19.16a and 19.27a we have

(20.10)

dr 
r

2dj 1 2 sin 2ydj
(20.19)- 2 C   cos 27 2 C   cos 27 ' 

where the upper sign, of the plus-or-minus sign, is 
associated with the first family of slip lines; and the 
lower sign, with the second. If equation 20.19 is sub­ 
stituted into equation 20.10, we obtain

/ f 2^7 
da = TfeC J c _ cog g(y along slip lines. (20.20)

But from equation 19.17 we have

hence
o) + 2kE = +k(26 + 2D + 2y),

where E is the constant of equation 20.11 resulting 
from the integration of du. Rearranged, this gives

= -D - E

along the first slip lines, and

-J£-(0 + ~f) = -D-E

along the second slip lines.

(20.21)

(20.22)

Similar operations when y is a function of r only 
lead to

(9 + 7) = 4- -N - E2k -r v -r -y; - 4

along the first slip lines, and

along the second slip lines.

(20.23)

(20.24)

These remarkable relations between average stress 
and the inclinations of slip lines appear to be special 
cases of more general relations, generally attributed 
to Hencky (1923), which state that

and

-^r -f 0 = a constant on a first slip line, (20.25)

 TT   0 = a constant on a second slip line, (20.26)

= a constant along a first slip line (20.27)

where <f> is the angle measured from any fixed direc­ 
tion to the tangent of the first slip line (Hill, 1950, 
p. 135) . In terms of y, and setting the fixed direc­ 
tion in polar coordinates to be the line 0 = 0, 
Hencky's relations become the same as those derived 
above, that is,

and

= a constant along a second slip line. (20.28) 
The Hencky relations lead to interesting geometric 

properties of slip lines, which have attracted con­ 
siderable attention from stress analysts, mathema­ 
ticians, and geometers (Hill, 1950, p. 136-140; 
Nadai, 1950, p. 545; and Prager and Hodge, 1951, 
p. 130-134). Because these properties may be useful 
in the analysis of geologic structures some of them 
are briefly given below, as paraphrased from various 
sources.

GEOMETRIC PROPERTIES OF SLIP LINES

1. Hencky's first theorem. The angle formed by the 
tangents of two fixed slip lines of one family 
where they are intersected by a slip line of the 
other family is constant along their length and 
does not depend on the choice of the intersecting 
slip line of the other family.

2. Hencky's second theorem. As a slip line of one 
family is followed, the radii of curvature of the 
other family decrease or increase by the length 
of arc travelled.

3. If the slip line followed is straight, the slip lines 
of the curved orthogonal family are circular arcs 
near the intersection.

4. The envelope of the shear lines of one family is 
the natural boundary of the analytic solution and 
a limiting line across which the shear lines of the 
other family cannot be continued.

5. If a segment AB of a slip line is straight, then all 
members of that slip-line family are straight be­ 
tween the two members of the other family which 
pass through A and E.
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6. Two or more adjacent slip-line fields correspond­ 
ing to analytic solutions that are valid for adja­ 
cent regions may be patched together, subject to 
the conditions that the boundaries are slip lines 
common to the adjacent fields, the normal stress 
across the boundaries is continuous, and the 
velocity normal to the boundaries is continuous.

APPLICATION TO THE SOUTH SILVERTON AREA

GENERAL STATEMENT

The application of the theory of plasticity to the 
South Silverton area is concerned primarily with 
determining if the trajectories of maximum shear- 
stress or slip lines constructed according to Von 
Mises' theory in any way resemble the fault pattern 
as mapped in the field. Construction of the whole 
theoretical pattern is based upon assumptions re­

garding the mode of deformation and the shape of 
the plastic domain, and upon direct knowledge of 
part of the fault pattern. The orientation of selected 
slip lines rather than stresses or displacements form 
the boundary conditions for solution of the equations. 
Only very general assumptions regarding the distri­ 
bution of normal stress are made in setting up the 
problems. The exact distribution of stresses that is 
necessary to produce the pattern of slip lines is then 
computed to see whether the distribution is geo­ 
logically reasonable.

The dominant feature of the regional structure is 
a subsided block, within the Silverton caldera, or 
volcanic basin, which is bounded by a zone of normal 
faults called the ring-fault zone, as shown in fig­ 
ure 15.

The area to be analyzed lies adjacent to the south-

EXPLANATION

N

A

15,000 FEET

SEA LEVEL

Fault, dashed where 
approximately located

DIAGRAMMATIC SECTION, VEINS AND SMALL DIKES OMITTED
SEA LEVEL

FIGURE 15. Generalized geologic map of part of the Silverton caldera area showing the subsided block. Adapted from Burbank, Eckel, and Varnes (1947,
p. 28).
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ern periphery of the subsided block, southeast of the 
town of Silverton, and is shown in more detail in 
figure 16.

The production of ores in the area southeast of 
Silverton has come almost entirely from veins in a 
complexly fractured zone that lies to the south and 
southeast of the ring-fault zone. The most intense 
fracturing and strongest mineralization occurred 
in a roughly triangular area, shown in figure 16, 
which is bounded by the ring-fault zone on the north, 
by the northwestward-trending Titusville vein on 
the southwest, and by an arcuate shear zone (So.) on 
the east and southeast. Geologic data in the eastern 
and western quarters of figure 16 are taken from 
the Silverton folio (Cross, Howe, and Ransome, 
1905) ; data for the central part are derived from 
the geologic map that accompanies Professional 
Paper 378-A. In order to better show their true 
strike, the courses of many faults, veins, and dikes 
have been modified somewhat before plotting on fig­ 
ure 16 to remove the effect of topography.

Three systems of fractures may be recognized 
within the triangular area: (1) a system that is 
more or less concentric with and l 1/^ to 2% miles 
south of the southern border of the caldera; (2) a 
system of shear fractures and related tension frac­ 
tures in the western part; and (3) a system of shear 
fractures in the eastern part.

The second or western shear system of figure 16 
includes three groups of fractures. Each can be iden­ 
tified by its trend; 2a, a northwestward-trending 
group of shear fractures; 2&, a northeastward-trend­ 
ing group of shear fractures; and 2c, a group of 
diagonal tension fractures trending somewhat west 
of north. The eastern system is tentatively divided 
into three groups: 3a, an eastern arcuate group of 
shear fractures, partly filled with granite porphyry 
dikes, which extends from Galena Mountain to Ken- 
dall Gulch, together with several other northward- 
trending fractures lying east of Cunningham Creek; 
3&, northwestward-trending fractures on both sides 
of Cunningham Creek; and 3c, fractures that appar­ 
ently are approximately radial to the ring-fault zone. 
There are, in addition to these seven main groups, 
numerous smaller fractures, narrow veins, and a few 
dikes that do not fit into any easily recognized system 
or group. These appear to have lesser significance, 
either in the regional structure or in the mineral 
deposits.

Several of the groups of fractures shown in figure 
16 are not considered in the analysis of the dominant 
shearing deformation. The first group is eliminated 
because it is almost surely of tensile origin and is

definitely older than the northwestward- and north­ 
eastward-trending faults in the western part of the 
area. The fractures of group 1 are filled by dikes, 
as are most of the major faults, but they show no 
evidence of either lateral or vertical displacement 
and are themselves cut and displaced by the faults. 
They were apparently not reopened after injection 
of dike material and are virtually unmineralized.

Group 2c is eliminated from analysis because it 
includes only tension fractures that formed as a 
result of continued movement along fractures of 
group 2b, in the manner explained by Burbank 
(1933, fig. 2). The analysis of the western system 
thus applies only to the conjugate set of shears, 
groups 2a and 2b.

The groups 3a, 3&, and 3c of the eastern system 
are less well defined because this part of the area 
has not been mapped in detail. The radial fractures 
of group 3c were eliminated from the analysis be­ 
cause descriptions by Ransome (1901) and observa­ 
tions by the writer (made on the Pride of the West 
vein only), show no evidence that lateral shear has 
occurred on any of them. There is good field evidence 
for right lateral movement on the Green Mountain 
vein and for left lateral movement along the eastern 
arcuate group of fractures (3a). A simplified struc­ 
tural pattern, from which the groups 1, 2c and 3c 
have been eliminated, and on which some of the veins 
mentioned above are identified, is shown in figure 
17. Several groups of fractures that were mapped 
by Ransome near the northeast corner of the map 
are retained because there is little or no information 
available to indicate whether they should be included 
in the analysis of shearing.

The western part is contained within a wedge- 
shaped area bounded on the north by the ring-fault 
zone and on the southwest by the Titusville vein. The 
Titusville is regarded as a master fracture that 
formed before the fractures within the wedge-shaped 
area. It is along a projection of a straight part of the 
southwestern border of the subsided block west of 
Silverton, and may have formed as a shear fracture 
off the southwest end of the subsided block at an 
early stage in the subsidence. The directions of rela­ 
tive movement along the shear fractures shown by 
arrows, indicate an axis of compression oriented 
north or northwest. Fault patterns in the eastern 
and western parts of the South Silverton district 
appear to be different; therefore, analysis of these 
parts will be taken up separately.

The entire analysis is based upon the hypothesis 
that the observed fault pattern has resulted from 
radial compression directed outward from the sub-
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sided block and resisted by rigid material outside the 
deformed periphery. If the ring faults that bound 
the subsided block dip slightly inward, radial com­ 
pression would have been generated by the block as 
it sank as a tapered plug. Support for the central 
block presumably was removed when magma and 
volatile material escaped to the surface during erup­ 
tions, or into peripheral areas to form stocks, dikes, 
and veins. Although the ring faults dip 75° to 85° N. 
near the mouth of Arrastra Gulch, in other places 
where the ring faults can be observed around the 
border of the subsided block their dip is almost verti­ 
cal. Much of the ring-fault zone is so obscured by 
alluvium, moraine, and alteration of the rocks that 
the average dip of the faults is uncertain. Subsided 
cauldrons, in general, have been interpreted to have 
outward-dipping boundary faults, according to the 
analysis of the British Tertiary volcanic centers pre­ 
sented by Anderson (1936).

Inward dip of the ring faults may not have been 
a necessary condition for generation of radial pres­ 
sure. As suggested by Burbank (written communi­ 
cation, 1957), the central block may have been broken 
and the open fractures filled by magma during erup­ 
tive stages; thereby the upper part would have ex­ 
panded so much that outward pressure would be 
generated during withdrawal of magma from below. 
Wedging due to a graben structure at the northeast 
end of the subsided block, to be considered later in 
connection with analysis of the eastern part, possibly 
contributed to local concentration of outwardly 
directed pressure.

The assumptions under which analyses are made 
of the fault systems, according to Von Mises' theory 
of plane plastic strain, are here repeated.
1. The entire plastic zone is assumed to be isotropic, 

homogeneous, and perfectly plastic. Elastic 
strains are neglected under the assumption that 
they are at least an order of magnitude smaller 
than the permanent plastic strains. For the 
meaning of perfect plasticity the reader is re­ 
ferred to earlier sections of this report, to Prager 
and Hodge (1951), and to Hill (1950).

2. The mode of deformation is by plane strain; that 
is, deformation takes place only in the horizontal 
(r, 6) planes, and these remain plane during de­ 
formation. This requires that the intermediate 
principal stress, o-2, be oriented vertically.

3. Stress acting normal to the horizontal (r, 6) 
plane, that is, the intermediate principal stress, 
including the body force of gravity, is assumed 
to have no influence on the orientation of the 
trajectories of principal shear stress. This as­

sumption necessarily follows from the assump­ 
tion of plane strain.

4. The expressions of stress components in terms of 
principal stresses in two dimensions are:

ffi +

cos 2y

- cos 2y

in which o> designates normal stress in the radial 
direction, as designates normal stress in the 8 or 
tangential direction, 01 is the algebraically largest 
principal stress (tension is positive), o-3 is the 
algebraically least stress, Tr<? is shear stress meas­ 
ured in the coordinate directions, and y is the 
angle measured positively counterclockwise from 
the radial direction to the direction of action of o-i. 
Figure 14 shows the positive directions of normal 
coordinate stresses, the positive direction of Tr& 
and the angle y.

5. Equilibrium of internal elements is maintained; 
that is, each small element is assumed to be in 
static equilibrium under the forces to which it is 
subjected. This requires that

-de -\-ffr    ff0 = 0

6. The velocity of deformation is assumed to be so 
small that inertial forces may be neglected.

7. The stresses in the wedge are not influenced by 
the loading path; that is, they depend only on the 
final state, and not upon the succession of events 
through elastic deformation and plastic failure 
prior to the state that is analyzed. This follows 
from the basic assumption of unrestricted defor­ 
mation in a perfectly plastic solid.

8. The shear strength of the material is a constant k. 
This is Von Mises' criterion for plastic deforma­ 
tion in plane strain.

Tmax = (ffi   <T3 )/2 = k.

The analyses of the western and eastern parts of 
the South Silverton district that follow are made, 
respectively, under the additional assumptions 'dy/'dr 
= 0 and 'dy/'dO = 0, for which generalized expres­ 
sions for slip lines and stresses were previously 
derived.

ANALYSIS OP THE WESTERN SHEAR SYSTEM 

STATEMENT OF THE PROBLEM

The western part of the South Silverton area is 
analyzed as a compressed wedge, and the theoretical
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pattern of maximum-shear-stress trajectories will 
be compared farther on with that of the faults as 
mapped in the field. The wedge is assumed to be 
compressed from the north against a rigid buttress 
south of the Titusville vein. The apex of the wedge 
is to the west, just south of the town of Silverton; the 
axis of the wedge trends due east. The eastern base 
of the wedge cannot be closely defined but is near 
Cunningham Creek (fig. 16).

The method used here for determining the internal 
stresses and trajectories of principal shear stress 
in a compressed wedge follows that developed by 
Nadai (1924) and briefly referred to in his more 
recent text (1950, p. 542) and by Hill (1950, p. 209). 
Nadai's solution was directed toward the study of 
plastic flow and extrusion of ductile metal through 
the opening at the apex of a wedge-shaped die. The 
analysis was made, using polar coordinates, and 
taking the apex of the wedge as the origin, under 
the assumption that, at some distance from the apex, 
the shear stress rr8 is independent of the distance r 
from the apex; that is, 'dr^/'dr = 0. From equations 
19.3 we see also that 'dy/'dr = 0. This assumption is 
analogous to the assumption, in the analysis of 
Prandtl's compressed strip (Prandtl, 1923), that Tay 
is independent of x. In other words, Nadai's solution 
for the wedge is an adaptation of Prandtl's problem 
as applied to inclined plates. The procedure he fol­ 
lowed in deriving expressions for slip lines is prac­ 
tically the same as that used to derive equation 19.16, 
with the integration completed to fit his require­ 
ments for boundary conditions. The pattern of slip 
lines that he developed is shown in figure 18.

FIGURE 18. Slip lines having two inclined straight lines as their envelopes. 
Plastic flow is directed toward the apex of the wedge. From Nadai (1924, 
fig. 28).

Nadai's problem differs in several respects from 
that presented by the compressed wedge at Silver- 
ton. First, in Nadai's problem the material in the 
wedge is forced to flow toward and out of an opening 
at the apex; in the Silverton analysis the apex is 
considered to be closed and the material is assumed 
to move from the apex and toward the large end 
of the wedge. The sense of shear stress on the bound­ 
aries is thus opposite to that of Nadai's problem. 
This radically alters the trajectories of principal 
shear stress. Second, maximum shear stress acts on 
the upper face of Nadai's wedge. It is assumed that 
the north side of the Silverton wedge did not sustain 
the maximum possible horizontal shear stress be­ 
cause there is no field evidence that horizontal dis­ 
placement occurred along the southern border of the 
ring-fault zone. There was, of course, considerable 
vertical differential displacement along the ring- 
fault zone, but this need not be considered in the 
analysis of plane strain in the horizontal plane. 
Third, the angle of opening of Nadai's wedge, 48° 
34', for which he calculated a solution, is too large 
for the Silverton wedge, which has an angle of open­ 
ing of 38°.

The basic assumptions made in the analysis of the 
western shear system are those listed in the general 
statement at the beginning of the section on appli­ 
cation plus:
9. In the region under consideration, the shear stress 

does not vary with the distance from the apex of 
the wedge.

All these assumptions are incorporated into the 
derivation of the generalized expressions for slip 
lines, equation 19.16 and stresses equation 20.11, 
which may be put to direct application when the 
geometry and boundary conditions of the problem 
are specified. These are presented in figure 19.

DERIVATION OF SLIP LINES

The derivation of generalized expressions for the 
families of slip lines, under the assumption 'dy/'dr 
= 0, ended with the expressions equations 19.14, 
19.22, and 19.28, repeated below

dO =
C   cos 27

(21.1)

and
M f If 2dy ~] 

expL ± TJc-cos27 J' < 21 '<  V ±(C   cos 27) 
where the sign in the exponential is positive for the 
first family of slip lines and negative for the second. 
Integration of the expression c£y/(C-cos2y) cannot 
be made until the value of C is given. In order to 
determine C and a second constant D, which results
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Titusville First shear i itusyme / direction

FlGUBE 19. Compressed wedge: idealization of the western part of the South Silverton district. Network of curves in the wedge are principal shear- 
stress trajectories (slip lines). Boundary conditions are that cri acts at angles of  26° and + 40° to the radius at the upper and lower faces, 
respectively. Computed values of stresses ffe and o> are shown on boundaries. Normal stress ffe becomes infinite at apex of wedge.

from integration of equation 21.1, it is necessary to 
specify y for two values of 6. For this purpose, the 
angle y will be specified at the ring-fault zone (6 = 
0°) and at the Titusville vein (0 =   38°).

Field evidence, the strikes of observed faults, is 
used to determine the value of y at the boundaries. 
The principal northwestward- and northeastward- 
trending faults rarely can be observed at the bound­ 
aries. A reasonable estimate was made concerning 
the angle at which the northwestward-trending 
faults and veins (second set of maximum-shear- 
stress trajectories) would meet the ring-fault zone 
if they were prolonged a short distance. This angle 
was estimated to be  70°. An angle of  5° be­ 
tween these members of the second set and the Titus­ 
ville vein was chosen so that the northwestward- 
trending set could join the Titusville envelope with­

out an unduly long approach to tangency. As a result, 
the angle between the first shear direction and the 
Titusville vein is 85°. These boundary conditions 
are shown on figure 19. The real boundary condi­ 
tions are, of course, not determined by y itself but 
by the orientation of faults that are assumed to be 
maximum shear stress trajectories oriented at (y + 
45°) to the radius.

The Titusville fault and vein is regarded, for all 
practical purposes, as an envelope and a limiting 
boundary for the mathematical solution, even though 
the first and second sets of principal shear-stress 
trajectories are not made to meet it exactly ortho­ 
gonally and tangentially. Shear stress along the 
Titusville fault as computed from equation 19.3, 
therefore comes out to be 0.985&, slightly less than 
the amount necessary for slip. In reality, there is
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evidence for horizontal displacement along the Titus- 
ville vein of as much as several hundred feet in its 
middle course. The actual boundary for the mathe­ 
matical solution lies just south of the Titusville fault. 

The direction of principal normal stress will bisect 
the right angles included between the trajectories 
of principal shear stress, hence, with the assumed 
values of y + 45° or y   45° at the boundaries, the 
direction of action of o-i at the boundaries is as 
shown in figure 19. The corresponding boundary 
conditions for y are: 
at

e - o°
7 =   25° =   0.4363 radians 

27 =   50° =   0.8727 radians, (21.3)

at
9 =   38° =   0.6632 radians; 
7 = + 40° = + 0.6981 radians 

27 = + 80° = + 1.3963 radians. (21.4)

Knowing 0 and y for two values of 6 makes the 
solution for C and D in equations 19.17 to 19.21 
theoretically possible. However, these equations are 
quite complicated, and at the outset there is no indi­ 
cation concerning which is to be used. Nadai avoided 
this problem simply by choosing a value of 2 for C 
that was convenient for computation. He let that 
choice determine the angle of opening of the wedge, 
since the precise angle of the wedge was of no con­ 
cern for his generalized analysis. However, that 
choice limited him to the use of equation 19.18. In 
the South Silverton analysis it is necessary to per­ 
form the more complicated inverse and determine C 
from the angle of the wedge and the values of y at 
the boundaries.

The first step is to determine, if possible, whether 
C is negative or positive and its approximate magni­ 
tude so that the choice of equations to use is nar­ 
rowed. Note first that, as 6 increases from  38° to 
0°, y decreases from 40° to  25° so the ratio dy/de 
is probably everywhere negative, while cos 2y is 
always positive. From equation 19.14 we have

dy ( ^ _ C   cos 27 / 21 K\ 
~W ( - } - cos27( + ) ' ( <5)

where the signs in parentheses indicate the sign of 
the term. Hence,

C   cos 27 = a negative number. (21.6) 
From equation 21.6 the inference is that either: 

C is a negative number or, C is a positive number 
with a magnitude less than the smallest value of 
cos 2y (cos 80° = 0.174). In order to decide which 
of these two assumptions is more probably correct, 
equation 21.5 can be used as an approximate expres-

sion for finite differences. The total change in y is 
 65° while e changes +38°. An average value for 
y of 10° is taken. Used thus, equation 21.5 becomes

^7 _ C   COS £7

A0 

J>5 38"

COS27

C - 0.9397 
0.9397

-0.67. (21.7)

These results indicate that C probably lies between 
 1 and 0, hence equation 19.18 should not be used 
to evaluate C because imaginary quantities would 
result from the radical. Equation 19.20 appears to 
be the simplest alternative, and it gives

= -7
V l-C2

tanh-1 V l-C'tan?. ( 2l.g)     

Using the known radian values of the angle y at 
the radian values of 0 = 0° and 9 =  38°, equation 
21.8 reduces to

-0.4712 =

 tanlr'

-0.4663 V 1 - C2
C-l

0.8391 V 1 - C2 
C-l (21.9)

A direct solution for an approximate value of C 
in equation 21.9 may be obtained by putting the 
tanh-1 expression in the form of an infinite series. 
That is,

tanh-1 :*; = x + + + . . . . if [»a < 1] . (21.10)
3 5

Using only the first two terms of the series, equation 
21.9 can be recast into a form that reduces to the 
quadratic equation

0.6032C2 - 0.5940C - 0.4712 = 0 (21.11)

that has the two solutions
C = - 0.52 (21.12) 
C = + 1.513. (21.13)

The second solution is not valid for the present 
problem. With the approximate value of  0.52 for 
C, one may easily determine, by trial and the use 
graphs, the precise value of C that satisfies equation 
21.9. Once C is obtained, D can be found from (21.8) 
at 0 = 0. The values are :

C =   0.513
D = + 0.274 (21.14)

The resulting expressions for 6 (from equation 
21.8) and r (from equations 19.22 and 19.28) are

e =   0.274   7 + .598 tanh'1 (0.567 tan 7) (21.15)

M V cos 27 + .513
exp ± 1.165 tanh'1 (0.567 tan 7)

(21.16)
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where the   sign in the exponential term in equa­ 
tion 21.16 is associated with the first family of slip 
lines and the -f- sign with the second family. One 
pair of slip lines is generated for each value of M. 
The sign before the quantity (C   cos 2y) in equa­ 
tions 19.22 and 19.28 is taken to be minus because 
(C   cos 2y) is itself negative in the present in­ 
stance.

The next step is to draw a section of the wedge and 
plot the first -and second families of slip lines at some 
arbitrary scale. The size of this initial drawing 
does not matter it may be enlarged or reduced to 
fit the area of interest on the geologic map. But it 
is necessary to plot enough slip lines so that an 
adequate diagram is formed. The slip lines are 
shown in figure 19.

NORMAL STRESSES

In this section expressions for the normal stresses 
within and on the faces of the compressed wedge 
are developed. The shear stress on the boundaries 
is determined by the choice of the angle y on the 
boundaries through equation

rre = k sin 27 (19.3) 
The above equation, and the requirement that 

shear stress is to vary only with 0,
& = 0 (19.12)

use up the arbitrary choices that can be made. The 
normal stresses, ag and o>, cannot now be arbitrarily 
chosen. They can only be computed; however, some 
control over their magnitude is possible by adjusting 
constants that will appear in the solution.

Return now to equation 20.11, the generalized 
expression for <o under the condition 3y/c)r = 0, 
and to equations 19.1 and 19.2, which give ar and a9 
in terms of w and y.

<7r = « + fc COS 27 (19.1)

<79 = w   k cos 27 (19.2) 
a + 2kE = ~2Cklnr- Ck In (cos 2y - C). (22.1) 

In rewriting equation 20.11 as equation 22.1, the 
minus sign is to be selected in the second logarithmic 
term of equation 20.11 because (C   cos 2y) is nega­ 
tive. Substitution of equation 22.1 into equations 
19.1 and 19.2 gives

-=   2C In r   C In (cos 27   C) + cos 27   2E, (22.2)
k

-=   2C In r   C In (cos 27   C)   cos 27   2E. (22.3)

These equations are the same as those given by 
Hill (1950, p. 211) and credited to Nadai (1924, p. 
125). Nadai's equations are in a slightly different 
form, for example,

± k cos 27, (22.4)

in which the constant "a" is related to E of equation 
22.2 thus

Clna*=-2E. (22.5) 
When the value of C is inserted into the expres­ 

sions for stresses, they become

-£-= 1.026 In r + 0.513 In (cos 27 + 0.513) + cos 2y - 2E 
k

(22.6)

-?-= 1.026 In r + 0.513 In (cos 27 + 0.513) - cos 27 - 2E 
k

(22.7)

-£_= 1.026 In r + 0.513 In (cos 2y + 0.513) - 2E (22.8) 
k

-= sin 27. (22.9)

It is apparent that as r increases, o>, ve, and w are 
each positive and increasing, and that o> and w reach 
a maximum when y is zero. The variable parts in 
the expression for o> lead to positive stresses. The 
average stress in the compressed wedge is to be kept 
negative (compression throughout), therefore the 
constant   2E must be dominant over all the other 
terms. This constant is analogous to the constant D 
met in the analysis of Prandtl's compressed strip and 
explained in the discussion of equation 14.14. In 
evaluating E we must decide what part of the wedge 
is to be used for analysis and whether or not tension 
is to be allowed upon the boundaries.

The base (eastern border) of the wedge is taken 
to be at r = 8 units and the most positive stress on 
the base, o> = 01 at y = 0°, is taken to be a compres­ 
sion of   0.5&. All parts of the wedge are thus as­ 
sumed to be under compression and the complicating 
possibility of fracture by tension is avoided. There 
is no field evidence for tensile failure at this stage 
of deformation in the western system.

Under these assumptions, from equation 22.6 at 
r = 8, y   0,

  0.5 - 1.026 In 8 + .513 In (1.513) + 1   2E
E = 1.92 . (22.10) 

Values of the stresses on the boundaries are also 
shown in figure 19. Although the tangential stress 
a-0 remains fairly constant along the greater part of 
the wedge, it becomes infinite at r equals zero. This 
is a singular point in the solution of the differential 
equations and should be excluded from consideration. 
As a matter of fact, the apex of the wedge is occupied 
by the east end of the Silverton stock. Much of the 
stock was intruded into the ring-fault zone and, so 
far as can be determined, the ring faults in the adja­ 
cent volcanic rocks continue but feebly, if at all, into 
the stock. There are many joints and some veins in
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the stock, but it does not seem to have been sheared 
nearly as intensely as the volcanic rocks in the wedge. 
It may be inferred that the stock was intruded rather 
late in the process of deformation and that its loca­ 
tion may have been determined by a crushed zone 
near the apex of the wedge where the ring-fault zone 
veers abruptly in strike. 

The stresses now are:

-= 1.026 In r + 0.513 In (cos 2y + 0.513) + cos 2y   3.845

(22.11)

- = 1.026 In r + 0.513 In (cos 2y + 0.513)   cos 2y   3.845

(22.12)

- = 1.026 In r + 0.513 In (cos 2y + 0.513)   3.845 (22.13)

- = sin 2y.
k (22.14)

VELOCITIES

The next problem is to see if the stress field and 
slip-line pattern that were developed for the com­ 
pressed wedge can be associated with velocities that 
are compatible with the behavior of a perfectly 
plastic wedge.

The basic relations to be used are those of equa­ 
tions 18.1 to 18.3 that combined with equations 18.7 
to 18.9 become

;r _ L = Lsr - Lk cos 2y

rdB
- = Ls» =   Lk cos 2y

(23.1)

(23.2) 

f . (23.3)

These three equations by themselves may not be 
sufficient for the derivation of expressions for the 
three variables vr, vs, and L. They may, however, 
limit to a considerable degree the possible forms 
which these variables can take.

A full investigation of velocity expressions that 
may satisfy equations 23.1 to 23.3 will not be made. 
Instead, the problem will be restricted to the example 
in which the material southwest of the Titusville 
vein remains rigid and immovable and the subsiding 
block north of the ring-fault zone presses against 
the north side of the wedge in such a way that the 
ring-fault zone moves southeastward with a constant 
velocity in a direction normal to the ring faults while 
remaining parallel to its preceding positions, as 
shown in figure 20. The angle of opening of the 
wedge thus remains constant. The constant C, which 
is determined in part by the angle of the wedge, will 
in this example remain constant with time. Other 
modes of deformation, in which the ring-fault zone 
rotates or becomes curved, would require C to vary

e*:

-T

Rigid

FIGURE 20. Compression of the wedge under the assumption 3-yfl/3r = 0. 
The southwestern boundary is assumed to remain rigid. The northwestern 
boundary moves southeastward at a constant velocity   U while remain­ 
ing parallel to its original position.

during deformation and would be considerably more 
difficult to analyze.

If the ring-fault zone remains straight and does 
not rotate, vd will be independent of r along the 
northern border; it will also be independent of r 
along the rigid southern border. It will be assumed, 
therefore, that v9 is independent of r everywhere in 
the interior of the wedge. This may be stated as

3W3r = 0. (23.4)

Equations 23.1 to 23.3 become, respectively

    Lk cos 2y

c)v r

"dr

de
  va = 2Lkr sin 2y.

(23.5)

(23.6)

(23.7)

Taking the derivative of equation 23.6 with re­ 
spect to r and equating the result to equation 23.5 
gives

- 2L = r- (23.8)

Taking the derivative of equation 23.5 with re­ 
spect to 0 and of equation 23.7 with respect to r, 
equating the results, and using equation 23.8, gives

3L __
30 

From (23.8)
9L 2L

(23.9)

(23.10)
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The total differential of L is

dL = dr+ "do do, (23.11)

which becomes, with substitution of equation 23.9 
and 23.10,

-^ = - 2 -* __ 2sin27dfl + 2 tan 2ydy. (23.12) 
L r cos 2y

When equation 19.14 is used to express d9, equation 
23.12 becomes

drr dL _ _   r d
J L - J ~^

  2 sin 2ydy
cos 27   C

272d7, (23.13)

which may be completely integrated to give
In L =   In r2   In (cos 27   C) - In cos 27 + In A

L =       *______. (23.14)
cos 27 (cos 27   C) r

All quantities in the denominator of equation 23.14 
are positive and the constant of integration, A, is 
positive because it has a real logarithm. Thus, L as 
here derived, is positive. This satisfies a basic re­ 
quirement that L must be positive in order to assure 
that positive work is done on the plastically deform­ 
ing material.

We now return to derivation of velocities from 
equations 23.5 to 23.7. The new expression for L 
makes these equations read

3i>, Ak

dvo

(23.15)

(23.16)

(23.17) 
"do (cos 27   C) r

The derivative of equation 23.16 with respect to 6 is

~~ (cos 27-C)*-2

_ Ak
~ ~ (cos 27   C) r

2Ak tan 27
  Vft =  

"dvr d2v» _ Ak I" 2 sin 27 dy "I 
~W ~ ~~~der r~L (cos 27-C)* d0 J ' (23.18)

Substitution of this expression for 
tion 23.17 gives

cPv,

into equa­

The general solution to equation 23.19 is
Ve = B cos 6 + D sin 6.

Using equations 23.20 and 23.16 gives
Ak 

Vr = B sin 0   D cos 6  

(23.19)

(23.20)

(23.21)(cos 27   C) r ' 
The constants B and D may be evaluated from the 

boundary conditions:

at
0 = 0, v e = - U; (23.22)

and at
9 = - 38°, ve = 0. (23.23)

Hence,
B = -U, 
D - - 1.2817,
Ve =   U (cos 6 + 1.28 sin 6), 

and

vr = U (  sin 6 + 1.28 cos 9} -
Ak

(23.24)
(23.25)
(23.26)

(23.27)(cos 27   C) r

The above derivation indicates that expressions 
for velocity may be found for the assumed mode of 
deformation. Hence, the formal requirement, often 
neglected, that a derived slip-line field have a com­ 
patible velocity field, is here fulfilled. No claim is 
made that the velocity field is unique.

Equation 23.17 indicates that 9vr/90 becomes in­ 
finite only if y becomes equal to ±45° or if r becomes 
zero. Disregarding the singular point r = 0, this 
means that the radial velocity is discontinuous across 
a radius only if that radius is an envelope of the slip 
lines. Such discontinuities occur at the limits of the 
analytic solution (fig. 19). The implications that 
arise from the northern boundary of the wedge not 
being at the analytic boundary of the solution are 
dealt with in the section on discussion of results and 
conclusions.

ANALYSIS OF THE EASTERN SHEAR SYSTEM 

STATEMENT OF THE PROBLEM

The analysis of the eastern part of the South Sil- 
verton area proceeds from the assumption that the 
granite porphyry dike occupies a typical fault in the 
shear system. The known outcrop of the dike indi­ 
cates that its northern terminus is at the edge of 
the subsided block and is oriented at a right angle to 
the ring faults. From this point it veers southward 
and southwestward in a great arc, and its southern 
terminus is parallel to the southern border of the 
subsided block (fig. 17). This arrangement suggests 
that the shear system, of which the dike is a part, lies 
within an annular ring around the subsided block, 
and that one set of maximum-shear-stress trajec­ 
tories meets the inner boundary at a right angle 
and the outer boundary tangentially. The other set 
is tangent to the inner boundary and normal to the 
outer boundary.

A sketch of such a slip-line field has been given by 
Nadai (1950, fig. 37-14), but he does not develop the 
expressions for stresses or the equations for the 
lines. He simply states that such a pattern consists 
of epicycloids and hypocycloids and arises from 
assuming that the shear stress rr0 depends only on r, 
the distance from the center of the circular arcs that 
bound the ring, and that rre has the value of  k and 
-\-k on the inner and outer boundaries, respectively.
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The shearing in the eastern part of the South 
Silverton area will be analyzed under the assumption 
that it simulates Nadai's problem with the boundary 
conditions as shown in figure 21. For simplicity the 
ring-fault zone will be assumed to be an arc of a 
circle rather than its more probable true shape, the 
arc of an oval or ellipse. In the South Silverton 
analysis the outer boundary of the ring-fault zone 
marks the limit of the plastic domain. Outward 
pressure from the subsiding block cannot produce 
shear in the same sense all the way around a con­

tinuous ring without causing circulation of the mat­ 
ter in the ring. Hence, this must be a local feature 
limited to just a sector of the periphery of the sub­ 
sided block. Displacement to the northeast and north 
of the area analyzed must be in the opposite direction. 

The assumptions made in the mathematical analy­ 
sis are the same as those made for the analysis of 
the western part, except that Tre is taken as a func­ 
tion of r only:

'drre/'dO = 0 

= 0.

/I = 20,060 ft

/FLOW

RIGID

FIGURE 21. Compressed annular ring; idealization of the eastern part of the South Silverton district. Boundary conditions are that 7   135° on the 
inner boundary n, and 7 = 45° on the outer boundary rz. The slip lines are epicycloids and hypocycloids, for example DE and FG, respectively.
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DERIVATION OF SLIP LINES

If Tre is taken to be a function of r only, the gen­ 
eralized relation between y and r in equation 19.31 
is

sin 27 = -T + H, (24.1)

and the relation between 0 and r along the first set 
of slip lines is equation 19.34:

H
< 24'2 >

Further information on the magnitude of H is 
needed in order to determine the integral of equa­ 
tion 24.2.

Expressions for G and H may be derived from the 
boundary conditions:

at r = ri
7= + 135°; (24.3) 

at r = r2,

7 - + 45°. (24.4)

Hence, from equation 24.1,

and

r, -

H =
r + r/

(24.5)

(24.6)

In the present instance, r2 is larger than r-i, so H 
is a positive number and greater than one.

At this point, however, a further complication is 
produced because integrals of equation 24.2 are valid 
only if 2y lies between   *  and +«-. At the inner 
radius, y has a value of 135° or  45°, depending in 
which direction the angle y is measured from the 
radius to the line of action of <n. If a first shear 
direction is followed from the outer circle to the inner 
circle, the angle y is seen to increase continuously 
from 45° to 135°, so 135° is the proper value at the 
inner circle. The value of 2y is here 37T/2, hence a 
substitution of another variable is necessary; let

V = 27 - 7T/2

sin v =   cos 27 
cos v := sin 27

dv = 2dy

and equation 19.34 becomes

(24.7)

f
J

dv
cos v   H

(24.8)

If H > 1, the proper integral of equation 24.8 is, 
according to Pierce (1929, formula 300):

V H* - 1 tan 2 tan'1    ;  ^      (24.9)1-H 

On resubstitution of y, equation 24.9 becomes

, W , ,+ N = --   7   -^- tan'1
V H2 - - 4 J

l-H
(24.10)

The constant N may be evaluated by the boundary 
condition at 6 = 0, for a slip line of the first family 
that starts at E,

7 = 45°,
SO

N = 0. (24.11)

The next step is the evaluation of G and H and the 
determination of numerical values of TI and r2 . A 
geometrical construction in figure 21 is necessary to 
locate the center of coordinates, which represents 
the center of the subsided block, and to determine 
numerical values for r*i and r2 . The center will not 
be located from the outline of the block on figure 15 
but rather from the following facts and inferences 
that pertain only to the southeast periphery, (a). The 
points D and E on figure 21 are fixed by field map­ 
ping. Field evidence indicates that they lie on a 
single line, (b). It is assumed that the plastic domain 
is an annular ring, hence the maximum-shear-stress 
trajectory between D and E is an epicycloid, (c). The 
epicycloid is assumed to complete half its cycle be- 
tween E and D after passing through a polar angle 
of AI. (d). The inner bounding circle through D is 
tangent to AB, the northern straight boundary of 
the western wedge, prolonged as may be necessary, 
(e). The strike of the dike at D and E could not be 
determined accurately enough in the field to allow 
radial lines to be drawn, (f). The locus of centers 
of all circles that may be drawn through D and tan­ 
gent to AB is a parabola C'-C", which has D as focus 
and AB as directrix.

It is now possible, after some trial and error, to 
select a center C on the parabola, which will allow 
generation of an epicycloid DE that has approx­ 
imately the same strike at E as the average observed 
strike of the dike in this vicinity. Several trials were 
necessary to find the best location for C; however, 
the labor is not great because the actual curve DE 
need not be plotted each time.

As the reader may recall, an epicycloid is gener­ 
ated by a point on one circle of diameter r%   r-i 
which rolls without slipping around the outside of a 
circle of radius rv A hypocycloid is generated if the
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smaller circle rolls on the inside of the circle with 
radius r2 . Hence, if Ai is the angle DCE,

(24.14)

The distances rx and r2 and the angle AI are all fixed 
by each choice of C. The position of C that makes 
equation 24.14 an equality can be most easily found 
by trial. The resulting values are:

n = 20,060 feet 

ra = 34,300 feet 

71 = 63.9°

G = - 12.232 X 10s 

H = 2.0397

V H2 - I ~ 1.7778

= 1.7099V H2 - 1

V H2   1
\_ H = - 1-7099.

(24.15)

(24.16)

(24.17)

(24.18)

(24.19)

(24.20)

(24.21)

(24.22)

Equations 24.10 and 24.1 now become

6 = 45° - 7 - 1.7099 tan'1 [- 1.7099 tan (7 - 45°)]

(24.23)
_ 10 223 X 10s

sin 27 =    '-^T^   + 2.0397 . (24.24)

Equations 24.23 and 24.24 are the parametric equa­ 
tions of the first set of principal-shear-stress trajec­ 
tories of the eastern system. It is not at all apparent 
that these equations represent an epicycloid. The 
most direct demonstration is to plot the curve from 
equations 24.23 and 24.24 and compare it with an 
epicycloid plotted from the standard formulas for an 
epicycloid in cartesian coordinates (James and 
James, 1949, p. 130) :

x = (a + 6) cos <(>   a cos
a + 6

a + 6 
y = (a + 6) sin <f>   a sin      <p ,

(24.25)

(24.26)

in which <f> is the angle subtended at the origin of 
coordinates by the arc already traveled by the center 
of the rolling circle, b is the radius of the inner circle, 
and a is the radius of the rolling circle. The curves 
plotted from equations 24.23-24.24 and from equa­ 
tions 24.25-24.26 coincide exactly. I am also indebted 
to Mr. Ode (written communication, 1956) for the 
mathematical proof of equivalence.

The second set of slip lines (hypocycloids) may be 
derived in a similar manner. Since they are ortho­ 
gonal to the first set, their slope is equal to the nega­ 
tive reciprocal of the first set. This leads to

7T H -1

After integration of equation 19.36, again using 
the intermediate variable v, we get

e + P = 45° - 7 - 0.585 tan'1 [- 1.71 tan (7 - 45°)].
(24.27)

In order to evaluate P it is assumed that a hypo- 
cycloid HE passes through point E in figure 21. Then

at
0 = 0,
7 = 45°,
P = 0. (24.28)

The two epicycloid and hypocycloid curves are 
shown in figure 21. These are but two examples of 
the infinite number of epicycloidal and hypocycloidal 
slip lines in the eastern system.

It is not necessary actually to plot the equations of 
the slip lines in each area where comparison with 
the fault pattern is desired. For this purpose, a card­ 
board template, at the scale of the geologic map, was 
cut in the shape HFDE. It has a full epicycloidal 
edge on the right edge and bottom, a hypocycloid on 
the left edge, and a segment of the inner circle at 
the top. By sliding the template around the inner 
circle, which was drawn on the geologic map, the 
strike of actual faults could be compared with the 
theoretical orientation at any location and segments 
of the theoretical lines could be drawn for reference 
using the edges of the template. This comparison 
will be deferred to a later section.

NORMAL, STRESSES

The generalized expression for average normal 
stress, w, under the condition that y is a function of r 
only, is given by equation 20.18.

The necessary integration has already been dis­ 
cussed under the section on slip lines, equations 24.8 
and 24.9. Using equations 19.1 and 19.2 the expres­ 
sions for normal stresses become

  =   + cos 27

u>-j-   cos 2yffe

k

-j    sin 2y

- 2 V H2 - 1 tan'1 V H2 - I tan
1 -H

(25.1)

(25.2)

(25.3)

- 2F. (25.4)

These expressions for stress satisfy the equations 
of equilibrium, equations 16.5 and 16.6.

The next step is to locate the point of greatest 
positive stress and regulate the constant of integra­ 
tion, F in this equation, so that this point, together 
with all other parts of the eastern system, remain
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in compression. Since o-i = w + k, o-i will be most 
positive where w is most positive. One may see from 
(25.4) that, at constant y or r, w is most positive at 
6 = 0, the arbitrary western border of the eastern 
system. The point along the radius 0 = 0 at which 
w reaches a maximum is determined by the conditions

and
(25.5)

(25.6)

It may be determined that &> reaches a maximum 
along the line 0 = 0° where y has the value 75°20'. 
The actual value of w at this maximum is

-  = 0.631 - 2F. (25.7)

The constant F is adjusted so that the most posi­ 
tive value of cri is zero and the most positive value 
of w is   l.Ofc. Hence

2F = 1.681. (25.8)
The final expressions for normal stresses become

ff r = <a + k COS 2j

ffe = w   k cos 2y
(25.9) 

(25.10)

^
=-4.079

- 1.631   3.556 tan'1 [- 1.71 tan( 7   -j-) 1   (25.11)

The values for ar along the ring-fault zone at sev­ 
eral values of 0, plotted to an arbitrary scale (re­ 
duced compared to the scale for T><?), are shown on 
figure 21.

The computed normal stress on the ring-fault zone 
increases steadily counterclockwise around the south­ 
eastern border of the caldera to a maximum near 
the granite porphyry dike. A possible explanation 
for this pattern of stress increase is given below.

Figure 15 shows a boot-shaped area, bounded by 
faults, that extends well into the northeast side of 
the subsided block. According to Burbank, this area 
is a graben that forms part of a system of graben 
blocks and faults extending northeastward from the 
Silverton subsidence to another volcanic center near 
Lake City. Referring to the boot-shaped area Bur- 
bank wrote (1951, p. 295) :

As shown by geologic cross sections across both the foot and 
leg of the graben, the volcanic formations are tilted away 
from the graben on all sides. This tilt indicates probably that 
while the graben was being formed there were periods of 
alternate tensional and compressional stresses that operated 
like the opening and closing of the jaws of a crusher. As the 
jaws opened, the central block wedged downward and when 
the jaws closed, it tended to force outward and to tilt the 
bounding volcanic beds and flows. The causes of this action 
may be related to the repeated welling up of molten rock at 
depth, followed by loss of pressure and subsidence of the

earth's crust. The final result of these repeated actions was 
the formation of a crude arch of the volcanic formations with 
a downfaulted keystone block in the center. The downward 
sinking of the keystone blocks produced a wedging action on 
the surrounding rocks.

Figure 22 shows the outline of the subsided block 
and the graben area. The estimated center of co­ 
ordinates, C, for analysis of the eastern part of the 
South Silverton district is also plotted. It is very 
close to the actual geometric center of the area of 
subsidence.

If the graben area acted as a wedge, strong local 
stresses should act on the eastern periphery of the 
larger subsided block and also on the northern and 
northwestern periphery. The values of ar thus gen­ 
erated might be difficult to compute, particularly as 
the graben structure also continues through the 
periphery. The net displacement in the graben area 
appears, however, to be greatest within the ring-fault 
zone (Burbank, 1951, p. 291). In any event, it is 
reasonable to suppose that radial displacement of 
the border and, hence, radial pressure would increase 
southward from the graben area as indicated by

SUBSIDED

4 MILES

FIGURE 22. Sketch map of the subsided block of the Silverton 
caldera. Graben area at northeast corner (after Burbank, 1951, 
figs. 1 and 2) is ruled. Outward tilting of adjacent rocks is 
shown by dip symbols. The principal structures are the Ross 
Basin (R. B.), Sunnyside (S.), Toltee (T.), and Bonita (B.) 
faults. The circle at C is the center of the polar coordinates 
for the analysis of the eastern part of the South Silverton dis­ 
trict. Stresses computed from this analysis are shown as solid 
lines: inferred stresses farther north are shown as dashed lines.



B-46 THE SOUTH SILVERTON MINING AREA, SAN JUAN COUNTY, COLORADO

dashed lines representing stresses on figure 22  
reach a maximum at or somewhat north of the point 
where the granite porphyry dike enters the ring- 
fault zone, and then diminish farther southwest- 
ward. This last decrease in normal stress toward 
the southwest agrees qualitatively with the distribu­ 
tion of stress that was found necessary to produce 
the shear-stress trajectories of the eastern part of 
the South Silverton district.

No attempt was made to analyze displacements 
and velocities in the eastern shear system.

COMPARISON OF SLIP-LINE FIELDS AND ACTUAL FAULT 
PATTERNS

The fault pattern shown on figure 17 has been re­ 
produced in figure 23, together with a number of 
trajectories of principal shear stress shown by dotted 
lines. The position and spacing of the dotted lines is, 
of course, arbitrary; only enough were put in to fur­ 
nish a basis for comparison.

WESTERN PART

The agreement between actual and theoretical 
strikes of the northwestward-trending faults is gen­ 
erally good, for instance at A, B, and C of figure 23. 
There seems to be some departure to the south at the 
southeast end of some northwestward-trending 
faults, as a D, but others, as at B and E, seem to veer, 
as they should in theory, toward the trend of the 
Titusville vein or envelope. The splitting at the 
northwest end of the Titusville vein is unexplained; 
in particular, the split F (Scranton City vein) may 
well belong with oblique secondary fractures shown 
by 2c on figure 16, rather than with the main north­ 
west shear faults. There is no field evidence for or 
against lateral movement along the Scranton City 
vein.

The northeastward-trending structures are poorly 
represented in the whole pattern. A pair of dikes 
at G follow the theoretical strike closely. One mem­ 
ber of the northeastward-trending set, the Whale 
Basin fault at H, diverges northward off the pre­ 
dicted course.

All observed directions of relative lateral move­ 
ment along the faults agree with the theoretical 
directions of movement.

EASTERN PART

The northwestward-trending hypocycloidal set of 
faults of the eastern system appears not to have 
been well developed. A number of fractures near / 
show general agreement. A fault at J that branches 
off from the ring-fault zone and caused some puzzle­ 
ment during mapping, fits now as the beginning of 
a hypocycloid. The Green Mountain vein at K may

be either a hypocycloid of the eastern system or a 
northwestward-trending vein of the western system. 
It appears to have been displaced by left-lateral 
movement on the epicycloid set. The Pride of the 
West vein at L doesn't conform with any theoretical 
direction. No lateral displacement has been proved 
along this vein, and it may not properly belong with 
the other faults shown.

The agreement between the actual course of the 
granite porphyry dike and its theoretical trend is 
striking, considering that only the two ends were 
used to control the geometry of the slip-line field. 
Between these two ends, through a distance of 7 
miles, the dikes curve in strike about 154°, and pass 
through rocks as diverse as the nearly vertically 
foliated Precambrian schist and gneiss and the flat 
volcanic flows and breccias, yet the maximum depar­ 
ture from the theoretical course is only about 400 
yards. This occurs at M, where the strike of indi­ 
vidual en-echelon-dike segments is askew to the gen­ 
eral trend of the dike system.

It is not known if the granite porphyry dike is 
present in the central section around N. Cross, Howe, 
and Ransome (1905) did not show it here, but neither 
did they map the mile or more of the dike farther 
north at P. The author did not examine the area 
around N during the course of mapping the area to 
the west. Study of aerial photographs has not helped 
to settle the question here owing to the prevalence of 
grass cover, although in many places elsewhere the 
white dike can be traced as it cuts through darker 
rocks.

Some other veins mapped by Ransome (1901) or 
detected on aerial photographs are shown at Q, R, 
and S. Their strikes conform reasonably well with 
those postulated by the theory. An andesite dike at T 
has an epicycloidal trend, but this may be fortuitous. 
Field data are lacking concerning possible lateral 
movement along it.

DISCUSSION OF RESULTS

The practical results of analysis of the fault pat­ 
tern in the South Silverton mining district depend 
more upon the recognition of a pattern of conjugate 
shears, and knowledge of the relative movements 
along faults and consequent internal structures of 
the vein systems, than upon the precise configuration 
of the pattern itself.

Several questions regarding the theoretical analy­ 
sis have been raised by some who have read either 
this report or an abbreviated preliminary version. 
One question is that of uniqueness. The question 
really consists of two parts: (1) Do the assumed 
boundary conditions admit any solutions other than
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the ones derived? and (2) Could the observed fault 
patterns have been produced by other mechanisms, 
for example, by different boundary conditions, or by 
the combination of local doming and fracturing?

The answer to the first part is that the pattern of 
potential faults, as determined by the angle y in the 
interior of the analyzed domain, is uniquely de­ 
termined by the external boundary conditions. The 
expressions for internal stresses are also determined 
by the boundary conditions, except for constant mul­ 
tipliers or constant additive terms. The answer to 
the second part of the question is that no claim is 
made for uniqueness in the larger sense. The only 
applicable remark is that the solutions presented for 
the eastern and western systems are each a possible 
solution, not necessarily the only solution, and that 
each encompasses as much ground as possible under 
a single concept. No doubt, refinements could be made 
by dividing either or both the western and eastern 
systems into units, but only at the cost of increasing 
complexity, and with the necessity of matching 
boundary conditions of the subunits within each of 
the two systems.

The division of the area into western and eastern 
parts, each having independent boundary conditions, 
has also been questioned. There is no definite answer. 
The division was made somewhat subjectively, be­ 
cause the granite porphyry dike is unique, both in 
its lithologic character and its great curvature. It 
simply does not seem to belong with the nearly 
straight, andesite-filled fractures of the western sys­ 
tem. The relation in age between the western and 
eastern shear systems is uncertain. There is no field 
evidence that the two systems formed simultaneously. 
According to the way in which the two theoretical 
systems were set up and analyzed, it would be un­ 
likely, perhaps impossible, for them to operate con­ 
temporaneously. Hence, no effort has been made to 
adjust the theoretical boundary stresses into agree­ 
ment where the two systems merge. The only per­ 
tinent bit of evidence is at U on figure 23. At this 
point the Titusville vein, here a barren fault, offsets 
the granite porphyry dike about 55 feet, the north­ 
east side of the fault having moved to the southeast. 
Yet, this indicates only the nature of the last move­ 
ment after the dike was emplaced and tells nothing 
about the relative times at which faulting began in 
the two systems.

Although correspondence between the theoretical 
fault pattern and field observation is gratifying, it 
does not necessarily imply that all the assumptions 
made in the analysis, particularly those concerning 
the physical properties of the rocks, are themselves

correct. It is hard to tell what the assumption Tmax = 
k in plane strain means regarding the behavior of 
rock in a real three-dimensional-stress distribution. 
For this reason it would be unwise to infer that the 
rocks near Silverton were deformed in a region of 
extremely high hydrostatic pressure, where the en­ 
velopes of Mohr's circles are thought to become par­ 
allel horizontal lines. The depth below original 
ground surface of the plane on which analy­ 
sis was made was not stated, nor can it be 
estimated with any assurance. Scanty geologic evi­ 
dence suggests that 2 miles seems to be a fair maxi­ 
mum estimate, but perhaps the depth was much less.

The most important question is whether Von Mises' 
theory for plane plastic strain can be applied validly 
to the analysis of three-dimensional geologic prob­ 
lems. This question can hardly be answered in full 
until a theory of plasticity applicable to geology is 
developed for three dimensions. Such a theory would 
need to include the body force of gravity. The slip- 
line pattern on a horizontal cut through the three- 
dimensional model then should be compared with the 
pattern in a horizontal plane given by the simpler 
analysis in plane strain. The three-dimensional 
analysis would yield information on dips of the slip 
surfaces, but the pattern made by these surfaces on 
a horizontal plane might well be similar to or even 
identical with the pattern of slip lines formed under 
the simple assumption of plane strain. This is a 
matter that needs further investigation.

Another field in which advances may be expected 
in the theory of plasticity, and in which the theory 
can be of real service to structural geology, is the 
determination of the trajectories of maximum shear 
stress that may be expected to become velocity dis­ 
continuities. It may be hoped that one or another of 
the theories of permanent deformation, controlled 
by basic geological laboratory and field research, will 
eventually be able to predict where faults should 
occur, and their dip, as well as their general trend.

Meanwhile, judging from the results presented in 
this paper, the incomplete theory for plane plastic 
strain seems to offer a fair starting point for analyses 
of some fault patterns, and a rational means whereby 
scattered field observations may be correlated to 
obtain a coherent picture.
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