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FLUID MOVEMENT IN EARTH MATERIALS

MATHEMATICS OF DISPERSION WITH 
LINEAR ADSORPTION ISOTHERM

By AKIO OGATA

ABSTRACT

The simultaneous occurrence of dispersion and adsorption is 
noted frequently in laboratory models. In most investigation, 
especially that of the exchange process, the adsorption phase 
dominates; thus, prediction is based on a reduced system. 
The discussion presented in this paper, however, is based on the 
concept that the orders of magnitude of the adsorptive and the 
dispersive processes are the same. In addition, because of the 
meager knowledge of the macroscopic adsorption, the isotherm 
is assumed to be linear. This leads to a system which may be 
described by the equations

n
da;2 U do;

 

The paper deals entirely with the solution of the above equations 
for flow in a porous column.

INTRODUCTION

In the transport of two miscible fluids through iso- 
tropic porous media, the mixing and the dilution of any 
contained contaminant is dependent on two mechanisms, 
namely, mechanical dispersion and adsorption. The 
mechanical dispersion is defined to include all 
mechanisms that tend to cause spreading of the fluid 
stream which generally arises because of variations in 
fluid velocity throughout microscopic segments of the 
porous medium. Although variations in the magnitude 
and direction of the fluid velocity is noted throughout 
macroscopic segments of heterogeneous materials, the 
theory of dispersion cannot be extended to describe 
this system. The adsorption mechanism is defined as 
the removal or addition of the contained contaminant 
by the solid matrix through which the fluid flows. 
That is, the solid material may be thought to act as a 
mathematical source or sink depending on the concen­ 
tration of the liquid flowing through the porous medium.

The physicochemical aspects of the problem of 
adsorption are generally approached through thermo- 
dynamic principles based on analysis of the total free

energy available at any given state. However, because 
of the complexities of these phenomena and the porous 
medium, such analysis has as yet produced no general 
conclusions on how to make use of the adsorption 
isotherms that characterize naturally occurring porous 
media. In other words, because of the extreme range 
of conditions met in aquifers, adsorption study of small 
segments of the flow system microscopic analysis  
has not produced results directly applicable to the entire 
flow regime. This indicates that for each soil complex 
or aquifer material, the adsorption characteristics of 
various candidate tracer materials must be predeter­ 
mined so that the results can be given macroscopic 
application.

To circumvent this difficulty, most quantitative 
analyses of laboratory experiments are generally based 
on an assumed adsorption isotherm. In most situa­ 
tions the tracer or contaminant concentration is suf­ 
ficiently small that a linear isotherm can be assumed. 
This is the condition on which the following analysis is 
based. Adamson (1960), however, discussed various 
findings of recent years in which the linear assumption 
does not hold, especially where high concentrations are 
reached. Because in both laboratory tracer studies and 
actual disposal systems the concentrations are kept at 
a minimum, it is believed that the adoption of a linear 
isotherm is a reasonable approximation.

Linear isotherms have been utilized by chemical 
engineers in the study of exchange processes. There is, 
of course, no proof that the same type of isotherm would 
be applicable for adsorption in a nonactivated bed. 
However, for want of better or more detailed informa­ 
tion, the assumption of a nonlinear isotherm would 
only increase the mathematical complexity without 
furthering the systematic progress of the investigations.

ADSORPTION ISOTHERMS

A linear isotherm under isotropic exchange conditions 
may be generally classified as representing either a

HI



H2 FLUID MOVEMENT IN EARTH MATERIALS

reversible or irreversible reaction. The simplest situa­ 
tion is the linear isotherm which represents an irrevers­ 
ible system, as described by the expression

(1)

where N is the solid-phase concentration defined as the 
mass per unit volume of solid material, C is the liquid- 
phase concentration defined as the mass per unit volume 
of liquid, t is the time variable, and k is the proportional­ 
ity constant. Equation 1 is essentially Langmuir's 
isotherm for low concentrations and for equilibrium 
conditions. For complete discussion of Langmuir's 
isotherm, the reader is referred to Adamson (1960). 
It is noted that equation 1 describes a system in which 
the solid acts as a mathematical sink. That is, the 
amount transferred or the rate of change of solid 
concentration with time depends only on the liquid 
concentration. Physically this system cannot exist 
unless some method is available to remove all material 
transferred from the liquid to the solid phase. In 
terms of the overall mathematical treatment, however, 
inclusion of the terms represented in equation 1 does 
not add to the complexity of the problem.

More generally, isotherms of this nature may be 
expressed as

. -^r=F(O (2) * ot

where F(C] is a function of liquid concentration only 
and must be determined for each system considered.

In all situations, the medium tends to show a fixed 
capacity to adsorb a given substance which in turn is 
set by the level of the liquid concentration. That is, 
dN/dt becomes zero, indicating establishment of equi­ 
librium between the liquid- and the solid-phase con­ 
centrations. An example of this type of isotherm is 
that used by Amundson (1948), mathematically rep­ 
resented by the equation

(3)

In equation 3, a is a constant and NQ is the saturation 
capacity of a unit volume of granular material. It is 
noted that equation 3, like equation 1, shows a straight- 
line relation within the range of the porous medium's 
capacity to adsorb. The saturation capacity N0 is 
dependent on the concentration of the liquid phase and 
thus is assumed to be a known constant in any given 
analytical study.

Merriam and others (1952) and Hougen and Mar­ 
shall (1947) indicated that the adsorption isotherm 
can be depicted by the expression

bN=k(C-mN) (4)

where m is a constant. Note that unlike equation 3, 
equation 4 indicates a possible negative rate of change 
of solid concentration. This indicates that the ad­ 
sorption process is reversible in the sense that when mN 
^> C the rate of change is negative, hence providing for 
a reverse effect or diminution of the solid-phase con­ 
centration. In other words, in a continuous-injection 
system, a continuous adsorption and desorption process 
is possible.

The problems in which adsorption has been investi­ 
gated extensively are those involving gas or liquid 
flow through activated porous media. There is general 
agreement that the dispersion under these conditions 
is so small that it may be neglected in describing the 
outflow-concentration profile. This assumption elimi­ 
nates the second-order term in equation 5 and the 
mathematical treatment is thereby simplified to some 
degree. In a liquid-solid system, for the conditions 
imposed in waste-disposal problems, the relative 
magnitudes of the two processes are not known. 
It appears that, for the initial passage of the contami­ 
nant, the condition of dN/dt»D(&C/dx2) would be 
valid. However, under conditions of repeated injec­ 
tion, the available free energy may be reduced to a 
great extent by the preceding injection; hence, the 
relative magnitudes may be of the same order. The 
immediate significance of this relates to the predicting 
of the usefulness of any given analysis, in that the 
historical events may figure importantly in evaluating 
the fate of the contaminant.

In the following analysis the isotherm described by 
equation 4 is utilized. This assumption admittedly 
restricts the applicability of the resulting analytical 
solution, but our knowledge is too meager to specify 
these limitations. It is believed that, as more data 
become available, the applicability of the solution will 
become more clearly defined.

FIELD EQUATION

The actual description of mass transport through 
porous media is a matter of conjecture since there is no 
method available to measure all energy states of the 
system. The differential equation presented is thus 
based on a macroscopic concept so that the primary 
result gives a description of the liquid-concentration 
distribution at a given point in space for a given time. 
The mathematical model considered is that of flow 
through a column of semi-infinite extent. It is, thus, 
assumed that

(a) porous medium is homogeneous and isotropic, 
(6) flow field is parallel to the x axis (say), and
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(c) mass-transfer rate from liquid to solid is linear 
and can be expressed by equation 4   that is,

Assuming that the three components of mass trans­ 
port are dispersion, convection, and adsorption, the law 
of conservation of mass may be stated as

(5)

where the relationship between 2V and C is given by 
equation 4 and the transport due to dispersion is de­ 
scribed by an equation similar to Fick's law in a moving 
medium   that is, the total transport is

.
x ~ x bz

The symbols appearing or inherent in equation 5 are 
defined as follows:

D: dispersion coefficient, 
u: average velocity or interstitial velocity, 

k, m: constants relating the adsorption isotherm, 
C: concentration of the liquid phase, 
N: concentration of the solid phase, 
x: space variable, and 
t: time.

The boundary conditions chosen are parallel to 
those of other investigators. Say, at x=0, the liquid 
concentration is maintained at some constant value, 
0 C0 . This condition depicts dispersion phenomena 
from a plane source discharging into a semi-infinite 
medium. Mathematically, these boundary conditions 
can be stated:

and lim C(x, 0 = 0for
z *a>

N(x, 0) = 0for z>

(6)

Before developing an analysis of equation 5, subject to 
conditions 6, it will be of interest to review other solu­ 
tions obtained in the analysis of exchange phenomena.

REVIEW OF SOME PREVIOUS ANALYSES

Amundson (1948), in describing the mass transport, 
assumed that dispersion is small; hence, equation 5 
becomes

where a is the volume of voids in the medium. The 
assumed adsorption isotherm is given by equation 3. 
The boundary conditions are as specified in 6, except 
for the condition N(x,Q)=Ni(x). For this system, 
the solution obtained is

u ^x> l> ~ t pO-z/u) -| 
ka I Co(ij)dij I

(if r*          ̂ j= f(t-x/u) =j ' 
f [No-Ni(&] d£ + exp ka\ C0 (rfdi, \-l 

l»Jo J L Jo J
exp

which is valid for Z> x/u. Because dispersion is 
neglected, it is noted that N(x,t)=Ni(x) for t < x/u, 
which means that no transfer from liquid to solid 
occurs until mass is transported by convection to the 
point of interest. Because the solution is given in 
terms of functions of the coordinates, there is no 
immediate applicability unless these functions are 
defined.

A special circumstance considered by Amundson is 
for the conditions dCy&«dN/& and #,(») = 
N(x, 0)=0. These assumptions may be interpreted to 
mean that the convective transport is large enough 
to balance the amount adsorbed; thus ~bCj~bt remains 
small. For this special circumstance, the solution 
reduces to

exp

Of specific interest is the analysis of Hougen and 
Marshall (1947), who considered the isotherm ex­ 
pressed by equation 4. However, the authors con­ 
sidered only the special circumstance where dispersion 
is negligible and dCydi«d2V/di. Thus, equation 
5 can be written, simply,

bC 1 bJV
"u at

The solution of this system subjected to the boundary 
conditions specified by 6 is

(7 fkx/u
7r = l   exp ( kmt) exp (  
Oo Jo

where J0 (z) is the Bessel function of the first kind of 
order zero. This equation has been calculated 
extensively and was discussed by Marshall and Pig- 
ford (1947).

Because exchange phenomena are of primary interest 
in chemical processes and the significant aspect of this 
application is limited to the condition where adsorption 
is of much greater magnitude than dispersion, scientific 
interest has tended to remain centered around the 
previously discussed situations. However, there ap­ 
pears to be one situation for which a solution of equation 
5 has been obtained. This is the most simple condition 
of a linear irreversible isotherm, which is given by 
equation 1. Analysis of this system is analogous to 
solving the heat-conduction equation with radiation 
at the boundary. The solution, as determined for 
example by the writer ("Dispersion in Porous Media,"
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£ = ut/x 

FIGURE 1. Concentration distribution for system with irreversible linear adsorption isotherm.

doctoral dissertation, Northwestern Univ., 1958), has 
the form

C 1 ,.. ,-M) erfc

exp

l-.*j/) * ~|
* /2VZ>U

ux~\ , r/,. ut
9n erfc I 1+  
2£>J L\ a;

where M= CJj V
The adsorption term ^  intro- 

ot
duces a "holdup time" and sets an upper limit to C/CQ 
depending on the value of k. For example,

does not correspond to the point t   as indicated byu
solution of the dispersion equation when Ar=0. In 
addition, the slope of the effluent curve with respect to 
time is smaller and an upper limit other than <7/(70=l 
is reached because of the continual removal of sub­ 
stance from the system. The effect of the adsorption

4y/y»

term L> shown in figure 1 for the special case of 17=-=-=1.

Crank (1956), on the other hand, gave a solution of 
equation 5 for u=Q, using the isotherm depicted by 
equation 4. In his discussion he cited situations of 
diffusion in a plane sheet and in a cylinder. The

solutions are, however, too complex to be discussed in 
this paper. Interested persons are referred to Crank's 
book, in which a complete discussion of numerical 
computation and solution in graphical form is presented.

MATHEMATICAL ANALYSIS

Let us consider now the dispersion and adsorption 
phenomena utilizing equations 4 and 5, subject to con­ 
ditions 6. There are various analytical methods that 
can be employed to obtain the solution of the differential 
equation. However, for this type of problem perhaps 
the simplest and most straightforward method is that 
employing the operational device called Laplace trans­ 
forms. Because of its usefulness in analysis, various 
texts have been written on the theory and application 
of the Laplace transform. For discussion and applica­ 
tion of complex variables and transform calculus, the 
reader is referred to McLachlan (1955), Churchill 
(1958), or Doetsch (1961). _

The Laplace transform C(x, p) is defined by the 
expression

/ CO

V(x,p)=\ e-
Jo

Hence, substitution of the integral transform into equa-
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tions 4 and 5 gives the expressions

and
Hx*~ u dx = (7)

(8)

It is noted that the transformation reduces the second- 
order partial differential equation into a second-order 
ordinary differential equation and reduce^ the first-order 
equation to an algebraic equation.

In establishing equations 7 and 8, two of the bound­ 
ary conditions, C(x, 0)=0 and N(x, 0)=0, have been 
utilized. The remaining two boundary conditions 
written in terms of G are

and
lim 17=0.

The simultaneous equations 7 and 8 may be readily 
solved^ by solving for N in equation 8 and substituting 
for N in equation 7. This process gives a single 
equation,

n d*V dV A , * \D -r-^ u T~=P ( 1+   rr~ )
dx2 dx * \ p+km/

The resulting equation is a linear second-order ordi­ 
nary differential equation with constant coefficient for 
which the solution can be readily obtained. The com­ 
plete solution is

Application of the boundary conditions specifies that 
since C( <» , p) =0, only the negative part of the argument 
is retained, and since C(Q,p~) = CQ/p} A=C0/p. Thus, 
the required solution of the transformed system is

r -p {& [- (9)

The initial step hi determining the inverse transform 
is to refer to any table of inverse Laplace transforms  
for example, Erdelyi and others (1954). If the required 
V does not appear in the tables, the inversion theorem is 
utilized which states that

C(x, f)=~ (10)

where r specifies a given path in the complex plane z. 
The choice of r is dependent on the singular points of 
the function given in equation 9 (McLachlan, 1955). 
The function involved does not, however, lend itself for 
ready determination of the type of singularity involved 
in the computation. Hence, the following mathematical 
manipulation is a process of simplification so that

732-758 64   2

various theorems in conjunction with a table of inverse 
transforms may be utilized to obtain the desired results. 

From any table of integration, it is noted that

A r v
» J°

Hence, equation 9 can be written in terms of an infinite 
integral to eliminate the radical term   that is,

where a=ux/2D and ^2 == _ 
Accordingly assuming C is continuous, substituting C 

into equation 10 leads to the expression

where p is replaced by z.
Let us consider only the complex part and denote this 

by the symbol F. Letting (z+km)=\, the complex 
part can be written

El __
g-kmt 

2W L exp [A*-

Rearranging the argument of the exponential term, the 
expression can be written

r a3ai ~\ i 
F=exp I   kmt -TTJ (k krn) 5 .

f P\ (t «2 /32\ i c?fPk*m~\ d\ 
Jr eXP L V "4FV + 4£*X J \-krn

Thus, the complex part of the function F is

dx
X km (11)

The nature of equation 11 makes further simplifica­ 
tion possible by the use of the shift theorem (McLachlan, 
1955). The shift theorem specifies that if there exists a 
function defined as

where X(£) is continuous or piecewise continuous for 
t^>h, its transform is obtainable by the standard 
method. The value of the integral, however, is zero 
when £< h, which indicates physically a moving system 
or in this circumstance signifies that the concentration 
is zero until the contaminant arrives at the point hit.
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It is again noted that the Laplace transform is de­ 
fined by

Keplacing (t) in the above expression by (t  h) gives 

= f e-*'-v<t>(t-h)dt=ert f°
Jh Jk

= f°° e~^<}>(t
v 0

where U(t h) is a unit step function with properties 
U=0 for t<^h and C7= 1 for t^>h. The inversion of this 
function can be written symbolically as

L-le-rt$(p)=<t>(t-h} U(t-h).

Thus, if !j>(p) exists, the inverse transform of ^(t h) 
can readily be obtained since L~l ^>(p) = 4>(t) .

In this specific problem, the function for which the 
inverse must be determined is

exp

As previously stated, L~1 ^(p)~^(t); hence, the re­ 
quired computation can be written in operational form,

where a2=a2/32A:2m/4f .
Because the exact expression of $ does not appear in 

tables of inverse Laplace transforms, the function is 
rewritten

= exp (o2/p) + exp (o'/p).

Each term in the function 0 can then be directly ob­ 
tained from the table of inverse Laplace transforms  
that is,

Ir1 exp (o2/p)/p=/o(2aVO 
and

L-U/(p+5)=exp(50.

Thus, the first term of 0(£) is I0 (2a-Ji). The second 
term, on the other hand, can be evaluated from the con­ 
volution or superposition theorem which states that if 
Lf(t)=J(p) and Lg(t) = H(p), then

= P/(r)<7(«-r)dT= P
Jo Jo

Hence, the second term can be shown to be

p km
Q2/P p 

P ~"Jfl

The function <$>(t) thus can be written

t P e-* 
Jo

Further, letting a=a/%, where a=a2^2k2m/4:} the shift 
theorem requires that the inverse of equation 11 be 
written

n
] Jo

(12)

equation 12 is valid for £>62/£2 where &2=a2j82/4. 
Since the solution gives zero values for i<a2jS2/4^2, or
/#2 \ / £<j j^ j /^2, the particular solution of equations 4 and 5,

subject to conditions 6, becomes
n Opa /*
^=^=
Co YOT- JZ

jexp [- 

+exp (

exp

(13)

where a=ux/2D and 72 =/32a2/4=z2/4#.
Equation 13 cannot be simplified; however, it can be 

written in terms of a tabulated function J introduced by 
Goldstein (1953). A complete discussion of the various 
properties of the J-i unction was given by Goldstein. 
The function is defined by

=e-« fV< 
Jo

The function J(x, y) appears in a wide variety of prob­ 
lems and therefore no attempt is made to list its prop­ 
erties. The reader is referred to Luke (1962), who 
listed the more significant properties, or to the original 
work of Goldstein. Luke also listed some of the com­ 
puted tables of the J-function appearing in various 
publications. To illustrate J(x, y), the function com­ 
puted by the writer is presented in figure 2.

Noting that one of the elementary properties of this 
function is

J(r, y~)+J(y, T)-l=e-<'+»>/0 (2V^)

and utilizing the definition of the J-function, equation 
13 can be written

C_ = 2e« r 
Co vV J

(14)

where y=ky2/£2 and T=km(t y2/%2').
To determine whether the boundary conditions are 

satisfied, it is noted that

/(O, i/) = /(r,0)=e-'
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i. Gi

FIGUBE 2. Plot of J-function.

and
lim lim J(T, y) =

Substituting these known conditions, it can be seen 
that the boundary conditions for x 0 and t=0 are 
satisfied. Also when x ><*, C/C0 >0 and, for large 
times that is, r >Q° J(r, y) = l', hence, substituting 
leads to C/C0 =1. Thus, all conditions are satisfied 
and by direct substitution, equations 4 and 5 can be 
shown to be satisfied.

Equation 14, although highly complex, cannot be 
reduced any further; however, numerical integration 
can be carried out if k and m can be approximated. No 
attempt is made to calculate this function in this paper, 
although it would be of interest to note two special 
situations for k=Q, m^Q and k^Q, m Q. First con­ 
sider k=0, m^O. Equation 14 simply becomes

_cCo"

2v/5i

which is the solution for the circumstance of no adsorp­ 
tion that is, for

For m=0 and
_7 "_/ 4Z)fc\ "

equation 14 reduces to 

C 2e« f 00 Ta^v^ J ^_ exp
2Vci

which is the solution for 

Furthermore, since

= e-^ erfc *- + e20 erfc

both expressions can be written in terms of the error 
function.

SPECIAL SITUATIONS

As mentioned previously, the orders of magnitude of 
the terms in equation 5 are not known in most adsorp­ 
tion systems. Thus, two circumstances are considered 
in the following pages, the first assuming that dispersion 
is small that is, Z>d2(7/dz2 is small. Here equation 5 
reduces to

dC bC, c)2V_ ~ ~~ (15)
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Second is the circumstance where d(?/d£<CdAYd£, thus 
reducing equation 5 to

_ _ U ~ (16)

The mass transfer to the solid phase is again assumed to 
be expressed by equation 4 and the boundary conditions 
are those given in 6. The conditions under which these 
assumptions are valid are not known; however, these 
solutions may be useful in analyzing some laboratory 
models.

For both circumstances expressed by equations 15 and 
16, the method utilized is the Laplace transformation. 
Hence, applying the Laplace transform to equation 15, 
the subsidiary equations obtained are

u -r--\-pC-}-pN=

and
PN=k(C-mN)

#=(n

V) J

(17)

Equations 17 are now first-order differential equations 
with constant coefficient; the solution can be shown to be

u p -\-krn

From the initial condition C(x, 0) = <70 f or £>0, the 
constant A is again determined to be

A=Co/p.

Further, letting s=p+km and utilizing the inversion 
theorem, the solution can be expressed

-kmt-(k-km)- dz

Or,
dz

Accordingly, utilizing the shift theorem, the function 
for which the inverse is to be determined is

_k*mx , / 
e u ''/ (s-km).

The transformation is carried out in the same manner 
as that used in obtaining equation 14. The required 
solution is, thus,

m f ,-x\ kr t r IJfZ / ^\T
I *   I     IT I n /'"' *' 1 / j  ** 1 IV u) u iI0 2-\   km [ t   ) 

I L V u V «/ J

-{-km exp j km (t ^

c
7T Co

for t^>x/u. The above relation written in terms of the 
previously described J-fimction is simply

7r=J(y, (18)

kx / x\ where y=  and r=km (t ). Equation 18, in
y u \ «/ 

terms of a definite integral, can be written
r -km(t-~* 
*-> -i \

It is noted that the function obtained above is the same 
as that derived by Hougen and Marshall with the

replacement of f t  J for t. This function has been 

computed and is presented in graphical form as figure 2.
3/Further, note that for £«-, equation 19 reduces to' u' n

~  = e-kx/u 
rt K >Co

which indicates that measurable traces of solute will 
appear at t=x/u provided k is small. In most experi­ 
mental setups, the holdup time is much greater; thus 
the expression is generally not useful in the analysis of 
experimental data.

Let us consider now the second special circumstance 
in which dN/<)t^>dC/dt. Here the transformed or the 
subsidiary equations become

dC «

and

Solving for U gives

exp -

The inverse obtained in the same manner described 
previously is

?

+ kme *»"

where @=Dka2/u2.
In terms of the J-function, the preceding relation 

becomes
C_ =2e^ f
Co V^ Jo

exp [-!2- (20)

where y=P/£2 and r=kmt. However, once again the 
function is not reducible and in its integral form can be 
written

~
Co

exp ^-
r

^o
(21)

DISCUSSION

To effectively predict the fate of a tracer or contami­ 
nant as it progresses through porous material, two 
phenomena must be predicted beforehand. These 
consist of dispersion due to departures from the flow
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predicted by use of Darcy's law and the loss of material 
through adsorption by the porous medium. The first 
effect can generally be predicted for laboratory condi­ 
tions, because flow is controlled to fit the theoretical 
conditions postulated. The adsorption effect, on the 
other hand, cannot be controlled even under conditions 
met in the laboratory. It can only be said to be 
dependent on the tracer and the soil constituents.

Because of this unknown factor that inevitably 
appears in all types of studies involving tracers, the 
need for finding a near-perfect tracer is apparent. But 
discovery of this near-perfect tracer is yet to be made, 
although there appear to be a few elements that display 
only minor attraction to the silica sands commonly 
used in the laboratory. However, when natural soils 
are used as the porous medium, adsorption may play 
an important role in determining the distribution of 
tracer material at some point downstream. This then 
requires that the laboratory data be analyzed to esti­ 
mate the rate at which the tracer or contaminant is 
transported from the liquid to the solid. Studies of 
exchange processes show that, in the low-liquid-con­ 
centration range, a good approximation is obtained by 
assuming a linear adsorption isotherm.

On the basis of these findings the preceding mathe­ 
matical analyses were developed utilizing the linear 
isotherm described by equation 4. The solutions 
obtained are extensions of previous expressions which 
were developed and used to represent ion-exchange 
phenomena in fixed columns. However, the final solu­ 
tions, equations 14, 18, and 20, are such that no real 
purpose would be accomplished by numerical computa­ 
tion unless realistic values of k and m in equation 4 
were available.

It is expected that, as some data indicating the 
range of k and m become available, computation of 
equation 14, 18, or 20 will be attempted. From the 
experimental and analytical standpoint, equation 18 
would be the most appropriate for obtaining an approxi­ 
mation of the constants k and m, provided extremely 
slow flow can be obtained in the experimental model.
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