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SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY

MOHR'S THEORY OF STRENGTH AND PRANDTL'S COMPRESSED CELL IN RELATION
TO VERTICAL TECTONICS

By S. P. KANIZAY

ABSTRACT

Mohr's theory of strength, given in functional form, T=/((T), 
where r is the shear stress and a is the normal stress on the 
surface of failure, is particularized graphically such that failure 
occurs along planes oriented at right angles to the largest prin­ 
cipal stress when failure is under tension, and along complemen­ 
tary orthogonal slip planes, whose orientation ranges from 30° 
to 45° with the largest principal stress in failure under com­ 
pression. It is proposed that a correlation exists between mean 
stress, as measured along the a axis of a modified Mohr yield 
envelope, and depth in the earth's crust such that there is a 
functional relationship in which mean stress increases with 
depth. The type of deformation varies with mean stress; 
as mean stress increases, deformation is characterized by less 
brittle and more plastic behavior.

The types of deformations discussed here are assumed to be 
associated with rising geologic masses. Under this assumption a 
structural unit exhibiting characteristics of brittle deformation is 
presumed to have undergone deformation while nearer the 
surface than a unit that exhibits characteristics of plastic de­ 
formation. A further extension of this assumption is that 
structures of the brittle type are younger than structures of the 
plastic type, assuming that the rates of upward movement 
are the same for each unit.

Prandtl's solution for a compressed cell is used as an example 
of perfectly plastic deformation in which the angle of internal 
friction is zero, and Hartmann's solution is used for the case 
where there is internal friction. Hence, plastic solutions exist 
under Mohr's theory which hold throughout the compressive 
domain of the yield envelope.

Prandtl's solution is used to define active and passive cells 
of deformation which together with wedge variations may 
simulate structural units, particularly under the condition of 
vertical tectonics.

INTRODUCTION

Many mountainous masses are much longer than 
they are wide. Moreover, the rocks in the exposed 
central parts are elevated above their stratigraphic 
position in adjacent basins. This linear or striplike 
topographic outline together with differential uplift 
suggests the possibility that useful ideas may arise 
from a comparison of such geologic structures with 
theoretically derived analyses of deformed ideal bodies 
with simple outline.

A framework under which this comparison can be 
made is Mohr's (1928) theory of strength. That is,

if it can be shown that Mohr's theory is applicable 
to geologic deformations in general, then solutions to 
specific deformations under the theory should also 
be applicable.

With this in mind, the writer has examined the 
existing solutions for deformation within rectilinear 
plastic strips and wedges, as presented by Prandtl 
(1924), Nadai (1950), and Varnes (1962). Inasmuch 
as these analyses were made for the condition of plane 
strain, they are here applied to two-dimensional ver­ 
tical sections taken centrally through long mountain 
masses in order that deformations parallel to the long 
horizontal axis of the deformed units may be neglected.

The whole basis for the concepts presented rests on 
the mathematical theory of plasticity which is here 
only briefly discussed. Comprehensive treatment of 
the subject is given in several texts including Nadai 
(1950), Hill (1950), and Prager and Hodge (1951). 
Varnes (1962) gives a definitive discussion of the 
subject and points his development toward geologic 
application. It is suggested that the Varnes' report 
be read as a companion to this report. Ode (1960) 
brings out the core of the theory in its application to 
faulting. The essence of the theory lies in allowing 
permanent deformations. Certain differential equa­ 
tions involving velocity are found to be hyperbolic in 
form. Being hyperbolic, these equations thus permit 
real discontinuities in velocity (slip lines). In geology 
they are the trajectories along which there may be real 
faults.

Application of plastic theory to geology can be 
approached from either of two ways. The postulated 
stress field may be given as a boundary condition and 
from which a solution may be obtained that defines 
the slip-line field. This approach requires that the 
stresses which give rise to a particular deformation 
are known. Before the stresses can be ascertained 
in geologic structures, one must have a rather thorough 
knowledge of what the actual structure looks like. 
The stresses can then be assumed and a problem solved 
for the slip-line field. It should be apparent that
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B-2 SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY

this approach can give useful templates or typical 
solutions for comparison with actual or implied geologic 
structures.

A second approach is through the solution of a 
boundary-value problem where some part of the 
slip-line field is given. Then by use of the plastic 
theory the rest of the slip-line field and the appropriate 
boundary stresses may be derived and the theoretical 
concept completed. This latter approach was em­ 
ployed by Varnes (1962) in applying plastic theory 
to the Silverton, Colo., area.

In the present report a variation of the first approach 
will be employed. That is, the limits of the plastic 
domain are assumed, linear mountain elements with 
boundary lines that are parallel or converge like 
wedges; then the internal mechanics of the structure 
may be determined according to plastic theory.

MOHR'S THEORY OF STRENGTH

The Mohr theory is virtually an empirical theory 
of yield which accounts for the behavior of permanently 
deformed materials. As portrayed on a Mohr stress 
diagram the theory assumes a functional relation

between mean stress and maximum shear stress on 
the plane of failure. In this report the particular 
shape of the yield envelope is assumed to be more or 
less parabolic in form as shown in figure 1.

Two equations are noteworthy in defining Mohr's 
theory,

r=/(<r) (1)

(2)
2

Equation 1 says that the shear stress on the plane of 
failure is a function of the normal stress across that 
plane. Equation 2 says that the maximum shear 
stress or the diameter of the largest stress circle tangent 
to the yield envelope is a function of the mean or 
hydrostatic stress component of the total stress.

Nadai (1950, p. 218), after having discussed Mohr's 
theory of strength, said in a footnote,
In summing up we may state that the Mohr theory predicts 
many of the principal facts known from strength tests for a 
large variety of materials embracing the perfectly ductile metals 
and the solids behaving in a brittle manner, including the 
observations on the orientation of the surfaces of slip in plastic

Brittle e Perfectly plastic

Mean stress increases

FIGTJBE 1. Postulated form of yield envelope.
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materials and, as we shall see below, of the shear and cleavage 
fractures. In the region of large mean pressures when the 
envelope tends to become parallel to the a axis, it predicts 
what might be called "pure" shear fractures (#=45°), in the 
transition zone the ordinary obliquely inclined shear fracture 
(0 <C# <C45°) and near the apex of the envelope the cleavage 
fracture (#=0) in the direction normal to the maximum tensile 
stress.

The assumed parabolic envelope specified herein 
follows Mohr's theory basically, but it is a modification 
to the extent that certain additional empirical factors 
also are considered. There are two principal factors. 
First, failure under tension is to be specified as occurring 
on a single plane (not complementary families), and 
second, the angle of internal friction where the yield 
envelope crosses the shear stress axis is taken to be 30°. 
The first factor is credited to Leon (in Nadai, 1950, 
p. 221), the second factor is taken as an average 
figure. The exact value of the angle of internal 
friction at the shear stress axis is not so important 
as the convergence toward the a axis from a position 
of parallel lines to an orientation, on the tension side, 
in which the envelope is normal to the a axis. Thus 
30° represents simply a reasonable figure.

Within the parallel line part of the envelope the 
material deforms under a constant maximum shearing 
stress, the prescribed slip lines are inclined at 45° to 
the largest principal stress and occur in complementary 
orthogonal sets. This is true regardless of the value 
of the mean stress, implying that once the perfectly 
plastic state is reached any increase in mean stress 
does not affect the geometry of the slip-line field.

At the other end of the envelope, near the origin, the 
behavior of the material shall be specified as brittle. 
This means that failure takes place on discrete, macro­ 
scopic, slip lines. Where the tensile stress is equal or 
greater than the compressive stress the failure is termed 
"cleavage fracture" and the slip line is oriented at 90° 
to the largest principal stress.

The brittle and perfectly plastic zones grade into one 
another through an intermediate zone. If this zone 
were narrowed to a line there would be two zones, one 
brittle and one plastic. Heard (1960, p. 193) investi­ 
gated the effects of temperature, confining pressure 
and interstitial fluid pressure on such a transition and 
noted that under conditions comparable to his experi­ 
ments, normal faulting of dry limestone could exist to 
a depth of 15 kilometers and reverse faulting to a 
depth of 3.5 kilometers. Interstitial fluid pressure 
would serve to increase these depths.

The zone between the perfectly plastic behavior and 
brittle behavior is characterized by internal friction. 
Whereas in the parallel-line zone the influence of the 
mean stress was ineffectual; in the brittle plastic zone 
there is a continuous change in the angle of internal

friction with a change in the mean stress. The degree 
of nonorthogonality between the slip lines also changes 
value in this interval.

From the brittle zone to the perfectly plastic zone 
the configuration of the envelope requires that the 
behavior of the material change with mean stress. 
That yield is a function of mean stress is apparent 
from this inspection but should not imply the exclusion 
of other independent variables which contribute to 
the control of deformation, that is, time and tempera­ 
ture.

Perfectly plastic behavior is assumed to be a simul­ 
taneous movement along countless slip lines. Brittle 
behavior would modify this definition to the extent 
that certain lines would be favored for movement.

It should be emphasized that Mohr's theory is not 
explicit, that is, the functional relationship T=/(<T), 
which considers observed deformation phenomena, is 
not specified. Generally yield criteria which are more 
specific are also more restricted in their application 
owing to mathematical considerations.

Later in this report the solutions to two problems of 
plastic deformation in plane strain will be cited; one 
of these uses the parallel-line part of Mohr's envelope; 
that is, Prandtl's problem of the compressed cell using 
von Mises' yield criteria (rmax =constant), and the 
other uses the convergent-line part of the envelope, 
that is, Hartmann's solution using a Coulomb criterion. 
While both criteria can J>e considered as special cases 
of Mohr's theory (Nadai, 1950, p. 219), they should 
not be considered less noteworthy than Mohr's theory. 
They are mathematical rather than empirical.

MEAN STRESS AND DEPTH

Mean stress is defined as the average normal stress 
at a point; it is also called the hydrostatic component. 
In terms of principal stresses,

(3)Mean stress=-^-r--=a2 (plane strain).

It corresponds to confining pressure of the triaxial test. 
Total stress at a point in a solid body consists of the 
mean stress plus the deviator stress. In contrast, the 
stress in a fluid body has no deviatoric component. 
In terms of principal stresses,

Total stress=mean stress+deviator stress

0-1=

_ 03  (4)
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Thus the deviator is the actual deforming agent or 
component while the mean stress acts as a sort of 
conditioner for the deformation.

In recognition of the importance of this single pa­ 
rameter, mean stress, a search is made for some corre­ 
sponding element in the earth's crust in order that 
Mohr's envelope might be more directly correlated 
with an element of the earth's crust. Depth is such 
an element. As a simple linear measure depth by itself 
does not tell the whole story. In a general sense its 
magnitude can be taken as a rough measure of increase 
not only in mean stress but also in other variables that 
strongly control earth deformation; namely, tempera­ 
ture. Handin and Hager (1958, p. 2892) have shown 
experimentally that an increase in temperature tended 
to weaken rocks and enhance their ductility. The net 
effect of increased temperature would increase the 
possibility of perfectly plastic behavior.

Thus the mean stress axis of the Mohr envelope can 
be placed side by side with a section of the earth's crust 
in order to give a graphic representation of the correla­ 
tion, as in figure 2.

Although a quantitative relation between mean 
stress and depth cannot be stated, the general correla­ 
tion may be useful in discussing certain postulates about 
deformation in the earth's crust, as follows :
1. According to the position of the coordinate (a,r) origin 

relative to the earth's surface it is seen that the condition 
of no tension in the crust is specified. This statement

needs modification to the extent that tension perhaps may 
exist to shallow depths in special cases.

2. Near the surface the response of material to deformation will 
be of the brittle type whereas at depth it will be plastic.

3. Failure will occur along lines of maximum shear in comple­ 
mentary families. Near the surface these lines will be 
nonorthogonal, whereas in the perfectly plastic zone the 
angles between them will be 90°. The absolute orientation 
in space cannot be specified unless the orientation of the 
principal stresses is known. At the surface, the acute 
angle between members of a family of slip lines is about 60°.

4. The material is specified to have a movement pattern such 
that, in a continuity of deformation, movement is generally 
in an upward direction from a high mean stress to a lower 
mean stress.

5. The geometry and mode of deformation should reflect the 
relative age of deformation in a cycle where the latest mode 
of deformation should be of the most brittle type.

Support for these remarks is now developed.

PRANDTL'S COMPRESSED CELL

Under the concept of linear mountain belts with 
differential uplift we recognize the nature of the defor­ 
mation and seek to explain the mechanism whereby 
it developed. The internal mechanism of deformation 
is presumed to be a shear mechanism. The linear as­ 
pect of the mountain belts indicates that a two-dimen­ 
sional theory, that is, plane strain, will give useful 
results. Since the direction of movement of material 
is upward, the stresses that give rise to such a move­ 
ment should be associated with a mean-stress compo-

Surface

Plastic-viscous limit

FIGUBE 2. Mean stress correlated with depth.
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nent that decreases upward. In turn this implies that 
boundary stresses should decrease upward. The nature 
of the physical boundaries of the mountain masses are 
necessarily conjectural; nevertheless a variation in geo­ 
metrical shape ranging from parallel walled boundaries 
to wedges with sides convergent upward or downward 
again should provide useful approximations. The con­ 
cept of having straight-line walls as boundaries may 
not meet with agreement on the part of researchers 
who assert that there are no such sharp boundaries in 
nature but rather a gradual decrease of deformation 
intensity. This lack of agreement is recognized and 
cannot be discounted other than to note that solutions 
that involve gradual transition from plastic domains 
into elastic or rigid domains cannot be obtained from 
plastic theory at the present time. The approach is to 
treat the deformation within a unit as all of one type  
permanent. By selecting boundaries somewhat wider 
apart than what might be dictated by field evidence, 
some allowance can be made for the lack of a transi­ 
tional change. Similarly the selection of a wedge geom­ 
etry instead of a parallel-shaped cell can account for 
lack of symmetry or variation of deformation if referred 
to rectangular coordinates.

Prandtl (1924) solved for the case which serves as 
a basic guide to deformation as applied to vertical 
tectonics here, namely the compressed cell.

According to his theory a mass is confined between

two approaching, parallel, perfectly rough plates such 
that the shear stress along the plates will be at a max­ 
imum constant value. The material is permitted to 
extrude in one direction only, -\-x, and the plates 
squeezing the material remain parallel to one another 
and at right angles to the y axis as the deformation 
ensues. Figure 3 illustrates the problem and its solu­ 
tion in the form of the derived slip lines which are 
cycloids, as well as the distribution of the normal 
stresses on the boundaries.

Prandtl's solution was for a semi-infinite cell (x direc­ 
tion goes to infinity) in which case the slip lines would 
be orthogonal families of cycloids.

Prandtl's (1924) exposition is less detailed regarding 
the compressed cell than that of some workers who 
have enlarged on this work. For the purpose of detail­ 
ing the solution, reference might be made to previ­ 
ously mentioned authors including Nadai, Varnes, and 
Geiringer. Nadai (1950, p. 533) gives the development 
somewhat as follows.

Taking the equilibrium conditions in plane strain

d<rx 
ox

^ j,-^  u, -=- -| ;r  u 
oy oy ox

(5)

and cross differentiating one with respect to x and the 
other with respect to y and then subtracting, the 
equation is

oxoy dz2 of

«*=c + 7T

Stress Relative movement Uniformly parallel Direction of movement 
along slip lines movement of plates of material

FIOUKE 3. General case of Prandtl's compressed cell.
604531 0 61-
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Substituting from the von Mises' yield condition

(7)

(^max= constant) 

the partial differential equation 8 is obtained.

'-=±2 (8)

Under the assumption that the shearing stress is a 
function of the y direction only, rxv=J(y\ it is seen that

d2r 
equation 8 reduces to ">lF=0> for which a solution

is rxv =cy. At the boundaries (plates) it is seen that 
rsv=k since y will be a constant, and this will be the 
maximum shearing stress. Thus the contacts between 
the two plates and the material will be slip lines. From 
the equilibrium conditions (eq 5) the expressions for the 
coordinate stresses can now be obtained

~ (9)

where 2a is the distance between the plates. Moreo­ 
ver, from the yield condition the functions/^?/) and 
/2 (a?) are found to be

(10)

Substitution of these functions into the expressions for 
coordinate stress the final expressions for stresses are 
obtained

The distribution of these stresses is shown in figure 3. 
Note that av is a linear function of the x direction only. 

From equations which specify the relation between 
principal and coordinates stresses we have

vx=<r-\-k sin 2ft 

<Ty =<T   k sin 2ft 

Txy= kcos2ft (12)

where <r  1 3 , and where ft is the inclination between

the maximum shear stress trajectory and the x axis. 
The relation between the coordinates and the slip lines 
is given as

(13)

Suitable substitution and integration leads to expres­ 
sions for the slip lines given in parametric form as

z=a[2/3+sin 2/3]+const., y=a cos 2ft, (14) 

for the first slip-line family, and

x=a[2ft  sin 2/3]+const., y=acos2ft (15)

for its orthogonal complement. These are also shown 
in figure 3 with the relative direction of slip required 
indicated along the lines.

Hartmann (1928, p. 495) gives a similar development 
for a material having internal friction. In his solution 
the slip lines are cycloids whose degree of nonortho- 
gonality to one another depends on the coefficient of 
internal friction.

Prandtl used a von Mises' yield condition for his 
solution, whereas Hartmann used a Coulomb yield 
condition for his solution. Hartmann thus permitted 
failure on planes having less than the maximum shear 
stress. Since both yield conditions may be considered 
as special cases under the Mohr theory it follows that 
there may exist a solution to a compressed cell in 
which the derived slip lines range continuously from 
that of a Prandtl solution through a Hartmann-type 
solution with varying angles of internal friction.

Nadai (1950, p. 535) has shown that Prandtl's solu­ 
tion (hence Hartmann's) may be modified to give the 
so-called active and passive cases (fig. 4). Essentially, 
the slip-line patterns are rotated 180° from active case 
to passive case, but the material extrudes in the same 
direction as before. Prandtl's original solution is 
termed "the passive case" where the mass being ex­ 
truded is said to passively receive the pressure being 
exerted by the plates. In the passive case, the slip 
lines are concave toward the direction of movement of 
material. In the active case a push on the material 
from one end in the direction of movement causes the 
mass to actively press on the plates and move them 
outward and at the same time extrude the material 
forward. Here the slip lines are convex toward the 
direction of movement of the material.

In the situation cited above, one dimension (x) is 
infinite. What happens with finite dimensions? The 
guiding geometry of a basic cell is as illustrated in 
figure 5.

The material being deformed is characterized by a 
central rigid kernel, bounded by the complementary 
first slip lines and the plates. At the ends of the 
plates, A and A', where the material is extruded, 
another rigid plug is bounded by a slip-line pattern 
that consists of radii and arcs of circles. The boundary 
between rigid material already extruded and the con­ 
tinuously deforming material still in the cell consists of
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Plates move out uniformly

B-7

A. Active ceil where the direction of push is from 
left to right with material moving to the right

Plates move in uniformly

£. Passive cell (Prandtl's original solution)

FIGURE 4. Active and passive cells. A, Active cell, where the direction of push is from left to right with material moving to the right.
B, Passive cell (Prandtl's original solution).
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FIGURE 5. Slip-line field in a finite compressed cell.

straight slip lines inclined at 45° to the x axis. In 
figure 5 these are shown by lines AB and A'B. If the 
material is not perfectly plastic the 45° angle decreases 
as the angle of internal friction increases. To further 
construct the slip-line pattern at the extruding end of 
the cell an arc of a circle is drawn from B to C with 
radius AB and the center at A. A similar construction 
is made in the lower half for the complementary family. 
Material in the areas ABC and A'DB will have radii 
and arcs of circles as slip lines. Further inside the cell 
the slip lines will be cycloids bounded by the first slip 
lines or the plates.

The critical dimension of a cell occurs when the 
length of the cell approaches the width of the cell, a 1:1 
dimensional limit (Prandtl, 1924, p. 51). A cell that 
approaches this limit is shown in figure 6. There is

FIGURE 6. Prandtl's cell approaching 1:1 dimensional limit.

virtually no change in the construction from the one 
outlined above since the extruding end of the cell is 
characterized by radii and arcs of circles, and the inner 
part by cycloids. However, the first slip line does not 
complete its trajectory to the plate; instead it is inter­ 
sected by the circular arc at the end of the plate.

If the ratio of the length to width of the cell under 
compression is less than 1:1 the material behaves as if 
it were being punched rather than compressed between 
two plates (Prandtl, 1924, p. 51).

So far the discussion has been concerned with the 
passive case of deformation. The active case can be 
considered as the reverse. That is, if one had been 
viewing motion pictures of the passive case of deforma­ 
tion and now reversed the direction of film movement 
one would see what happens in the active case of 
deformation. The configuration of rigid areas for both 
the active and the passive cases is the same even though 
the slip lines are reversed relative to the direction of 
movement. Hence, for outward movement in the 
passive case the end of the cell is characterized by a 
rigid area (fig. 5), whereas in the active case the end of 
the cell is characterized by two rigid areas, having 
cycloids as one of the sides.

If the cells are rotated 90° so that the direction of 
movement is either up or down, it is seen that there are 
two possible positions of the individual cells. If the 
movement is in an upward direction, the slip lines of 
the passive case must be concave upwards, and in the 
active case slip lines must be convex upwards. The 
reverse orientation holds for downward movements 
(fig. 7).

The body force of gravity did not enter into PrandtPs 
solution, because this function acts normal to the xy
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Plates move in

A. Passive B. Passive

Plates move out

C. Active D. Active 

FIGTIEE 7. Variations of PrandtPs cells oriented vertically.
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plane and does not vary with either of the coordinates 
in this plane. Since the cell is rotated into the vertical 
plane, for application to vertical tectonics, it can be 
seen that the body force of gravity must be considered 
as a variable function of the vertical coordinate; the 
gravitational constant is effectively a constant to a 
depth of 2,400 kilometers (Bullen, 1947, p. 222). 
However, when cross derivatives of the equilibrium 
equations are taken, we would have the partial deriva­ 
tive of the gravitational body force with respect to a 
horizontal coordinate direction with which it does not 
vary; hence the derivative would vanish. Thus, the 
presence of a gravitational body force does not affect 
the slip-line configuration of a Prandtl cell in an up­ 
right position.

Attention is called to the linear increase of lateral 
compressive stresses required by Prandtl's solution, as 
this sort of stress distribution may well exist in the 
earth. The assumption that there is equilibrium 
postulates then that the lateral stresses must increase 
with depth to compensate for the increase in weight of 
a column of rock at depth. By addition of a uniform 
lateral compressive stress, the principal stress difference 
could be increased to the point of yield. The addition 
of a uniform, or even of a linearly distributed lateral 
compression, to the original lateral stress which is 
assumed to increase downward linearly still results in 
a linear distribution of normal lateral stress as required 
by the solution of Prandtl's cell. This is one of the 
principal reasons why the solution seems appropriate 
to the tectonics of long mountain ranges.

Nadai (1950, p. 543) has shown that the solution for 
the compressed cell of Prandtl is related to the solution 
of a compressed wedge where the only difference in the 
boundary conditions is in the angle between the com­ 
pressing plates. For Prandtl's problem it is 0°, for 
Nadai's wedge the angle may range from 0° to 180°.

Nadai's solution for the wedge assumed movement 
of material out of the constricted end of the wedge. 
Varnes (1962) gives a similar solution for a compressed 
wedge where the material moves out of the wedge 
toward the open end. Thus, both of these wedge 
solutions are for passive cases. It can be shown that 
there are both active and passive solutions for a wedge 
just as there were for Prandtl's rectangular cell. The 
slip lines for the wedge solutions are exponential curves 
rather than the cycloids. However, the geometry 
of Nadai's active case is the same as Varnes' passive 
case, but the movement of material is in the opposite 
direction. Similarly, the Varnes active case has the 
same slip-line geometry as Nadai's passive case.

The four variations for the wedge solutions are shown 
schematically in figure 8.

Hence, for application to geologic structure, particu­ 
larly in consideration of vertical tectonics, some ge­ 
ometric patterns range from those with parallel bound­ 
aries to those with boundaries inclined to one another 
at large angles. Furthermore, these boundaries may 
move toward one another as in the passive case or away 
from one another as in the active case giving rise to 
thrust or normal movement along slip lines, respectively.

STREAMLINES AND FOLDING

What will be the shape of a straight reference line 
after deformation? It can be shown that a straight 
line oriented parallel to the direction of transport will 
remain virtually straight although displaced, but a line 
originally oriented at right angles to the direction of 
transport will have an elliptic distribution for some 
time after deformation starts. This can be illustrated 
by two types of evidence. First it has been shown by 
Nadai (1950, p. 537), experimentally, that the distri­ 
bution will be an elliptic one. Secondly, from a stream­ 
line pattern derived by Geiringer and Freudenthal 
(1958, p. 430), it is apparent that the shape of a straight 
line after deformation will be elliptic (see also Hill, 
1950, p. 234). Figure 9 shows the pattern of stream­ 
lines in relation to the slip lines as derived by Geiringer 
and Freudenthal for PrandtPs cell. The relative in­ 
stantaneous direction of slip along the slip lines follows 
as illustrated. Thus the particles closer to the X 
axis will have the greatest component of velocity up­ 
ward parallel to the X axis, whereas those particles near 
the boundaries will have relatively less of a component 
in this direction. '

Under the assumption that all particles of the mass 
have the same velocity, those particles of a straight line 
(AB} near the X axis will have moved upward farther 
than the marginal particles; hence the elliptic distribu­ 
tion. The assumption of the same constant velocity 
for all particles in the deforming mass is termed "steady 
flow." In the solution to PrandtPs compressed cell it 
is assumed that only scale changes occur so that the 
pattern of streamlines and slip lines will remain geo­ 
metrically the same as in a previous state. This is 
termed "the pseudosteady state." If the geometry of 
the slip lines and streamlines were to change from one 
instant to the next the material would be under a 
condition of unsteady flow. Such a condition probably 
would tend to make the material flow faster in the 
middle than at the boundaries and consequently in­ 
crease the arching of the elliptic distribution as well as 
to thicken the ellipse in the middle and thin it near the 
boundaries.

Figure 10 illustrates two successive stages in a case 
of steady flow for a Prandtl cell where only scale change
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Plates move out Plates move in

A. Active case with material moving 
out ot open end of wedge

B. Passive case with material moving 
out of open end of wedge 
(after Varnes,Prof. Paper 378-B)

Plates move out Plates move in

C. Active case with material moving 
out of constricted end of wedge

D. Passive case with material moving 
out of constricted end of wedge 

(after Nadai, 1950)

FIGURE 8. Active and passive cases for wedges. A, Active case with material moving out of open end of wedge. B, Passive case with material moving out of 
open end of wedge (after Varnes). C, Active case with material moving out of constricted end of wedge. D, Passive case with material moving out of con­ 
stricted end of wedge (after Nadai, 1960).
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 Streamlines

lip lines

FIGURE 9. Relation of streamlines to slip lines (passive case). Showing instanta­ 
neous particle movement and relative slip particles on a normal (AB) to axis of sym­ 
metry (after Qeiringer and Freudenthal, 1958, p. 430).

has taken place. Similar flow phenomena will hold for 
the cases of wedges.

In contrast to the passive case as mentioned previ­ 
ously, the active case shows an opposite direction of 
movement. The form of an original straight band 
normal to the direction of movement will be elliptic; 
however, this time it will be thinned. Hence, from the 
condition of no volume change, both the active and 
the passive cases are marked by an arching, but the 
difference is that the passive case exhibits a thickening

of the line, whereas the active case exhibits a thinning 
of the line.

SLIP LINES AND FAULTING

The relation of slip lines to faults is somewhat more 
tenuous than the relation of slip lines to folds. In folds 
the deformation is uniform and symmetrically dis­ 
tributed. Faulting on the other hand may be consid­ 
ered as deformation along one or a few of the many 
possible slip lines, hence, an asymmetrically distributed 
deformation. Ultimately the distinction to be made 
between faults and folds is one of why deformation 
occurs along a single line rather than along infinitely 
many. Such a question will not be resolved in this 
report. The writer believes that an asymmetry of 
deformation does not preclude a single slip line being 
analogous to a fault.

An entire cell may be considered as a fault zone as 
in figure 11, or one or more of the slip lines within the 
cell can be taken as a fault or fault zone as in figure 12.

The former case leads to a discussion of faults where 
the material outside the cell boundaries undergoes 
movement different from that specified in Prandtl's 
problem and where the material outside the boundaries 
constitutes an integral part of the structure. This case 
will not be discussed here.

The case where the entire deformation is within the 
cell boundaries, and where faulting is manifested along 
a restricted set of slip lines consisting of one or more 
slip lines, is discussed briefly in the following quotation 
by Nadai (1950, p. 550).
Incidentally, it may be noted that among the systems of dis­ 
placement satisfying eq. (37-57) states of strain may occur in 
which only one layer of slip will form in the direction of one of 
the two characteristics m= const, or n= const. This is the case, 
for example, if one portion of the body adjoining the edge is 
fixed in space, while the other part remaining rigid beyond the 
slip layer is allowed to move as a rigid body according to the 
motion prescribed through the shear in the layer. Thus, we see 
that slip along a single family of characteristics is also a possible 
case of distortion and that the requirement of the Mohr theory 
claiming the formation of two symmetrical systems of slip is not 
a necessary attribute in their laws of formation. * * * It may 
be worth noting that, in the case of more general plastic states 
of stress when the slip layers are curved, the requirement of 
having certain regions displaced as rigid bodies between the 
wedge shaped plastic layers may not so easily be satisfied as 
for straight characteristics.

Some remarks are needed to justify the correlation 
between theoretically derived slip lines and faults in 
the geologic sense. A requirement of theory is that 
there be a continuity of material across slip lines even 
though the slip lines represent velocity discontinuities. 
In the geologic analogy faults generally exhibit this 
continuity of material even though particles have been 
displaced along the fault. In other words voids are
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FIGTJBE 10. Deformation of an originally straight line (heavy) showing the thickening and arching as boundaries move successively inwards, under constant 
velocity throughout, and only scale changes in slip-line and streamline pattern (passive case).

not permitted in the theoretical case nor are large 
continuous voids generally observed in real faults. 
This analogy does not ignore the occurrence of small- 
scale irregularities giving rise to permeability variations, 
brecciated zones and similar phenomena that occur 
along faults or fault zones. Such irregularities do not 
alter the genesis of faults under plastic theory.

Displacements along faults generated under plastic 
theory have two aspects.

1. If the slip lines are virtually straight, then both rigid body 
translations and rotations may occur; hence there need be 
no internal deformation of a mass contained within pre­ 
existing slip lines.

2. If there is a curvature to the preexisting slip lines such that 
translations and rotations are restricted through the

assumption of no volume change, then new internal de­ 
formations must take place if there is to be yield without 
"holes." Hence new boundary conditions must be satisfied 
with the old slip lines that constitute part of the new 
boundary conditions. The old slip lines thus will control 
subsequent faulting although they have their genesis in an 
earlier deformation.

RELATION TO VERTICAL TECTONICS

A direct application of the foregoing theory to a 
specific area will not be made; rather the principles 
involved in such an application will be briefly reviewed. 
For the most part the terms "vertical tectonics" and 
"lateral tectonics" have been contrasted with one 
another in the sense that "vertical" meant movement as 
a result of a primary upward or downward force system
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FIGURE 11. An entire cell as a fault zone.

whereas "lateral" implied movement as a result of 
tangential forces. In this report, implication concern­ 
ing the direction of forces is omitted since vertical move­ 
ment can result either from an upward push or a 
lateral squeeze. Hence, the term "vertical tectonics" 
is used only in the sense of the predominantly upward 
direction of movement of deformation.

Essentially two ideas are developed. The first is 
that Mohr's theory of strength implies zones of defor­ 
mation in which the perfectly plastic behavior increases 
with depth. At this point nothing is specified about 
how the slip lines are oriented with respect to the earth's 
surface. The second idea is that plastic solutions for 
rectangles and wedges may furnish useful approxi­ 
mations to deformation in the earth's crust.

Figure 13 shows a diagrammatic composite of several 
successive deformations characterized by mountain 
building and erosional cycles. The diagram shows 
from left to right three successive episodes of mountain 
building and deformation, each followed by a period of 
quiescence and erosion. The internal deformation is 
assumed to take place on genetically related slip lines 
throughout, but the slip lines in the upper parts of the 
diagrams are not mutually at right angles,, whereas 
those at the bottom are. The only distinction in the 
type of deformation in the three different zones concerns

Reference line

FIGURE 12. A slip line as a fault.

how deformation is accomplished along slip lines in a 
given zone. Hence, in zone A the deformation is as­ 
sumed to be entirely along a restricted few of the possi­ 
ble slip lines permitted by theory; thus the movement 
would occur by faulting without significant deformation 
in the area between the slip lines. Zone B can be 
characterized by two types of movement, faulting along 
restricted sets of slip lines and flow deformation in the 
area between the faults. In zone C deformation is 
along extremely closely spaced slip lines (of which only 
a few are drawn) in such a manner that continuous dis­ 
placement produces folding rather than rupturing.

These three zones can be arranged one on top of the 
other as shown in figure 13. The zone nearest the sur-
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face will be denoted by the letter A, the zone next 
deeper by B and the deepest by C. The number to 
which the letter is appended will refer to the particular 
episode or orogeny during which the deformation takes 
place. Hence each combination of number and letter 
designates a time and place of deformation under a 
succession of similar stress systems.

At the end of the first episode an observer on the 
surface would see evidence of lA, and would have 
noticed the formation of a mountain range. A period 
of quiescence and erosion of the mountain range would 
follow the first episode during which part or all of IA 
would be removed. A deeper zone, IB, might be ex­ 
posed by the erosion. Another subsequent episode of 
orogenic activity would again be characterized by the 
three zones of deformation. The observer on the sur­ 
face would see, as in the first episode, the formation of 
zone 2A He would note that the geometry would be 
superimposed on that of IB. Repetition of the process 
would afford the observer with superimposed patterns 
of deformation.

At the close of the mountain building stage of episode 
3 the observer would note a compound structure at the 
surface consisting of parts of 3 A, 2B, and 1(7. If the 
material had been originally homogeneous before defor­ 
mation of 1(7, there would be little likelihood that it 
would remain homogeneous to the end of episode 3.

An element of analysis frequently overlooked is the 
one that ties together parts of the same genesis. If the 
age relations are not simple and straightforward, care

must be taken to distinguish one genetically related set 
of structures from another. The slip-line trajectories 
will be concave upward when the movement along the 
slip lines is of a thrust type, and convex upward when 
the movement along the slip lines is of the normal type. 
Under these conditions, a thrust fault should decrease 
in dip as it is traced to greater depth; a normal fault 
should steepen. Furthermore, as one observes struc­ 
ture along a horizontal plane the dips of faults should 
steepen progressively as the boundaries are approached 
from the center.

For the passive case with upward movement of 
material, it might well be expected that the slip-line 
geometry at the surface would always consist of radii 
and arcs of circles as in figure 10, provided that deforma­ 
tion is continuous. If deformation ceases and erosion 
strips the upper end of the cell, exposing parts formed 
deeper within the cell, a fault pattern will be seen, 
which is not expected to be at the end of the cell. 
Isostatic uplift could then provide additional material 
for removal by erosion so that ultimately the roots of 
mountains would be exposed.

High positive gravity anomalies thus would suggest 
areas of possible compound structure inasmuch as such 
anomalies can be interpreted to mean uplifted roots of 
mountains.

Exactly what physical manifestations the boundaries 
of cells will have in the geologic analogy is not clear. 
From the purely theoretical point of view there does 
not need to be a plate or similar feature, merely an end
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to the solution. The boundary may be a vertical 
fault predating the deformation taking place within the 
boundaries. On the other hand the boundary might 
appear completely arbitrary as an intermediate line 
separating an anticline from a syncline.

Thus far geologic structure has been related to prime 
orogenic forces. The mechanics of the removal or 
erosion of mountains in the evolution toward base level 
is a secondary effect of the prime orogenic forces. 
That is, prime orogenesis is related to constructional 
aspects of mountains whereas the secondary effects are 
related to destructional features.

Hence, those phenomena commonly studied in the 
science of soil mechanics particularly the effects on 
slope stability, such as pore water pressure, fabric of 
rock or soil, vegetation, and ground water gradients  
can be presumed to have an important effect even 
where the scale approaches that of the mountain- 
building type. Gravitational sliding phenomena are 
probably the type related to soil mechanics rather than 
the type associated with the prime orogenic forces.

Thus with two separate genetic types of deformation 
possible at the surface care must be used not to apply 
the plastic theory as here proposed to encompass that 
of the gravitational sliding type. Accordingly it is 
suggested that the test of the theory should come in the 
investigation of older structure or at least those struc­ 
tures where the "extruded" parts have been removed 
by erosion.

Plastic theory can be applied also to the analysis 
of destructional features, though such features are not 
considered in this report.
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