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STATISTICAL STUDIES IN HYDROLOGY

PROBABILITY DISTRIBUTION OF LOW 
FLOWS

By NICHOLAS C. MATALAS

ABSTRACT

The fit of four theoretical probability distributions to low-flow 
data was investigated. Also, a study was made to determine 
the desirability of estimating parameters of probability distribu­ 
tions by the method of maximum likelihood. The four proba­ 
bility distributions used in these investigations were: (1) 
Gumbel's limited distribution of the smallest value, (2) 3~ 
Parameter Log-Normal distribution, (3) Pearson Type III dis­ 
tribution, and (4) Pearson Type V distribution.

The goodness of fit was based on the relation between the 
observed minimum low flows and the lower limits of the four 
probability distributions and on the relation between the skew- 
ness and kurtosis of the low-flow data. It was found that the 
Gumbel and Pearson Type III distributions fitted the data 
equally well and were more representative of the probability 
distribution of low flows than either the 3-Parameter Log-Normal 
or Pearson Type V distribution.

The variances of the moment and maximum likelihood esti­ 
mates of the parameters of probability distributions are functions 
of the skewness of the data. Based on an average skewness^fbr 
low-flow data of nearly 1, the variances of moment estimates are 
nearly twice as large as those of maximum likelihood estimates. 
Thus future studies dealing with the probability distribution of 
low flows might best be made by using maximum-likelihood 
estimates of parameters rather than moment estimates.

INTRODUCTION 
THEORETICAL PROBABILITY DISTRIBUTIONS

A drought is defined, in a broad sense, as an extended 
period of dryness. In order to define and analyze 
droughts properly, it is necessary to consider droughts 
as being two dimensional. These two dimensions are 
magnitude and duration. In this study, however, only 
magnitude will be considered.

In an analysis of drought magnitudes, the minimum 
discharge during each year is considered. The mini­ 
mum discharge is defined as the average minimum dis­ 
charge for a given period of time within a year. The 
given period of time is generally taken to be 1 day, or 
7 days if it is necessary to remove the effect of fluctua­ 
tions resulting from minor river regulation. Other pe­ 
riods of time are used depending upon the problem at 
hand. These average minimum annual discharges are 
referred to as low flows. The records of annual mini­ 
mum daily low flows and minimum 7-day low flows 
used in this study are listed in tables 1 and 2, re­ 
spectively.

For a given stream for which N years of observations 
are available, N values of low flow can be obtained. 
These N values are assumed to be a sample from an 
infinite population of low-flow values. The N values 
constitute the low-flow record and they are the basis 
for determining the probability of occurrence of low 
flows of various magnitudes. This is done by arranging 
the N values in order of magnitude, largest to smallest, 
and assigning a cumulative probability or return period 
(reciprocal of cumulative probability) to each value. 
The cumulative probability of the mth-order low flow 
is given by (N-\-l m)/(N-\-l). Plotting the magni­ 
tudes of low flow against their respective cumulative 
probabilities makes possible the construction of a line 
passing through the plotted points representing the 
theoretical probability distribution of low flows.

It is assumed that a theoretical probability distribu­ 
tion of low flow exists for each stream. The form of this 
distribution may be altered if any climatological changes 
or physical alterations of the drainage basin occur.

An empirical approach to determining the form of the 
theoretical probability distribution of low flows is to fit 
several theoretical distributions to observed data and 
to decide, by suitable criteria, which distribution fits 
the data best. This approach is facilitated by restrict­ 
ing the number of possible theoretical probability dis­ 
tributions to those which comply with practical statis­ 
tical and physical considerations.

Because low flows cannot assume values less than 0, 
it is necessary that the theoretical probability distribu­ 
tions have lower limits equal to or greater than 0. 
Also, it is necessary that the theoretical probability dis­ 
tribution be defined by no more than 3 parameters. 
This is due to the fact that AT" is small so that large 
sampling errors are associated with parameters which 
are defined by the fourth and higher order moments. 
Thus the possible choices of probability distributions 
are restricted to those having lower limits equal to or 
greater than 0 and defined by no more than 3 param­ 
eters.

Several theoretical probability distributions have 
been used in hydrologic studies. In recent years Gum-
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A2 STATISTICAL STUDIES IN HYDROLOGY

bel's limited distribution of the smallest value has been 
advanced as the theoretical probability distribution of 
low flows. This distribution has a finite lower limit and 
is defined bv three parameters. The Pearson Type III 
and the LoAg-Normal probability distributions have re­ 
ceived consmerable attention in hydrology. The fact 
that these distributions have finite lower limits and can 
be defined by three parameters indicates that they may 
be applicable to low flows. A fourth theoretical prob­ 
ability distribution which may be applicable to low 
flows is the Pearson Type V distribution. This dis­ 
tribution has received very little attention in hydrology; 
however, it has a finite lower limit and can be defined 
by three parameters.

OBJECT OF THE INVESTIGATION

The investigation of low flows was undertaken to 
determine which theoretical probability distribution 
best fitted observed values of low flows, and to deter­ 
mine the desirability of estimating the parameters of 
theoretical probability distributions by the method of 
maximum likelihood.

In order to evaluate the various theoretical proba­ 
bility distributions, two criteria were considered: the 
relation between the minimum observed low flow and' 
the estimated lower limits of the theoretical probability 
distributions, and the relation between the skewness 
and kurtosis of the low-flow data!

With respect to the first criterion, a theoretical 
probability distribution was considered to be applicable 
if its estimated lower limit did not exceed the observed 
minimum low flow during the period of record. Also, 
it was considered necessary that the estimated lower 
limit not be negative.

The second criterion was introduced becajUse there is 
a unique relationship between the skewness and kurtosis 
for each of the four theoretical probability distributions. 
From the low-flow data, estimates were made of the 
skewness and kurtosis. Using the estimated values of 
skewness, the values of kurtosis were determined from 
each of the skewness-kurtosis relations and compared 
with the estimated values of kurtosis. The theoretical 
probability distribution that provided the best agree­ 
ment was taken to be the most applicable to low-flow 
data.

STATISTICAL CHARACTERISTICS OF LOW FLOWS 

CUMULATIVE PROBABILITIES OF LOW FLOWS

In order to investigate the probability distribution of 
low flows, it is necessary to assign cumulative probabili­ 
ties to the ordered data for each stream. It was 
previously mentioned that these cumulative probabili­ 
ties are currently determined by (N-\-l m)l(N-}-l)

which is the expected cumulative probability of the 
mth-order value (the order being from largest to 
smallest) in a sample of N values. However, the 
cumulative probabilities used in these studies were the 
median values given by H. A. Thomas (written com­ 
munication, 1958) which are defined by

p N(ZN+l)-2-m(3N+l)
(1)

Gumbel (1954) has set forth certain criteria to which 
formulas for estimating cumulative probabilities should 
adhere. According to Gumbel, the formula (a) must 
not be dependent upon an initial distribution of the 
data, (b) must yield values within the range m/N and 
(m l)/N, (c) must provide values which are equally 
spaced in time, (d) must be analytically simple, and 
(e) must converge to 1 and 0 for ra equal to 1 and N, 
respectively, as N approaches infinity. Equation 1 
satisfies these criteria, as does the formula (N+l m)/

Cumulative probability plots were made for the low 
flows for each of the 34 streams on normal-arithmetic 
probability paper. Other types of probability paper 
can be used. However, the normal-arithmetic proba­ 
bility paper facilitates the analyses better than any 
other type of paper. The cumulative probability plots 
are shown in figures 1 through 34 (at end of report).

SKEWNESS AND KURTOSIS OF LOW FLOWS

Normal-arithmetic probability paper facilitates the 
use of a normal distribution since a sample from a 
normal population theoretically should plot as a straight 
line. An inspection of figures 1 through 34 shows that 
a linear plot is the exception rather than the rule. The 
nonlinearity of the plots indicates that the data can not 
be assumed to be samples from normal populations. 
However, in order to determine if the nonlinearity of the 
plots is due to chance, the skewness and kurtosis were 
determined for each set of low-flow data and tested for 
significance. For a normal population, the skewness is 
0 and the kurtosis is 3. The estimate of the skewness, 
0i, is given by

N2
(2)

In order to test the kurtosis for significance, it is 
convenient to express it in a form so that it equals 0 
for a normal population. The estimate of the kurtosis, 
02, is given by

n N*(N+1)02=7rAr            ________
S* (N-2)(N-3) (3)
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The parameters S, ra3 , and ra 4 are defined by

i

S=

and

respectively, where

g (z,-z) 5

=]v§ (xr~

1 ^,

(4)

(5)

(6)

(7)

and X{ is the ith observed low^flow. Equations 4 
through 7 define the standard deviation, the third 
central moment, the fourth central moment, and the 
mean, respectively.

If 0! and </2 are based on the sample from a normal 
population, then their respective variances are

and

V(gj =
24

N+5

(8)

(9)

Because of sampling errors, the values of </i and g2 may 
differ from zero even if the data are from a normal 
population. If

6 "I*

and
24

(10)

(11)

where ta is the standard normal deviate corresponding 
to probability a, the data may be regarded as normally 
distributed with a confidence probability a.

The low flows for each of the 34 streams were tested 
for normality at probability levels of a equal to 0.90, 
0.95, and 0.99. For these probability levels, ta equals 
1.64, 1.96, and 2.58. This analysis is summarized in 
tables 3 and 4. With respect to the skewness, gi} the 
low flows for 19, 17, and 15 streams departed sig­ 
nificantly from normality at probability levels 0.90, 
0.95, and 0.99, respectively. The kurtosis, however, 
did not indicate as strong a departure from normality 
as did the skewness, since the data for only 10, 9, and 7 
streams were found to be significantly nonnormal at 
probability levels 0.90, 0.95, and 0.99, respectively.

The fact that approximately 50 percent of the 
streams possess nonnormally distributed data indicates

that the low flows can not be considered as samples 
from normal populations.

DISCUSSION OF PROBABILITY DISTRIBUTIONS

CHARACTERISTICS OF THEORETICAL 
DISTRIBUTIONS

Theoretical and practical considerations indicate 
that the probability distribution of low flows is skewed 
with a lower limit equal to or greater than 0. The 
previous analysis of the skewness and kurtosis supports 
these considerations. Four theoretical probability dis­ 
tributions which are investigated are: (a) Gumbel's 
limited distribution of the smallest value; (b) the 
3-Parameter Log-Normal distribution, (c) Pearson's 
Type III distribution, and (d) Pearson's Type V dis­ 
tribution. Each of these distributions is skewed, has 
3 parameters, and has a lower limit.

GUMBEL'S LIMITED DISTRIBUTION OF THE 
SMALLEST VALUE

The limited distribution of the smallest value may be 
expressed as

I* /z-? , * /z-ev- 1 r/x-eY].
(x) =    (    I exp  (    ) \> 

U   \u e/ * [\U e/ J
(12)

wherein c denotes the lower limit, u denotes the char­ 
acteristic drought (u is the value of x which will be 
exceeded 36.788 percent of the time), and a is a scale 
parameter (analogous to the standard deviation, s, for a 
normal probability distribution). In order to fit the 
Gumbel distribution to a set of observations, it is neces­ 
sary to estimate e, u, and a. These estimates are 
functions of x, s, and m3 .

By using the method of moments (Gumbel, 1954), 
the mean, /x{, is defined as

(13)

The second, third, and fourth central moments are 
given by

a) - a)],

and

(14)

a)l, (15)

(16)

respectively. F( ) denotes the gamma function of 
the argument within the parentheses.
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The skewness and kurtosis are defined respectively as

M
and

_4 0_ ~ ° [r(i+2/a)-r2 (i+iA*)]2

(17)

(18)

#1 and G2 are used, to denote the population values of 
skewness and kurtosis, respectively, to distinguish 
them from then* sample estimates gi and g2 given by 
equations 2 and 3, respectively.

Equations 17 and 18 show that the skewness and 
kurtosis are functions of a. Hence, if GI or G2 is re­ 
placed by its respective sample estimate, </i or g2, a 
trial-and-error solution gives the value of a. Gumbel 
(1954b) has given a table prepared by G. R. Garabedian 
for the solution of equation 17. With a known, c and u 
are determined by solving equations 13 and 14 simul­ 
taneously; whereby,

and

  = J

(19)

(20)

In order to determine u and e, it is necessary to replace 
H\ and M! by their sample estimates x (eq 7) and S 
(eq 4), respectively. It should be noted that the 
sample estimates of /z 3 and AU are ra3 (eq 5) and m4 
(eq 6), respectively. 

For purposes of curve fitting, equation 12 is expressed
as

Equation 21 defines the cumulative probability of x 
obtained by integrating equation 12 from e to some 
arbitrary value of x. By letting

equation 21 becomes

(22)

(23)

Thus by using preassigned values of P(x), the corre­ 
sponding values of y are determined by equation 23. 
Knowing y and using the estimates of t, u, and a, 
values of x corresponding to the preassigned values of 
P(x) are determined by equation 22. This procedure 
was applied to the low-flow data for each of the 34 
streams. The fitted curves are shown in figures 1 
through 34.

Gumbel (1954b) has pointed out that if the data are 
plotted on logarithmic extremal probability paper, a 
straight line can be fitted to the data only if e=0, 
providing, of course, that the data are in accord with 
the theory. If e>0, the fitted curve is concave down­ 
ward, and if e<0, the curve is concave upward. How­ 
ever, in the case of low flows, e must be equal to or 
greater than 0.

3-PARAMETER LOG-NORMAL DISTRIBUTION

3-Parameter Log-Normal distribution may be ex­ 
pressed as

« -«-i[ln (x-a)-m]2 >> 
{. *<r J

(24)

where m and a denote the mean and standard deviation, 
respectively, of the values of In (x a), and a denotes 
the lower limit. Using the method of moments, the 
mean is given by

(25)

and the second, third, and fourth central moments are 
given by

(26)

and

respectively, wherein

(27)

(28)

(29)

The parameter 7 is related to the coefficient of varia­ 
tion, CV, which is defined as the ratio of the standard 
deviation to the mean. Thus

(30)
1+-

If a=0, then CV=y.
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The skewness, GI, and the kurtosis, G2 , are given by and the second, third, and fourth central moments are

and

M2

(31)

(32)

If either GI or G2 is replaced with its sample estimate 
9i or g2) 7 may be obtained by a trial-and-error solution. 

With 7 known, a and m are determined by solving 
equations 25 and 26 simultaneously; whereby,

and

m = \

(33)

(34)

Estimates of a and m are obtained by replacing /xj 
and M2/2 by their sample estimates x and s, respectively. 
The parameter a is estimated by

a=[ln (72 +l)]1/2. (35) 

For purposes of curve fitting, the transformation

2=-[ln (x a) m] (36)

is introduced in equation 24; whereby, the cumulative 
probability, P, of x is defined as

(37)

which is identical to the standardized form of the nor­ 
mal distribution. From tables for the standardized 
normal distribution, values of 2 (often denoted by t) 
are obtained for preassigned values of P(z). Using 
these values of z in equation 36, the corresponding 
values of x are obtained.

PEARSON TYPE in DISTRIBUTION

The Pearson Type III distribution can be expressed 
in various ways. A representation of this distribution, 
which is well adapted to mathematical treatment, is

/OON(38)exp ~

where a, m, and 6 are parameters. By using the method 
of moments, the mean is defined as

(39)

and

respectively. 
The skewness,

and

(40)

(41)

(42)

and the kurtosis, G2 , are given by 

^ u, 2
IF2~(6+1)* 

t4 0 __6'NT
M2

(43)

(44)

The skewness and kurtosis are both functions of the 
parameter b. Thus by replacing either GI or Ga by its 
sample estimate g\ or g2 , b may be determined. With 
b known, the parameters ra and a can be determined 
by the simultaneous solution of equations 39 and 40 
This solution gives

and
(45)

(46)

Estimates of m and a are obtained by replacing M! and 
M2 by their Sample estimates x and s, respectively. 

If the transformations

and
u=A(t+A)

are introduced into equation 38, the cumulative prob­ 
abilities are defined by

(50)

where 2,u is distributed as chi-square with 2A2 degrees 
of freedom. From a table of the chi-square distribu­ 
tion, values of 2u are obtained corresponding to 2A2 
degrees of freedom for preassigned cumulative proba­ 
bilities. By using equation 49, values of t are obtained 
corresponding to the values of u. Values of x are 
obtained corresponding to the t values by equation 47. 
In this manner, the Pearson Type III distribution was 
fitted to the low-flow data for each of the 34 streams. 
The fitted curves are shown in figures 1 through 34.

665092 O 62-
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PEABSON TYPE V DISTRIBUTION

The Pearson Type V distribution may be expressed as

where ra, a, and 6 are parameters. The Pearson Type 
III distribution involves the term (x m)/a, whereas 
the Pearson Type V distribution involves the reciprocal 
of this term.

By using the method of moments, the mean is de­ 
fined as

(52)

and the second, third, and fourth central moments are 
given by

M2= a2(6-2)-2 (6-3)-1 , (53) 

M3 =4a3 (6-2)-3[(6-3)(6-4)]->, (54)
and

M 4=3a4(6+4)(&-2)-*[(6-3)(6-4)(6-5)]-1 , (55)

respectively.

The skewness, Gi} and the kurtosis, G2 , are defined as

Ms 4(6-3)* . . 
^1=i^=-(6=4T (56) 

and
RfZh   1fi\' I

(57)/T 'r"l «"2=-^   '
(6-4) (6-5)

The skewness and kurtosis are both functions of the 
parameter 6. If either GI or G2 is replaced by its same 
estimate g\ or g2 , the parameter 6 can be determined. 

With 6 known, the parameters ra and a may be 
determined by the simultaneous solution of equations 
52 and 53. This solution gives

= M!-A4/2 (6-3)*

and
(58)

(59)

Estimates of ra and a may be obtained by replacing 
M! and /i| by their sample estimates x and s, respectively. 

If the transformation

(60)

is introduced into equation 51, the cumulative proba­ 
bilities are defined by

where 2,u is distributed as chi-square with 2(6 1) 
degrees of freedom. By means of a table of the chi- 
square distribution, values of 2it corresponding to 
preassigned values of P(u) can be obtained; whereby, 
the corresponding values of x are obtained by equation 
60. This procedure may be used to fit a Pearson Type 
V distribution to a set of data.

INVESTIGATION OF THE LOWER LIMIT

The first criterion given for the applicability of a 
theoretical probability distribution was that its lower 
limit be positive and not exceed the minimum observed 
low flow. A theoretical probability distribution under­ 
estimates the severity of the extreme droughts if its 
lower limit is greater than the minimum observed low 
flow.

In order to facilitate the investigation of the lower 
limit, the lower limit was expressed as a standardized 
variate in the form

. 
t = (62)

where xmin denotes the minimum value or lower limit. 
By using the appropriate values of xmin, u\, and u\, 
previously given for each of the theoretical probability 
distributions, the standardized lower limits for the 
Gumbel, 3-Parameter Log-Normal, Pearson Type III, 
and Pearsbn Type V distributions are given by

]-», (63)

(64)

(65)

1  )
7

and
^=-(6-3)*, (66)

respectively.
It is interesting to note that, for each theoretical 

probability distribution, the standardized lower limit 
is a function of a single parameter which defines the 
skewness. In figure 35, the relation between the ab­ 
solute value of the standardized lower limit and the 
skewness is shown for each of the four theoretical 
probability distributions. Figure 35 shows that for a 
given value of skewness, tv<tLN and that tLN <^t0 or 
tnj . For values of skewness greater than 2, tni<^ta , 
and for values of skewness within the range 0.35 to 2, 
£(?<£///, and for values of skewness less than 0.35, tin<^ta .

In table 5, the standardized lower limits for each of 
the theoretical probability distributions are given for 
each of the 34 streams. These values are based on the
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estimates of xmin, MI, and /it The observed minimum 
low flow for each stream expressed in standardized form, 
t0) is given in table 5. Also, the standardized lower 
limits, denoted by t f , are given in table 5, based on the 
assumption that the observed minimum low flow is 0 
for each of the 34 streams.

From table 5, it is seen that 10 and 15 streams have 
experienced minimum discharges less than the estimated 
lower limits for the Gumbel and Pearson Type III 
distributions, respectively. The estimated lower lim­ 
its for the 3-Parameter Log-Normal and Pearson 
Type V distributions are less than the observed mini­ 
mum discharge for each of the 34 streams. The esti­ 
mated lower limits for each of the theoretical probability 
distributions yield negative values of discharge if they 
are less than their corresponding values of t''. From 
table 5, it is seen that for 3, 4, 21, and 34 streams, the 
estimated lower limits for the Gumbel, Pearson Type 
III, 3-Parameter Log-Normal, and Pearson Type V 
distributions, respectively, yield negative values of 
discharge for the lower limit.

The above investigation of the lower limit shows 
that the Gumbel and Pearson Type III distributions 
are more applicable to low flows than either the 3- 
Parameter Log-Normal or Pearson Type V distribu­ 
tions, since these latter 2 distributions, although having 
lower limits smaller than the observed minimum low 
flows for the 34 streams, yield large negative values of 
discharge for the lower limits.

EFFECT OF THE LARGEST LOW FLOWS ON THE 
LOWER LIMIT

By inspecting the cumulative probability plots of the 
low-flow data for the 34 streams shown in figures 1 
through 34, it is seen that the largest low flow often 
appears to deviate appreciably from the second largest 
low flow with respect to the deviations between the 
smaller low flows. In the estimation of the skewness 
(eq 2), the third central moment, ra3 , which involves 
the cube of the departures of the low flows from then1 
mean, can be very large if the largest low flow deviates 
appreciably from the second largest low flow. Since 
the lower limit is a function of the skewness, such devia­ 
tions can lead to large values of skewness, which, in 
turn, can lead to the theoretical distribution under­ 
estimating the severity of the extreme droughts.

This situation is shown by the low-flow data for the 
Kootenai River at Leonia, Idaho (fig. 14). By neglect­ 
ing the largest low flow, the data plot very nearly along 
a straight line on normal-arithmetic probability paper, 
indicating that the skewness is nearly zero. However, 
the inclusion of the largest low flow yields an estimate 
of skewness of 1.85 which differs significantly from 0 
at the 99-percent level. The magnitude of the smallest

low flow is 1,070 cfs (cubic feet per second). The 
lower limits based on the Gumbel and the Pearson 
Type III distributions are 1,370 cfs and 1,372 cfs, 
respectively. Thus both theoretical probability dis­ 
tributions underestimate the severity of the extreme 
droughts.

A tendency for the largest low flow to deviate ex­ 
cessively from the other low flows was observed in the 
data for several of the streams. With respect to the 
Kootenai River at Bonners Ferry, Idaho, Little Ten­ 
nessee River at Judson, N.C., South Fork of the Holston 
River near Bluff City, Tenn., and West Branch of the 
Oswegatchie River near Harrisville, N.Y., the largest 
low flow deviated sufficiently from the second largest 
low flow so that both the Gumbel and Pearson Type 
III distributions yielded lower limits greater than the ob­ 
served minimum low flow. For the St. John River below 
Fish River at Ft. Kent, Maine, Coeur d'Alene River near 
Cataldo, Idaho, and Kootenay River at Newgate, British 
Columbia, the deviation between the largest and the- 
second largest low flow was sufficient to reject the 
Pearson Type III distribution.

Excessive deviations were not confined to those be­ 
tween the largest and second largest low flows. With 
respect to the low-flow data for the Schroon River at 
River Bank, N.Y., the two largest low flows deviated 
sufficiently from the other low flows to yield lower 
limits for the Gumbel and Pearson Type III distribu­ 
tions greater than the observed minimum low flow.

Thus, by comparing the cumulative probability 
plots shown in figures 1 through 34 and the lower limits 
given in table 5, it is seen that in those cases where the 
Gumbel and (or) the Pearson Type III distributions 
were found to be inapplicable, the low-flow data were 
characterized by the fact that the larger low flows 
deviated excessively from the other low flows. The 
question now arises as to whether or not these deviations 
are due to chance.

In order to answer this question, it is necessary to 
consider the deviations of the larger values from the 
other values which arise in random sampling from a 
Gumbel and Pearson Type III distribution. Within 
the probability ranges which arise due to the sample 
sizes of low-flow data, the Gumbel and Pearson Type 
III distributions are nearly coincident. But because 
of the mathematical simplicity of the Pearson Type 
III distribution, the deviations of the larger values 
from the other values are analyzed on the basis of 
random sampling from a Pearson Type III distribution.

Pearson Type III distributions with skewness of 1 
(average skewness for the 34 streams), mean of 0, and 
variance of 1 were plotted on normal-arithmetic prob­ 
ability paper (see figs. 37-43, at end of report). From 
a table of random rectangular numbers, 2 sets of 20, 3
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sets of 30, and 2 sets of 40 three-digit numbers were 
randomly selected. These numbers were considered as 
probabilities expressed in thousandths. The random 
numbers in each set were arranged in increasing order 
of magnitude, and the probability corresponding to 
each order of magnitude was determined by equation 1. 
For each probability determined by equation 1, the cor­ 
responding value of t was determined graphically from 
the Pearson Type III distribution. The values of t 
were then plotted against the randomly selected prob­ 
abilities corresponding to the probabilities determined 
by equation 1.

In figures 37 through 43, it is seen that the t values 
plotted against their respective randomly selected prob­ 
abilities cluster around the Pearson Type III distribu­ 
tion. With respect to each of the sample sizes, a plot 
was found where the largest value deviated excessively 
from the other values. As the sample size increases, 
these deviations tend to decrease. Although the ran­ 
dom sampling technique does not answer the question 
conclusively as to whether or not the deviations are 
attributable to chance, it does support the notion that 
the deviations are due to chance. Therefore, the N 
values of low flow taken from N years of record may 
be regarded as belonging to the same distribution. 
This conclusion, of course, does not preclude the pos­ 
sibility that the deviations are significant and can be 
attributed to physical considerations of the low flows. 
However, such a position is difficult to prove due to 
the large sampling errors.

INVESTIGATION OP THE RELATION BETWEEN 
SKEWNESS AND KURTOSIS

The second criterion considered in selecting the low- 
flow probability distribution was the agreement be­ 
tween the estimated values of skewness and kurtosis 
and the theoretical relations between skewness and 
kurtosis for each of the four theoretical probability 
distributions. For each of the four theoretical prob­ 
ability distributions, there exists a unique relationship 
between skewness and kurtosis. From the low flow 
data, estimates of skewness and kurtosis were deter­ 
mined by equations 2 and 3, respectively. By using 
the estimated values of skewness, the kurtosis was 
determined from each of the four theoretical relation­ 
ships of skewness and kurtosis. These values of kur­ 
tosis were then compared with the values of kurtosis 
estimated by equation 3.

The relation between skewness and kurtosis was ex­ 
pressed by the parameters 0i and /3 2 , which were de­ 
fined as

Pi=Gt=n*M (67) 
and

From the previously defined expressions for GI and G2 
for each of the four theoretical probability distribu­ 
tions, the relations between /^ and j3 2 were determined. 
These relations are shown in figure 36. From figure 36, 
it is seen that for each of the four theoretical probability 
distributions, the kurtosis increases monotonically with 
an increase in skewness. Except for the Gumbel dis­ 
tribution, the kurtosis, j82 , is 3 when the skewness, j8 b 
is 0. Since a skewness equal to 0 and a kurtosis equal 
to 3 uniquely define the normal probability distribu­ 
tion, then, as the skewness approaches 0, the 3-Pa- 
rameter Log-Normal', the Pearson Type III, and the 
Pearson Type V distributions converge asymptotically 
to the normal distribution.

From figure 36, it is seen that for a given value of 
skewness, the kurtosis of the Pearson Type V distribu­ 
tion is greater than that of the 3-Parameter Log-Normal 
distribution. Also, for a given value of skewness, the 
kurtosis of the 3-Parameter Log-Normal distribution is 
greater than that of the Gumbel and the Pearson Type 
III distributions. For values of /3i in the range 0 to 4, 
the kurtosis of the Pearson Type III distribution is 
greater than that of the Gumbel distribution, and, for 
values of Pi greater than 4, the reverse is true.

Estimates of & and /3 2 , denoted by fi l and 02 , respec- 
gively, were obtained for the low-flow data for each of 
the 34 streams by means of

and
3(JV-1) 2

(69)

(70)

The values of gi and g2 are given by equations 2 and 3, 
respectively. The estimated values J3i and |32 are 
shown as circles in figure 36. By inspecting figure 36, 
it is seen that the values J3i and £2 fail to cluster around 
any one of the 0i vs. /32 relations for the 4 theoretical 
probability distributions. For values of 0! in the range
0 to 1, the values of /3i and $2 are dispersed around each 
of the |8i vs. j8 2 lines of relation. However, for values 
of |3i>l, nearly all the values of /3i and J3 2 plot above the 
Gumbel and Pearson Type III /3i vs. /3 2 lines of relation 
and consequently above the 3-Parameter Log-Normal 
and the Pearson Type V Pi vs. /3 2 lines of relation. 
Therefore, for small values of fa, each of the 4 theoretical 
probability distributions can be used to represent the 
data; whereas, for values of /3i^>l, each of the 4 theo­ 
retical probability distributions fails to represent the 
data adequately. However, within the total range of 
the observed values of j3i and /32 , the Gumbel and the 
Pearson Type III distributions are more representative
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of the distribution of low flows than the 3-Parameter 
Log-Normal and the Pearson Type V distribution.

The mean values of /3i and /32 were found to be 1.23 
and 4.27, respectively. These values are plotted on the 
graph of the /3i vs. /3 2 relations (fig. 36). The mean 
values of 0i and /3 2 plot above the Gumbel line.

The investigation of the fi\ vs. j82 relations indicates 
that the Gumbel and the Pearson Type III distributions 
fit the observed low-flow data better than the 3-Param- 
eter Log-Normal or the Pearson Type V distributions. 
Thus, both the first and second criteria indicate that 
the Gumbel and the Pearson Type III distributions are 
more representative of the probability distribution of 
low flows than the 3-Parameter Log-Normal and Pear- 
son Type V distributions.

METHOD OF MAXIMUM LIKELIHOOD APPLIED TO 
LOW-FLOW PROBABILITY ANALYSIS

DISCUSSION OF THE METHOD OF MAXIMUM 
LIKELIHOOD

The preceding investigations of the probability dis­ 
tribution of low flows were based on the classical method 
of moments. These investigations were based on the 
comparison among various statistical parameters which 
were determined by the method of moments. An alter­ 
nate method of determining the parameters is that of 
maximum likelihood. This method yields the most 
efficient estimate of a parameter when such an estimate 
exists. The most efficient estimate of a parameter is 
defined as that estimate which has the minimum vari­ 
ance. The most efficient estimate is not, however, 
always an unbiased estimate (Hoel, 1954). However, 
a biased estimate which has minimum variance may be 
preferred to an unbiased estimate which has a large 
variance. A property of the method of maximum likeli­ 
hood which recommends it for low-flow probability 
analysis is that the lower limit of a theoretical prob­ 
ability distribution can never exceed the minimum 
observed value.

The investigation of the method of maximum likeli­ 
hood was undertaken to determine its usefulness in 
studying the probability distribution of low flows. 
This investigation was carried out by comparing the 
variances of the maximum-likelihood estimates with the 
variances of the moment estimates of the parameters 
of the theoretical probability distributions.

MAXIMUM-LIKELIHOOD ESTIMATES OF 
PARAMETERS

The probability distribution of a random variable 
x may be expressed as

where al} a2 , . . ., ak are the parameters of the distribu­ 
tion. The likelihood function, defined as the natural 
logarithm of the probability function summed over all 
possible values of z, is given by

N
CM, a2 ,...,ak : x)]. (72)

The maximum-likelihood estimates of the parameters 
tti, a2 , . . ., ax are those estimates which minimize the 
likelihood function, L. These estimates are obtained 
by setting the partial derivatives of L with respect to 
each parameter equal to 0 and solving the k simulta­ 
neous equations. These equations are generally non­ 
linear and must be solved by some iterative process.

The variances and the mean cross products (co- 
variances) of these parameters are obtained from the 
expected values of the second partial derivatives of L 
with respect to the parameters. If tfL/bcfi and 
tPLfoafccL) denote the second partial derivates of L with 
respect to a* and a^a^i^j), respectively, the Hessian 
determinant is

da?

daf
(73)

In order to obtain the variance of a t , the minor of the 
Hessian determinant corresponding to the ith param­ 
eter is divided by Hi} . Thus

Minor (52Z/da2)=  H7j  '

Similarly, the covariance of a< and d) is given by

n . x Minor6lf (a<a^)=    
Ha

(74)

(75)

RELATIVE EFFICIENCY OF MOMENT ESTIMATES 
WITH RESPECT TO MAXIMUM-LIKELIHOOD ES­ 
TIMATES

The variances of the moment estimates of <LI, a2 , . . ., 
ak may be obtained by the method of variation. If 
V[ML(aJ] and V[M(al}} denote the variances of the 
maximum likelihood and moment estimates of alt 
respectively, then the relative efficiency, E, (Fisher, 
1922) between the two methods with respect to a< is 
given by

, . . ., ak : x)dx, (71)
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Since the method of maximum likelihood yields the 
estimate of a parameter with minimum variance, then 
Q<E(di) < 1. If the variable x is normally distributed, 
the method of maximum likelihood is identical to the 
method of moments. In this case £"(«<) = 1.

The relative efficiencies are given for the parameters 
defining the Pearson Type III, the 3-Parameter Log- 
Normal, and the Pearson Type V distributions. The 
Gumbel distribution is not treated since 52i/de2 can 
not be defined for «<2.

For the Pearson Type III distribution (eq 38), the 
relative efficiencies with respect to the parameters m, 
a, and b are

(77)

E(a)=l-6+4' (78)

and

(79)

where d2 In T(b-\-l)/db2 is the tri-gamma function of 
(6+1). The relative efficiency of each parameter is 
a function of only b, which itself is a function of the 
skewness. In table 6, the relative efficiencies of m, a, 
and b are given for various values of skewness.

With respect to the 3-Parameter Log-Normal distri­ 
bution (eq 24), the relative efficiencies of a, m, and v are

In (72+l)
V(72+l)3[ln

____In (72+l)[ln (72+l)+l](72+D_______
(72+l) + l](72+l)-l}[(72+l) 4 +2(72+l) 3 +3(72+l) 2-4]'

(80)

(81)

and

(36{[ln (72 +l)](72 +l)+72 } {[hi (72 +l)]2 (72 +l) 4 } {72 (72+l) 15-12(72+l) 13 +36(72 +l) n-(672 +24)(72+l) 10 
+60(72+l) 9-180(72+l) 7+1572 (72+l) 6-[2478-9(73 +37) 2-120](72+l) 4-[4878-18(73 +37)V+2072 

+288](72+l) 3 -[7278-27(73+37)V+360](72+l) 2 +(1572 +384)(72+l)-572 +7278+8(73 +37) 278 +8} J
72 {[ln

(82)

The relative efficiency of each parameter is a function For the Pearson Type V distribution (eq 51), the 
of 7, which itself is a function of the skewness. The relative efficiencies of the parameters m, a, and b are 
relative efficiencies of each parameter for various values given by 
of skewness are given in table 7.

(6-2)2(6-3) 
=

(6+1) (6-4) (6-5)

(83)

(84)

and

326(6-1) (6-2)2 20(362 +746-40) (6-3) 2 
(6-4) (6-5) (6-6) (6-7)

72(6-3)(6+4) , 432(6-3) 2 (4+4) 384(6-3) 2 (56+2) , 560(6-3) , oql, ~r
(6-4)(6-5) ' (6-4)3 (6-5) (6-4) 2 (6-5)(6-6) ' (6-4)

.p^ TOD (85)
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The relative efficiency of each parameter is a function 
of 6, which itself is a function of the skewness. In 
table 8 relative efficiencies of each parameter are given 
for various values of skewness.

From equations 77 through 85 and tables 6 through 
8, it is seen that the relative efficiency of the maximum- 
likelihood estimate to the moment estimate of each 
parameter varies inversely with the skewness; that is, 
the relative efficiency decreases as the skewness in­ 
creases. The average value of skewness of the low-flow 
data for the 34 streams was found to be approximately 
1. For this value of skewness, the relative efficiencies 
of the parameters are less than 0.7. The parameters 
measuring the skewness for the probability distributions 
have relative efficiencies less than 0.2. By using 0.5 as 
the average relative efficiency for all the parameters of 
a given probability distribution, the method of moments 
can be considered as using only half of the available 
information in a given record of size N.

APPLICATION OF THE METHOD OF MAXIMUM 
LIKELIHOOD

The method of maximum likelihood minimizes the 
effect of the larger values on the lower limit, since this 
method gives less weight to the larger values than the 
method of moments. Lessening the weight of the larger 
values reduces the estimated skewness. To demon­ 
strate the application of the method of maximum likeli­ 
hood, the low-flow data for the Kootenai River at 
Leonia, Idaho, were fitted with a Pearson Type III dis­ 
tribution based on maximum-likelihood estimates of the 
parameters of the distribution. This set of data was 
used because it is a good example of the situation where 
the largest value deviates excessively with the other 
values.

In order to fit the Pearson Type III distribution to 
the data by the method of maximum likelihood, it is 
necessary to solve the following three simultaneous non­ 
linear equations for the values of m, a, and b.

   i
om i^{

<- w )=0'

(86) ^

(87)

   ^. ido db

The solution of this set of simultaneous equations was 
obtamed by trial and error. The comparison of the 
maximum likelihood estimates m, a, and b with the 
moment estimates of m, a, and 6 is summarized in 
table 9.

From table 9, it is seen that the maximum-likelihood 
estimate of 6 is larger than the moment estimate of 6. 
Since b varies inversely with the skewness, the method 
of maximum likelihood gives an estimate of the skewness 
which is less than that given by the method of moments. 
This reduction of the estimate of the skewness leads to 
a reduction in the estimate of the lower limit. The 
minimum observed low flow for the Kootenai River at 
Leonia, Idaho, was 1,070 cis. By the method of mo­ 
ments, the lower limit was found to be 1,348 cfs; 
whereas, by the method of maximum likelihood, the 
lower limit was found to be 809 cfs.

SUMMARY AND CONCLUSIONS 

PROBABILITY DISTRIBUTION OF LOW FLOWS

For purposes of estimating low flows having certain 
probabilities of occurrence and for making tests of 
significance of such estimates, it is necessary to deter­ 
mine the underlying probability distribution of the 
data. The low-flow data for 34 streams were found to 
be nonnormally distributed with an average skewness 
of approximately 1. Four theoretical probability dis­ 
tributions were investigated: (a) Gumbel's limited 
distribution of the smallest value, (b) 3-Parameter Log- 
Normal, (c) Pearson Type III, and (d) Pearson Type V. 
Each of these distributions is skewed, has a finite lower 
limit, and is defined by three parameters.

In order to evaluate the applicability of these four 
theoretical probability distributions to low-flow data, 
investigations were made relative to two criteria. The 
first criterion was based on the relation between the 
observed minimum low flow and the lower limits of the 
theoretical probability distributions. A theoretical 
probability distribution was considered to be inappli­ 
cable if either the minimum observed low flow was less 
than the lower limit or if the lower limit was negative. 
The second criterion was based on the observed rela­ 
tion between skewness and kurtosis with respect to the 
theoretical relations between skewness and kurtosis. 
A unique relation between skewness and kurtosis exists 
for each of the theoretical probability distributions. 
The theoretical probability distribution whose skewness- 
kurtosis relation best fitted the observed values of skew- 
ness and kurtosis was considered as most representative 
of the probability distribution of low flows.

On the basis of these two criteria, it was found that 
the Gumbel and the Pearson Type III distributions 
were more representative of the probability distribution 
of low flows than either the 3-Parameter Log-Normal 
or the Pearson Type V distributions. Within the range 
of cumulative probabilities (based on the lengths of 
low-flow records), the Gumbel and Pearson Type III



A12 STATISTICAL STUDIES IN HYDROLOGY

distributions are nearly coincident. Thus the low- 
flow data can be represented equally well by either 
distribution.

The lower limits of the four theoretical probability 
distributions are functions of the skewness and vary 
directly with the skewness. Hence, for large values of 
skewness, the lower limits are likely to exceed the 
observed minimum low flow. In those cases where 
the lower limits of the Gumbel and the Pearson Type 
III distributions exceeded the observed minimum low 
flows, the large values of skewness were attributable 
to excessive deviations of the larger low flows from the 
other values. By means of random sampling from a 
Pearson Type III distribution having a skewness of 1, 
it was concluded that such excessive deviations can be 
attributed to chance.

METHOD OF MAXIMUM LIKELIHOOD

The above investigations were based on the com­ 
parison of parameters estimated by the method of 
moments. An alternate method of estimating the 
parameters is that of maximum likelihood. The 
method of maximum likelihood provides estimates of 
the parameters such that their variances are a mini­ 
mum. Also, the method of maximum likelihood 
provides estimates of the lower limits, which are always . 
less than the minimum observed value.

The increase in information obtained by using the 
method of maximum likelihood was investigated by 
comparing the variances of the moment estimatesNwith 
the maximum-likelihood estimates ot the parameters 
of the theoretical probability distributions. The ratio 
of the variance of the maximum-likelihood estimate 
to the variance of the moment estimate is defined as 
the relative efficiency between the two methods. This 
ratio is a function of and varies inversely with the 
skewness.

The average value of skewness for the low-flow data 
of 34 streams was found to be 'approximately 1. For 
this value of skewness, the average relative efficiency 
for the three parameters of each theoretical probability 
distribution was found to be less than 0.5. Thus the 
method of moments utilizes less than half of the avail­ 
able information in a set of low-flow data.

Maximum-likelihood estimates of the parameters 
of the theoretical probability distributions require 
the solution of three simultaneous nonlinear equations. 
These solutions are difficult to obtain since they require 
an iterative process; however, this difficulty can be over­ 
come by the use of high-speed electronic computors. 
The small relative efficiency of the method of moments 
with respect to the method of maximum likelihood in­ 
dicates that future studies dealing with the probability 
distribution of low flows might best be made by using 
the method of maximum likelihood. This is particu­ 
larly true when parameters involving high-order 
moments are used.

TABLE 1. Records of annual minimum daily low flows

Gaging station

Middle Branch Westfleld River near Qoss Heights,

Pemigewasset River at Plymouth, N.H.. _____
Saco River near Cornish, Maine ___________
St. John River below Fish River at Fort Kent, Maine.

Little River near Princeton, N.C __________
Fishing Creek near Enfleld, N.C.-... __ ... ___

East Fork of Deep River near High Point, N.C.-...

Cape Fear River at Lillington, N.C.. _______ ..
French Broad River at Asheville, N.C ..............
Coeur d'Alene -River near Cataldo, Idaho ............

1 Kootenai River at Leonia, Idaho... .....  .........
. Kootenay River at Newgate, British Columbia ___ 
A North Fork Stillaguamish River near Arlington, 

Wash..............................................
South Fork Stillaguamish River near Granite Falls, 

Wash.i___.__._____. _______________________ ........
South Fork Skykomisk River near Index, Wash. .... 
Sauk"~River at Sauk, Wash... .......................

Period 
of 

record

1910-55
1903-55
191&-50
1926-50 
1909-55
1930-53
1930-53
1Q9fl  *\3

1928-53 
1927-52
1927-52
1903-53
1923-50
1928-50
1928-50
1930-50 

1928-50

1928-50
1914-50 
1930-50

Length 
ofrecord 
(years)

45
52
34
24 
46
23
23
9<;
25 
25
25
50
27
22
22
20 

22

22
36 
20

Drainage 
area 

(sq mi)

52.6
522

1,298
5,690 

171
229
521
168
14.7 

1,140
3,440

950
1,220

13,000
11,740
7,660 

269

199
355 
714

TABLE 2. Records of annual minimum 7-day low flows

Gaging stations

East Branch Delaware River at Fish's Eddy, N.Y ... 
West Branch Delaware River at Hale's Eddy, N. Y^ _ 
Greenbrier River at Alderson, W. Va ................
Toccoa River near Dial, Ga... ____________

Schroon River at River Bank, N.Y ..................
South Fork of Holston River near Bluff City, Tenn.. 
Brandywine River at Chadd's Ford, Pa...... .......
Hoosic River near Eagle Bridge, N.Y ................
West Branch of Oswegatchie River near Harrisville, 
N.Y......................................... .....

Period 
of 

record

1898-50
1919-52
1896-41
1913-52
1913-52 
1913-52 
1907-54
1913-55
1912-54
1908-53
1901-49 
1911-54
1911-53

1916-53

Length 
of record 
(years)

52
40
46
40
40 
40 
48
43
43
46
49 
44
43

38

Drainage 
area 

(sq mi)

2,084
2,240

664
1,492

783 
593 

1,357
177
491
527
813

  287
510

258
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TABLE 3. Coefficients of skewness of low-flow data with 90-percent, 
96-percent, and 99-percent confidence limits

TABLE 4. Coefficients of kurtosis of low-flow data with 90-percent, 
95-percent, and 99-percent confidence limits

Gaging stations

Middle Branch of Westfleld River near

Pemigewasset River at Plymouth, N. H.

St. John below Fish River at Fort Kent,

Souhegan River near Merrimack, N. H..

East Fork of Deep River near High 
Point, N. C...... .....................

Cape Fear River at Lillington, N. C.... 
French Broad River at Asheville, N. C._ 
Coeur d'Alene River near Cataldo,

Kootenai River near Bonners Ferry,

Kootenay River at Newgate, British

North Fork Stillaguamish River near

South Fork Stillaguamish River near 
Granite Falls, Wash........ _ ........

South Fork Skykomish River near In-

Susquehanna River at Conklin, N.Y .... 
Little Tennessee River at Judson, N.C.. 
Chenango River near Chenango Forks, 
N.Y...................................

East Branch of Delaware River at Fish's 
Eddy, N.Y...........................

West Branch of Delaware River at 
Bale's Eddy, N.Y....................

Greenbrier River at Alderson, W. Va... 
Toccoa River near Dial, Oa. ......... ...
Schroon River at River Bank, N.Y..... 
South Fork of Holston River near Bluff 

City, Tenn............................
Brandywine River at Chadds Ford, Pa_. 
Hoosic River near Eagle Bridge, N.Y .... 
West Branch of Oswegatchie River near 

Harrisville, N.Y......................

0\

1.38 
.292 
.354

.693 
1.13 
.602 
.050 
.551

.045 

.806 
1.22 
1.62

.542

1.45 
1.85

.721 

.581 

.725

.877 

.731 

.426 

.670 
1.75

.107 

1.19

1.27 .80' 

1.31 
1.08 
1.28

2.50 
.236 

1.53

2.15

S.E. 0,

0.354 
.330 
.403

.471 

.349 

.480 

.480 

.455

.463 

.463 

.463 

.336

.447

.490 

.490

.511 

.490 

.490

.392 

.511 

.330 

.350 

.350

.373 

.373

.373 

.343 

.360 

.360 

.350

.339 

.358 

.360

.382

Confidence limit

90-per­ 
cent 
1.64 

S.E. 0i

0.582 
.543 
.663

.775 

.574 

.790 

.790 

.748

.762 

.762 

.762 

.553

.735

.806 

.806

.841 

.806 

.806

.645 

.841 

.543 

.576 
- .576

.614 

.614

.614 

.564 

.592 

.592 

.576

.558 

.589 

.592

.628

95-per­ 
cent 
1.96 

S.E. (7i

0.694 
.646 
.790

.921 

.683 

.941 

.941 

.892

.905 

.905 

.905 

.658

.875

.960 

.960

1.000 

.960 

.960

.769 
1.000 
,646 
.686 
.686

.730 

.730

.730 

.672 

.705 

.705 

.686

.664 

.701 

.705

.749

99-per­ 
cent 
2.58 

S.E. 01

0.913 
.851 

1.040

1.215 
.900 

1.238 
1.238 
1.174

1.195 
1.195 
1.195 
.867

1.153

1.264 
1.264

1.318 

1.264 

1.264

1.011 
1.318 
.851 
.903 
.903

.962 

.962

.962 

.885 

.929 

.929 

.903

.875 

.924 

.929

.986

Gaging stations

Middle Branch of Westfleld River near

Pemigewasset River at Plymouth, N.H.

St. John below Fish River at Fort Kent,

Souhegan River near Merrimack, N.H.. 
Little River near Princeton, N.C _ . ....
Fishing Creek near Enfleld, N.C.. ......

East Fork of Deep River near High 
Point, N.C... ...... ....................

Cape Fear River at Lillington, N.C ..... 
French Broad River at Asheville, N.C-. 
Coeur d'Alene River near Cataldo,

Kootenai River near Bonners Ferry, 
Idaho.. _____________ ......

Kootenay River at Newgate, British

North Fork Stillaguamish River near

South Fork Stillaguamish River near

South Fork Skykomish River near

Susquehanna River at Conklin, N.Y .... 
Little Tennessee River at Judson. N.C.. 
Chenango River near Chenango Forks, 

N.Y...... .............................
East Branch of Delaware River at Fish's 

Eddy, N.Y...........................
West Branch of Delaware River at 

Kale's Eddy, N.Y....................
Greehbrier River at Alderson, W. Va... 
Toccoa River near Dial, Oa. ....... _ .
Sacandaga River near Hope, N.Y .......
Schroon River at River Bank, N.Y.. ... 
South Fork of Holston River near Bluff 

City, Tenn .   ..... .............
Brandywine River at Chadds Ford, Pa. 
Hoosic River near Eagle Bridge, N.Y... 
West Branch of Oswegatchle River near 

Harrisvme, N.Y... ...................

at

1.54 
-.11 
-.08

.90 

.83 
-.20 

-1.04 
1.72

-.38 
-.52 

.02 

.06

.71

3.55 
6.40

1.36 

.02 

-.59

.33 

.42 

.64 

.27 
-2.33

-.83 

.73

1.04 
-.11 
1.50 
.93 

-2.14

9.65 
-.49 
2.29

7.09

S.E.02

0.693 
.649 
.786

.909 

.687 

.926 

.926 

.894

.894 

.894 

.894 

.660

.865

.942 

.942

.980 

.942 

.942

.766 

.980 

.645 

.687 

.687

.730 

.730

.730 

.673 

.707 

.707 

.687

.668 

.700 

.707

.748

Confidence limit

90-per­ 
cent 
1.64 

S.E.f/j

1.140 
1.068 
1.293

1.495 
1.130 
1.523 
1.523 
1.471

1.471 
1.471 
1.471 
1.086

1.423

1.550 
1.150

1.612 

1.550 

1.550

1.260 
1.612 
1.061 
1.130 
1.130

1.201 

1.201

1.201 
1.107 
1.163 
1.163 
1.130

1.099 
1.152 
1.163

1.230

95-per­ 
cent 
1.96 

S.E.02

1.358 
1.272 
1.541

1.782 
1.347 
1.815 
1.815 
1.752

1.752 
1.752 
1.752 
1.294

1.695.

1.846 
1.846

1.921 

1.846 

1.846

1.501 
1.921 
1.264 
1.347 
1.347

1.431 

1.431

1.431 
1.319 
1.386 
1.386 
1.347

1.309 
1.372 
1.386

1.466

99-per­ 
cent 
2.58 

S.E.02

1.788 
1.674 
2.028

2.345 
1.772 
2.389 
2.389 
2.307

2.307 
2.307 
2.307 
1.703

2.232

2.430 
2.430

2.528 

2.430 

2.430

1.976 
2.528 
1.664 
1.772 
1.772

1.883 

1.883

1.883 
1.736 
1.824 
1.824 
1.772

1.723 
1.806
1 .. 824

1.950
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TABLE 5. Observed and theoretical standardized low limits

Gaging stations

Middle Branch of Westfleld River near

PemigewassetRiveratPlymouth.N.H ...

St. John below Fish River at Fort Kent, 
Maine..------.-.. _ _ -------- _ ... 

Souhegan River near Merrimack, N.H. 
Little River near Princeton, N.C _ ̂..
Fishing Creek near Enfield, N.C.......

East Fork of Deep River near High 
Point, N.C...  .....................

Neuse River near Clayton, N.C.... ....
Cape Fear River at Lillington, N.C- _ 
French Broad River at Asheville, N.C. 
Coeur d'Alene River near Cataldo, 

Idaho _ . _______________
Kootenai River near Bonners Ferry, 

Idaho..... __________ . .......

Kootenay River at Newgate, British

North Fork Stillaguamish River near

South Fork Stillaguamish River near 
Granite Falls, Wash.... ..............

South Fork Skyomish River near Index, 
Wash...... ...........................

Sauk River near Sauk, Wash. ..........
James River at Buchanan, Va ..........
Susquehanna River at Conklin, N.Y... 
Little Tennessee River at Judson, N.C... 
Chenango River near Chenango Forks, 
N.Y........  .......................

East Branch of Delaware River at 
Fish's Eddy, N.Y...................

West Branch of Delaware River at 
Hale's Eddy, N.Y.............. ....

Greenbrier River at Alderson, W.Va...

Sacandaga River near Hope, N.Y. __ 
Schroon River at River Bank, N.Y. ... 
South Fork of Holston River near Bluff 

City, Tenn.  ................. ....
Brandy wine River at Chadds Fork, Pa. 
Hoosic River near Eagle Bridge, N.Y.. 
West Branch of Oswegatchie River near

-t.

1.33
2.36 
1.74

1.75 
1.26 
1.58
1.58
1.51

1.99
1.34
1.23 
1.76

1.89

1.39
1.45

1.78

1.66

1.39

1.62
1.72
1.54
1.59 
1.70

1.85

1.11

1.07
1.52 
1.70
1.45 
1.40

1.09
1.71 
1.33

1.12

-to

'1.3
2.5 
2.4

1.85 
1.42 
2.00
3.1
9 ni

3.15
1.70
1.35 

11.15

2.05

11.22
1 1 03

1.82

2.00

1.82

1.65
1 80
2.25
1.88 

11.10

2.95

1.38

1.95
1.74 

!1.30
1.46 

11.32

!.86
2.6 

11.17

1.95

-tm

11.2
2.6 
2.4

i 1.7 
1.3 
1.8
6.3
1.9

6.6
1.55
1.28 

11.11

1.9

11.18
11.05

11.65

1.82

1.65

11.5
11.63

2.15
1.7 

11.08

4.3

1.3

1.25
1.56 

11.23
iJ.35 
11.25

 0.89
2.9 

11.15

i 0. 96

-t,.N

2 31
10.5 
8.6

4.4 
2.78 
5.00

60
5.50

.67
3.75
2.69 
2.0

5.60

2.25
1 80

4.20

5.20

4.20

3.50
4.15
7.20
4.45 
1.90

28

2.65

2.50
3.80 
2.45
2.90 
2.50

1.40
12.5 
2.15

1.58

-tv

4.20
13.5 
11.5

6.40 
4.50 
7.20

81
7 sin

89
5.7
4.3 
3.75

7.8

4.1
3.5

6.2

7.4

6.2

5.3
6.1
9.8
6.5 
3.6

38

4.4

4.2
7.1 
4.2
4.64 
4.2

3.2
17 
3.9

3.35

-t'

i qq

3.35 
3.46

3.14 
3.08 
1.66
1.88
9 fifi

3.79
1.90
1.59 
2.62

3.97

3.16
2.88

4.49

3.93

3.02

4.24
4.53
4.15
2.46 
2.98

2.97

1.90

1.98
1.77 
2.97
2.00 
2.58

2.85
2.96 
2.92

2.20

TABLE 6. Relative efficiency of moment estimates with respect to 
maximum-likelihood estimates Pearson Type III distribution

-t'

1.33 
3.35 
3.46

3.14 
3.08 
1.66 
1.88 
2.08

3.79 
1.90 
1.59 
2.62

3.97

3.16 
2.88

Oi

2                  
I....  ... ......   ...-........
.3........................................

P

0 
3 

43.44

E(m)

0.000 
.500 
.954

E(a)

0.250 
.571 
.937

E(p)

0.000 
.154 
.821

TABLE 7.   Relative efficiency of moment estimates with respect to 
maximum-likelihood estimates   8-Parameter Log-Normal distri­ 
bution

Gi

2
1......       .....   .................
.3...... ........ ........... ...............

7

0.6 
.3 
.1

E(a)

0.259 
.683 
.958

E(m)

0.280 
.624 
.936

EM

0.003 
.006 
.874

TABLE 8. Relative efficiency of moment estimates with respect to 
maximum-likelihood estimates Pearson Type V distribution

0,

2......... .  ...............  ........
1                        
.3.........            .........

b

9
21
183

E(m)

0.371
.672
.957

-E(o)

0.210
.542
.982

E(b)

0.002
.005
.040

TABLE 9. Comparison of parameters computed by the methods of 
maximum-likelihood and moments

1 Theoretical lower limit is greater than observed minimum low flow.

Maximum likelihood..

Pearson Type III

m

809 
1348

a

360 
695

P

2.755 
.169

L

-141.28 
-172. 30

3-Parameter Log-Normal

m

7.38 
7.09

a

435 
794

<r

0.395 
.514

LLN

-173.02 
-173. 57
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FIGURE 1. Middle Branch Westfleld River at Goss Heights, Mass.
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FIGURE 2: Pemigewasset River at Plymouth, N.H.
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FIGURE 3. Saco River near Cornish, Maine. | FIGURE 4. St. John River below Fish River at Fort Kent, Maine. 
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FIGURE 5. Souhegan River near Merrimack, N.H. FIGURE 6. Little River near Princeton, N.C.
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FIGURE 7. Fishing Creek near Enfield, N.C. FIGURE 8. Haw River near Benaja, N.C. 
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FIGUKE 9. East Fork of Deep River near High Point, N.C.
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FIGURE 10. Neuse River near Clayton, N.C.
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FIGURE 11. Cape Fear River at Lillington, N.C. FIGURE 12. French Broad River near Asheville, N.C. 
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FIGURE 13. Coeur d'Alene River near Cataldo, Idaho.
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FIGURE 14. Kootenai River near Leonia, Idaho.
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FIGURE 15. Kootenai River at Bonner's Ferry, Idaho. FIGURE 16. Kootenay River near Newgate, British Columbia.
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FIGURE 17. North Fork Stillaguamish River near Arlington, Wash.
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FIGURE 18. South Fork Stillaguamish River near Granite Falls, Wash.
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FIGUKE 19. South Fork Skykomish River near Index, Wash. FIGURE 20. Sauk River at Sauk, Wash.
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FIGURE 21. James River at Buchanan, Va.
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FIOUBE 22. Susquehanna River at Cinklin, N. Y.
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FIGUBE 23. Little Tennessee River at Judson, N.C. FIOUBE 24. Chenango River near Chenango, N.Y.
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FIGURE 25. East Branch Delaware River at Fish's Eddy, N.Y.
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FIGURE 26. West Branch Delaware River at Hales Eddy, N.Y.
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FIGURE 27. Greenbrier River at Alderson, W. Va. FIGURE 28. Toccoa River near Dial, Ga.
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FIGURE 29. Sacandago River near Hope, N.Y.
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FIGURE 30. Schroon River at River Bank, N.Y.
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FIGURE 31. South Fork of Holston River near Bluff City, Tenn. FIGURE 32. Branywine River at Chadd's Ford, Pa.
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FIGURE 33. Hoosic River near Eagle Bridge, N.Y. FIGURE 34. West Branch of Oswegatchie River near Harrison, N.Y.
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probability distributions.
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distributions.
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FIGURE 37. N=20. FlOUBE 38. #=20.
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