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STATISTICAL STUDIES IN HYDROLOGY

AUTOCORRELATION OF RAINFALL AND 
STREAMFLOW MINIMUMS

By NICHOLAS C. MATALAS

ABSTRACT

Hydrologic time series of annual minimum mean monthly 
rainfall and annual minimum 1-day and 7-day discharge, con­ 
sidered as drought indices, were used to study the distribution 
of droughts with respect to time. The rainfall data were found 
to be nearly random. The discharge data, however, were 
found to be nonrandomly distributed in time and generated by 
a first-order Markov process. The expected value of the variance 
for a time series generated by a first-order Markov process was 
compared with the expected value of the variance for a random 
time series. This comparison showed that the expected value 
of the variance for a nonrandom time series converged to the 
population variance with an increase in sample size at a slower 
rate than for a random time series.

INTRODUCTION

The object of the investigation was to determine if 
droughts are randomly or nonrandomly distributed 
in time and to modify tests of reliability to account 
for the effect of nonrandomness. For these purposes, 
the hydrologic time series used in the investigations 
were annual minimum monthly rainfall at 18 rainfall 
stations and annual minimum 1-day and 7-day dis­ 
charge at 9 gaging stations.

A time series is defined as a sequence formed by the 
values of a variable at increasing points in time. A 
time series may be composed of the sum of two com­ 
ponents: a random element and a nonrandom element. 
If the values of the time series are not independent of 
each other, the nonrandom element exists, and the 
values are said to be serially dependent.

The nonrandom element in a time series may be due 
to a trend or an oscillation about the trend or both. 
In a given time series, the nonrandom element need 
not be due to both of these causes. In order to analyze 
properly a time series, the random and nonrandom ele­ 
ments must be isolated and studied separately. Trend 
must be eliminated from the nonrandom element 
before studying the oscillatory character of a time series. 
The oscillatory movement in a trend-free time series 
may be due to 1 of 3 schemes: (a) moving averages, 
(b) sums of cyclic components, and (c) autoregression.

CHARACTERISTICS OF TIME SERIES

Time series may be classified as either stationary or 
nonstationary. Assume that a time series is divided 
into several segments and that the data within each 
segment are characterized by statistical parameters 
such as the mean and variance. If the expected values 
of these parameters are the same for each segment, 
the time series is said to be stationary. If the expected 
values are not the same for all segments, the time 
series is nonstationary. In stationary time series, 
absolute time is not important, and the series maybe 
assumed to have started somewhere in the infinite past. 
However, in nonstationary time series, absolute time 
must be considered since the series cannot be assumed 
to have begun prior to the time of the initial observation.

Time series may be considered as composed of the 
sum of a random element and a nonrandom element. 
The nonrandom element consists of a trend and an 
oscillation about the trend. Trend is usually thought 
of as a smooth motion of the time series over a long 
period of time. For any given time series, the sequence 
of values will follow an oscillatory pattern. If this 
pattern indicates a more or less steady rise or fall, the 
pattern is defined as a trend. No matter what the 
length of a time series, one can never state with cer­ 
tainty that an apparent trend is not part of a slow 
oscillation, unless the series ends.

An oscillatory movement is often confused with a 
cyclical movement. In a cyclical time series, the 
maximum and minimum values occur at equal intervals 
of time with constant amplitude. The random com­ 
ponent, if present, tends to distort this pattern. In an 
oscillatory time series, the amplitude and the interval 
of time between maximum and minimum values are 
distributed about mean values. A cyclical time series 
is oscillatory, but an oscillatory time series is not 
necessarily cyclical.

In order to analyze properly a time series, it is neces­ 
sary to separate the random and the nonrandom 
components. Trend must be eliminated from the
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B2 STATISTICAL STUDIES IN HYDROLOGY

nonrandom component before studying the oscillatory 
character of the time series.

EFFECT OF NONRANDOMNESS IN 
HYDROLOGIC STUDIES

The design of dams and water-storage reservoirs is 
based on the expected hydrologic conditions many 
years in the future, depending upon the life expectancy 
of the hydraulic structures. To obtain long-range 
estimates, the frequency with which hydrologic events 
occur must be known, if it is assumed that the future 
will follow the pattern shown by the past. In a 
nonrandom time series, there is a tendency for low 
values to follow low values and for high values to 
follow high values. In the case of a water-supply 
reservoir, the reservoir is filled during a wet season to 
meet the anticipated demand during a dry season. If 
droughts are nonrandomly distributed in time, then to 
overcome the tendency for low values to follow low 
values, the reservoir capacity must be increased to 
provide sufficient water to meet the need for more than 
one dry season.

Hurst (1950), in his study of long-term storage 
capacities of reservoirs, concluded that annual total 
discharge is nonrandomly distributed in time. This 
study was based on an analysis of the cumulative sum 
of departures of annual total discharges from the mean 
annual total discharge. The absolute value of the 
difference between the maximum and the minimum of 
the cumulative sums was defined as the range. To 
test for nonrandomness, Hurst determined the expected 
values of the range for various natural phenomena, and 
compared these values with the expected value of the 
range for a random normally distributed time series.

For a random normally distributed time series, Hurst 
defined the expected value of the range, R, as

where a is the standard deviation and N is the sample 
size. Feller (1951) showed that the variance of the 
range is

V(R) =0.074<rW. (2)

Feller also pointed out that the asymptotic probability 
distribution of the range is independent of the form of 
the probability distribution of the variate values. 
Equations 1 and 2 are valid for large N. Anis and 
Lloyd (1953) defined the expected value of the range 
for any value of N as

(3)

Hurst investigated 75 different phenomena consisting

of 690 sets of records and found the range to be of the 
form

(4)

The value of k varied slightly with different phe­ 
nomena. For the 690 sets of records, the mean and 
standard deviation of k were 0.729 and 0.091, respec­ 
tively.

By this analysis, Hurst concluded that estimates of 
the standard deviation based on N observations are 
more variable for a nonrandom time series than for a 
random time series. In a continuation of this study, 
Hurst (1956) pointed out that statistical averages 
based on 30 or 40 observations from a nonrandom time 
series do not yield close approximations to the true 
averages.

The difference between the ranges defined by equa­ 
tions 1 and 4 may be due to the data not being randomly 
distributed in time. This, however, requires that the 
nonrandomness be of a very special type. Moran (1959) 
suggests that the experimental series used by Hurst are, 
as a result of nonrandomness, of insufficient length for 
the asymptotic formula (eq. 1) to become valid. Hurst 
(1957) constructed a probability model which tends to 
illustrate this point.

METHODS FOR INVESTIGATING 
NONRANDOMNESS

TREND ANALYSIS

Trend is thought of as a smooth motion of the time 
series over a long period of time. If the oscillatory 
pattern of a time series indicates a more or less steady 
rise or fall, the pattern is defined as a trend. To study 
the oscillatory characteristics of a time series, the trend, 
if present, should be removed. Various methods of 
removing trend are available. All the methods, however, 
are not fully understood as to how they affect the time 
series. The most commonly used method is that of 
moving averages.

Assume that the observations &i, $2, . . ., XN are 
taken at equal intervals of time. The method of moving 
averages consists of determining overlapping means of 
m successive weighted values. An example of moving 
averages for m=3 is

(5)

The weights of the moving average, blf b2 , and b8, are 
such that their sum equals 3. In general, for moving
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averages of m, the sum of the weights equals m. The 
weights may be positive or positive and negative. A 
simple moving average refers to the case where each of 
the weights equals one. Although a simple moving 
average tends to smooth out the data, it does not 
preserve the main features of the time series as well as a 
weighted moving average.

Generally, even a smooth trend obtained by the 
method of moving averages cannot be represented con­ 
veniently by a mathematical equation. The simplest 
mathematical expression is a straight line. However, a 
time series is apt to be such that a single linear trend 
can not be used throughout the time of observation. 
In such cases, it is possible to approximate the trend by 
using linear trends for portions of the time series.

After the trend line has been established, the trend 
can be removed from the data in one of several ways. 
One way is to take as a new variable the deviations 
about the trend line. These deviations must comprise a 
stationary time series. In some cases, the deviations 
may not comprise a stationary time series, but the 
deviations divided by their corresponding trend values 
may comprise a stationary time series.

If the method of moving averages is used to determine 
the trend in a time series which has an oscillatory move­ 
ment about a trend, then a long-period oscillation tends 
to be included as part of the trend. Oscillations which 
are comparable in period to the length of the moving 
average, m, or shorter are damped out. The moving 
average also introduces an oscillatory movement into 
the random component of the time series. These con­ 
sequences of the moving-average method are referred 
to as the Slutzky-Yule effect (Slutzky, 1937; Yule, 
1921). Because of the Slutzky-Yule effect, care must 
be taken hi discussing the oscillatory character of a time 
series if its trend has been removed by the moving- 
average method.

MEASURE OF NONRANDOMNESS

A time series is said to be randomly distributed if 
each event is independent of all preceding and following 
events. In analyzing sunspot data for periodicities, 
Yule (1927) found that the scatter diagrams for events 
k time units apart were linear. As a measure of linear 
dependence, Yule proposed equations 6 and 7.

In equation 6, x t and xi+Jc are the events at times i 
and i-\-k, respectively, N is the number of events form-

B3

(6)

where 0=1 V
'*=r-t f (7)

ing the time series, and rk is the Arth-order serial- 
correlation coefficient.

Under the assumption that x t varies linearly with 
%i+K, ft serves as a measure of linear dependence. 
If a time series is random, rK=Q for all values of k>l. 
However, for a finite sample, computed values of rK 
may differ from zero because of sampling errors. For 
hydrologic time series, N is small, so that the sampling 
errors may be quite large. Thus the values of rK 
must be tested to determine if they are significantly 
different from zero.

Anderson (1942) developed a test of significance 
based on a circular definition of the serial-correlation 
coefficients which supposes that the last event is fol­ 
lowed by the first event so that

1 N

rk=-

1 N

(8)

For N large and k small, the values of rk given by 
equation 6 are nearly equal to those given by equa­ 
tion 8.

For a random normal time series, Anderson showed 
that TI is approximately normally distributed with 
mean [-!/(# !)] and variance (A/-2)/(JV-l)2. 
Thus a computed value of TI may be tested for sig­ 
nificance by

ri=- N-l (9)

where ta is the standard normal variate corresponding 
to a probability level a. At a given probability level, 
if r^>r\, then rt is considered to be significantly different 
from zero.

GENERATING PROCESSES

A generating process refers to the manner by which 
the causal forces act to produce a time series. Some 
processes can be expressed mathematically, in which 
case it is possible to determine directly the various 
characteristics of the time series. Often a time series 
is approximated by a certain process. The choice of 
this process is based upon how well the mathematical 
structure of the process conforms to the physical
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characteristics underlying the time series. The proc­ 
esses which have been studied extensively and which 
have found wide application in practice are the moving 
average, the sum of harmonics, and the autoregression. 

The moving average process may be expressed as

Xi=b 0 +biy i +b2yi-l + ... +6m7/<_ (m_ 1) , (10)

where y is a random variable and m is the extent of the 
moving average. Equation 10 may be taken as a 
model representing the relation between annual runoff, 
x, and annual effective precipitation (Folse, 1929). 
The effective precipitation prior to a given time interval 
is referred to as antecedent effective precipitation. 
Since the contribution of effective precipitation to the 
runoff converges to zero very rapidly with an increase 
in antecedent time, the effective precipitation for only a 
finite period of antecedency affects the runoff. This 
finite period of antecedency, which is defined as the 
carryover period, is a function of the water-retardation 
characteristics of the river basin and the distribution 
of the effective precipitation with respect to time. 
Wold (1933) shows that the serial-correlation coeffi­ 
cients for a series generated by a moving average 
process are given by

(ID

1=0

rk  Q;k>m.

Many hydrologic studies involve the use of time 
series which exhibit a cyclic movement; that is, se­ 
quences of daily or monthly discharges. The generat­ 
ing process for a cyclic time series may be represented by

Xi=A sin Oi+y t, (12)
where A and B are the amplitude and period, re­ 
spectively, of the cyclic movement, and y is a random 
component. The random component, y, tends to 
distort the amplitude and the period. If the random 
component is large, A and B may be badly distorted. 
For a cyclic time series, the serial-correlation coeffi­ 
cients are given by

A2 
r*=2^2 cos 0*» (13)

where al is the variance of the x's.
Equation 12 is a special case where only one har­ 

monic, namely B, is involved. Some hydrologists 
argue that there are hidden harmonics, or periodicities, 
in hydrologic data. These periodicities are called 
hidden because, if there are a large number of differ­ 
ent periods, the series is very erratic seemingly random.

In the discussion of the moving-average process as

a physical model in hydrology, only a finite period of 
antecedency was considered. If the antecedent period 
is considered to be infinite, then a value of x at time 
i is a function of all previous values of x. This condi­ 
tion may be expressed as an autoregression process by 
defining x t in terms of previous values of x and a 
random component. An example of such a process is

xi+2=axi+i -f b$i (14)

where a and b are constants and e is the random 
component.

Kendall (1951) shows that by letting p V and 
cos 0   a/(2V&), the serial-correlation coefficients for 
the autoregression process given by equation 13 are 
defined as

where

'* ' sin^ ' 

tan \f/= g tan B.

.(15) 

(16)

It is assumed that -\fb is taken with a positive sign 
and that 46>o2 . Moreover, it is assumed that ifb is 
not greater than unity.

A special type of autoregression is given by

where r\ is the first-order serial-correlation coefficient. 
This process is often referred to as the first-order Markov 
process. The serial-correlation coefficients are given by

(18)rk=r\.

CORRELOGRAM ANALYSIS

A graph with the serial-correlation coefficients plotted 
as ordinates and their respective orders as abscissas is 
called a correlogram. To reveal the features of the 
correlogram, the plotted points are joined each to the 
next by a straight line.

For a moving-average process, the values of rt are 
given by equation 11. Since rk  0 for k>m, the cor­ 
relogram may oscillate, depending upon the values of 
b, but the correlogram will vanish for k>m. The val­ 
ues of rk for the harmonic process are given by equa­ 
tion 13. For this process, the correlogram will oscillate 
but never vanish. The oscillation of the correlogram 
is strictly cyclic with amplitude A^feal and period B. 
Note that the period of the correlogram is identical 
to the period of the time series. Equation 15 indi­ 
cates that the correlogram of the autoregression proc­ 
ess given by equation 14 will oscillate, be damped, but 
will not vanish. If the autoregression process is given 
by equation 17, then it is seen by equation 18 that 
the form of the correlogram will be "exponential." 
Thus for infinitely long sequences, the correlogram pro-
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vides a theoretical basis for distinguishing among the 
three types of oscillatory time series.

In practice, N is small so that observed correlograms 
show less damping than theoretical correlograms be­ 
cause the observed serial-correlation coefficients are 
inflated by sampling errors. Thus one cannot deter­ 
mine the generating process by simply observing the 
correlogram. The goodness of fit of a given generat­ 
ing process fitted to an observed correlogram must be 
determined. Tests of goodness of fit which have been 
developed are based on N being very large.

In this study only the autoregression process is con­ 
sidered. For this generating process, a chi-square test 
developed by Quenouille (1949)' can be used to test 
the goodness of fit. If the autoregression model is 
defined by equation 17, the value of chi-square, xL 
associated with the &th-order serial-correlation coeffi­ 
cient is given by

2 _ ~

where

(19)

(20)

The sum of the values of chi-square forms the basis 
for testing the goodness of fit. If

k=l
(21)

where xM«) is the value of chi-square at the probability- 
level a with m degrees of freedom (m is the highest 
order for which a serial-correlation coefficient is deter­ 
mined), then the first-order Markov process is rejected.

INVESTIGATION OF NONRANDOMNESS IN HYDROLOGIC 
TIME SERIES

SERIAL CORRELATION

If a time series is randomly distributed, the popula­ 
tion values of the serial-correlation coefficients, called 
autocorrelation coefficients, between events for all orders 
are zero. For such a time series, the serial-correlation 
coefficients are not significantly different from zero at 
a probability-level a.

To investigate the distribution of droughts with 
respect to time, the annual minimum mean monthly 
rainfall and the annual minimum 1-day and 7-day dis­ 
charge were considered as indices of droughts. The 
rainfall and discharge stations are listed in tables 1 
and 2, respectively. A preliminary investigation for 
trend was made. Only the rainfall data for Charleston, 
S.C., strongly indicated a trend. However, the ap­ 
parent trend was not removed.

By using equation 6, the first-order serial-correlation 
coefficients for the rainfall and discharge data were de­

termined and are given in tables 3 and 4, respectively. 
The first-order serial-correlation coefficient given in 
tables 3 and 4 range from  0.296 to 0.300 for rainfall 
data and from  0.085 to 0.385 for discharge data. 
Although the discharge data exhibit higher first-order 
serial-correlation coefficients than the rainfall data, 
the variability of the first-order serial-correlation co­ 
efficients is greater for the rainfall data than for the 
discharge data.

These values of r^ were tested for significance at the 
90-percent and 95-percent levels by equation 9. An in­ 
spection of tables 3 and 4 shows that at the 90-percent 
level of significance, the data for 6 rainfall and 4 gag­ 
ing stations exhibit significant values of r\. At the 
95-percent level, the data for 4 rainfall and 3 gaging 
stations yield significant values of TV Thus at the 
usual levels of significance employed in hydrologic 
studies, approximately K to K of the stations for both 
phenomena possessed data yielding significant first- 
order serial-correlation coefficients.

The data which exhibited nonsignificant values of rx 
are not necessarily random in time. Serial-correlation 
coefficients of order higher than one, if significant, 
would indicate a lack of randomness. To determine 
if the data were random in time, the serial-correlation 
coefficients for orders 1 through 19 were considered for 
series having both significant and nonsignificant values 
of TI. The data for 6 rainfall and 3 gaging stations 
were used. The values of rk for k=l, 2, . . ., 19 for 
the rainfall and discharge data are given in tables 5 
and 6. Equation 9 was used as an approximate test 
of significance. The letter a denotes significance at 
the 90-percent level.

If serial-correlation coefficients were determined for a 
random time series, an occasional significant value 
would be expected to occur by chance. With respect 
to the 6 rainfall records, 114 serial-correlation coeffi­ 
cients were determined. If the data were randomly 
distributed and if the data for different stations were 
uncorrelated, 12 of these values would be expected to 
be significant at the 90-percent level. However, at 
the 90-percent level, 22 values were found to be sig­ 
nificant. For the 3 discharge records, 57 serial- 
correlation coefficients were determined. If the data 
were random, 6 values would be expected to be sig­ 
nificant by chance. Actually 10 values were found to 
be significant.

These results seem to indicate that the data are non- 
random. However, this investigation is handicapped 
by many factors. The number of stations used is 
very small, and the data for different stations, particu­ 
larly the rainfall stations, are probably correlated. 
Also, most of the significant serial correlations for the
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rainfall data belonged to the two records having the 
largest values of r\. One of these records was the 
Charleston, S.C., rainfall which apparently is not 
trend free. If these factors are taken into considera­ 
tion, the rainfall data can be regarded as random 
in time. For the rainfall data to be nonrandom? there 
would need to be some form of atmospheric storage.

The discharge data may be nonrandomly distributed 
in time, with the nonrandomness being due to storage 
within the river basins. Note that the values of TI 
given in table 4 are positive except for the Pemigue- 
wasset Kiver at Plymouth, N.H. Also, the significant 
serial correlations, given in table 6, are mainly those 
of low order.

GENERATING PROCESS

In figures 1 through 9, correlograms are shown for the 
data considered in the investigation of the serial-corre­ 
lation coefficients for orders 1 through 19. A visual 
inspection of these correlograms shows no clear indica­ 
tion of a moving-average, cyclic, or autoregression 
process. By considering the significance of the serial- 
correlation coefficients, the rainfall correlograms may be 
considered as indicative of random processes where the 
nonzero values of the serial-correlation coefficients are 
due to sampling errors. For the discharge data, the 
low-order serial correlations were significant. This 
suggests that the first-order Markov process may 
approximate the generating process.

The first-order Markov process fitted to the dis­ 
charge correlograms was tested for goodness of fit by 
Quenouille's chi-square at the 90-percent level. The 
values of Rk, xl, and 2%^ are given in table 7. The value 
of chi-square at the 95-percent level for m=19 degrees 
of freedom is 27.2. Since this value of chi-square is less 
than 2%j for the discharge data for each of the three 
streams, the hypothesis that the generating process is 
a first-order Markov process is not rejected.

EFFECT OF SERIAL COBBELATION ON THE ESTIMATE 
OF THE VARIANCE

If a sequence of values is nonrandomly distributed in 
time, then each value repeats some of the information 
contained in previous values. Thus a longer sequence 
of nonrandom events is needed in order to arrive at a 
reliable estimate of the variance than in the case of a 
sequence of random events.

For a sequence of N' events, taken from a random 
time series having mean ju=0 and variance a3, the esti­ 
mate of the variance is given by

N'

2
N' (22)

where x is the estimate of the mean defined by x=^ xltN'

It follows that equation 22 can be written as

N' N'

_/ i j_i i 
02_i=l_____»'==!____

N' (N') 2 (23)

The expectation of x t is E(xt)=0 and the expectation 
of x* is E(xl) = <r2. Since x is randomly distributed, 
E(x ixj')=E(x i)E(xj)=Q. Thus the expectation of S2 is

(24)

Let p* denote the population Mi-order serial-correla­ 
tion coefficient whose estimate is given by rk. For a 
sequence of N events, taken from a nonrandom time 
series generated by a first-order Markov process having 
mean ju=0 and variance a2, the estimate of the variance 
is given by equation 23. For this generating process, 
E(x ixj) = a*pli-jl =o2pw=a2pl kl . Also E(x {)=Q and 
E(a$)=o*. Hence

(1-pf) . 2Pl (l- Py

If ^=0 and N N', equation 25 reduces to equation 
22. Assuming that N=N', it can be shown that the 
quantity in the brackets in equation 25 is smaller than 
(N' 1)/N'. Hence N' must be larger than AT" in order 
to obtain as reliable an estimate of the variance for a 
nonrandom time series as for a random time series. 
By equating equations 23 and 25, it is possible to deter­ 
mine N' as a function of N and PI. If N is the actual 
length of the time series, N' can be considered as the 
effective length of the time series. Thus if the variance 
is estimated from N events, the estimate is only as 
reliable as that estimated by a lesser number, N', of 
random events.

A graphical procedure facilitates the determination 
of N'. In figure 10, a family of curves is shown for 
E(S2)/a2 versus AT as a function of pi. As N tends to 
infinity, E(S2)/a2 tends to unity for all values of pi. 
The larger p\ is, the slower is the rate of convergence. 
For a given sequence, N is known and p\ can be esti­ 
mated by TV Thus, starting with the value of A^ on 
the abscissa, a vertical line is drawn upward to the 
curve corresponding to pi. From this point of inter­ 
section, a horizontal line is drawn to the left until it 
intersects the curve for pi=0, and then a vertical line 
is drawn downward to the abscissa scale to determine 
N'. An example of this graphical procedure for 
determining N' is shown in figure 10. In this example 
AT=30 and pi=0.4. The graphical solution gives N'= 13.
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DISCUSSION AND CONCLUSIONS

Time series of annual minimum monthly rainfall 
and annual minimum 1-day and 7-day discharge, 
considered as drought indices, were used to study the 
distribution of droughts with respect to time. An 
investigation for trends in the data indicated that the 
time series were trend free. The one exception was the 
rainfall data for Charleston, S.C. However, no attempt 
was made to remove the trend from this set of data.

The first-order serial-correlation coefficient, ri} was 
determined for each rainfall and discharge series. The 
values of rx ranged from  0.296 to 0.300 for the rainfall 
data and from  0.085 to 0.385 for the discharge data. 
The discharge data exhibited higher but less variable 
values of rx than the rainfall data. At the 90-percent 
level of significance, 6 and 4 values of r\ for the rainfall 
and discharge data, respectively, were found to be 
significant. At the 95-percent level, the rainfall data 
gave 4 significant values of rx and the discharge data 
gave 3 significant values of rt . Thus at the usual 
levels of significance employed in hydrologic studies, 
approximately K to % of the time series for both 
phenomena possessed significant values of rx .

Data exhibiting nonsignificant values of ri are not 
necessarily random since serial-correlation coefficients 
of order greater than one, if significant, would indicate 
a lack of randomness. Serial-correlation coefficients 
for orders 1 through 19 were determined for the data 
for 6 rainfall and 3 gaging stations. A total of 114 and 
57 serial-correlation coefficients was determined for the 
rainfall and discharge data, respectively. If these 
series were random, then 12 and 6 serial-correlation 
coefficients for rainfall and discharge data, respectively, 
would be expected to be significant at the 90-percent 
level. However, 22 and 10 serial-correlation coefficients 
for the rainfall and discharge data, respectively, were 
found to be significant.

This analysis seems to indicate that the data for both 
phenomena are nonrandomly distributed. Before draw­ 
ing such a conclusion, several factors affecting the 
analysis must be considered. The number of records 
used was very small, and the data for different stations, 
particularly the rainfall data, were probably correlated. 
Over half the significant serial correlations for the 
rainfall data belonged to the two records having the 
largest values of /v One of these records was the 
Charleston, S.C., rainfall which apparently is not trend 
free. Thus the rainfall data are probably randomly 
distributed. If they were nonrandomly distributed, 
the nonrandomness would need to be attributed to 
some form of atmospheric storage.

The discharge records are not correlated. All the 
values of r\ except one are positive, and the low-order

serial correlations tend to be significant. Thus the 
discharge data may be regarded as nonrandom, with 
the nonrandomness being attributed to storage within 
the river basin.

The first-order Markov process was found to ap­ 
proximate the generating process of the discharge data. 
By assuming a time series to be generated by this 
process, the expectation of the estimate of the variance 
based on N observations was given and compared with 
the expectation of the estimate of the variance based 
on N' observations taken from a random time series. 
Because of the serial correlation, the estimate of the 
variance for a nonrandom time series based on N 
observations is only as reliable as the estimate of the 
variance for a random time series based on N' observa­ 
tions where N' is less than N. Nf, defined as the 
effective number of observations, is a function of N 
and the first-order autocorrelation coefficient, PI. A 
graphical procedure (fig. 10) is given for determining 
N' for various values of N and p\.
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FIGUBE 1. Correlogram for annual minimum monthly rainfall at Boston, Mass.
FIGURE 2. Correlogram for annual minimum'monthly rainfall at Providence, R.I.
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FIGUBE 3. Correlogram for annual minimum monthly rainfall at Charleston, 8.C. FIQOEE 4. Correlogram for~annual minimum monthly rainfall at Washington,
B.C.

1.01

/..o ./.\./N/:
V 5

  Y   X  /
& v

-0.5

0.5

FIGUBE 5. Correlogram for annual minimum monthly rainfall at Baltimore, Md. FICTOBE 6. Correlogram for annual minimum monthly rainfall at Philadelphia, Pa.
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7. Correlogram for annual minimum 7-day discharge for James River at 
Buchanan, Va.

FIGURE 8. Correlogram for annual minimum 7-day discharge for South Fork Hols- 
ton River at Bluff Citv. Terra.
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FIGURE 9. Correlogram for annual minimum 1-day discharge for Middle Branch 
Westfield River near Ooss Heights, Mass.

TABLE 1. Rainfall stations used in analyzing annual minimum 
monthly rainfall

Rainfall station

New Bedford,

Lowell Locks and 
Canals, Lowell,

Waltham, Mass ....

Boston, Mass...... 
Burlington, Vt   

Period of 
record

1836-1960

1814-1060

1865-1950
1826-1925
1828-1930 
1841-1921
1818-1913 
1838-1928

Length 
of 

record 
(years)

115

137

96
100
102 
81
96 
91

Rainfall station

Albany, N.Y.......
Providence, R.I- ... 
New York, N.Y....
Charleston, B.C.... 
St. Louis, Mo.  ... 
Washington, D.C-.

New Burnswick, 
N.J. .............

Baltimore. Md ..... 
Philadelphia, Pa...

Period of 
record

1826-1928
1832-1928 
1826-1943
1832-1953 
1837-1953 
1852-1953
1854-1953

1854-1953
1818-1953 
1820-1953

Length 
of 

record 
(years)

103
97 

118
122 
117 
103
100

100
136 
134

FIQTTRE 10. Expected value of the variance for a first-order Markov process.

TABLE 2. Gaging stations used in analyzing annual minimum
discharge

Gaging station

James River at 
Buchanan, Va ....

Holston River at. 
Bluff City, Tenn. 

French Broad 
River at 
Asheville, N.C 

Westfield River 
at Ooss Heights,

Pemiguewasset 
River at 
Plymouth, N.H-

Pertod of 
record

1898-1954

1901-49 

1903-63

1910-55

1903-55

Length 
of 

record 
(years)

57

49 

50

45

62

Gaging station

Souhegan River 
at Merrimack, 
N.H...    ..-

Busquehanna 
River at 
Conklin, N.Y.... 

Little Tennessee 
River at Judson, 
N.C..  .........

Schroon River at 
River Bank, 
N.Y  .... ...   -

Period of 
record

1909-55

1906-60 

1896-1941

1908-63

Length 
of 

record 
(years)

46

46 

46

46
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TABLE 3. Significance of first-order serial-correlation coefficients TABLE 4. Significance of first-order serial-correlation coefficients 
for rainfall for discharge

Rainfall station

Lowell Locks and Canals,

Albany, N.Y _____ .......

New York, N.Y._.___    ...

Baltimore. Md _ ....   ......
Philadelphia, Pa.....  ... ...

n

0.030 
.070

.060 
1.166 

a -.213 
.059 
.071 
.089 

-.070 
.070 

-.139 
a. 300 

a -.222
2 OOfi

.119 
-.046 
i-. 171 

.000

Confidence level

90-percent

0.145 
.133

.157 

.154 

.153 

.171 

.159 

.161 

.152 

.157 

.143 

.141 

.143 

.152 

.154 

.154 

.134 

.135

-0. 152 
-.148

-.178 
-.175 
-.173 
-.196
-.178 
-.184 
-.172 
-.177 
-.160 
-.157 
-.161 
-.172 
-.175 
-.175 
-.149 
-.150

95-percent

0.174 
.160

.190 

.186 

.184 

.205 

.190 

.195 

.183 

.189 

.171 

.168 

.172 

.183 

.186 

.186 

.160 

.162

-0. 191 
-.175

-.211 
-.206 
-.204
-.230
-.211 
-.217
-.203 
-.210 
-.188
-.185 
-.189 
-.203 
-.206 
-.206 
-.175 
-.177

i Significant at 90-percent level. 
* Significant at 95-percent level.

TABLE 5. Serial-correlation coefficients for orders 1 through 19 
for rainfall

n ....... 
n .......
n .......
r«    ..

n ....... 
r» .......
Tit ......
ni ----- - 
ru     
ru -....- 
H4 --  .

ru   ....

ru ......
rtj  ....

Boston, 
Mass.

0.071
1.164 

.142 

.130

.078 

.075 
-.031
-.099 

.078 

.117 
1.303 

.000 
-.117 
-.095 
-.124
-.023 

.028
-.107 

.080

Providence, 
R.I.

0.070
-.060 
-.138 
-.072
-.004 

.140 
-.031
-.210 
-.063 
-.004 

.077 
-.018 

.150 
-.096 

.007

.123 
-.028

.140 
-.014

Charles­ 
ton, B.C.

10.300
1.238 
1.282 
1.317
1.196 
1.163 

.132

.120 
-.129 
-.048 

.009 
-.135 

i -. 175 
1-.163 

-.037
-.112 
-.109

I -.164 
1-.169

Washing­ 
ton, D.C.

i -0.296
1.157 

.150 
i -.249

-.013 
-.100 
-.066
-.034 
-.008 
1.175 

i -. 217 
.147 

-.021 
-.066 
-.037

.105 

.062
-.213 
1.278

Baltimore, 
Md.

i -0. in
1.180 
-.067 

.074

.000 

.086 

.004

.130 

.007 
-.011 
-.043 

.101 

.032 
1.143 
-.039

.096 

.018
-.106 

.036

Phila­ 
delphia, Pa.

0.000
.024 
.024 
.049
.087 

-.003 
.113

-.014 
.064 

-.059 
-.069 

.028 
-.089 
-.096 
-.023

.044 
1-.162

-.127 
-.003

Gaging station

South Fork Holston River at Bluff City,

French Broad River at Asheville, N.C.. 
Middle Branch Westfleld River near

Pemiguewasset River at Plymouth, 
N.H--.  -        

Souhegan River at Merrimack, N.H .... 
Susquehanna River at Conklin, N.Y.... 
Little Tennessee River at Judson, N.C..

ri

a 0.345

.178 

.154

.297

-.082 
*.385 
».224 
.096 
.059

Confidence level

90-percent

0.200

.214 

.212

.222

.208 

.223 

.223 

.223 

.223

-0.236

-.256 
-.253

-.268

-.248 
-.267 
-.267 
-.267 
-.267

95-percent

0.241

.258 

.259

.268

.253 

.267 

.267 

.267 

.267

-0.277

-.300 
-.300

-.314

-.292 
-.311 
-.311 
-.311 
-.311

i Significant at 90-percent level. 
* Significant at 95-percent level.

TABLE 6. Serial-correlation coefficients for orders 1 through 19 
for discharge

no       .   .   .         .

rtt     .              

TIT            -    -    

James River at 
Buchanan, Va.

10.345
.084

-.131
1-.220

-.098
J-.269

-.114
-.030

.122
1.238

.174
1.244

.177
-.026
-.130
-.201

« -.348
-.122
-.166

South Fork 
Holston River 
at Bluff City, 

Tenn.

a 178
-.200

i -.254
.037

1.239
1.234
-.070

.110

.148
-.033
-.041
-.060

.070

.123
-.038

.051

.164
-.077
-.203

Middle Branch 
Westfield 
River near 

(Joss Heights, 
Mass.

10.297
.061

1.242
-.027

1-.221
.081
.098

-.200
-.093
-.185
-.271
-.008
-.184
-.246
-.140

.030

.166

.093
-.061

> Significant at 90-percent level.

i Significant at 90-percent level.

TABLE 7. Chi-square goodness of fit of first-order Markov process 
to discharge correlograms

k

1
2
3
4
6
6
7
8
9

10
11
12
13
14
16
16
17
18
19

3&J

James River at Bu-
chanan, Va.

Rk

-0.304
-.035
-.148
-.120

.038
-.218

.053

.018

.129

.150

.024

.152

.029
-.119
-.111
-.101
-.229

.094
-.122

xl

6.664
.085

1.524
.976
.100

3.107
.180
.019

1.033
1.368
.036

1.345
.062
.787
.666
.533

2.705
.447
.229

22.356

South Fork Holston
River at Bluff City, 

Tenn.

Rk

-0.172
-.232
-.177

.121

.218

.150
-.146

.142

.107
-.082
-.025
-.046

.090

.096
-.080

.068

.146
-.134
-.170

5d

1.521
2.692
1.540
.706

2.225
1.032
.949
.883
.486
.283
.025
.086
.311
.348
.228
.165
.714
.592
.928

16.714

Middle Branch West­
fleld River near Ooss 

Heights, Mass.

Rk

-0.271
-.027

.232
-.166
-.184

.210

.030
-.251

.034
-.147
-.169

.187
-.203
-.136
-.011

.092

.126
-.047
-.011

xi

3.879
.036

2.718
1.346
1.621
2.069
.041

2.809
.051
.914

1.174
.742

1.686
.694
.004
.293
.635
.071
.004

20.686
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