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STATISTICAL STUDIES IN HYDROLOGY

STATISTICS OF A RUNOFF-PRECIPITATION RELATION

By Nicmoras C. MATaLas

ABSTRACT

This report presents the results of an analysis of the influence
of the water-retardation characteristics of a river basin on runoff
distribution. The runoff was assumed to be generated by a
moving average of the effective precipitation, where the extent
of the moving average is assumed to be equal to the carryover—
a function of the water-retardation characteristics of the river
basin.

The probability distribution of the runoff is a function of the
extent of the carryover period. Even though the characteristics
of the effective precipitation may be the same for all river basins,
the probability distribution of the runoff is not the same, because
water-retardation characteristics vary from one river basin to
another.

Owing to the carryover period, runoff is nonrandomly distrib-
uted in time. The serial correlation coeflicients that are used to
measure the nonrandomness of runoff are functions of the
coefficients of the moving-average model, if it is assumed that
effective precipitation is randomly distributed in time.

The moving-average model and the theoretical results
derived from it are supported by experimental results obtained
by analyzing several long-term runoff records.

INTRODUCTION

OBJECT OF INVESTIGATION

The purpose of this investigation was to study the
influence of the water-retardation characteristics of a
river basin on the distribution of runoff. This in-
vestigation is based on a simple hydrologic model,
where runoff is assumed to be generated by a moving
average of the effective precipitation. The extent of
the moving average is assumed to be equal to the
carryover period. It is also assumed that runoff and
effective precipitation correspond to a time interval
such that the effective precipitation can be considered
as randomly distributed in time.

Theoretically, the runofi during a given interval of
time, such as day, month, and year, is a function of all
climatic factors, present and past, since the beginning
of time. The dominant climatic factor is the effective
precipitation, which is defined as the total precipitation
less all losses. The effective precipitation prior to a
given time interval is referred to as antecedent effective
precipitation.

As the contribution of effective precipitation to the
runoff converges to zero very rapidly with an increase
in antecedent time, the effective precipitation for only
a finite period of antecedency affects the runoff.
The finite period of antecedency, which is defined as
the carryover period, is a function of the water-
retardation characteristics of the river basin and the
distribution of the effective precipitation with respect
to time.

HYDROLOGIC MODEL

If @, denotes the runoff during the j* time interval
(where j=1, 2, . . . , N, with N the total number of
time intervals) aud if p;_; denotes the effective precipi-
tation during the (j—7)™ time interval (where =0, 1,
2, . .., mis the time interval antecedent to j, and m
is the extent of the carryover), the relationship between
runoff and effective precipitation is expressed as

Qi=bpi+b1psat . . . FTbuDjm (1)

Equation (1) expresses the runoff as a moving average
of extent m of the effective precipitation. The weights
of the moving average, b,, b, . . . , b, are subject to
the linear constraint

(2)

since for large values of NV the mean runoff is equal to
the mean effective precipitation. If the time interval
is much greater than the concentration time of floods
on the river basin, the weights of the moving average
decrease monotonically with an increase in 7. That is,
bo>bi>by > . . . >by. 3)
Since the values of effective precipitation are positive
and since antecedent effective precipitation contributes
to the runoff, the weights of the moving average are
positive. That is,
5:>0;9=0,1,2, . .., m

(4)
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The runoff-effective precipitation relationship given
by equation (1) is the form of equation adopted by
Folse (1929). Other forms can be cousidered, such as
those involving cross-product terms. However, owing
to the limited knowledge of the true runofi-effective
precipitation relationship, a restriction is imposed on
considering complex models. A complex model is
warranted only when it can be demonstrated to yield
results in closer agreement with the observed facts than
the results obtained by simpler models.

STATISTICAL PARAMETERS CHARACTERIZING
RUNOFF

The statistical parameters that describe the proba-
bility distribution of runoff are as follows: (1) @, the
mean runoff; (2) [m(Q)]", the standard deviation;
(3) 81(Q), the coefficient of skewness; and (4) B:(Q),
the coefficient of kurtosis. These parameters suffice
to describe adequately the frequency distributions that
are applied to hydrologic investigations of runoff.

If the runoff during any given time interval is inde-
pendent of the runoff during any other time interval,
runoff is said to be distributed randomly in time. If,
however, the contrary is true, runoff is said to be dis-
tributed nonrandomly in time. The serial correlation,
R;, between any two runoff eveuts of interval % apart,
gives a measure of the degree and extent of the non-
randomness of the runoff values.

GENERAL THEORY
MOMENTS OF RUNOFF

Basically, the moments are a set of parameters of a
distribution that measure its properties and in certain
cases specify the probability distribution. Summing
equation (1) over all values of j, dividing by N, and
using equation (2), then

=7, (5)
whereby the mean value of runoff is equal to the mean
value of effective precipitation. Equation (5) is valid
if Nis very large and m is much smaller than N. Since
the z* central moment of the distribution of a variable
z around the mean, %, of the distribution is defined as

1 X -
k(@) =77 §13 (x;—7)?, (6)
it follow that the 2™ central moment of runoff is
1 -
Q=53 Q-0 ™

Substituting equation (1) for @, and equation (5) for
@, equation (7) becomes

®)
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Since the probability distributions that have been
found to fit the observed values of runoff are of such
forms for which all moments exist, it is sufficient for
this investigation to specify only the first four central

moments. These central moments are as follows:
m(@)=0 9)
m
w(@=pm(p) 23 6 (10)
Fs(Q)=#i(P) g b? (11)

w@=n 2 b3 (S 8) - 0] a2

The subscripts of the u’s refer to the order of the central
moments, so that u,(Q) and u.(p) are the z? central
moments of the runoff and effective precipitation, re-
spectively. The central moments given by equations
(9) through (12) are valid under the assumption that
the effective precipitation is randomly distributed in
time.

It follows from equation (2) and inequality (4) that

> be<1;d>1

i=0

(13)

It is therefore apparent that the second and third
central moments of runoff, equations (10) and (11),
respectively, are less than the corresponding central
moments of effective precipitation. It does not
necessarily follow that the fourth central moment of
runoff is less than the fourth central moment of effective
precipitation. It can be proved that if the square of
the second central moment of effective precipitation is
equal to or less than the fourth central moment of
effective precipitation, then the fourth central moment
of runoff is less than the fourth central moment of
effective precipitation. On the other hand, if the
square of the second central moment of effective
precipitation is greater than the fourth central moment
of effective precipitation, then depending upon the
difference between these two central moments and upon
the carryover period and the function of the b,’s, the
fourth central moment of runoff can be greater than the
fourth central moment of effective precipitation.

PROBABILITY DISTRIBUTION OF RUNOFF

It is assumed that the probability distributions of
runoff and effective precipitation are such that all
moments exist and that the two probability distribu-
tions can be defined by their respective means, standard
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deviations, coefficients of skewness, and coefficients of
kurtosis. Each of these parameters is a function of
one or more of the first four central moments.

The mean value is defined as the first moment of
the distribution around the origin. Equation (5) shows
that the mean value of runoff is equal to the mean
value of effective precipitation. Therefore, the carry-
over period, m, which integrates the water-retardation
characteristics, does not influence the mean value.
The equality of the two means is ensured by the linear
constraint given by equation (2).

The variance is defined as the second central moment
and is given by equation (10). Equation (13) indi-
cates that the variance of runoff is less than that of
effective precipitation. The water-retardation char-
acteristics cause the values of runoff to have less
dispersion about the mean than do the values of effec-
tive precipitation. Thus the water-retardation char-
acteristics act to smooth out the irregularities of
effective precipitation.

For probability distributions of the form just speci-
fied, relationships exist between the coefficients of
skewness and kurtosis. These relationships can be
expressed mathematically for many of the probability
distributions used in hydrology. The coefficients of
skewness and kurtosis, which are dimensionless ratios,
are defined, respectively, as

Br=1i/u3 (14)

Bo=ps/3. (15)

By using equations (10) and (11), the coeflicient of
skewness of runoff becomes

s@=wor (5 8) lmer (Za) o

or
s@=sm (Z0)[(Bu), v
wherein
2 0) (3 1) 18)

If m=0, there is no carryover, in which case the
river basin possesses no water-retardation characteris-
tics with respect to the time interval taken for the
runoff and the effective precipitation. As the carryover
period, m, increases, then both sides of inequality (18)
approach zero as m approaches infinity. Because the
left-hand side of inequality (18) is the denominator in
equation (17) and because it approaches zero slower
that the right-hand side of inequality (18), which is the
numerator is equation (17), the coefficient of skewness
of the runoff approaches zero as m tends to infinity.

OF A RUNOFF-PRECIPITATION RELATION
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Because a coefficient of skewness equal to zero is associ-
ated with a symmetrical probability distribution, the
probability distribution of the runoff, due to the water-
retardation characteristics, is more symmetrical than
the probability distribution of the effective precipita-
tion, provided Bi(p)>0. If B(p)=0, then B (Q)=0
regardless of m.

By using equations (10) and (12) in equation (15),
the coefficient of kurtosis of the runoff becomes

w(e 23 o3l [ (5 0) -2 4]

8:(Q) =0 (19)
B! (35 62)
or
S by > b
B(Q)=B(p) o3 | 1—— | (20)
& | &)
i= i=0
wherein
$bi< }me%)- 1)
1=0 i=0

As m approaches infinity, both sides of inequality (21)
approach zero with the left-hand member approaching
zero faster than the right-hand member. Therefore,
as m approaches infinity, the coefficient of kurtosis
of the runoff approaches 3. By inequalities (18) and
(21), it is seen that in the limit, for m equal to infinity,
the probability distribution of the runoff has coefficients
of skewness and kurtosis equal to 0 and 3, respectively;
whereby, the runoff is normally distributed. This may
also be shown by the central limit theorem (Cramer,
1954).

If m=0, in which case there is no carryover, the
coefficient of kurtosis of the runoff is equal to that of the
effective precipitation. And if the coefficient of kurtosis
of the effective precipitation is equal to 3, it is seen by
equation (20) that the coefficient of kurtosis of the
runoff is 3 regardless of the carryover period, m.

As m tends to infinity, the coefficients of skewness
and kurtosis approach their limiting values 0 and 3,
respectively. However, the coefficient of skewness
approaches 0 faster than the coefficient of kurtosis
tends to 3. This condition can be shown by proving
that

5v)_ & -
S By
or that
(Zn)<usn (@3)
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By expanding both sides of inequality (23), then

3

m—

s

[}
>

b5+2

8=

m m—1 m—8
b%b%+s<§ b?+3§_‘,0 ‘?'o bib34: (6340140
(24)

i=1

i i=0

Since the first terms on both sides of inequality (24)
are identical, it is necessary to consider only the second
terms on both sides of the inequality. For any given
value of ¢ and s, the second terms give

2bibi+s<b¥+ b%-}-s
0<(bs—=bs44)*.

Since b;>b;4s, which follows from inequality (3), the
term on the right hand side of inequality (26) must be
a positive number greater than zero. Thus inequalities
(22) and (23) are proved.

The extent of the carryover, m, is not a constant,
becatze water-retardation characteristics vary from one
river basin to another. The probability distribution
of the runoff is a function of the carryover, m, provided
that the coefficients of skewness and kurtosis of the
effective precipitation are not equal to 0 and 3, respec-
tively. Therefore, the probability distribution of the
runoff is not necessarily the same from one river basin
to another.

If, however, the coefficients of skewness and kurtosis
of the effective precipitation are equal to 0 and 3,
respectively, the probability distribution of the runoff
is characterized by the fact that the coefficients of
skewness and kurtosis of the runoff are also 0 and 3,
respectively. Thus the water-retardation character-
istics do not influence the form of the runoff probability
distribution when it is the same as. that of the effective
precipitation. However, owing to the carryover, the
variance of the runoff is less than that of the effective
precipitation.

(25)
or
(26)

DISTRIBUTION OF RUNOFF IN TIME

If there is carryover, the runoff during any given
time interval is dependent upon the runoff during
previous time intervals; therefore, the runoff is non-
randomly distributed in time. Theoretically, this
dependency is a function of all previous runoff since the
beginning of time. For practical purposes, however,
the carryover period is considered as finite, so that the
runoff during a given time interval is dependent only
upon the runoff during a finite number of antecedent
time intervals.

A measure of the nonrandomness is the serial correla-
tion coefficient of order k. This measure is defined as

STATISTICAL STUDIES IN HYDROLOGY

N—k - -
2 (@~ (Q—Q)
R= = N—k — ’
= -0

(27)

which is the correlation between values of runoff  time
intervals apart. By using equations (1) and (5),
equation (27) becomes

N~k m m
jgl % b:(Ps41-4—D) é. bt+k(2’/+k+1-¢@

Rk= Nk m (28)
2 25 bi(py41-—p)?
i=1 =0
or

m—k
Z bibi+/

R=_" ) (29)

H

under the assumption that the effective precipitation is
distributed randomly in time. Equation (29) holds
for k<m where Ry=1. However, for k> (m-1), then
Rk=0.

If there is no carryover, m=0, R, is equal to zero for
all values of £ >1, since only the coefficient b, has a value
greater than zero. For m>0, each value of b, and
bsry 1s greater than zero for all values of k<m so the
R;. is positive. And because all values of b,,; are zero
for k> (m,1), Ry is zero for all values of > (m-+1). That
R, is a monotonic function, decreasing from R;=1 to
R, >(m-+1)=0, can be proved as follows. Since the
denominator of equation (29) is a constant for each
value of k, it suffices only to prove that the numerator
of equation (29) for a given value of m decreases with
an increase of k. If the numerator of equation (29)
is expanded, the number of terms in the expansion
equals (m+-1—*k). Hence as % increases from zero to
its maximum value, m, the number of terms decreases
from (m-+1) to 1. Since b;>b; for 1 <k <m, the prod-
uct b, decreases with an increase of k. It therefore
follows that the numerator of equation (29) decreases
monotonically as k increases.

For any given function of the b/'s, R; increases as m
increases and tends to unity as m tends to infinity. If
the function of the &/s is different for two river basins
and if the carryover period, m, is the same for both
basins, then all possible values of R; for the runoff from
one river basin are not necessarily either less or greater
than the corresponding values of R, for the runoff from
the other river basin.

By equation (29), the nonrandomness of the runoff
is & function of the water-retardation characteristics of
the river basin. For any given function of the coeffi-
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cients, b/s, R, increases with an increase of m. Equa-
tion (16) shows that the coefficient of skewness of the
runoff decreases as m increases. Since the coefficient
of skewness of the effective precipitation, Bi(p), is
independent of m and of the coefficients, b,’s, then Ry,
the nonrandomness of the runoff, is independent of
8.(Q), the coefficient of skewness of the runoff.

The values of B; can be determined directly from the
observed values of runoff. Hence, if the distribution
of the b/s is known, it is possible to determine the
carryover period, m, by solving equation (29) for m.
For example, if the /s vary linearly with ¢, then

_ G+
b =lm+1) [‘ (m+2)

Using equation (30), equation (29) becomes

ik _(m41)2—F 7
B=l=m [1+<2m+3><m+2>

Letting k=1 and solving for m, it appears that
3R,
2(1—Ry)
STUDY OF PRECIPITATION-RUNOFF DATA
DETERMINATION OF EFFECTIVE PRECIPITATION

The time interval selected for the runoff and effective
precipitation was a year. By determining the stored
water at the end of the water year, W,, and the stored
water at the beginning of the water year, W,, then the
difference

(30)

(31)

m== (32)

Ay=Wey— W, (33)

represents the stored water in the river basin during
the water year. If Q; denotes the total runoff during
the water year, then

P;=0Q;+4,

represents the total effective precipitation during the
water year.

By using equations (33) and (34), it is possible to
estimate the effective annual precipitation, and this
was done for several gaging stations. These stations
are listed in table 1.

(34)

TaBLE 1.—Streamflow records

{Data furnished by Dr. V. M. Yevdjevich (Colorado State University) from his
current study “The fluctuation of annual river flows”]

Drainage N
Stream Location area Period of | Number
(sq mi) record of years

ot record

St Lawrence....| Ogdensburg, N.Y_____________.__ 205,200 | 1860-1957 97
Got: Sjotorp-Vinersborg, Sweden....| 18,076 | 1807-1957 150
Nemunas.......| Smalininkai, Lithuania........_ 30,900 | 1811-1943 132
Danube.........| Orshava, Rumsania__.......... 216,300 | 1837-1957 120

649665—62——2
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CORRELOGRAMS OF RUNOFF AND EFFECTIVE
PRECIPITATION

In figures 1 through 4, the correlograms for the annual
runoff and effective precipitation are given for the
streams listed in table 1. The correlograms formed by
the solid lines apply to the runoff and the correlograms
formed by the alternate long-short dashed lines apply
to the effective precipitation. For each correlogram,
approximate 90- and 95-percent confidence limits are
given. These confidence limits are based on Anderson’s
(1942) test of significance of serial correlation coefficients.

Figure 1 shows that for the St. Lawrence River
runoff, the serial correlation coefficients for k equal to
1 through 9 are significant at the 95-percent level.
For k>9, the serial correlation coefficients fluctuate
within the confidence bands. With respect to the
effective precipitation, shown by the alternate long-
short dashed lines, the values of R, fluctuate within
the confidence bands.

The first serial correlation coefficients for the runoff
for the Gota River (fig. 2) and Nemunas River (fig. 3)
are significant at the 95-percent level. The values of
R, for k>2, for both of these rivers, fluctuate within
the confidence bands and therefore can be considered
as not significant. For the effective precipitation
corresponding to both of these rivers, the values of R,
fluctuate within the confidence limits.

With respect to the Danube River (fig. 4) the values
of R, for both the runoff and the effective precipitation
fluctuate within the 95-percent confidence bands.

The correlograms for effective precipitation indicate
that effective precipitation is randomly distributed in
time. Runoff may be either randomly or nonrandomly
distributed in time. The correlograms for runoff
indicate that R, decreases with an increase in & and
that beyond a certain value of &, the values of R, can
be considered as not significant. Therefore, the cor-
relograms give reasonable support to the moving
average as the generating scheme of runoff.

STATISTICAL PARAMETERS OF RUNOFF AND
EFFECTIVE PRECIPITATION

The above investigations of the correlograms gave
support to the hydrologic model, equation (1), and
its underlying assumptions. A mathematical treat-
ment of equation (1) indicated the following conditions:
(1) That the mean runoff is equal to the mean effective
precipitation; (2) that the variance of the runoff is
less than the variance of the effective precipitation;
(3) that the skewness of the runoff is less than the
skewness of the effective precipitation; and (4) that
the kurtosis of the runoff is not necessarily less than the
kurtosis of the effective precipitation. Condition 3
applies to the case for which the effective precipitation
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EXPLANATION
— Runotf
—-—-— Effective
Confidence limit, precipitation
in percent
__________ _/‘&4»95
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FIcURE 1.—Correlograms of runoff and effective precipitation for the St. Lawrence River at Ogdensburg, N.Y.

EXPLANATION
——— Runoff
—-—-— Effective
precipitation
Confidence limit,

in percent

-0.5 |-
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k

FiGUurE 2.—Correlograms of runoff and effective precipitation for the Géta River at Sjotorp-Vinersborg, Sweden,
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EXPLANATION

———— Runoff

- Effective
precipitation
Confidence limit,
in percent

YT W W DU N YO A YO N WO T WO U (Y T SN NS S VA T A R AN SN N BN SRR
5 10 5 20 25 30 35 40
k
F1cURE 3.—Correlograms of runoff and effective precipitation for the Nemunas River at Smalininkai, Lithuania.
EXPLANATION
——— Runoff
—-—-— Effective
) _precipitation
Confidence limit,
in percent
— —pem———-95
(ﬁ’\}\ 90
_ > /' _ _ _ oo
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FIGURE 4.—Correlograms of runoff and effective precipitation for the Danube River at Orshava, Rumania.
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does not follow a symmetrical probability distribution.
Condition 4 applies to the case for which the kurtosis
of the effective precipitation is not equal to 3.

In table 2 values are given for the mean, the standard
deviation, the coefficient of skewness, and the first
order serial correlation coefficient for runoff and effec-
tive precipitation in the St. Lawrence, Géta, Nemunas,
and Danube River basins. The coefficients of kurtosis
were not considered, because it would have been
necessary to define the function of the b/s in order to
carry out the comparison between runoff and effective
precipitation.

Table 2 shows that the standard deviation of the
effective precipitation is greater than that of the run-
off. For the St. Lawerence and Goéta Rivers, the
standard deviation of the effective precipitation is
nearly twice as large as that of the runoff; however,
the extent of the carryover for these two rivers is
different as shown by their correlograms in figure 1.
This difference can be attributed to the fact that the
function of the b/s is different for the two streams.

According to equation (17), the coefficient of skewness
of runoff is less than that of effective precipitation
provided B,(p)#=0. Table 2 shows that this is the
case with respect to the Géta and Nemunas Rivers.
The St. Lawrence and Danube Rivers show the con-
trary. However, in the case of the St. Lawrence
River the skewnesses are nearly zero so that the dif-
ference between the skewness of runoff and the skewness
of effective precipitation probably is not significant.

With respect to the first order serial correlation
coefficients, it appears that R, for runoff is greater than
R, for effective precipitation with respect to each of the
four streams.

TasLE 2.—S8tatistical characterisiics of runoff and effective

precipitation
. Hydrologic] p1 Mean m%
River variahle 1 (cfs) Standard B Ry
deviation

St. Lawrence Q.. 240, 820 20,950 | 0.080 0.705
P 240,820 47,440 .020 .090

Gota g 35,300 6,420 .003 . 463
......... 35,300 10,870 .154 .009

Nemunas. ... Q.. 19, 253 3,410 . 216 .181
P ... 19, 2563 3,700 .368 .119

Danube. 105' 189, 500 36, 380 .729 . 090
_________ 189, 500 40, 550 . 511 .001

1 Qis runofi; P is effective precipitation.

SUMMARY
HYDROLOGIC MODEL AND ITS CHARACTERISTICS

Owing to the water-retardation characteristics of
a river basin, the runoff during a given time interval
is a function of the effective precipitation during the
given time interval and during all previous time
intervals. From a practical point of view, however,

STATISTICAL STUDIES IN HYDROLOGY

the runoff is considered to be a function of the effective
precipitation during a finite number of antecedent
time intervals. It was assumed that the runoff was
generated by a moving average of the effective pre-
cipitation, when the extent of the moving average was
equal to a finite number of antecedent time intervals.
This finite number of antecedent time intervals was
defined as the carryover period, which is a function of
the water-retardation characteristics of the river basin.

The coefficients defining the moving average, denoted
by b/s, were assumed to satisfy the following conditions:
(1) the sum of the coefficients is equal to unity; (2) the
magnitudes of the coefficients decrease monotonically
with an increase in the antecedent time; and (3) the
values of the b/'s are greater than zero.

PROBABILITY DISTRIBUTION OF RUNOFF

On the basis of the assumed model of runoff and
effective precipitation, the mean value of runoff is equal
to the mean value of effective precipitation. The
second and third central moments of runoff are less
than those of effective precipitation. However, the
fourth central moment of runoff is not necessarily less
than that of effective precipitation.

Investigation of the skewness and kurtosis of runoff
and effective precipitation showed that if the effective
precipitation were normally distributed, then the runoff
was normally distributed regardless of the carryover
period. If, however, the effective precipitation fol-
lowed a skewed probability distribution, then the
runoff followed a skewed probability distribution,
which was different and less skewed than that of the
effective precipitation, provided that there was carry-
over. For a carryover period equal to infinity, runoff
is normally distributed regardless of the probability
distribution of effective precipitation, provided, of
course, that the probability distribution of effective
precipitation is such that all moments exist. There-
fore, the greater the carryover period, the more the
probability distribution of runoff departs from that of
effective precipitation, provided that effective precipi-
tation follows a skewed probability distribution.

The carryover period is a function of the water-
retardation characteristics of a river basin. Even
though the characteristics of the effective precipitation
may be the same for each river basin, the probability
distribution of the runoff is not the same, because
water-retardation characteristics vary from one river
basin to another.

TIME DISTRIBUTION OF RUNOFF

Owing to the water-retardation characteristics, the
runoff during a given time interval is dependent upon
the runoff during previous time intervals. If the
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carryover period is denoted by m, then the runoff
during a given time interval is dependent upon the
runoff during (m—1) previous time intervals. Thus
the water-retardation characteristics generate a non-
random distribution of the runoff, and the nonrandom-
ness is measured by the serial correlation coefficients.

The serial correlation coefficients of the runoff are
dependent only upon the function of the coefficients of
the moving average, b,'s, and upon the carryover period,
m, under the assumption that the effective precipita-
tion is randomly distributed in time. Thus by speci-
fying the function of the b/s, it is possible to determine
m, as the serial correlation coefficients can be deter-
mined {rom the observed values of the runoff.

The carryover period, m, can be estimated without
specifying the function of the b/s by means of the
correlogram, provided that the number of time intervals,
N, is large. Theoretically, the correlogram for a
moving-average process vanishes for all orders of serial
correlation equal to and greater than a certain value
of k. If this value of % is denoted by %, then the
carryover period, m, is equal to (k,+1). With actual
data, however, zero values of serial correlation are not
likely to be obtained, owing to sampling errors. In
practice, k, may be taken as that value of % beyond
which all values of serial correlation coefficients fluctu-
ate within a confidence band of nonsignificance.

RELATION BETWEEN SKEWNESS AND NONRANDOM-
NESS OF RUNOFF

The coefficient of skewness of the runoff, 8,(Q), is
dependent upon the function of the coefficients, b,’s, of
the moving average, the carryover period, m, and the
coefficient of skewness of the effective precipitation,
B:(P). However, the serial correlation coeflicients,
R,, of the runoff are dependent only upon the function
of the coefficients of the moving average and the
carryover period and are independent of the skewness
of the effective precipitation.
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For a given value of skewness of the effective pre-
cipitation, the skewness of the runoff decreases and the
nonrandomness of the runoff increases with an increase
in the carryover period. However, since the skewness
of the effective precipitation is independent of the
function of the coefficients of the moving average and
the carryover period, the serial correlation coefficients
of the runoff can assume any value within the range
0 to 1 independently of the values of the coefficients
of skewness of the runoff.

RESULTS

In order to test the theoretical results, annual values
of runoff and estimated values of effective precipitation
for four long-term records were considered. The
correlograms of runoff and effective precipitation show
that the moving average provides a satisfactory model
of the generating scheme of runoff. The second central
moments of the runoff were found to be less than those
of the effective precipitation. However, the coefficient
of skewness of the runoff was not always found to be
less than the coefficient of skewness of the effective
precipitation.

These investigations show that the data provide
reasonable support for the theoretical results. These
results are, however, applicable to annual events only.
If time intervals other than a year are considered, the
theoretical results will be applicable only if the effective
precipitation can be assumed to be distributed randomly
in time and if no cyclic effects are present.
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