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STATISTICAL STUDIES IN HYDROLOGY

STATISTICS OF A RUNOFF-PRECIPITATION RELATION

By NICHOLAS C. MATALAS

ABSTRACT

This report presents the results of an analysis of the influence 
of the water-retardation characteristics of a river basin on runoff 
distribution. The runoff was assumed to be generated by a 
moving average of the effective precipitation, where the extent 
of the moving average is assumed to be equal to the carryover  
a function of the water-retardation characteristics of the river 
basin.

The probability distribution of the runoff is a function of the 
extent of the carryover period. Even though the characteristics 
of the effective precipitation may be the same for all river basins, 
the probability distribution of the runoff is not the same, because 
water-retardation characteristics vary from one river basin to 
another.

Owing to the carryover period, runoff is nonrandomly distrib­ 
uted in time. The serial correlation coefficients that are used to 
measure the nonrandomness of runoff are functions of the 
coefficients of the moving-average model, if it is assumed that 
effective precipitation is randomly distributed in time.

The moving-average model and the theoretical results 
derived from it are supported by experimental results obtained 
by analyzing several long-term runoff records.

INTRODUCTION 

OBJECT OF INVESTIGATION

The purpose of this investigation was to study the 
influence of the water-retardation characteristics of a 
river basin on the distribution of runoff. This in­ 
vestigation is based on a simple hydrologic model, 
where runoff is assumed to be generated by a moving 
average of the effective precipitation. The extent of 
the moving average is assumed to be equal to the 
carryover period. It is also assumed that runoff and 
effective precipitation correspond to a time interval 
such that the effective precipitation can be considered 
as randomly distributed in tune.

Theoretically, the runoff during a given interval of 
tune, such as day, month, and year, is a function of all 
climatic factors, present and past, since the beginning 
of time. The dominant climatic factor is the effective 
precipitation, which is denned as the total precipitation 
less all losses. The effective precipitation prior to a 
given tune interval is referred to as antecedent effective 
precipitation.

As the contribution of effective precipitation to the 
runoff converges to zero very rapidly with an increase 
in antecedent tune, the effective precipitation for only 
a finite period of antecedency affects the runoff. 
The finite period of antecedency, which is defined as 
the carryover period, is a function of the water- 
retardation characteristics of the river basin and the 
distribution of the effective precipitation with respect 
to tune.

HYDROLOGIC MODEL

If Qj denotes the runoff during the j th time interval 
(where .7 = 1, 2, . . . , N, with N the total number of 
time intervals) and if pj-i denotes the effective precipi­ 
tation during the (j i) l1> time interval (where i=Q, 1, 
2, . . . , m is the time interval antecedent to j, and m 
is the extent of the carryover), the relationship between 
runoff and effective precipitation is expressed as

(1)

Equation (1) expresses the runoff as a moving average 
of extent m of the effective precipitation. The weights 
of the moving average, b 0 , bi, . . . , b m are subject to 
the linear constraint

Z=0
(2)

since for large values of N the mean runoff is equal to 
the mean effective precipitation. If the tune interval 
is much greater than the concentration time of floods 
on the river basin, the weights of the moving average 
decrease monotonically with an increase in i. That is,

(3)

Since the values of effective precipitation are positive 
and since antecedent effective precipitation contributes 
to the runoff, the weights of the moving average are 
positive. That is,

i=0, 1, 2, . . . , (4)
Dl
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The runoff-effective precipitation relationship given 
by equation (1) is the form of equation adopted by 
Folse (1929). Other forms can be considered, such as 
those involving cross-product terms. However, owing 
to the limited knowledge of the true runoff-effective 
precipitation relationship, a restriction is imposed on 
considering complex models. A complex model is 
warranted only when it can be demonstrated to yield 
results in closer agreement with the observed facts than 
the results obtained by simpler models.

STATISTICAL PARAMETERS CHARACTERIZING 
RUNOFF

The statistical parameters that describe the proba­ 
bility distribution of runoff are as follows: (1) Q, the 
mean runoff; (2) [/i2 (Q)] 1/2 , the standard deviation; 
(3) |3i(<?), the coefficient of skewness; and (4) 02 (Q), 
the coefficient of kurtosis. These parameters suffice 
to describe adequately the frequency distributions that 
are applied to hydrologic investigations of runoff.

If the runoff during any given time interval is inde­ 
pendent of the runoff during any other time interval, 
runoff is said to be distributed randomly in tune. If, 
however, the contrary is true, runoff is said to be dis­ 
tributed nonrandomly in time. The serial correlation, 
Rk, between a ay two runoff events of interval k apart, 
gives a measure of the degree and extent of the non- 
randomness of the runoff values.

GENERAL THEORY 

MOMENTS OF RUNOFF

Basically, the moments are a set of parameters of a 
distribution that measure its properties and in certain 
cases specify the probability distribution. Summing 
equation (1) over all values of j, dividing by N, and 
using equation (2), then

Q=P, (5)

whereby the mean value of runoff is equal to the mean 
value of effective precipitation. Equation (5) is valid 
if AT is very large and m is much smaller than N. Since 
the z th central moment of the distribution of a variable 
x around the mean, x, of the distribution is defined as

N

it follow that the z tn central moment of runoff is

(6)

(7)

Substituting equation (1) for Q} and equation (5) for 
Q, equation (7) becomes

I N M 
Vz jj ̂ j ^~j bi(pj-i p) s. (8)

Since the probability distributions that have been 
found to fit the observed values of runoff are of such 
forms for which all moments exist, it is sufficient for 
this investigation to specify only the first four central 
moments. These central moments are as follows:

(9)

(10)

(11)

z=0

i=0

i=o

[~ / m \2 TO "I
(S «) -S 6J (12) 

LA z=o / «=o J

The subscripts of the JLI'S refer to the order of the central 
moments, so that /x 2 ((?) and nz (p) are the z th central 
moments of the runoff and effective precipitation, re­ 
spectively. The central moments given by equations 
(9) through (12) are valid under the assumption that 
the effective precipitation is randomly distributed in 
time.

It follows from equation (2) and inequality (4) that

i=0
(13)

It is therefore apparent that the second and third 
central moments of runoff, equations (10) and (11), 
respectively, are less than the corresponding central 
moments of effective precipitation. It does not 
necessarily follow that the fourth central moment of 
runoff is less than the fourth central moment of effective 
precipitation. It can be proved that if the square of 
the second central moment of effective precipitation is 
equal to or less than the fourth central moment of 
effective precipitation, then the fourth central moment 
of runoff is less than the fourth central moment of 
effective precipitation. On the other hand, if the 
square of the second central moment of effective 
precipitation is greater than the fourth central moment 
of effective precipitation, then depending upon the 
difference between these two central moments and upon 
the carryover period and the function of the ft/s, the 
fourth central moment of runoff can be greater than the 
fourth central moment of effective precipitation.

PROBABILITY DISTRIBUTION OF RUNOFF

It is assumed that the probability distributions of 
runoff and effective precipitation are such that all 
moments exist and that the two probability distribu­ 
tions can be defined by their respective means, standard
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deviations, coefficients of skewness, and coefficients of 
kurtosis. Each of these parameters is a function of 
one or more of the first four central moments.

The mean value is defined as the first moment of 
the distribution around the origin. Equation (5) shows 
that the mean value of runoff is equal to the mean 
value of effective precipitation. Therefore, the carry­ 
over period, m, which integrates the water-retardation 
characteristics, does not influence the mean value. 
The equality of the two means is ensured by the linear 
constraint given by equation (2).

The variance is defined as the second central moment 
and is given by equation (10). Equation (13) indi­ 
cates that the variance of runoff is less than that of 
effective precipitation. The water-retardation char­ 
acteristics cause the values of runoff to have less 
dispersion about the mean than do the values of effec­ 
tive precipitation. Thus the water-retardation char­ 
acteristics act to smooth out the irregularities of 
effective precipitation.

For probability distributions of the form just speci­ 
fied, relationships exist between the coefficients of 
skewness and kurtosis. These relationships can be 
expressed mathematically for many of the probability 
distributions used in hydrology. The coefficients of 
skewness and kurtosis, which are dimensionless ratios, 
are defined, respectively, as

(14)

(15)

By using equations (10) and (11), the coefficient of 
skewness of runoff becomes

z

or

wherein
m
Si=o

m \3 \2

)/

(17)

(18)

If m=0, there is no carryover, in which case the 
river basin possesses no water-retardation characteris­ 
tics with respect to the time interval taken for the 
runoff and the effective precipitation. As the carryover 
period, m, increases, then both sides of inequality (18) 
approach zero as m approaches infinity. Because the 
left-hand side of inequality (18) is the denominator in 
equation (17) and because it approaches zero slower 
that the right-hand side of inequality (18), which is the 
numerator is equation (17), the coefficient of skewness 
 of the runoff approaches zero as m tends to infinity.

Because a coefficient of skewness equal to zero is associ­ 
ated with a symmetrical probability distribution, the 
probability distribution of the runoff, due to the water- 
retardation characteristics, is more symmetrical than 
the probability distribution of the effective precipita­ 
tion, provided ft(p)>0. If A(p)=0, then ft(Q)=0 
regardless of m.

By using equations (10) and (12) in equation (15), 
the coefficient of kurtosis of the runoff becomes

/..GO £ M
m \2 mm ~~\-£ M

"" J

i=0

(19)

or

,+3 1  

t=0

wherein

j=0 \j=0

(20)

(21)

As m approaches infinity, both sides of inequality (21) 
approach zero with the left-hand member approaching 
zero faster than the right-hand member. Therefore, 
as m approaches infinity, the coefficient of kurtosis 
of the runoff approaches 3. By inequalities (18) and 
(21), it is seen that in the limit, for m equal to infinity, 
the probability distribution of the runoff has coefficients 
of skewness and kurtosis equal to 0 and 3, respectively; 
whereby, the runoff is normally distributed. This may 
also be shown by the central limit theorem (Cramer, 
1954).

If m=0, in which case there is no carryover, the 
coefficient of kurtosis of the runoff is equal to that of the 
effective precipitation. And if the coefficient of kurtosis 
of the effective precipitation is equal to 3, it is seen by 
equation (20) that the coefficient of kurtosis of the 
runoff is 3 regardless of the carryover period, m.

As m tends to infinity, the coefficients of skewness 
and kurtosis approach their limiting values 0 and 3, 
respectively. However, the coefficient of skewness 
approaches 0 faster than the coefficient of kurtosis 
tends to 3. This condition can be shown by proving 
that

i=0

i=Q

or that

)
2 m m

j=0 2=1

(22)

(23)
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By expanding both sides of inequality (23), then

m l m~s

g=0 i=0 s=0 i=0

(24)

Since the first terms on both sides of inequality (24) 
are identical, it is necessary to consider only the second 
terms on both sides of the inequality. For any given 
value of i and s, the second terms give

or
(25)

(26)

Since bi^>b i+s , which follows from inequality (3), the 
term on the right hand side of inequality (26) must be 
a positive number greater than zero. Thus inequalities 
(22) and (23) are proved.

The extent of the carryover, m, is not a constant, 
because water-retardation characteristics vary from one 
river basin to another. The probability distribution 
of the runoff is a function of the carryover, m, provided 
that the coefficients of skewness and kurtosis of the 
effective precipitation are not equal to 0 and 3, respec­ 
tively. Therefore, the probability distribution of the 
runoff is not necessarily the same from one river basin 
to another.

If, however, the coefficients of skewness and kurtosis 
of the effective precipitation are equal to 0 and 3, 
respectively, the probability distribution of the runoff 
is characterized by the fact that the coefficients of 
skewness and kurtosis of the runoff are also 0 and 3, 
respectively. Thus the water-retardation character­ 
istics do not influence the form of the runoff probability 
distribution when it is the same as that of the effective 
precipitation. However, owing to the carryover, the 
variance of the runoff is less than that of the effective 
precipitation.

DISTRIBUTION OP RUNOFF IN TIME

If there is carryover, the runoff during any given 
time interval is dependent upon the runoff during 
previous time intervals; therefore, the runoff is non- 
randomly distributed in time. Theoretically, this 
dependency is a function of all previous runoff since the 
beginning of tune. For practical purposes, however, 
the carryover period is considered as finite, so that the 
runoff during a given time interval is dependent only 
upon the runoff during a finite number of antecedent 
time intervals.

A measure of the nonrandomness is the serial correla­ 
tion coefficient of order k. This measure is defined as

Z?«2r-® (&+*-<?)
(27)

which is the correlation between values of runoff k time 
intervals apart. By using equations (1) and (5), 
equation (27) becomes

N  k m

Z)Z)
i=0 (28)

or
m  k

(29)
-j=0

under the assumption that the effective precipitation is 
distributed randomly in time. Equation (29) holds 
for k<m where R0=l. However, for &>(ra-|-l), then 
.2?jt=0.

If there is no carryover, m 0, Rk is equal to zero for 
all values of k > 1, since only the coefficient 6 X has a value 
greater than zero. For ra>0, each value of b 0 and 
bi+K is greater than zero for all values of k<m so the 
Rk is positive. And because all values of b i+k are zero 
for k > (ra+ 1), Rk is zero for all values of k > (m -+-1). That 
Rk is a monotonic function, decreasing from R0 =l to 
7?fcXm+l)=0, can be proved as follows. Since the 
denominator of equation (29) is a constant for each 
value of k, it suffices only to prove that the numerator 
of equation (29) for a given value of m decreases with 
an increase of k. If the numerator of equation (29) 
is expanded, the number of terms in the expansion 
equals (m+1  k). Hence as k increases from zero to 
its maximum value, m, the number of terms decreases 
from (m-+-1) to 1. Since b *> b i+k f or 1 < k < m, the prod­ 
uct 6f6 i+ fc decreases with an increase of k. It therefore 
follows that the numerator of equation (29) decreases 
monotonically as k increases.

For any given function of the 6/s, Rk increases as m 
increases and tends to unity as m tends to infinity. If 
the function of the fe/s is different for two river basins 
and if the carryover period, m, is the same for both 
basins, then all possible values of Rk for the runoff from 
one river basin are not necessarily either less or greater 
than the corresponding values of Rk for the runoff from 
the other river basin.

By equation (29), the nonrandomness of the runoff 
is a function of the water-retardation characteristics of 
the river basin. For any given function of the coeffi-
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cients, 6 4's, Rk increases with an increase of m. Equa­ 
tion (16) shows that the coefficient of skewness of the 
runoff decreases as m increases. Since the coefficient 
of skewness of the effective precipitation, pi(p), is 
independent of m and of the coefficients, 6/s, then Rk, 
the nonrandomness of the runoff, is independent of 
j8i(Q), the coefficient of skewness of the runoff.

The values of Rk can be determined directly from the 
observed values of runoff. Hence, if the distribution 
of the bi's is known, it is possible to determine the 
carryover period, m, by solving equation (29) for m. 
For example, if the 6/s vary linearly with i, then

h '""
(*»+!) (m+2) 

Using equation (30), equation (29) becomes

1+- -F -i
(«+DL (2m+3)(m+2)J 

Letting k=l and solving for m, it appears that

m=-f

(30)

(31)

(32)

STUDY OF PRECIPITATION-RUNOFF DATA

DETERMINATION OF EFFECTIVE PBECIPITATION

The time interval selected for the runoff and effective 
precipitation was a year. By determining the stored 
water at the end of the water year, We, and the stored 
water at the beginning of the water year, W&, then the 
difference

^=Wti-Wtl (33)

represents the stored water in the river basin during 
the water year. If Qj denotes the total runoff during 
the water year, then

P,= &+A, (34)

represents the total effective precipitation during the 
water year.

By using equations (33) and (34), it is possible to 
estimate the effective annual precipitation, and this 
was done for several gaging stations. These stations 
are listed in table 1.

TABLE 1. Streamflow records

[Data furnished by Dr. V. M. Yevdjevich (Colorado State University) from his 
current study "The fluctuation of annual river flows"]

Stream

Gota..  ... ....

Location

Orshava, Rumania _______

Drainage 
area 

(sq mi)

295,200
18, 076
30,900

216,300

Period of 
record

1860-1957
1807-1957
1811-1943
1837-1957

N 
Number 
of years 
ol record

Q7

150
132
120

COBBELOGRAMS OP BTJNOFF AND EFFECTIVE 
PBECIPITATION

In figures 1 through 4, the correlograms for the annual 
runoff and effective precipitation are given for the 
streams listed in table 1. The correlograms formed by 
the solid lines apply to the runoff and the correlograms 
formed by the alternate long-short dashed lines apply 
to the effective precipitation. For each correlogram, 
approximate 90- and 95-percent confidence limits are 
given. These confidence limits are based on Anderson's 
(1942) test of significance of serial correlation coefficients.

Figure 1 shows that for the St. Lawrence Kiver 
runoff, the serial correlation coefficients for k equal to 
1 through 9 are significant at the 95-percent level. 
For )fc>9, the serial correlation coefficients fluctuate 
within the confidence bands. With respect to the 
effective precipitation, shown by the alternate long- 
short dashed lines, the values of Rk fluctuate within 
the confidence bands.

The first serial correlation coefficients for the runoff 
for the Gota Kiver (fig. 2) and Nemunas Kiver (fig. 3) 
are significant at the 95-percent level. The values of 
Rk for k>2, for both of these rivers, fluctuate within 
the confidence bands and therefore can be considered 
as not significant. For the effective precipitation 
corresponding to both of these rivers, the values of Rk 
fluctuate within the confidence limits.

With respect to the Danube Kiver (fig. 4) the values 
of Rk for both the runoff and the effective precipitation 
fluctuate within the 95-percent confidence bands.

The correlograms for effective precipitation indicate 
that effective precipitation is randomly distributed in 
time. Runoff may be either randomly or nonrandomly 
distributed in time. The correlograms for runoff 
indicate that Rk decreases with an increase in k and 
that beyond a certain value of k, the values of Rk can 
be considered as not significant. Therefore, the cor­ 
relograms give reasonable support to the moving 
average as the generating scheme of runoff.

STATISTICAL PABAMETEBS OF BTTNOFF AND 
EFFECTIVE PBECIPITATION

The above investigations of the correlograms gave 
support to the hydrologic model, equation (1), and 
its underlying assumptions. A mathematical treat­ 
ment of equation (1) indicated the following conditions: 
(1) That the mean runoff is equal to the mean effective 
precipitation; (2) that the variance of the runoff is 
less than the variance of the effective precipitation; 
(3) that the skewness of the runoff is less than the 
skewness of the effective precipitation; and (4) that 
the kurtosis of the runoff is not necessarily less than the 
kurtosis of the effective precipitation. Condition & 
applies to the case for which the effective precipitation.

649665 62
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EXPLANATION

     Runoff

 ~  Effective
Confidence limit, precipitation 

in percent 
95 
90

FIGUKE 1. Correlograms of runoff and effective precipitation for the St. Lawrence Eiver at Ogdensburg, N.Y.

0.5

-0.5 -

FIGUKE 2. Correlograms of runoff and effective precipitation for the Gota Eiver at Sjotorp-Vanersborg, Sweden.
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EXPLANATION

     Runoff
   - Effective

precipitation 
Confidence limit, 

in percent

-0.5 -

10 15 20

k
25 30 35 40

FIGUEE 3. Correlograms of runofE and effective precipitation for the Nemunas River at Smalininkai, Lithuania.

EXPLANATION

FIGURE 4. Correlograms of runoff and effective precipitation for the Danube River at Orsha va, Rumania.
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does not follow a symmetrical probability distribution. 
Condition 4 applies to the case for which the kurtosis 
of the effective precipitation is not equal to 3.

In table 2 values are given for the mean, the standard 
deviation, the coefficient of skewness, and the first 
order serial correlation coefficient for runoff and effec­ 
tive precipitation in the St. Lawrence, Gota, Nemunas, 
and Danube River basins. The coefficients of kurtosis 
were not considered, because it would have been 
necessary to define the function of the 6/s in order to 
carry out the comparison between runoff and effective 
precipitation.

Table 2 shows that the standard deviation of the 
effective precipitation is greater than that of the run­ 
off. For the St. Lawerence and Gota Rivers, the 
standard deviation of the effective precipitation is 
nearly twice as large as that of the runoff; however, 
the extent of the carryover for these two rivers is 
different as shown by their correlograms in figure 1. 
This difference can be attributed to the fact that the 
function of the 6/s is different for the two streams.

According to equation (17), the coefficient of skewness 
of runoff is less than that of effective precipitation 
provided /^(zO^O. Table 2 shows that this is the 
case with respect to the Gota and Nemunas Rivers. 
The St. Lawrence and Danube Rivers show the con­ 
trary. However, in the case of the St. Lawrence 
River the skewnesses are nearly zero so that the dif­ 
ference between the skewness of runoff and the skewness 
of effective precipitation probably is not significant.

With respect to the first order serial correlation 
coefficients, it appears that RI for runoff is greater than 
RI for effective precipitation with respect to each of the 
four streams.

TABLE 2. Statistical characteristics of runoff and effective 
precipitation

River

Gota _____________

Hydrologic 
variable »

Q.........
P... _ ...
Q.........
P .........
Q.........
P.... .....
Q.........
P ..... . ...

m Mean 
(cfs)

240, 820
240, 820
35,300
35, 300
19, 253
19, 253

189, 500
189, 500

^ 
Standard 
deviation

20, 950
47,440
6,420

10,870
3,410
3,700

36, 380
40, 550

01

0.080
.020
.003
.154
.216
.368
.729
.511

Ri

0.705
.090
.463
.009
.181

110
.090
.001

1 Q is runoff; P is effective precipitation.

SUMMARY 

HYDRO LOGIC MODEL AND ITS CHARACTERISTICS

Owing to the water-retardation characteristics of 
a river basin, the runoff during a given time interval 
is a function of the effective precipitation during the 
given time interval and during all previous time 
intervals. From a practical point of view, however,

the runoff is considered to be a function of the effective 
precipitation during a finite number of antecedent 
time intervals. It was assumed that the runoff was 
generated by a moving average of the effective pre­ 
cipitation, when the extent of the moving average was 
equal to a finite number of antecedent time intervals. 
This finite number of antecedent time intervals was 
defined as the carryover period, which is a function of 
the water-retardation characteristics of the river basin. 

The coefficients defining the moving average, denoted 
by 6/s, were assumed to satisfy the following conditions: 
(1) the sum of the coefficients is equal to unity; (2) the 
magnitudes of the coefficients decrease monotonically 
with an increase in the antecedent time; and (3) the 
values of the b t'a are greater than zero.

PROBABILITY DISTRIBUTION OF RUNOFF

On the basis of the assumed model of runoff and 
effective precipitation, the mean value of runoff is equal 
to the mean value of effective precipitation. The 
second and third central moments of runoff are less 
than those of effective precipitation. However, the 
fourth central moment of runoff is not necessarily less 
than that of effective precipitation.

Investigation of the skewness and kurtosis of runoff 
and effective precipitation showed that if the effective 
precipitation were normally distributed, then the runoff 
was normally distributed regardless of the carryover 
period. If, however, the effective precipitation fol­ 
lowed a skewed probability distribution, then the 
runoff followed a skewed probability distribution, 
which was different and less skewed than that of the 
effective precipitation, provided that there was carry­ 
over. For a carryover period equal to infinity, runoff 
is normally distributed regardless of the probability 
distribution of effective precipitation, provided, of 
course, that the probability distribution of effective 
precipitation is such that all moments exist. There­ 
fore, the greater the carryover period, the more the 
probability distribution of runoff departs from that of 
effective precipitation, provided that effective precipi­ 
tation follows a skewed probability distribution.

The carryover period is a function of the water- 
retardation characteristics of a river basin. Even 
though the characteristics of the effective precipitation 
may be the same for each river basin, the probability 
distribution of the runoff is not the same, because 
water-retardation characteristics vary from one river 
basin to another.

TIME DISTRIBUTION OF RUNOFF

Owing to the water-retardation characteristics, the 
runoff during a given time interval is dependent upon 
the runoff during previous time intervals. If the
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carryover period is denoted by m, then the runoff 
during a given tune interval is dependent upon the 
runoff during (m 1) previous time intervals. Thus 
the water-retardation characteristics generate a non- 
random distribution of the runoff, and the nonrandom­ 
ness is measured by the serial correlation coefficients.

The serial correlation coefficients of the runoff are 
dependent only upon the function of the coefficients of 
the moving average, &i's, and upon the carryover period, 
m, under the assumption that the effective precipita­ 
tion is randomly distributed in time. Thus by speci­ 
fying the function of the bt's, it is possible to determine 
m, as the serial correlation coefficients can be deter­ 
mined from the observed values of the runoff.

The carryover period, m, can be estimated without 
specifying the function of the bt's by means of the 
correlogram, provided that the number of time intervals, 
N, is large. Theoretically, the correlogram for a 
moving-average process vanishes for all orders of serial 
correlation equal to and greater than a certain value 
of k. If this value of k is denoted by k0, then the 
carryover period, m, is equal to (£0+1). With actual 
data, however, zero values of serial correlation are not 
likely to be obtained, owing to sampling errors. In 
practice, k0 may be taken as that value of k beyond 
which all values of serial correlation coefficients fluctu­ 
ate within a confidence band of nonsignificance.

RELATION BETWEEN SKEWNESS AND NONRANDOM­ 
NESS OP RUNOFF

The coefficient of skewness of the runoff, &($)> is 
dependent upon the function of the coefficients, &i's, of 
the moving average, the carryover period, m, and the 
coefficient of skewness of the effective precipitation, 
Pi(P). However, the serial correlation coefficients, 
Rk , of the runoff are dependent only upon the function 
of the coefficients of the moving average and the 
carryover period and are independent of the skewness 
of the effective precipitation.

For a given value of skewness of the effective pre­ 
cipitation, the skewness of the runoff decreases and the 
nonrandomness of the runoff increases with an increase 
in the carryover period. However, since the skewness 
of the effective precipitation is independent of the 
function of the coefficients of the moving average and 
the carryover period, the serial correlation coefficients 
of the runoff can assume any value within the range 
0 to 1 independently of the values of the coefficients 
of skewness of the runoff.

RESULTS

In order to test the theoretical results, annual values 
of runoff and estimated values of effective precipitation 
for four long-term records were considered. The 
correlograms of runoff and effective precipitation show 
that the moving average provides a satisfactory model 
of the generating scheme of runoff. The second central 
moments of the runoff were found to be less than those 
of the effective precipitation. However, the coefficient 
of skewness of the runoff was not always found to be 
less than the coefficient of skewness of the effective 
precipitation.

These investigations show that the data provide 
reasonable support for the theoretical results. These 
results are, however, applicable to annual events only. 
If time intervals other than a year are considered, the 
theoretical results will be applicable only if the effective 
precipitation can be assumed to be distributed randomly 
in time and if no cyclic effects are present.
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