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STATISTICAL STUDIES IN HYDROLOGY

A FLOOD-FREQUENCY RELATION BASED ON REGIONAL RECORD
MAXIMA

By P. H. CAEEIGAN, JR.

ABSTRACT

Flood intensity varies randomly in both time and space over a 
region. In flood-frequency analysis the regional variation is com­ 
monly related, through regression analysis, to variations in basin 
and climatic characteristics. Thus, the sample size is reduced to 
one time sample applicable to the entire region. This type of 
analysis virtually limits the recurrence-interval estimate for the 
maximum annual flood to the length of time for which records are 
available.

Techniques of analysis introduced in this paper increase the 
sample size by taking account of the random variations of flood 
intensity in both time and space. The magnitude of increase in 
the sample size is limited by the statistical dependence between 
annual flood records for the region; that is, the less the correlation 
between records the greater the effective sample size. As a result 
of increasing the sample size, the recurrence interval for the max­ 
imum event is increased; the increase may conceivably be as great 
as the number of station-years of record, if the records are 
independent.

The recurrence interval for the maximum annual flood in the 
region is estimated by a computer-simulation model. In order to 
apply the model, the assumption is made that the sets of concur­ 
rent records for a region are reducible to identical distributions bv 
use of an appropriate scaling factor.

The dependence among records is preserved by including in 
the model the sample correlation coefficients for all pairs of 
record sets. By means of a principal-component transform, the 
matrix of correlation coefficients is used in connection with a 
normal random-number generator to generate synthetic sets of 
normally distributed flood intensities equal in number and dura­ 
tion to observed sets of records. The maximum event from each 
synthetic record is found, and the maxima are ranked in descend­ 
ing order. The exceedance probabilities (reciprocals of recurrence 
intervals) of the ordered maxima are repeatedly determined to 
estimate the average normal exceedance probability for each 
order. The scheme of computing exceedance probabilities of known 
distribution for ordered maxima selected from synthetic records 
of known distribution provides an estimate of probability that 
is independent of the statistical distribution of the observed 
floods.

The construction of a flood-frequency relation for any station 
in the region can be accomplished by graphically relating the 
observed ordered maxima, reduced to a common base, to the

corresponding estimated recurrence interval. The procedure of 
constructing a flood-frequency relation is illustrated by applying 
it to floods in the Big Lost River basin near the National Reactor 
Testing Station in southeastern Idaho.

INTRODUCTION

Current practices of regional flood-frequency analysis 
define regions in which the records of annual hydrologic 
extremes have, for the most part, identical distributions. 
The method of analysis is that of multiple regression, 
whereby floods of specific recurrence intervals or the 
statistical parameters of flood distributions are related 
to basin and climatic characteristics. The method 
composites the experience over a region but, except by 
extension based on the assumed distribution of events, 
it produces results that are limited virtually to the 
length of the period of sampling. Thus, no advantage is 
taken of the facts that spatial sampling to some degree 
is equivalent to time sampling and that some of the 
experience within the region may furnish information 
about the expectancy of events for a period much 
longer than the actual period of record. Work by 
Conover and Benson (1963) suggests that this informa­ 
tion can be realized by appropriate treatment of 
combined records from several streamflow stations in 
the defined area. In the Conover and Benson method of 
analysis, the process is assumed to be ergodic, so that 
spatial sampling is equivalent to time sampling of 
extreme events. The result is to increase the size of the 
sample to nk events in a region (fc=years of record, 
n  number of sets of record), provided the records are 
independently and identically distributed.

If the Conover and Benson method of regional flood- 
frequency analysis were applied to records of annual 
extremes, the records could be reduced to identical 
distributions by normalizing them to the magnitudes

Fl
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of the mean annual events at each streamflow station. 
However, the records for a region usually are not inde­ 
pendent but are correlated. Hence, another method of 
analysis must be developed for treating the combined 
information from several identically distributed sets of 
records. This report presents a procedure to estimate 
exceedance probabilities of floods from records that are 
dependent and identically distributed. The maximum 
recurrence interval for the region, estimated by this 
procedure, lies between fc-fl and/(p)fc-fl where /(p) 
is a function of the correlation between record sets 
(l</(p)<r&) for the range in correlation coefficients

The scheme of Conover and Benson for treating the 
combined information from independent and identically 
distributed records is to compute expected exceedance 
probabilities (independent of the distribution) for the 
ordered record maxima. This scheme is the key to 
developing regional frequency relations for dependent 
records.

Once a region having identically distributed sets of 
concurrent annual flood records is defined, the regional 
flood-frequency relation is developed as follows:
1. The records are reduced to a common base.
2. The maximum events from each reduced record are 

ordered.
3. The correlation matrix for the records is computed.
4. Computer routines developed in this study are used 

to provide, through simulation alogorithms that 
utilize the correlation matrix, estimates of exceed­ 
ance probabilities associated with ordered maxima 
from n, number of fc-year records.

5. The frequency relation is defined graphically by 
relating exceedance probabilities to the ordered 
maxima. Reversing the transformation process that 
reduces records to an identical distribution pro­ 
duces regionalized frequency relations for annual 
floods at individual stations.

After briefly illustrating the Conover and Benson 
method of obtaining exceedance probabilities for in­ 
dependent flood records, this report introduces the 
mathematical and computer-simulation foundations 
for estimating exceedance probabilities for dependent 
flood records. Then follow discussions on the application 
of the procedure to simple models which help to describe 
the influence of the number of records, correlation co­ 
efficients, and record length on exceedance probabilities; 
the development of regional flood-frequency relations 
in the Big Lost River basin, Idaho; and the extension 
of the procedure to incomplete and to serially correlated 
records. The complete computer program is presented 
at the end of the report.
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CONOVER AND BENSON METHOD OF 
DETERMINING PROBABILITIES

Assume that n concurrent sets of k annual extremes 
are obtained from n identical and independent dis­ 
tributions. The maximum events, one from each record, 
are ordered from highest to lowest. The probability 
that another event j exceeds these ordered maxima

{/,; i=l, 2, . . .n} is

4=4 ______r&! 
-Z_/ ji
771=0 / \IT-r

for i=l, 2, . . .n (Conover and Benson, 1963, p. E159). 
Example. The following three sets of four random 
events {x«; i=l, 2, 3 and j=\ t 2, 3, 4} are from 
independent and identical distributions:

fn=3, fc=4]

1 3 69
2 38 24
3 17 61
4 32 30

3
48
60
83
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The ordered record maxima {/*; i=l, 2, 3} are, respec­ 
tively, 83, 69, and 38. The probability that another 
event / exceeds the second highest maxima is

3!

771=0

j=Q

3! 3!

314(3+1) 2,4(3+!) (3 + 1-

METHOD FOR DETERMINING PROBABILITIES 
FROM DEPENDENT RECORDS

The probability of another random event/exceeding 
one of the ordered record maxima jt where the records 
are from dependent distributions cannot be analytically 
determined. The probability can be determined, how­ 
ever, through use of Monte Carlo simulation techniques. 
In this application of simulation for dependent records, 
it is assumed that the probability of another random 
event exceeding an ordered record maximum is inde­ 
pendent of the identical distributions for which the 
records of random events are a sample. Such an assump­ 
tion has been verified by Conover and Benson (1963) 
and proven by Conover (1965) for independent random 
events.

The simulation algorithm, which incorporates a 
normal random-number component having zero mean 
and unit variance, generates n sets of k events that 
simulate the dependence among n records of k hydro- 
logic extremes. The maximum event y t from each set 
of normally distributed variables {xn , x i2 , . . . x ik ; 
i=l, 2, . . . n} is found, and the maxima are ordered 
from highest to lowest, so that 2/i>2/2> . . .^>y n - All y t 
are from normal distributions having zero mean and 
unit variance, so their exceedance probabilities are 
given by

1 C' <° ~^2
P[y>yi]=j= J e~*~dy,toTi=l,2,...n.

By repeated generation of this simulated set of records, 
estimates of the average exceedance probabilities for 
the ordered maxima are obtained.

SIMULATION MODEL

The simulated sets of records are generated by the 
normal multivariate model

where X=matrix of n groups of k events,
 =nXk matrix of independent normal random 

numbers with zero mean and unit vari­ 
ance, and

B=E\=riXn principal-component transform 
matrix for the records of annual extremes, 
in which

E=eigenvector matrix associated with the cor­ 
relation matrix R obtained from n records 
of k hydrologic events, and 

A=diagonal matrix whose n diagonal elements 
are the square roots of the eigenvalues 
forE".

(See Morrison, 1967, p. 221-247.) This model is based 
on techniques of synthetic hydrology developed by 
Matalas (1967, p. 940).

After generation of X, the n maxima are selected and 
ordered and the exceedance probabilities are computed. 
The algorithm for computing normal exceedance 
probabilities is that of Zelen and Severs (1965, p. 932, 
eq. 26.2.19).

FLOW CHART FOR SIMULATION

The average exceedance probability

-   .>yn ]
1,000

was estimated through use of a digital computer. The 
main program flow chart is shown in figure 1. Routines 
for computer input-output listings of matrices, matrix 
operations, and generation of random numbers are 
adaptations of subroutines developed by IBM (1968) 
for use in their 360-series computer systems. Formal 
declarations of most subroutines have been eliminated 
from the program to increase efficiency. A complete 
listing of the Fortran language program for the com­ 
putations is included in the computer program at the 
end of this report. The parameters n and k may each be 
as large as 100 using the present configuration of the 
IBM 360/65 computing system (380,000 bytes available 
storage) operated by the U.S. Geological Survey.

INFLUENCE OF INTERRECORD CORRELATION ON 
EXCEEDANCE PROBABILITY

An n-record correlation matrix contains n(n 1)/2 
correlation coefficients. If r^>3, problems in manage­ 
ment of matrix elements begin to obscure the study of 
the influence of interrecord correlation on exceedance 
probabilities. Hence, most simulations of exceedance 
probabilities were derived from the simple, yet in­ 
formative, 3-record correlation matrices.
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c Start
Read n, 
k, and R

     > Print title 
n, k, and R

     > 

Call Eigen 
subroutine 
to compute 
E and eigen­ 

values

     > Compute 

A
-0

Compute cumulative 
sum of P[y>y. ],2p.

FIGURE 1. Flow chart for program to simulate (p,-(/c); i=l, 2,.. .n}.

EQUICORRELATION MATRIX

Using the equicorrelation matrix R (all correlation 
coefficients equal)

p P P~\
pip 

LP P IJ

for 0>p>l, the expected probabilities \pi\ i l, 2, 3} 
were simulated for Ar=10, 20, ... 50.

As shown in figure 2, pt for any order i changes 
monotonically, as had been anticipated very gradually 
from the theoretical probability at p=0 (three in­ 
dependent records) to about p=0.8, and then rapidly 
to the common theoretical probability at p l (three 
identical records). Comparison of the simulated prob­ 
ability to the theoretical probability at p=0 and at 
P=l, shown in figure 2, indicates that 1,000 iterations is 
sufficient for estimates of p t . Similar monotonic vari­ 
ations in {p^ i=l, . . . n} between p=0 and p=l oc­ 
curred for n=2 and n=5 where Ar=10, 20, ... 50.

VERIFICATION THAT A IS DISTRIBUTION FREE

The probabilities p t for n=2, k=lO, and p=0, 0.1, 
0.2, ... 1.0 were simulated by the previously de-

0.18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 2. Variation of {pi(/c); i=l, 2,3} with p for *=10.

scribed normal variate generating model. The data for 
these simulation runs are plotted with their related 
curves in figure 3.
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  Norma I 

x Gamma
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P

FIGURE 3.  Variation of pi(k) and p^(k) with p for bivariate gamma and normal 
distributions of annual extremes; fc=10.

Another model for simulating a multivariate distri­ 
bution \Zi_j] i=l, 2, . . . n and j=l, 2, ... k} is to 
let

in which u (l-i) d+i. .,= exponentially distributed independ­ 
ent random numbers having unit 
mean and unit variance, and 

2 i( ^=random numbers following a mar­ 
ginal gamma distribution having 
mean ra and variance ra, for 
which the correlation coefficient
s

P(Zi,
m  d

Using this simulation model the mean exceedance 
probabilities {p { ; i=l, 2} for the ordered maxima from 
ztij (for ra=5, n=2, and &=10) were estimated for 
P=0.2, 0.4, 0.6, and 0.8 (d=4, 3, 2, 1); the coefficient 
of skew for zitj was 0.89 (the mean coefficient for a 
50-record sample of annual floods was 0.9).

Results for this bivariate gamma method of esti­ 
mating pi are shown in figure 3. Within the experimental 
error experienced, the estimates appear to confirm the 
assumption that p t is distribution free.

VARIATION OF p t WITH k AND n

The probability p t varies smoothly and monotonically 
with either k or n. (See figs. 4 and 5 for examples.) The 
variation with k of p t for 0<p<l and n constant is 
similar to the variation of the theoretical probability 
(p=0 and 1) with k. The relation between p t and n for 
constant k shifts from being highly curvilenar for p 
near zero to being nearly horizontal for p near 1.

0.08

0.06

0.04

0.02
p=0.6

p=0

10 20 30 

k

40 50

FIGURE 4.  Variation of pi with k for n=3 and p=0, 0.6, and 1. 

GENERAL CORRELATION MATRIX

The relative insensitivity of p^ to changes in p (fig. 2) 
suggests the use of a simple parameter

n-l
Pn =n(n S P«.

This parameter weights the central tendency of corre­ 
lation coefficients in the general correlation matrix 
(pij are not all equal) and replaces p in estimating 
Pi (the prime referring to a general matrix) from rela­ 
tions such as those in figure 2. Results of tests showed 
that all the variation in p tf could not be accounted 
for by variations in ~p n . A parameter that described the 
dispersion of the coefficients in R about p», such as a 
mean deviation

n-l

"" 71(71-1) tifr

or a mean square deviation

o n 1 n «52   ^ ^~
UM   

\PiJ~Pn\

seemed necessary to explain variations in pt' more 
fully.

Experiments using third-order correlation matrices 
were performed to define the variation of \pi\ ^ = 1, 2, 
3 j with increases in a3 or 5Jj for constant p3 (see fig. 6). 
Under these conditions, p tr was found to increase
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monotonically for i=l and i=2 and to decrease 
monotonically for i=3.

Under the constraints that R be positive, semidefinite 
(see Morrison, 1967, p. 60), ~p n be constant, and 0<py 
<1, a maximum a n exists. For p3 >%, a3 is maximized 
if one of the p«=l, say pi 2 =l, and the other coefficients

o.io

0.08

0.06

0.04

0.02

FIGURE 5. Variation of pi(k) with n for fc=10 and p=0, 0.6, and 1.

0.12

0.08

0.04

;=2

X Defined in figure 3 
for i = 1,2

0.04 0.08 

5?

0.12 0.16

FIGURE 6. Effect of mean square deviation Stf on !p,'(fc); i=l, 2, 3) for fc=10 and 
p=0.5.

are as follows:
_ 3p3 Pis P23  

hence, Pi3=p23=p for n 2. For ps<O£, a3 is maximized 
if pi2=3p3 and Pis=p23=0. The maximum is

These conditions for which a3 is a maximum obtain 
the maximum for d%. The upper limit for p/ at a 
maximum dl is shown in figure 7.

The variation of p tf with 532 , shown in figure 6, 
brings out a point about the maxima. For i=l, p\ 
increases to the limit pl for n 2; for i 3, p%' decreases 
to the limit p 2 for n=2; but p2f does not reach either 
limit. If Pi2=l, then only two ordered maxima occur, 
one in records 1 and 2 and one in record 3. One of the 
maxima may be first order and the other may be third 
order; the second-order maximum does not really 
exist. It would appear in figure 6 that p2' is approaching 
the limit for p=l (^=0.0909 for fc=10). Results 
from two other sets of tests for A:=50 and n=3 and 
for fc=10 and n=5 indicate that the variations of 
pf with Pn and 5 32 are much like those shown in figures 
6 and 7.

0.10

0.09

0.08

or
o
a-

  Computed limit

X Limit based on relation 
P! =f(p)forn =

0.07

0.06

0.05

0.04

0.03
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 7. Upper limit of pi' for fi|maz. Arrow indicates shift in plotting position.
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An attempt to relate p tf fully to a practical range in 
pn , d nz , and k appears to be economically prohibitive 
because of computer cost. Rather, these results suggest 
that p^ should be estimated for each specific correlation 
matrix and period of record.

APPLICATION OF THE METHOD IN THE BIG 
LOST RIVER BASIN, IDAHO

Frequencies of floods on the Big Lost River near 
the National Reactor Testing Station in southeastern 
Idaho are required in connection with an investigation 
for the Atomic Energy Commission of the potential 
hazard from extreme floods. The first step of the 
flood-frequency analysis is to correlate annual flood 
records in this part of Idaho with distributions that 
are identical save for some scaling factor.

From a report on regional flood-frequency relations 
(Thomas and others, 1963), 48 candidate records were 
selected for analysis. The coefficient of variation, square 
of the coefficient of skew, kurtosis, and the standard 
error of these moments (see Kendall and Stuart, 
1963, p. 228-233) were computed for each candidate 
record. The records of annual floods were assumed to 
have distributions identical with the selected base 
record (Big Lost River below Mackay Reservoir) 
if they satisfied the following criteria:
1. The confidence limits of each moment for the record, 

defined by its standard error, were within the 
limits of the same moment for the base record.

2. The median test (Ostle, 1963, p. 473) indicated the 
acceptability of the hypothesis of identical 
distribution with the base record at the 5-percent 
level of significance.

These two criteria were met by 15 records (see table 1). 
The next step in the analysis is to reduce the selected 

records to identical distributions. This is accomplished 
by normalizing them to the computed mean annual 
flood.

TABLE 1. Name of station and period of record for floods in 
central Idaho having identical distributions

Name Period of record
Beaver Creek at Spencer________________________ 1950-63
Lime Creek near Bennett__________________________ 1946-56
Challis Creek near Challis_________________________ 1944-63
Combined discharge, Big Wood River and Slough at

Hailey___________________________ ______________ 1936-57
Big Lost River below Mackay Reservoir near Mackay_ 1919-67
Surface inflow to Mackay Reservoir near Mackay____ 1919-67
Big Lost River at Ho well Ranch near Chilly.. _______ 1920-67
Salmon River at Salmon_________________________ 1920-67
Valley Creek at Stanley....________________________ 1921-67
Salmon River below Yankee Fork near Clayton______ 1922-67
Salmon River near Challis______-____._____________ 1929-67
Big Lost River at Wild Horse near Chilly_________ 1944-67
South Fork Boise River at Anderson Ranch Dam__ _ 1946-67
Big Wood River near Ketchum___________________ 1948-67
Birch Creek near Reno____________________________ 1950-63

At this point in the analysis, the objective is to select 
those of the 15 concurrent records whose combination 
maximizes nk to realize the dual advantage of obtaining 
large recurrence intervals and relating outstanding 
events in the region to these intervals. The records for 
which the station years are maximized are listed in 
table 2.

The correlation matrix R for the six station records

123 456 
1 0. 379 0. 418 0. 239 0. 256 0.415' 

1 . 941 . 711 . 728 . 802 
1 . 677 . 711 . 823 

1 . 971 . 914 
1 . 934 

1

and a k value of 46 were inputs to the computer pro­ 
gram for which the maxima [p'i\ i=l, ... 6} were 
computed.

The ordered reduced variate maxima, p\, and the 
associated flood magnitude in the Big Lost River 
below Mackay Reservoir are listed in table 3. The 
flood magnitude is equal to the product of the ordered 
reduced variate maximum and the mean annual 
flood at this station. The recurrence interval, T, is

The rare-flood reduced variates are plotted against 
their recurrence intervals in figure 8. The annual 
floods, in reduced variate form, are also plotted in this 
figure to define the relation between flood magnitude 
and flood frequency for the Big Lost River below 
Mackay Reservoir.

DISCUSSION

The procedure for determining the probability of 
occurrence of rare flood events may be extended to 
other kinds of dependent records, only a few altera­ 
tions being required in the computer program. If the 
records follow a first-order Markov process as well as 
being cross correlated, then the simulation model is

X&i =AXj + Btj+i ,

where Xj=riX 1 matrix of the jih events (.7=1, 2, ... 
k 1) inn records,

~

BBT=R0 -R1R0~ 1R1 T,
B=E\, where E is the eigenvector matrix

and X is the diagonal matrix whose
elements are the square roots of eigen­
values,

.R 0 =lag-zero correlation matrix, 
JRj=lag-one correlation matrix, and 
 j=nXl matrix of random normal numbers

with zero mean and unit variance. 
(See Matalas, 1967, for more detail.)
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TABLE 2. List of annual flood records for analysis of flood-event frequency in the Big Lost River basin, Idaho,
for the concurrent period 1922-67

Station

1

2 
3 
4 
5 
6

Coefficient of 
variation

Value Standard 
error

Big Lost River below Mackey Reservoir near

Big Lost River at Howell Ranch near Chilly--.. 
Surface inflow to Mackay Reservoir near Mackay .

Salmon River below Yankee Fork near Clayton.

0.417 
.394 
.491 
.474 
.354 
.380

0.033 
.035 
.052 
.048 
.036 
.035

Square of skew 
coefficient

Kurtosis Maximum flood

Value Standard Value Standard Cubic feet Reduced 
error error per second variate

0.397 
.170 
.0493 

1.16 
.217 
.153

0.289 
.165 
.089 
.71 

-.317 
.144

2.57 
2.49 
2.36 
3.46 
2.80 
2.64

0.49 
.43 

2.33 
1.05 
.63 
.34

2,640 
4,420 
3,240 
2,000 

10,300 
16, 500

1. 
2. 
2. 
2. 
1. 
1.

40 
13 
23 
07 
99 
90

TABLE 3.   Plotting positions for the relation between the rare- 
flood magnitude and rare-flood frequency at Big Lost River below 
Mackay Reservoir th
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Through special investigations for historical floods, 
e period of record for the maximum event may be 
tended from k to k+l years, where I is the period 
extension. The estimation of p tf for the (k+l)- 

rent record may be undertaken provided the correla- 
3n matrix denned by fc-event records is considered 
)plicable to the longer period and the n maxima for 
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covering a period k have missing events. Assuming 
known record maxima, some uncertainty about the 
correlation matrix is introduced for records of this kind. 
If the matrix is positive semidefinite, a test of the sen­ 
sitivity of PI to changes in individual correlation coef­ 
ficients would seem appropriate. The variation in the 
lengths of record may be so large that the correlation 
matrix is inconsistant. Some suggestions for developing 
consistent matrices were given by Fiering (1968).

The objective in the analytical procedure for de­ 
veloping a regional flood-frequency relation is to maxi­ 
mize the number of station years (increasing the 
sample size) which tends to minimize p %'. Because 
Pi varies almost directly with l/nk, the objective can 
be attained by seeking a large number of short records 
or a few long records. The objection to the use of 
short records is that the sample may be nonrepresent- 
ative in comparison with norms established by much 
longer sequences of events. Unless statistical com­ 
parisons between long and short records indicate non- 
homogeneity, no reason exists for rejecting short 
records. Sampling errors will be larger for short records, 
but this disadvantage may be outweighed by the sub­ 
stantially larger values of nk that will be provided by 
the shorter than the longer records.

CONCLUSIONS

The technique of regional flood-frequency analysis 
that has been introduced takes advantage of the ran­ 
dom variation of flood intensities in both time and space. 
Previous methods of analysis are virtually limited to 
the consideration of variation in time. A result of apply­ 
ing this new technique is to increase the recurrence in­ 
terval for the maximum flood event; because of correla­ 
tion between records, it is unlikely that this recurrence 
interval would approach the number of station-years of 
record available.

Using Monte Carlo simulation techniques, the ex- 
ceedance probability for rare flood events may be esti­ 
mated by the simultaneous consideration of concurrent 
records of annual extremes which are dependent and 
identically distributed. The method for obtaining rare- 
event probabilities is to generate sets of normal multi- 
variates equal in number and duration to the observed 
sets of records through the simulation model

to order the simulated record maxima and to compute 
the normal exceedance probabilities of the ordered 
maxima. This scheme of generating synthetic variates 
preserves the observed dependence in records.

In applying the procedure of estimating exceedance 
probabilities to regional flood-frequency problems it is 
assumed that a means of defining the region of identical 
distributions is at hand, that the estimate of exceedance 
probability is independent of the underlying statistical 
distribution of observed floods, and that the sample 
correlation matrix is a reasonable estimate of the true 
matrix. Indications are that the probability estimates 
are independent of the distribution of observed floods.

If the correlation coefficients for the records are all 
equal, the rare-event probabilities vary in a predictable 
manner with changes in numbers of records, period of 
record, and magnitude of the coefficient. If the correla­ 
tion matrix is a mixture of coefficients, variations in the 
probabilities are a function not only of an equivalent 
mean coefficient, the number of records, and the period 
of record, but also of the deviation of the coefficients 
about the mean coefficient. Even though the proba­ 
bilities associated with a general correlation matrix 
also appear to vary predictably with these variables, 
any general solution would not seem economically 
justified because of excessive computer costs (about 
Ink seconds per run). It would seem to be preferable in 
the interest of economy to estimate the rare-event ex­ 
ceedance probabilities for each set of data under 
analysis.

A set of criteria for selecting records having identical 
distributions has been identified in this report. Other 
sets of criteria for making this selection are possible, 
and the most definitive must be sought. The simulation 
program is equally applicable to many kinds of rare 
hydrologic and hydrometeorologic events such as pre­ 
cipitation, floods, and temperatures.
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*********************

** **
** PROGRAM RAREVENT **
** **
**********************

* DISCLAIMER *
* *

ALTHOUGH PROGRAM HAS BEEN TESTED BY ITS CONTRIBUTOR, NO 
WARRANTY, EXPRESSED OR IMPLIED, IS MADE BY THE CONTRIBUTOR OR 
THE GOVERNMENT, AS TO THE ACCURACY AND FUNCTIONING OF THE 
PROGRAM AND RELATED PROGRAM MATERIAL, NOR SHALL THE FACT OF 
DISTRIBUTION CONSTITUTE ANY SUCH WARRANTY, AND NO 
RESPONSIBILITY IS ASSUMED BY THE CONTRIBUTOR OR THE 
GOVERNMENT, IN CONNECTION THEREWITH.

PURPOSE
COMPUTES ESTIMATE OF EXPECTED EXCEEDANCE PROBABILITY OF 
ORDERED COLUMN MAXIMA FROM N CROSS-CORRELATED, CONCURRENT 
RECORDS OF K EVENTS, WHERE THE RECORDS ARE SIMULATED

DESCRIPTION OF 
INPUT 

N

VARIABLES

- NUMBER OF RECORDS. MUST BE 20 OR LESS. 
CAPACITY OF THE PROGRAM CAN BE INCREASED FROM N = 20 
AND K = 100 BY CHANGING DIMENSION STATEMENTS. 
ASSUMING K = 100, N CAN BE AS GREAT AS 100 WITH 
PRESENT CONFIGURATION OF THE U.S. GEOLOGICAL 
SURVEY COMPUTER SYSTEM.

K - NUMBER OF EVENTS IN A RECORD. MUST BE 100 OR LESS.
IX - SEED FOR NORMAL RANDOM NUMBER GENERATOR. FORMAT 

IS 14.
RO - CORRELATION MATRIX {READ IN BY SUBROUTINE MTRXIN)
IS - CODE FOR STORAGE MODE 

0 - GENERAL
1 - SYMMETRIC
2 - DIAGONAL 
(PER DATA SET)FORMATS 

N,K 
RO

OUTPUT 
IER

- 7F10.0, LISTING BY ROWS, STARTING WITH 
DIAGONAL ELEMENT AND CONTINUING WITH 
ELEMENTS TO ITS RIGHT.

- II (INDICATES END OF DATA SET)

FOR INPUT DATA CARDS OF CORRELATIONERROR CODE
MATRIX

0 - NO ERROR
1 - INCORRECT NUMBER OF CARDS 

N - NUMBER OF RECORDS 
K - NUMBER OF EVENTS IN RECORD 
RO - CORRELATION MATRIX 
Bl - DIAGONAL MATRIX CONTAINING SOUAREROOTS OF

EIGENVALUES
R - EIGENVECTOR MATRIX 
NSD - LEAST NUMBER OF SIGNIFICANT

CHARACTERISTIC EQUATION. IF
CORRELATION MATRIX 

P(J)- EXPECTED EXCEEDANCE PROBABILITY FOR JTH-ORDFR
COLUMN MAXIMUM

DIGITS IN ELEMENT OF 
0, CHECK STRUCTURE OF

F12
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SUBROUTINES AND FUNCTION SUBPROGRAMS 

MTRXIN 
MTRXOT 
EGN 
GMPRD 
MAX 
WIN 
LISD

METHOD
REFFR TO P.H.CARRIGAN, JR., 1971, A FLOOD FREQUENCY RELATION 
BASED ON REGIONAL RECORD MAXIMA, U. S.GEOL.SURVEY PROF. 
PAPER 434-F

REMARKS
EXECUTION TIME ABOUT 2NK SECONDS PER DATA SET. FORT PLUS
LKEO TIME LESS THAN 15 SECONDS
MAXIMUM LINES OF OUTPUT = 800 + 205*(NO. OF DATA SETS)

DIMENSION X(20,100),Y(20),P(20),JUMK(20) #1 
DOUBLE PR EC IS I ON 01 ,02 ,03 ,D4 ,D5 ,06 ,U ,RO ( 210 ) ,R (400 ) , B ( 400 ) , Bit 400 )#1 
DOUBLE PRECISION XI!20) , E(20 ) ,RBC(210) #1 
DATA Dl,02,03/0.049867347,0.0211410061,0.0032776263/ #1 

04,05,06/0.0000380036,0.0000488906,0.0000053830/ #1
#1
#1

 EMPIRICAL EXCEEDANCE PROBABILITIES'/I3X,'FOR ORDER#1 
'-RECORD MAXIMA'/18X,'WITH',14,' EVENTS PER RECORD'#1

#1
#1 

//) #1
#1 

ORDER SIGNIFICANT DIGIT#1

DATA
101 FORMAT(14)
102 FORMAT(2I4) 
201 FORMAT('1',12X 

1ED SET OF ' , 12

20X202 FORMAT!
203 FORMAT!'O'/'  
204 FORMAT! 0«/' '
205 FORMAT!'0',10X

'CORRELATION MATRIX'//) 
20X,'SQRT EIGENVALUE MATRIX 
20X,'EIGENVECTOR MATRIX'//) 

 THE LEAST NUMBER OF HIGH
IS !NSD) IN A CHFCK OF CHARACTERISTIC EQUATION IS«, I 3,'.'///) #1

206 FORMAT! «0« ,9X, 'ORDER',8X,8!12,10X)) #1
207 FORMAT(4X,'PROBABILITY 1 ,5X,8(F9.6,3X) ) #1
208 FORMAT!'0',10X,'INCORRECT NUMBER OF DATA CARDS FOR CORRELATION MAT#1 

1RIX'//) #1
209 FORMAT!«0',10X,'MATRIX OF CORRELATION COEFFICIENTS DOES NOT TEST T#1 

10 BE POSITIVE SFMIOEFINITE.(DETERMINANT LESS THAN ZERO.)'/ #1 
2' ',10X,'THIS MAY BE A RESULT OF INACCURACIES IN THE COMPUTER ALGO#1 
3RITHMS.'/' I ,10X,«***THIS PROGRAM WILL NOT OPERATE ON THIS DATA SE#1 
4T BEYOND STATEMENT 70***')' #1

READ!5,101 ) IX 
1 READ(5,102,END=500)N,K

READ IN RO

CALL MTRXIN(RO,N, IER ) 
WRITE(6,201)N,K

CHECK FOR ERROR IN INPUT

IF!IER)60,61,60
60 WRITF(6,208) 

GO TO 1
61 WRITF(6,202)

PRINT CORRELATION MATRIX

CALL MTRXOT(RO,N,1)

COMPUTE EIGENVECTORS AND EIGENVALUES OF RO

NSD=0
CALL EGN(RO,R,RBC,N,NSO)

CHECK FOR POSITIVE SEMIOEFINITE CORRELATION MATRIX

#1
#1

#1
#1

#1
#1
#1
#1

#1
#1

0000
0010
0020
0030
0040
0050
0060
0070
,0080
0090
,0100
0110
,0120
0130
,0140
0150
,0160
,0170
,0180
,0190
,0200
,0210
,0220
,0230

0240
,0250

,0260
,0270

,0280
,0290
,0300
,0310

#1.0320

,0330
,0340
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DO 70 1 = 1, N

IF(RO( IJ) .GE.0.0) GO TO 70 
WRITE(6,209) 
GO TO 71 

70 CONTINUE

COMPUTE SOUAREROOTS OF EIGENVALUES AND SET OFF-DIAGONAL ELEMENTS 
OF RO TO ZERO. PUT ELEMENTS IN GENERAL STORAGE MODE.

DO 2 1=1, N 
DO 2 J=1,N 
IF(I-J)5,6,6

5 IJ=I+< J*J-J)/2 
GO TO 3

6 IJ=J+( 1*1-1 )/2
IFU.NE.J) GO TO 3 
R0( IJ)=DSORT(RO(IJ ) ) 
GO TO 4

3 R0( IJ)=0.0
4 K1 = N*( J-l ) + I 
2 BKK1)=RO( IJ )

PRINT SORT OF EIGENVALUES AND EIGENVECTOR MATRICES

WRITE(6,203)
CALL MTRXOT(B1,N,0)
WRITE(6,204)
CALL MTRXOT(R,N,0)

PRINT SIGNIFICANT DIGITS MESSAGE

IF(NSD.EO.O) GO TO 73
72 WRITF( 6,205)NSD

COMPUTE PRINCIPAL COMPONENT MATRIX B

73 CALL GMPRD(R,B1 ,B,N,N,N ) 

INITIALIZE P(J) TO ZERO

DO 7 J = 1,N 
7 P(J)=0.0

#1.0350
#1.0360
#1.0370
#1.0380
#1.0390
#1.0400

#1.0410
#1.0420
#1.0430
#1.0440
#1.0450
#1 .0460
#1.0470
#1.0480
#1.0490
#1 .0500
#1.0510
#1.0520

#1.0530
#1.0540
#1.0550
#1.0560

#1.0570
#1.0580

#1.0590

#1.0600
#1.0610

IN THE 1000 ITERATION LOOP ENDING IN STATEMENT 10, AN N BY K 
RECORD OF X(J,KK) IS SIMULATED (USING MATRIX B AND A NORMAL RANDOM 
NUMBER E), N COLUMN MAXIMA Y(J) ARE SELECTED FROM X(J,KK), 
Y(J) ARE PLACED IN DESCENDING ORDER ( J=l , 2 , . . . , N ) , NORMAL 
EXCEEDANCE PROBABILITY C FOR EACH Y(J) IS FOUND, AND THE 1000 
ITEM SUM OF C FOR EACH J, P(J), IS COMPUTED.

DO 10 M=l,1000 #1.0620 

GENERATE X(J,KK) ARRAY

DO 11 KK=1,K #1.0630 
DO 15 1 = 1, N #1.0640

SUBROUTINE GAUSS IS IMBEDDED IN MAIN PROGRAM BY FOLLOWING 
10 STATEMENTS

AA=0.0 #1.0650
DO 12 I 1 = 1,12 #1.0660
IY=IX*65539 #1.0670
IF{ IY)13,14,14 #1.0680

13 IY=IY+1+2147483647 #1.0690
14 YFL=IY #1.0700

YFL=YFL*0.4656613E-9 #1.0710
IX=IY #1.0720

12 AA=AA+YFL #1.0730
15 E( I )=AA-6.0 #1.0740
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FIND K VECTOR PRODUCTS OF XI - X(N,K)

CALL GMPRD(B,E,X1,N,N,1) #1.0750
DO 11 1=1,N #1.0760
J=I #1.0770

11 X(J,KK)=X1(I) #1.0780

FIND COLUMN MAXIMA

DO 20 J=1,N #1.0790
D=-1000.0 #1.0800
DO 21 KK=1,K #1.0810
CM = AMAX1(X(J,KK ),D) #1.0820

21 D=CM #1.0830
20 Y(J)=D #1.0840

ORDER COLUMN MAXIMA

NN=M-1 #1.0850
30 DO 31 J=1,NN #1.0860

IF((Y(J)-Y(J+1>).GE.0.0) GO TO 31 #1.0870
A=Y(J+1) #1.0880
Y(J+1)=Y(J) #1.0890
Y(J)=A #1.0900

31 CONTINUE #1.0910
NN=NN-1 #1.0920
IF(NM.GT.O) GO TO 30 #1.0930

COMPUTE NORMAL EXCEEDANCE PROBABILITY C OF EACH COLUMN MAXIMUM
Y(J). (REF. - EON. 26.2.19 NBS HNDBK (1965))

DO 10 J=1,N #1.0940
IF(Y(J) .GE.0.0) GO TO 40 #1.0950
U=-Y(J) #1.0960
GO TO 41 #1.0970

40 U=Y(J) #1.0980
41 IF(U.GT.5.0) GO TO 42 #1.0990

IF(U.LT.0.0001) GO TO 43 #1.1000 
G=l .0 + D1*U+D2*U#U + D3#U*U#IJ+D4#U##4 + D5*U#*5 + D6*U**6 #1 . 1010
C=0.5*G**(-16) #1.1020
GO TO 44 #1.1030

42 C=0.0 #1.1040
GO TO 44 #1.1050

43 C = 0.5 #1.1060
44 IF(Y(J) .GE.0.0) GO TO 10 #1.1070

C=C-1.0 #1.1080

SUMMATION OF C = P(J)

10 P(J)=P(J)+C #1.1090 

COMPUTE MEAN EXCEEDANCE PROBABILITY P(J) FOR JTH-ORDER MAXIMUM

DO 45 J=1,N #1.1100
45 P(J)=P(J)/1000.0 #1.1110

PRINT P(J)

JS=1 #1.1120
IF(N.LE.B) GO TO 50 #1.1130
JE = 8 #1..1140
GO TO 51 #1.1150

50 JE=N #1.1160
51 DO 52 J=JS,JE #1.1170
52 JUNK(J)=J #1.1180

WRITE(6,206)(JUNK(J),J=JS,JE) #1.1190
WRITE(6,207)(P(J),J=JS,JE) #1.1200
JS=JS+8 #1.1210
IF(JS.GT.N) GO TO 53 #1.1220
JE=JE+8 #1.1230

F15
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IF(LE.LT.N) GO TO 51 #1.1240
JE = N #1.1250
GO TH 51 #1.1260

53 CONTINUE #11.1270
71 GO TO 1 #1.1280

500 STOP #1.1290
END #1.1300
SUBROUTINE MTRX IN ( A ,NORD , I ER ) #1.1310

PURPOSE
READS DATA ELEMENTS OF SYMMETRIC MATRIX FROM CARDS

DESCRIPTION OF VARIABLES 
A - INPUT MATRIX
NORD - ORDER OF INPUT MATRIX. MUST BE 20 OR LESS. 
IER - ERROR IN DATA CARDS CODE 

IER = 0 NO ERROR
= 1 INCORRECT NUMBER OF CARDS

LISTING OF DATA CARDS
FORMAT IS 7F10.0. COLUMNS 71-80 FOR IDENTIFICATION. DATA 
ELEMENTS PUNCHED BY ROW STARTING WITH DIAGONAL ELEMENT AND 
PROCEEDING TO THE RIGHT IN THAT ROW, WITH LISTING CONTINUED 
TO NEW CARDS IF NECESSARY. LAST CARD FOR LAST ROW IN MATRIX 
FOLLOWED BY A CARD WITH 9 PUNCHED IN COLUMN 1.

REFERENCE
ADAPTATION OF SUBROUTINE MATIN. REFER TO INTERNATIONAL 
BUSINESS MACHINES, 1968, SYSTEM/360 SCIENTIFIC SUBROUTINE 
PACKAGE (360-CM-03X) VERSION III, PROGRAMMER'S MANUAL. 
WHITE PLAINS, NEW YORK, INTERNATIONAL BUSINESS MACHINES, 
P.453

DOUBLE PRECISION A(1),CARD(8) #1.1320
1 FORMAT(7F10.0) #1.1330

IER=0 #1.1340
ICOLT=NORD #1.1350
IROCR=1 #1.1360

COMPUTE NUMBFR OF CARDS IN ROW

2 IRCDS = ( ICOLT-1)/7+l #1.1370 

SET UP LOOP FOR NUMBER OF CARDS IN ROW

DO 3 K=l , IRCDS #1.1380
READ<5,1)(CARD(I),1=1,7) #1.1390
L=0 #1.1400

COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD

JS=(K-1)*7+NORD-ICOLT+1 #1.1410 
JE=JS+6 #1.1420

SET UP LOOP FOR DATA ELEMENTS WITHIN CARD

DO 4 J=JS,JE #1.1430
IF(J-NORD)5,5,3 #1.1440

5 IF( IROCR-J)6,7,7 #1.1450
6 IJ=IROCR+(J*J-J )/2 #1.1460

GO TO 8 #1 .1470
7 IJ=J+(IROCR*IROCR-IROCR)/2 #1.1480
8 L=L+1 #1.1490
4 A( IJ)=CARD(L) #1.1500
3 CONTINUE #1.1510

IROCR=IROCR+1 #1.1520
IF(NORD-IROCR)9,10,10 #1.1530

10 ICOLT=ICOLT-1 #1.1540
GO TO 2 #1.1550
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9 READ(5,1)CARD(1) #1.1560

IF(CARD(l)-9.09)11,12,11 #1.1570
11 IER=1 #1.1580
12 CONTINUE #1.1590

RETURN #1.1600
END #1.1610
SUBROUTINE MTRXOT(A,NORD,IS> #1.1620

PURPOSE
PRINTOUT LISTING OF ANY SIZED MATRIX

DESCRIPTION OF VARIABLES 
A - OUTPUT MATRIX 
NORD - ORDER OF MATRIX 
IS - STORAGE MODE OF A

IS = 0 GENERAL
IS = 1 SYMMETRIC
IS = 2 DIAGONAL

SUBROUTINES REQUIRED 
LOG

REFERENCE
ADAPTATION OF SUBROUTINE MXOUT. REFER TO INTERNATIONAL 
BUSINESS MACHINES, 1968, SYSTEM/360 SCIENTIFIC SUBROUTINE 
PACKAGE (360-CM-03X) VERSION III, PROGRAMMER'S MANUAL. 
WHITE PLAINS, NEW YORK, INTERNATIONAL BUSINESS MACHINES, 
P.454 

DOUBLE PRECISION A(1),B(8) #1.1630
201 FORMAT(20X,7(3X t I3,10X)) #1.1640
202 FORMAT( '0' ,1IX,13,7(D16 .6)) #1.1650 

J=l #1.1660
1 LS=1 #1.1670
2 JNT=J+6 #1.1680 

IF(JNT-NORD)4,4 t 3 #1.1690
3 JIMT = NORD #1.1700

NUMBER COLUMNS

4 WRITE<6,201)(JCUR , JCUR=J,JNT) #1.1710
LE=LS+57 #1.1720
DO 5 L=LS,LE #1.1730

PRINT LINE

DO 6 K=l,7 #1.1740
KK=K #1.1750
JT=J+K-1 #1.1760 
CALL LOG (L,JT,IJ,NORD t NORD,IS) #1.1770
B(K)=0.0 #1.1780
IF(IJ)8,8,7 #1.1790

7 B(K)=A(IJ) #1.1800

IF LAST COLUMN, WRITE ROW'S NUMBER AND ELEMENTS

8 IF(JT-NORD)6,9,9 #1.1810
6 CONTINUE #1.1820
9 WRITE(6,202)L, (B(JW) ,JW=1,KK) #1.1830

IF END OF ROWS, CHECK FOR MORE COLUMNS

IF(NORD-L)10,10,5 #1.1840 
5 CONTINUE #1.1850

CHECK FOR MORE OUTPUT

LS=LS+58 #1.1860 
GO TO 2 #1.1870

#1.1880
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C END DF COLUMNS, RETURN
#1.1890

10 IF(JT-NORDJll,12,12 #1.1900
11 J=JT+1 #1.1910 

GO TO 1 #1.1920
12 RETURN #1.1930 

END #1.1940 
SUBROUTINE EGN(A,R,B,N,NSD) #1.0000 

C PURPOSE
C COMPUTE EIGENVALUES, EIGENVECTORS, AND LEAST NUMBER OF 
C SIGNIFICANT DIGITS IN CHARACTERISTIC EQUATION OF A RFAL 
C SYMMETRIC MATRIX 
C DESCRIPTION OF VARIABLES
C A MATRIX FOR WHICH EIGENVECTORS AND EIGENVALUES ARE 
C DESIRED. MATRIX DESTROYED IN COMPUTATION AND RESULTANT 
C EIGENVALUES STORED IN DESCENDING ORDER IN DIAGONAL. 
C R RESULTANT EIGENVECTOR MATRIX 
C B - ORIGINAL MATRIX TRANSFERRED TO THIS AREA 
C N ORDER OF MATRICES
C NSD - IF EIGENVALUES ARE TO BE COMPUTED, NSD MUST BE ZERO AT 
C INPUT, RESULTANT IS LEAST NUMBER OF SIGNIFICANT DIGITS 
C IN CHARACTERISTIC EQUATION STORED IN NSD. IF NSD = 1, 
C EIGENVALUES AND LEAST NUMBER OF SIGNIFICANT DIGITS 
C ARE NOT COMPUTED. 
C
C FUNCTION SUBPROGRAMS REQUIRED 
C LISD 
C MAX 
C MIN 
C REMARKS
C THIS EXTENSION TO DOUBLE PRECISION FORM OF SUBROUTINE 
C EIGEN DEVELOPED BY MARSHALL HELLMAN, COMPUTER CENTER 
C DIVISION, U.S. GEOLOGICAL SURVEY. REFER TO INTERNATIONAL 
C BUSINESS MACHINES, 1968, SYSTEM/360 SCIENTIFIC SUBROUTINE 
C PACKAGE (360-CM-03X) VERSION III, PROGRAMMER'S MANUAL. 
C WHITE PLAINS, NEW YORK, INTERNATIONAL BUSINESS MACHINES, 
C P . 1 64 
C

DIMENSION Ad), R(l), B(l) #1.0010
DOUBLE PREC IS ION A,R,ANORM,ANRMX,THR,X,Y,SI NX,SINX2,COSX,COSX2,SIN#l.0020
1CS,RANGE,B,W,W1,Z,Q #1.0030

201 FORMAT( '0' ,10X,'NUMBER OF SIGNIFICANT DIGITS IN ELEMENT ',13,' OF #1.0040
1CHARACTERISTIC EOUATION /1IX,'MATRIX IS 0. MAGNITUDES OF ELEMENTS #1.0050
2COMPARED ARE  ,D24.16/1IX,'AND ', D24.16,'. IF MAGNITUDE OF AN ELE#1.0060
3MENT IS NOT CLOSE '/11X,' TO ZERO, IT WOULD BE ADVISABLE TO STUDY #1.0070
^STRUCTURE OF CORRELATION MATRIX'//) #1.0080
MSDR=15 #1.0090
MSD=15 #1.0100
MV=NSD #1.0110
RANGF=1.0D-14 #1.0120

C
C COPY A INTO B 
C

NX2=N#(N+1)/2 #1.0130 
DO 1 I=1,NX2 #1.0140

1 B( I )=A(I) #1.0150 
C
C GENERATE IDENTITY MATRIX 
C

IF (MV-1) 2,5,2 #1.0160
2 IQ=-N #1.0170 

DO 4 J=1,N #1.0180 
IQ=IQ+N #1.0190 
DO 4 1 = 1,N #1.0200 
IJ=IO+I #1.0210 
R( IJ)=O.ODO #1 .0220 
IF (I-J) 4,3,4 #1.0230

3 R(IJ)=1.0DO #1.0240
4 CONTINUE #1.0250
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COMPUTE INITIAL AND FINAL NORMS, ANORM AND ANORMX

5 ANORM=O.ODO #1.0260
DO 7 1 = 1,N #1.0270
DO 7 J=I,N #1.0280
IF (I-J) 6,7,6 #1.0290

6 IA=I+(J*J-J)/2 #1.0300 
ANORM=ANORM+A(IA)*A(IA) #1.0310

7 CONTINUE #1.0320
, IF (ANORM) 33,33,8 #1.0330

8 ANORM=DSQRT(2*ANORM) #1.0340 
ANRMX=ANORM#RANGE/DFLOAT(N) #1 .0350

INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR

IND=0 #1.0360
THR=ANORM #1.0370

9 THR=THR/DFLOAT(N) #1.0380
10 L=l #1.0390
11 M=L+1 #1.0400

COMPUTE SIN AND COS

12 MG=(M*M-M)/2 #1.0410
LQ=(L#L-L)/2 #1.0420
LM=L+MQ #1.0430 
IF (DABS(A(LM) )-THR) 26,13,13 #1.0440

13 IND=1 #1.0450
LL=L+LQ #1.0460
MM=M+MQ #1.0470
Z=A(LL) #1.0480
Q=A(MM) #1.0490
X=(Z-0)/2 #1.0500 

Y = -A( LM)/DSQRT(A(LM)#A(LM)+X#X) #1 .0510
IF (X) 14,15,15 #1.0520

14 Y=-Y #1.0530
15 SINX=Y/DSQRT(2*(1+(DSQRT(1-Y#Y) ))) #1.0540

SINX2=SINX*SINX #1.0550
COSX2=1-SINX2 #1.0560
COSX=DSORT(COSX2) #1.0570
SINCS=SINX*COSX #1.0580

ROTATE L AND M COLUMNS

ILQ=N*(L-1) #1.0590
IMQ=N*(M-1) #1.0600
DO 25 1=1,N #1.0610
IO=(I*I-I)/2 #1.0620
IF (I-L) 16,23,16 #1.0630

16 IF U-M) 17,23,18 #1.0640
17 IM=I+MO #1.0650

GO TO 19 #1.0660
18 IM=M+IO #1.0670
19 IF (I-L) 20,21,21 #1.0680
20 IL=I+LO #1.0690

GO TO 22 #1.0700
21 IL=L+IO #1.0710
22 X = A( IL)*COSX #1.0720

W=A(IM)*SINX #1.0730
Y=A(IL)*SINX #1.0740
W1=-A(IM)*COSX #1.0750
A( IM) = Y-W1 #1.0760
A(IL)=X-W #1.0770

23 IF (MV-1) 24,25,24 #1.0780
24 ILR=ILQ+I #1.0790

IMR=IMO+I #1.0800
Z=R(ILR)*COSX #1.0810
0=R( IMR)*SINX #1.0820
X=Z-0 #1.0830
Z=R(ILR)*SINX #1.0840

F19
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Q=-R( IMR)#COSX
R(IMR)=Z-(0
R(ILR)=X

25 CONTINUE
X=2*A( LM)*SINCS
Z=A(LL)*CnsX2
0=-A( MM)*SINX2
Y=Z-0

Z=A(LL)*SINX2
Q=-A(MM) *COSX2
W=Z-0
W1=-W

A(LM)=0
A(LL)=Y-X
A(MM)=W+X

TESTS FOR COMPLETION 

TEST FOR M = LAST COLUMN

26 IF (M-N) 27,28,27
27 M=M+1

GO TO 12

TEST FOR L = SECOND FROM LAST COLUMN

28 IF (L-(N-l)) 29,30,29
29 L=L+1

GO TO 11
30 IF (IND-1) 32,31,32
31 IND=0

GO TO 10

COMPARE THRESHOLD WITH FINAL NORM

32 IF (THR-ANRMX) 33,33,9

SORT EIGENVALUES AND EIGENVECTORS

33 IQ=-N
DO 37 1=1 ,N
H)=IO+N
LL=I+(I*I-I)/2
JO=N*( 1-2)
DO 37 J=I ,N
JQ=JO+N
MM=J+( J*J-J)/2
IF ( A( LL)-A(MM) ) 34,37,37

34 X=A( LL)
A(LL)=A(MM)
A(MM)=X
IF (MV-1) 35,37,35 

35D036K=1,N
ILR=IO+K
IMR=JO+K
X=R( ILR)
R( ILR)=R( IMR)

36 R( IMR)=X
37 CONTINUE

DETERMINE LEAST NUMBER OF SIGNIFICANT DIGITS

IF (MV-1) 38,48,38
38 CONTINUE

COMPUTE MATRIX ELEMENTS OF PRODUCT OF ORIGINAL MATRIX AND CHARAC­ 
TERISTIC VECTORS, X, AMD OF EIGENVALUES AND CHARACTERISTIC 
VECTORS, Z.

#1.0850
#1.0860
#1.0870
#1.0880
#1.0890
#1.0900
#1.0910
#1.0920
#1.0930
#1.0940
#1.0950
#1.0960
#1.0970
#1.0980
#1.0990

#1.1000
#1.1010
#1.1020

#1.1030
#1.1040
#1.1050
#1.1060
#1.1070
#1.1080

#1.1090

#1.1100
#1.1110
#1.1120
#1.1130
#1 .11^0
#1.1150
#1.1160
#1.1170
#1.1180
#1.1190
#1.1200
#1.1210
#1.1220
#1.1230
#1.1240
#1.1250
#1.1260
#1.1270
#1 .1280
#1.1290

#1.1300
#1.1310
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39

41
42

49

43

44
45
46

47

48

DO 45 12 = 1 ,N
Y = A( !2*( 12 + 1 )/2)
I1=N*(12-1)
DO 43 L=l f N
X = 0
DO 42 M = l ,N
IF (M-L) 39,40,40
I=L*(L-l)/2+M
GO TO 41
I=M*(M-l)/2+L
K=I 1 + M
X=X+B(I)*R(K)
Z=Y*R( Il + L)

DETERMINE LEAST NUMBER OF SIGNIFICANT DIGITS IN X OR Y FOR EACH 
ELEMFNT f)F MATRIX V

NSD=LISD(X,Z,15)
IF(NSD)43,49,43
I1L=I1+L
WRITE(6,201 ) I1L,X,Z 
MSD=MIN(NSD,MSD) 
MSDR=MIM <MSD,MSDR)
K1=I2*( I2 + D/2 + 1
IF ( I2-N) 44,46,46
A(K1)=MSD
MSD=15
DO 47 1=1,N
K=I*(1+1)/2
L = K+1
B(K)=A(L)
B(NX2)=MSD
NSD=MSDR 
CONTINUE
RETURN 
END
FUNCTION LISD(X,Y,N) 

PURPOSE
TO FIND SMALLER NUMBER OF SIGNIFICANT DIGITS IN TWO NUMBERS
X AND Y, IF NUMBER IS LESS THAN N

REMARKS
PROGRAMMED BY MARSHALL HELLMAN, COMPUTER CENTER DIVISION, 
U.S. GEOLOGICAL SURVEY

PRECISION X,Y,EPS,T

#1.1320
#1.1330
#1.1340
#1.1350
#1 .1360
#1.1370
#1 .1380
#1.1390
#1.1400
#1.1410
#1 .1420
#1.1430
#1.1440

#1 .1450
#1 .1460
#1.1470
#1.1480
#1.1490
#1 .1500
#1.1510
#1 .1520
#1.1530
#1.1540
#1.1550
#1 .1560
#1.1570
#1 .1580
#1.1590
#1 .1600
#1.1610
#1 .1620
#1.1630
#1.1640

DOUBLE
LISD=0
IF(DABS(Y).GE.DABS(X))
T = X
IF(T.EO.O.O) GO TO 2
GO TO 3
T = Y
IF(T.EO.O.O) GO TO 2
EPS = DLOG10(UAB5 (T) )
IX=EPS
IF(EPS.GE.0.0) GO TO 4
IF(EPS.GE.IX) GO TO 4
IX=IX-1
IF(Y.NE.X) GO TO 5
LISD=N
GO TO 6
T=DLOG10(DABS(Y-X))
IT = T
IF(T.GE.O.O) GO TO 7
IF(T.GE.IT) GO TO 7
IT=IT-1
LISD=IX-IT-1
LISD=MAX(LISn,0)
RETURN
END

GO TO 1

#1.1650
#1.1660
#1.1670
#1.1680
#1.1690
#1 .1700
#1.1710
#1 .1720
#1.1730
#1.1740
#1.1750
#1 .1760
#1.1770
#1 .1780
#1.1790
#1 .1800
#1.1810
#1 .1820
#1 .1830
#1 .1840
#1.1850
#1 .1860
#1.1870
#1 .1880
#1.1890
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FUNCTION MAX(M,N) #1.1900 
PURPOSE

TO DETERMINE IF INTEGER M IS LARGER THAN SELECTED INTEGER N

RFMARKS
PROGRAMMED BY MARSHALL HELLMAN, COMPUTER CENTER DIVISION, 
U.S. GEOLOGICAL SURVEY

IF(M.GT.N) GO TO 1 #1.1910
MAX=N #1.1920
RETURN #1.1930
MAX=M #1.1940
RETURN #1.1950
END #1.1960
FUNCTION MINIM,N) #1.1970 

PURPOSE
TO DETERMINE IF INTEGER M IS SMALLER THAN SELECTED INTEGER N

RFMARKS
PROGRAMMED BY MARSHALL HELLMAN, COMPUTER CENTER DIVISION, 
U.S. GEOLOGICAL SURVEY

IF(K.LE.N) GO TO 1 #1.1980
MIN=N #1.1990
RETURN #1.2000
MIN=M #1.2010
RETURN #1.2020
END #1.2030
SUBROUTINE GMPRD,( A , B ,R , N ,M , L ) #1.2040

PURPOSE
PRODUCT OF TWO GFMERAL-MODF-STORAGF MATRICES 

DESCRIPTION OF VARIABLES
A - FIRST INPUT MATRIX, N ROWS, M COLUMNS
B - SECOND INPUT MATRIX, M ROWS, L COLUMNS
R - OUTPUT MATRIX, N ROWS, L COLUMNS

REFERENCE
INTERNATIONAL BUSINESS MACHINES, 1968, SYSTEM/360 SCIENTIFIC 
SUBROUTINE PACKAGE (360-CM-03X) VERSION III, PROGRAMMER'S 
MANUAL. WHITE PLAINS, NEW YORK, INTERNATIONAL BUSINESS 
MACHINES, P.99

DOUBLE PRECISION A{1 ) ,B(1 ) ,R(1 ) #1.2050
IR=0 #1.2060
IK=-M #1.2070
DO 1 K=1,L #1.2080
IK=IK+M #1.2090
DO 1 J=1,N #1.2100
IR=IR+1 #1.2110
JI=J-N #1.2120
IB=IK #1.2130
RUR)=0.0 #1.2140
DO 1 1 = 1, M #1.2150
JI=JI+N #1.2160
IB=IB+1 #1.2170 
R( IR)=R(IR)+A(JI)*B(IB) #1.2180
RETURN #1.2190 
END
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