Professional Paper 543–H
AbstractDuring the 1964 Alaska earthquake, tectonic deformation uplifted the southern end of Montague Island as much as 33 feet or more. The uplifted shoreline is rapidly being modified by subaerial and marine processes. The new raised beach is formed in bedrock, sand, gravel, and deltaic bay-head deposits, and the effect of each erosional process was measured in each material. Fieldwork was concentrated in two areas—MacLeod Harbor on the northwest side and Patton Bay on the southeast side of Montague Island. In the unconsolidated deltaic deposits of MacLeod Harbor, 97 percent of the erosion up to June 1965, 15 months after the earthquake, was fluvial, 2.2 percent was by rainwash, and only 0.8 percent was marine; 52 percent of the total available raised beach material had already been removed. The volume removed by stream erosion was proportional to low-flow discharge raised to the power of 0.75 to 0.95, and this volume increased as the bed material became finer. Stream response to the relative fall in base level was very rapid, most of the downcutting in unconsolidated materials occurring within 48 hours of the uplift for streams with low flows greater than 10 cubic feet per second. Since then, erosion by these streams has been predominantly lateral. Streams with lower discharges, in unconsolidated materials, still had knickpoints after 15 months. No response to uplift could be detected in stream courses above the former preearthquake sea level. Where the raised beach is in bedrock, it is being destroyed principally by marine action but at such a low rate that no appreciable erosion of bedrock was found 15 months after the earthquake. A dated rock platform raised earlier has eroded at a mean rate of 0.49 foot per year. In this area the factor limiting the rate of erosion was rock resistance rather than the transporting capacity of the waves. The break in slope between the top of the raised beach and the former seacliff is being obliterated by debris which is accumulating at the base of the cliffs and which is no longer being removed by the sea. Current cliff retreat by rockfall, mudflows, and landslides was estimated at 0.7 to 2.0 feet per year, and in parts of Patton Bay the accumulation of debris has obliterated 78 percent of the original break in slope in 15 months. Evidence of two relative sea-level changes before 1964 was found in Patton Bay. At a high stand of sea level lasting until about 2000 B.P. (before present), an older raised beach was formed which, over a distance of 5 miles, shows 40 feet of deformation relative to the present sea level. Peat deposits exposed by the 1964 uplift also record a low sea level that lasted until at least 600 B.P. The 1964 raised beach was used to test the accuracy of identification of former sea-level elevations from raised beach features. The Pre-1964 sea level could be accurately determined from the height of the former barnacle line, so an independent check on high-water level was available. The most reliable topographic indicator was the elevation of the break in slope at the top of a beach between a bedrock platform and a cliff. Even here, the former sea level could only be identified within 5 feet. The breaks in slope at the top of gravel beaches were found to be poor indicators of former sea level. On Montague Island, evidence of former high sea levels appeared to be best preserved (1) as raised bedrock platforms on rocks of moderate resistance in slightly sheltered locations and (2) as raised storm beaches where the relief immediately inland was very low. |
First posted October 31, 2012 For additional information: This report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge. |
Kirkby, M.J., and Kirkby, A.V., 1969, Erosion and deposition on a beach raised by the 1964 earthquake, Montague Island, Alaska: U.S. Geological Survey Professional Paper 543–H, 41 p., https://pubs.usgs.gov/pp/0543h/.
Abstract
Introduction
Geology
Erosion and Deposition of Bay-Head Deposits in MacLeod Harbor
Erosion and Deposition on Uplifted Beaches and Rock Platforms
Conclusions
References Cited