Professional Paper 545–C
AbstractThe great earthquake that struck Alaska about 5:36 p.m., Alaska standard time, Friday, March 27, 1964 (03:36:1.3.0, Greenwich mean time, March 28, 1964), severely crippled the highway system in the south-central part of the State. All the major highways and most secondary roads were impaired. Damage totaled more than $46 million, well over $25 million to bridges and nearly $21 million to roadways. Of the 204 bridges in south-central Alaska, 141 were damaged; 92 were severely damaged or destroyed. The earthquake damaged 186 of the 830 miles of roadway in south-central Alaska, 83 miles so severely that replacement or relocation was required. Earthquake damage to the roadways and bridges was chiefly by (1) seismic shaking, (2) compaction of fills as well as the underlying sediments, (3) lateral displacement of the roadway and bridges, (4) fractures, (5) landslides, (6) avalanches, (7) inundation by seismic sea waves, (8) scouring by seismic sea waves, (9) regional tectonic subsidence, causing inundation and erosion by high tides in subsided areas. The intensity of damage was controlled primarily by the geologic environment (including the depth of the water table) upon which the highway structures rested, and secondarily by the engineering characteristics of the structures. Structures on bedrock were only slightly damaged if at all, whereas those on unconsolidated sediments were slightly to severely damaged, or were completely destroyed by seismic shaking. The low-lying areas underlain by saturated sediments, such as the Snow River Crossing and Turnagain Arm sections of the Seward-Anchorage Highway, were the most severely damaged stretches of the highway system in south-central Alaska. At Snow River and Turnagain Arm, the sediments underlying the roadway are fine grained and the water table is shallow. These factors were responsible for the intense damage along this stretch of the highway. All the bridges on the Copper River Highway except for one on bedrock were damaged by seismic shaking. Lateral displacement of sediments toward a free face, which placed the bridges in compression, was the chief cause for the damage. This type of failure was extensive and widespread throughout the highway system. The chief engineering characteristics responsible for the type and intensity of damage include (1) thickness of roadway fills, (2) type of pile bents and masonry piers, (3) the weight ratio between the substructure and superstructure, and (4) the tie between the substructure and superstructure. The thicker the roadway fills, the more severe the damage. Wood piles did not break as extensively as piles constructed of three railroad rails welded together. Bridges that had relatively heavy superstructures, for example those with concrete decks on wood piles, were more severely damaged than those with all-wood or concrete decks or concrete piers. Failure first occurred at the tie between the superstructure and the substructure; the poorer this tie, the sooner the failure. Seismic sea waves destroyed 12 bridges on the Chiniak Highway on Kodiak Island, one bridge on Point Whitshed road near Cordova, and about 14 miles of roadway. The combination of regional tectonic subsidence and local subsidence and compaction of sediments caused inundation of many miles of highway by high tides, especially around Turnagain Arm. Total subsidence in some places amounted to more than 13 feet. |
First posted November 28, 2011 For additional information: This report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge. |
Kachadoorian, R., 1968, Effects of the earthquake of March 27, 1964, on the Alaska highway system: U.S. Geological Survey Professional Paper 545–C, 66 p., https://pubs.usgs.gov/pp/0545c/.
Abstract
Introduction
Effects of the Earthquake
Engineering Factors Influencing Damage Intensity
Summary
References Cited