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SEDIMENT TRANSPORT IN ALLUVIAL GHANNELS

STATISTICAL PROPERTIES OF DUNE PROFILES

By CARL F. NORDIN, JR.

ABSTRACT

Properties of sand waves formed by subecritical unidirectional water
currents are investigated by statistical analyses of records of streambed
profiles. Records of bed elevation y as a function of distance x along the
channel, y=1y(x), and time records at a fixed point of the channel,
y=y(t), were collected in three laboratory flumes that were 8 inches,
2 feet, and 8 feet wide and in a straight alluvial channel that was 55 feet
wide. All bed material was fine sand. The continuous analog records
were converted to discrete data points and were analyzed by digital
computer.

The analyses show that both types of records, y(x) and y(¢), can be
approximately represented as stationary Gaussian processes. When the
data are standardized and the lengths or distances are expressed as
ratios of the mean duration between zero crossings of y, the statistical
properties of all the flume data are similar, with no distinguishing char-
acteristics that can be attributed to size of flume or to whether the bed
forms were ripples or dunes. The field data, however, reflect the in-
fluence of large alternate bars that were not present in the flumes.

The Gaussian assumption, together with the spectral properties of the
records as expressed by a dimensionless parameter, 8, permits predict-
ing the distributions of maximum and minimum values of y between
successive zeros of y. These distributions represent the probability
distributions of the depth of local scour and fill due to the formation and
migration of sand waves, and the parameters that specify the distribu-
tions relate approximately to flow velocity and depth.

Observed values of the number of zero and h-level crossings, the
mean duration between zero crossings, and the mean duration of up-
ward excursions of the process y(z) above the fixed level A compared
reasonably well with theoretical values for the Gaussian model. The
distribution of the duration of upward excursions is the conditional prob-
ability distribution of the rest period of a particle, given that it is de-
posited on the downstream face of a ripple or dune at the level A.
Observed distributions of these durations can be approximated by a
gamma distribution with parameters that relate to &, where A is meas-
ured in units of standard deviation from the mean bed level. These
distributions and other probability distributions that enter into stochastic
models of sediment transport can be determined either from the theo-
retical model or empirically from the observed data. The results of the
study show that, even though the bed elevation deviates somewhat
from the postulated normal distribution, reasonable estimates of many
properties of the bed profiles can be derived from fairly simple statistical
models.

INTRODUCTION

BACKGROUND

A distinguishing characteristic of sand waves formed
by unidirectional subcritical water currents is their

tendency to form “en echelon” with gently sloping up-
stream faces and more steeply sloping downstream faces
that meet the horizontal at approximately the natural
repose angle of the sand. These features migrate slowly
in the mean flow direction as material is eroded from their
upstream faces and deposited on their downstream faces.

Generally, these features are described as simple tri-
angular forms, in profile, somewhat as sketched in figure
1, with a mean length from crest to crest or trough to

FIGURE 1. —1dealized dune shape.

trough, L, a mean height from crest to trough, H, and a
constant angle of downstream face, 8. If the waves are
long-crested, or two-dimensional, their geometric prop-
erties then are considered completely specified by L, H,
B. The ratio of mean length to mean height, L/H, called
the ripple index, is a measure of the wave steepness.

In reality, the simple waveforms of figure 1 rarely exist.
Long-crested sand waves occur apparently only under
rather restricted flow conditions which will not be con-
sidered here. In the general case of flow in a wide channel
with a bed of fine sand, the ripples and dunes that form
are three-dimensional and highly irregular in size, shape,
and spacing.

The three-dimensional properties of these features are
completely described by a contour map of the bed, and
with modern sounding, navigation, and computing equip-
ment, large areas of a streambed can be mapped with
ease and dispatch. However, the expense involved in
obtaining detailed contour maps is generally prohibitive,
and more generally, one has available only profiles of the
streambed, obtained either by sounding along the channel
from a boat or by sounding at some fixed point in the flow
and recording changes in the bed elevation as the dunes
and other bed features migrate past the sounding point.

F1
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Although the profiles give only a two-dimensional
picture of the streambed, they still provide a great amount
of useful information. From longitudinal records, one can
determine directly the distributions of lengths and heights
associated with a particular ensemble of waveforms. From
time records, the average wave period is easily found,
which, together with mean wave height, provides a very
good estimate of the bed load transport (Simons and
others, 1965). The distribution of troughs and crests indi-
cates the amount of local scour and fill associated with
the migrating sand waves; this information may be im-
portant in such practical problems as designing and main-
taining navigation channels or estimating the depth to
which a structure such as a pipeline or siphon should be
buried beneath the mean bed level to minimize the
probability of local scour exposing the structure to the
current.

From a comparison of the properties of different
streambed profiles, it may be possible to establish
whether or not there are any essential differences, other
than scale, between ripples and dunes, and whether or
not there are statistical properties of the dune profiles
other than scale that can be attributed to the size of the
channel. Both questions have important implications in
modeling alluvial channel processes.

Perhaps the potentially most useful information to be
derived from streambed profiles is information that relates
to stochastic models of sediment transport. For example,
in their two-dimensional stochastic model for the trans-
port and dispersion of bed-material sediment particles.
Sayre and Conover (1967) require the probability that a
sediment particle will be deposited at a given level in the
bed and the conditional probability for the length of time a
particle will remain buried in the bed (that is, that it will
experience a rest period of a certain duration), given that
it is deposited at a particular level. These probabilities,
together with some other distributions of interest, are
easily found from the bed profiles.

To be more specific, consider the short segment of
profile sketched in figure 2. Assume a straight uniform

channel with equilibrium flow conditions, as defined by
Simons and Richardson (1966, p. J3). If y is the bed eleva-

y h-level crossings

——

A\Up crossings:

Zero crossings
Wavelength or wave period

FIGURE 2. — Definition sketch of bed profile.
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tion, measured from the mean bed level so that y=0,
and x is distance along the channel in the direction of
flow, the bed profile then can be represented in the form
y=yl(x, t), xeX, tel. At any given position x=xp along
the channel, one may record the change with time of bed
elevation y to produce the record, y=y(t). Similarly, at
any given instant of time, = to, one can sound along the
channel to obtain a record of the bed profile, y=y(x).
In reality, of course, it is impossible to obtain instantane-
ously a longitudinal profile, but practically the time re-
quired to obtain a profile is small compared with the time
required for a dune to shift appreciably downstream, so
that the assumption y=y(x) is quite reasonable.

For either y=y(x) or y=y(t), the bed elevation y,
measured about the mean bed level, is a random variable
that depends on a parameter (¢ or x) defined on an arbi-
trary parameter set (T or X, respectively). By definition,
then y=y(x, t) is a stochastic process (Cramer, 1964,
p. 137).

In all cases, y is a continuous function; obviously, there
can be no discontinuities in the sand bed of a stream.
Intuitively, one also would expect that, if the mean prop-
erties of the flow, of the sediment, and of the sediment
transport do not change with time or with distance along
the channel, then y will represent a stochastic process
which meets the requirements both of stationarity and of
ergodicity.

Consider next, in figure 2, some simple definitions that
will be used later. The points where the processes y(x)
or y(t) cross the zero axis are zero crossings, and the
average distance between successive upcrossings
(values of y going from negative to positive) is an average
wavelength or wave period, somewhat analogous to L
shown in figure 1. The maximum ordinate between zero
crossings, in absolute values, is defined as the amplitude,
a, and is roughly comparable to one-half of the wave
height of figure 1.

Crossings of the level & are defined in a similar manner.
Note that the average duration of the upward excursion of
the process y(t¢) above the fixed level 4 is the average
rest period experienced by a particle after it is deposited
on the downstream faces of the sand waves at the level A.

The probability that a particle will be deposited at the
level h also can be determined from the bed profiles for
at least some simple postulated depositional patterns.
If a particle is equally likely to be deposited at any place
on the bed, the distribution is simply the frequency
distribution of the y values. If deposition occurs only on
the downstream faces of the ripples or dunes, the distribu-
tion can be determined from the distribution of y values
where the process y(x) has a negative slope or y(¢) has
a positive slope. If nothing is known of the previous
history of a particle, that is, if it is equally likely to be
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found any place in the bed above the lowest point of
particle motion, then the probability that it will be found
at the level & can be determined approximately as the
ratio of the area bounded by the fixed level & and the up-
ward excursions of the process y(x) above % to the total
area of the bed profile above the minimum y value.

Many properties of the processes y(x) and y(¢) that
are of interest can be determined empirically if suitable
records of streambed profiles are available. Usually,
though, it is difficult to obtain both types of records. In
the laboratory, where flows can be controlled, it is possible
to obtain long records of y(¢), but longitudinal profiles of
the process y(x) are limited by the effective length of the
flume. On the other hand, in field studies, it may be
possible to obtain suitable longitudinal profiles, but the
sand waves generally move so slowly that satisfactory
samples of the process y(t) cannot be obtained under
constant flow conditions. It has not been established that
the statistical properties of the processes y(x) and y(t)
are comparable, although some similarities have been
noted (Nordin and Algert, 1966). Thus, it is extremely
important to determine in what respects the two types of
records are similar and to develop methods of correlating
the properties of the two types of records.

Ultimately, of course, one will wish to predict something
about the streambed profiles, given only information on
the characteristics of the flow and the bed sediment. In
order to do this, it is necessary first to determine if there
are any consistent or recognizable patterns in the proper-
ties of interest, and then to attempt to relate these
properties to flow and sediment parameters.

There is little theoretical or empirical basis upon which
to postulate the statistical properties of y(x) or y(t).
However, during the course of preliminary studies of the
bed profiles, several facts emerged that led to the ap-
proach adopted for this investigation. First, it was noted
that the y values were distributed about their mean values
approximately as normal distributions, which was to be
expected as most natural processes that develop under
the influence of many random factors exhibit approxi-
mate Gaussian distributions. Second, many of the prop-
erties of a Gaussian process with known covariance
functions, particularly the mean values of duration be-
tween zero and h-level crossings and the maximum
between zero crossings, are well established from previous
work on the statistical properties of random noise (Rice,
1954) and on ocean waves (Longuet-Higgins, 1958, 1962,
1963). Finally, it has been shown that properties of the
covariance function near the origin relate to a simple
flow parameter, at least for a limited range of flow condi-
tions (Nordin and Algert, 1966), so that in considering the
prediction problem, the assumption of a known covariance
function may be rather simple to satisfy.

405-448 O-T1 -2
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Therefore, the approach adopted for this study was to
compare the observed properties of the bed profiles with
the theoretical properties of a Gaussian process of known
covariance function. In the following section, the scope
and specific objectives of the study are given in more
detail.

PURPOSE AND SCOPE

In broad terms, this study was designed to investigate
the statistical properties of streambed profiles. Data were
collected in both laboratory and field investigations, and
attention was always restricted to equilibrium flow over
a bed of fine sand in a straight uniform channel with either
ripple or dune bed configuration. The classification of bed
configurations as either ripples or dunes is according to
Simons and Richardson (1966, p. J5-J7). Details of the
hydraulic and sediment data are given in a later section.

Specifically, we are interested in the mean values and
the distributions of the durations between zero and h-level
crossings, of the durations of upward excursions of the
process y(t) above the fixed level h, and of the positive
and negative maximums of y(x) or y(¢) between zero
crossings. In addition, it is of interest to consider whether
or not the statistical properties of y(x) and ¥(¢) are
similar, whether or not there are any significant differ-
ences other than scale in the statistical properties of
ripple and dune profiles, and whether or not or to what
extent the statistical properties of dune profiles depend
on the scale of the flow system.

Particular attention is paid to the spectral representa-
tions of the process y because the distributions of the
amplitudes a for a Gaussian process depend to a large
extent on the properties of the spectra (Cartwright and
Longuet-Higgins, 1956). Some applications of cross corre-
lation and of cross-spectral analysis are examined briefly.

As indicated above, the approach used in this study is
to compare the observed properties of the bed profiles
to the theoretical properties of a Gaussian process of

known covariance function. Similarities and differences

between the observed and the theoretical processes are
noted, and some of the statistical parameters that describe
the observed processes are related empirically to proper-
ties of the flow.

In the following section, a review of the properties of a
Gaussian process is given, and some of the mathematical
relations for spectral analysis are listed. Then the data
is described and the results of the analysis are presented.
Finally, the paper discusses the implication of the results,
summarizes the conclusions drawn, and lists some recom-
mendations for future research along these same lines.
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SOME PROPERTIES OF A GAUSSIAN PROCESS

ZERO AND h-LEVEL CROSSINGS

Suppose that y(¢) is a real stationary Gaussian random
function of the continuous parameter ¢, 0 <t < w0, with
zero mean and covariance function ¢,y (s) and possessing
a spectral density function Gy,(®). The covariance func-
tion is the expected value of the lagged product of y(1)
and y(t+s), or

dyy(s) =E{y(t)y(t+s)}. (h
The process y(t) is assumed to be ergodic. so that the
covariance function is given by

lim1l (7

byy(s) == T, y(t)y(t+s)dt (2)

which by stationarity is a function only of s. The covari-
ance function is related to the spectral density function
by the equation

byals) =f°° Gyy(w) cos wsdw 3)
0

where w is the angular frequency.
The spectral density and covariance are Fourier trans-
form pairs:

Gyylw) 2% Lw byy(s) cos wsds. 4)

SEDIMENT TRANSPORT IN ALLUVIAL CHANNELS

The variance of y(t) is

o= var y(t) =,y(0) ZLQC Gyy(w)do. (5)

The first moment of the spectrum about the origin is
given by

ml=foc wGyy(w)do (6)
0

and, in general, the rth moment, r=0, 1, 2, . . ., is
defined as

m,<=fDc @0 Gyy(w)do. (7
0

The mean frequency of the spectrum is then

w=my[mg, 8)
and the derivatives of the covariance function at the
origin, if they exist, are

¢7(0) = (=1)12rm,,

9)
where r is even, and

¢7(0)=0,

where r is odd.

Apparently, there is no general solution for determining
the probability distribution of the interval between zero
crossings, p{lo}. but its mean value is the reciprocal of

the average number of zero crossings per unit time,
E{N,}, which was given by Rice (1954), as

1 —¢"(0)]”2
E{N¢}=—|—F——"—| - 10
o} w[ ¢(0) a0
The expected number of A-level crossings is
D RSN [l”'@)_]”z.
E{Nn}=—_e 5(0) (11)

The ratio of the average number of %-level crossings to
the average number of zero crossings from equations 10
and 11 is

E{N}E{No} = e-r2. (12)

The expected duration of an upward excursion above
the level A is given by Cramer and Leadbetter (1967):

E{l}}=p=" pr{y(0) > h} (13)
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where p is the mean number of upcrossings per unit time
and pr denotes probability. The mean number of upcross-
ings is one-half of the mean number of crossings per unit
time, so that, combining equations 10 and 13, the ratio of
expected duration of upward excursions above the level
h to expected duration of upward excursions above the
zero level is
E{G}E{l§}=2 pr{y(0) > h} e"*/2 (14)
An interesting alternative to Rice’s approach is given
by Tick and Shaman (1966) for a straight line interpola-
tion of an underlying continuous Gaussian process deter-
mined by sampling the underlying process at equispaced
intervals. Again, it is assumed that y(¢) is a stationary
Gaussian process with continuous parameter:, —o <t <o,
and with zero mean and covariance function ¢y,(s).
and possessing a spectral density function Gyy(w) de-
fined by equation 3. Assume that ¢(0)=1 and that y(¢)
is sampled discretely at the time points . . . —2At, — At
0, At, 2A¢, . . .. The sampled process also is Gaussian
with covariance sequence ¢(nAt), n=0,*x1,x2, . . ..
Connecting successively the observed ordinates of the
sampled sequence with straight line segments yields the
interpolation process mentioned above.
The expected number of zero crossings in a record of
length kAt is found to be

1 1 .
E{N{)}—A[E—; arcsin (]B(A[)] (15)

To determine the expected number of A-level crossings,
choose two adjacent values, y(nAt) and y({n+1}Ar),
and denote them by ¥, and Y. The joint distribution of
Y, and Y, is bivariate normal with correlation ¢{Atr).
Then, the expected number of 4-level crossing is

E{Nn}=k[pr(Y1>h, Yo <h)+pr(Y1<h,Y.>h)]
=2k(pr(Y1>h,Ys>—o)—pr (Y, >h, Ys > h).
(16)

From equations 15 and 16, the value of the ratio of the
expected number of f-level to the expected number of
zero crossings is seen to depend on the covariance func-
tion at one lag, ¢(Ar). Values were computed for
é(At)=0.7 and 0.9, and the curve for ¢p(At)=0.7 is
plotted in figure 3 along with equation 12 for the con-
tinuous process. There is so little difference in the two
curves for values of ¢(At) greater than 0.7 that the
simpler expression of equation 12 is to be preferred.
Although the probability distribution of the [ values
cannot be precisely determined in the general case,
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FIGURE 3.—Ratio of the expected number of h-level crossings to the
expected number of zero crossings, E{ N} /E{No}, as a function of h.

Longuet-Higgins (1962, 1963) gives some approximations
for upper and lower bounds of p(/o), with particular at-
tention to certain ideal forms of the spectra of y(¢), and
Cramer and Leadbetter (1967) give equations for the
moments of the distribution functions of the duration of
upward excursions above the level h. From a practical
point of view, the mean values of /} are of most interest,
particularly the mean in an interval A> — A, which is the
mean rest period of a particle deposited on the down-
stream face of a sand wave between the elevations 2, and
hs, and which can be determined easily by integrating
equation 13 between appropriate limits.

WAVE HEIGHTS AND AMPLITUDES

The wave height H was defined as the difference in
elevation between a crest (maximum) and the following
trough (minimum) in figure 1. The statistical distribution
of H generally is not known, but where y(¢) has a narrow
spectrum, it has been established that H/2 is distributed
according to a Rayleigh distribution (see Cartwright and
Longuet-Higgins, 1956):

p(HI2) =i e (3 mr -

-, €
mo)l/Z

where my, the variance of y(¢), is determined by equation
5 or equation 7. If the process y has unit variance, the
equation simplifies to

p(H[2)=He-Hi2)? (18)
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and the cumulative probability distribution of H/2 is given
by

p(H2<§)=1—es. (19)

Although the probability distribution of H is not estab-
lished, the statistical distribution of the local maxima of
y(t) is known. If y(¢) is a strictly stationary process
possessing a continuous sample derivative y'(¢), a local
maximum or crest is said to occur at t=¢g if y'(t) has a
downcrossing of zero at ¢t (Cramer and Leadbetter, 1967,
p. 242). Define a as the difference in height between the
crest and the mean level of y(¢). Then, for the Gaussian
process considered here, the probability distribution of
a depends only on (mo)'/? and on a parameter & that
represents the relative width of the frequency spectrum,

_ moms—mz?

62 (20)

mom 4

where 0 < & < 1.

For 6§ — 0, the spectrum becomes infinitely narrow and
the dimensionless maxima, 7, tend to a Rayleigh distribu-
tion:

p(m) =me-% 1)
wheren > 0, and
p(m)=0,
where n < 0.
where 71 is defined by the relation
n=af (me) /2. (22)

When 8 approaches its maxima value of 1, the distribution
of n is Gaussian,

p(n)= e M2, —o < n < oo (23)

(277)1/2

Derivations of the above distributions are given by Rice
(1954) and are discussed in detail by Cartwright and
Longuet-Higgins (1956). The cumulative probability
distributions of n for various values of & are shown in
figure 4.

In figure 2, a was defined as the maximum y value
between zero crossings, and it can assume either positive
or negative values. From a practical point of view, it
may be advantageous to consider separately the distri-
butions of positive a+ and negative a — values, in the
event that y(z) is not symmetric about its mean level.
The theoretical Gaussian model is assumed symmetric,
so that in this case it is permissible to consider only the
the positive a values, keeping in mind the symmetry of
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F1GURE 4.— Cumulative probability distribution functions for dimension-
less maxima, 7, as a function of 8.

the distribution about zero when negative values are of
concern.

Clearly, for narrow-band random noise, the distribution
of a+ would approach the distribution of local maxima,
the Rayleigh distribution. (See, for example, Bendat and
Piersol, 1966, p. 17.) Generally, however, there apparently
is no theoretical derivation for the probability distribution
of the a values. For purposes of this study, therefore, the
observed distributions of a simply will be compared with
the theoretical distributions of local maxima shown in
figure 4. At least intuitively, one would expect the dis-
tribution of a values for a process with a broad spectrum
to approach a form of the normal distribution, but there
is no reason to expect the distribution to depend only on
8 and m.

THEORY OF TIME SERIES ANALYSIS

In the preceding section, the covariance function, ¢(s),
or alternatively, the spectral density function, G(w), was
assumed known. Values of these functions are required
to predict mean durations between zero and h-level cross-
ings and to estimate probability distributions of maxima
for the Gaussian model. For the actual streambed profiles
analyzed in this study, values of ¢(s) and G(w) were
computed and the observed properties of the profiles
were then compared with properties of a Gaussian process
having the same covariance and spectral density functions.

Apart from the problem of predicting the zero and
h-level crossings, the covariance functions and spectra
together with the probability distributions of the y values
provide a great deal of information about the process y(t),
and these functions will be found particularly useful in
later sections when we consider the similarities and the dif-
ferences of the streambed profiles that can be attributed
to scale of the flow system or to channel size. Therefore,
it is appropriate at this point to review briefly the theory of
time series analysis and to mention some of the properties
of the covariance functions and spectral density functions
that were found useful in analyzing the dune profiles.
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For this purpose, consider y(t) to be a real continuous
random function of time t, — o <t < o, The process y(t)
is assumed to be stationary and ergodic. Stationarity
implies time invariance of the general statistical prop-
erties of the process y(t), and ergodicity insures that
averages across an ensemble are equivalent to averages
over time along a single sample function or realization of
infinite extent. (For a more detailed discussion of these
concepts, see Yaglom, 1962 or Cramer and Leadbetter,
1967.)

By stationary, both the mean value, 7, and the variance,
o2, are constants, so that it is always possible to form a

new time series, [y(t) —¥]/oy, that has zero mean and
unit variance. Unless otherwise specified, it will be
assumed in the following discussion that this transforma-
tion has been made. Then the correlation function,
defined as

Puy(s) = dyyls)/dyy(0), (24)
is identical to the covariance function.

Both ¢(s) and G(w) are even functions of their respec-
tive arguments, and the usual equations for these func-
tions are

1 [= .
Gul) =7 [“buut)eosds 25)

Puy(s) = [ ow("yuw) e“sdw (26)

where negative values of both time and frequency are
considered. Because y(t) is a real function, the cor-
relation and spectral density functions often are given
as a cosine transform pair, equations 3 and 4, where the
G and ¢ values are modified by the necessary constants
to apply only to positive ¢ and w values. Bendat and
Piersol (1966, p. 77-84) give a complete discussion of the
“one-sided” correlation and spectral density functions
that generally are used in practical computations.

The autocovariance function measures the degree of
dependence between the observed quantity y at one time
and at another time s units later. It is especially useful in
defining periodicities in the process y(t).

The power spectrum or spectral density function
describes the general frequency composition of the data
in terms of the density of its mean square value, that is,
Gyy(w)dw represents the contribution to the variance of
the process from the frequencies between w and (w+dw).
Thus, the spectra show directly similarities and dif-
ferences in the streambed profiles and provide a quantita-
tive basis for comparing the ripple bed forms with the
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dune forms or for evaluating the effect of scale on the
statistical properties of the streambed profiles.

The treatment is extended to two stochastic processes
as follows. The cross correlation between two series
¥(t) and z(t) is given by

by2(s)

Y PN T P! @)

where ¢,.(s) is the cross covariance between the series
and is defined as the expected value of the product
¥(t)z(t+s). Both y(t) and z(t) are ergodic, so that the
cross covariance is

Gyz(s) =E{y(t)z(t +s)}

1 (72
=lim —f y(t)z(t +s)ds. (28)
T~=T | 12

The cross spectrum is defined as the Fourier transform
of the cross-covariance function

Cra@) =2 [ pulemds=c(o) tiglo) @)

where o represents the angular frequency, c(w) is the
cospectrum, a measure of the in-phase covariance, and
q(w) is the quadrature spectrum, a measure of the out-of-
phase covariance. The cospectrum measures the contribu-
tions of oscillations at the lag zero between two time
series. The quadrature spectrum measures the contribu-
tion of the different harmonics to the total cross covari-
ance between the series when all the harmonics of the
series ¥(t) are delayed by a quarter period but the series
z(t) remains unchanged.

The real quantity defined as coherence, y}.(w), is a
direct measure of the square of the correlation of the
amplitudes of frequency w of the processes y(t) and
z(t), or

cyz(0) + ¢ (w)

Co(@)Cs(w) " 0=V@ =L

Yiz(w)= (30)

where G,(w) and G.(w) represent the spectra of y(t)
and z(t), respectively.

Even if the amplitudes are fully correlated, it is possible
that the corresponding frequency components will have
different phases. The phase lag at each frequency is
given by
q(w)
c(w)

0(w) = arctan

31

where 0(w) is called the phase function.
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Another quantity sometimes useful in cross-spectral
analysis is the frequency-response function, H (w), calcu-
lated from the relation

H(w) =%%=A (w)ei®@),

(32)
The quantity 4(w) is the gain function or amplitude gain
of the system and measures the ratio of the amplitude of
the frequency components of the series ¥(¢) and z(¢) at
each frequency w.

The cross covariance measures the dependence be-
tween two time series at the given lag, s, and for this
study, it was applied to investigate the three-dimensional
properties of the sand waves, their mean rate of shifting,
and the time or distance required for the waves effectively
to lose their identity. The cross-spectral functions, equa-
tions 29-32, were used in conjunction with the cross
covariance,

The above theory is presented for a continuous process
with the parameter ¢ representing time. The frequency
f=w/27 is then given in cycles per unit time. The param-
eter ¢ is simply a member of an arbitrarily specified
parameter set, and it can be any quantity that permits the
set of y or z values to be ordered linearly. If time ¢ is
replaced by distance x, the frequency f is replaced by
wave number € and the wave period T=1/fis replaced
by wavelength L=1/e.

DATA AND ANALYSIS

BASIC DATA

Profiles from four different channels were selected for
these analyses. Table 1 gives a summary of the records.
Three of the channels were recirculating laboratory flumes
located at the Research Center Hydraulics Laboratory,
Colorado State University, Fort Collins, Colo. The other
channel was Atrisco Lateral near Bernalillo, N. Mex., a
conveyance channel with a sand bed and with banks
stabilized by clay and vegetation. The dimensions of the
flumes were: 0.67 foot wide by 30 feet long, 2 feet wide by
60 feet long, and 8 feet wide by 200 feet long. Atrisco
Lateral was approximately 55 feet wide, and the profiles
were obtained about midway in a straight reach 12,000
feet long. The median diameters of bed material and flow
parameters are shown in table 1.

Fifty-four records representing six different flow condi-
tions were selected for analysis. Runs 1, 2, and 3 were
data collected from Atrisco Lateral on three different
days, but with similar flows. Records 4 through 19 and
20 through 39 are from the 8-foot flume for two different
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flow conditions, and like the field data for the first three
runs, the bed configuration was dunes. The records for
runs 40—43 are for a ripple bed in the 2-foot flume, and
runs 44—47 are for identical flow conditions. Runs 48-51
are for a dune-bed flow in the 2-foot flume, and runs
52—-54 are for a ripple bed in the 0.67-foot flume, corre-
sponding to the experiments reported by Rathbun and
Guy (1967). Run 54 subsequently was discarded because
of suspected errors in the basic data, so analysis even-
tually was carried out on 53 profiles from the six different
flow conditions.

Profiles of the bed elevations were obtained with the
sonic depth sounder described by Karaki, Gray, and
Collins (1961) except for the smallest flume where the
profiles were traced on a stripchart from the plastic side-
walls of the flume. All data were digitized with an analog-
to-digital converter at the intervals shown in table 1. The
flume data, runs 4 through 54, were standardized with
zero mean and unit variance after removing a straight
line trend to account for the possibility that the sand bed
in the flume was not parallel to the instrument carriage
rails supporting the sonic sounder.

At first, the trend was not removed from the Atrisco
Lateral data because the sounder was mounted on a boat
at a constant depth below the water surface. However,
initial analyses showed some long-term trends in the data,
so that parts of records from run 2 were selected for trend
removal. These shorter records from Atrisco Lateral are
shown as runs 55 through 57 in table 1 and are discussed
in detail in a later section.

Only longitudinal profiles were available for Atrisco
Lateral and the smallest flume: for the 2- and 8-foot-wide
flumes, time records y=y(t) were available along with
the longitudinal profiles. All the computations described
in this and subsequent sections were accomplished on
the CDC 6400 computer at Colorado State University.

For the discrete data used in this study, the values in
equations 25 through 32 were approximated by the esti-
mates presented by Granger and Hatanaka (1964), using
the Blackman and Tukey spectral estimates with a
Hanning window (Blackman and Tukey, 1958, p. 34).
Formulas for the digital calculations of the covariance
functions and spectra and some guidelines for estimating
the length of record required for the various calculations
are given in the appendix. A detailed discussion of the
calculations and an excellent review of spectral theory
are given in the above references and in a recent book by
Bendat and Piersol (1966). Rodriguez-Iturbe (1967) investi-
gated the application of cross-spectral analysis to hydro-
logic data and gave a thorough discussion of the computa-
tional procedures for discrete data. The procedures used
in this study are identical to those listed by him (Rodriguez-
Tturbe, 1967, p. 5-7).
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TABLE 1.—Summary of basic data
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[Transverse station: CL, centerline; L and R, left and right third points of the channel; 2, 4, and 6, stations from the left wall of the 8-ft flume. Lag interval: given in minutes for runs 4, 19, 33,

40, 44, and 48]
Median
Channel Time or  Trans- No. of Lag Mean Mean Water diam Bed
and run Date Time station verse data  interval depth velocity Slope  temperature of bed configura-
station points (ft or min)  (ft) (fps) ) material tion
(mm)
Atrisco Lateral:
1966
Run i....... June 23 ......... 0-4000 CL 12,924 0.333 2.20 2.16 0.00055 19 0.23 Dunes.
2.l June 22 ......... 0-4000 CL 13,116 .333 2.30 2.11 .00055 20 .23 Do.
F O June 21 ......... 10004000 CL 9,864 .333 2.29 2.08 .00058 20 .23 Do.
8-ft flume:
Run4....... Mar. 15 ......... 936 min CL 936 1.00
Sivenns Mar. 17 1115 60-180 2 924 .130
6.cennnn. do..... 1115 180-60 4 924 .130
Teeeeienans do..... 1115 60-180 6 912 .132
- S do..... 1255 60-120 4 432 .139
L TR do..... 1300 60-120 4 444 .135
10......... do..... 1305 60-120 4 432 139
11......... do..... 1310 60-120 4 432 .139 2.80 2.09 .00063 20 .24 Do.
12......... do..... 1315 60-120 4 444 135
13......... do..... 1320 60-120 4 444 .135
4......... do..... 1325 60-120 4 456 131
15......... do..... 1330 60-120 4 444 135
16.........do..... 1530 60-180 2 876 137
17.........do..... 1536 60-180 4 900 .133
18......... do..... 1540 60-180 6 900 137
19......... do.ceeennnenin. 888 min CL 888 1.0
20...... July12 1732 60-180 4 468 .256
21.........do..... 2114 60-180 4 736 .163
22......... do..... 0930 60-180 4 984 .122
23......... do..... 0924 60-180 4 720 .167
24......... do..... 0935 60-180 4 876 137
25 do..... 0946 60180 4 612 .196
26......... do..... 0950 60-180 4 480 .250 2.36 2.01 .00056 24 .24 Do.
27.eciinn. do..... 0953 60-180 4 528 .228
28......... do..... 1113 60-180 4 480 .250
29......... do..... 1308 60—180 4 468 .256
30......... do..... 1328 60-170 4 792 152
3l...oee. do..... 1329 170-60 4 969 .158
32......... do..... 1727 60-180 4 852 141
33..ien. do..... 1735 505 min 4 672 .750
34...... July 13 0907 60-180 4 864 .139 .00053
35 s do..... 0912 60—180 4 480 .250 .00053
36......... do..... 1012 60-180 4 864 134 .00053
37 do..... 1016 60-180 4 480 .250 2.36 2.01 .00053 25 .24 Do.
38...... July 14 0810 60-180 4 1,188 101 .00045
39......... do..... 1435 60-180 4 1,176 .102 .00045
2-ft Aume:
1967
Run 40...... Feb.23 ......... 395 min CL 395 1.0
41...... Feb.21 1110 5-55 CL 668 .075 518 1.10 .00088 20 .35 Ripyiles.
42...... Feb. 22 2350 5-55 L 667 .075
43...... Feb. 23 1412 5-55 R 766 .070
... Mar. 23 ......... 532 min CL 532 1.0
45...... Mar. 21 1720 5-55 CL 640 .078 .522 1.07 .00088 20 .35 Do.
46...... Mar. 22 0908 5-55 CL 696 072 }
47......... do..... 2156 5-55 L 640 .078
48...... Apr.12 1640 1160 min CL 776 1.50
49...... Apr.11 1400 5-55 CL 416 120 .521 1.62 .00212 20 .35 Dunes.
50...... Apr. 12 1403 5-55 L 407 .123
51 ... do..... 1536  5-55 L 303 .97
0.67-ft flume:
1965
Run 52...... Nov. 30 1000 0-7.2 L 306 .0208 174 .508 .00148 20 .30 Ripples.
53......... do..... 1000 9-16 L 348 .0208 174 .508 .00148 20 .30 Do.
5M...... Dec.1 1000 0-7.2 L 318 .0208 174 .508 .00148 20 .30 Do.
Atrisco Lateral:
1966
Run 55...... June 22 ......... 0-2000 CL 6,000 .333 2.30 2.11 .00055 20 .23 Dunes.
56......... do.ccoonenannins 0-200 CL 600 .333 2.30 2.11 ,00055 20 .23 Do.
5Tiiennn. do..cocveennnnn 200—-400 CL 600 .333 2.30 2.11 .00055 20 .23 Do.
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ZERO AND h-LEVEL CROSSING ANALYSES

In this section, mean values of the durations between
zero and h-level crossings, the mean durations of upward
excursions above the level &, and some of the probability
distributions of interest in the two-dimensional stochastic
model of particle movement (Sayre and Conover, 1967)
will be considered.

First, it is noted that the bed elevation y, measured
from the mean bed level follows approximately a Gauss-
ian distribution (fig. 5). Intuitively, an approximate
normal distribution is expected, because physical phe-
nomena governed by the complex interaction of many
factors often exhibit such a distribution. Logically, the
distribution can be only approximate; in a finite flow

8-inch flume

0 (T TN N Y T S SO Y N

8-foot flume

BED ELEVATION, y, (DIMENSIONLESS)
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depth, the variation of the bed elevation about the mean
can never assume infinite values. In addition, the pre-
ferred orientation of the dune forms, with the characteris-
tic steeply sloping downstream faces, suggests a pattern
more regular than normal distribution. Figure 5 shows
examples of the distributions from each of the four chan-
nels, and although the sets of values plot around the
straight line of a normal distribution, each shows some
departures from normality.

The cumulative distribution curves of figure 5 tend to
smooth out irregularities of the data and are not really a
good indication of the normality or lack of normality of
the data. A better criterion, perhaps, is to compare the
skewness of the data with the skewness of a normal dis-

2-foot flume

Atrisco Lateral

1 1] |

1 | |

1

-2
99 98 95 90

10 5

21

L1

99 98

PERCENTAGE EXCEEDING y

FIGURE 5.— Distributions of bed elevations.
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tribution, which is zero. Table 2 lists the properties of the
raw data and shows that the skewness varied from — 0.3
to about 1.7, with a preponderance of values on the posi-
tive side. Both the skewness and kurtosis show a con-
siderable range values with no recognizable pattern.

TABLE 2. —Statistical properties of raw data

Run Variance Standard Skewness Excess of
deviation kurtosis
To....... 6.70 X 102 2,59 x 10t 6.38 X 101 1.07 X 10°
2o, 7.63 X 102 2.76 X 10! 5.09 X 10! 9.47x10-!
E T 7.28X10-2 2.70 X 10— 2.77 X 10! 3.35x 10t
[ ST 4.00x 10-2 2.00x 10-1 1.71 X 10° 9.91 X 100
L O 2.09 X 10-2 1.44 X101 4.04X10-t —8.12X10-3
6.cnnen. 1.58 X 102 1.26 X 101 4.92 X 101 6.45x10-2
Taveennn, 1.77 X 10-2 1.33 X 10-1! 1.48 X 10-1 —2.87 X101
8. 2.62 X 10-2 1.62 X 10~ 6.06 X 10-2 —2.03x10-!
L 1.90 X 10-2 1.38 X 10! 2.59X 10~ —5.62x 10!
10....... 3.12X10-2 1.77x 10! 5.70 X 10-1 3.35x 10!
... 3.59 X 10-2 1.89 X 10! 4.12x10-t —3.15x 10!
12....... 3.38 X 10-2 1.84 x 10! 3.38 X 10—t —2.58 X 101
13....... 2.96 X 10-2 1.72x 101 520X 10~ —1.49x10-!
14....... 3.80x10-2 1.95x 10! 6.07 X 10! —3.23 X101
15....... 3.83X10-2 1.96 X 10! 557X 10~ —4.36x10-!
16....... 3.22 X102 1.79 X 101 8.66 X 10-1 2.32 X 10°
17....... 4.68 X 10-2 2.16 X 10—t 1.65 X 10! —5.84 X101
18....... 3.37x10-2 1.84x 10-1! 2.06 X 10! —1.53 X 10~
19....... 1.14 X 10-2 1.07 X 10~ 1.29 X 10-1 —1.67X 101
20........ 2.16 X 10-2 1.47x10-! 4.50 X 10-1 5.03 X 10!
21 ....... 1.23 X 10-2 1.11 X 10-1 2.28 X 10-1 4.46 X 10-1
22, 1.94X10-2 1.39x10-1 3.17 X101 —2.21 X 10!
23....... 1.88x10-2 1.37x 10! 1.47X10-' —2.20x10-!
24 ....... 1.96 X 10-2 140X 10-? 5.09 X 10-1? —8.21 X 10-2
25....... 2.61 X 10-2 1.62 X 10! 8.33x 10! 8.11x10-1
26....... 2.77X10-2 1.67 X 10! 6.97 X 10-1! 4.20 X 10!
27 .ot 2.98 X102 1.73x 10! 6.91 X 10! 4.41 X101
28....... 1.76 X 10-2 1.33 X 10-! 4.06 X 10! 7.06 X 10-1
29....... 1.44 X102 1.20x 101 5.37x 10! 1.66 X 10°
30....... 1.07 X 10-2 1.03 X 10-1 9.84 X 10-2 8.41 X 10-3
31....... 1.17X10-2 1.08x10-t —9.77X10-2 5.49x10-1
32....... 2.11 X 102 1.45 X 10-1! 8.07 X 10! 1.55 X 10°
33....... 1.45 X102 1.20 X 101 1.75 X 10-1 2.57 X101
34....... 1.22X10-2 1.10x 101 2.04x 10—t —1.79Xx10-!
35....... 1.23 X 10-2 1.11x 10! 1.16 X 100 9.00 X 100
36....... 1.03 X 10-2 1.01 X 10! 1.60 x 10-1 2.91 X101
37....... 1.04 X 102 1.02x 107 —271x10-2 —4.17X10-2
38....... 1.25X10-2 1.12x10-! 7.66 X 10-1 1.12 x10°
39....... 8.52Xx10-3 9.23 X102 1.03 X 100 1.71 X 100
1.29 X 10-3 3.60 X 10-2 6.78 X 10-1 4.76 X 101
1.91 X10-3 4.37 X102 2.81 X10-1 1.98 x10-1
2.25X10-3 4.74xX10-2 —1.85X10-' —7.54x10-3
2.09X10-3 4.57 X 10-2 3.33x10-! —4.25X10-1
1.20x10-3 3.46X10-2 —229X10-* —4.87x10"!
1.64 X 10-3 4.04 X 10-2 7.92x10-2  —5.28 X101
1.50x 10-3 3.87x102 2.15X10-t —4.16 X 10!
1.79 X 10-3 4.23 X10-2 2.40 X 101! —1.78 X 10-1
5.62x10-3 7.50x10-2 9.27 X101 6.70 X 10-1
5.48 X 10-3 7.39 X 10-2 1.03 X 10° 1.64 X 10°
5.54 X103 7.44 X 102 3.60 X 10-1 2.68 X 10°
3.23x10-3 5.68 X102 1.46X10-1  —8.08 10!
2.16 X10-3 4.64 X 10-2 4.44 X 101 —4.99 xX10-!
1.19 X 10-3 3.44 X 10-2 2.84x10-1 —4.33x10-!
8.09 X 102 2.84 %101 5.41 X101 3.83x10°
8.72X10-2 2.96 X 10! 1.16 X 10° 2.49 X 100
3.95 X 10-2 1.99 X 10— 4.81 X10-2 —5.73x10-2

NOTE. —Run 54 not used.

Even though the distributions of the data depart from

normality, the relation of equation 10 provides a good
estimate of the mean duration or the mean distance
between zero crossings, /o, as shown in figure 6. Although
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Fi1GURE 6.—Comparison of the expected length or duration between
zero crossings for a Gaussian process, E{lo}, with the observed values,
Lo

there is considerable scatter, the data group around the

line of perfect agreement. No consistent trends in the

scatter could be attributed to flume size or type of bed
form, so that most of the scatter is assumed to be due to
the shortness of the records of the flume data.

The ratio of the expected number of A-level crossings to
the expected number of zero crossings was given for both
the continuous process and the discrete approximation
to the continuous process in figure 3. Because the two
curves are so similar, the simpler expression of equation
12 will be used. Observed values of the ratio Ny/No are
plotted in figure 7, along with the curve representing
equation 12. Values for 13 profiles were plotted. Six of the
profiles, runs 4, 19, 33, 40, 44 and 48, are of the process
y=1v(t), and seven of the profiles, runs 16, 32, 41, 45,
53 and 56, are of the process y=1y(x). For positive values
of &, the points scatter symmetrically about the curve
of equation 12, but for negative values of £, most of the
points fall above the curve for values of £ from 0 to —1
and below the curve for values of A from —1 to —2.

Figure 7 shows clearly that there are more crossings
below the mean bed elevation than above, which would be
expected from consideration of flow conditions over a
dune. Below the mean bed elevation, the reverse flow in
the trough and the flow impinging on the back of the dune
result in lower velocities which promote the growth of
small-scale features. Above the mean bed elevation, the
converging flow up the back of the dune results in a
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FIGURE 7.—Observed values of Ny/Ny as a function of A.

higher-than-average velocity and shear stress near the
bed, and small-scale features cannot form.

Figure 8 shows the average of all observations, with the
points connected by dashed lines to give an indication of
the shape of the distribution of Nn/Ny values and with
averages of y(¢t) and y(x) differentiated. The figure
indicates that records of both ¥(¢) and y(x) yield values
of Nu/No that agree very well with the theoretical curve
for 7 >0, but that deviate appreciably from the curve
of equation 12 for 4 < 0, with the values from the process
y=1y(t) showing the greatest deviation. Figure 8 suggests
that there may be some slight differences in the properties
of y(x) and y(¢). However, distributions of the raw data
and the spectral analyses of the processes, discussed in a
later section, indicate that there are no appreciable

o
Average of 13

©°
Average of (1)

a
Average of y(x)

o
2\0.6--
é‘Q

Equation 19
0.4+

-2 -1 0 1 2
h

FIGURE 8.— Average values of Ni/N, as a function of A.

SEDIMENT TRANSPORT IN ALLUVIAL CHANNELS

differences, so that the greater deviation of the values for
the process y=y(t) probably is fortuitous.

No consistent differences in the deviations of the values
from the curve in figure 7 could be attributed either to
flume size or to bed forms, where both ripples and dunes
are represented.

The mean duration of an upward excursion of the
process y(t) above the level h, E{l}}, was given by equa-
tion 13, and equation 14 is the ratio of mean duration of
upward excursions at the level h to mean duration of up-
ward excursions at the zero level. Equation 14 is plotted
in figure 9 along with observed values of the ratio [}/[}.
Again, as in figure 7, there is systematic deviation from
the curve for values of h from 0 to —1, and there is
considerable scatter at the higher values of h. However,
this is not too disturbing because the number of upward
excursions that are observed in the relatively short flume
records probably is too small to get reliable average values
of I},

The average rest period of a particle deposited between
the levels i, and h: can be computed from equation 14 or
estimated graphically from figure 9. Theoretically, there
are no limitations to equation 14; it is applicable between
any two levels of the bed, —© < h <+, The ratio
;11§ approaches zero as h assumes large positive values
and approaches an infinite value as h assumes large nega-
tive values. From a practical point of view, these extremes
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N
0.2 | I [ L B N | |
-2 -1 0 1 2
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FIGURE 9.—Observed values of the ratio /;f/l{ plotted against A.
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rarely would be of interest. The major transport of bed
material occurs in the activity shifting part of the bed, and
it is unlikely that one would need to consider anything
beyond two standard deviations of the mean bed level to
account for the bulk of the sediment movement. Within
these limits, a reasonable estimate of an average rest
period can be determined from figure 9 or equation 14.

Equation 13 gives the mean rest period, ([}, of a particle
deposited on the downstream face of a dune at the level
h. We are interested in not only the mean value but also
the distribution of [/}, the conditional probability distribu-
tion of rest periods, given that a particle is deposited at
the level k. As indicated previously, there is no theoretical
basis for predicting a distribution of the [/} values, and,
unfortunately, the records of y(z) were not long enough
to establish the rest period distributions.

However, it may be useful to establish some of the
properties of the distributions for [} values of the process
y(x), even though these values do not represent rest
periods, because if the statistical properties of y(x) and
y(t) are similar, the distribution of crossings and other
features of interest should be the same. (For Gaussian
processes with zero means, similar covariance functions
insure similarity of all other properties.) For this purpose,
the Atrisco Lateral records were selected because they
were the longest available.

Figure 10, a bar graph of [/; distributions for run 1,
shows that shapes of the distributions vary with 2 and
suggests that at the level A=0 the lengths of upward
excursions follow an exponential distribution. Figure 11
shows as solid lines exponential distributions with the
same means as observed mean values of [} for runs 1, 2
and 3. The plotted points represent the observed values.
Obviously, the exponential distribution is only a rough
approximation.

W. W. Sayre (oral commun., 1967) suggested that per-
haps a gamma distribution would serve as a model for
the distribution of /} values over any practical range of
bed elevations that are of interest. To investigate this
possibility, consider the gamma distribution with param-
eters b>0,A>0,

A
P(l)zm (Ax)o-te-rz, (33)
where x >0, and
p(l)=0,

where x < 0.

When b=1, this is the negative exponential distribution
shown in figure 11, with A=1/lo. The variance of the
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FIGURE 10.— Observed distributions of /; for run 1.

gamma distribution is /A2, and its coefficient of variation
C,. the standard deviation divided by the mean, is 1/Vb.

Figure 12 shows observed values of C, for the distri-
butions of {j values plotted as functions of . The trend
line sketched through the plotted points is positioned with
C,=1 at h=0, corresponding to the exponential distribu-
tion of figure 11. Thus, the postulated gamma distributions
of the lengths or durations of positive excursions above
the level £ can be determined directly from figures 12
and 9, with A and & computed from the following equations:

b=1/C2

A= (I/C%)UI)avs

(34)
35)

Figure 13 shows bar graphs of the observed /} dis-
tributions for run 1, with points plotted at the midpoint
of each class interval representing the frequency for that
class from a gamma distribution with parameters given
by equations 34 and 35. The observed mean value of 3
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FIGURE 11.—Observed distributions of /i for runs 1, 2, and 3. Solid lines are exponential distributions with the same mean values as the observed
means. The lengths are in multiples of the lag interval, 0.333 feet.
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dence levels for estimating the distributions of rest periods
cannot be established until longer records of the process
y=1vy(t) become available.

One other distribution of interest that will be con-
sidered in this section is the probability that a particle is
residing in the bed at the level i. This is not the same as
the probability that a particle is deposited at the level A,
for deposition occurs on the downstream faces and in the
troughs of the sand waves; this latter probability no doubt
depends on flow conditions. The distributions derived
empirically by investigating the area bounded by the curve
y=y(t) or y=y(x) above a level h give the percent of
particles found in the bed above the level 2 and represent
the probability of finding a particle at the level A if nothing
is known of its previous history. Figure 14 shows the com-
puted values for y(x) and y(¢) records from the 2-ft lume,
with a smooth curve drawn by eye to indicate the trend
of the distributions. An approximate equation for P(h),
the probability that a particle is residing in the bed above
the level &, is given by

P(h)=1—e-0-157(h+1.75), (36)
Equation 36 is a good approximation in the range

0.1 <P < 0.9, but it is not applicable for extreme values
of h.

-2 T T T T T T T T T

=y

O Run 40, ripples —l
Run 44, ripples -

[e]

Run 48, dunes —

T

y=y

h
[=]
1 1 1

O Run 41, ripples ﬂ
O Run 45, ripples -1
® Run 48, dunes -1
2 N Ly ] !
0 50 100

PERCENTAGE OF PARTICLES ABOVE THE LEVEL 4

FIGURE 14.— Percentage of particles in the bed above the level h.
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DISTRIBUTION OF WAVE HEIGHTS AND AMPLITUDES

The absolute maximum value of ¥ between zero cross-
ings was defined in figure 2 as the wave amplitude, a, and
it was noted that the distribution of positive amplitudes,
a+, represented the probability distribution of local
deposition and that the distribution of negative values,
a—, represented the probability distribution of local
depth of scour associated with the formation and migra-
tion of sand waves. If the processes y(x) and y(¢) were
symmetric about their mean values, the distribution of
positive and negative a values would be identical, and for
a Gaussian process, it was postulated that the distribu-
tions of a values would approximate the distribution of
crest heights, 7, shown in figure 4.

All of the records analyzed exhibited relatively broad
spectra, with values of 82 from equation 20 varying from
0.83 to 0.99 (see table 3) and with most of the values
greater than 0.9. Figures 15 through 17 show distributions
of positive and negative a values for runs 1 through 3.
The solid curves on the figures represent the Gaussian
distribution from figure 4 of crest heights for a process
with a broad-band spectrum (82=1.0). Two points of
interest should be noted: (1) the distributions are not
symmetric, and (2) the negative values, a—, follow more
closely the normal distribution than do the positive values.

The positive amplitudes, a+, followed approximately an
exponential distribution, as shown in figure 18. In this
figure, P(a) is the cumulative probability distribution of
a, and for this form of plotting, a Rayleigh distribution
(eq 21) would have a slope of two and an exponential
distribution, a slope of one. Clearly, except for very small
values of a, the slope is one, indicating an approximate
exponential distribution.

As discussed previously, there is no basis for extimating
the probability distribution of wave heights, H, the trough-
to-crest height, and there is no reason to expect simi-
larities in the distribution of H and a values. Figure 19
shows the distribution of wave heights to approach the
Rayleigh distribution, rather than the exponential distribu-
tion. The same data were used to prepare figures 18 and
19, but in figure 19 the raw data were not standardized
and the wave heights are given in feet rather than in
units of standard deviations.

Even though the distributions are different, the mean
values of a+ and H relate reasonably well (fig. 20) as do
the mean values of distances between successive up-
crossings of y and mean dune lengths, L, (trough-to-
trough distance) (fig. 21). Note, however, that values of
2a and of the distance between successive upcrossings
are not strictly comparable to H and L because entire
waveforms occur above or below the mean bed level, and
their lengths and heights are not reflected in the average
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TABLE 3.—Miscellaneous properties from the zero-crossing and spectral
analysis

[Type of profile is y(x) except type for runs 4, 19, 33, 40, 44, and 48, which is y(¢)]

Length: L, is the average distance in feet, or time in minutes for runs 4, 19, 33, 40, 44, and 48,
between successive upcrossings of y=0,

Amplitude: @+ is the average of maximum y values between successive zeros,

oy: From eq 5.

8% From eq 20.

1/m;: Mean wavelength in feet, or wave period in minutes for runs 4, 19, 33, 40, 44, and 48, from
spectra, eq 8,

Length Amplitude
Run ot (‘1’;; ) 8 Um,
Lﬂ Cr (F[} Cr

1o, 8.96 0.577 0.277 0.850 0.259 .....ceiiiiiiiiiinin
2iiiinns 9.22 589 287 913 276 ...
F T 7.79 560 .302 82 270 e
L T 57.3 504 386 1.46 .200 0.933 26.0

S5eiiinins 4.97 599 164 .868  .144 978 6.38
6..ennnn 4.94 681  .158 886  .126 .968 4.91
Tovernans 5.37 618  .156 673 133 973 5.75
L ST 5.24 .631  .180 712 (162 .964 4.46
9.curennn 6.13 379 225 573 .138 952 3.85
10....... 5.78 511 .221 687 177 .966 5.11
11....... 6.59 596 223 .684 (189 972 5.56
12....... 3.39 8717 119 1.21 .184 975 5.31
13....... 6.39 481 243 690 172 970 4.91
14....... 4.74 789 192 1.02 195 982 6.37
15....... 7.38 186 .306 467 .196 977 6.24
16....... 6.21 512 .256 1.09 176 .960 4.52
17....... 8.45 384 274 147 216 983 7.59
18....... 6.96 358 .226 555 184 979 6.48
19....... 29.3 591 .099 .885 107 974 42.5

20....... 4.68 448 169 800 (147 931 5.35
2l....... 4.34 648  .138 834 111 .946 4.01
22....... 4.21 575 .189 648 (139 974 4.47
23.....il 4.19 623  .167 708 137 .946 4.07
24....... 5.04 416 .190 705 1140 .966 4.43
25....... 5.61 412 201 843 162 952 5.15
2....... 5.62 598 212 836  .167 .938 5.85
27.couet 5.79 530 227 702 173 944 5.68
28....... 3.70 635  .137 928 (133 .909 4.72
29....... 4.04 706 (144 1.00 120 .876 3.48
30....... 3.98 620  .091 899 103 968 5.37
3l....... 5.69 576 129 716 .108 .966 5.86
32.. 4.78 644 157 853  .145 970 5.44
33 16.6 817 103 815 1120 961 26.8

34....... 4.67 662 132 732 110 .965 4.95
35....... 5.78 453 179 1.06 Al11 830 3.02
36....... 3.20 709 .093 836 101 961 4.31
37....... 4.12 756 .106 755 102 923 5.25
38....... 4.20 552 072 1.01 112 .983 6.21
39...... 2.79 757 .088 1.23 .0923 962 3.32
40....... 14.3 989  .0237 1.16 .0360 .958 29.7

41....... .968 .635  .0432 857  .0437 .886 1.36
42....... 1.16 666  .0483 666  .0474 .895 1.61
43....... 1.36 542 .0512 680  .0457 921 1.75
4....... 274 .630 0279 963  .0346 970 38.8

45....... 1.14 546 .0493 619 0404 874 1.33
46....... 1.01 515 .0430 652  .0387 .881 1.24
47 ....... 1.13 679  .0431 820 .0423 .904 1.58
48....... 25.5 562 .0885 817  .0750 927 324

49....... 2.56 472 .0952 901  .0739 948 3.00
50....... 277 610 .0734 1.03 0744 927 2.37
51....... 3.16 665  .0653 687  .0568 .956 3.56
52.cenne .636 534 0384 920 0464 .980 1.08
53 ... 782 460  .0416 449 0344 964 .81

distance or average of maximum ordinates between zero
crossings.

An interesting correlation was found to exist between
the average of maximum ordinates between zero cross-
ings and the standard deviation of the bed elevation
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F1GURE 16.— Distribution of positive and negative a values for run 2.

(ig. 22). For the smaller features, a direct linear relation
applies, with the standard deviation of the bed elevation
approximately equal to the average amplitude of the sand
waves. This is precisely the relation predicted for the
mean value of local maxima given by equation 23 and
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shown in figure 4 as the curve corresponding to §2=1.0.
The relation of figure 22, then, supports the assumption
that the distribution of @ values should be similar to the
distribution of the local maxima. The deviation from the
line of agreement at the larger a values might be at-
tributed to the fact that some of the details of the record
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FiGURE 18.— Approximate exponential distribution of positive a
values for run 55.
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FIGURE 19.— Distribution of wave heights, H, for run 55.

are lost in digitizing the continuous trace of bed elevation.
The larger dunes are not more regular than the smaller
features; in fact, the reverse is true. If the bed profile is
represented as a succession of identical triangles, similar
to the idealized dune form of figure 1, with ripple index,
L/H, of 15 and tan B=0.6, the relation of mean amplitude
to standard deviation of y is given by a=0.64 o,. If this
condition were to hold for the larger dunes represented
in figure 22, the plotted points would fall to the left of
the line of agreement.

Summarizing, the average amplitude a is approximately
equal to the standard deviation of the bed elevation, and
the distributions of a values predicted by the relations in
figure 4 appear to give reasonable agreement with the
observed distributions. However, the bed profile is not
symmetric about its mean level, and the distribution of
negative values a— agrees more closely with the predicted
normal distribution than do the positive values a+. For
the positive values, an exponential distribution can be
shown to apply (fig. 18).
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SPECTRAL ANALYSIS

In the previous discussion, the autocovariance func-
tions or the spectral density functions for the processes
y(x) and y(t) were assumed known. These functions
were required to predict the number of zero and A-level
crossings for the model Gaussian process, and for the
experimental data the functions were known because
they were computed. In the following sections, the prop-
erties of the covariance functions and spectra will be
considered in somewhat more detail.

STATIONARITY AND EQUILIBRIUM FLOW

A critical assumption in spectral analysis is that the
processes under consideration are stationary, at least to
the second order. At the initiation of this study, it seemed
intuitively obvious that stationarity of the processes y(t)
and y(x) would be a direct consequence of equilibrium
flow conditions. If the mean characteristics of the flow,
the sediment, and the transport do not change with time
or with distance along the channel, then surely the statis-
tical properties of records of the bed profile should be
invariant with respect to shifts in the origin of the records.

For the longer field records, it can be demonstrated that
the assumption of weak stationarity is justified. Figure
234 shows mean values and standard deviations for eight
short segments from the record of run 3 plotted with their
respective 90 percent significance levels. The standard
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FIGURE 23.— Comparisons of means and standard deviations, in feet: A, for eight short segments of the record of run 3, Atrisco Lateral; B, for
eight longitudinal profiles during equilibrium flow in the 8-foot flume, runs 8 through 15. The solid line represents the average value and the

dashed lines indicate a 90-percent significance level.

deviations do not vary significantly. The rather large
variations in the mean values resulted from large alternate
bars and a meandering thalweg that existed in the channel
and that introduced apparent trends in the short segments
of the record. The bed profiles were obtained by sounding
from a boat with the water surface as a datum, and the
depth of flow varied somewhat systematically along the
channels. However, when the bed elevations were meas-
ured from the mean bed level established by a linear
trend line through short segments of the reach, the
assumption of second-order stationarity for these short
segments of record was satisfactory. For longer segments
of the record, on the order of 40 to 50 times the mean
channel width, no significant differences were noted in
the means and variances.

The flume records presented a somewhat different
problem. It was assumed that, for equilibrium flow condi-
tions, any two records of the bed profile would show
approximately the same statistical properties. However,
this was not found to be true. Figure 23B shows that the
standard deviations for runs 8 through 15, all of which
were taken during apparent equilibrium flow conditions
over an identical reach of the flume (see table 1), vary
significantly.

Two factors appear responsible for the large variations
in the flume records. First, the lume records for y(x) are
short relative to the number of dunes that are observed,
and the short records introduce inherently large variations
in the statistics from one observation to the next. Second,
the concept of equilibrium flow implies a time-averaged
stability that may not necessarily apply to any single
observation. Simons and Richardson (1966, p. J3) indicate
that equilibrium flow obtains when the time-averaged

water-surface slope and bed slope are parallel and con-
stant and the time-averaged sediment discharge is
constant. Rathbun and Guy (1967, p. 111) have shown
that extremely large variations in sediment transport
rates are to be expected in recirculating flumes, and
probably these variations are reflected in changes in the
properties of the bed profiles from one observation to the
next.

Despite the rather large variations in the flume records
due to the fact that equilibrium flow conditions do not
prevail over short time intervals, the spectral properties
of the individual records are remarkably similar for a
given flow condition, provided the data are standardized
to zero mean and unit variance. Figure 24 shows the
spectral ordinates for runs 8, 10, 12 and 14 as points
plotted against a dimensionless wave number, €/€yay,
where €p,,x is the maximum wave number for which the
computations were carried out; the solid line represents
an average curve for the spectra and the dashed lines
represent a 90-percent confidence band based on the
procedure given by Blackman and Tukey (1958, p. 21-23).
Only two of the 80 points fall outside the confidence band;
the general shapes of the spectra are therefore quite
reproducible from one observation to the next. The ap-
proximation used in this study, therefore, was to treat
each individual record as if it were weakly stationary.
The moments of the spectra for the individual records
could then be used to estimate the number of zero cross-
ings by equation 10 to compare with observed values.
However, in attempting to relate the statistical properties,
especially the variance, of the bed profiles to flow param-
eters, it will be found convenient to work with average
values over a consistent set of flow conditions.
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FIGURE 24.—Spectra for indicated flume records.

THE MARKOV MODEL FOR DUNE PROFILES
A major question with regard to spectral analysis is
whether or not the properties of the covariance functions
or the spectra can be predicted from only the charac-
teristics of the flow and the sediment. Some work already
has been accomplished along these lines. Algert (1965)
observed that the general shapes of the autocorrelation
functions and of the spectra for the process y=y(x) were
similar to that of a second-order Markov process, and he
developed a model for the spectra based on previous
work of Siddiqui (1962). Nordin and Algert (1966) pre-
sented virtually the same development, based on Algert’s
1965 study, but added some observations on the process
y=1y(t). Ashida and Tanaka (1967) noted that a second-
order Markov process fits the observed spectra only for
dunes and postulated a higher-order linear regressive
scheme for other bed forms but did not develop a model or

apply the higher order scheme to any of their data.

SEDIMENT TRANSPORT IN ALLUVIAL CHANNELS

In the studies by Algert (1965) and Nordin and Algert
(1966), the parameters upon which the model of the
spectra is based are the values of the covariance function
at zero, one, and two lag intervals, and these values were
shown to relate roughly to the flow parameter, unit
discharge (fig. 25). We can use figure 25 and equation 15
to predict the average length between zero crossings of
the process ¥(x) by noting that the spacing of the discrete
data points used by Nordin and Algert (1966) in figure 25
was approximately given by

Ax = 4oy, =4C"2. 37)
Here Ax is equivalent to At in equation 15,C1/Cois ¢ (At),
and C; is oy ¢ (iAt). Substituting these relations in equa-
tion 15 and reading values of Cp and C; from figure 25
for values of unit discharge given in table 1, the average
distances between zero crossings were computed and are
compared with observed values in figure 26. For the dune
bed configuration, the observed values of [, fall between
plus and minus 40 percent of the expected value, E{lo}.
For the ripple bed configuration, the variations are con-
siderably greater, probably because the size of ripples is
more dependent on grain size than flow conditions, so
that figure 25 perhaps is not applicable. In view of the
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FiGURE 25.— Relation of Cy, Cy, and C» to unit water discharge (from
Nordin and Algert, 1966).



STATISTICAL PROPERTIES OF DUNE PROFILES

10 T T T T T T T T T
/ °
/ [ )
[T Q&V 0/' .
pd Q,
5 7~ / -
L / /
N——
N A‘ :
/ *°
QG
/uo
L 5 / X _
v A7
- / ) .
Ripples
// ®
= Dunes -
0 I 1 ] 1 | 1 1 ] 1
(o] 5 10

/o, IN FEET

FIGURE 26. — Comparison of estimated and observed average distance

in feet between zero crossings.

gross assumptions that went into estimating E{/o}, the
results of figure 26 are considered quite good.

There are a number of problems involved in using the
second-order Markov model and the relations of figure 25
for predictive purposes. Both the model and the relations
of figure 25 are strongly dependent on the lag interval at
which the continuous records are digitized. In addition,
spectral analyses by the writer and by D. R. Dawdy and
N. C. Matalas (personal commun., 1966) have shown that
the Markov model does not apply for many of the dune
profiles examined. Finally, Plate (1967) has raised some
serious questions with regard to the lack of physical basis
of this model. It is desirable, therefore, to consider an
alternative approach to describe the properties of the
spectra and to relate their properties to characteristics
of the flow.

DIMENSIONLESS SPECTRA

Autocovariance functions and spectra were computed
for all the data listed in table 1. Figure 27 shows spectra
for the process y=y(x) for runs 17, 32, 43, 46 and 49.
Spectra of the process y=1y(t) for identical flow condi-
tions, runs 19, 33, 40, 44 and 48, are shown in figure 28.
The data include dune flows in the 8-ft flume and both
ripples and dunes in the 2-ft flume. The abscissa in both
figures is dimensionless, with each value of frequency or
wave number divided by the maximum value. All the
spectra are remarkably similar in general shape, and there
is little in the two figures to differentiate the processes
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y(t) and y(x); this fact suggests that the statistical prop-
erties of the two types of records are similar.

Figure 29 shows a comparison of spectra for ripples
and dunes for the 2-ft flume, with a 90-percent confidence
band estimated according to the method given by Black-
man and Tukey (1958). Here, as in figures 27 and 28, the
similarity in the spectra is apparent. For both ripples
and dunes, the major part of the variance is contributed
by the longer wavelength components, greater than 2 feet.
Both spectra show peaks at about 0.3 cycle per foot and
again at about 0.8 cycle per foot. Both show additional
peaks in the range from 2 to 4 cycles per foot, but within
the confidence limits the peaks on the dune spectra in
this range probably are not significant, whereas those for
the ripples are. The rather wide band of the confidence
limits leaves open to question the significance of most of
the peaks at the lower wave numbers, but there is no
question as to the general shape of the spectra.

The similarity of shape of the spectra in figures 27 and
28 suggests that a model incorporating flow parameters
might be developed from dimensional considerations. For
a first approximation, consider the major part of the
spectra, that part which contributes all but a small per-
cent of the variance, to be a function (¢) of only four
variables:

G()=v(f. & D,V)
G(x)=4(e, g D, ¥)

(38)
(39)

where D is mean flow depth, V is mean flow velocity,
g is the acceleration due to gravity, and other symbols
are as defined previously. Dimensionless spectra G’
are then given in terms of a dimensionless frequency f’
or wave number €’ and the square of the Froude number,
F, as follows:

G'(t)=y'(f',F?) (40)
G'(x)=y'(e', F?) (41)
where
G’ (t)=GglV, 42)
f'=fVle, (43)
G’ (x)=GglV?, (44)
¢’ =eV?[g, and (45)
F2=V?/gD. (46)

Neither fluid nor sediment properties enter into equa-
tions 38 and 39 on the assumption that water temperature
and particle size for the data analyzed were approximately
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constant. Then, the sediment transport rate and the bed
forms are primarily functions of velocity and depth
(Colby, 1964, Nordin and others, 1965). The mean flow
depth enters equations 40 and 41 only through the Froude
number. It is assumed that the equilibrium height of the
bed configurations depends on flow depth, and it was
shown in the previous section that the mean height of the
bed irregularities and the variance of the process y(x)
are closely related. Thus, because all the records were
previously standardized in terms of the variance, the
Froude number should be a parameter of only minor
importance in the spectra, and for the first approximation,
G' should be a function only of the dimensionless fre-
quency or wave number.

Figure 30 shows the relation between G’ and €’ for the
same data given in figure 27. For values of dimensionless
wave numbers greater than 0.03, all data follow the
relation

G'=0.0001(e')-32. 47)
For lower wave numbers, each set of data follows a
separate curve without a consistent pattern. It does not
appear possible to collapse the family of curves into a
single curve on the basis of Froude number. The dashed
curve on the figure is intended only to show the general
trend of the data, which seems always to show a maximum
for values of €' less than 0.025.

The dimensionless spectra for the process y=y(t)
are shown in figure 31, where the general relation for
dimensionless frequencies less than 0.001 is given by

G’ =0.000015(f")-2-1. (48)

In figure 31 as in figure 30, there is considerable scat-
ter; each set of data defines a general trend which tends
to parallel equation 48. Again, it was not possible to sort
the curves in terms of the third parameter, Froude num-
ber, which fact supports the assumption that depth should
be a variable of minor importance in this analysis.

Equation 47 by no means characterizes the entire
spectrum, but if the maximum values of G’ and the di-
mensionless wave numbers at which they occur were
either constant or functions of the flow and sediment,
the spectra would be reasonably well described. Table 4
summarizes pertinent data for such an analysis for the
process y=7y(x). The maximum spectral ordinate re-
lates roughly to flow velocity, as shown in figure 32 (upper).
The same weak relation appears to hold between the
maximum G'(x) and the dimensionless wave number,
€', at which the maximum occurs, as shown in figure 32
(lower). No apparent relation was found between values
of € corresponding to maximum values of G'(x) and any
of the flow or sediment characteristics, but it simply
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may be that there was an insufficient number of observa-
tions to establish any trends.

From equations 47 and 48, the spectral density func-
tion G is approximately proportional to the square of the

wave period, T=1/f, or to the third power of the wave
length, L=1/e. The wave celerity c is defined as L/T=f]¢,
so that from the equations for the dimensionless spectra,
we can conclude that wave celerity is directly proportional
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to €/2. Thus, for constant flow conditions, the small waves One arrives at the same conclusion by considering a
move faster than the large waves. This conclusion is | simple model for sediment transport based on continuity
supported by Simons, Richardson, and Albertson (1961), | principles, such as the one given by Simons, Richardson,
who state, “Smaller dunes with their higher velocities | and Nordin (1965), which states that, for ripples or dunes,
overtake the larger dunes.” the transport rate of bedload, ¢, is directly proportional
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TABLE 4.—Summary of flow characteristics for dimensionless spectra

Mean Mean Median €
Run velocity depth particle F Maximum for
(fps) (fvy diameter ! maximum
(mm) '
53....... 0.593 0.174 0.30 0.246 29.0 0.0086

46....... 1.07 522 .35 .262 15.5 012
43....... 1.10 .518 .35 270 22.8 .004
49....... 1.62 521 .35 .396 17.8 .023
32....... 2.01 2.36 .24 .230 17.3 .015
17....... 2.09 2.80 24 .220 21.8 .009

to wave height, H, and wave celerity, c. Suppose that the
bed forms are dunes with ripples superposed, and that
the dune movement is due entirely to the ripples over-
taking the dune crest and depositing material on its
downstream face. Then, continuity requires that
gv ~ ¢1H, ~ c2H», which states simply that the larger
features move at a smaller velocity.

Note, however, that equations 47 and 48 say nothing
about how the mean wave celerity might vary with vary-
ing flow conditions. This matter is considered in the next
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section in connection with mean frequencies and wave
numbers of the spectra computed from equation 8.

Equations 47 and 48 describe only the high frequency
or high wave number parts of the spectra. The generality
of the results are supported by Hino’s (1968) study of
sand wave spectra, in which he showed from dimensional
considerations that the wave-number spectra at high
wave numbers should follow the wave number, €, to the
minus third power and that the frequency spectra should
vary as the minus second power of the frequency.

In considering sand wave properties in relation to
channel roughness, however, it is the low frequency
part of the spectrum that is important, and the dimen-
sionless spectra of figure 30 do not reduce the low fre-
quency part to a single relation. Engelund (1969) derived a
universal dimensionless wave-number spectrum from
similitude criteria that is of the form

2gDS G(x)
V: o

_ ., oel?
=¥5.05 (49)

where € is wave number in cycles per foot, G(x) is in
(cycles per foot)~!, ¢ is an arbitrary function, S is the
water-surface slope, and the quantity (2eDS)/V? is the
friction factor.

Engelund computed the relation of equation 49 for
selected data from this report and plotted the results
to define the general shape of the function as shown in
figure 33. The results are encouraging, but additional
data for greater flow depths probably need to be collected
before it will be possible to determine whether or not
the relation of figure 33 is superior to the relation of
figure 30.

OTHER PROPERTIES OF THE SPECTRA

The probability distributions of the y values, the char-
acteristics of the zero and h-level crossings, and the con-
sistent shapes of the dimensionless spectra all point to
some remarkable similarities of the bed profiles, irrespec-
tive of the size of the channel or of whether the bed forms
were ripples or dunes. Indeed, the analysis to this point
has been directed primarily toward exposing such simi-
larities, and the procedures for standardizing the raw data
to zero mean and unit variance and for nondimensional-
izing the spectra really are nothing more than procedures
for applying appropriate scale factors to the data to facil-
itate comparison. Quite often, however, one is more
interested in the differences than in the similarities of
the bed profiles, and if this is the case, it is more appro-
priate to compare the spectra of the records directly
in terms of the actual frequency or wave number compo-
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nents. Figure 34 is an example of such a comparison.
Spectra of longitudinal profiles, y=y(x), from each of
the four channels, are plotted against wave numbers in
cycles per foot. The one-sided spectra were computed
from the standardized data, so that the area under each
curve is equal to 0.5. The standard deviation, o, for each
record is shown in the figure. The effects of channel size
on the distribution of the variance over the various wave
number components is obvious.

Several features of figure 34 are particularly interest-
ing. First, note that the flow conditions for run 56 and run
24 are quite similar (table 1), yet there are appreciable
differences in the spectra of the dune profiles. Run 56
is a 200-ft reach of Atrisco Lateral, and the major dif-
ferences in fluid and flow characteristics between the
field data and flume data are given below. In the field
the velocity is about 5 percent higher and the temperature
is lower by 4°C. In addition, a fine sediment load was
associated with the field data that was not present in the
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FIGURE 34.—Spectra of longitudinal profiles, y=)(x). showing effect
of channel size and bed configuration.
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flume. For Atrisco Lateral, the observed sediment con-
centration from suspended sediment samples was
1440 mg/l (milligrams per liter) of which 220 mg/l were
in the sand sizes, greater than 0.062 mm. For the flume
data, the sediment concentration was 164 mg/l, all of
which was sand. It is rather surprising that the dune
profiles would be so markedly different with only the
minor differences in mean flow properties. However,
the effects of channel width, of the 4°C difference in
temperature, of the 1,200 mg/l fine suspended sediment,
and of the minor velocity variations are all undefined.
Their combined effect on the bed forms, though, is ap-
preciable, and comparison of the spectra indicates
that, even if the mean velocity, depth, and slope are
similar in the laboratory and the field, there may exist
important differences in bed forms.

A second point of interest concerns the comparison
of run 46 and run 49. Here, the difference in the distri-
bution of variance is due strictly to bed configuration and
not to channel size. The only difference in the flows for
these two runs is the increase in velocity, slope, and sedi-
ment transport rate associated with the dune bed con-
figuration; all other factors—depth, width, water
temperature, and particle size of bed meaterial —were
constant. For the dune bed configuration, values of the
standard deviation of the bed elevation, the mean wave
amplitude, and the mean length between zero crossings
are approximately double the values observed for the
ripples. Surprisingly, the flow resistance as measured by
the dimensionless Chezy coefficient is very similar for
these two runs.

Finally, a third interesting feature of figure 34 is the
indication that, for all the dune records, the variance is
distributed generally over components of wavelength
greater than 2 feet, whereas for the ripple bed configura-
tion, the variance is distributed fairly uniformly over a
greater range of wave numbers. The higher wave-number,
or shorter wavelength, components contribute an appre-
ciable part to the total variance of the profiles of the ripple
bed configurations, but their contribution to the variance
of the dune profiles is almost negligible. The question
of whether the transition from ripples to dunes is gradual
or abrupt cannot be answered from these data, but if
additional experimentation were to show the transition
to be abrupt, then the distribution of variance over the
wave-number components would serve as a reliable
criterion for distinguishing between ripples and dunes.

Spectral analyses of the longer records from Atrisco

Lateral also are of particular interest because they permit
better definition of the spectra at the lower wave numbers.
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An example of these analyses is shown for run 3 in figure
35. In part A, the autocovariance function shows an ap-
parent cyclic trend with a wavelength approximating the
maximum lag of 600 or 200 feet. Inspection of cross sec-
tions of the channel every 50 feet along the length of the
reach revealed the existence of a meandering thalweg
and of alternate bars spaced approximately three to five
times the channel width through the entire 4,000-ft reach.
The trend in the autocovariance function (fig. 354) is
almost certainly due to the presence of these alternate
bars. The spectra for these longer records show the gen-
erally decreasing values of G(x) with increasing wave

SEDIMENT TRANSPORT IN ALLUVIAL CHANNELS

numbers (fig. 35B) and are very similar in shape to the
spectra shown in figures 27 and 28, but afford much
greater detail at the lower wave numbers. Figure 35C
shows the spectrum for wave numbers less than 0.1,
corresponding to wavelengths of 10 feet or greater, with
the wavelengths of the spectral peaks noted. The chi-
square test with 20 degrees of freedom to establish a
90-percent confidence band on the spectral estimates
indicates that the average ordinate should fall between
1.85 G(x) and 0.66 G(x). The peak at 200 feet may or
may not be related to the meandering thalweg, but there
is clearly a significant peak in the spectrum at wave num-
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FIGURE 35. — Autocovariance function ({) and spectrum (B and C) of longitudinal profile, y=y(x), for run 3, Atrisco
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bers less than 0.01. All other peaks shown on the spectrum
of figure 35C are considered significant with the exception
of the one at 13 feet, but the wavelengths at which these
significant peaks occur were not found to correlate with
any recognizable features of the bed profile. There is, of
course, no reason to suspect that these peaks in the spec-
trum should relate to the lengths of the physical waves
on which the analysis is being performed, although it
has been observed that for dune records there sometimes
is a correlation between the wavelength corresponding
to the peak in the spectra and-the average dune length
(Nordin and Algert, 1966; Ashida and Tanaka, 1967).

As a final consideration of the properties of the spectra,
it might be worthwhile to explore further the relation
between the characteristics of the spectra and the physi-
cal characteristics of sand waves. It was previously shown
(fhig. 22) that a correlation exists between the average
amplitude, a, and the standard deviation of the bed ele-
vation, oy, which is related to the spectrum of y through
equation 5. The reciprocal of the mean frequency or wave
number from equation 8 is the mean period or wavelength
of the spectrum, and this value relates reasonably well
to the mean period or wavelength defined from the zero-
crossing analysis, as shown in figure 36. Thus, it is pos-
sible to relate empirically the spectral properties and the
observed properties of the sand waves.

Ashida and Tanaka (1967) used spectral analyses for
determining the propagation velocity of sand waves by
plotting the wavelength of the maximum spectral ordinate
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for the process y(x) against the wave period for the
maximum spectral ordinate of the process y(t). For the
records analyzed in this study, some of the corresponding
records of y(x) and y(¢) possessed maximum ordinate
values of their spectra at the origin; therefore, this method
could not be used. In addition, no consistent relations
were found between the peaks in the spectra and the
average wavelengths or periods of the ripples and dunes.
Consequently, the procedure used by Ashida and Tanaka
(1967) is not recommended. However, from the relation
in figure 36, it should be possible to determine the mean
wave celerity either from the mean length and period
found in the zero-crossing analysis or from the mean
wave number or frequency of the spectra by using equa-
tion 8. Table 5, which shows a comparison of mean wave
celerities computed by these two methods, indicates
that values of ¢ obtained by the two methods are
comparable.

TABLE 5.— Comparison of wave celerities

¥rom zero crossing From equation 8

Bed

yx)  y() L T c=LIT L=1/é T=I1/f c=flé configuration
1) (min) (fpm) (ft) (min) (fpm)
17...... 19... 845 293 0.288 7.62 42.5 0179  Dunes.
32...... 33... 4.78 16.6 .288 5.45 26.8 204 Do.
43...... 40... 1.36 14.3 0952 1.75 29.7 {0590 Ripples.
46...... 44... 1.01 27.4 .0368 1.24 38.8 10320 Do.
49...... 48... 2.56 25.5 .100 3.00 32.4 .0926  Dunes.

The data in table 5 also give an indication of how the
mean wave celerity varies with mean wave number for
different flow conditions. In the previous section, it was
established that for a constant flow condition, the wave
celerity of the different wave-number components varied
directly as the square root of the wave numbers. This
relation is shown schematically in figure 374. In figure
37B, the mean wave celerities computed from equation 8
are plotted against mean wave number from the spectral
moments. Here we see that, with increasing flow velocity,
the average wave celerity varies inversely with wave
number or directly with wavelength. This implies that
the mean wave celerity is independent of frequency; or
on the average, for these data it took just as long for a
ripple to move past a given point as it did for a dune.

The importance of the relations in figure 37 is in the
fact that these relations permit determining the properties
of the process, y(t), from the properties of only the longi-
tudinal profiles, y(x). If the spectral properties of y(x)
are known, then the spectral properties of y{t) can be
determined from the relation in figure 374 and equations
47 and 48. If the mean wave number for the process
y(x) is known, then the mean frequency or wave period
of y(t) can be established by the relation in figure 37B,
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and the mean particle rest period at any level A and
the conditional probability distributions for the rest
periods at any level 2 can be determined directly from the
relations in figure 12 and equations 14 and 33. Note,
however, that the relation in figure 37B is no doubt a
consequence of the sediment transport rates associated
with the particular flow conditions examined here, and
it is not known if the relation is generally applicable for
greater flow depths.

O’Loughlin and Squarer (1967) and Squarer (1968)
have urged that the standard deviation of the bed eleva-
tion and some characteristic wave length from the spec-
trum of the bed profiles be used to describe the geometric
properties of sand waves, rather than simply the mean
lengths and heights. Because no consistent terminology

for describing bed configurations or methods for com-
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puting average wavelengths and wave heights exists in
the literature, it is very difficult to evaluate the results
of different investigators. Certainly, then, it is desirable
to develop some standard and rigorous method for de-
scribing the properties of the bed profiles that will permit
comparison of different studies, and perhaps the standard
deviation of the bed elevation and the reciprocal of the
mean wave number of the spectrum from equation 8
would serve that purpose. In addition, it might be useful
to specify the value of & (eq. 20), which generally may be
interpreted as a measure of the root-mean-square width
of the variance spectrum (Cartwright and Longuet-
Higgins, 1956, p. 216). Values of these parameters and of
other measures of wavelengths and heights are given in
tables 6 and 3.

CROSS CORRELATION AND CROSS-SPECTRAL ANALYSIS

Several interesting properties of the sand waves can be
investigated using the techniques of cross correlation
and cross-spectral analysis. Cross correlation is the
simpler to use and admits to direct physical interpre-
tations. Figure 38 shows the cross correlograms for cor-
relations of run 8 with each of the runs 9 through 15.
The profiles are all for the same reach of flume (see table
1) and were obtained 5 minutes apart. If the distance of
the peak of the correlogram from the origin is plotted
against time (fig. 394), the slope of the trend line, 7 feet
per hour, may be taken as the mean speed of movement
of the dunes. An independent check on this figure is
provided by the zero-crossing analysis, where the mean
dune length for runs 8 through 15 is 5.7 feet and the mean
period of runs 4 and 19 is 0.72 hours; these data give a
dune velocity of about 8 feet per hour.

The general trend for the attenuation of the peak value
of the correlation with time (fig. 39B) gives an indication
of the rate of change in shape of the dune profiles. The
dune profiles are assumed to be uncorrelated when the
maximum value of the correlation function is 0.3 or less.
The value of 0.3 is chosen because cross correlation of any
two profiles taken at random from a group collected dur-
ing approximate equilibrium flow conditions shows a
maximum correlation generally less than 0.3. Then,
extrapolating figure 39B, it is inferred that the profile
virtually loses its identity in about 90 minutes, or in about
the same time for the average-size dune to migrate twice
its own length.

From figure 38, it is seen that the maximum value of
the cross-correlation function for runs 8 through 15 is
approximately the same as the maximum value for runs
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TABLE 6.—Summary of wave properties

[ Average length is trough-to-trough distance; height is difference in elevation, crest to trough}

‘Wave characteristics Height in feet Ripple index
Run Average Average Coefficient Coefficient Coefhicient
length, in wave period, of Average of Average of
feet in minutes variation variation variation
6.06 0.533 0.370 0.643 22.8 0.857
6.14 535 .368 .655 22.7 815
535 408 .597 17.2 764
763 214 1.43 163. 186
.658 225 571 25.7 678
.700 .184 377 21.6 733
.604 .201 .388 22.2 575
.408 .341 514 22.3 870
.53 269 535 21.7 172
742 .268 509 17.5 1.05
524 .305 .482 20.5 122
157 251 477 18.8 916
.340 .384 468 194 .590
812 .264 .616 21.7 979
462 .364 1483 18.3 513
575 315 915 23.7 .139
179 .265 .547 25.0 1.23
.698 297 483 17.8 .821
664 .149 229 175. 674
475 .261 473 18.6 429
502 221 506 18.4 671
564 .265 476 16.2 826
574 257 524 16.0 .584
47 .296 578 19.2 770
595 .316 .484 15.8 627
532 300 .546 19.0 .897
489 .367 .506 16.5 .668
515 276 .538 18.7 536
.528 .253 .494 239 .704
.649 .165 .347 25.6 127
154 .161 450 27.5 .868
.445 .260 506 21.3 577
941 133 216 127. 929
.521 .200 411 274 135
.562 255 645 25.5 183
538 173 .381 21.6 .647
428 .204 .446 26.7 576
510 175 .380 26.5 .559
545 185 457 21.6 .549
.426 .0783 277 399. .426
.484 .0922 .328 14.7 .648
.568 .0902 288 13.4 .579
.606 .0913 .307 14.3 .679
744 0750 .353 577. .802
534 .0856 .268 14.9 545
542 .0827 216 15.9 422
518 0874 318 15.7 .583
514 11 1491 183. 574
.408 167 454 18.7 642
424 .149 482 24.4 .836
630 114 .369 274 589
.353 .0609 152 13.7 1.08
.485 0520 752 14.3 697

8 and 9. Even though the maximum cross correlations
are about the same, it is assumed that the distributions
of variance over the wave-number components should
be appreciably different for the two series of runs because
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the waves change shape somewhat as they shift down-
stream. In other words, the general shapes of the cross
correlograms are not the same even though their maxi-
mums are equal. Plots of the coherence function, Y2,
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and the gain function, 4, in figure 40 support this assump-
tion. The general decrease in both coherence and gain
from the cross-spectral analysis of runs 8 and 15, as
opposed to the values for runs 8 and 9, shows that the

SEDIMENT TRANSPORT IN ALLUVIAL CHANNELS

wave-number components of the two records 8 and 15
are virtually uncorrelated.

The cross correlation and cross-spectral analysis also
proved useful in investigating the three-dimensional
properties of the dunes. Run 17 was a profile y(x) taken
down the centerline of the 8-ft lume. Runs 16 and 18
were profiles taken 2 feet on either side of the centerline.
The correlograms and the spectra for the individual
profiles (fig. 41) do not suggest any appreciable differ-
ences in the profiles. A major part of the variance in all
profiles is contributed by the shorter wave-number com-
ponents corresponding to wavelengths generally greater
than 4 feet.

The cross correlogram for runs 16 and 17 (fig. 42) shows
that the two profiles, taken 2 feet apart along the same
reach of flume, are practically uncorrelated, indicating
that the sand waves certainly are not long crested. How-
ever, the cross correlogram for runs 17 and 18 (fig. 42)
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shows a somewhat better correlation, suggesting that the
dunes along the centerline of the flume extend to or at
least influence the dunes along the right side of the flume.
The coherence diagrams for the spectral analyses of the
two sets of data (fig. 43) show the same effect; values of
the coherence function y2 for runs 17 and 18 are approxi-
mately twice those for runs 16 and 17.

PREDICTION
In previous sections, the problem of predicting the
properties of the bed profile from only the characteristics
of the flow and the sediment was considered briefly in

terms of the Markov model and the dimensionless spectra.
Neither of these approaches was found to be completely
satisfactory. At this point, some additional aspects of
predicting the properties of the bed profiles will be
considered.

Under the assumption that the bed profiles can be ap-
proximated by a random Gaussian process, only three
factors are needed to predict the mean values of durations
between zero and h-level crossings and the distribution of
maximum and minimum y values between zero crossings.
These factors are the variance of the bed profile, o, the
second derivative of the covariance function at the origin,
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¢"(0), and the parameter 6% The parameter ¢"(0)
enters only in calculations of the mean duration between
zero crossings, so that it could be replaced by E{lo}.
Values of 82 approached unity, and therefore as a first ap-
proximation it can be considered equal to one, and the
prediction problem reduces to determining o, and ¢"(0)
or E{ lo}

Definition of the dimensionless spectra in terms of flow
parameters would permit determination of ¢"(0) and
E{l,}, and this approach is favored by the writer. Some
simple alternatives are to relate /o directly to flow param-
eters or to find a relation between /o and the standard devi-
ation of the bed profile; such a relation would be analogous
to the ripple index commonly used in geologic literature.
In either event, it would still be necessary to determine oy,
because the dimensionless spectra are based on the
standardized data.

As we might expect, the standard deviation of the bed
elevation, o, relates roughly to flow depth (fig. 444) or to
the unit water discharge (fig. 44B). Data for these figures
are summarized in table 7 and include average values
from this study and values reported by Nordin and Algert
(1966). It was not possible to reduce the scatter in these
relations by consideration of other hydraulic or fluid vari-
ables. The point falling farthest to the left in the figures
may be unrepresentative, because the bed profiles (runs
52 and 53) were collected after cessation of sediment
motion and probably represent residual features from
higher velocity flow. (See Rathbun and Guy, 1967, for
details of this experiment.)

All things considered, the scatter of the points in figure
44 is neither unexpected nor discouraging. The data rep-
resent observations from five different flumes and two
field channels. Two of the flumes used a sand feed system
and three were of the recirculating type. In all the experi-
ments except those performed by Algert (1965) in the
0.4-foot flume, information on the bed configurations was
a consideration peripheral to the main objectives of the
study. A number of unknown factors may contribute to
the scatter in the data, such as flume entrance and exit
characteristics, operating procedures in the experiment,
imposed fine-sediment load (in the field case), and particle-
size distribution of the bed material.

The one other property of the bed profiles that is of
most interest is the probability distribution of the dura-
tions of upward excursions of the process y(z) above the
fixed level k, which is the conditional probability distribu-
tion of the rest period of a particle, given that it is de-
posited on the downstream face of a dune at the level A.
The gamma distribution with parameters that relate to h,
as shown in figures 12 and 13, is an attractive possibility.
However, before this approach can be recommended, it is
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necessary to verify both the gamma distribution and the
relation of figure 12 with additional observations of the
process y =y(t).

In summary, the problem of predicting the properties of
interest of the bed profiles is still not solved, but the re-
sults of this study have suggested several promising ap-
proaches. Some crude empirical relations, such as those
of figures 12, 13, 26, 37 and 44, permit approximations to
to be made of most of the properties of interest, but the
need for both refined theoretical models and additional
experimental data is obvious.

SUMMARY AND CONCLUSIONS

DISCUSSION OF RESULTS

The application of statistical techniques to analyze the
properties of sand waves is a relatively recent under-
taking. and therefore it is perhaps difficult to evaluate
objectively some of the ramifications of this investiga-
tion. Nonetheless, three implications of the results seem
to the writer to be of particular importance and to merit
further discussion.

TABLE 7.—Average values of observed variables

Channel 14 D W S T dso oy Avg a+ lo Remarks
(fps) (f (ft) (°C) (mm) (ft) (i3] (ft)

ALriSCO. . ovveniieiin, 2.16 220 55 0.00057 19 0.23 0.259 0.277 4.48 Dunes.
Atrisco.... 2.11 2.30 55 .00055 20 .23 .276 .287 4.61 Do.
AtrISCO...vveerininenen.n, 2.08 229 55 00058 20 .23 .270 .302 3.90 Do.
8-ft flume...... 2.09 280 8 00063 20 24, .169 214 2.95 Dunes; recirculating system.
8-t flume...... 2.01 236 8 .00056 24 24 127 146 2.28 Do.
2-ft flume.................. 1.62 521 2 .00212 20 .25 0700 .0806 1.42 Do.
2-ft flume.................. 1.10 518 2 00088 20 .35 .0432 0416 .58 Ripples; recirculating system.
2-ft flume.................. 1.07 522 2 00088 20 .35 .0390 .0408 .54 0.
0.67-ft lume .80 197 67 00148 20 .30 0404 0400 .36 Ripples; sand feed system.
Bernardo*........ 3.62 2.60 70 .00058 8.34 .23 Dunes.
Bernardo*........ 2.48 415 70 .00058 8.34 .23 Do.
8-ft flume*....... 2.11 1.05 8 00134  16.7 .28 . Dunes; recirculating system.
8-t flume*....... 1.91 670 8 .00136 17.8 .28 Do.
0.4-ft flume* 1.81 580 4 0044 18.4 .34 . Sand feed system.
0.4-ft flume* 1.78 485 4 .0038 15.6 .34 Do.
0.4-ft flume* 1.74 400 4 .0037 17.8 .34 Do.

*Data are from Nordin and Algert (1966).



F38

The first important conclusion drawn from these in-
vestigations is that the properties of the profiles obtained
in the laboratory flumes are all very similar, regardless
of the size of the flume or of whether the bed configura-
tions are ripples or dunes, provided that scale effects
are properly taken into consideration. The scale effects
seem to be completely accounted for by standardizing
the raw data to zero mean and unit variance and by ex-
pressing the length of A-level crossings as a ratio of the
mean length between zero crossings, or by forming dimen-
sionless parameters in terms of the flow properties, as
in the case of the spectra. This means that certain simple
properties, such as the average values of the conditional
probability-density functions of rest periods, can be
modeled in a ripple bed configuration or in a very small
flow system, and the results can be extrapolated to dune
configurations of much larger flow systems.

Similarity of the properties of the ripple and dune
profiles does not imply that there are no differences in
these features but only implies that their general shape
and method of movement are similar, as noted by Taylor
and Brooks (1961). In fact, the comparisons of distribu-
tions of variance over the wave-number components
shown in figure 34 support very strongly the notion that
there are appreciable differences. The major differences
between ripples and dunes are described in detail by
Simons and Richardson (1966) and need not be con-
sidered here.

In addition, there were important differences between
the flume and field data for dune bed configurations. The
longer records from Atrisco Lateral reflected the influence
of a meandering thalweg and of accompanying large
alternate bars that generally were not present in the
flumes. Simons and Richardson (1966) have noted that
alternate bars do form in flumes, but for the flume data
analyzed here, the width-to-depth ratio was not great
enough to permit the bars to develop significantly.

A second important implication arises in the develop-
ments leading to figures 30 through 33 of the dimension-
less spectra. These figures show that the spectral
representations of the processes can be determined as
unique functions of the flow, fluid, and sediment prop-
erties. It was fortunate for these studies that the water
temperatures and sediment sizes varied over rather
narrow ranges, because this permitted expressing the
dimensionless spectra in extremely simple form. On the
other hand, because of this limited range of conditions,
it was not possible to define adequately the shapes of the
spectra. Nevertheless, the results are encouraging, so
far as they were carried, and they point the way to future
experimental studies that will permit a better definition
of the spectra.

SEDIMENT TRANSPORT IN ALLUVIAL CHANNELS

However, the most important result by far is the demon-
stration in figures 69 and 15-17 that the properties of
the profiles can be estimated by theoretical considera-
tions of fairly simple models. Certainly, the assumption
that the processes y(x) and y(t) are Gaussian is a crude
approximation, but the results obtained using this model
are reasonable and consistent.

In one important aspect, this study was unsuccessful.
It was not possible to relate uniquely the statistical
properties of the bed profiles to the characteristics of
the flow. However, some simple empirical relations were
considered that will permit predicting approximately
many of the properties of interest. The most important
relations in this regard are shown in figure 44, which
gives o, as a function of either depth or unit water dis-
charge, and figure 25, from Nordin and Algert (1966, p.
109), which shows values of the correlation function at
zero, one, and two lag intervals as functions of unit water
discharge. These values, along with the length of profile
record, permit calculations of most of the factors consid-
ered in the zero and h-level crossing analysis and the
approximations of [£/[§, as given by equations 15 and 16.
However, the relations of figure 25 apply only if the lag
interval is selected so that it bears a constant ratio to
the standard deviation, o.

CONCLUSIONS

In this study statistical properties of streambed pro-
files from four different size channels are compared by
the techniques of time-series analyses and by a considera-
tion of the mean values and distributions of zero and h-
level crossings, the durations of upward excursions of
the records y(x) and y(t) above a fixed level &, and the
distribution of maximum y values between successive
zero crossings. The principal conclusions drawn from the
study are the following:

1. No appreciable differences in the statistical properties
of the profiles from the flumes could be attributed
to flume size or to whether the bed forms were
ripples or dunes, provided that the raw data were
standardized to zero mean and unit variance and
that the length scales were expressed as ratios of
the mean length between zero crossings. In addition,
only minor differences were noted between the
properties of the longitudinal profiles, y=y(x),
and the properties of the profiles, y=y(t), obtained
by sounding continuously in time at a fixed point.
Longer records of both types, particularly the time
records, are required to establish if the differences
are real or apparent.

2. Spectra of the longer records from Atrisco Lateral
appeared to reflect the influences of a meandering
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thalweg and large alternate bars that were not
present in the flume data.

3. By dimensional analyses, forms of dimensionless
spectra were derived which describe reasonably
well the observed forms in the higher frequency
and wave number regions. From the equations of
the dimensionless spectra, it was established that,
for constant flow conditions, the celerities of the
individual wavelength components vary directly
as the square root of the wave numbers.

4. From the mean spectral moments, it was shown that
the mean wave celerity varied inversely as the mean
wave number for the different flow conditions con-
sidered. This relation, together with the relation
for celerity of wave-number components under con-
stant flow conditions, permits determining the prop-
erties of the process, y(t), from the properties of the
longitudinal profiles, y(x).

5. The techniques of cross-spectral analysis were found
useful for defining the mean rate of shifting of
ripples and dunes and investigating their three-
dimensional properties.

6. Values of the bed elevation follow an approximate
Gaussian distribution. For a Gaussian process of
known covariance function, the expected number
of zero or h-level crossings, the expected length
between crossings, and the mean duration of upward
excursions of the process y(t) above the fixed level h
can be computed. The comparison of observed and
computed values shows good agreement for positive
values of & and indicates systematic deviations for
values of /& below the mean bed elevation. The mean
duration of upward excurions of the process y(t) is
the mean rest period of a particle at the level A.

7. The distributions of the distances between zero cross-
ings, ly, are approximately exponential. Values of
the durations of upward excursions of y above the
level h follow a gamma distribution with parameters
that relate to A, as shown in figures 10 through 13.

8. The distributions of maximum values of y between
zero crossings represent the distributions of scour
and fill associated with the formation and migration
of sand waves. The sand waves are not symmetric
about the mean bed elevation. The positive maxi-
mums, a+, are distributed exponentially and the
negative maximums, a—, are distributed according
to a Gaussian distribution. Both distributions are
functions of the standard deviation of the bed
elevation, o, which relates approximately to mean
flow depth or unit water discharge (fig. 44).

9. Finally, the results of this study show that some of the
distributions entering the two-dimensional model of
sediment transport (Sayre and Conover, 1967) and
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most properties of the dune profiles that are of inter-
est can be determined from theoretical considera-
tions of fairly simple models.

RECOMMENDATIONS FOR FUTURE STUDIES

The results of this study suggest a number of areas for
future investigations. Four, in particular, appear especially
promising. These are:

1. Studies should be undertaken to include fluid and sedi-
ment properties in the dimensionless spectra and to
determine more accurately the dimensionless wave
numbers at which the peak spectral ordinates occur.

2. An investigation should be made of the possibility of
incorporating the distribution of wave height and
wavelength and the relation of wave celerity to wave-
length components (fig. 37) into a continuity-type
bedload transport relation based on size and rate of
shifting of the sand waves.

3. Experiments should be designed to obtain longer rec-
ords of y=y(t) so that the probability distributions
of particle rest periods (the durations of upward ex-
cursions) can be adequately defined.

4. Models other than the simple Gaussian model should
be investigated as possible representations of the
processes y(x) and y(t) to see if more accurate pre-
dictions of the properties of the bed profiles can be
obtained theoretically. In addition, it should be possi-
ble to investigate some models by simulation tech-
niques. One such possibility would be a process of
the form y(¢) =p cos (\y+ @), where p, \, and 0 are
all random variables of some specified distribution.

In addition to the above studies, it is necessary to ob-
tain reliable field records of bed profiles to permit extend-
ing these studies to a greater range of flow conditions.
Records of the process y=1y(t) are especially lacking,
and many existing longitudinal profiles suffer from inade-
quate horizontal control.

As noted in the section “Data and analysis,” reliable
relations between the statistical properties of the pro-
files and the characteristics of the flow still remain to be
developed. Empirical relations exist, but they are far
from satisfactory for predictive purposes.

Finally, detailed descriptions of bed profiles are of
value only if they lead ultimately to a better understand-
ing of sediment transport processes. It is hoped that the
results of this study and of future studies along the lines
outlined above will contribute to such an understanding.
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PLANNING OF DATA REQUIREMENTS

This appendix gives some approximate guidelines for planning the
length of records required for the various analyses considered in the
text. The statistical basis for determining record length and the computa-
tional procedures are given by Bendat and Piersol ! and will not be re-
peated here. The computer programs used in this study are available
from the writer or from Mrs. Lois Niemann, Civil Engineering Depart-
ment, Colorado State University.

The computational procedures used in this study can be applied to
any continuous record of streambed elevation, provided that the record
meets the necessary conditions for stationarity. From a practical point of
view, this means that. for longitudinal profiles, the channel cross section
should not vary appreciably along the channel and that, for either longi-
tudinal or time records, the flow and sediment transport rates should be
approximately constant during the period of observation.

We consider here only flow conditions which occur where well-
defined sand waves are know to be present at the streambed, that is,
only lower regime flow. The bed configurations for lower regime flow are
ripples, dunes, bars, and combinations of these features (Simons and
Richardson 2). In the following discussion the computational proced-
ures for spectral analysis of a single record first are outlined. Next are
given some rough guidelines for determining the length of record and
the spacing of observations for converting a continuous record to dis-
crete data points for spectral analysis. Finally, the record length and
spacing of data points for other types of analysis, such as estimating the
mean lengths between zero and h-level crossings, are considered.

COMPUTATIONAL PROCEDURES

A continuous record of bed profile, y=y(x), of length L, is converted
to discrete data points by sampling the continuous records at intervals
Ax=h ft, so that the sampling rate is 1/h samples per ft. The entire
record is converted to N discrete data points, y;, i=1, 2, . . ., N. We
consider the entire sequence of y; values to have zero mean and unit
variance. The covariance function corresponding to equation 2 of the
text is computed by the formula

l N-os
¢yy(5) =N__s 2} J’n}’"ﬂ 1)

for s=0, 1, . . ., m, where m is the maximum number of lags.

! Bendat, J. S., and Piersol. A. (., 1966, Measurement and analysis of random data: New York,
John Wiley & Sons, Inc., p. 278-320.

*Simons, D. B.. and Richardson, E. V., 1966. Resistance to flow in alluvial channels: U.S.
Geol. Survey Prof. Paper 422-], 61 p.



STATISTICAL PROPERTIES OF DUNE PROFILES

Next, the finite cosine series transform function of the autocovari-
ances is computed from

- moo_ _,S?T
G(s)=Y ¢(J) cos — 2)
fors=0,1,2, .. ., m.In the above,
d;(O) =¢yy(0) ,
(i) =20u(i),
where i=1,2, ..., m—1, and (3)

d;(m) =¢yy(m).
The spectrum is computed from the equations

G(0)=0.5G(0) +0.5G(1)

G(i)=0.25C(i—1) +0.5C (i) +0.25G(+1), i=1,2, .. . m—1 (4)

G(m)=0.5G(m—1) +0.5G(m).

These computations yield m+ 1 values for the spectrum at each of the
lags s=0, 1, . . ., m, corresponding to the wave numbers e,=s/2mh
or to the wavelengths L,=2mh/s.

LENGTH OF RECORD AND SPACING OF DATA POINTS

The computational procedures outlined above show that, in selecting
a length of continuous record for spectral analysis by digital techniques,
three quantities must be considered: the record length, L,. the sampling
(digitizing) rate, h, and the maximum lag, m. The smallest wavelength
for which speciral estimates are computed is 2k and the largest wave-
length for which the spectral estimates are computed is 2mh.

As a general rule, we should select a sampling rate such that 2h < L,
where Ly, is the smallest wavelength component of interest, and a
maximum lag m such that 2mh = L., where L., is the largest wave-
length component of interest. The record length, L,, should be no less
than 10mh if the percentage error of the estimated spectrum is to be of
reasonable size (Parzen 3).

For a given bed form, such as dunes, quite satisfactory results have
been obtained by selecting mh approximately equal to the mean dune
length, by sampling at an interval & so that the average dune length is
represented by 20 to 30 data points, and by selecting a length of record
10 to 20 times the mean dune length. If ripples are superposed on the
backs of dunes, a sampling interval & of about one-fourth of the mean

#Parzen, Emanuel. 1967, Time series analysis papers: San Francisco, Holden-Day, 565 p.

F41

ripple length is recommended. Generally, the contribution to the total
variance of wave-number components greater than four cycles per foot
was negligible in the case of ripples. For dunes, the contribution to
the variance from components greater than one cycle per foot was
negligible.

Where large alternate bars with smaller bed forms superposed are
known to exist in a channel, a somewhat different procedure is called
for. The record should be sufficiently long to cover ten or a dozen of the
bars if the properties of the bars are of interest. However, to investigate
the properties of the smaller features, it is suggested that short seg-
ments of the longer record be analyzed after trend removal. Methods for
removing trends are given in Bendat and Piersol * and Parzen.’

RECORDS FOR ZERO AND h-LEVEL CROSSING ANALYSIS

It has been shown by Tick and Shaman ® that the expected number of
maximums and minimums of y and the expected number of zero and
h-level crossings determined from the discrete approximation to a con-
tinuous Gaussian process in a given length of record are always less than
the expected number determined from the continuous record. If the
sampling interval 4 is selected such that 4k < L, the estimated num-
ber of crossings from the discrete process will be at least 90 percent of
the number in the continuous process for any level A within two standard
deviations of the mean. Therefore, a sampling rate at least iwice that
recommended for spectral analysis is required for determining the
average number of zero or h-level crossings.

Much longer records are required to determine the probability dis-
tributions of maximum and minimum y values between zero crossings,
of the lengths between zero crossings, and of the durations of the posi-
tive excursions of y above the level A than are required for the spectral
analysis. The writer recommends at least one hundred observations of
these values to obtain reasonable estimates of the distributions. As a
rule of thumb. the records should be ten times as long as the records for
spectral analysis, and if consideration is to be given to A-level crossings
at levels beyond one and one-half times the standard deviation from the
mean, for ripples or dunes, the record should be of the order of 300
times the mean ripple or dune length. Because the ripples and dunes are
not symmetric about the mean bed elevation and because the y values
are not strictly Gaussian in distribution, no hard-and-fast rules can be
established for the record lengths to determine the distributions of the
h-level crossings. The probability distributions of maximum and mini-
mum y values between zero crossings, as shown in figures 1517 of the
text, are the logical starting place to estimate record length require-
ments for a given number of observations of these extireme events.

*Bendat, op. cit., 390 p.

*Parzen, loc. cit.

4Tick. L. J., and Shaman, Paul, 1966, Sampling rates and appearance of stationary Gaussian
processes: Technometrics. v. 8, no. I, p. 91-106.
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