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STATISTICAL STUDIES IN FIELD GEOCHEMISTRY

METHODS OF COMPUTATION FOR ESTIMATING GEOCHEMICAL ABUNDANCE

By A. T. Miescr

ABSTRACT

Geochemical abundance of an element is regarded as the pro-
portion of a total rock body, or group of rock bodies, that is
made up of the element and is equivalent to the population
arithmetic mean of sample analyses, generally in units of per-
centage or parts per million. Computational problems encoun-
tered in estimation of abundances can arise from having lim-
ited ranges of analytical sensitivity, from having only small
groups of data, and from reporting of data in broad geometric
clagses. These problems can be partly resolved by use of a com-
bination of techniques described by Sichel (1952), Cohen (1959,
1961), and Krige (1960). The combination of techniques allows
eficient estimation of geochemical abundances from a wide
variety of frequency distribution types if the analytical
discrimination is sufficient to allow effective use of data
transformations.

Dxamples of data from the literature were used to demon-
strate the techniques; up o 76 percent of the data values were
arbitrarily placed in the “not detected” class, and estimated
arithmetic means agreed with those estimated from the com-
plete data set to two significant figures. The types of frequency
distributions displayed by the data examples are generally
representative of those commonly encountered in geochemical

problems.
INTRODUCTION

The estimation of abundances of constituents in rock
bodies, or in groups of rock bodies, is necessary in a
broad range of geologic problems. In mining and ore
reserve estimation, for example, unbiased and. precise
estimates of abundance of ore constituents are prereq-
uisite to efficient operational planning, and become man-
datory as the grade of the ore declines toward the
minimum grade that can be mined profitably. Aslower
grade deposits of broad extent are being appraised as
potential ores of the future, the need for accurate and
precise abundance estimates will increase. Aside from
these economic problems, the estimation of element abun-
dances is necessary in geochemical problems related to
the origin of rock bodies and in both small- and large-
scale assessments of geochemical balance among
different rock units and other material at the earth’s
surface.

Estimates of abundance are generally expressed in
terms of weight percent or parts per million and are
regarded as estimates of the proportion of the rock body
that is made up of the constituent of concern. An
abundance of 2 percent iron in a 500-million-ton rock
body, for example, implies that 10 million tons of iron
are present.

The estimation of reliable geochemical abundances is
met with serious difficulties in both sampling and in
computation. Errors due to sampling are undoubtedly
the more serious in a majority of problems, but where
sampling has been well planned and successfully exe-
" cuted, correct computational procedures are increasingly
-desirable. Where sampling has been inadequate (often.,
unavoidably so owing to limited outcrop, for example),
"reliable abundance estimates are difficult to obtain.
"Where the sampling has been unbiased but of limited
"extent, the problem faced is to obtain the best estimate
.of abundance possible; computational methods are
. important for this purpose.

Many types of averages (such as medians, modes,
geometric means, mean logs, and arithmetic means) are
.suitable for specific geochemical problems, but the
arithmetic mean is the only one of these that is a correct
expression of abundance—or an unbiased estimate of
abundance—under all circumstances. This was dis-
cussed and verified by Sichel (1947, 1952). If the
. frequency distribution of values used in computing the
'average is unimodal and symmetrical, the median, mode,
"and arithmetic mean will be the same; but if the distri-
bution is skewed (asymmetrical), they may differ
widely. The geometric mean will always be less than
the arithmetic mean regardless of the type of frequency
distribution, except where they are equal owing to zero
variance in the data. Any type of average may be
appropriate for a specific geochemical problem, depend-
ing on the purpose for which the average is estimated.
The geometric mean, for example, is useful for repre-
senting the typical concentration of an element in a
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group of rock specimens where the concentrations ex-
hibit a symmetrical frequency distribution on a log
scale. The median is a useful expression of average
concentration among specimens regardless of the fre-
quency distribution and will be the same, as the geo-
metric mean where the distribution is symmetmcal on a
log scale.

The equivalence of the arithmetic mean of the total
population of samples in an entire rock body to geo-
chemical abundance follows from the definition of
abundance, A (in weight percent), as

A———X 100,

where W is the mass of the constituent in the rock body,
and T is the mass of the rock body. If there are N
potential discrete samples in the total rock body, the
mass, W, of the constituent is given by:

W=l $us
—m%% I

where z; is the concentration (in weight ‘p'ercént) of
the constituent in the jth sample and S; is. the weight

of the sample. Ifall sa.mples are of the same welght then
100N Z Ta
and
N
‘ j=21 2

The right side of this equation is the population arith-
metic mean which can be estimated from analytical
data by a number of different techniques. ..

In some problems involving estimation of geo-
chemical abundance, the weighted arithmetic mean is
necessary to estimate the population arithmetic mean
and has been known to provide accurate abundance
estimates. This is well illustrated in many papers
on, for example, polygonal methods of ore-reserve esti-
mation. In some other types of problems, weighted
arithmetic means are required to correct for highly
uneven (biased) sampling, such as in estimation of
the abundance of elements in large parts of the earth’s
crust. Some of the problems met in this work were
reviewed by Fleischer and Chao (1960). The methods
described in this paper are not intended for problems
where weighted arithmetic means are more su1ta,bly
used.

I am grateful to N. C. Matalas and L. B. R1ley of the

U.8. Geological Survey for-technical criticism and much
helpful discussion.
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PROBLEMS IN ESTIMATION OF GEOCHEMICAL
ABUNDANCE

Problems in the estimation of abundance (population
arithmetic means) arise in both sampling and computa-
tion, but only the computational problems are consid-
ered in this paper. The more common circumstances
leading to computational problems result from (1) lim-
ited ranges of analytical sensitivity, (2) small groups
of data (small »), and (3) data reported in geometric
classes. Where none of these circumstances cause diffi-

- culty, abundance estimates derived from the ordinary

expression for the arithmetic mean,

=1

“will tend to be correct and will be at least relatively

efficient. An efficient estimate, in the statistical sense,
is one that has a small variance (Fisher, 1950, p. 12), or
one that would be expected to change little with the
addition of new data. Concern for the efficiency of sta-
tistical estimates gave rise to the “maximume-likelihood
method” used in devising estimation methods (Fisher,
1950, p. 14). Estimators derived in this manner are
said to yield statistics with minimum variance (maxi-
mum efficiency). The expression for the arithmetic
mean in equation 1 is a maximum-likelihood estimator
where the data are derived from a normally distributed

. population; it is not a maximum-likelihood estimator

for many of the problems in geochemical studies.

In problems where data from a normally distributed
population are censored (some concentration values fall
beyond the range of sensitivity for the analytical

“method), a maximum-likelihood method described by
- Cohen (1959, 1961) may be used. Where the data are

from a lognormal population, a maximum-likelihood

~“method given by Sichel (1952) will be applicable. A

modification of the method given by Sichel will be use-
ful where the data indicate certain kinds of departure
from the lognormal (Krige, 1960).

Some estimation methods derived by the method of

-maximum likelihood are slightly biased for small n.

Unbiased likelihood estimators are those that have been
corrected for the bias, where such correction is needed.

Abundance estimates derived by maximum-likelihood
techniques will not differ greatly, in many instances,

“from estimates derived by other reasonable though less

precise methods. In much geochemical work, especially

- that conducted on a large scale, errors due to sampling
‘and anhalysis are overwhelmingly dominant in deter-

mination of the total estimation error; computational
errors are relatively small. Nevertheless, the possibility
of large errors from other sources cannot serve to justify
additional errors where they can be easily avoided.
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ANALYTICAL SENSITIVITY

Every analytical method has limits of sensitivity be-
yond which it is ineffective for determination of con-
centration valves. These limits may occur at both the
lower and the upper bounds for a concentration range.
The spectl ographic method described by Myers,
Havens, and Dunton (1961), for example, may be used
to determine silicon within the range from 0.002 to
10 percent. Concentrations judged to be lower or
higher than this range are reported as <0.002 percent
or >10 percent, 1espect,1vely Thus, the spectrographic
data may be either left or right censored. The term

“censored” is applicable here because the number of
values beyond each sensitivity limit is known for any
set of analyzed rock samples. In other types of prob-
1ems, where the number of values beyond certain limits
is unknown, the data are said to be truncated (Cohen,
1959, p. 217).

A number of methods have been used by individual
geologists for computing means from censored data.
(See, for example, Miesch, 1963, p. 21-23). Other
methods that are available, however, are a great deal
more satisfactory (Cohen, 1959, 1961; Hald, 1952, p.
80; Hubaux and Smiriga-Snoeck, 1964). The maxi-
mum-likelihood method described by Cohen will be
applied to abundance estimation problems in later
sections.

Abundance estlmfttes can be obtained directly from
censored normal distributions, using Cohen’s method,
but not from other types of censored distributions.
Where the an‘ﬂyucal data do not indicate a normal dis-
tribution, some transformation of the data can be used,
as will be demonstrated in a following section. The
mean and variance of the transformed values, in many
problems, can then be used to derive abundance

estimates.
N SMALL GROUPS OF DATA

The prec1sion, or reproducibility, of any statistical |

estimate is largely dependent on the number of values

on which the estimate is based. Those estimates derlved'

from large data sets will be relatively precise, even
where the statistical riethod is not the most efficient one
that could be used (where the statistical method has not
been derived by the method of maximum likelihood).

Where the data set is small, however, an unbiased max-
imum-likelihood techmque should be used wherever pos-
sible if the precision of the statistical estimate is
important. It is not possible here to state a value of n

which will serve to distinguish between large and'small |

data sets because this value will vary according to the
variation in the data. A better approach may be to
accept the maximum-likelihood estimate, if obtainable,
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wherever it differs from an estimate derlved by other
techniques.

Where the data are derived from a normal distribu-
tion, an estimate of abundance derived from equation 1
is based on the method of maximum likelihood and is
the most efficient estimate of abundance possible for a
given number of samples. . However, most underlying
frequency distributions in geochemical studies are not
normal; more commonly they are (1) -asymmetrical
with a long tail toward high values (positive skewness),
(2) asymmetrical with a long tail toward low values
(negative skewness), or (3) multimodal with more than
one peak in the frequency distribution curve. Where
skewness or the presence of more than one mode is suffi-

‘clent to indicate a departure of the underlying fre-

quency -distribution from the nermal form, abundance

“estimates derived from equation 1 will not be as efficient

as maximum-likelihood estimates, if the latter are avail-
able. The difference in efficiency may be large if « is
small. : o

The most common departuré of geochemical data
from the normal distribution is a positive skewness. In’

‘many frequency distributions the skewness, along with

other properties of the distribution, may reflect an

'underlying lognormal distribution. ‘Where this is true,
-an unbiased maximum-likelihood method for deriving:
efficient estimates of abundance (the population arith-

metic mean) can be applied (Sichel, 1952).' Where the

-positiveé skewness in a particular data set is less or

greater than that ‘which can be ascribed to a lognormal
distribution, a modification of this method may be used
(Krige, 1960). The methods of Sichel and' Krlge

‘involve data transformations.

Unbiased maximum-likelihood methods of abunda.nce

_estimation applicable to'frequency distributions which
“are negatively skewed or multlmodel are unknown to

the writer.
GEOMETRIC CLASSES

Any quantitative analytical determination may be
regarded as a reported range or class; a concentration
reported as 78.62 percent, for example, signifies the

| range from 78.615 to 78.625 percent as the analyst’s best

estimate of the true value. The classes are broader

' where fewer significant. figures are reported. Where
| the values are reported to an equal number of .decimal

places, the class widths are equal; the class boundaries’
are arithmetic, because they increase by a constant in-
crement.

In much spectrographlc and colorimetric work the

. analyst reports concentration values in broad classes,
- without specifying single values (except where they are:

meant only to identify a class). Classes are used for
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reporting because of relatively poor discriminatory
capacity of the. analytical methods.
boundaries of the classes increase geometrically, each
being higher than the previous boundary by a constant
multiplier. Geometric classes are used because the
error variance is at least approximately proportional
to the amount of the constituent present.

An example of the geometric classes used in spectro-
graphic work was given by Myers, Havens, and Dunton
(1961, p. 217), who formerly reported the concentra-
tions of 68 elements in classes having the boundaries—
0.00010, 0.00022, 0.00046, 0.0010, 0.0022, . . .—increas-
ing by a factor equal to the cube root of 10, up to 10
percent. Myers and other U.S. Geological Survey
spectrographers currently report values in classes with
boundaries increasing by a factor equal to the 6th root
of 10 (0.00012, 0.00018, 0.00026, 0.00038, 0.00056, 0.00083,
0.0012, . . .). Other similar systems of reporting,
using various other factors for the generation of class
boundaries, were described by Barnett (1961, p. 184).

Although the reporting of spectrographic analyses
in geometric classes has allowed spectrographers to pro-
duce a vast amount of data useful in geochemical prob-
lems, the practice has presented some difficulties in sta-
tistical analysis that have not, so far, been satisfactorily
resolved. Because the class boundaries form a geo-
metric progression, the class widths are unequal in size,
and conventional methods of treating grouped data are
awkward and less efficient than other methods that
might be used. There is also the problem of choosing
the best midpoint to represent a frequency class in the
grouped-data computations. Where a number of con-
centration values are reported to occur within the range
from 0.0046 to 0.010 percent, for example, it would seem
proper to use the arithmetic midpoint of 0.0073, rather
than the geometric midpoint of 0.0068, for computing
the sample arithmetic mean for the whole data set. The
use of the geometric midpoint, however, nearly always
gives better answers. (An example is given later in this
paper.) The reason for this is that the use of the lower
value partly compensates for a positive bias caused by

out any sound theoretical basis and should not be re-
lied on. '

When a logarithmic transformation of the class
boundaries is made, the class widths (in log units) be-
come equal, thus allowing straightforward use of
grouped-data computational methods for deriving the
mean logarithm and standard deviation of thelogs. By
using these values, the abundance (population arith-
metic mean) can be estimated according to the maxi-
mum-likelihood method of Sichel (1952), if the form

Generally, the-
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of the underlying frequency distribution is at least ap-
proximately lognormal.

ANALYTICAL DISCRIMINATION

For many types of spectrographic or colorimetric
analytical techniques the analyst is unable to estimate
concentrations to more than one significant figure. If
a number of concentrations of the constituent sought
are similar among the samples analyzed, the suitability
of the technique for discriminating among the samples
is poor. Commonly, a large proportion of the deter-
minations are reported as the same value. For example,
Huff (1955, p. 111) gave copper determinations from
a chromatographic field technique on 23 samples of
Tapeats Sandstone (Cambrian) from near Jerome,
Ariz. Seventeen of the 23 determinations are given as

.10 ppm (parts per million) ; the remaining 6 are either

50, 100, or 150 ppm. Many other examples of poor
analytical discrimination could be given involving data
reported in geometric classes. In many instances only
three or four adjacent classes are used in reporting, and
commonly 20-50 percent of the concentrations occur
within one class. Discrimination among values in the
same class, of course, is impossible. The proportion of
values reported in a single class is dependent on the
class widths, the variation in the concentrations, and

_the form of the frequency distribution.

As has been pointed out, some of the computational
problems encountered in abundance estimation can be
wholly or partly resolved by means of data transforma-

“tions. Where analytical discrimination is poor, how-

ever, some of the more useful transformations are
impossible or ineffective. No transformation would be

- useful, for example, in normalizing Huff’s data referred
- to above, and transformations other than the logarith-
-mic transformation would be ineffective in treating
"most data reported in broad geometric classes.

RECOMMENDED TECHNIQUES

Where large sets of uncensored data are available,
abundances may be estimated directly by using the con-

the grouping technique, but the compensation is with- | ventional formula for arithmetic means in equation 1.

If the data are part of an underlying normal distribu-
tion of values, the abundance estimate will be the most
efficient possible. If the underlying distribution is not
normal, it may be possible to obtain a more efficient
estimate by other techniques. However, if n, the num-
ber of values, is large, the increase in efficiency may be

| small.

Where small sets of uncensored data are used, abun-

- dance estimates derived from the conventional formula

for the arithmetic mean will be as efficient as possible
if the underlying frequency distribution is normal.
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Where the distribution is positively skewed, abundance
estimates that are significantly more efficient may be
obtained by other methods. These methods begin with
data transformations.

‘Where the data are censored, abundances may be esti-
mated using the techniques available for estimating the
population arithmetic mean, if the total underlying dis-
tribution is normal. Where it is not normal, data
transformations may be employed. The mean and
standard deviation of the transformed values may then
be used to derive abundance estimates.

TRANSFORMATIONS

Many types of data transformations have been used
in geologic and geochemical problems to normalize ob-
served frequency distributions, but the types that ap-
pear more useful in problems of estimating geochemical
abundance are the log ¥ and log (y+«) transforma-
tions, where ¥ is the concentration of the element, in
percent or in parts per million, and « is a constant.
(All logarithms used in this paper are to the base 10.)
Data which can be transformed to the normal form by
these functions are referred to as 2- and 3-parameter
lognormal, respectively (Aitchison and Brown, 1957,
p- 7, 14). ’

These two transformations generally appear to be
effective where the distribution of the original analyti-
cal data is unimodal and positively skewed. The sim-
ple log transformation of some positively skewed data
will lead to a log distribution with negative skewness.
For other data (fig. 1Z) the log transformation will
lead to a distribution with some degree of positive skew-
ness remaining (fig. 17'). In either case the constant,
a, can be estimated using techniques described by Krige
(1960, p. 236) and used in the transformation log
(y+a). Where a negative skewness of logs is to be
corrected, « will be a positive value; where a positive
skewness in the logs is to be corrected, « will be negative.
In some cases the absolute quantity of the derived
negative value of « will equal or exceed some of the
concentration values, ¥, so that the quantity (y+a) is
zero or negative and log (¥ +«) is undefined for some
analytical values. Transformed distributions that re-
sult are, in effect, censored (fig. 1¢), and abundance
estimates may be obtained by using techniques for
censored distributions.

The choice of a transformation that may be effective
in producing & normal, or at least symmetrical, fre-
quency distribution can be governed by examination and
testing of the data available or by previous experience
with similar data. Selections based on the data avail-

240-308—67——2
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able are generally preferred, though this is not always
possible when a group of data is small or when a large
proportion of the data is censored. Many data pertain-
ing to the concentration of minor elements in rock sam-
ples collected over large areas correspond more closely
to the lognormal form than to the normal, and the log
transformation is appropriate in a large number of
problems. The log (y+e«) transformation can fre-
quently be used to improve on the simple log transforma-
tion if a satisfactory estimate of « can be obtained.
When the data have been transformed by z=1log ¥ or
z=log (y+a), the mean of z is estimated from equa-
tion 1 and the standard deviation is estimated from
equation 2. The mean and standard deviation of
these transformed values are of little value themselves
in problems of abundance estimation, but they may be
used to derive estimates of arithmetic means by tech-
niques developed and described by Sichel (1952) and

Krige (1960).
2x2__ nEZ 1/2
[ o

Equation 2 is a biased estimator of the population stand-
ard deviation but is used in this form in computations
described later in the paper. Where unbiased estimates
of standard deviation are needed, » in the denominator
of equation 2 is replaced by n-1.

COHEN’S METHOD FOR CENSORED DISTRIBUTIONS

Cohen (1959, 1961) presented maximum-likelihood
techniques for estimation of the mean and standard
deviation from either censored or truncated normal dis-
tributions. These techniques may be used whether the
unknown part of the distribution is in the low- or
the high-value region (left- or right-censored, respec-
tively). Because left-censored distributions are by far
the more common in geochemical problems, only the
part of Cohen’s techniques applicable to these distribu-
tions will be discussed here. Although Cohen’s methods
are strictly applicable to normal distributions only,
it can easily be demonstrated that the method for left-
censored distributions provides satisfactory estimates of
arithmetic means wherever the total distributions are
symmetrical about one mode. The method given by
Cohen has not been corrected for a small bias, and other
methods for treating censored distributions may be
more accurate when n is less than about 10 (Cohen,
1959, p. 218).

The methods given by Cohen. (1959, 1961) are pre-
ferred to others given by Hald (1952) and Hubaux and
Smiriga-Snoeck (1964) only because of the simplicity
of computation.
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In Coben’s technique z, is taken as either the trans-
formed value of the lower limit of analytical sensitivity
or as the limit of sensitivity (in percent or in parts per
million) if the data transformation is not required.
The quantity n’ is the number of concentration values
that are below the limit of sensitivity; such concentra-
tions are generally reported by the analyst as ‘‘not
detected’’ or zero. The ratio h=n’/n is the fraction of
the total number of analyzed specimens in which the
element was not detected. The mean and standard
deviation of the analytical values above the limit of
sensitivity are computed as:

et ®
and
/12
§'= m—(x’)z] . 4)

The mean and standard deviation of the entire distri-
bution are then estimated from:

=%'—NZ'—2,) (5)
=[(")*+-ME" —2.)"]' . (6)

and

0 0.1 0.2 0.3 0.4 0.5 0.6
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The value \ in equations 5 and 6 is a function of Aand
the quantity (s')%/(z'—=z,)%. Values of \ for 0.01<h
<0.90 and 0.00< (s')%/(% —2,)2<1.00 were tabulated
by Cohen (1961, p. 538), and graphs of \ were given in
an earlier paper (Cohen, 1959, p. 231). The graphs
are reproduced here in figure 2, with Dr. Cohen’s
permission,

t AND i« ESTIMATORS OF SICHEL AND KRIGE

Where the original analytical data have been used in
computation without transformations, the derived val-
ues of @ (eq 1) or % (eq 5) may be taken directly as
estimates of geochemical abundance. However, when Z
or u are derived for #=log ¥ or z=log (y+«, abun-
dances can be estimated using methods described by
Sichel (1952) and Krige (1960). The method by Sichel
is an unbiased maximum-likelihood technique; that by
Krige is a modification of Sichel’s method, to be used
where the log (v +«) transformation is required. The
estimators, where the z=log y and z=log (y+«)
transformations are used, are referred to as ¢ and Za,
respectively, and should not be confused with Student’s
¢, which has wide application in statistical procedures.
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TIGURE 2.—Curves for estimating A for equations 5 and 6 (from Cohen, 1959, p. 231; reproduced with
author’s permission).
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The ¢ and ¢« statistics provide useful estimates of the
arithmetic mean and geochemical abundance when the
distribution of log v or log (y-+«), respectively, ap-
proximates the normal distribution form.

Where log ¥ is normally distributed:

=7X10?
or » (7)

t=7X10%

where % and 4 are the arithmetic means of log ¥ esti-
mated from complete (eq 1) and censored (eq 5)
distributions, respectively. The factor = is a function
of n, the total number of specimens analyzed and either
the antilog of s (eq 2) or of & (eq 6), depending on
whether the distribution is complete or censored.
Values of » may be read from graphs in figure 3; for
more exact work the reader is referred to the- original
equation and tables (Sichel, 1952, p. 275, 284-288)
from which equation 7 and the graphs in figure 3 were
derived. Simplified equations and tables were given
recently by Sichel (1966). Other equations and tables
that are mathematically equivalent to those of Sichel
were given by Aitchison and Brown (1957, p. 45,
156-158) and were based on the work of Finney (1941).
Where log (y+«) is normally distributed:

ta=(7X10%)—a
or X » (8)
ta={(TX10*)—a

7 g T T RRERREA RRARERARS SR uEEARSE Y
n=number of analyses
F s =standard deviation (equation 2)
6 F 4=standard deviation (equation 6)
o
5F
T4
3F
2|
1 G o b e T b e b b 1 1
1 2 3 4 5 6 7

105 or 109

F1aUurRE 3.—Graphs Of 7 as a function of the number of analyses,
n, and the antilog of s or ¢ (based on tables by Sichel, 1952).
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where Z and [ are the arithmetic means of log (y+a)
estimated from complete (eq 1) and censored (eq 5)
distributions, respectively. The equations in 8 are
modified forms of one given by Krige (1960, p. 239).
The factor = is a function of n, the total number of
specimens analyzed, and of the standard deviation
of the transformed values, log (y+a). If complete
distributions are used, the standard deviation is esti-
mated by s (eq 2); if censored distributions are used,
it is estimated by ¢ (eq 6). The value of r can be read
from figure 3 by using n and the antilog of either s
or ¢ for the transformed values. For more exact
computation the reader is referred to Krige (1960,
P. 239) and tables given by Sichel (1952, p. 284-288),
or to Sichel (1966).

CONFIDENCE INTERVALS

Estimates of geochemical abundance should be accom-
panied by estimates of the confidence intervals wherever
possible. The method for estimating this interval about
the arithmetic mean derived from equation 1 is well
known (see Dixon and Massey, 1957, p. 128) and leads
to approximately correct intervals even where the dis-
tributions are not normal. Cohen (1959, p. 231-232)
gave methods for estimating confidence intervals of u
derived from censored distributions. Approximate
confidence intervals for the ¢ and f«, may be estimated
by using equations given by Aitchison and Brown
(1957, p. 46) ; more exact confidence intervals can be
obtained by using methods given recently by Sichel
(1966).

SUMMARY OF METHODS

A flow chart indicating recommended computational
procedures for estimating geochemical abundances is
given in figure 4. With large groups of uncensored
data, abundances may be estimated as arithmetic means
in the conventional manner, using equation 1. How-
ever, where means obtained from equation 1 differ from
those obtained from procedures indicated in figure 4,
the means obtained from the latter procedures should
be preferred. The higher precision of the ¢ and Za esti-
mators have been adequately demonstrated by Sichel
(1952, p. 276-278) and Krige (1960, p. 242-244), respec-
tively, and the advantages of treating censored distribu-
tions by the statistical method of Cohen (1959, 1961)
over the approximate methods used in the past will be
obvious.

The methods of Sichel (1952), Krige (1960), and
Cohen (1959, 1961) are individually inadequate for a
large number of computational problems met in analyz-
ing geochemical data. Sichel’s ¢ estimator is useful
where the data correspond to the lognormal frequency
distribution and are uncensored. Krige’s ¢« estimator
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is applicable to a wider variety of distribution types,

but, as with the ¢ estimator, the data must be uncensored. '

Moreover, with highly skewed frequency distributions,
the log (y+«) transformation may impose censoring
of data which are completely above the lower sen51t1V1ty
limit of the analytical method. Cohen’s method is
directly applicable to data which approximate a normal
distribution, but data of this type are not common in
minor-element studies pertaining to areas larger than a
single mine or small outcrop. Generally the required
normal distribution can be achieved only through a
data transformation ; estimates of the mean of the trans-
formed variate are not valid estimates of abundance
but may be transformed to valid abundance estimates
using the methods of Sichel or Krige, if the necessary
data transformation is accomplished by log y or log
(y+a). The transformations are, indeed, sufficient in
a wide variety of geochemical studies.

Some propertles of small data sets prohibit the esti-
mation of precise arithmetic means, or abundances.
These are indicated by STOP signs on the flow chart
in figure 4, and are as follows:

1. A censored frequency distribution whlch though
believed to be part of a symmetrical dlstrlbutlon,

departs widely from the normal form (for exam-

ple, some ¢énsored multimodal dlstrlbutlons)

2. A frequency distribution:which is markedly asym-
metrical and cannot be transformed to an approx-
imate normal distribution by log ¥ or log (y+«).
This particularly includes multimodal skewed dis-
tributions and all negamvely skewed distributions.

3. A frequency distribution that is unimodal and posi-
tively skewed but is based on data that cannot be
normalized: by the log ¥ or log (+«) transforma-
tions owing to poor analytical discrimination or
other factors.

4. Data reported in broad geometrlc classes, but not
approximately normal on a log scale.

Where these propertles are present, the conventional
method of estimating the population arithmetic mean
(eq 1) may be the only way readily available to the
geologist for estlmatlng geochemical 'Lbundance

The use of the flow chart, figure 4, is demonstrated
in the following section by employmg examples of data
from the literature. ! : :

EXAMPLES

Four data sets were selected from the’ hterature to
illustrate use of the recommended methods for widely
differing types of data. One data set is approximately
normally distributed, two aré approximately lognormal
(one of these is reported in geometric classes), and a
fourth set is approximately lognormal aftér adjustment

* STATISTICAL STUDIES IN FIELD GEOCHEMISTRY ¢

by a constant, «. However, except for the data in geo-
metric classes, none of the data sets indicate a close
correspondence to the normal or lognormal form; this
selection has been intentional to demonstrate that the
distribution requirement is not rigid.

"As shown by these and other examples, the principal
requirement is that the distributions be unimodal and
approximately symmetrical on any of the three scales—
the scale of original measurement, ¥, or one of the two
transformed scales, log y or log (y+«).

The number of values in each of the four data sets
used as examples (fig. 1) is large compared with the
number available in many geochemical problems. Most
of the estimated abundances, therefore, agree fairly well
with the abundances derived using the conventional
method for estimating the population arithmetic mean.
Large data sets were used so that this comparison could
be made to verify the accuracy of the techniques for use
in actual abundance estimation problems where # is
small or where the data are censored. -

MOLYBDENUM SULFIDE IN DRILL CORE

The first set of data is from Hazen and Berkenhotter
(1962, p. 84-86). The assays, of percent MoS,, were
made on samples of drill core (300-degree segments)
from the Climax Molybdenum mine, Lake County, Colo.
We shall assume, for purposes of illustration, that the
assays are an objective and unbiased sample of those
that might have been obtained from the block of ore
penetrated by the drill hole (that is, there is no sam-
pling problem). The frequency distribution of the
original assays is represented by histogram 4 in figure
1 and by the probability graph for distribution 4 in
figure 5. Both illustrations indicate that the frequency
distribution of assays (at least the central part) is ap-
proximately symmetrical. The distribution was arbi-
trarily censored successively at three points indicated
by the small arrows (fig. 14), and four abundance esti-
mates were made using the complete and the partial
data sets. The estimates, with intermediate computa-
tional values, are given in table 1.

Inreferenceto figure 4:

[1] The MoS, assays are in arithmetic classes.
ceed to [2].

[2] The frequency distribution of Mosz assays, ¥
is approximately symmetrical (figs. 14, 54).
Proceed to [3].

[8] If the complete distribution is used, the abundance

.of MoS; in the ore block is estimated, by the con-
ventional method in equation 1, to be 0.359 per-
cent.

If only assays equal to or greater than the arbitrary
(or hypothetical) analytical cutoffs—0.25, 0.35,

Pro-
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and 0.40 percent—are used (table 1, col. 2), the
quantities indicated in columns 6-14 (table 1)
are derived from the indicated equations, and
the successive abundance estimates are derived
as shown in column 17. The abundance esti-
mates are in agreement to two figures, even
though as much as 63 percent of the data was
arbitrarily censored (table 1, col. 8).
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FIGURE 5.—Probability graphs of frequency distributions A-G
in figure 1.
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Had the data, in fact, been censored at the arbitrary
cutoff values, it would have been necessary to judge the
nature of the total frequency distribution from as little
as 37 percent of the data occurring above the cutoffs.
In this extreme example of data censoring, the judg-
ment regarding the form of the frequency distribution
could be made only on the basis of prior experience with
similar data. Where theé censored part of the distribu-
tion is minor (less than about one-third of the total dis-
tribution), the probability graphs may still be useful
for this purpose.

IRON IN SANDSTONE

The iron concentration in 85 drill-core samples of
quartzose sandstone from the Salt Wash Member of the
Morrison Formation (Jurassic) in San Miguel County,
Colo., are represented by histogram B in figure 1. The
data are from Miesch (1963, pl. 3) and were obtained
by means of a spectrographic method (Myers and oth-
ers, 1961) wherein the results are reported in classes
having the boundaries 0.046, 0.10, 0.22, 0.46, . . . per-
cent. The corresponding logarithms of the boundaries
are —114, —1, —24, —14, . . The boundaries, in
percentage concentration values, are at geometric inter-
vals and increase by a factor of 2.15. The boundaries,
in log values, increase by an increment of one-third.
We shall assume that the analyzed samples are an
unbiased representation of the body of rock for which
the geochemical abundance is to be estimated.

The estimate of iron abundance in the sandstone,
derived from the grouped data form of equation 1, is
0.38 percent. The grouped-data form of equation 1 is:

=L 3t (9)

n ty

where f; is the number of values in the ¢th class and @,
is the class midpoint. The midpoints used were the geo-
metric centers of the classes—the values 0.07, 0.15, 0.32,
0.68, and 1.46 percent. There is little justification for
accepting the value of 0.38 percent as a valid estimate of
abundance other than the fact that it agrees closely with
the abundance of 0.37 percent derived with the theoreti-
cally justified ¢ estimator. It is not expected that equa-
tion 9, used in the manner described here (with
geometric midpoints), will consistently lead to unbiased
and efficient abundance estimates. The use of arithmetic
midpoints (0.07, 0.16, 0.34, 0.73, and 1.58) leads to an
abundance estimate of 0.40 percent. Although the esti-
mate of 0.40 percent is not greatly different from that
of 0.87, it does demonstrate the positive bias in the
technique by which it was obtained. The positive bias
is commonly much larger.
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TABLE 1.—Summary of computations for estimating geochemical abundance from data represented in histograms in figure 1

1 2 3 4 5 6 | 7 8 | 9 10 1 12 13| 1 15 16 17
z
Hypo- . - : o | (eql) [s(eq2)| (s)3 N N Esti-
Distribution ! thetical Transformation @ Zo n’ n | h=—-! or & | or & \ (fig. 2)| s (eq 5)| o (eq 6)] ¢ (eq 7) |{x (eq 8)| mated
analytical Tl (eq8) | (eq4) [(@'—z,)3 abun-
cutoff dance
Molybdenum sulfide (percent)
0| 101 0 0.359 | 0.110 |occoomoo|ommcmmac oo ice e eea e 0.359
20| 101 .20 . 396 .00 0.39 0.27| 0356 0.118 ... | -..oo._. . 356
48 1 101 .48 .445 . 072 .58 .94 . 356 D\ I 2 (PRI IR . 356
64 1 101 .63 .475 . 066 77 1.55 .359 R0 § U S PR SO .359
Iron (percent)
85 0 —. 543 1R €: N PR (RS SN S, I 1 A PO .37
85 .06 | —.504 .281 .34 .08 | —.544 313 [ 7 4 PR .37
85 .35 | —.356 .209 .45 .59 | —. 539 318 38 |ommemeen .38
86 .76 | —. 100 .133 .33 | ~2.04 | —.576 359 72 [—— .37
Uranium (ppm)
185 0 4,53
185 .12 4.48
185 .43 4.11
186 0 4,54
185 .12 4,55
185 .43 4.54
185 .73 4.24
Arsenic (ppm)
58| 0 1.69
58 0 . 006
58 14 .152
58 38 . 257
58 72 . 488
58 14 | —.208
58 38 . 032
58 72 .375

1 The letters in this column refer to frequency distributions shown in figs. 1 and 5.

In reference to figure 4 :

[1] The data are grouped in geometric classes. Pro-
ceed to [7]. -

[7] The frequency distribution, on a log scale, is shown
in figure 1B. The probability graph for this dis-
tribution is given in figure 5. No important
departure from the normal form is indicated, if
the log scale is used. Proceed to [5].

[5] The abundance of iron in the sandstone, using
Sichel’s ¢ estimator, is estimated to be 0.37 per-
cent. If the data are censored at the arbitrary
points, 0.10, 0.22, and 0.46 percent, and 6, 35, and
76 percent of the data is effectively lost, the
abundance estimates are 0.37, 0.38, and 0.37 per-
cent, respectively (table 1, col. 17).

If only data values above the 0.46-percent class boun-
dary (20 of the 85 values) are used, a large positive
skewness is apparent from the fact that the median is
between 0 and 0.46 percent—far below the central part
of the total range of concentrations (0-2.2 percent).
Therefore, a log transformation could be judged to be
an appropriate step toward achieving a distribution
closer to the normal form.

If the data had shown a significant departure from
the lognormal form, a “STOP” sign would have been

encountered in figure 4. Because the data are in broad
geometric classes, the log (¥ +«) transformation would
have been awkward, and no method is available that -
could have been used to obtain a precise estimate of
abundance.

URANIUM IN GRANITE

The data represented in histogram € (fig. 1) were
originally from Coulomb (1959), but were repro-
duced by Hubaux and Smiriga-Snoeck (1964, p. 1207)
and used in testing a digital-computer method for de-
riving means and standard deviations of censored dis-

“tributions. Hubaux and Smiriga-Snoeck derived mean

logarithms rather than arithmetic means or abundance
estimates. The data represent uranium concentrations
in samples from a homogeneous granitic massif; we
shall assume that the sampling was unbiased.

The frequency distribution of the original data (fig.

| 10) exhibits a clear positive skewness, and the data,

therefore, were transformed logarithmically (fig. 1D).
The frequency distribution, as noted by Hubaux and
Smiriga-Snoeck (1964, p. 1206), is only imperfectly
lognormal. The effectiveness of the log transformation
in bringing the data closer to the normal form can be
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seen by comparing the probability graph for distribu-

tion ¢ with that of distribution D (fig. 5).

If all the data (n=185) are used, the geochemical
abundance of uranium in the granitic massif is esti-
mated, as the arithmetic mean (eq. 1), to be 4.53 ppm
(table 1, col. 17).

In reference to figure 4:

[1] The uranium data are in arithmetic classes. Pro-
ceed to [2]. '

[2] The frequency distribution of uranium analyses
is unimodal and positively skewed; analytical
discrimination is satisfactory (figs. 1¢ and 5C).
Proceed to [4].

[4] The frequency distribution of the logarithms of
the uranium analyses is approximately normal
(distribution D; in figs. 1 and 5). Proceed to
[5].

[56] If the complete distribution is used (n=185), the
abundance, derived with the ¢ estimator of Sichel
(1952), is 4.54 ppm, virtually the same as the
value, 4.58, derived by the conventional
procedure.

After censoring the data at the arbitrary analytical
cutoffs 2.6, 4.0, and 5.1 ppm and effectively dis-
carding 12, 43, and 73 percent of the data, respec-
tively, the abundance estimates, as derived with
the ¢ estimator, are 4.55, 4.54, and 4.24 ppm
(table 1,col. 17).

Had the decision been made to use the original data
rather than to transform them logarithmically (that
is, had the distribution represented by histogram (' in
figure 1 been judged approximately symmetrical), the
computation method would have proceeded as in the
previous example for MoS, assays. Censoring the data,
then, at 2.6 and 4.0 ppm would result in abundance esti-
mates of 4.48 and 4.11 ppm, respectively (table 1, col.
17). These are somewhat poorer than the correspond-
ing values of 4.55 and 4.54 obtained by way of the ¢
estimator, and the importance of the log transformation
is apparent.

The problem of judging, from censored data, whether
or not the total concentration values (fig. 1C) exhibit a
symmetrical frequency distribution is not as difficult
as for MoS; assays in the previous example. Because
only 27 percent of the uranium values are above 5.1
ppm, for example, the median of all the data is known
to occur between 0 and 5.1 ppm. As the data extend
to more than 14 ppm some positive skewness is evident.
However, judging the degree to which the log transfor-
mation corrects the skewness is more difficult. Where
a large proportion of the data is censored but the re-
mainder is sufficient to indicate definite positive skew-
ness in the original data, the log transformation might
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be used as an approximation. Where a lesser propor-
tion of the data is censored, the transformation using
log (y+«) might be used if needed, and thereby offer
a means for improving the accuracy of abundance
estimates.

ARSENIC IN BASALTS AND DIABASES

The data with extreme positive skewness, represented
by histogram £ in figure 1, are from Onishi and Sandell
(1955, tables 5, 10) and were used by Ahrens (1957,
p. 207-209) in a discussion of frequency distributions
of minor elements in igneous rocks. The data—arsenic
determinations, in parts per million—were obtained on
58 samples of basalt and diabase from widely separated
localities in the United States and from localities in
Japan and Sicily. For purposes of illustrating the
computational techniques we shall assume that the
samples adequately represent the rock bodies from
which they were taken.

The geochemical abundance of arsenic in the basalts
and diabases, estimated by the conventional method
(eq 1), is 1.69 ppm (table 1, col. 17).

In reference to figure 4:

[1] The arsenic data are in arithmetic classes.
ceed to [2].

[2] The frequency distribution is unimodal and posi-
tively skewed; analytical discrimination is satis-
factory. Proceed to [4].

[4] The frequency distribution of the logarithms of
the arsenic analyses (distribution 7 in figs. 1, 5)
retains a definite positive skewness. Proceed to
[61.

[6] If the methods described by Krige (1960, p. 236)
are used, the appropriate constant, «, is estimated
to be —0.6. (Had the skewness of distribution
F in fig. 1 been negative, the estimated constant
would have been a positive value.) Eight of
the analytical values are equal to or less than 0.6,
and as « is negative, the quantity log (y+«) for
these values is undefined ; the transformed data
(distribution @ in fig. 1) are censored with
h=845=0.14. The probability graph for the
newly transformed data, drawn using log
(y—0.6), is shown in figure 5 (distribution @).
Neither the histogram nor the probability graph
indicates a large departure of the transformed
data from the censored normal form.

If Cohen’s technique for censored distributions
(eq 5, 6) and Krige’s f« estimator are used, the
abundance estimate for arsenic in the basalts and
diabases is 1.77 ppm (table 1, col. 17). Because
the number of analyses in this example is small
(n=58) and the data are highly skewed, it may

Pro-



B14

be argued that the estimate of 1.77 ppm is better
than the estimate of 1.69 derived from the con-
ventional procedure. However, the two esti-

mates are in at least fair agreement.
When censoring the data at the arbitrary cutoffs,
1.0 and 1.6 ppm, and effectively losing 38 and
72 percent of the data, respectively (table 1, col.
8), the abundance estimates derived with the ¢«
estimator are 1.68 and 1.75 ppm (table 1, col. 17).
Had the data actually been censored below 1.6 ppm,
estimation of the constant « may have been difficult,
but some useful estimate might have been made unless
the point of censoring was lower than about 1 ppm.
Whether the point of censoring had been at either 0.7,
1.0, or 1.6 ppm, a high positive skewness would have
been apparent from the fact that the median lies well
below the central part of the known range of the data—
0-10 ppm. If the log transformation is used (without
adjusting the data by the constant «) and all the data
are used, the abundance estimate is 1.58 ppm. If only
data equal to or greater than 0.7, 1.0, and 1.6 ppm are
used, the abundance estimates are 1.58, 1.59, and 1.51
ppm, respectively (table 1, col. 17). These estimates
are notably poorer than those derived using the f«
(rather than ¢), estimator, but they are, nevertheless,
sufficiently good for many types of geochemical studies.

CONCLUSIONS

Computational methods given by Cohen (1959, 1961),
Sichel (1952, 1966), and Krige (1960) are useful in
providing accurate and efficient estimates of geochemi-
cal abundance in many problems where the conventional
method for estimating population arithmetic means is
not applicable (owing to censored data) or is ineffi-
cient (because of small data sets from nonnormal dis-
tributions). A combination of the methods may be
useful where censored data are from an underlying
frequency distribution that is nonnormal. Each of the
methods requires that the data, or transformations of
the data, be normally distributed. Two transforma-
tions that have proven satisfactory in much geochemical
work are log y and log (y+«). Neither transformation
is effective, however, where analytical discrimination
has been poor. Moreover, selection of the appropriate
transformation may be difficult where a large propor-
tion of the distribution has been censored.

The methods discussed are recommended for esti-
mating geochemical abundance primarily because they
are the most efficient methods available. Indeed, the
methods developed by Sichel and Cohen are the most
efficient possible where the frequency distribution re-
quirements are satisfied. Those developed by Sichel
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and Krige, moreover, have been corrected for a small
bias that exists where n is small. The method of
Cohen does contain some bias where n is small, but the
bias is probably much less than that introduced by
most arbitrary methods used in handling the censored-
data problem. '
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