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STATISTICAL STUDIES IN FIELD GEOCHEMISTRY 

METHODS OF COMPUTATION FOR ESTIMATING GEOCHEMICAL ABUNDANCE 

By A. T. MIESOH 

ABSTRACT 

Geochemical abundance of an element i·s regarded as the pro­
portion of a total rock body, or group of rock 1bodies, that is 
made up of the element and is equivalent to the population 
arithmetic mean of sample analyses, generally in units of per­
centage or parts per million. Computational problems encoun­
tered in estimation of abundances can arise from having lim­
ited ranges of analytical sensitivity, from having only small 
groups of data, and from reporting of data in broad geometric 
classes. 'l'hese problems can be partly .resolved by use of a com­
bination of techniques described by Sichel (1952), Cohen (1959, 
1961), and Krige ( 1960). The combination of techniques allows 
efficient estimation of geochemical a·bundances from a wide 
variety of frequency distributi'On types if the analytical 
discrimination is sufficient to allow effective use of data 
transformations. 

Examples of data ·from the literature were used to demon­
strate the techniques; up to 76 percent of the da·ta values were 
nrbitrarlly placed in the "not detected" class, and estimated 
arithmetic means agreed with those estimated from the com­
plete data set to two significant figures. The types of frequency 
distributions displayed by the data ·examples are generally 
representative of those commonly encountered in geochemical 
problems. 

INTRODUCTION 

The esthnation of abundances of constituents in rock 
bodies, or in groups of rock bodies, is necessary in a 
broad range of geologic problems. In mining and ore 
reserve estimation, for example, unbiased and. precise 
estirnates of abundance of ore constituents are prereq­
u~site to efficient operational plannin.g, and become man­
datory as the grade of the ore declines toward the 
minimum grade that can be mined profitably. As lower 
grade deposits of broad extent are being appraised as 
potential ores of the future, the need for accurate and 
precise abundance estimates will increase. Aside :from 
these economic problems, the estimation of element abun­
dances is necessary in geochemical problems related to 
the origin of rock bodies and in both small- and large­
scale assessments of geochemical balance among 
different rock units and other material at the earth's 
surface. 

Estimates of ~bundance are generally expressed in 
terms of weight' percent or parts per million and ~re 
regarded as estimates of the proportion of the roc~ body 
that is made up of the constituent of concern. An 
abundance of 2 percent iron in a 500-million-ton rock 
body, :for example, implies that 10 million tons of iron 
are present. 

The estimation of reliable geochemical abundances is 
met with serious difficulties in both sampling and in 
computation. Errors due to sampling are undoubtedly 
the more serious in a majority of problems, but where 
sampling has :been well planned ~and successfully exe-

: cuted, correct computational procedures are increasingly 
·desirable. Where sampling has been inadequate (often.: 
unavoidably so owing to limited outcrop, :for example), 

· reliable abundance estimates are difficult to obtain. 
· Where the sampling has been unbiased but of limited 
· extent, the problem faced is to obtain the best estimate 
: of abundance possible; computational methods are 
; important :for this purpose. 

Many types of averages (such as medians, modes, 
geometric means, mean logs, and arithmetic means) are 

: suitable for specific geochemical problems, but the 
ari,thmetic mean is the only one of these that is a correct 
expression of abundance-or an unbiased estimate of 
abundance-under all circumstances. This was dis­
cussed and verified by Sichel (1947, 1952). I:f the 

. frequency distribution of values used in computing the 
' average is unimodal and symmetrical, the median, mode, 
'and arithmetic mean will be the same; but if the distri-
bution is skewed (asymmetrical), they may differ 
widely. The geometric mean will always be less than 
the arithmetic mean regardless of the type of frequency 
distribution, except where they are equal owing to zero 
variance in the data. Any type of average may be 
appropriate :for a specific geochemical problem, depend­
ing on the purpose for which the average is estimated. 
The geometric mean, for example, is useful :for repre­
senting the typical concentration of an element in a 

Bl 
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group of rock specimens where the concentrations ex­
hibit a symmetrical frequency distribution on a log 
scale. The median is a useful expression of average 
concentration among specimens regardless of the fre­
quency distribution and will be the same. as the geo­
metric mean where the distribution is symmetrical on a 
log scale. 

The equivalence of the arithmetic mean of the total 
population of samples in an entire rock body to geo­
chemical abundance follows from the definition of 
abundance, A (in weight percent), as: 

where Wis the mass of the constituent in the rock body, 
and T -is the mass of the rock. body. If there are N 
potential discrete samples in the total rock body, the 
mass, W, of the constitue~t is given by: 

. . 1 .. N . 

w 100 ft;t XjSj, 

where x1 is the concentration (in weight percent) of 
the constituent in the jth sample and ·s1 is. the weight 
of the sample. If all samples ~re of the same weight, then 

and 

. T N" 

w lOON ft;t Xj, 

N 

~Xi 
A _j=l 

.-fr· 

The right side of this equation is the population arith­
metic mean which can be estimated from analytical 
data by a number of different techniques. 

In some problems involving estimation of geo­
chemical abundance, the weighted arithmetic mean is 
necessary to estimate the population arithmetic mean 
and has been known to provide accurate abundance 
estimates. This is well illustrated ·in many papers 
on, for example, polygonal.methods of ore-reserve esti­
mation. In some other types· of problems, weighted 
arithmetic means are required to correct for highly 
uneven (biased) sampling, such as in estimation of 
the abundance of elements in large parts of the. earth's 
crust. Some of the problems met in this work were 
reviewed by Fleischer and Chao ( 1960). The methods 
described in this paper .. are not intended . for problems 
where weighted arithmetic means are inor~ suitably 
used. 

I am grateful to N. C. Matalas and L. B. Riley of the 
U.S. Geological Survey for technical criticism and much 
helpful discussion. 

PROBLEMS IN ESTIMATION OF GEOCHEMICAL 
ABUNDANCE 

Problems in the estimation of abundance (population 
arithmetic means) arise in both sampling and computa­
tion~ but only· the computational problems are consid­
ered il}.. this paper. The more common circumstances 
leading to ~omp:utational problems result from (1) lim­
ited ranges of analytical sensitivity,· (2) small groups 
of data (small n), and ( 3) data reported in geometric 
classes. vVhere none of these circumstances cause diffi-

. culty, ·abundance estimates derived from the ordinary 
expression for the arithmetic mean, 

- 1 
X=-~X n , (1) 

· will tend to be correct and will be at least relatively 
efficient. An efficient estimate, in the statistical sense, 
is one that has a small variance (Fisher, 1950, p. 12), or 
one that would be expected· to change little with the 
addition of new data. Concern for the efficiency of sta­
tistical estimates gave rise to the "maximum-likelihood 
method'' used in devising estimation methods (Fisher, 
1950, p. 14). Estimators derived in this manner are 
said· to yield statistics with minimum variance (maxi­
mum efficiency). The expression for the arithmetic 
mean in equation 1 is a maximum-likelihood ~stimator 
where the data are derived from a normally distributed 

. population; it 'is not a maximum-likelihood estimator 
for many of the problems in geochemical studies: 

In problems where data from a normally distributed 
population. are censored (some concentration values fall 
beyond . ~he range of sensitivity for the analytical 

·method), a maximum-likelihood method described by 
·Cohen (1959, 1961) may be used. Where the data are 
from a lognormal population, a maximum-likelihood 

. method given by Sichel (1952) will be applicable. A 
modification of the method given by Sichel will be use­
ful where the· data indicate certain kinds of departure 
from the. lognormal (I{rige, 1960). 

Some estimation methods derived by the method of 
· maximum likelihood ·are slightly biased for small n. 
Unbiased likelihood estimators are those that have been 
corrected for the bias, where such correction is needed. 

Abundance estimates derived by maximum.,likelihood 
techniques will not differ greatly, in many instances, 
from estimates derived by other reasonable though less 
precise methods. In much geochemical work, especially 

·that c6nducted on a large scale, errors due to sampling 
·and aiuilysis are overwhelmingly dominant in deter­
mination of the total estimation error; computational 
errors are relatively small. Nevertheless, the possibility 
of large errors from other sources cannot serve to justify 
additional errors where they can be easily avoided. 
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ANALYTICAL SENSITIVITY . 

Every analytical method has limits of sensitivity be­
yond which it is ineffective· for determination of con­
centration valves. These limits may occur at both .the 
lower arid the upper bounds· for a concentration r3:nge. 
~he spectrographic method described by Myers, 
I-Iavens, and Dunton (1961), .for example, may be used 
to determine silicon within the range from 0.002 to 
10 perce~t. Concentrations judged. to be lower or 
hiO'her than this range are reported as < 0.002 percent 
or

0

>10 ·percent, respectively. Thus, the spectrographic 
data may be either left or right censored. Th~ term 
"censored" is applicable here because the number of 
values beyond each sensitivity limit is known for any 
set· ·of analyzed rock samples. In other types of prob­
lems, where the number of values beyond certain limits 
is unknown, the data are said to be truncated (Cohen, 
1959,p.217). . . 

A number of methods have been used by indivi.dual 
geologists for computing means from censored data. 
(See, for example, Miesch, 1963, p. 21-23). Other 
methods that are available, however, are a great deal 
more satisfactory (Cohen, 1959, 1961; Hald, 1952, p. 
30 · I-Iubaux and Smiriga-Snoeck, 1964). The maxi­
nn~m-likelihood method described by Cohen will be 
applied to abundance· estimation problems in later 
sections. . 

Abundance estimates can be obtained directly from 
censored normal distributions, using Cohen's method, 
but not from other types of censored distributions. 
Where ·the analytical data ~o not indicate a norm~l dis­
tl:ibution, some transformation o~ the da•ta can be used, 
as will be demonstrated in a following section. The 
mean and varl"ance of the transformed values, in many 
problems, can then be used ~o derive abundance 
estimates. 

SMALL GROUPS OF DATA 

The precision, or reproducibility, of any statistical 
estim:a.te is larcrely dependent on the number of values 
on which 'the e;timate is based. Those estimates der~ved · 
from large data sets will be relatively precise, even 
w hei·e the statistical irtethod is not the most ·efficient one 
that could he u'sed (where the statistical method has .not 
been derived by the method of maximum likelihood). 
Where the data set. is small, however, an unbiased max.:. 
imum-likelihood technique should be used whereve~ pos­
sible if the ·precis! on· of the statistical estimate · is 
important. It is not possible here to state a value .of n 
which will serve to distinguish-between large and··smal~ 
data. sets because •this varue will vary according 'to the 
variation in the data. A better approach may. be to 
accept the inaximum-likelihood estimate, if obtainable, 

wherever it differs from an estimate derived by other 
techniques. . · . · .. 

Where the druta are derived from a normal d1str1bu­
tion, an estimate of abundance derived from ·equation 1 
is based on the method of maximum likelihood and is 
the most efficient estimate of abundance possible for a 
given number of samples .. However, most underlying 
frequency distributions in geochemical studies are _not 
normal; more commonly they· are ( 1) :asymmetrical 
wi-th a long tail toward high values (positive skewness), 
(2) asymmetrical with ·a long tail toward low values 
(negative skewness), or (3) multimodal with more than 
one peak in the frequency distribution curve. Where 
skewness or the presence of more than one mode is suffi-

' cient to indicate a departure of the underlying fre­
quency .distribution from the normal form,· abundance 
estimates derived from equation 1 will not be as .efficient 
as maximum-likelihood estim·ates, if the latter ~r.e avail­
able. The difference in efficiency may be large if·n is 
sm~l · 

The most common departure of geochemical data 
from the normal distribution is a positive skei.vness. In· 

·many frequency distributions the ·skewness, ·along with 
· other properties of the distribution, may reflect an 
· underlying lognormal distribution. ·Where ·this is true~ 
an unbiased maximum-likelihood method for deriving· 
efficient estimates of abundance (the population arith­
metic mean) can be applied (Sichel, 1952). : Where the 

. positive skewness in a particular data set is less or 
· greater than that ·which can be ascribed to a lognormal 
distribution, a modification of this method may be used 
(l(rige, 1960). The ·methods of Sichel arid' Krige 

:involve data transformations. · 
Unbiased maximum-likelihood methods of abundance 

. estimation applicable to 'frequency distributions which 

. are negatively skewed or multimodal are unknown to 
the writer. · · 

GEOMETRIC CLASSES 

Any quantitative analytical determination may be 
regarded as a reported range or class; a concentration 
reported as (8.62 percent, for. example, signifies the 
range fro~ 78.615 to 7.8.625 percent as the analyst's best 

· estimate of the true value. The classes are broader 
· where fewer significant figures ·are reported. ~ere 
the values are reported to an equal number of .deQimal 

. places, the class widths are equal; the class boundaries' 
are arithmetic, because they increase by a _constant in-
crement. . . . . . . 

In much spectrographic· and colorimetric w9r~ t~e 
: a~alyst reports concentration yalues in broad cla~ses,. 
: without specifying ~ingl_e val)leS (except where t~ey are· 
meant only to identify . a cla"ss). Classes are used for· 
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reporting because of relatively poor discriminatory 
capacity of the· analytical methods. Generally, the· 
boundaries of the classes increase geometrically, each 
being higher than the previous boundary by a constant 
multiplier. Geometric classes are used because the 
error variance is at least approximately proportional 
to the amount of the constituent present. 

.An example of the geometric classes used in spectro­
graphic work was given by Myers, Havens, and Dunton 
(1961, p. 217), who formerly reported the concentra­
tions of 68 elements in classes having the boundaries-
0.00010, 0.00022, 0.00046, 0.0010, 0.0022, . . .-increas­
ing by a factor equal to the cube root of 10, up to 10 
percent. Myers and other U.S. Geological Survey 
spectrographers currently report values in classes with 
boundaries increasing by a factor equal to the 6th root 
of 10 ( 0.00012, 0.00018, 0.00026, 0.00038, 0.00056, 0.00083, 
0.0012, . . . ) . Other similar systems of reporting, 
using various other factors for the generation of class 
boundaries, were described by Barnett ( 1961, p. 184). 

Although the reporting of spectrographic analyses 
in geometric classes has allowed spectrographers to pro­
duce a vast amount of data useful in geochemical prob­
lems, the practice has presented some difficulties in sta­
tistical analysis that have not, so far, been satisfactorily 
resolved. Because the class boundaries form a geo­
metric progression, the class widths are unequal in size, 
and conventional methods of treating grouped data are 
awkward and less efficient than other methods that 
might be used. There is also the problem of choosing 
the best midpoint to represent a frequency class in the 
grouped-data computations. 'Where a number of con­
centration values are reported to occur within the range 
from 0.0046 to 0.010 percent, for example, it would seem 
proper to use the arithmetic midpoint of 0.0073, rather 
than the geometric midpoint of 0.0068, for computing 
the sample arithmetic mean for the whole data set. The 
use of the geometric midpoint, however, nearly always 
gives better answers. (An example is given later in this 
paper.) The reason for this is that the use of the lower 
value partly compensates for a positive bias caused by 
the grouping technique, but the compensation is with­
out any sound theoretical basis and should not be re­
lied on. 

'When a logarithmic transformation of the class 
boundaries is made, the class widths (in log units) be­
come equal, thus allowing straightforward use of 
grouped-data computational methods for deriving the 
mean logarithm and standard deviation of the logs. By 
using these values, the abundance (population arith­
metic mean) can be estimated according to the maxi­
mum-likelihood method of Sichel (1952), if the form 

of the underlying frequency distribution is at least ap­
proximately lognormal. 

ANALYTICAL DISCRIMINATION 

For many types of spectrographic or colorimetric 
analytical techniques the analyst is unable to estimate 
concentrations to more than one significant figure. If 
a number of concentrations of the constituent sought 
are similar among the samples analyzed, the suitability 
of the technique for discriminating among the samples 
is poor. Commonly, a large proportion of the deter­
minations are reported as the same value. For example, 
Huff (1955, p. 111) gave copper determinations from 
a chromatographic field technique on 23 samples of 
Tapeats Sandstone (Cambrian) from near Jerome, 
Ariz. Seventeen of the 23 determinations are given as 

. 10 ppm (parts per million); the remaining 6 are either 
50, 100, or 150 ppm. Many other examples of poor 
analytical discrimination could be given involving data 
reported in geometric classes. In many instances only 
three or four adjacent classes are used in reporting, and 
commonly 20-50 percent of the concentrations occur 
within. one class. Discrimination among values in the 
same class, of course, is impossible. The proportion of 
values reported in a single class is dependent on the 
class widths, the variation in the concentrations, and 

. the form of the frequency distribution. 
As has been pointed out, some of the computational 

problems encountered in abundance estimation can be 
wholly or partly resolved by means of data transforma­

. tions. Where analytical discrimination is poor, how­
ever, some of the more useful transformations are 
impossible or ineffective. No transformation would be 

• useful, for example, in normalizing Huff's data referred 
·to ·a:bove, and transformations other than the logarith­
. mic transformation would be ineffective in treating 
· most data reported in broad geometric classes. 

RECOMMENDED TECHNIQUES 

Where large sets of uncensored data are a vail able, 
abundances may be estimated directly by using the con­

: ventional formula for arithmetic means in equation 1. 
. If the data are part of an underlying normal distribu­
tion of values, the abundance estimate will be the most 
efficient possible. If the underlying distribution is not· 
normal, it may be possible to obtain a more efficient 
estimate by other techniques. However, if n, the num­
ber of values, is large, the increase in efficiency may be 

. small. 
'Where sm'all sets of uncensored data are used, a bun­

dance estimates derived from the conventional formula 
for the arithmetic mean will be as efficient as possible 
if the underlying frequency distribution is normal. 
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Where the distribution is positively skewed, abundance 
estimates that are significantly more efficient may be 
obtained by other methods. These methods begin with 
data transformations. 

Where the data are censored, abundances may be esti­
Inated using the teclmiques available for estimating the 
population arithmetic mean, if the total underlying dis­
tribution is normal. Where it is not normal, data 
transformations may be employed. The mean and 
standard deviation of the transformed values may then 
be used to derive abundance estimates. 

T~NSFOR~TIONS 

1\{any types of data transformations have been used 
in geologic and geochemical problems to normalize ob­
served frequency distributions, but the types that ap­
pear more useful in problems of estimating geochemical 
abundance are the log y and log ( y +a) transforma­
tions, where y is the concentration of the element, in 
percent or in parts per million, and a is a constant. 
(All logarithms used in this paper are to the base 10.) 
Data which can be transformed to the normal form by 
these functions are referred to as 2- and 3-parameter 
lognormal, respectively (Aitchison and Brown, 1957, 
p. 7, 14). . 

These two transformations generally appear to be 
effective where the distribution of the original analyti­
cal data is unimodal and posi~tively skewed. The sim­
ple log transformation of some positively skewed data 
will lead to a log distribution with negative skewness. 
For other data (fig. 1E) the log transformation will 
lead to a distribution with some degree of positive skew­
ness remaining (fig. 1F). In either case the constant, 
a, can be estimated using techniques described by Krige 
(1960, p. 236) and used in the transformation log 
(y+a). Where a negative skewness of logs is to be 
corrected, a will be a positive value; where a positive 
skewness in the logs is to be corrected, a will be negative. 
In some cases the absolute quantity of the derived 
negative value of a will equal or exceed some of the 
concentration values, y, so that the quantity (y+a) is 
zero or negative and log (y+a) is undefined for some 
analytical values. Transformed distributions that re­
sult are, in effect, censored (fig. 1G), and abundance 
estimates may be obtained by using techniques for 
censored distributions. 

The choice of a transformation that may be effective 
in producing a normal, or at least symmetrical, fre­
quency distribution can be governed by examination and 
testing of the data available or by previous experience 
with similar data. Selections based on the data avail-

240-308--67----2 

able are generally preferred, though this is not always 
possible when a group of data is small or when a large 
proportion of the data is censored. Many data pertain­
ing to the concentration of minor elements in rock sam­
ples collected over l·arge areas correspond more closely 
to the lognormal form than to the normal, and the log 
transformation is appropriate in a large number of 
problems. The log (y+a) transformation can fre­
quently he used to improve on the simple log transforma­
tion if a satisfactory estimate of a can be obtained. 

When the data have been transformed by a:= logy or 
w=log (y+a), the mean of w is estimated from equa­
tion 1 and the standard deviation is estimated from 
equation 2. The mean and standard deviation of 
these transformed values are of little value themselves 
in problems of abundance estimation, but they may be 
used to derive estimates of arithmetic means by tech­
niques developed and described by Sichel ( 1952) and 
l(rige (1960). 

s=[~x2~n,X2Jtt2 (2) 

Equation 2 is a biased estimator of the population stand­
ard deviation but is used in this form in computations 
described 'later in the paper. Where unbiased estimates 
of standard deviation are needed, n in the denominator 
of equation 2 is replaced by n-1. 

COHEN'S METHOD FOR CENSORED DISTRIBUTIONS 

Cohen (1959, 1961) presented maximum-likelihood 
techniques for estimation of the mean and standard 
deviation from either censored or truncated normal dis­
tributions. These techniques may be used whether the 
unknown part of the distribution is in the low- or 
the high-value region (left- or right-censored, respec­
tively). Because left-censored distributions are by far 
the more common in geochemical problems, only the 
part of Cohen's techniques applicable to these distribu­
tions will be discussed here. Although Cohen's methods 
are strictly applicable to normal distributions only, 
it can easily be demonstrated that the method for left­
censored distributions provides satisfactory estimates of 
arithmetic means wherever the total distributions are 
symmetrical about one mode. The method given by 
Cohen has not been corrected for a small bias, and other 
methods for treating censored distributions may be 
more accurate when n is less than about 10 (Cohen, 
1959, p. 218). 

The methods given by Cohen. (1959, 1961) are pre­
ferred to others given by Hald (1952) and Hubaux and 
Smiriga-Sn<;>eck ( 1964) only because of the simplicity 
of computatiOn. 
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FIGURE I.-Frequency distributions. A., MoS2 values for 300-degree samples at 2-foot intervals in drill core from 
Climax, Colo. (from Hazen and Berkenhotter, 1962, p . .S4-86). B, Iron in sandstones (from Miesch, 1963, pl. 3). 
0 and D, "Uranium in granite a deux micas de Pontivy" (from Hubaux and Smiriga-Snoeck, 1964, p. 1207). 
E, F, and G, Arsenic in basalts and diabases (from Onishi and Sandell, 1955, tables 5, 10). 
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In Cohen's technique X0 is taken as either the trans­
formed value of the lower limit of analytical sensitivity 
or as the limit of sensitivity (in percent or in parts per 
million) if the data transformation is not required. 
The quantity n' is the number of concentration values 
that are below the limit of sensitivity; such concentra­
tions are generally reported by the analyst as "not 
detected" or zero. The ratio h=n' fn is the fraction of 
the total number of analyzed specimens in which the 
element was not detected. The mean and standard 
deviation of the analytical values above the limit of 
sensitivity are computed as: 

and 

- ""'x X'=-k....l __ 
n-n' 

[~x2 ]112 s'= ---(x')2 
• 

n-n' 

(3) 

(4) 

The mean and standard deviation of the entire distri­
bution are then estimated from: 

and 

1.9 

1.8 

1.7 

1.6 

·1.5 

1.4 

1.3 

1.2 

1.1 

1.0 

0.9 

0.8 

" - (- ) J..I.=X'-X X'-.X0 

u=[ (s')2+X(x' -Xo)2]112. 

(5) 

(6) 

The value X in equations 5 and 6 is a function of hand 
the quantity (s')2/(x' -x0 )

2• Values of X for 0.01::; h 
::; 0.90 and 0.00::; (s')2/(x' -x0 )

2::; 1.00 were tabulated 
by Cohen (1961, p. 538), and graphs of X were given in 
an earlier paper (Cohen, 1959, p. 231). The graphs 
are reproduced here in figure 2, with Dr. Cohen's 
permission. 

t AND ta. ESTIMATORS OF SICHEL AND KRIGE 

'¥here the original analytical data have been used in 
computation without transformations, the derived val­
ues of x ( eq 1) or J'j. ( eq 5) may be taken directly as 
estimates of geochemical abundance. However, when ro 
or P.· are derived for w=log y or m=log (y+a, abun­
dances can be estimated using methods described by 
Sichel ( 1952) and Krige ( 1960). The method by Sichel 
is an unbiased maximum-likelihood technique; that by 
1\::rige is a modification of Sichel's method, to be used 
where the log (y+a) transformation is required. The 
estimators, where the x=log y and x=log (y+a) 
transformations are used, are referred to as t and ta, 
respectively, and should not be confused with Student's 
t, which has wide application in statistical procedures. 

1.9 

1.8 

1.7 

1.5 

1.4 

1.3 

1.2 

1.1 

( s') 2;(J(! xo>2 

FIGURE 2.-Curves for estimating X for equations 5 and 6 (from Cohen, 1959, p. 231; reproduced with 
author's permission). 
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The t and ta statistics provide useful estimates o:f the 
ar~thmetic mean and geochemical abundance when the 
distribution o:f log y or log (y +a), respectively, ap­
proximates the normal distribution :form. 

Where log y is normally distributed: 

or ] ' (7) 

where x and ~ are the arithmetic means of log y esti­
mated from complete (eq 1) and censored (eq 5) 
distributions, respectively. The factor , is a function 
of n, the total number of specimens analyzed and either 
the antilog of 8 ( eq 2) or of ~ ( eq 6), depending on 
whether the distribution is complete or censored. 
Values of , may be read from graphs in figure 3; for 
more exact work the reader is referred to the· original 
equation and tables (Sichel, 1952, p. 275, 284-288) 
from which equation 7 and the graphs in figure 3 were 
derived. Simplified equations and tables were given 
recently by Sichel (1966). Other equations and tables 
that are mathematically equivalent to those of Sichel 
were given by Aitchison and Brown (1957, p. 45, 
156-158) and were based on the work of Finney (1941). 

Where log (y+ a) is normally distributed: 

or 

6 

5 

T4 

3 

2 

ta=(-rX10'Z)-a 

n= number of analyses 
s =standard deviation (equation 2) 
a-= standard deviation (equation 6) 

} ' (8) 

1 ~~~~~~~~~~~~~~~~~~~~ 
1 2 4 5 6 7 

10 5 or 10b 

FIGURE 3.-Grapbs ofT as a function of the number of analyses, 
n, and the antilog of s or cJ (based on tables by Sichel, 1952). 

where x and ~ are the arithmetic means of log (y+a) 
estimated from complete (eq 1) and censored (eq 5) 
distributions, respectively. The equations in 8 are 
modified forms of one given by Krige (1960, p. 239). 
The factor , is a function of n, the total number of 
specimens analyzed, and of the standard deviation 
of the transformed values, log (y+a). If complete 
distributions are used, the standard deviation is esti­
mated by 8 (eq 2); if censored distributions are used, 
it is estimated by~ (eq 6). The value of, can be read 
from figure 3 by using n and the antilog of either 8 

or ~ for the transformed values. For more exact 
computation the reader is referred to Krige (1960, 
p. 239) and tables given by Sichel (1952, p. 284-288), 
or to Sichel (1966). 

CONFIDENCE INTERVALS 

Estimates of geochemical abundance should be accom­
panied by estimates o:f the confidence intervals wherever 
possible. The method for estimating this interval about 
the arithmetic mean derived from equation 1 is well 
known (see Dixon and Massey, 1957, p. 128) and leads 
to approximately correct intervals even where the dis­
tributions are not normal. Cohen (1959, p. 231-232) 
gave methods for estimating confidence intervals of p. 

derived from censored distributions. Appr:oximate 
confidence intervals for the t and ta, may be estimated 
by using equations given by Aitchison and Brown 
(1957, p. 46) ; more exact confidence intervals can be 
obtained by using methods given recently by Sichel 
(1966). 

SUMMARY OF METHODS 

A flow chart indicating recommended computational 
procedures :for estimating geochemical abundances is 
given in figure 4. With large groups of uncensored 
data, abundances may be estimated as arithmetic means 
in the conventional manner, using equation 1. How­
ever, where means obtained from equation 1 differ :from 
those obtained from procedures indicated in figure 4, 
the means obtained from the latter procedures should 
be preferred. The higher precision of the t and ta esti­
mators have been adequately demonstrated by Sichel 
( 1952, p. 276-278) and Krige ( 1960, p. 242-244), respec­
tively, and the advantages of treating censored distribu­
tions by the statistical method of Cohen (1959, 1961) 
over the approximate methods used in the past will be 
obvious. 

The methods of Sichel ( 1952), Krige ( 1960), and 
Cohen ( 1959, 1961) are individually inadequate :for a 
large number of computational problems met in analyz­
ing geochemical data. Sichel's t estimator is useful 
where the data correspond to the lognormal frequency 
distribution and are uncensored. Krige's ta estimator 
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FIGURE 4.-Methods of computation for estimating geochemical abundance from small groups of data. 
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is applicable to a wider variety of distribution types, 
but, as with the t estimator, the data must be uncensored. · 
Moreover, with highly skewed frequency distributions, 
the log (y+a) transforn~ation may impose censoring 
of data which are completely above the lower sensitivity 
limit of the analytical method. Cohen's method is 
directly applicable to data which approximate a normal 
distribution, but data of this type are not common in 
minor-element studies pertaining to areas larger than a 
single mine or small outcrop. Generally the required 
normal distribution can be achieved only through a 
data transformation; estimates of the mean of the trans­
formed variate· are not valid estimates of abundance 
but may be transformed to valid abundance estimates 
using the meth6.ds of Sichel or Krige, if the necessary 
data transfonnation is accomplished by 'log y or log 
(y +a). The ti•ansformations are, indeed, sufficient in 
a wide variety of geochemical studies. 

Some properties. of small data sets prohibit the esti­
mation of precise arithmetic means, or abundances. 
These are indicated by STOP. signs on· the flow chart 
in figure 4, and are as foll<;>ws: 

1. A censored frequency distribution which, though 
believed to be part of a symmetrical distribution, 
departs widely from .the norma] form (for exam-
ple, some censored multimodal :distributions). . 

2. A frequencj,.distribution:whic,h is markedly asym­
metrical and cannot be transformed to an approx­
imate normal distribution by log y or log ( y +a). 
This particularly includes multimodal skewed dis.: 
tributions ~nd all negatively skewed distributions. 

3. A frequency distribution that is unimodal and posi­
tively skew'ed but is based on data that cannot be 
normalized: by the logy or log (y+a) transforma­
tions owing to poor analyticaldiscrimination or 
other factors. · 

4. Data reported in broad geometric cla.sses, but not 
approximately normal on a log scale. 

Where these properties are present, the conventional 
method of estimating the population arithmetic mean 
( eq 1) may be the only way .readily available to the 
geologist for estimating geochemical abundance. 

The use of the flow chart, figure 4, is demonstrated 
in the following section ·by employing ex·amples of data 
from the literature. 

EXAMPLES 

Four data sets were selected from the· literature to 
illustrate use of the recomm.ended methods for widely 
differing types of data. ·One data set is approximately 
normally distributed, two are approximately lognormal 
(one of these is reported in geometric classes) , and a 
fourth set is approximat¢ly l9gnormal after adjustment 

by a constant, a. However, except for the data in geo­
metric classes, none of the data sets indicate a close 
correspondence to the normal or lognormal form; this 
selection has been intentional to demonstrate that the 
di,stribution requirement is not rigid .. 

·As shown by these and other examples, the principal 
requirement is that the distributions be unimodal and 
approximately symmetrical on any of the three scales­
the scale of original measurement, y, or one of the two 
transformed scales, logy or log (y+a). 

The number of values in each of the four data sets 
used as examples (fig. 1) is large compared with the 
number available in many geochemical problems. Most 
of the estimated abundances, therefore, agree fairly well 
with the abundances derived using the conventional 
method for estimating the population arithmetic mean. 
Large data sets were used so that this comparison could 
be made to verify the accuracy of the techniques for use 
in actual abundance estimation problems where n is 
small or where the data are censored. 

MOLYBDENUM SULFIDE .IN DRILL CORE 

The first set of data is from Hazen and Berkenhotter 
( 1962, p. 84--86). The assays, of percent MoS2, were 
made on samples of drill core ( 300-degree segments) 
from the Climax Molybdenum mine, Lake County, Colo. 
We shall assume, for purposes of illustration, that the 
assays are an objective and unbiased sample of those 
that might have been obtained from the block of ore 
penetrated by the drill hole (that is, there is no sam­
pling problem). The frequency distribution of the 
original assays is represented by histogram A in figure 
1 and by the probability graph for distribution A. in 
figure 5. Both illustrations indicate that the frequency 
distribution of assays (at least the central part) is ap­
proximately symmetrical. The distribution was arbi­
trarily censored successively at three points indicated 
by the small arrows (fig. 1A.), and four abundance esti­
mates were made using the complete and the partial 
data sets. The estimates, with intermediate computa­
tional values, are given in table 1. 

In reference to figure 4 : 
[1] The MoS2 assays are in arithmetic classes. Pro­

ceed to [2]. 
[2] The frequency distribution of MoS2 assays, y 

is approximately symmetrical (figs. 1A., '5A.). 
Proceed to [3]. 

[3] If the complete distribution is used, the abundance 
. of MoS2 in the ore block is estimated, lby the con­
ventional method in equation 1, to be 0.359 per­
cent. 

If only assays equal to or greater than the arbitrary 
(or hypothetical) analytical · cutofl:'s-0.25, 0.35, 
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and 0.40 percent-are used (table 1, col. 2), the 
quantities indicated in columns 6-14 (table 1) 
are derived from the indicated equation~, and 
the successive abundance estimates are derived 
as shown in column 17. The abundance esti­
mates are in 'agreement to two figures, even 
though as much as 63 percent of the data was 
arbitrarily censored (table 1, col. 8). 
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ll'IOURE 5.-Probabiiity graphs of frequency distributions .A.-G 
in figure 1. 

Had the data, in fact, been censored a,t the arbitrary 
cutoff values, it would have been necessary to judge the 
nature of the total frequency distribution from as little 
as 37 percent of the data oc.curring above the cutoffs. 
In this extreme example of data censoring, the judg­
ment regarding the form of the frequency distribution 
could be made only on the basis of prior experience with 
similar data. Where the censored part of the distribu­
tion is minor (less than about one-third of the total dis­
tribution), ~the probability graphs may still be useful 
for this purpose. 

IRON IN SANDSTONE 

The iron concentration in 85 drill-core samples of 
quartzose sandstone from the Salt Wash Member of the 
1\{orrison Formation (Jurassic) in San Miguel County, 
Colo., are represented by l}istogram B in figure 1. The 
data are from Miesch ( 1963, pl. 3) and were obtained 
by means of a spectrographic method (Myers and oth­
ers, 1961) wherein the results are reported in classes 
having the boundaries 0.046, 0.10, 0.22, 0.46, ... per­
cent. The corresponding logarithms of the boundaries 
are -11fg, -1, -%, -,lh, . . . . The boundaries, in 
percentage concentration values, are at geometric inter­
vals and increa:se by a factor of 2.15. The boundaries, 
in log values, increase by an increment of one-third. 
vVe shall -assume that the analyzed samples are an 
unbiased representation of the body of rock for which 
the geochemical abundance is to be estimated. 

The estimate of iron abundance in the sandstone, 
derived from the grouped data form of equation 1, is 
0.38 percent. The grouped-data form of equation 1 is: 

(9) 

where /i is the number of values in the ith class and w, 
is the class midpoint. The midpoints used were the geo­
metric centers of the classes-the values 0.07, 0.15, 0.32, 
0.68, and 1.46 percent. There is little justification for 
accepting the value of 0.38 percent as a valid estimate of 
abundance other than the fact that it agrees closely wi,th 
the abundance of 0.37 percent derived with the theoreti­
cally justified t estimator. It is not expected .that equa­
tion 9, used in the manner described here (with 
geometric midpoints), will consistently lead to unbiased 
and efficient abundance estimates. The use of arithmetic 
midpoints (0.07, 0.16, 0.34, 0.73, and 1.58) leads to an 
abundance estimate of 0.40 percent. Although the esti­
mate of 0.40 percent is not great]y different from that 
of 0.37, it does demonstrate the positive bias in the 
technique by which it was obtained. The positive bias 
is commonly much larger. 
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TABLE 1.-Summary of computations tor estimating geochemical abundance from data represented in histograms in ftgttre 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
--- -----------x----------------

Hypo- n' (eq1) 8 (eq2) (8') 2 
~ (eq 5) ; (eq 6) 

Estl-
Distribution 1 thetical Transformation a Xo n' n h=-.- or x' or 8' -->.(fig. 2) t (eq 7) ta (eqS) mated 

analytical n (eq 3) (eq 4) (x'-x.)' a bun-
cutoff dance 

Molybdenum sul~de (percent) 

A ________________ ------------ None.----------------- -------- -------- 0 101 
A---------------- 0. 25 _____ do _________________ -------- 0. 25 20 101 
A----------------- . 35 _____ dO----------------- -------- . 35 48 101 
A________________ . 40 .•••• dO------------------------- • 40. 64 101 

0 0.359 
.20 .396 
.48 .445 
.63 .475 

0
: &~~ ---o~39- ---o~27- --o~35ii- --o~iis- ======== ======== 
. 072 • 58 . 94 . 356 .117 -------- --------
• 066 • 77 1. 55 . 359 .114 -------- --------

0.359 
.356 
.356 
.359 

Iron (percent) 

B----------------- ------------ x=log 71--------------- -------- -------- 0 85 
B.---------------- .10 ..... dO----------------- -------- -1. 000 5 85 
B.---------------- , 22 ....• dO----------------- -------- -. 667 30 85 
B----------------- . 46 _____ dO----------------- -------- -. 333 65 85 

0 -.543 
• 06 -.504 
.35 -.355 
• 76 -.100 

. 314 -------- -------- -------- --------

.281 .34 .08 -.544 .313 

.209 .45 .59 -.539 .318 
• 133 • 33 ""2. 04 -. 576 • 359 

• 37 --------
.37 
• 38 -------­
.37 --------

.37 

.37 

.38 

.37 

Uranium (ppm) 

0----------------- ------------ None __________________ -------- --------
('_________________ 2. 6 ....• dO----------------- -------- 2. 6 c_________________ 4. 0 _____ do _________________ -------- 4. 0 

g================= --------2:6- -~~~~~~---~============= ======== ---:415-c_________________ 4. o _____ do_________________ ________ • 602 
0----------------- 5.1 _____ do _________________ -------- • 708 

0 185 
23 185 
80 185 
0 185 

23 185 
80 '185 

135 185 

0 
.12 
.43 

0 
.12 
.43 
• 73 

4. 53 
4.89 
5. 78 
. 612 
.660 
. 742 
. 845 

~: ~ ----:so- ---·:~s· --4:48-- --2.-26-- ======== ======== 
2. 03 1. 30 • 94 4.11 2. 66 -------- --------
: ~~~ ----:39- ----:iii- ---:ii2i- ---:isi- !: g: --------
.125 . 77 . 86 • 620 . 181 4. 54 --------
.105 . 58 2. 00 • 571 . 220 4. 24 --------

4.53 
4.48 
4.11 
4.54 
4.55 
4.54 
4.24 

Arsenic (ppm) 

E---------------- ------------ None __________________ ----------------

~================= ---------:7- -~~~~0~---~============= ======== ·:::155" F----------------- 1. o _____ do _________________ -------- • 000 
F----------------- 1. 6 _____ dO----------------- -------- , 204 
0----------------- . 7 x=log <v+a). --------- -0.6 -1.000 o_________________ 1. 0 _____ do_________________ -. 6 -. 398 
o_________________ 1. 6 _____ do_________________ -. 6 . 000 

0 
0 
8 

22 
42 
9 

22 
42 

·58 
58 
58 
58 
58 
58 
58 
58 

1 The letters in this column refer to frequency distributions shown in figs. 1 and 5. 

In reference to figure 4 : 
[1] The data are grouped in geometric classes. Pro­

ceed to [7]. 
[7] The frequency distribution, on a log scale, is shown 

in figure 1B. The probability graph for this dis­
tribution is given in figure 5. No important 
departure from the normal forin is indicated, if 
the log scale is used. Proceed to T 5]. 

[5] The abundance of iron in the sandstone, using 
Sichel's t estimator, is estimated to be 0.37 per­
cent. If the data are censored at the arbitrary 
points, 0.10, 0.22, and 0.46 percent, and 6, 35, and 
76 percent of the data is effectively lost, the 
abundance estimates are 0.37, 0.38, and 0.37 per­
cent, respectively (table 1, col. 17). 

If only druta values above the 0.46-percent class boun­
dary (20 of the 85 values) are used, a large positive 
skewness is apparent from the fact that the median is 
between 0 and 0.46 percent-far below the central part 
of the total range of concentrations ( 0-2.2 percent) . 
Therefore, a log transformation could be judged to be 
an appropriate step toward achieving a distribution 
closer to the normal form. 

If the data had shown a significant departure from 
the lognormal form, a "STOP" sign would have been 

0 
0 
.14 
.38 
.72 
.14 
.38 
• 72 

1. 69 
. 096 
.152 
.257 
.488 

-.208 
• 032 
.375 

1. 78 
.299 
.283 
.267 
.244 
.510 
.377 
.296 

-------- -------- -------- -------- 1. 58 --------
. 85 . 22 . 085 • 318 1. 58 --------

1. 07 . 75 . 064 . 348 1. 59 --------
. 74 1. 96 -. 069 . 467 1. 51 --------
.41 • 20 -. 367 • 621 -------- 1. 77 
• 76 . 72 -. 279 . 526 -------- 1. 68 
• 62 1. 92 -. 345 • 598 -------- 1. 75 

1. 69 
1. 58 
1. 58 
1. 59 
1. 51 
1. 77 
l.li8 
1. 75 

encountered in figure 4. Because the data are in broad 
geometric classes, the log (y +a) transformation would 
have been awkward, 'and no method is available that· 
could have been used to obtain a precise estimate of 
abundance. 

URANIUM IN GRANITE 

The data represented in histogram 0 (fig. 1) were 
originally from Coulomb (1959), but were repro­
duced by Hubaux and Smiriga-Snoeck (1964, p. 1207) 
and used in testing a digital-computer method for d.e­
riving m·eans and standard deviations of censored dis-

• tributions. Hubaux and Smiriga-Snoeck derived mean 
iogarithms rather than arithmetic means or abundance 
estimates. The data represent uranium concentrations 
in samples from a homogeneous granitic massif; we 
shall assume that the sampling was unbiased. 

The frequency distribution of the original data (fig. 
10) exhibits a clear positive skewness, and the data, 
therefore, were transformed logarithmically (fig. lD) . 
The frequency distribution, as noted by Hubaux and 
Smiriga-Snoeck ( 1964, p. 1206), is only imperfectly 
log11ormal. 'fhe e~e~tiveness of the log transformation 
in bringing the data closer to the normal form can be 
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seen by comparing the probability graph for distribu­
tion 0 with that of distribution D (fig. 5). 

If altl. the data ( n= 185) are used, the geochen1ical 
abundance of uranium in the granitic massif is esti­
mated, as the arithmetic mean ( eq. 1), to be 4.53 ppm 
(table 1, col. 17). 

In reference to figure 4 : 
[1] The uranium data are in aritlunetic classes. Pro-

ceed to [2]. · 
[2] t"rhe frequency distribution of uranium" analyses 

is unimodal and positively skewed; analytical 
discrilnination is satisfactory (figs. 10 and 50). 
Proceed to [ 4]. 

[4] The frequency distribution of the logarithms of 
the uranium analyses is approximately normal 
(distribution D; in figs. 1 and 5). Proceed to 
[5]. . 

[5] If the complete distribution is used (n=185), the 
abundance, derived with the t esti·mator of Sichel 
( 1952), is 4.54 ppm, virtually the same as the 
value, 4.53, derived by the conventional 
procedure. 

After censoring the data at the arbitrary analytical 
cutoffs 2.6, 4.0, and 5.1 ppm and effectively dis­
carding 12, 43, and 73 percent of the data, respec­
tively, the abundance estimates, as derived with 
the t estimator, are 4.55, 4.54, and 4.24 ppm 
(table 1, col. 17) ·. 

I-Iad the decision been made to use the :original data 
rather than to transform them logarithmically (that 
is, had the distribution represented by histogram 0 in 
figure 1 been judged approximately symmetrical), the 
computation method would have proceeded as in the 
previous example for MoS2 assays. Censoring the data, 
then, at 2.6 and 4.0 ppm would result in abundance esti­
Jnates of 4.48 and 4.11 ppm, respectively (table 1, col. 
17). These are somewhat poorer than the correspond­
ing values of 4.55 and 4.54 obtained by way of the t 
estimator, and the importance of the log transformation 
is apparent. 

The problem of judging, from censored data, whether 
or not the total concentration values (fig. 10) exhibit a 
symmetrical frequency distribution is not as difficult 
as for MoS2 assays in the previous example. Because 
only 27 percent of the uranium values are above 5.1 
ppm, for example, the median of all the data is known 
to occur between 0 and 5.1 ppm. As the data extend 
to more than 14 ppm some positive skewness is evident. 
However, judging the degree to which the log transfor­
mation corrects the skewness is more difficult. Where 
a large proportion of the data is censored but the re­
mainder is sufficient to indicate definite positive skew­
ness in the original data, the log transformation might 

be used as an approximation. Where a lesser propor­
tion of the data is censored, the transformation using 
log (y+a) might be used if needed, and thereby offer 
a means for improving the accuracy of abundance 
estimates. 

ARSENIC IN BASALTS AND DIABASES 

The data with extreme positive skewness, represented 
by histogram E in figure 1, are from Onishi and Sandell 
(1955, tables 5, 10) and were used by Ahrens (1957, 
p. 207-209) in a discussion of frequency distributions 
of minor elements in igneous rocks. The data-arsenic 
determinations, in parts per million-were obtained on 
58 samples of basalt and diabase from widely separated 
localities in the United States and from localities in 
Japan and Sicily. For purposes of illustrating the 
computational techniques we shall assume that the 
samples adequately represent the rock bodies from 
which they were taken. 

The geochemical abundance of arsenic in the basalts 
and diabases, estimated by the conventional method 
(eq 1), is 1.69 ppm (table 1, col. 17). 

In reference to figure 4 : 
[1] The arsenic data are in arithmetic classes. Pro­

ceed to [2]. 
[2] The frequency distribution is unimodal and posi­

tively skewed; analytical discrirnination is satis­
factory. Proceed to [4]. 

[4] The frequency distribution of the logarithms of 
the arsenic analyses (distribution F in figs. 1, 5) 
retains a definite positive skewness. Proceed to 
[6]. 

[6] If the methods described by 1\::rige (1960, p. 236) 
are used, the appropriate constant, a, is estimated 
to be -0.6. (I-Iad the skewness of distribution 
F in fig. 1 been negative, the estimated constant 
would have been a positive value.) Eight of 
the anaiytical values are equal to or less than 0.6, 
and as a is negative, th~ quantity log (y +a) for 
these values is undefined; the transforn1ed data 
(distribution G in fig. 1) are censored with 
h=%8 =0.14. The probability graph for the 
newly transformed data, drawn using log 
(y-0.6), is shown in figure 5 (distribution G). 
Neither the histogram nor the probability graph 
indicates a large departure of the transformed 
data from the censored normal form. 

If Cohen's technique for censored distributions 
( eq 5, 6) and Krige's ta. estimator are used, the 
abundance estimate for arsenic in the basalts and 
diabases is 1.77 ppm (table 1, col. 17). Because 
the number of analyses in this example is small 
(n='=58) and the data are highly skewed, it may 
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be argued that the estimate of 1.77 ppm is better 
than the estimate of 1.69 derived from the con­
ventional procedure. However, the two esti­
mates are in at least fair agreement. 

When censoring the data at the arbitrary cutoffs, 
1.0 and 1.6 ppm, and effectively losing 38 and 
72 percent of the data, respectively (table 1, col. 
8), the abundance estimates derived with the ta 
estimator are 1.68 and 1.75 ppm (table 1, col. 17). 

I-Iad the data actually been censored below 1.6 ppm, 
estimation of the constant a may have been difficult, 
but some useful estimate might have been made unless 
the point of censoring was lower than about 1 ppm. 
Whether the point of censoring had been at either 0.7, 
1.0, or 1.6 ppm, a high positive skewness would have 
been apparent from the :fact that the median lies well 
below the central part of the known range of the data-
0-10 ppm. If the log transformation is used (without 
adjusting the data by the constant a) and an the data 
are used, the abundance estimate is 1.58 ppm. If only 
data equal to or greater than 0.7, 1.0, and 1.6 ppm are 
used, the abundance estimates are 1.58, 1.59, and 1.51 
ppm, respectively (table 1, col. 17). These estimates 
are notably poorer than those derived using the ta 
(rather than t) , estimator, but they are, nevertheless, 
sufficiently good :for many types o:f geochemical studies. 

CONCLUSIONS 

Computational methods given by Cohen (1959, 1961), 
Sichel ( 1952, 196.6), and Krige ( 1960) are useful in 
providing accurate and efficient estimates o:f geochemi­
cal abundance in many problems where the conventional 
method :for estimating population arithmetic means is 
not applicable (owing to censored data) or is ineffi­
cient (because of smrull data sets from nonnormal dis­
tributions). A combination o:f the methods may be 
useful where censol'ed data are :from an underlying 
frequency distribution that is nonnormal. Each of the 
methods requires that the data, or transformations o:f 
the data, be normally distributed. Two transforma­
tions that have proven satisfactory in much geochemical 
work are log y and log (y +a). Neither transformation 
is effective, however, where analytical discrimination 
has been poor. Moreover, selection o:f the appropriate 
transformation may be difficult where a large propor­
tion of the distribution has been censored. 

The methods discussed are recommended :for esti-:­
mating geochemical abundance primarily because they 
are the most efficient methods available. Indeed, the 
methods developed by Sichel and Cohen are the most 
efficient possible where the :frequency distribution re­
quirements are satisfied. Those developed by Sichel 

and Krige, moreover, have been corrected :for a small 
bias that exists where n is small. The method o:f 
Cohen does contain some bias where n is small, but the 
bias is probably much less than that introduced by 
most arbitrary methods used in handling the censored-
data problem. · 
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