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STATISTICAL STUDIES IN FIELD GEOCHEMISTRY

Q-MODE FACTOR ANALYSIS OF GEOCHEMICAL AND PETROLOGIC 
DATA MATRICES WITH CONSTANT ROW-SUMS

By A. T. MlESCH

ABSTRACT
Matrices of data representing all the major constituents in a suite of 

rock samples tend to have constant row-sums, a property that has caused 
considerable difficulty in attempts to interpret rock genesis from the 
correlations among matrix columns. Q-mode factor analysis may be used 
to interpret rock genesis from relations among matrix rows, and the 
constant row-sum is a definite asset. The constant can be used to compute 
sealers, which, in turn, can be used to adjust the factor loadings and 
scores to conform with the original data. Therefore, principal 
components and varimax models and a variety of oblique models may be 
derived that can be used to recompute estimates of the data in, for 
example, percent or parts per million. Any real or hypothetical 
composition may also be tested as a possible end-member in a petrologic 
mixing problem.

Other advantages of scaling the factor loadings and scores to conform 
with the original data, and thereby deriving composition loadings and 
scores, are that (1) the loadings sum to unity and may be interpreted as 
proportions of end-members; (2) the scores sum to the constant row-sum 
of the original data matrix and, if none are negative, may be interpreted 
as composition values in units of percent or parts per million; and (3) the 
signs of the loadings become fixed and are dependent only on the choice 
of end-members for the model and on the nature of the compositional 
variation in the rocks under examination.

When the number of factors in a Q-mode factor model is less than the 
number of variables in the data matrix, the model accounts for less than 
the total variation in the data and may be used to reproduce the data 
matrix only approximately. The degree of approximation with which the 
normalized form of the data may be reproduced is indicated precisely by 
the eigenvalues of the matrix of coefficients of proportional similarity 
and by the sample communalities. These measures, however, are only 
approximate indicators of the degree to which the derived model may be 
used to reproduce the original data. The proportion of the variance for 
each variable that the model acocunts for is given by the coefficient of 
determination between the original and reproduced data.

The coefficients of determination have been used to construct 
factor-variance diagrams for four suites of igneous-rock samples. The 
diagrams show the proportion of the total variance in each chemical 
constituent that can be explained by petrologic models containing any 
number of factors, or end-members, up to the number of constituents 
present in the samples. Petrologic models have been developed for all 
four suites by choosing reference vectors with composition scores that 
approach the compositions of end-members thought to have been 
involved in the petrologic system. The resultant models are, for the most 
part, in reasonable accord with geologic observations by other workers 
and serve to quantify various aspects of the processes by which the rocks 
may have originated.

The four suites of samples are from (1) a rhyolite-basalt complex in 
Yellowstone National Park, Wyo., (2) a granitoid intrusive in the 
southern part of the Snake Range, Nev., (3) lavas and pumices from the 
1959 summit eruption of Kilauea, Hawaii, and (4) the layered series of the 
Skaergaard intrusion, Greenland.

GENERAL INTRODUCTION
Work of Chayes (1960) has shown that matrices of 

compositional data on rocks and other materials are 
difficult to examine for genetic implications because such 
matrices either have constant row-sums or are parts of 
larger matrices that have constant row-sums. A test 
designed to overcome the difficulty that the constant 
row-sum presents (Chayes and Kruskal, 1966) was found 
to be ineffective (Miesch, 1969). The situation is a serious 
one because petrologists work with this type of data almost 
constantly and the ultimate goal of their work is to 
understand rock genesis. Mathematical geologists have 
known for some time that the constant row-sum property 
of compositional data was no serious hindrance in the 
method of Q-mode factor analysis introduced by Imbrie 
(1963), but it is now apparent that in order to derive a 
Q-mode model in terms of the original data the constant 
row-sum is a definite asset.

Although the method being used is referred to as factor 
analysis throughout this report, this name may be 
unacceptable to many students and workers in multivariate 
statistics. The diagonal values in the similarity matrices 
have been unity in all applications of the method thus far, 
and the method, therefore, might best be referred to by the 
general terms "vector" or "components" analysis, but the 
term "factor" analysis is used because of its prevalence in 
geologic literature.

The purposes of this report are to describe the 
mathematical basis for an extended form of the Q-mode 
method originally developed by Klovan and Imbrie (1971) 
and to demonstrate its application to four problems in 
igneous petrology. The original method leads to a factor 
model that can be used to reproduce the observed data in a

Gl
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normalized form only. Because of this, the models are 
difficult to interpret in terms of geologic conditions and 
processes. It will be shown here that if the row-sums in the 
original data are constant, these models can be modified to 
reproduce unbiased approximations of the original data in 
units of, for example, weight percent or parts per million. 
This modification further allows the geochemist or 
petrologist to use some other methods to develop a variety 
of models that are mathematically acceptable and to 
examine each of them for geologic plausibility.

(Note. After this report was written, an abbreviated 
description of the extended Q-mode method (Miesch, 
1975) and computer programs that perform most of the 
basic computations (Klovan and Miesch, 1975) were 
prepared for publication in Computers & Geosciences.)

Among the more significant of these other methods is 
one that enables the geochemist or petrologist to propose 
various compositions as those of end-members in a 
geochemical or petrologic system and then to test these 
propositions. If the compositional variation in a basaltic 
magma, for example, is thought to have resulted from the 
crystallization and redistribution of olivine, it is possible 
not only to test this hypothesis but also to determine the 
olivine composition most likely to have been involved. 
Further, for a given parent-magma composition, one can 
determine the amount of olivine that would have had to 
have been separated from or added to the magma to form 
each sample of basalt.

The compositional variation that will be observed in 
most sample suites will have resulted from processes that 
were more complex than the simple separation of one 
mineral from a magma. Other methods made possible by 
the presence of the constant row-sum enable one to 
determine the minimum number of end-members required 
to account for any given proportion of the variance in each 
compositional variable. This can be done before one 
knows what the end-members might be. The methods have 
clear advantages over eigenvalues, which are commonly

used to determine the number of end-members required, 
and are suggested as alternative means for this purpose.

The principal advantage of the extended form of 
Q-mode factor analysis may be that the derived model is 
more easily interpreted; the composition scores 
(end-member compositions) are in the same units as the 
original data, and the composition loadings (mixing or 
unmixing proportions) sum to unity for each sample and 
have signs that are fixed rather than arbitrary. Thus, not 
only can the investigator examine the plausibility of 
proposed geologic processes more easily but also the results 
of his work can be presented in a form that will be more 
understandable and acceptable to nonmathematical 
colleagues.

In part I the mathematical bases of the methods are 
given where the number of factors in the model is equal to 
the number of columns (representing compositional 
variables) in the data matrix. The mathematical effects of 
reducing the number of factors in the model are described 
in part II, and applications of the method to four 
petrologic mixing problems are discussed in part III.

The methods described in this report are intended to 
supplement those described by Klovan and Imbrie (1971). 
Their computer program gives the method for derivation 
of the unsealed factor scores from which the composition 
scores, described here, are computed. Their program also 
provides an efficient method for deriving a Q-mode factor 
solution for large data matrices. Klovan and Imbrie's 
program was adapted to the U.S. Geological Survey's 
system of statistical programs (STATPAC) by George Van 
Trump.

Parts I and II of this report were read by J. J. Connor, 
L. J. Drew, and J. E. Klovan; part III was read by R. W. 
White. I am grateful to each of these reviewers for 
criticisms that led to improvement of the manuscript. In 
addition, I benefited from discussions of the petrologic 
aspects of the work with Fred Barker, D. E. Lee, G. J. 
Neuerburg, and R. E. Wilcox.

Part I.   Mathematical Basis Where the Number of Factors 
Equals the Number of Variables

INTRODUCTION

The type of data matrix being considered is one 
wherein the rows represent rock samples and the columns 
represent chemical or mineralogical variables. Where the 
data are expressed as percentages, each row sums to about 
100, depending on whether all the major constituents 
present in the rocks are represented in the data and on the 
nature of the analytical errors. Large departures from 100

may be eliminated by recomputing the row to sum to 100, 
thereby spreading the effect of the analytical errors over all 
the constituents in proportion to their abundances and 
directing the Q-mode analysis at only the part of the rock 
that is composed of the constituents represented in the 
data. If all row-sums are less than 100, the departures may 
also be eliminated by subtracting the row-sum from 100 
and treating the difference as a new compositional 
variable either some major constituent not represented in
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the data or a composite of constituents that may be 
referred to as "others".

As has been customary in most geologic applications of 
Q-mode factor analysis, the matrix of original data can be 
treated in a numblr of different forms. The first type of 
transformation consists of scaling columns (representing 
variables) of the matrix so that the magnitudes of the 
values are approximately the same from one column to 
another. This can be done by either of two options 
provided in the computer program of Klovan and Imbrie 
(1971). The first option is used to express each column as 
a proportion of the maximum value in the column so that 
no values exceed unity; the second option is used to express 
each value as a proportion of the total range for the 
column so that all values within each column are in the 
range from zero to unity. The purpose of this scaling is to 
give each compositional variable an approximately equal 
weight in the factor analysis. Without scaling, in treating 
conventional petrographic variables, for example, 
variables with large variance, such as SiO2» may 
completely dominate the outcome, and variables with 
small variance, such as Na2<D, may exert little or no 
influence. In effect, the use of the scaling options in 
Klovan and Imbrie's program overcomes the problems 
caused by the fact that the means and variances in most 
geochemical and petrographic data are strongly related, 
and it recognizes the fact that minor compositional 
constituents can be just as diagnostic as major constituents 
in arriving at petrogenetic models.

Whether the original data are transformed by scaling or 
not, the data matrix is also treated in a row-normalized 
form. That is, each row of the matrix is adjusted so that 
the sum of the squares of the values within it is unity. This 
adjustment is done automatically when using Imbrie and 
Purdy's (1962) coefficient of proportional similarity 
(cosine theta); in effect, the matrix of cosine theta is 
computed as the major product of the row-normalized 
data matrix and its transpose. The appropriateness of 
cosine theta as a measure of similarity among rock

compositions was shown by Imbrie (1963). Aside from 
providing an appropriate measure of compostional 
similarity, the use of cosine theta allows treatment of each 
row of the data matrix as a vector of unit length, thereby 
facilitating subsequent computation and interpretation.

The conventional forms for a hypothetical data matrix 
are given in table 1. Tables \A and IAA show, 
respectively, the original data with constant row-sums and 
the same data normalized so that the sum of squares for 
each row is unity. The normalization factors, //, which are 
the square roots of the sums of squares for the 
corresponding rows in the original data matrix, are also 
given. Table IB shows the original data transformed so 
that the maximum value in each column is unity, and table 
1C shows the original data transformed so that each 
column ranges from zero to unity. Tables IBS and ICC 
show the normalized forms of the transformed data.

The relationships among the various forms of the data 
are illustrated in figure 1, which shows that the 
row-normalized form of the data, derived from either the 
original or transformed data, is used to derive the factor 
model. Then, the factor model, developed by the 
conventional procedures, can be used to reproduce the 
row-normalized data. The extended method described here 
allows one to modify the model to reproduce the data in 
their original or scaled forms.

Q-MODE FACTOR ANALYSIS

The purpose of Q-mode factor analysis in geochemistry 
and petrology is to resolve a data matrix into a concise 
model wherein each analyzed sample of rock, soil, or other 
material is viewed as a mixture of a small number of 
theoretical or actual end-member samples. As has been 
shown by Imbrie (1963), the method is used to determine 
the number of end-members that are required to account 
for any given proportion of the total variability in the 
normalized data and then to estimate the proportions of 
each end-member present in each sample. Either the

Compositional data in orig­ 
inal units of measurement- 
percent, parts per million, 
and so forth

Data transformed to pro­ 
portions of the maximum 
values or proportions of 
the ranges for each variable

Row-normalized data Reproduced 
row-normalized data

Reproduced compositional 
data in original units of 
measurement  percent, 
parts per million, and 
so forth

Reproduced transformed 
data as proportions of the 
maximum values or pro­ 
portions of the ranges for 
each variable

FIGURE I. Diagram showing the relationships between the factor model and the various forms of the original and reproduced data.
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TABLE \.-Original hypothetical data, transformed data, and normalized data used to illustrate the methods of computation

[tj is the normalization factor for the ith row; tj = ( S*/y ) : Xjj = x/j /tj]

A. Original data, x /, = xf

90 7
50 10

* ' =80 15
60 30
85 10
95 3

xmaXj = 95 30

xminj =50 3

3
40

5
10

5
2

40

2

B. Data transformed to proportion of the maximum, j

0.947 0.233
.526 .333

v , .842 .500
«= .632 1.000

.895 .333
1.000 .100

0.075
1.000
.125
.250
.125
.050

t, Row-sum

90.32 100
64.81 100
81.55 100
67.82 100
85.73 100
95.07 100

cy = Xjj/xmaXj

0.978
1.178
.987

1.209
.963

1.006

C. Data transformed to proportion of the range,
x '. = (x^ ;   xminj )/(xmaXj   xm

0.889 0.148
0 .259

.667 .444
xij = .222 1.000

.778 .259
1.000 0

'";)

0.026
1.000

.079
.211
.079

0

t,

0.902
1.033

.805
1.046
.824

1.000

A A. Normalized original data

0.996 0.078
.772 .154
.981 .184

y ~ .885 .442
.991 .117
.999 .032

0.033
.617
.061
.147
.058
.021

BB. Normalized transformed data from B

0.968 0.238
.447 .283
.853 .506

*V ~ .522 .827
.929 .346
.994 .099

0.077
.849
.127
.207
.130
.050

CC. Normalized transformed data from C

0.986 0.164
0 .251

.828 .552
xij = .212 .956

.944 .315
1.000 0

0.029
.968
.098
.201
.096

0

end-members are theoretical, as in a principal components 
or varimax model, for example, or they are actual samples 
in the data.

Q-mode factor analysis, therefore, can be viewed as an 
attempt to reduce a data matrix into a smaller matrix that 
may facilitate interpretation in terms of petrologic mixing 
(for example, mixing of sediments, magmas, or magma 
and wallrock), or possibly in terms of petrologic mixing 
and chemical processes (such as solution or precipitation of 
material that tends to be of a specific composition). 
Alternatively, Q-mode factor analysis can be used simply 
as a means for classifying samples or for developing a 
concise description of the compositional variation in a 
sample suite. In using the method for classifying samples 
or for developing a concise description of variation, one is 
capitalizing on the fact that chemical and mineralogical 
variables are seldom, if ever, all unrelated to each other. 
The major chemical and mineralogical variations among 
samples can commonly be described more concisely in 
terms of a few actual or theoretical end-members than in 
terms of each one of the compositional variables.

The general Q-mode factor model is

where xij is an approximation of they'th element in the rth 
row of the normalized data matrix, a'ik is an initial factor 
loading for the /th sample on the Ath factor, and/*} is the 
Arth unsealed factor score for the yth variable. The initial 
factor loadings, the a-'k 's, are the conventional loadings 
for the principal components, varimax, or oblique models 
and are those that are provided by widely available 
computer programs. The unsealed factor scores, the/*} 's, 
are provided by the computer program of Klovan and 
Imbrie (1971) for the principal components model and 
varimax model.

The matrix of normalized data, x\j , is N x M in size 
M). The matrix of initial loadings, a'^ , is 
, and the matrix of unsealed factor scores, 

f£ , is m x M. Where m, the number of factors in the 
model (the number of end-members), is set equal to M, the 
number of chemical or mineralogical variables, the loading
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matrix is equal to the data matrix in size, and the model 
can be used to reproduce the normalized data matrix 
exactly. In most actual applications, however, m is less 
than M, and the reproduced data, x-j , are only approx­ 
imations of the original normalized data, x -j .

For purposes of illustration and verification of the 
extended form of the Q-mode method, the data given in 
tables IA, IB, and 1C will be used to generate a variety of 
factor models with m set equal to M. Verification of the 
models, therefore, will consist of using them to reproduce 
the original data exactly, except for round-off errors.

The first step in generating a factor model is to compute 
a matrix of sums of squares and cross products among the 
columns of the normalized original or transformed data 
matrices. Klovan and Imbrie (1971) have shown that (1) the 
eigenvalues of this matrix are equal to the nonzero 
eigenvalues of a matrix of coefficients of proportional 
similarity (cosine theta), and (2) the eigenvectors of the 
same matrix are the unsealed principal component factor 
scores. The coefficient of proportional similarity (cosine 
theta) is a measure of similarity between the compositions 
of two samples, / and p (Imbrie and Purdy, 1962):

Ex'x
IJ PJ

x ,2 
PJ

(2)

The unsealed varimax factor scores are computed as the 
product of the matrix of principal component scores and 
the varimax transformation matrix (Klovan and Imbrie, 
1971).

Other details of the procedures for deriving the initial 
factor loadings are given by Imbrie (1963) and Klovan and 
Imbrie (1971). It will suffice here to point out that the only 
important difference among the principal components, 
varimax, and various oblique models is that the vectors 
representing the samples are described in terms of different 
sets of reference axes. (See Imbrie, 1963.) The initial factor 
loadings, a£, and the unsealed scores, fkj, for the 
principal components and varimax models, and for the 
type of oblique model developed by Imbrie (1963), which 
uses extreme sample vectors as reference axes, are given in 
tables 2, 3, and 4. Those in table 2 were derived using the 
original data without transformation (table I A). Those in 
table 3 were derived from the data transformed to 
proportions of the maximum value in each column (table 
IE). Those in table 4 were derived from the data 
transformed to proportions of the total range for each 
column (table 1C). The products of the 0/£ and fk'j 
matrices for each of the nine models represented are 
exactly equal to the corresponding normalized data 
matrices in tables 1AA, IBB, and ICC. The principal 
component and varimax loadings and scores in tables 2, 3,

and 4 were derived using the computer program given by 
Klovan and Imbrie (1971). The loadings for the oblique 
models were derived using an addition to the program that 
follows the technique described by Imbrie (1963) and 
Manson and Imbrie (1964). Because m equals M in these 
examples, the scores for the oblique models are simply the 
normalized forms of the original and transformed data and 
are taken directly from tables 1AA, IBB, and ICC.

SCALED SCORES AND 
COMPOSITION LOADINGS

Models of the type represented in tables 2, 3, and 4 are 
difficult to interpret because the factor scores, the f£ 's, 
are normalized and, therefore, dimensionless. Also, the 
initial loadings, the a"k 's, do not sum to unity across k. It 
is preferable to express the scores in units conformable to 
those of the transformed data or those of the original data, 
commonly weight percent concentration. Klovan and 
Imbrie (1971) scale the factor scores by multiplying them 
by the square root of M, but this procedure is only for 
purposes of standardization. Alternative, and realistic, 
scaling is possible if the row-sums of the original data 
matrix are constant across all rows, so that

?*// = K> 
j

(3)

where K = 100 if the original data are percentages. 
Similarly, factor scores in units of the original data should 
sum to the same constant, inasmuch as the scores should 
represent the compositions of real or theoretical end- 
member samples:

= K, ' <3a>

The transformed data may be regarded as having been 
derived from a general expression found useful for 
computer programming:

- xmnin} ) / (xmax- irij ), (4)

where xmaxj and xmirij are the maximum and minimum 
values in they'th column of the original data matrix if the 
data were transformed to proportions of the total range. If 
transformed to proportions of the maximum value, all 
values of xmirij are set equal to zero, and, if not 
transformed, all values of xmirij are zero and all values of 
xmaXj are unity. Similarly, the transformed scores can be 
defined as

(5)

and this can be rearranged to

fk   = fkj + (6)



G6 STATISTICAL STUDIES IN FIELD GEOCHEMISTRY

TABLE 2. Initial loadings, a £ , unsealed scores, f k'- , scale factors, sk , and the estimated normalization factors, i\, for the three-factor principal 
components, varimax, and oblique factor models derived without transforming the data

(The products of the matrices of a,-£ and/ty are equal to the normalized data in table IAA]

Model

Principal 
components ........

Varimax .............

Oblique ..............

I nitial loadings, a ('^

0.988
.871
.996 a = 

<k .960
.994
.981

0.851
.416

a " - ' 797 
* .608

.826

.871

0.901
o

.800
1.000

-0.138
.481 

-.087 
.066 

-.105
-.159

0.420
.873 
.443 
.493 
.442
.409

-0.004
1.000
-.012 
0 

.020
0

-0.068
-.095 

.031 
.273 

-.035
-.110

0.316
.255 
.410 
.623 
.349
.274

0.112
0

.373 
1.000 
.200

0

Unsealed scores, fkj

0.973
f* = -.186 kj 

-.136

0.888 
/" = .388 

kj .247

0.999
V" = -772 

k} .885

0.172 
.199 
.965

-0.280 
.030 
.960

0.032
.154 
.442

0.152 
.962 

-.226

-0.365 
.921 

-.136

0.021
.617 
.147

Scale factors, sk

77.053 
s k = 102.499 

165.778

412.169 
sk = 74.647 

93.393

95.068
s = 64.807 

67.823

Estimated normalization 

factors' JJ

90.4
64.8

f. = 81.5
' 67.8 

85.7
95.1

90.3
64.8 

- 81.6 
' ~ 67.8 

85.7
95.0

90.4
64.8

'' = 67.8 
85.7
95.1

'*} = 1/2 <'.«$/**>.
' k

2 From table IAA.

TABLE 3. Initial loadings, a jk , unsealed scores, fkj, scale factors, s k , and the estimated normalization factors, t,-, for the three-factor principal 
components, varimax, and oblique factor models derived after transforming each variable to proportions of the maximum value

[The products of the a£ and/k'j matrices are equal to the normalized transformed data in table 1 BB\

Model

Principal 
components ........

Varimax .............

Oblique ..............

Initial loadings, afk

0.969
.706 
.990 

a!k = -851 
.991
.927

0.904
.261 

  .749 
a ik = .371 

.843

.951

0.880
0

a"= ' 578 
* 0

.754
1.000

-0.234
.627 

-.037 
.294 

-.131
-.324

0.256
.927 
.300 
.339 
.307
.226

-0.006
1.000
-.019 
0

.032
0

-0.084
-.328 

.135 

.435 
-.015
-.189

0.343
.268 
.591 
.864 
.441
.211

0.185
0

.549 
1.000
.317

0

Unsealed scores, /jy

0.880 
/" = -.407 

* -.245

0.978 
/". = -173 

W .117

0.994
2f" = -447 

kj .552

0.416 
.408 
.813

-0.128 
.055 
.990

0.099
.283 
.827

0.231 
.817 

-.528

-0.164 
.983 

-.076

0.050
.849 
.207

Scale factors, s^

0.950 
s k = 16.001 

-4.983

1.212 
s = 1.742 

* 2.650

1.006
sk = 1.178 

1.209

Estimated normalization 
factors ', Tf

0.978
1.179 

A _ .987 
' 1.209 

.963
1.007

0.978
1.178 

7 _ -987 
' 1.210 

.963
1.006

0.978
1.178

- .988 
' 1.209

.963
1.006

2 From table Iflfl.

Substitution of the right side of equation 6 in equation 3a 
gives:

2 (fkj (xmaxj-xmirij) + xmin^ = K. (7)

Although equations 5 and 6 define the relation between the 
values of fkj and fkj , their absolute values have not been 
established. This is done by defining fkj as equal to skf'k'j , 
where sk is a scale factor and fkj is an unsealed score as
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TABLE 4. Initial loadings, a-^, unsealed scores, f(], scale factors, sk , and estimated normalization factors,^;, for the three-factor principal 
components, varimax, and oblique factor models derived after transforming each variable to proportions of the range

[The products of the a// and/^'matrices are equal to the normalized transformed data in table ICC]

Model

Principal
components ........

Varimax .............

Oblique ..............

Initial loadings, a$

0.963
.234
.985 

° ik .603
.995
.906

0.984
.022
.822 

° ik .204
.942
.999

0.949
0

n" - -704a it   
1 0

.876
1.000

-0.249
.830
.094 
.643

-.095
-.375

0.012
.979
.105 
.244
.088

-.026

-0.006
1.000
-.020 
0

.032
0

0.101
.506

-.147 
-.473

.037

.1%

0.178
.202
.559 
.948
.324
.016

0.173
0

.583 
1.000

.321
0

Unsealed scores, fkj

0.906
f'k'j =-374 

.196

1.000
/". = -.025 

.016

1.000

.212

0.400
.608 

-.686

-0.014
.051 
.999

0
.251 
.956

0.138
.700 
.701

0.026
.998 

-.050

0
.968 
.201

Scale factors, sk

0.792
sk = 1.720 

2.656

0.987
sk = 1.179 

1.747

1.000
sk = 1.033 

1 0461 .WTU

Estimated normalization 
factors ',"//

0.902
1.032
.805 

tf 1.045
.823

1.000

0.902
1.033
.805 

'' ~ 1.046

.823
1.001

0.902
1.033
.805 

'' ~ 1.046
.824

1.000

2 From table ICC.

previously defined. Equation 7 may now be written as

= K. (8)kj (xmax j-xmin j) +

The scale factors for converting the unsealed scores to 
scores that are conformable to the transformed data may 
be derived by rearrangement of equation 8 to

K-

/'.' (xmax- xmin. )\
kj j j /

(9)

where, again, xmaXj and xmirij are the maximum and 
minimum values in the y'th column of the original data 
matrix if the data were transformed to proportions of the 
total range. If the transformation was to proportions of 
the maximum value, then all values of xmirij used in 
equation 9 are set equal to zero, and if no transformation 
was made, all values ofxmirij are set equal to zero, and all 
values of xmaxj are set equal to unity.

The Q-mode factor analysis model in equation 1 can be 
rewritten as

aik

or

(10)

(11)

where a-k = o-k/sk and f-k is a scaled factor score. 
Equation 11, like equation 1, may be used to derive an 
estimate of the normalized form of the original or 
transformed data matrix or may be used to derive the 
normalized form of the data exactly, for models where m 
= M. However, the model may be changed to one that 
reproduces the transformed data (or the original data if the 
data were not transformed) if both sides are divided by the 
quantity So A. giving

K '*

Although not proven here, it has been observed and 
abundantly verified in the present study that when m = M 
the quantity \/^a-k is, except for round-off errors, 
precisely equal to the normalization factor, t( , which is the 
square root of the sum of squares of the rth row in the 
original or transformed data matrix, depending on whether 
or not a transformation of the data was made. This can be 
seen by comparing the values of ?,- in tables 2, 3, and 4 with 
the corresponding values of t\ in table 1. Therefore, the 
left side of equation 12 may be written simply as x\j , 
which is the approximation of an element in the 
transformed data matrix or in the original data matrix if no 
transformation was made. The quantity a'ik /'Eai'l( in 
equation 12 may be written as aik : a matrix analogous to 
that of aik is referred to as the composition matrix by 
Imbrie and VanAndel (1964, p. 1141) where it is derived
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TABLE 5. Composition loadings, a ik , and composition scores, fkj = fkj, for the three-factor principal components, varimax, and oblique factor
models derived without transforming the data

[The products of the a^ and/^.. matrices are equal to the original data in table \A\

Model

Principal
components ........

Varimax .............

Oblique ..............

Composition loadings, at f.

1.159
.732 

a 1.054u iir   
lk .854

1.106
1.211

0.186
.065

aik = -158 
.100
.172
.201

0.856
0
0.567

Oik =
'* 0

.722
1.000

-0.122
.304 

-.069
.044

-.088
-.148

0.508
.758
.484 
.448
.508
.521

-0.005
1.000

-.016
0

.026
0

-0.037
-.037 

.015

.112
-.018
-.063

0.306
.177
.358 
.452
.320
:279

0.150
0

.449
1.000

.253
0

Composition scores,/^- = /.'.

74.99
fkj = fkj = -19.04

-22.49

365.93 
fkj = / ' = 29.00 
' kj 23.04

95
'4 = fkj = 50

60

13.29
20.41

159.92

-115.35 
2.25 

89.62

3
10
30

11.72
98.63

-37.43

-150.58 
68.75 

-12.66

2
40
10

1 From table 1/1.

for an oblique model. The quantity aik will be referred to
here as a composition loading whether it pertains to an 
oblique model, a varimax model, or a principal 
components model. Equation 12 then becomes

X;; = (13)

where x\. refers to the transformed data if a 
transformation was made, or to the original data if there 
was no transformation. The m values of a^k sum to unity 
across k and may be interpreted as proportions. Table 5 
gives values of aik and /fa for the principal components, 
varimax, and oblique models derived without transforma­ 
tion of the data. The products of the corresponding aik 
and/^ matrices are equal to the original data matrix in 
table \A. The matrices of a ik and fkj in table 6 were 
derived after transforming the data to proportions of the 
maximum values, and their products are equal to the 
transformed data matrix in table \B. The matrices of ajk 
and/ky in table 7 were derived after transforming the data 
to proportions of the total ranges for each variable, and 
their products are equal to the transformed data matrix in 
table 1C.

COMPOSITION SCORES
If the data were transformed prior to the derivation 

of the OIK and fkj matrices, the scaled scores must be 
converted to composition scores in order to reproduce the 
original data, or an approximation of the original data,

from the factor model. Each side of equation 13 is 
multiplied by the quantity (xmaXj- xmirij) and increased 
by xmin   to obtain

Xjj(xmaXj -xmirij) + xmitij =

^(aikfkj (xmaXj -xmin.)) + xmin . (14)

By virtue of the fact that aik = a-k /2tf^ , it follows that

Therefore, equation 14 may be written as

x'ij(xmaXj xminj) + xmin- =

^i(aikfkj (xmaxj-xminj)) + J^a

and

(15)

+ xmn y = 

fli* (fkj (xmaXj-xminj) + xmin^. (16)

The effect of the values ofxmaXj and xminj in equation 16 
is to reverse the transformation that consisted of scaling 
each variable to a proportion of the total range for the 
variable. Or, if all values of xmin. are set equal to zero, the 
effect is to reverse the transformation that consisted of 
scaling each variable to a proportion of the maximum
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TABLE 6. Composition loadings, a jk , scaled scores, fkj, and composition scores, fy , for the three-factor principal components, varimax, 
and oblique factor models derived after transforming each variable to proportions of the maximum value

[The products of the a,-^ and ffa matrices are equal to the transformed data in table Ifl. The products of the a,-^ and /£.- matrices are equal to the original

data in table LA]

Model

Principal 
components ........

Varimax .............

Oblique ..............

Composition loadings

0.998
.876

1.029 
fl*~ 1.083 

1.005
.982

0.730
.254
.610 

fl*~ .370

.670

.790

0.856
0
0.567 

a* 0
0.722
1.000

-0.014
.046

-.002 
.022 

-.008
-.020

0.144
.627
.170 
.235
.170
.131

-0.005
1.000

-.016 
0

.026
0

"ik

0.016
.078

-.027 
-.106 

.003

.038

0.127
.119
.220 
.394
.160
.080

0.150
0

.449 
1.000
.253

0

Scaled scores,/^

0.836
f'kj =-6.515 

1.223

1.185
4'. = -301 

1 .309

1.000
'/' = .526 J kj 

.632

0.395
6.533 

-4.050

-0.155
.096 

2.624

0.100
.333 

1.000

0.219
13.074 
2.633

-0.199
1.714 

-.202

0.050
1.000 
.250

Composition scores, /^y

79.39
A/ =-618.92 

116.18

112.62
fkj = 28.57 

29.34

95
2fkj= 50 

60

11.84
195.98 

-121.51

-4.65
2.89 

78.73

3
10 
30

8.77
522.94 
105.33

-7.97
68.54 
-8.07

2
40 
10

1 From table Ifl.
2 From table \A.

TABLE 7 . Composition loadings, a jk , scaled scores, fk'., and composition scores, fkj , for the three-factor principal components, varimax, and 
oblique factor models derived after transforming each variable to proportions of the range

[The products of the a,-^ and ffi matrices are equal to the transformed data in table 1C. The products of the a,-£ and fy matrices are equal to the original
data in table \A]

Model

Principal
components ........

Varimax .............

Oblique ..............

Composition loadings

1.096
.304 

1.001
aik = .795

1.034
1.144

0.899
.023

a - - 671 
ik .216

.786
1.012

0.856
0

a - °'567 
ik 0

.722
1.000

-0.131
.499 
.044
.391

-.045
-.217

0.009
.858
.072 
.216
.061

-.021

-0.005
1.000

-.016 
0

.026
0

"ik

0.034
.197 

-.045
-.186

.011

.074

0.092
.119
.258 
.567
.153
.009

0.150
0

.449 
1.000
.253

0

Scaled scores, f/fi

0.718
fkj = -.644

.522

0.987 
fkj = -.030

.027

1.000 
l fk'j= 0

.222

0.317
1.045

-1.822

-0.014 
.060

1.745

0 
.259

1.000

0.109
1.204
1.861

0.026 
1.177

-.088

0 
1.000
.211

Composition scores,/^;

82.31
fkj= 21.02

73.47

94.40 
A/= 48.65

51.24

95
A/ = 50

60

11.55
31.23

-46.20

2.62 
4.62

50.11

3 
10
30

6.14
47.75
72.72

2.98 
46.73
-1.35

2 
40
10

1 From table 1 C.
2 From table 1/4.

value for the variable. In either case, because of equations 
4 and 6, we can now write:

*» = ?«»/«. (17>
where x^ refers to the original data in table L4, the a/# *s 
are composition loadings, and the fy 's are composition 
scores for the principal-components, varimax, or oblique 
factor models.
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The composition scores are in units of the original data 
and sum to K across j (eq 3a). For the oblique model 
developed by Imbrie (1963), the composition scores, when 
m = M, are simply the compositions of the samples 
selected to serve as end-members in the factor solution. For 
the principle component and varimax models, the derived 
composition scores for the kih factor may be regarded as 
the composition of a theoretical sample that may serve as 
an end-member for the corresponding model. However, if 
any value of fy is negative or in excess of K, the derived 
composition of the kih factor is, of course, unrealistic and 
should be viewed as only an approximate indication of the 
nature of some theoretical end-member sample.

The composition scores, fk - , derived from the data in 
table 1 are given in tables 5, 6, and 7 for the principal 
components, varimax, and oblique models. Those in table 
5 were derived without transformation of the data. Those 
in table 6 were derived after the data were transformed to 
proportions of the maximum values, and those in table 7 
were derived after the data were transformed to 
proportions of the total range for each variable. The 
matrices of composition loadings, a/A. , in tables 5, 6, and 7 
may be multiplied by the corresponding matrices of 
composition scores, fk . t to produce the matrix of original 
data in table IA.

NEGATIVE LOADINGS AND 
NEGATIVE SCORES

In most factor analysis applications the signs of the 
factor loadings are regarded as arbitrary, and it is entirely 
valid to change all the signs in any column of the initial 
loading matrix. However, if factor scores are computed 
and the signs are changed in the kih column of the loading 
matrix, it is necessary to also change the signs in the kth 
row of the score matrix. When these sign changes are made 
for the composition loadings and scores, the scores will 
sum to minus K, rather than K, and the requirement in 
equation 3a is violated. This situation is not corrected by 
changing the signs in the initial loadings and unsealed 
scores from which the composition loadings and scores 
were derived. When the sign changes are made for the 
initial loadings and unsealed scores, the scale factor, sk , 
also changes in sign, as may be seen from equation 9. 
Because of this, the sign change is cancelled out (eq 10) 
before the composition loadings and scores are derived. 
Therefore, unlike the conventional (initial) loadings, the 
composition loadings and scores have fixed signs that are 
determined by the choice of reference axes and the nature 
of the compositional variation in the rocks under 
examination.

In the use of Q-mode factor analysis to develop a genetic 
model, the composition scores for the selected reference 
vectors should be entirely nonnegative because these scores 
represent chemical or mineralogic compositions of

end-members. However, if the factor solution is to be used 
as a device for summarizing geochemical or petrologic data 
or for purposes of sample classification, negative 
composition score values can be perfectly acceptable. I 
have found that the composition scores for the 
conventional varimax reference axes are commonly 
negative in part but that the varimax axes can still be useful 
for reference purposes and the set of scores for each axis is 
still indicative of the general compositional nature of the 
theoretical end-member. For example, a series of scores 
consisting of some value larger than the constant K for 
SiC>2, and of negative values for all other constituents 
indicates that a more realistic end-member might have the 
composition of a siliceous magma or a pure quartz sand.

In situations where negative composition scores are 
unacceptable, they can be avoided by the choice of a 
different set of reference axes. The method for finding the 
composition scores for any vector that may serve as a 
potential reference axis within the factor space of the 
Q-mode solution is demonstrated in the following section. 
After m reference axes with all nonnegative composition 
scores have been selected, there will be no difficulty in 
determining the composition loadings for each sample with 
respect to them as long as the selected axes are sufficiently 
independent. (That is, they are not colinear or 
approximately colinear in a two-factor space, coplanar in a 
three-factor space, and so forth.)

The composition loadings, aik , always sum to unity 
across k and their signs indicate the required addition or 
subtraction of the kih end-member to form the fth sample 
according to the model. Where either the addition of an 
end-member, as indicated by a positive loading, or the 
subtraction of an end-member, as indicated by a negative 
loading, is unreasonable, a new choice of reference axes 
may be desirable.

Composition scores for the first axis of a principal 
component model tend to be all nonnegative, as do the 
composition loadings on the first end-member. The scores 
and loadings for subsequent axes tend to be positive and 
negative in about equal number.

Although some of the composition scores for varimax 
models are commonly negative, the composition loadings 
are generally almost entirely positive. As the varimax axes 
are changed to oblique axes by moving them toward the 
vectors representing the actual samples, their composition 
scores become increasingly positive and the composition 
loadings become increasingly negative. The first of these 
properties can be useful in the modification of varimax 
models to form models with oblique reference axes that 
have all nonnegative composition scores, as described in 
part II.

Oblique models that employ the extreme sample vectors 
as reference axes, as used by Imbrie (1963), have all 
nonnegative composition scores if m = M, or if for some
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other reason the model accounts for all the variability in 
the data. Where this is not true, the composition scores 
differ from the actual compositions of the reference 
samples and some may be negative. The composition 
loadings for this type of oblique model can be entirely 
nonnegative, but commonly some of them are slightly 
negative.

The signs of the composition scores and loadings for 
other types of oblique models depend entirely on the 
reference axes chosen to describe a particular set of sample 
data. These other types of oblique models may be 
developed by choosing alternative oblique reference axes. 
The choice of reference axes may be based either on 
examinations of the composition scores for selected vectors 
or on the determination of the vector representations for 
given compositions.

FINDING THE COMPOSITION
SCORES FOR ANY VECTOR IN

THE FACTOR SPACE

The oblique model developed by Imbrie (1963) is one 
wherein actual samples of extreme composition serve as 
end-members, or reference samples, for describing the 
compositional variations within the entire sample series. In 
many studies, however, there is no reason to expect that 
the actual end-members which contributed to the 
formation of a rock body are represented in the sample 
data. Thus, the extreme samples might be rejected as 
plausible end-members, and a search begun for alternative 
real or hypothetical end-members that have acceptable 
composition scores as well as acceptable composition 
loadings of all samples with respect to them. It is an easy 
matter to determine the composition scores for any vector 
that may potentially serve as a reference axis.

As an example, we may consider an arbitrary vector 
within the three-factor space of the varimax solution 
represented in tables 4 and 7. The initial loadings of the 
vector on the varimax axes are taken as

a/,' = 0.03162, a/2 = 0.03162, a"3 = 0.9990. (18)

These loadings (which define a vector close to but not 
coincident with the third varimax axis) and the unsealed 
varimax factor scores from table 4 are used to derive the 
normalized composition of the vector according to 
equation 1. Because the normalized composition is to be 
regarded as a set of unsealed scores, the notation is 
appropriately changed from x -j toffi . The derived values
are

; = 0.047, //I =0.999, f' =-0.018. (19)'k2

Equation 9, then, gives sk = 1.586, and the scaled factor 
scores for the vector are

//, = 0.074, /' =1.584, /'=-0.029, (20)*3

and, from equation 6, the composition scores for the 
vector are

fkl = 53.33, fa = 45.77, 4,= 0.90. (21)

Because none of the composition scores is negative, the 
vector may serve as a more acceptable reference axis than 
the third varimax axis which has a negative value for /33 
(table 7).

Composition scores from some other arbitrary vectors 
within the same factor space are given in table 8. Note that 
the scores for colinear vectors having loadings that are 
opposite in sign are exactly the same. Note also that some 
vectors, such as vectors 3 and 4, may have composition 
score values that are negative or in excess of K and 
impossible to interpret in terms of rock composition.

TABLE 8. Computed composition scores, f.., for some arbitrary vectors 
in the varimax solution of tables 4 and 7

Loadings, Composition scores,/;;

*=1 * = 2 * = 3 j=\ j=2 j=3

1
2
3
4
5
6
7

0.577
-0.577

.271
-.271

.924

.271

.382

0.577
-.577
-.924

.924

.271
-.924

.654

0.577
-.577

.271
-.271

.271
-.271

.654

68.31
68.31
12.06
12.06
81.38
30.38
62.85

14.49
14.49

-13.77
-13.77

8.55
16.07
16.97

17.20
17.20

101.70
101.70
10.08
53.55
20.18

FINDING THE VECTOR
REPRESENTATION 

FOR A GIVEN COMPOSITION

Although the search for possible end-members in a 
compositional system may consist of the determination of 
composition scores for various vectors in the factor space, 
as described in the previous section, it is commonly more 
satisfactory to begin with the composition, Zj, of some 
material that may have been involved in the system and 
determine whether or not the composition can be 
satisfactorily represented as a vector in the m-dimensional 
factor space. Any composition that can be represented in 
the factor space can be arrived at by the mixing or 
unmixing of compositions equal to the composition scores 
of any other m vectors in the same space. Any composition 
that cannot be represented in the factor space could not 
have been an end-member in the w-component 
compositional system.

The procedure cannot be fully illustrated here because 
the example factor solutions have m = M, and any 
composition of the same M components can be completely 
represented in the m-dimensional space. However, the 
procedure begins with the transformation and normal­ 
ization of the given composition in the same manner used 
to transform the original data before derivation of the
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factor solution, using the same values of xmaxj and xmin} 
(table 1). Representing the transformed and normalized 
composition by a row of zj, the relation given in equation 
1 can be written as

Equation 22 in matrix notation is 

Z = AF.

(22)

(23)

Following Klovan and Imbrie (1971, p. 64), both sides of 
equation 23 are postmultiplied by the transpose of the 
unsealed score matrix to give

ZF' = AFF'. (24)

However, the unsealed scores are in normalized form, and, 
if they are for orthogonal reference axes, such as the 
principal component or varimax axes, the product of F and 
F' is an identity matrix. Consequently, equation 24 
becomes

A = ZF'.

This translates to

(25)

(26)

which shows that the initial loadings on the principal 
components or varimax axes are derived simply by 
multiplying the array of normalized composition values by 
the transposed matrix of unsealed scores.

The sum of squares of the m values of a'k is the 
communality h 2 of the vector representing the given 
composition and indicates how well the composition fits 
into the factor space of the sample data and the degree to 
which the given composition in original units (generally 
percent or parts per million) may be reproduced from the 
factor model. To reproduce the original composition, the 
derived values of ak are divided by the scale factors, sk , for 
the principal components or varimax axes, and adjusted to 
sum to unity across k, giving ak . The original composition, 
Z: , is then estimated by

£  ^ ~ f fyi\Z- =2jOkfkj , (£r)

where the values of fkj are the composition scores for the 
principal components or varimax axes. Wherever h 2 is 
unity, the quantities (z-z)j will be zero for each variable, 
and, where h 2 is less than unity, the absolute values of (z-z)j 
will be correspondingly larger.

The vector representations of some arbitrarily selected 
compositions in the varimax model of tables 4 and 7 are 
given in table 9. Because m = Min this model, the value of 
h 2 is unity for each composition.

In real applications of the method, where m is less than 
M, the acceptability of the given composition z , as that of 
a possible end-member in a petrologic system will depend 
on its derived communality, h 2.

TABLE 9.  Vector loadings, a^, in the varimax solution of tables 4 
and 7for some given compositions, z,j

Phase, /'
Composition, Zj; Vector loadings,

7=1 7=2 7 = 3 k=\

1
2
3
4
5
6
7

63
75
99
0
12
14
6

24
3
0
82
5

76
10

13
22

1
18
83
10
84

0.325
.744
.995

-.361
-.344
-.294
-.388

0.366
.668

-.054
.189
.939
.130
.920

0.873
-.023
-.084
.913

-.020
.947
.057

COMPUTATION OF INITIAL
AND COMPOSITION LOADINGS

WITH RESPECT TO OBLIQUE
REFERENCE VECTORS

Determination of the initial factor loadings with respect 
to any oblique reference axes follows the technique 
described by Imbrie (1963). It is illustrated here using the 
varimax model represented in tables 4 and 7. For the 
purpose of illustration only, the oblique reference axes will 
be taken as vectors 5, 6, and 7 in table 8; the loading matrix 
of the new reference axis system is

0.924 0.271 0.271
A=a-'k = .271 -.924 -.271

.382 .654 .654. (28)

The inverse of A is

1.306 0.0 -0.541
A' 1 = .859 -1.531 -.990

-1.621 1.531 2.836. (28a)

The product of the matrix of initial varimax loadings in 
table 4 and the inverse matrix in 28a gives the matrix of 
initial loadings on the new reference axes

a., = 
ik

1.007
.542
.258

-1.061
.781

1.256

0.254
-1.190

.695
1.078 

.361 

.064

-0.039
-.408
1.037
2.337

.322
-.469. (29)

The matrix of unsealed factor scores, fk'., for the new 
reference axes is then determined as the product of the 
matrix of initial loadings, a'ik , in 28 and the matrix of 
unsealed varimax scores, fkj , in table 4. The scale factors, 
sk , for the new reference axes are then computed, using the 
new scores and the values of xmaxj andxmirjj from table 1 
in equation 9. The scale factors are

s = 0.7562, s2 =-1.5040, *3 =0.7595. (30)

The composition loadings for the new model are derived by 
dividing the columns of 29 by the corresponding values of
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Sk in 30 and then adjusting each row to sum to unity. The 
composition loadings are

1.199 -0.152 -0.047
.739 .816 -.556

aik = .274 -.372 1.098
-1.465 -.749 3.214

.849 -.198 .349
1.661 -.043 -.619. (31)

The original data in table \A can be reproduced exactly, 
except for differences due to round off, by multiplying the 
composition loading matrix in 31 by the matrix of 
composition scores for vectors 5, 6, and 7 given in table 8.

SUMMARY
Q-mode factor analysis appears to be a method that is 

well suited for exploring the nature of the compositional 
variation in a suite of rock samples. It can be used in at 
least three ways: (1) to develop a geochemical or petrologic 
model, (2) to develop a scheme of classification, or (3) to 
summarize complex multivariate data. Applications of the 
second and third types can employ any set of reference 
axes, regardless of their composition scores. The 
development of tenable geochemical or petrologic models, 
however, requires that all composition scores be in the

range from zero to K, and the acceptability of the model 
may depend on the consistency of the composition 
loadings, especially their signs, with other geologic 
observations. These conditions will usually require 
experimentation using various sets of reference vectors. 
Potential reference vectors can be examined by either 
finding the composition scores for selected vectors or 
finding whether or not certain compositions of interest can 
be satisfactorily represented as vectors in the factor space.

The ultimate test of the mathematical validity of any 
factor model is the closeness with which it can reproduce 
the original data. The only test of its geologic validity is 
whether or not it conforms to other geologic observations 
regarding the rock unit, or units, from which the series of 
rock samples was taken.

All the models developed here can be used to reproduce 
the normalized, transformed, or original data exactly 
because the number of factors they contain was made 
equal to the number of variables represented in the data 
matrix. In most real applications, m is less than M because 
the purpose of the analysis is to reduce the problem, and it 
cannot be expected that the data will be reproduced 
exactly. However, the closeness with which the data can be 
reproduced may or may not be satisfactory to the 
investigator, and the test is recommended.

Part II. Effects of Reducing the Number of Factors

INTRODUCTION

Part I has shown that the constant row-sum of 
matrices of compositional data on rocks and other 
materials can be used to advantage in Q-mode factor 
analysis. Where the matrix row-sums are constant, it is 
possible to scale the factor loadings and scores, which 
together comprise the factor model, so that they are 
conformable with the original data, which are commonly 
in units of weight percent or parts per million. Without 
such scaling, the loadings are difficult to interpret in terms 
of proportions of end-members, and the scores cannot 
easily be interpreted in terms of rock compositions. 
Moreover, the products of the matrices of loadings and 
scores are not approximations of the original data in 
percent or parts per million but of the data in their 
normalized form. If the loadings are scaled and adjusted to 
sum to unity for each sample, and, if the scores are scaled 
and detransformed (if a data transformation was used in 
their derivation), the products of the matrices of loadings 
and scores approach or equal the matrix of original data. 

Examples of factor models were given in part I for which 
the number of factors was equal to the number of variables

(columns) in the data matrix, and the products of the 
matrices of composition loadings and composition scores 
equaled the original data exactly, except for differences 
due to round off. The purpose here in part II is to show 
how the method and the mathematical basis are affected 
when the number of factors is reduced to something less 
than the number of variables. Thus, the computations and 
the models to be developed are more representative of most 
real factor analysis applications wherein the objective is to 
reduce, or simplify, the problem by developing a less 
complex model that explains some major part of the 
compositional variability in a suite of rock samples. The 
minor part of the variability left unexplained is ascribed to 
measurement errors and to the effects of geologic processes 
that have had only minor effects on variation in rock 
composition. The same hypothetical data used in part I 
(table 1) will be used here, but the models will be developed 
with two factors rather than three. The methods will be 
applied to real data in part III.

The initial factor loadings and unsealed scores for the 
principal components and varimax models developed here, 
as those in part I, were derived by the method of Klovan 
and Imbrie (1971).
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ESTIMATES OF FACTOR LOADINGS

The geometric representation of a Q-mode factor 
model is a system of vectors with a common origin. Where 
the number of factors, m, is equal to the number of 
variables, M, the vectors are of unit length, and each 
represents a row of either the normalized original data 
matrix or the normalized matrix of transformed data 
where a transformation was used. The cosine of the angle 
between any two of the vectors is exactly equal to the 
coefficient of proportional similarity (cosine theta) for the 
two samples that the vectors represent. Because the 
minimum value of cosine theta for nonnegative data is 
zero, none of the sample vectors is separated by more than 
90 degrees from the others. The positions of the vectors 
may be described in terms of any reference axis system, but 
the conventional systems are the principal components 
axes, the varimax axes, and the oblique axes as used by 
Imbrie (1963).

The principal components axes are positioned in the 
vector system so that the sum of squares of the projections 
of the sample vectors on one of the axes is as high as 
possible. In other words, one of the principal axes is placed 
near the center of the vector cluster, and all the sample 
vectors have positive projections on it. The second 
principal axis is positioned orthogonal to the first but is 
oriented so that the sample vectors have as large a 
projection on it as possible considering the orthogonality 
constraint. Subsequent axes are positioned in the 
M-dimensional space so that they are orthogonal to the 
preceding axes and so that the projections of the sample 
vectors on each of them are as large as possible. 
Consequently, the first column of the initial factor loading 
matrix for the principal-components model, which gives 
the loadings on the first axis, contains relatively large 
positive values, and subsequent columns contain both 
positive and negative values of decreasing absolute 
magnitude (tables 2, 3, and 4).

The sum of the squares of the fcth column of the matrix 
of initial loadings on the principal components axes is 
equal to the kth eigenvalue of the cosine theta matrix 
(Harman, 1967, p. 167). Consequently, the eigenvalues 
indicate the number of dimensions occupied by the cluster 
of sample vectors within the M-dimensional space. For 
example, if the first two eigenvalues of the cosine theta 
matrix are large and subsequent eigenvalues are small, the 
sample vectors cluster about a plane. This has been taken 
to indicate that a major part of the compositional variation 
can be described in terms of two end-members and as 
justification for reducing the number of factors, m, to two 
so that m is less than M. Interpretation of the eigenvalues is 
discussed further in the following section.

In the derivation of the varimax model, where m = M, 
the principal components axes are rotated simultaneously, 
while maintaining their mutual orthogonality, so that the 
total sum of the squares of the projections of the sample 
vectors on all the axes is as large as possible. This is the 
varimax criterion. In the derivation of the oblique model, 
where m - M, using the method of Imbrie (1963), the 
reference axes are taken as the M sample vectors that occur 
at the extremes of the sample vector cluster and, if 
possible, enclose all the others.

If the eigenvalues of the cosine theta matrix indicate that 
the cluster of sample vectors occurs largely in m 
dimensions, where m is less than M, only the first 
m-principal-components axes are rotated in deriving the 
varimax model, and the sample vectors are then projected 
into m-dimensional space. Following this projection, the 
sample vectors tend to be of less than unit length. The 
squares of the vector lengths, computed as the sums of the 
squares of the initial loadings, are referred to as the sample 
communalities and indicate the degree to which each 
sample conforms with the final factor model.

These procedures are illustrated here using the same 
hypothetical data (table 1) used in part I, wherein all 
models were such that the number of factors equalled the 
number of variables. As before, the data matrix is treated 
in three ways: (1) the original data (table L4), (2) the data 
transformed so that each variable is expressed as a 
proportion of the maximum value for that variable (table 
IB), and (3) the data transformed so that each variable is 
expressed as a proportion of the total range for that 
variable (table 1C). The row-normalized forms of the data 
are given, respectively, in tables IAA, IBB, and ICC. The 
sample vector cluster previously defined for the principal 
components model is projected into two-dimensional space 
merely by eliminating the third column of the initial factor 
loading matrix. (Compare tables 10,11, and 12 with tables 
2,3, and 4 of part I.) The third row of each unsealed factor 
score matrix is also eliminated. Only two of the principal 
components axes are rotated in deriving the varimax 
model. The projections of the sample vectors on the two 
varimax axes are given in tables 10, 11, and 12. 
Computation of the initial loadings and unsealed scores for 
both the principal components and the varimax models 
follows the methods given by Klovan and Imbrie (1971).

According to the method of deriving the oblique factor 
model described by Imbrie (1963), the m end-member 
samples are first chosen as those that have the largest 
projections on each of the varimax reference axes. As 
shown in part I, the m by m matrix of initial varimax 
loadings, A, is then inverted to give/4' 1 , and the entire Nby 
m matrix of initial loadings postmultiplied by A 1 gives the
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10. Initial loadings, a^ , unsealed scores, fy, scale factors, s k , estimated normalization factors, Tj, and reproduced data matrix, Xjj, for 
the two-factor principal components, varimax, and oblique factor models derived without transforming the data

[The products of the matrices of a-f. and/j.y are approximations of the normalized data in table \AA]

Model

Principal 
components 2

Varimax .....

Oblique ......

Initial loadings,

0.988
.871
.996

 'i = - 960 
.994
.981

0.891
.443
.869

a :if = TC-J
111 .IjL

.877

.898

0.975
0

.908
a ik = .663

.933
1.000

"Ik

-0.138
.481

-.087 
.066 

-.105
-.159

0.448
.891
.495
.600
.479
.427

0.036
1.000
.120
.355
.091

0

Unsealed scores, f£j

0.973 0.172 0.152 
3 V ~ -.186 .199 .962

f" _ 0.906 0.029 -0.422
V .400 .262 .878

s 0.98 0.14 0.00
J kj ~ .76 .25 .60

Scale factors, fy

s -   
k 102.5

194.8
Sk 64.9

89.3
S I, = ,. .

* 62.1

Estimated normalization 
factor ' , /}

87.2

62.5
7 _ 82.9 

76.4 
84.3
89.5

87.1
62.5

r 82.7 
' if. i7o.J 

84.2
89.4

87.0
62.1

? _ 82.6
' 7A 1/O.I

83.9
89.3

Reproduced data matrix (product of matrices of a£ and/jy)

0.99
.76
.99

*ii ~ .92
.99
.98

0.14
.25
.15
.18
.15
.14

0.02
.60
.07
.21
.05
.00

2 The communalities (A,2 = 2 a^2) are 1.00, 0.99, 1.00, 0.93, 1.00, and 0.99. 
 'From reproduced data matrix.

initial factor loading matrix for the oblique model. If any 
of these oblique loadings exceeds unity, an iterative 
procedure is begun to select different end-member samples 
for which all initial oblique loadings are unity or less.

A different iterative procedure has been used to derive 
the initial oblique loadings in tables 10, 11, and 12. The 
criterion in the iteration is that none of the oblique 
composition loadings, rather than the initial loadings, 
exceeds unity. The unsealed scores for the oblique models 
are taken directly from the reproduced data matrices 
(tables 10,11,12). The alternative procedure is discussed in 
a subsequent section dealing with the identification of 
samples of extreme composition.

INTERPRETATION OF 
EIGENVALUES AND COMMUNALITIES

The first three eigenvalues, A , of the 6 by 6 matrices of 
cosine theta derived from the original and transformed 
data matrices (tables L4, IB, and 1C) and their cumulative 
proportions of TV, here after abbreviated as CPN, are given

in table 13. The values of CPN indicate the proportions of 
the total sums of squares in the normalized data matrices 
that will be explained by principal components, varimax, 
or oblique models having the corresponding numbers of 
factors. It was shown in part I that three-factor models 
account for all the variability in the data matrices. That is, 
the final factor models could be used to reproduce the 
original, transformed, and normalized data matrices 
exactly, except for differences due to round off. The values 
of CPN in table 13 show that two-factor models will 
explain 98 percent, 94 percent, or 91 percent of the 
variability (as a sum of squares) in the normalized 
data matrices, depending on whether or not a data 
transformation was used and on which type of 
transformation it was. For example, when the initial factor 
loadings for any of the three models represented in table 10 
are multiplied by the corresponding matrices of unsealed 
scores, the product is an estimate of the normalized 
original data in table IAA, referred to as the reproduced 
data matrix. The total sum of squares in the reproduced 
data matrix of table 10 is 98 percent of N = 6, the total
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TABLE II. Initial loadings, a ik', unsealed scores, fk'j', scale factors, sk , estimated normalization factors, Tj, and reproduced data matrix, "x;j', for 
the two-factor principal components, varimax, and oblique factor models derived after transforming each variable to proportions of the 
maximum value

[The products of the matrices of a/^ and/^! are approximations of the normalized transformed data in table \BB]

Principal 
components 2

Varimax 2 .....

Oblique ......

Initial load in

0.969
.706
.990

°ik ~ .851 
.991
.927

0.936
.241
.845 

a'.' = CA t
ik .546 

.898

.951

0.954
0

.799
a* = .403 

.882
1.000

5s - alk

-0.234
.627

-.037 
.294 

-.131
-.324

0.341
.913
.517
.716 
.440
.244

0.119
1.000

.353

.677 

.246
0

Unsealed scores, /£. 

f" _ 0.880 0.416 0.231 
kj -.407 .408 .817

f = 0.958 0.120 -0.260
kj .148 .570 .808

3y» = 0.95 0.25 -0.05
^ .37 .55 .68

Scale factors, s^

0.950 
* ~ 16.001

1.188
Sk ~ 1.575

1.044
Sk ~ 1.268

Estimated normalization 
factors ',7J

0.99
1.28
.96 

'' ~ 1.09 
.97

1.05

1.00
1.28
.96

*i ~ 1.09 
.97

1.05

0.99
1.27
.96

''  ~ 1.09 
.96

1.04

Reproduced data matrix (products of matrices of a'.'k aud f^'.)

0.95
.37

7" -89
IJ .63

.93

.95

0.31
.55
.40
.47
.36
.25

0.03
.68
.20
.44
.12

-.05

*> "y
2The communalities (A,.=2fl^2) are 0.99, 0.89, 0.98, 0.81, 1.00, and 0.96.

 'From reproduced data matrix.

sum of squares in the normalized data of table \AA. 
Similarly, the total sum of squares in the reproduced data 
matrix of table 11 is 94 percent of that in the normalized 
data of table \BB, and the total sum of squares in the 
reproduced data matrix of table 12 is 91 percent of that in 
the normalized data of table ICC. For those who check 
these assertions by computation, the minor differences that 
will be observed are due solely to round off. Thus, the 
eigenvalues of the cosine theta matrix indicate the overall 
degree to which principal components, varimax, and 
oblique Q-mode models will sueceed in reproducing the 
normalized forms of the original data.

The communalities of the samples, as previously 
mentioned, are computed as the sums of squares of the 
initial loadings on the m principal components or varimax 
axes (tables 10, 11,12). The sample communalities are also 
equal to the sums of squares of the corresponding rows in 
the data matrices reproduced from the initial loadings and 
unsealed scores (tables 10, 11, 12). Thus, the com­ 
munalities, like the eigenvalues of the cosine theta

matrices, indicate the degree to which the models will 
succeed in reproducing the original normalized data. In 
fact, the average sample communality is equal to the 
corresponding value of CPN.

It will be shown in a following section on goodness-of-fit 
measures that the eigenvalues and sample communalities 
can be misleading where they are used as indicators of the 
degree to which the factor model can be used to reproduce 
the original data.

SCALING THE FACTOR 
LOADINGS AND SCORES

The appropriate factors, sk , for scaling the initial factor 
loadings and scores to conform with the original data were 
computed from equation 9 of part I and are given in tables 
10, 11, and 12.The composition loadings, a/£, derived by 
dividing the initial loadings, a/£, by the corresponding 
scale factors to give a'^ and adjusting the values of a 'ik so 
that they sum to unity across k, are given in tables 14, 15,
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TABLE 12. Initial loadings, a^, unsealed scores, f^'j, scale factors, s k, estimated normalization factors, ?j, and reproduced data matrix, x fj, for 
the two-factor principal components, varimax, and oblique factor models derived after transforming each variable to proportions of the range

[The products of the matrices of a^ and f/^ are approximations of the normalized transformed data in table ICC]

Model

Principal
components 2

Varimax .....

Oblique ......

Initial loadings,

0.963
.234
.985

a 'i'k = .603
.995
.906

0.991
-.054

.898 
a'i'k = -357

.970

.979

1.021
0

.947
a ut ~ .418

1.010
1.000

"Ik

-0.249
.830
.094
.643

-.095
-.375

0.083
.861
.414
.8UO

.239
-.054

0.161
1.000

.541

.963

.341
0

Unsealed scores, /^.'

0.906 0.400 0.138
f*J ~-.374 .608 .700

0.979 0.177 -0.101 
J kj -_.Q54 .706 .706

3 f » 0.96 0.13 -0.14
' -.10 .60 .61

Scale factors, sk

s = °- 792
k 1.720

5 _ i.ooo
* 1.035

1.087
Sk "1.290

Estimated normalization 
factors, 7/

0.93
1.28
.77

'' = .88

.83
1.08

0.93
1.29
.75

'/' = 87.o/

.83
1.08

0.94
1.29

.77
'' = .88

.84
1.09

Reproduced data matrix (product of matrices of a£ and/")

Xjj =

0.97
-.10

.86

.31

.94

.96

0.23
.60
.45
.63
.34
.13

-0.04
.61
.20
.53
.07

-.14

2The communalities (h2. = 2tf^2) are 0.99, 0.74, 0.98, 0.78, 1.00, and 0.96. 

3From reproduced data matrix.

and 16. The scaled scores, f^., derived simply by
multiplying the unsealed scores, j^y, by the scale factors, 
are also given in tables 14, 15, and 16. The products of the 
matrices of a ik and/^ are approximations of the original 
data where no data transformation was made,1 or of the 
transformed data where transformations were used? Where 
a transformation was not used (table 14), the scaled scores 
are equal to the composition scores. Where the data were 
transformed to proportions of the maximum values for 
each variable (table 15), the composition scores are derived 
by multiplying the scaled scores by the corresponding 
values of xmaxj from table 1. Where the data were 
transformed to proportions of the ranges for each variable 
(table 16), the composition scores are derived by 
multiplying the scaled scores by the quantity xmaXj  
and adding xmin.

T ABLE 13. Eigen values of the matrices of coefficien ts of proportional 
similarity (cosine theta) derived from the data matrices in table 1, 
and CPN i

Data not transformed 
table \A

A

5.5986 
.2987 
.1027

CPN

0.93 
.98 

1.00

Data transformed 
to proportion of 
maximum values, 
table IB

A
4.9840

.6577 

.3583

CPN

0.83 
.94 

1.00

Data transformed 
to proportion of 
ranges, table 1C

A

4.1256 
1.3225 
.5518

CPN

0.69 
.91 

1.00

1 Compare tables \A and 14.
2 Compare tables IB and 15, and 1C and 16.

Cumulative proportions of N.

GOODNESS-OF-FIT MEASURES 
FOR THE FACTOR MODEL

Because the number of factors, m, in the models 
represented in tables 10 12 and 14 16 is less than the 
number of variables, M, less then 100 percent of the 
variability in the data will be explained by the models, as
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TABLE 14. Composition loadings^ a ik , composition scores, fkj = f'^, 
and reproduced data matrix, x^ , for the two-factor principal 
components, varimax, and oblique factor models derived without 
transforming the data

[The products of the matrices of a^ and/^y are approximations of the original data in table I A]

Model

Principal 
compon­ 
ents ....

Varimax . .

Oblique . . .

Composition loadings, a^

1.117 
.707 

1.070 
aik = .951 

1.086
1.139

0.399
.142
.369 

* ~ .295 
.379
.412

0.950
0

.840
aik = -565

.877
1.000

-0.117 
.293 

-.070 
.049 

-.086
-.139

0.601
.858
.631 
.705 
.621
.588

0.050
1.000
.160
.435
.123

0

Composition scores, /£   = /£. 

fkj =f'kj = 75 -° 13.3 H.7 
-19.1 20.4 98.6

fkj =A'= 176.5 5.7-82.2 
26.0 17.0 57.0

fkj =fkj = 88 12 0
47 15 37

Reproduced data matrix (product of matrices of a^ and /jy)

86
47

x..= 82
70
83
88

12
15
13
14
13
12

2
37
6

16
4
0

Row-sum
100
99
101
100
100
100

the eigenvalues in table 13 indicate. Consequently, the data 
matrices reproduced from the composition loadings and 
composition scores (tables 14, 15, 16) are not equal to the 
original data in table \A. Appropriate comparisons are 
made as shown in table 17.

The values of d* and dj* in table 17 are, respectively, the 
mean and standard deviation of the factor-model 
residuals, and the values of r and rj are, respectively, the 
correlations and coefficients of determination for the 
reproduced and original data. If the model explains all the 
data perfectly, all values of d * and d*j* are zero, and all 
values of ry and rj are unity. In real applications of the 
method, the values of dj are found to be small in 
comparison to the original data values, indicating that the 
models are unbiased. The coefficients of determination 
have been found to be particularly informative in that they 
show the proportions of the total variance in each variable 
explained by the model. That is

(32)

2.where s(x)j is the variance in theyth column of the original 
data matrix.

_ ^The values of ry- in table 17 show that none of the factor 
models explains much of the variance in variable 2. This 
shortcoming of the two-factor models is not evident from 
the eigenvalues given in table 13, and the indication is clear 
that the eigenvalues alone can be misleading measures of 
the mathematical adequacy of a factor model. It will be 
shown in the following section and in part III that 
diagrams factor-variance diagrams showing the pro­ 
portion of the total variance in each variable, r2, 
accounted for by factor models with up to M reference 
axes, are useful devices for selecting the number of 
end-members that the model should include.

The reason that the original data cannot be reproduced 
exactly by factor models that have m < M is related to the 
equality f, = 1/2af 'k , where t / is the quantity that was 
used to convert the fth row of the original or transformed 
data to the normalized form. Where less than the total 
variability in the data is explained by the model (that is, 
where the number of factors, m, is less than the rank of the 
matrix of cos 0), this equality does not hold true. How­ 
ever, estimates of the normalization factors will approach 
the correct values as the proportion of the variability 
explained by the model approaches one, just as the 
reproduced data matrices approach the matrix of original 
data. The estimates of the normalization factors, f}, are 
given in tables 10, 11, and 12 for comparison with the 
corresponding values of tj in table 1.

AN EXAMPLE OF THE EFFECT
OF THE CONSTANT 

ROW-SUM CONSTRAINT
Inspection of factor-variance diagrams in real 

applications shows that as the number of factors, m, in the 
model is increased, the model explains somewhat greater 
portions of the variance in all, or nearly all, of the 
compositional variables. Generally, however, as will be 
demonstrated in part III, the addition of a factor to the 
model will increase the variance accounted for in a few of 
the variables to a greater degree than it will increase the 
accountable variance in others. The particular variables 
that respond to the same factor depend, at least in part, on 
the correlations among the variables, and this raises the 
question of the effect of the constant row-sum constraint 
that was described by Chayes (1960). Chayes showed that 
if the row-sums of the data matrix are constant across all 
rows, each variable must show some negative correlation 
with at least one of the others, even if the variables have no 
genetic relationships whatsoever with each other. The 
question here is the degree to which the constant row-sum 
constraint affects the configuration of the factor-variance 
diagrams. The question cannot be fully answered at this 
time, but it is possible to show the nature of a diagram, 
derived from simulated data, wherein nearly all the 
intercolumn correlation is a result of the constraint.



Q-MODE FACTOR ANALYSIS WITH CONSTANT ROW-SUMS G19

TABLE 15. Composition loadings, aik , scaled scores, fkj , composition scores, fkj, and reproduced data matrices for the two-factor principal 
components, varimax, and oblique factor models derived after transforming each variable to proportions of the maximum value

[The products of the matrices of a,^. and fA are approximations of the transformed data in table IB. The products of the matrices of a/£ and fy are approximations of the

original data in table \A\

Model

Principal 
components .

Varimax ......

Oblique ......

Composition loadin

1.015
.950

1.002 
a* ~ .980

1.008
1.021

0.784
.259
.684

Q it ~ cni
'* .503

.730

.838

0.907
0

.733
Oft    A"\t\

K .420
.813

1.000

gs, aik

-0.015
.050

-.002 
.020

-.008
-.021

0.216
.741
.316
.497
.270
.162

0.093
1.000
.267
.580
.187

0

Scaled scores f^;

f > 0.835 0.395 0.219 
kj -6.51 6.52 13.06

f _ 1.138 0.143 -0.309
kj .233 .898 1.273

f 0.992 0.261 -0.052
kj .469 .697 .862

Composition scores, /^y

79.3 11.9 8.8 
'V ~ -618 196 522

108.1 4.3 -12.4
'*>~ 22.1 26.9 50.9

94 8-2
JkJ 45 21 34

Reproduced data matrices

(Product of matrices of a,-£ and f^j )

X.  

.94

.47

.85

.69

.89

.99

0.30
.70
.38
.52
.35
.26

0.03
.86
.19
.48
.12

-.05

(Product of matrices of a,-£ and/^-)

90
44

65
85
94

9 1
21 34
12 8
16 19
10 5

8 -2

Row-sum
100
99

101
100
100
100

The exercise was carried out using Chayes and Kruskal's 
(1966) equation 7 to search for the column variances in an 
open matrix with no intercolumn correlation that would 
yield, on adjustment of all rows to sum to 100, a closed 
matrix with column means and variances equal to those 
computed from data given by Lee and Van Loenen (1971, 
table 5) for 81 samples of a granitoid intrusive in eastern 
Nevada. (The computed means and standard deviations 
are given in table 18 of part III.) Chayes and Kruskal's 
equation 7 yielded the following variances for the open 
matrix:

Column

1

2
3
4
5
6
7
8
9

Representing

SiO2
A1203
Fe2 0 3
FeO
MgO
CaO
Na2O
K2O
H 2° +

122.417
-2.2181 

.2394 

.4104 

.3104 

.9272
-.0658 
.4306 
.0950. (33)

A 500 by 9 matrix was constructed from a population 
of normally distributed psuedorandom numbers with

column means equal to the computed means for the 
granitoid intrusive and column variances equal to these 
open variances where they are nonnegative or equal to zero 
where they are negative. After setting all negative values 
that appeared in the 500 by 9 matrix to zero, each matrix 
row was adjusted to sum to 100 by dividing through by the 
row-sum and multiplying by 100. The matrix then became 
closed in the terminology of Chayes (1960).

The column means and standard deviations of the closed 
matrix were

Column Mean Standard deviation

71.29 3.59
15.20 1.78

1.15 .48
1.19 .68
.94 .53

2.37 1.00
3.75 .44

8 3.43 .78
9 .69 .31. (34)

The matrix of closed data was then used to derive 
varimax factor models containing two to eight factors 
(only the first eight eigenvalues of the matrix of cosine
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TABLE 16.  Composition loadings, aik , scaled scores, fk - , composition scores, f kj, and reproduced data matrices for the two-factor principal 
components, varimax, and oblique factor models derived after transforming each variable to proportions of the range

[The products of the matrices of a^ and fy are approximations of the transformed data in table 1 C. The products of the matrices of a^ and /^y are approximations of the
original data in table \A\

Model

Principal 
components .

Varimax ......

Oblique ......

Composition loadings, a^

1.135
.379 
.958 

fl * ~ .670
1.046
1.236

0.925
-.069

.692 
"*- .314

.808
1.056

0.883
0

.675 
a'k ~ .340

.779
1.000

-0.135
.621 
.042 
.330

-.046
-.236

0.075
1.069
.308 
.686
.192

-.056

0.117
1.000
.325 
.660
.221

0

Scaled scores, /^y

,., 0.718 0.317 0.109 
/w ~ -.643 1.045 1.203

f , 0.979 0.177 -0.101 
/w ~-.056 .731 .731

,, 1.043 0.141 -0.152 
/^~-.129 .774 .787

Composition scores,/^:

82.3 11.6 6.1 
J*i~ 21.1 31.2 47.7

, 94.1 7.8 -1.8 
Jkj 47.5 22.7 29.8

.97 7 -4 
kj 44 24 32

Reproduced duta matrices

(Product of matrices of a^ and /^y)

0.90
-.13

Xf'j = .66
.27
.78

1.04

0.22 -d.04
.77
.35
.56
.28
.14

.79

.15

.47

.06
-.15

(Product of matrices of a^ and/^y)

91
44
80

*V ~ 62
85
97

9
24
12
18
11
7

0
32

8
20

4
-4

Row-sum
100
100
100
100
100
100

TABLE 17 . Measurements of correspondence between the observed data x^ , and the data reproduced from the two-factor models, x fj

[dj is the mean of the six values of rf,y = (*,y - Xjj); dj* is the standard deviation of the six values of rf,y. ry is the correlation coefficient between ?fy and

Xjj for the six pairs; rj is the coefficient of determination]

Transformation

None (table 14) ......
To proportions of the

maximum for each
variable (table 15) ..

To proportions of the
range for each
variable (table 16) ..

di*

Variable (/)

1 2 3

-0.6 0.7 -0.1

-.1 .1 .0

-.2 .9 -.7

dr
Variable (/)

1 2

5.5 8.4

3.2 7.9

2.6 7.7

3

2.9

4.8

5.9

rj

Variable (/)

1 2 3

0.94 0.28 0.98

.98 .41 .93

.99 .49 .90

i

0.88

.96

.98

O 2

Variable (/)

2

0.08

.17

.24

3

0.96

.86

.81

theta were greater than zero), and each of the models was 
used to reproduce an estimate of the original matrix. 
Although the models employed the varimax axes as 
reference vectors, use of the principal components axes or 
any oblique axes would have led to the same reproduced 
data and the same goodness-of-fit measures. The 
goodness-of-fit measures included the coefficients of 
determination, eight sets of rj 's, which were used to

construct the factor-variance diagram of figure 2. In 
constructing figure 2, all values of rj- for the single factor 
model were set equal to zero, because a model with only 
one factor would lead to a reproduced data matrix with no 
intracolumn variance.

The factor-variance diagram shows that, for the most 
part, the addition of a factor to the model results in an 
important increase in the accountable variance for only
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1 2345678 

NUMBER OF FACTORS

FIGURE 2. Factor-variance diagram derived from a closed matrix of 
random numbers having column means and variances similar to those 
of the data matrix for the granitoid intrusive in the southern part of 
the Snake Range, Nev.

one variable. As will become apparent in part III, this is far 
different from most of the situations encountered in 
treating real geochemical and petrographic data and 
suggests that the effect of the constant row-sum on the 
nature of the factor-variance diagrams is exceedingly 
minor. However, even if this were not the case, the factor- 
variance diagrams would still provide a correct appraisal of 
the degree to which each factor model will account for the 
total variance in the original data.

COMMON AND UNIQUE FACTORS
In general, the coefficients of determination, r?, increase 

for each variable with each increase in m, the number of 
factors in the model. This is in accord with the 
conventional concept of common factors. (See, for 
example, Harman, 1961, p. 15.) Common factors, 
representing processes or effects, are those that cause 
variability in more than one variable. However, the 
situation is not uncommon where the addition of one 
factor to the model will cause only small increases in rj for 
all but one variable but will cause a large increase in r,2 for 
that one variable. In conventional factor analysis 
terminology, this factor is said to be unique (Harman,

1967, p. 15). In some situations, more than one unique 
factor may appear.

It has been conventional in factor analysis applications 
to use common factors only, excluding those that are 
unique. If a major portion of the variation in a 
compositional variable (/' = u) can be explained only with a 
unique factor, and the unique factor is not included in the 
model, the model will, of course, fail to account for some 
increment of this variable. The increment, which can be 
ascribed to a unique process or condition, is that amount, 
//  , which must be added to the reproduced value for the 
unique variable, xiu , to give the observed value for the 
sample, xiu , as in

X. =
iu

K + I.
(35)

IU

The increment that must have been added to or subtracted 
from the fth sample by some process attributed to the 
unique factor can be estimated by rearrangement of 
equation 35 and solving for Iiu . Similarly, if two of the 
compositional variables (/' = u and j = v) respond to 
unique factors not included in the model, the increments, 
Iju and 7/v , can be estimated by rearrangement and 
simultaneous solution of equations 36a and 36b:

 "* in  

K+ /,. +/....

K + /,.. + /,

(36a)

(36b)
IU

COMPOSITIONS VERSUS COMPOSITION 
SCORES

Generally in this report, the composition scores have 
been referred to as properties of the reference axes and 
denoted by fy . However, the composition scores are 
essentially analogous to reproduced data designated by Xy 
in equation 17 of part I. That is, each sample vector 
representing a composition, x-- (l<y <M), has a set of 
composition scores, Xy , which represents the original 
composition modified to correspond with the factor 
solution. Thus, the only difference is in notation. The 
symbol, fa .- , is used for the scores of the k\h reference 
vector, and x^ is used for the scores (reproduced data) of 
the Ah sample vector.

When the number of factors in the model is less than the 
number of variables in the data matrix, most of the sample 
vectors are in different positions and are less than unit 
length after projection into the m-dimensional factor 
space. Consequently, the vectors no longer represent the 
exact compositions of the corresponding samples. That is, 
the composition scores, x fj , for the vectors are not exactly
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equal to the sample compositions, x^ . The same is true for 
the unsealed scores, x-j , and the normalized data, # ;", 
and for the scaled scores, #J , and the transformed data, 
x-j . The degree of departure between the unsealed scores 
and the normalized data is inversely related to the sample 
communality.

The composition scores for the sample vectors or for 
reference axes that represent selected end-member 
compositions may be viewed as compositions that have 
been modified to conform with a compositional system. 
The degree of modification required will tend to be large 
when the vector communality is small and may be cause for 
declaring that a particular composition is inconsistent with 
the compositional series.

IDENTIFICATION OF THE SAMPLES 
OF EXTREME COMPOSITION

After it has been determined that the sample vectors 
occur mostly within a factor space of m dimensions and 
that the factor model, therefore, should contain m end- 
members, it may be helpful to identify the m samples of 
extreme composition. By samples of extreme composition, 
we mean the m samples having compositions that can be 
combined in various proportions, none exceeding unity, to 
give approximations of the compositions of all the other 
samples.

In Q-mode analyses of data matrices with variable 
row-sums, the investigator has no means of scaling the 
initial loadings and scores and computing the composition 
values; in a search for extreme samples, his only recourse is 
to find the sample vectors on which all the initial loadings 
for the other sample vectors are less than one that is, the 
procedure suggested by Imbrie (1963). This will frequently 
serve to identify the same samples as being of extreme 
composition as would have been identified using the 
composition loadings. Examination of the initial varimax 
loadings in table 12, however, shows that this will not 
always be true. According to Imbrie's procedure, these 
loadings indicate that samples 1 and 2 are of extreme 
composition; the initial loadings of all samples with respect 
to the oblique vectors represented by them are all one or 
less:

1.000
0

.928

.409

.989

.980

0
1.000 

.391 

.896 

.182
-.157. (37)

Although samples 1 and 2 are, indeed, of extreme 
normalized composition, the fact that they are not of

extreme actual composition becomes evident when the 
composition loadings are derived. The scale factors to be 
used for deriving the composition loadings are computed 
from the unsealed scores for samples 1 and 2, taken from 
the reproduced matrix of normalized data at the bottom of 
table 12:

/,", = 0-97 = °-23 =-o.o4

=-o.io /" =o.60 /:; = o.6i. (38)22

The scale factors, from equation 9, are 0.931 and 1.290. 
Division of the respective columns of matrix 37 through by 
these values and adjustment of each row to sum to unity 
give the composition loadings as follows:

aik =

1.000
0

.767

.387

.883
1.131

0
1.000

.233

.613

.117 
-.131, (39)

These values indicate that sample 6 is beyond the range of 
compositions represented by samples 1 and 2, a fact that 
also seems apparent from the matrix of original data in 
table \A. Alternatively, returning to the initial varimax 
loading matrix in table 12 and selecting samples 6 and 2, 
rather than 1 and 2, as the end-members for the oblique 
model, the initial oblique loadings are as given in table 12, 
and the oblique composition loadings, which are all in the 
range from zero to plus one, are as given in table 16. The 
revised scale factor, s^ for the first end-member (sample 6) 
is found, using equation 9, to be 1.087 (table 12).

The products of the matrices of the composition 
loadings and composition scores for the oblique model are 
equal to the corresponding products for the principal 
components and varimax models to two significant figures 
(table 16). Thus, the oblique model is consistent with the 
other types.

The fundamental differences between the procedure 
suggested here and the method for deriving the oblique 
model given by Imbrie (1963) are that here (1) the reference 
vectors are taken as the vectors representing the samples of 
extreme composition rather than those of extreme 
normalized composition, and (2) the scale factors for 
adjusting the factor loadings are computed from the 
unsealed composition scores for the extreme samples 
rather than from their original or transformed 
compositions. The advantage of this second modification 
is that the reproduced data from the oblique model will be 
exactly the same as the data reproduced from the principal 
components or varimax models. In fact, derivation of the 
scale factors from the unsealed composition scores rather
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than from the original or transformed compositions will 
lead to the same reproduced data regardless of any choice 
of reference axes within the /w-dimensional factor space.

MODIFICATION OF A VARIMAX 
MODEL TO AN OBLIQUE MODEL

Commonly, the computed set of composition scores for 
one or more of the varimax factor axes contains one or 
more negative values. If this is viewed as undesirable for 
the purpose of the investigation and if the composition 
scores computed for the sample vectors tend to be all 
positive, it may be helpful to move the reference axes, one 
at a time, from the varimax positions by small increments 
toward the sample vectors. Computer programs can be 
easily prepared to do this, wherein, after each increment, 
the composition scores can be determined by the procedure 
give in part I, and the process terminated when all scores 
are nonnegative. The procedure leads to a model that 
approximates the conventional varimax solution, but the 
reference axes are oblique. The advantage of the oblique 
model is that the end-members for the model are more 
likely to be of realistic composition.

If the /w-dimensional model does not account for large 
proportions of the variances for each variable, however, 
the sample vectors may have composition scores that are 
not all positive, and movement of the reference axes 
toward them will not have the desired effect. The only 
recourse then is to increase m.

In general, as the reference axes are moved from the 
varimax positions towards the sample vectors, the 
composition scores of the axes move towards the range of 
zero to K, and the loadings of the sample vectors on each 
of them become increasingly variable. As the axes are 
moved past sample vectors, the composition loadings move 
outside the range of zero to one.

TESTING THE PLAUSIBILITY 
OF ALTERNATIVE END-MEMBERS

As pointed out in part I, the unsealed varimax scores 
may be used to find the vector representation of any given 
composition in the varimax space and to determine 
whether or not the composition could be that of an 
end-member in the compositional system. For purposes of 
illustration, we may suppose that the varimax model 
derived after transforming the variables to proportions of 
their maximum values (table 15) is unsatisfactory because 
one of the composition scores, f{3 , is negative and because 
the composition scores for the varimax axes, in general, are 
not sufficiently close to those believed, on the basis of 
other evidence, to have been involved in the genesis of the 
petrologic system under study. Then it may be desirable to

test the following five observed, theoretical, or 
hypothetical phases as possible end-member compositions:

60
10

5
90
25

30
80
90
10
25

10
10

5
0

50. (40)

The transformed values in this case are obtained by 
dividing the value of zfj by the corresponding values of 

from table \A, giving

Phase

1

2
3
4
5

Z U = 0.632
.105
.053
.947
.263

1.000
2.667
3.000

.333

.833

0.250
.250
.125

0
1.250. (41)

The transformed compositions are normalized to give

Phase 

I

2
3
4
5

Z 2j =
0.523

.039

.018

.943

.172

0.827
.995
.999
.332
.546

0.207
.093
.042

0
.820. (42)

Applying equation 25 of part I, the initial loadings on the 
varimax axes are computed for each phase. These are 
found to be

Phase 

1

2
3
4
5

0.546
.133
.126
.944
.018

0.716
.648
.605
.329
.999

h2 =

0.811
.438
.382
.998
.999 (43)

The values of a'£ may be converted to composition loadings 
by dividing by the corresponding scale factors for the 
varimax model (table 11) and adjusting to sum to unity. 
The composition loadings can then be postmultiplied by 
the varimax composition scores,/^ , from table 15 to give 
composition scores of the 5 phases. These are

Phase

1

2
3
4
5

x 2j = 
x 3j = 
x4j = 
x5j =

65.37
40.50
40.71
90.23
24.13

15.54
22.10
22.04

8.99
26.41

19.10 
37.40 
37.24 
0.81 

49.45. (44)

Any of the phase composition scores could be the 
composition of an end-member in the petrologic system if
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the composition loadings in the final model are subject to 
plausible geologic interpretation. However, the composi­ 
tion scores differ from the phase compositions tested to a 
degree indicated by h2 in 43. Phases 1, 2, and 3 might be 
rejected because the revised compositions are appreciably 
different from the original compositions tested. (Compare 
40 and 44.) Phases 4 and 5 may be accepted as possible 
end-members if the composition loadings of the other 
samples on the new reference axes are geologically 
plausible.

If the decision were made to describe the samples in 
terms of phases 4 and 5, one would form the following 
partition of the matrix in 43:

  _ 0.944 0.329 
°ik ~ 0.018 0.999 '

(45)

and then proceed as described in equations 28-31 of part I.

SUMMARY

The recommended steps to be followed in the 
development of a geochemical or petrologic model using 
the extended form of Q-mode factor analysis can be 
summarized as follows. It is assumed that the rows of the 
data matrix have a constant sum.

1. Use the Q-mode factor analysis computer program 
(CABFAC) of Klovan and Imbrie (1971), rotating 
2 to M (or 10 if M> 10) varimax axes. Using the 
unsealed varimax scores, output from CABFAC, 
compute all the varimax scale factors and varimax 
composition scores for each rotation.

2. Using the appropriate scale factors, adjust each matrix 
of initial varimax loadings to a matrix of varimax 
composition loadings.

3. Multiply each matrix of varimax composition loadings 
by the corresponding matrix of varimax composition 
scores to produce M-\ approximations of the 
original data, generally in units of percent or parts 
per million.

4. For each of the M  1 approximations, generate the 
measures of correspondence to the original data that 
are given in table 17.

5. Use the measures of rj to construct a factor-variance 
diagram and select the number of end-members, m, 
that the model should contain in order to account for 
as much of the variance in as many of the variables 
as possible. The principle of parsimony (Imbrie, 
1963) should be applied.

6. The next step is to select the reference axes or end- 
member compositions, and here geologic criteria

play an important part. For an /n-dimensional 
model, it is necessary to form an m by m matrix of 
the initial loadings of the reference vectors on the 
varimax axes. One or more of the reference vectors 
may be those representing samples in the original 
data matrix if those samples are thought to represent 
end-members or extremes in the petrologic system. 
They also may be the varimax axes or any other 
vectors within the varimax space as long as the com­ 
position scores for the axes or vectors approach the 
compositions of materials thought possibly to have 
been end-members in the petrologic system. The ref­ 
erence vectors may also be vectors with composition 
scores approaching the compositions of materials 
that had been tested for fit in the factor space. In 
brief, if the reference vectors are not the varimax 
axes or vectors representing the original samples, 
they are selected either by examining the composi­ 
tion scores of selected vectors or by finding vectors 
with composition scores approaching the composi­ 
tions of materials tested and found to be represent- 
able in the factor space. The techniques are given in 
parts I and II.

7. When an m by m matrix of initial loadings of the refer­ 
ence vectors on the varimax axes has been selected, 
the initial loadings on the reference axes (generally 
oblique axes) are derived using the method given 
here, which is originally from Imbrie (1963).

8. The unsealed scores of the new reference axes are com­ 
puted by multiplying the matrix of initial loadings on 
the varimax axes by the matrix of unsealed varimax 
scores. The scale factors are then computed for the 
reference axes and their composition scores are 
derived.

9. The scale factors and the initial loadings on the new 
reference axes (derived in step 7) are then used to 
compute the composition loadings on the new 
reference axes. The composition loadings, especially 
their signs, are examined for geologic plausibility. If 
they are not acceptable, return to step 6 for the selec­ 
tion of alternative reference axes.

10. As a partial check for computational errors, postmul- 
tiply the matrix of composition loadings on the 
selected reference axes by the matrix of their com­ 
position scores. Errors are present if the departure 
of the product matrix from the corresponding 
matrix derived in step 3 is beyond that which can be 
attributed to round off.

The steps outlined here were followed in application of the 
Q-mode technique to some petrologic mixing problems, as 
described in part III.
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INTRODUCTION

The extended form of Q-mode factor analysis has been 
applied to four problems in igneous petrology to illustrate 
how it may be used and the kinds of information it may 
yield. Problems in igneous petrology were chosen because 
igneous systems generally exhibit compositional variations 
that are simpler than those in sedimentary and 
metamorphic systems and because relatively precise 
analyses of igneous suites are available in abundance. The 
simpler compositional variations in igneous rocks are 
attributed to the relative simplicity of the systems in which 
they formed, increasing the likelihood that a small number 
or realistic end-members can be found that will account for 
a large part of the compositional variation.

The four sample suites chosen for examination are from
(1) a Pleistocene rhyolite-basalt complex on the Gardiner 
River, Yellowstone National Park, Wyo. (Fenner, 1938),
(2) a Jurassic granitoid intrusive in the southern part of the 
Snake Range, Nev. (Lee and Van Loenen, 1971), (3) lavas 
and pumices of the 1959 summit eruption at Kilauea, 
Hawaii (Murata and Richter, 1966), and (4) the layered 
series of the Skaergaard intrusion, Greenland (Wager and 
Brown, 1968). Analyses of the samples are from the 
references cited, but only the determinations on 
constituents that are essential to the principal rock-forming 
minerals were used in this exercise; these constituents are 
SiO2 , A1 2O3 , Fe 2O 3 , FeO, MgO, CaO, Na2O, K 2O and 
H 2 O+. The same nine constituents were used in all four 
studies so that the results would be more easily comparable 
from one to another. Subsequent studies should, perhaps, 
include such constituents as MnO, TiO2 , P2O5 , and 
Cr 2O 3 , especially if they might be diagnostic of processes 
that may have led to important amounts of variation in the 
rocks under study.

Means and standard deviations for the compositional 
data of all four sample suites are given in table 18.

Prior to the factor analyses, each data matrix was 
transformed so that each column (chemical variable) 
ranged from zero to one (that is, to proportions of the 
range).

The first step in the examination of each sample suite 
was the construction of a factor-variance diagram. The 
diagram, as shown in part II, is merely a plot of the values 
of rf, as given in table 17, versus the number of factors in

7the model. The values of ry were derived from varimax 
models but would be identical if a principal components 
model or some oblique model had been used. Factor- 
variance diagrams show immediately and concisely the

complexity of the petrologic system and indicate which 
compositional variables can be explained, and to what 
degree, by models with any given number of end-members.

TABLE 18. Means and standard deviations (in weight percent) for four 
sets of data examined by Q-mode factor analysis

[All analyses were adjusted before computation of means and standard deviations so that the nine 
constituents summed to 100]

Data sets

Constituents Rhyolite-basalt Granitoid Lavas and pumice Layered series of
complex, Yellow- intrusive in the from the 1959 Skaergaard
stone National Park, southern Snake summit eruption intrusion,
Wyo. Range, Nev. at Kilauea, Hawaii Greenland
(15 samples) 1 (81 samples) 2 (22samples) 3 (19samples) 4

Means

SiO2 ......
A1 2 03 ....
Fe 2O 3 ....
FeO ......
MgO ......
CaO ......
Na 2 O . . . . .
K 2O ......
H 2 O +

... 62.62

... 14.60

. . . 2.07

. . . 4.65

. . . 4.07

. . . 5.98

... 3.11

. . . 2.40
0.50

71.72
14.97

1.18
1.14
.94

2.32
3.69
3.38

.67

49.89
12.12
1.88

10.14
13.09
10.34
2.00

.49

.03

45.34
12.52
4.29

19.70
5.65
9.00
2.69

.31

.50

Staadard deviations

SiO 2 . . 
A1 203 
Fe 20 3 
FeO .. 
MgO.. 
CaO .. 
Na 2O . 
K 2O .. 
H 2 O +

7.69
1.15

.51
2.58
2.34
3.00

.31
1.34
.10

3.11
1.08
.50
.64
.56
.97
.32
.73
.31

1.26
1.39
.70
.70

4.12
1.23
.25
.06
.03

6.%
6.00
3.16

10.08
6.15
2.38
1.25
.15
.38

' Data from Fenner(1938, table 6), excluding samples Y.P. 904, Y.P. 1024, and Y.P. 1025. 
j? Data from Lee and Van Loenen (1971,table 5), excluding samples 71, 12, 77, 81, 85, and 87.
3 Data from Murata and Richter (1966, table 1) and Wright (1973, table 2). Same selection 

of samples as used by Wright.
4 Data from Wager and Brown (1968, table 5).

RHYOLITE-BASALT COMPLEX 

ON THE GARDINER RIVER, 

YELLOWSTONE NATIONAL PARK, WYO.

Exposures of the rhyolite-basalt complex occur in an 
area about 76 m wide and 274 m long within the canyon of 
the Gardiner River in the northern part of Yellowstone 
National Park (Fenner, 1938). The complex forms part of 
the Obsidian Creek Member of the Plateau Rhyolite of 
Pleistocene age in the third volcanic cycle of Christiansen 
and Blank (1972, p. B13). The thickness of the complex is 
difficult to determine, but it has been measured as less than
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30 m at one point. The complex consists of basalt 
impregnated with rhyolite and rhyolite containing 
abundant inclusions of basalt. The rhyolite penetrating the 
basalt forms veinlets and pseudodikes, and an 
intermingling of rhyolitic and basaltic constituents is 
evident from the groundmass and phenocrysts throughout 
most of the complex. Fenner showed that the compositions 
of most analyzed samples can be explained as mixtures of 
rhyolitic and basaltic end-members; the principal 
mathematical evidence is in the straight-line relationships 
as seen on silica-variation diagrams. According to the 
interpretation of Fenner, the complex formed by the 
extrusion of a rhyolitic lava that attacked an older basalt 
which constituted the floor and walls of the Gardiner River 
canyon. More than 68 percent of some basalt has been 
replaced by rhyolite, which entered the basalt as gaseous 
emanations from the rhyolite lava. In Fenner's 
interpretation, the gaseous emanations concept was used to 
overcome the difficulties of penetrating the basalt with 
rhyolitic liquid.

Fenner's interpretation of the origin of the complex was 
debated by Wilcox (1944), who explained the complex as 
the product of the mixing of rhyolitic and basaltic lavas 
that erupted simultaneously. Wilcox's principal evidence, 
rejected by Fenner (1944), consisted of observations of a 
chill phase in the rhyolite in contact with country rock but 
not in contact with basalt and the presence of quartz and 
orthoclase xenocrysts from the rhyolite in the basalt.

The factor analysis to be described here does not offer 
any new evidence with regard to the problem of the 
complex's origin, but it does emphasize and show some 
exceptions to the linearity of the compositional gradation 
between rhyolite and basalt. It also provides estimates of 
the relative proportions of basalt and rhyolite in each of 
the analyzed samples. The principal conclusion reached 
through the analysis is that the rhyolitic end-member, 
whether liquid rhyolite or gaseous emanations, had to have 
a composition near that of the least contaminated rhyolites 
now present in the complex. This tends to support the 
interpretation of Wilcox (1944). The exceptions to the 
linear compositional gradient from rhyolite to basalt 
involve Na2 O, H 2O +, and Fe 2O 3 . The first two of these 
are late-stage volatile constituents that appear to have 
behaved independently of other constituents, and the 
Fe2O 3 probably formed with oxidation after the mixing 
had occurred.

Fifteen of the 18 analyses given by Fenner (1938, p. 
1466) were used to derive the factor-variance diagram. 
Analyses of samples 1025, 904, and 1024 were not used 
because the source of the samples has been a matter of 
debate (Wilcox, 1944, p. 1067) and Fenner referred to 
them as varied from the standard composition. The 
factor-variance diagram is given in figure 3 and shows the 
proportion of the total variance in each constituent that

1.0
SiO2 , A1 20 3 , FeO. MgO. CaO, K2O

1 2345678 

NUMBER OF FACTORS

FIGURE 3. Factor-variance diagram for the rhyolite-basalt complex on 
the Gardiner River, Yellowstone National Park, Wyo.

can be explained by models containing one to nine factors, 
or end-members. The curves for all constituents originate 
at zero variance for one factor, inasmuch as single-factor 
models would lead to reproduced data matrices with no 
intracolumn variation. All but two of the curves rise 
sharply, indicating that two-factor models can account for 
most of the chemical variation in the complex. That is, a 
linear combination of two end-members in varying 
proportions can account for nearly all of the variation in 
six of the major oxides and 85 percent of the variation in 
Na2O. The variations in H2 O+ and Fe2O3 , however, can 
be explained equally well only if the model contains at least 
four factors. These constituents appear to represent factors 
that are largely unique; that is, each of these constituents 
appears to have behaved independently of the others, and 
each may have been controlled by some process that 
affected it alone. The process that accounted for the 15 
percent unexplained variance in Na2O and most of the 
variance in H2 O+ is interpreted as migration of late-stage 
volatile constituents in the lavas. The process controlling 
Fe2 O3 was probably later oxidation.

Because of the apparent importance of postvolcanic 
oxidation, the Fe2O3 in Fenner's analyses was recomputed 
and combined with FeO to give total iron as FeO, usually 
designated by 'FeO.' The complete set of analyses,
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TABLE 19. Analyses of a rhyolite-basalt complex on the Gardiner River, 
Yellowstone National Park, Wyo., adjusted so that eight major oxides 
sum to 100 percent, and corresponding data reproduced from the factor 
model

[Analyses from Fenner (1938)]

Fenner (1938, p. 1476), it does not vary much more than 
several of the samples accepted as taken from the rhyolite- 
basalt complex. It seems probable that some kind of 
genetic relation exists between the samples that vary from

Sample^No. Si02 M^ , FeO, MgO CaQ ^Q ^Q ^^

A. Adjusted analyses, xy (in percent)

969 51.64 16.25 10.41 7.44 10.53 2.77 0.52 0.44 
918 54.33 16.06 9.49 6.70 8.98 2.87 1.04 .53 
948 54.49 15.74 9.49 6.75 9.30 2.76 .98 .49 
985 55.07 15.72 9.40 6.27 9.25 2.77 1.13 .40 
512 55.33 15.74 9.40 6.34 8.94 2.61 1.13 .52 
925 58.66 15.31 7.96 5.35 7.28 3.13 1.58 .72 
514 59.81 14.97 7.76 5.09 7.02 2.94 1.97 .45 
909A 62.24 14.82 6.79 4.27 6.09 3.27 2.02 .51 
909B 64.94 14.11 5.78 3.45 5.15 3.36 2.66 .56 
543 65.92 14.00 5.38 3.19 4.78 3.13 2.98 .61 
467 67.30 13.94 4.99 2.55 4.22 3.22 3.26 .53 
980 68.06 14.20 4.30 1.95 4.16 3.58 3.22 .53 
505 72.23 13.13 3.26 1.02 2.22 3.37 4.16 .61 
554 75.48 12.71 1.85 .37 1.10 3.58 4.59 .31 
914 75.72 12.70 1.72 .40 .83 3.44 4.80 .37

B. Reproduced dnti (in percent)

969 51.49 16.30 10.66 7.51 10.39 2.77 0.43 0.44 
918 54.81 15.78 9.42 6.50 9.07 2.87 1.02 .53 
948 53.85 15.% 9.81 6.82 9.48 2.76 .84 .49 
985 53.94 15.% 9.80 6.81 9.47 2.77 .85 .40 
512 53.63 16.01 9.92 6.91 9.60 2.61 .79 .52 
925 59.65 14.99 7.56 4.99 7.08 3.13 1.89 .72 
514 59.30 15.15 7.82 5.20 7.36 2.94 1.79 .45 
909A 62.36 14.63 6.62 4.21 6.07 3.27 2.34 .51 
909B 65.24 14.19 5.55 3.34 4.92 3.36 2.85 .56 
543 65.51 14.19 5.50 3.30 4.87 3.13 2.88 .61 
467 67.06 13.97 4.94 2.85 4.27 3.22 3.15 .53 
980 68.15 13.73 4.45 2.45 3.75 3.58 3.37 .53 
505 71.66 13.26 3.24 1.46 2.45 3.37 3.% .61 
554 76.72 12.57 1.45 .00 .54 3.58 4.82 .31 
914 76.63 12.60 1.51 .05 .60 3.44 4.80 .37

adjusted so that the eight oxides sum to 100 for each 
sample, is given in table 19A. The recomputed 
factor-variance diagram is essentially the same as the one 
given in figure 3, except for the absence of the curve for 
Fe 2O3 . 

The eigenvalues of the cosine theta matrix for the data in 
table 19A are given in table 20 and, like the factor-variance 
diagram, show that somewhere between two and four 
factors are required in the factor model. The eigenvalues, 
however, do not indicate the constituents whose behaviors 
depart from that of the others. 

A plot of the sample vectors in the two-dimensional 
varimax space is given in figure 4 and shows that the 15 
samples used in the analysis as well as the 3 samples (1025, 
904, and 1024) that vary from the standard have 
communalities near 1. The largest departures from 1 
among the 15 samples used in the analysis are for samples 
925 and 554, both with communalities of 0.94. The largest 
departure among all 18 samples is for sample 1025 with a 
communality of 0.90. Although sample 1025 is one of the 
samples that varies from the standard, as pointed out by

they may differ in age and occurrence.

TABLE 20.  First eight eigenvalues of the cosine 
theta matrix for the rhyolite-basalt complex on the 
Gardiner River and CPN l

No. Eigenvalue CPN

11.353 0.7569 
2 3.298 .9767 
3 .258 .9939 
4 .080 .9993 
5 .007 .9997 
6 .003 .9999 
7 .001 1.0000 
8 .001 1.0000

Total......... 15.001

'Cumulative proportions of N.

Unmetamorphosed 
basalt 

Basalts metamorphosed at 
a distance from rhyolite

/ ^

o 8 *&<» ^\. 
"~   "TOOT \v Basalts modified by impregnation

INITIAL VARIMAX LOADING, a(.j' 

o 
o in <

.... | .... l 1025
r r loT^^-^^ "^ \< with rii voiitic materia|

IP/TV \
// //yf ̂

\l // / .^ >^ Basalt greatly modified 
II // / ^ /'X \ <& bv C0ntact with rhvolite

11 // / ̂ /^.^^^ \ Rhyolite containing 
// // V\/SxX'^ «\ ^ disintegrated remnants 

If // .X^'^^ ^-~~-~~~~~~~~~~~'^\ of basalt

554 rhyolites i i i i i i i i i
-0.2 0 0.5 1.0 

INITIAL VARIMAX LOADING, «,.£

FIGURE 4.  Q-mode vector diagram for the rhyolite-basalt complex on 
the Gardiner River, Yellowstone National Park, Wyo. Numbers at ends 
of vectors are the sample numbers with prefix Y.P. in table 19. Vectors 
/ and // are the varimax axes. Notes on vectors give interpretation of 
Fenner (1938). Wilcox (1944) interpreted each sample (except 904, 
1024, and 1025) as resulting from the mixture of basaltic and rhyolitic 
lavas.

Composition scores for some of the vectors represented 
in figure 4 are given in table 21. It may be seen that vectors 
outside of the positive quadrant formed by the two 
varimax axes have at least one negative score value. This is 
true for two of the samples that vary from the standard 
(1025 and 904) as well as for the two most rhyolitic samples
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TABLE 21.   Composition scores, xjj, for some vectors in figure 4 
(in percent)

Vectors SiO2 A1 2O3 'FeO' MgO CaO Na2O K2O H2O+

904 46.50 17.03 12.48 9.03 12.33 2.53 -0.44 0.54 
1025 46.54 17.02 12.46 9.02 12.31 2.53 -.43 .54 
/ 49.41 16.60 11.42 8.14 11.19 2.63 .07 .54 

1024 49.60 16.57 11.34 8.08 11.12 2.64 .10 .54 
969 51.47 16.29 10.66 7.51 10.39 2.71 .43 .54 
77 76.00 12.66 1.70 .02 .81 3.62 4.70 .49 

554 76.69 12.56 1.45 -.19 .54 3.64 4.82 .49

from the complex (914 and 554). Because the negative 
score values are small, however, they can be set to zero, 
and the scores can then be recomputed to sum to 100 
without seriously affecting the validity of subsequent 
arithmetic operations.

The linearity of the compositional gradation between 
rhyolite and basalt, as recognized by Fenner and verified 
by the factor-variance diagram of figure 3 and as 
represented in Fenner' s silica variation diagrams and in the 
vector diagram of figure 4, makes it difficult to accept any 
other origin for the complex than the mixing of two 
end-members of nearly constant composition. One of these 
end-members can be taken as basalt, represented by sample 
969 (fig. 4). This is the most basaltic sample that is 
unquestionably part of the complex. The other 
end-member could be the gaseous emanations referred to 
by Fenner, but it is not likely that such emanations would 
have a constant composition that could be represented by a 
vector with positive scores at the other end of the vector 
system, and there is little doubt that the other end-member 
could be so represented. Consequently, Wilcox's 
alternative explanation that the complex formed by the 
mixing of rhyolitic and basaltic lavas seems probable, and 
the second end-member is taken as rhyolitic lava similar in 
composition to the composition scores of the vector 
representing sample 554 (fig. 4). The composition scores 
for vector 969 and the adjusted scores for vector 554 are 
given as end-member compositions and designated by 
'969' and '554' in table 22.

TABLE 22.   Compositions of the end-members, f^j, for the factor model 
of the rhyolite- basalt complex on the Gardiner River (in percent)

End- SiO2 A1 2O3 FeO MgO CaO Na2O K2O H2O+ Total

'969' 51.47 16.29 10.66 7.51 10.39 2.71 0.43 0.54 100.00 
'554' 76.54 12.54 1.45 .00 .54 3.63 4.81 .49 100.00

The composition loadings for each of the 15 samples 
accepted as taken from the rhyolite-basalt complex are 
given in table 23, along with the increments (eq. 36a, 36b) 
of Na2O and H2 O+ that must be added by independent 
processes to account for these constituents. For example,

mixing of 0.666 parts basaltic lava and 0.334 parts rhyolitic 
lava, with the addition of 0.12 percent Na2 O and 0.20 
percent H2 O+. When the end-members of table 22 are 
mixed in these proportions and the increments of Na2 O 
and H2 O+ are added, the total mixture recomputed to 
sum to 100 is as given in table 19B. The entire matrix of 
recomputed data in table 19B is formed by postmultiplying 
the matrix of aik in table 23 by the matrix in table 22, 
adding the increments of Na2O and H2 O+ in table 23, 
and adjusting each row of the product to sum to 100.

TABLE 23.   Composition loadings, a ik , and increments of Na 2O and 
H 2 O+ for the factor model of the rhyolite-basalt complex on the 
Gardiner River

Composition loadings, 
Increments (in percent)

Sample aik 
No Y P

End-member End-member ..   _ 
,%9 , ,554 , Na20 H20 +

969 1.000 0.000 0.06 -0.10 
918 .866 .134 .04 .00 
948 .907 .094 -.04 -.04 
985 .905 .095 -.03 -.14 
512 .918 .082 -.18 -.01 
925 .666 .334 .12 .20 
514 .691 .309 -.06 -.08 
909A .562 .438 .16 -.01 
909B .446 .554 .14 .05 
543 .440 .560 -.09 .09 
467 .379 .621 -.06 .02 
980 327 .673 .26 .03 
505 .194 .806 -.08 .11 
554 .000 1.000 -.06 -.18 
914 .006 .994 -.19 -.12

The correspondence of the matrix of reproduced data in 
table 19B to the matrix of original data in table 19>1 is 
measured by the goodness-of-fit statistics given in table 24. 
Although the correspondence is good, departures from 
perfect correspondence are attributed to (1) minor errors 
present in the analytical data, (2) some small amount of 
compositional variation in the actual basaltic and rhyolitic 
end-members, and (3) other processes that may have 
caused compositional variation in the complex, such as 
contamination of the lavas by other materials and later 
alterations brought about, perhaps, by weathering.

basalt complex on the Gardiner River
[dij=xij-x..; dj*= mean of rf,y; dj* = standard deviation of djf, TJ= correlation coefficient for 

'xjj and xj;; rj= coefficient of determination]

Goodness- Variable (/)
of-fit                                              

statistic SiO2 A1 2O3 FeO MgO CaO Na2O K2O H2O +

dj*. ...... -0.08 -0.01 0.02 0.08 0.01 0.00 -0.02 0.00

d".* ...... .80 .23 .28 .33 .31 .00 .21 .00

rj . ....... 1.00 .98 1-00 .99 1.00 1.00 .99 1.00 

r} ..... 99 97 .99 .98 .99 1.00 .98 1.00
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GRANITOID INTRUSIVE IN THE 
SOUTHERN SNAKE RANGE, NEV.

An exposure of granitoid intrusive rocks in the Snake 
Creek-Williams Canyon area of the southern Snake Range 
of eastern Nevada was interpreted by Lee and Van Loenen 
(1971) to have resulted from the crystallization of a magma 
after it intruded and assimilated one or more kinds of 
sedimentary country rock. The granitoid intrusive is 
exposed over an area of 34 km 2 and varies from 
granodiorite to quartz monzonite in composition. The 
predominant minerals are quartz, microcline, plagoiclase 
(An 5 -An35 ), and biotite; hornblende and a number of 
other accessory minerals are also present. The intrusive is 
undeformed and domelike and probably has not been 
eroded to a depth of much more than 300 m. Its contacts 
with the overlying sedimentary rocks are roughly 
concordant with the bedding in the sediments at most 
localities, but exceptions that point clearly to sloping 
do occur. The eastern part of the intrusive contains 
abundant dark inclusions that Lee and Van Loenen 
referred to as xenoliths of Pioche Shale (Cambrian). They 
range in size from several centimetres in width to about 
8,000 m2 in area and are especially abundant where the 
intrusive comes into contact with the Pioche Shale. They 
tend to be ellipsoidal in shape and oriented with the long 
axis parallel to the intrusive margins. The preferred 
orientation was interpreted by Lee and Van Loenen to 
indicate that the magma flowed before solidification.

Sedimentary rocks in contact with the intrusive at the 
surface are the Osceola Argillite of Misch and Hazzard 
(1962), which is of Precambrian age and about 230 m 
thick, the Prospect Mountain Quartzite of Precambrian Z 
and Early Cambrian age, and the Pioche Shale and Pole 
Canyon Limestone of Cambrian age. The Prospect 
Mountain Quartzite is about 1,000 m thick, the Pioche 
Shale is 90 -120 m thick, and the Pole Canyon Linestone is 
about 600 m thick. The Pioche Shale contains a limestone 
unit near its base, which ranges from 1.5 to 7.5 m in 
thickness and which is an informally named unit referred 
to locally as the Wheeler linestone. None of the 
sedimentary rocks shows evidence of appreciable 
metasomatism from the intrusive, whose principal effects 
on the sediments appear to have been some deformation 
and thermal metamorphism within about 1 m of the 
contacts. The Prospect Mountain Quartzite has the 
composition of a mature shelf sediment. The Pioche Shale 
is highly variable in composition both laterally and 
stratigraphically. The Pole Canyon Limestone is a rather 
pure limestone, whereas the Wheeler limestone, a bed in 
the Pioche Shale, tends to be more argillaceous and quite 
variable from one place of occurrence to another.

Chemical data on 81 samples of intrusive rocks and 6 
samples of the dark inclusions are given in table 5 of Lee

and Van Loenen (1971), along with normative mineral 
compositions and partial modal analyses for all samples. 
However, as for the other applications, only the data on 
the nine major oxides were used for the factor analysis. Lee 
and Van Loenen have shown that the concentrations of 
most of the chemical constituents vary with the CaO 
contents of the samples. The data on the nine major 
oxides, adjusted to sum to 100 for each sample, are given 
in table 25A for the five samples with the lowest and five 
samples with the highest CaO contents.

TABLE 25. Analyses of selected samples of the granitoid intrusive in the 
Snake Range, Nev, adjusted so that nine major oxides sum to 100 
percent, and corresponding data reproduced from the factor model

[Analyses from Lee and Van Loenen (1971, table 5)]

Sample 
No. SiO>2 A12O3 Fe2O3 FeO MgO CaO Na2O K2O H2O

A. Adjusted analyses, x« (in percent)

1
2
3
4
5

80
82
83
84
86

76.33
75.91
76.66
75.44
76.22

66.20
67.89
64.12
62.84
63.84

13.48
13.15
13.01
14.05
13.79

16.65
16.19
17.21
18.17
17.49

0.33
.60
.42
.27
.38

2.03
2.23
2.52
2.54
1.93

0.23
.24
.21
.44
.44

2.03
1.32
2.32
2.54
3.05

0.17
.12
.21
.32
.10

2.23
1.42
2.21
2.13
2.13

0.47
.52
.55
.61
.64

4.16
4.25
4.33
4.37
4.57

3.72
5.18
3.73
4.11
3.93

3.76
4.05
3.42
3.76
3.86

4.42
4.08
4.34
4.21
4.33

2.23
2.02
2.72
2.34
2.34

0.84
.19
.86
.54
.16

.70

.64
1.16
1.32
.88

B. Reproduced data (in percent)

1
2
3
4
5

80
82
83
84
86

75.98
74.98
75.95
75.27
76.26

66.75
67.35
66.61
65.35
65.69

13.29
13.32
13.30
13.52
13.40

16.78
16.46
16.78
17.03
17.05

0.50
.55
.50
.60
.51

1.96
1.84
1.97
2.10
2.09

0.25
.32
.25
.37
.27

2.10
1.94
2.11
2.28
2.26

0.11
.17
.11
.23
.13

1.84
1.70
1.85
2.01
2.00

0.82
93
.82

1.03
.85

4.04
3.77
4.06
4.35
4.33

3.72
5.18
3.73
4.11
3.93

3.76
4.05
3.24
3.76
3.86

4.49
4.36
4.49
4.32
4.49

2.06
2.25
2.04
1.80
1.83

0.84
.19
.86
.54
.16

.70

.64
1.16
1.32

.88

The factor-variance diagram derived from the oxide 
data on all 81 intrusive samples is given in figure 5, and 
resembles, to some extent, that for the rhyolite-basalt 
complex on the Gardiner River. That is, a large part of the 
variance for most constituents can be accounted for by 
models with two factors, or end-members, and the 
variances in Na2O and H2O+ call for unique factors or 
for processes that controlled their variances alone. An 
important difference from the diagram for the 
rhyolite-basalt complex, however, is the generally lower 
proportions of the total variances accounted for by 
two-factor models. The reason for this may be partly due 
to the fact that the data of Lee and Van Loenen are based 
on an analytical method acknowledged to be less precise 
than conventional methods (Shapiro and Brannock, 1956, 
p. 19), but also the reason may be partly due to variation in 
the compositions of the end-members and to other geologic 
processes that caused minor compositional variations in 
the intrusive. Nevertheless, two-factor models that include 
unique processes to account for the variabilities in
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FIGURE 5. Factor-variance diagram for the granitoid intrusive, 
southern Snake Range, Nev.

and H 2O+ can explain more than 70 percent of the 
variance in each constituent.

The eigenvalues of the cosine theta matrix are given in 
table 26.

TABLE 26.  First nine eigenvalues of the cosine 
theta matrix for the granitoid intrusive in the 
southern Snake Range and CPN 1

No.

1
2
3
4
5
6
7
8
9

Eigenvalue

67.445
10.230

1.013
.708
.572
.473
.318
.177
.064

CPN

0.8327
.9590
.9715
.9802
.9873
.9931
.9970
.9992

1.0000

Total.........81.000

1 Cumulative proportions of N.

If the interpretation of Lee and Van Loenen (1971) that 
the intrusive formed by solidification of a magma after 
assimilation of sedimentary country rocks is correct, the 
major questions raised pertain to which particular 
sedimentary units were assimilated and to what degree. 
The average compositions of the five major sedimentary

units in contact with the intrusive at the surface and of the 
dark inclusions within the intrusive are given in table 27; 
the communalities of vectors representing these 
compositions in the two-factor varimax space are also 
listed. The same vectors are shown diagrammatically in 
figure 6. It is apparent that none of the sedimentary units is 
highly compatible with the compositional series formed by 
the intrusive samples in two-factor space; the composition 
scores of the vectors representing sedimentary units in 
figure 6 depart widely from the actual compositions of the 
units.

In contrast to the sedimentary units, the average 
composition of the dark inclusions within the intrusive has 
a large communality within the two-factor space (table 27) 
and is represented by a vector close to the margin of the 
range of vectors representing samples of the intrusive (fig. 
6).

The consequences of increasing the number of factors in 
the model are examined in table 28, which gives the 
commumalities of vectors representing the dark inclusions 
and of each of the sedimentary units in factor space of two 
to nine dimensions. As indicated in the table, the 
communalities of the limestone units and the Prospect 
Mountain Quartzite remain small until the model contains 
almost as many factors as there are chemical variables. 
When m = M, any combination of the nine variables can 
be perfectly represented in the factor space.

A

Average Wheeler 
limestone of 
local usage

Average dark inclusion 
'/Intrusive sample 84 
/Intrusive sample 86

0.5

-0.3

Average Osceola Argillite of 
Misch and Hazzard (1962)

Average Pioche Shale

All vectors representing 
samples of the intrusive 
occur in this regionPole Canyon 

Limestone

Average Prospect Mountain Quartzite

-0.3 0 0.5 
INITIAL VARIMAX LOADING,a"2

+ 1.0

FIGURE 6. Q-mode vector diagram for the granitoid intrusive. Vectors / 
and // are the varimax axes. See text for explanation of vectors A and 
B.
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TABLE 27. Average compositions, in percent, of some sedimentary rocks and dark inclusions from the southern Snake Range and computed
communalities, h 2

Rock

Limestone ' . . . . 

Limestone '.....

Quartzite ' . . . . 

Shale 1 ........

Stratigraphic unit

Pole Canyon 
Limestone   

Wheeler lime­ 
stone (of local 
usage).

of Misch and 
Hazzard
(1962). 

Prospect 
Mountain 
Quartzite. 

Pioche Shale ......

Si02

4.5 

31.4

62.9

91.6 

. 63.6
. 62.9

AI 203

1.1

2.9 

16.2

4.1 

15.9
16.5

Fe203

0.33 

1.6

4.3

.79

3 0

2.4

FeO

0.25

5.2 

1.9

.25 

3.3
3.0

MgO

2.0 

16.5

2.2

.23

1 0

2 3

CaO

91.0 

39.6

4.7

.01 

1.9
4.2

Na20

0.12 

.3

1.5

.13

4.0

K20

0.37 

.42

3.0

2.1 

5.3
2.1

H20 +

0.07 

.19

2.2

.38

2.7
1.0

Total

99.74 

98.11

no on

99.59

OQ CO

98 40

*2

0.218 

.436

.656

.227 

.420
QA7

1 Average composition is from Lee and Van Loenen (1971, table 9). Average compositions for the limestones were computed on a CO2-free basis.
2 Average of six analyses from Lee and Van Loenen (1971, table 5).

As shown in table 26, the average communality of the 81 
vectors representing samples of the intrusive in the 
two-factor space is 0.9590. Table 28 shows that, in the 
two-factor space, only the vector representing the average 
dark inclusion has a communality this large. Of the 
sedimentary units, only the communality for the average 
Osceola Argillite is this great, but it requires a factor space 
of 5 dimensions. The communalities for the average Pioche 
Shale are second largest.

Although the evidence presented so far points strongly 
toward a model containing the dark inclusions as one of 
the end-members, a further comparison of the suitabilities 
of the dark inclusions, the Osceola Argillite, and the 
Pioche Shale was made by use of computer simulation. 
The assumption was made that the actual mafic 
end-member in the two-dimensional compositional system 
can be represented by a vector in the position of the vector 
representing the average dark inclusion in figure 6. The 
fact that the average Osceola Argillite and the average 
Pioche Shale are not so represented is attributed, for the 
present purpose, to errors in sampling that is, the 
samples from which the averages were obtained are not 
perfectly representative of the sedimentary units. The

composition loadings of all 81 intrusive samples were then 
determined with respect to the two reference vectors that 
represent the dark inclusions and intrusive sample 1 (fig. 
6). The first matrix of simulated data, 81 by 9 in size, was 
then derived by mixing the composition of intrusive sample 
1 with randomly selected analyses of individual dark 
inclusions, given by Lee and Van Loenen (1971, table 5), in 
the proportions indicated by the composition loadings. Six 
analyses of individual inclusions were available. Two other 
simulated data matrices were formed using six analyses of 
the Osceola Argillite and nine analyses of Pioche Shale 
(Lee and Van Loenen, 1971, table 1). The factor-variance 
diagrams derived from the three simulated data matrices 
are given in figure 7. There is no doubt that the diagram 
simulating the assimilation of dark inclusions bears the 
closest resemblance to the diagram derived from the 81 
intrusive samples (fig. 5), and the results of the experiment 
are accepted as further evidence that the major part of the 
compositional variation in the intrusive can be correctly 
ascribed to the dark inclusions. Although Lee and Van 
Loenen (1971) interpreted the inclusions, apparently on the 
basis of field evidence, to be xenoliths of Pioche Shale, it is 
obvious from figure 6 that they are much closer to the

TABLE 28. Values o/h 2 for the average compositions of dark inclusions and some sedimentary rocks from the southern Snake Range in models
containing two to nine factors

[Line in body of table separates values of h? above and below the value of 0.9590 (table 26)]

Number of factors in model, m
Rock Stratigraphic unit 5

Shale ...............
Quartzite ............
Limestone ...........

Limestone ...........

and Hazzard (1962) ........
...... Pioche Shale ................
...... Prospect Mountain Quartzite . .

...... Pole Canyon Limestone. ......

0.967

.656 

.420

.227

.436 

.218

0.968

.895 

.792 

.379

.469

.237

0.969

.903 
.816 
.422

.471 

.237

0.977 

.964

.926 

.453

.471 

.292

0.985 

.989

.939 

.459

.586 

.292

0.987 

.989

.941 

.890

.669 

.293

0.992 

.996

.942 

.943

.852 

.686

.000

.000 

.000 

.000

.000 

.000
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FIGURE 7. Factor-variance diagrams derived from data obtained by mathematical mixing of sample 1 of the granitoid intrusive and randomly 
selected samples of (A) dark inclusions from the intrusive, (B) Osceola Argillite, and (Q Pioche Shale.

Osceola Argillite in bulk chemical composition. The source 
of the inclusions, therefore, appears to be unknown; 
judging from Lee and Van Loenen's (1971) petrographic 
descriptions, even an igneous origin is possible.

If the inclusions are igneous, they may represent 
segregations that were separated from the magma that 
formed the intrusive. The composition loadings (mixing 
proportions) for at least some of the samples, in this 
situation, would be negative with respect to the 
end-member representing the inclusions. All that can be 
said of the composition of the magma is that it would be 
represented by a vector somewhere within or close to the 
plane of sample vectors represented in figure 6. This 
vector, and the magma composition, could be fixed more 
closely only if some assumption were made as to which, if 
any, samples formed by incorporation of inclusions rather 
than separation of inclusions from the magma. However, 
we shall proceed with the assumption that all mixing

proportions are positive, as is necessarily the situation if 
Lee and Van Loenen (1971) are correct in their 
interpretation that the inclusions are of sedimentary origin. 

The composition scores for the vectors represented in 
figure 6 are given in table 29. It may be seen that vectors 
lying outside the positive region formed by vectors A and B 
have composition scores that are partly negative and that 
all the vectors representing samples of the intrusive occur 
in the positive quadrant formed by the varimax axes. If it is 
assumed that the compositional variation in the intrusive 
has been due mostly to the mixing of two end-members in 
positive proportions rather than to the separation of some 
constituent, one of the end-members must have been of a 
composition that can be represented by a vector between 
that of intrusive sample 1 and vector B (fig. 6). The other 
end-member must have been of a composition that could 
be represented by a vector somewhere between vector A 
and the vector representing sample 84. The composition
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TABLE 29.   Composition scores, xy, of some vectors in figure 6 (in 
percent)

Vector SiO2 A1 2O3 Fe2O3 FeO MgO CaO Na2O K2O H2O +

Average Pole 
Canyon 
Limestone. 51.19 22.02 4.24 4.99 4.56 9.07 3.94 -1.81 1.80 

Average 
Wheeler 
Limestone. 53.60 21.20 3.88 4.53 4.13 8.28 3.91 -1.20 1.67 

A...... 58.39 19.55 3.17 3.63 3.29 6.71 3.85 .00 1.41

Average dark 
inclusion.. 65.17 17.22 2.17 2.36 2.09 4.50 3.76 1.70 1.03 

Intrusive 
sample84. 65.57 17.09 2.11 2.29 2.02 4.36 3.75 1.80 1.01 

Intrusive 
sample86. 65.69 17.05 2.09 2.26 2.00 4.33 3.75 1.83 1.00 

Average 
Osceola 
Argillite .. 65.90 16.98 2.06 2.22 1.97 4.26 3.75 1.88 .99 

Average 
Pioche 
Shale..... 69.39 15.78 1.54 1.57 1.35 3.11 3.70 2.76 .80 

Intrusive 
sample?.. 76.37 13.38 .51 .26 .12 .83 3.61 4.51 .41 

Intrusive 
samplel.. 76.42 13.37 .50 .25 .11 .81 3.60 4.52 .41 

B...... 77.05 13.15 .41 .13 .00 .61 3.60 4.68 .38 
II...... 77.56 12.97 .33 .04 -.09 .44 3.59 4.81 .35 

Average 
Prospect 
Mountain 
Quartzite 86.67 9.85 -1.02 -1.67 -1.70 -2.54 3.47 7.10 -.15

loadings for the 81 intrusive samples will not vary greatly 
with any choice of possible end-members within these 
limits. However, inasmuch as the dark inclusions and 
intrusive sample 1 are known to exist, the vectors 
representing these materials were used as reference vectors. 
That is, the intrusive is interpreted as having formed by 
assimilation of material similar in composition to the 
average dark inclusion into a magma similar in 
composition to intrusive sample 1 . The composition scores 
of the reference vectors are brought together in table 30, 
where they are interpreted as end-member compositions.

TABLE 30.   Compositions of the end-members for the Snake 
Range factor model (in percent)

End-member SiO2 A1 2C>3 Fe2C>3 FeO MgO

Magma........ 76.42 13.37 0.50 0.25 0.11

Inclusions 65 - 17 17 - 22 2 - 17 2 - 36 2 -09

End-member CaO Na2O K2O H2O+ Total

Magma ....... 0.81 3.60 4.52 0.41 99.99

Inclusions..... 4.50 3.76 1.70 1.03 100.00

The composition loadings for the 81 intrusive samples with 
respect to these end-members are given in table 31, along 
with the increments (eq 36a, 36b) of Na2O and H 2O + 
that must have been added to each sample by independent 
geochemical processes in order to account for the 
variabilities in these constituents. Postmultiplication of the 
matrix of loadings in table 31 by the matrix of scores in 
table 30. addition of the increments of Na->O and H-.O +

TABLE 3 1 . Composition loadings and increments of Na 2O and H 2 O + 
for the Snake Range factor model

a . Increments 
'* (in percent)

Magma Inclu- Na2O H2O + 
sions

1 1.000 0.000 0.13 0.44 
2 .966 .034 1.64 -.24 
3 .999 .001 .14 .45 
4 .940 .060 -.07 -.09 
5 .991 .009 .32 -.25

6 .944 .056 .12 .44 
7 .9% .004 .11 -.05 
8 .998 .002 -.09 .04 
9 .928 .072 .10 .03 

10 .952 .048 -.01 -.05

11 .970 .030 -.12 -.04 
12 .909 .091 -34 -.33 
13 .881 .119 1.25 .18 
14 .892 .108 -.41 -.30 
15 .764 .237 -.03 .17

16 .806 .194 -.23 -.01 
17 .793 .207 -.23 -.11 
18 .793 .207 -.35 -.28 
19 .786 .215 -.09 .06 
20 .739 .261 .18 .01

21 .763 .237 -.22 .00 
22 .686 .314 -.05 .19 
23 .794 .206 -.22 -.08 
24 .647 .353 -.03 .22 
25 .813- .187 -.02 -.28

26 .780 .221 -.23 -.20 
27 .651 .349 .16 -.23 
28 .658 .342 -.14 .04 
29 .670 .330 -.45 .07 
30 .659 .341 -.04 -.08

31 .630 .370 -.01 .30 
32 .635 .365 .07 .18 
33 .613 .387 -.16 _.06 
34 .568 .432 -.06 _ oi 
35 .580 .420 -.03 .19

36 .637 .363 -.35 .26 
37 .558 .442 .38 .28 
38 .596 .404 .60 -.15 
39 .573 .427 -.02 .44 
40 .448 .552 -.07 .12 
41 .563 .437 -.05 _.15

a .. Increments 
' (in percent)

Sample                       
Magma Inclu- NajO H2O + 

sions

42 0.593 0.407 -0.58 0.17 
43 .497 .503 -.26 .22 
44 .593 .407 .57 -.27 
45 .540 .460 .04 -.15 
46 .672 .328 -.24 -.38

47 .5% .404 -.48 .15 
48 .532 .468 .06 .15 
49 .564 .436 -.15 .20 
50 .516 .484 .07 -.07 
51 .583 .417 -.16 -.22

52 .602 .398 -.15 .01 
53 .634 .367 -.36 .02 
54 .589 .411 -.05 -.15 
55 .654 .346 -.24 -.31 
56 .545 .455 -.03 .19

57 .602 .399 .37 .13 
58 .371 .629 -.06 -.43 
59 .604 .3% -.31 -.11 
60 .423 .577 .25 .18 
61 .256 .744 .11 -.24

62 .520 .480 -.37 .04 
63 .443 .557 .05 .15 
64 .364 .636 .02 -.37 
65 .368 .632 .64 -.20 
66 .413 .587 .15 .15

67 .505 .495 .16 .26 
68 .378 .623 .15 -.25 
69 .254 .746 .46 1.43 
70 .327 .673 -.05 -.15 
73 .251 .750 -.10 -.22

74 .237 .763 .01 -.13 
75 .243 .757 -.11 .00 
76 .170 .830 .12 -.30 
78 .129 .871 .33 .47 
79 .125 .875 .12 -.17

80 .127 .873 .01 -.25 
82 .197 .803 .32 -.27 
83 .121 .879 -32 .20 
84 .036 .964 .01 .32 
86 .046 .954 ,\\ -.12

to the product matrix and, then, adjustment of each row of 
the product matrix to sum to 100 yield the matrix of 
reproduced data partially given in table 25B. 

The correspondence between the original data and the 
reproduced data, given partially in table 25, is measured by 
the goodness-of-fit statistics given in table 32. As before, 
the lack of perfect correspondence is attributed to 
analytical errors, variation in the compositions of the 
actual end-members, and other geologic and chemical 
processes that caused minor compositional variations in 
the intrusive. It seems likely that these processes included

TABLE 32.   Goodness-of-fit statistics for the Snake Range factor model 

[dy = Xjj-Xjj; dr- mean of dy, d~* = standard deviation of rf,y; TJ = correlation coefficient 
for ^ . and Xjj; r? = coefficient of determination]

Good- Variable (/)

statistic Si°2 A1 2°3 Fe2°3 Fe° M«° CaO Na2O K2O H2O +

dj ...... 0.06 -0.02 0.00 -0.02

r   Qf\ Q1 ft^ ftft

/ /....... .93 .87 .72 .78

-0.01 0.01 0.00 -0.01 0.00 

.22 .23 .00 .28 .00 

.92 .97 1.00 .93 1.00 

.85 .94 1.00 .86 1.00
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the sloping and assimilation of sedimentary country rock 
as reported by Lee and Van Loenen (1971). The major 
variation in the intrusive, however, seems certain to be 
related to the dark inclusions of unknown source and 
origin.

LAVAS AND PUMICES
OF THE 1959 SUMMIT ERUPTION

AT KILAUEA, HAWAII

On November 14, 1959, Kilauea Volcano on the Island 
of Hawaii began a series of eruptions from Kilauea Iki near 
its summit, that consisted of 17 phases and lasted until the 
20th of December. About 3 weeks later another series of 
eruptions began on the flank of the volcano and continued 
almost without interruption for a period of more than a 
month. The volcanic activity and the detailed chemistry, 
mineralogy, and petrology of the volcanic products have 
been described by Murata and Richter (1966), Richter and 
Moore (1966), Murata (1966), Richter and Murata (1966), 
and Richter, Eaton, Murata, Ault, and Krivoy (1970). The 
volcanic products consisted principally of lavas and 
pumices of tholeiitic basalt. The less siliceous samples of 
the lavas contain phenocrysts of olivine (Fa 13) only, and 
the more siliceous samples contain clots of clinopyroxene 
and plagioclase, along with a more ferrous olivine (Fa 18 ) 
(Richter and Murata, 1966, p. D3 D4). The groundmass 
portions of the lavas are either glassy or consist of 
fine-grained plagioclase, clinopyroxene, and opaque 
minerals.

Murata and Richter (1966, p. Al) summarized their 
interpretation of the origin of the summit lavas as follows:

The hottest and most mafic lavas were produced in the 1959 summit 
phase of the eruption. The compositional variation (7 to 19 percent MgO) 
among most summit lavas is ascribable solely to fractional crystallization 
of olivine (Fa 13 ), the first silicate mineral to separate from the primitive 
magma. A direct relationship between the olivine content of summit lavas 
and the rate of lava discharge suggests that strong currents of magma 
erode beds of previously sedimented olivine crystals lying on the bottom 
of the magma chamber. The coolest, olivine-poor summit lavas contained 
some small phenocrysts of clinopyroxene and plagioclase as well as 
olivine. The compositions of these lavas indicated a slight overall 
accumulation of clinopyroxene, the second mineral to start separating 
from the cooling magma.

A mathematical study of the compositional variations in 
the lavas and pumices from the summit eruption was made 
by Wright (1973), who derived a model that accounts for 
nearly all of the variation in 11 oxide constituents by the 
mixture of two magmas and addition of chromite and 
olivine of varying composition (Fa9 4 to Fa 13.9 , or Fa 13.1 
to Fa 18.9 in weight percents as given by Wright). Wright's 
model, therefore, contained five end-members: (1) magma 
A, (2) magma B, (3) an impure chromite, (4) a magnesium- 
rich olivine (Fajo), and (5) a less magnesium-rich olivine 
(Fa30). One possible difficulty with the model is that it

calls for the addition of olivine and chromite to the parent 
magmas for all samples, rather than the separation of these 
minerals by fractional crystallization and settling as might 
be expected to occur in the upper parts of a magma 
chamber. As noted in the preceding paragraph, Murata 
and Richter (1966) regard the separation of olivine as the 
dominant process that caused compositional variation 
among the lavas. Another possible difficulty with Wright's 
model is that, although it includes a chromite end-member, 
it does not include the more prominent minerals, 
clinopyroxene and plagioclase.

The factor-variance diagram for the lavas and pumices 
of the summit eruption (fig. 8) was derived from the 
analytical data on the same samples as those used by 
Wright (1973, table 1) which, except for four samples, are 
from Murata and Richter (1966, table 1). Because of the 
apparent chemical distinctiveness of samples S -1 and 
S - 2, as noted by Wright (1973, p. 850), the data on these 
samples were not used in the derivation of the 
factor-variance diagram, but they were later tested for 
their conformity with the compositional series formed by 
the other 22 samples. Wright (1973, table 5) also withheld 
the data on these samples from the data to be explained by 
the model and used them to represent the compositions of 
his two end-member magmas. The analyses used in the 
derivation of figure 8 are given in table 33A.

34567 
NUMBER OF FACTORS

FIGURE 8. Factor-variance diagram for the lavas and pumices of the 
1959 summit eruption at Kilauea, Hawaii.
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TABLE 33. Analyses of lavas and pumices from the 1959 summit 
eruption at Kilauea, adjusted so that nine major oxides sum to 100 per­ 
cent, and corresponding data reproduced from the factor model

[Analyses from Murata and Richter (1966) and Wright (1973))

Sample SiO2 A12O3 FeaO;J FeO MgO CaO NaaO K2O H2O +

A. Adjusted analyses, x - (in percent)

S-3
S-3A
S-4
S-5
S-7

S-8
S-9
Iki  51
S-10

S-ll
S-12
S-13
S-14

S-14A
S-15
S-19
S-20

S-21
S-22
S-24
S-25
S-25A

S-3
S-3A
S-4
S-5
S-7

S-8
S-9
Iki  51
S-10

S-ll
S-12
S-13
S-14

S-14A
S-15
S-19
S-20

S-21
S-22
S-24
S-25
S-25 A

51.16
51.18
50.42
47.77
49.58

50.77
49.78
51.08
50.03

49.43
51.29
51.04
51.07

51.00
47.95
48.71
49.00

47.88
48.27
48.17
51.08
51.00

51.76
50.84
50.26
47.73
49.74

50.69
49.68
50.68
50.02

49.35
51.42
50.67
51.82

51.31
47.91
48.64
49.05

47.95
48.24
48.17
51.35
51.28

13.22
13.18
12.30
9.74

11.89

12.84
11.95
12.97
12.46

11.73
13.79
13.65
13.74

13.64
10.06
10.77
11.27

9.94
10.12
10.31
13.57
13.58

14.08
13.20
12.46
9.74

11.80

12.85
11.84
12.98
12.21

11.54
13.78
13.08
14.48

13.69
9.94

10.79
11.26

10.00
10.24
10.26
13.66
13.52

2.78
1.88
1.51
1.61
1.40

1.34
1.40
1.66
1.44

1.47
2.38
1.81
4.39

2.74
1.40
1.74
1.44

.39
1.27
1.85
2.42
2.00

B.

2.08
2.38

.72

.33

.23

.43

.61
2.15
1.74

1.83
2.24
2.54
3.63

2.36
.36
.72
.85

.40

.11

.57
2.06
1.72

9.09
9.96
10.37
10.54
10.60

10.51
10.58
10.26
10.76

10.57
9.55

10.04
7.77

9.39
10.78
10.37
10.62

10.70
10.81
10.29
9.58
9.96

9.12
9.18

11.84
19.98
14.06

10.80
13.72
9.62

11.96

14.51
8.51
9.21
8.83

8.98
19.32
17.07
15.81

19.72
18.75
18.71
9.14
9.24

11.85
11.87
10.91
8.45
9.95

10.93
10.05
11.70
10.72

9.87
11.55
11.41
11.39

11.38
8.51
9.18
9.48

8.36
8.68
8.64

11.34
11.34

2.18
2.21
2.11
1.56
1.99

2.16
2.00
2.18
2.09

1.95
2.30
2.27
2.26

2.27
1.61
1.74
1.87

1.59
1.65
1.65
2.25
2.22

0.52
.52
.48
.36
.46

.56

.48

.51

.49

.46

.57

.56

.55

.54

.37

.42

.51

.42

.41

.39

.55

.56

0.08
.02
.05
.01
.07

.09

.04

.03

.04

.01

.06

.00

.00

.05

.00

.00

.00

.00

.03

.00

.07

.09

Reproduced data (in percent)

9.84
9.64

10.28
10.82
10.76

10.50
10.42
9.86

10.27

10.24
9.71
9.49
8.43

9.62
10.79
10.40
10.24

10.74
10.98
10.58
9.88

10.19

7.20
9'.95

12.02
20.20
13.86

10.68
13.85
10.55
12.76

14.85
8.11

10.34
6.44

8.45
19.61
17.13
15.69

19.40
18.60
18.69
8.44
8.75

12.10
11.27
10.67
8.26

10.13

11.06
10.12
11.10
10.45

9.83
11.81
11.15
12.30

11.72
8.43
9.16
9.57

8.49
8.73
8.70

11.72
11.63

2.37
2.19
2.07
1.57
1.96

2.16
1.%
2.16
2.02

1.89
2.31
2.17
2.40

2.29
1.60
1.75
1.84

1.61
1.67
1.66
2.29
2.27

0.52
.52
.48
.36
.46

.56

.48

.51

.49

.46

.57

.56

.55

.54

.37

.42

.51

.42

.41

.39

.55

.56

0.06
.02
.04

-.01
.06

.08

.03

.03

.03

.01

.04

.00
-.04

.03
-.01
-.01

.00

 .01
.02

 .01
.05
.08

The factor-variance diagram in figure 8 shows that the 
compositional variation in the lavas and pumices of the 
1959 summit eruption at Kilauea can be almost completely 
accounted for by the mixing, or unmixing, of five factors, 
or end-members. This is in accord with the fact that 
Wright's model, containing five end-members, accounts 
for the observed data almost perfectly. However, the 
diagram shows further that the final two factors are 
required mainly to account for about 15 percent of the 
variance in K 2 O, 23 percent of the variance in FeO, and 29 
percent of the variance in Fe2O 3 . The FeO and Fe2O3 
contents of the lavas and pumices have undoubtedly been 
modified by oxidation after they reached the atmosphere, 
and no attempt will be made to account for this process in 
the derived model. This leaves K2O as the only other 
variable that a three-factor model would not explain

almost entirely. Therefore, a three-factor (end-member) 
model will be derived and increments of K^O will be added 
to, or subtracted from, each sample, as required (eq 35), to 
account for the additional 15 percent of the variation in 
this constituent.

The eigenvalues of the cosine theta matrix for the data in 
table 33^4 are given in table 34 and show that the 
three-factor models will account for 98.56 percent of the 
total variability, as a sum of squares, in the normalized 
data matrix. They also indicate that the average sample 
communality in the three-factor space is 0.9856.

TABLE 34. First nine eigenvalues of the cosine 
theta matrix for the lavas and pumices of the 1959 
summit eruption at Kilauea and CPN^

No.

1
2
3
4
5
6
7
8
9

Total....

Eigenvalue

16.868
4.347

.469

.209

.086

.016

.003

.002

.001

......22.001

CPN

0.7667
.9643
.9856
.9951
.9990
.9997
.9999

1.0000
1.0000

'Cumulative proportions of N.

The compositions of samples S - 1 and S - 2 (table 35^4), 
used as end-member compositions by Wright (1973), were 
tested by the method illustrated in parts I and II and were 
found to have communalities in the three-factor space of 
0.9710 and 0.9460, respectively. These values indicate that 
sample S - 1 conforms with the compositional series of the 
summit lavas almost as well as the average sample in the 
series; sample S-2 does not conform as well. The 
composition scores for the vectors representing these 
samples in the three-factor space are given in table 355 
and, except for iron and MgO, are close to the actual 
sample compositions.

TABLE ^. Compositions of two samples of spatter from the 1959 
summit eruption at Kilauea, adjusted so that nine major oxides sum to 
100 percent, and composition scores of vectors representing these 
compositions in the three-factor Kilauea model

[Analyses from Murata and Richter (1966)]

Sample No. Si02 A12O3 Fe2O3 FeO MgO CaO Na2O K2O H2O +

A. Adjusted compositions, Jt(y, iu percent

S-l
S-2

51.57 
51.70

13.11 2.64 9.15 8.34 12.32 
14.15 1.44 10.33 7.47 11.93

2.20 
2.38

0.57 
.62

0.09 
.00

B. Composition scores,?;;, in percent

S-l 
S-2

51.93 
50.94

14.30 2.06 9.82 6.52 12.28 
13.37 2.56 9.43 9.51 11.39

2.42 
2.22

.58 

.54
.09 
.02

A vector diagram for the three-factor solution is given in 
figure 9A. The diagram was constructed after restoring all 
represented vectors to unit length. Interpretation of the
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A. VARIMAX AXIS/ IS VERTICAL ENTIRE VECTOR SYSTEM HAS BEEN ROTATED 
TO THE LEFT ABOUT VARIMAX AXIS///

FIGURE 9. Q-mode vector diagrams for lavas and pumices of the 1959 summit eruption at Kilauea, Hawaii. Solid dots with Roman numerals 
represent the three varimax axes. Solid dots with sample numbers represent sample vectors. Open circles represent vectors discussed in text. Shaded 
areas indicate the portions of the vector space where vectors have all nonnegative composition scores. All points have been projected from an 
upper hemisphere in a direction perpendicular to the plane of the diagram.

diagram is similar to interpretation of the stereograms used 
in structural geology. Points in the diagram represent the 
intersections of the vectors with the upper surface of a 
sphere formed by the varimax axes (/, //, and /// in fig. 9). 
The shaded areas identify the parts of the sphere wherein 
all contained vectors have composition scores that are 
entirely nonnegative. All vectors outside of these areas 
have one or more composition score values that are 
negative. Thus, any composition represented by a vector 
far outside of these areas must be regarded as incompatible 
with the compositional series formed by the 22 lava and 
pumice samples and not possibly that of one of the three 
end-members for the factor model.

The small shaded area near the negative end of varimax 
axis // in figure 9A reflects a continuation of the larger 
shaded area at the positive end of varimax axis // on the 
lower half of the sphere. As pointed out in part I, colinear 
vectors have identical composition scores. In order to show 
the area of nonnegative composition scores in a contiguous 
form, the entire vector system was mathematically rotated 
60 degrees to the left about varimax axis ///. The rotated 
system is shown in figure 9B.

The vector configuration in figure 9B shows the 
compositional series of the lavas and pumices as it varies in 
three dimensions. The major dimension roughly parallels

the plane of varimax axes / and //, and the lesser dimension 
is across this plane. The general nature of the 
compositional variation in each direction can be seen by 
inspection of the composition scores for the three varimax 
axes given in table 36.

The more siliceous samples are represented by vectors 
near varimax axis / and the more mafic samples by vectors 
near axis //. The composition of sample S-5 (table 33), 
for example, is nearly identical to the composition scores 
for axis //(table 36). Variation across the plane of varimax 
axes /and //is less pronounced than variation along it and 
appears to be caused by relatively minor variation in 
certain constituents, especially Fe 2O 3 , FeO, and H2O+. 
(See varimax axis /// in table 26.)

Even though the varimax axes serve as an adequate 
reference system for describing the sample vector 
configuration, there is no reason to believe that their 
composition scores even approximate the compositions of 
any materials actually involved in the magmatic 
differentiation. Alternative reference vectors having more 
probable composition scores must be sought.

In view of the observation of Murata and Richter, 
(p. G34), regarding the importance of fractional 
crystallization of olivine (Fa 13) in determining the 
compositional variation in the 1959 summit lavas, olivine
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TABLE 36. Initial loadings, a^, and composition scores, x^, for selected vectors in the varimax solution for Kilauea, and compositions of some
volcanic materials

[Leaders (...) indicate no data]

Vector

j

j[

HI
A ........
B ........
C ........

Material

Initial loadings, a'/.

1.0
.0
.0
.0

. -.4146
.0

0.0 
1.0 
.0 
.9682 
.8750 
.8660

Nature

0.0 
.0 

1.0 
-.2500 
-.2500 
-.5000

Composition scores, Xji, in percent

SiO2

A.

52.80 
47.66 
49.26
47.52 
45.94 
47.31

Si02

A1203 Fe203 FeO MgO

Vectors in the varimax solution

15.30 
9.68 

12.59 
9.42 
7.65 
9.03

A1203

2.46 
1.38 
7.21 

.82 

.25 

.03

Fe203

9.39 
10.81 
5.32 

11.30 
11.94 
12.03

FeO

3.61 
20.39 
13.43 
21.01 
26.25 
21.94

Compositions,

MgO

CaO Na2O

2

13.14 ;
8.20 

10.18 
8.02 
6.48
7.75

5.60

.55 

.90 

.52 

.20

.47

in percent

CaO Na2O

K2O

0.63 
.38 
.48 
.37 
.29 
.36

K20

H2O +

0.09 
-.01 
-.36 

.02 

.01 

.07

H2O +

B. Composition of volcnnic materials

a. ........ . Average oceaniteof \ lacdonald 46.4 8.5 2.5 9.8 20.8 7.4 1.6 0.3
(1968, p. 502) 

b .......... Crystal-rich fraction separated from lava.
Contaminated with glass (Murata and 
Richter, 1966, table 6, column 1)..... 45.76 '7.59 12.20 24.50 6.59 1.22 .28

'includes Cr2O3 .

must be considered as one possible end-member in the 
three-factor model. The complete series from fayalite to 
forsterite was tested at increments of one molar percent for 
compatibility with two- to five-factor solutions; the 
resultant communalities are shown in figure 10 and 
indicate that Fa 15 is the most compatible with the 
compositional system formed by the lava and pumice 
samples as represented in a three-factor solution. The 
computed communality, however, is only 0.9834, and four 
of the nine composition score values for the representative 
vector are negative. The positions of vectors representing 
olivines that range from Fa 0 to Faioo are shown in figure 
9; all the magnesium-rich varieties lie outside of the areas 
of nonnegative composition scores. This and the fact that 
the iron-rich varieties all have low communalities (fig. 10) 
are interpreted as indications that the addition or 
separation of any pure olivine alone cannot help to account 
for compositional variations in the lavas and pumices of 
the 1959 summit eruption. Rather, magnesium-rich olivine 
may have separated from the parent magma along with 
some other phases. If the amounts of olivine and of other 
phases that were separated were highly correlated, their 
combined composition might represent, in effect, that of a 
single end-member.

The composition scores for vector B in figure 9 were 
computed because this vector lies near one extreme of the 
elongate area of nonnegative composition scores and 
because it occurs relatively close to the vector representing 
the most compatible olivine composition (Fa, 5 ). The 
composition scores for vector B are given in table 36, and 
the normative mineral composition is given in table 37. The

'0 10 20 30 40 50 60 70 80 90 100 

FAYALITE CONTENT OF OLIVINE, IN MOLAR PERCENT

FIGURE 10 Communalities of olivines in two- to five-factor varimax 
solutions for the lavas and pumices of the 1959 summit eruption at 
Kilauea, Hawaii.

composition scores are closely similar to the composition 
of crystalline material separated from one of the flank 
lavas by Murata and Richter (1966, p. A20) which
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TABLE 37. Chemical compositions, fk ., and norms of the end-members for the Kilauea factor model
(in percent)

End-member SiO2 A12O3 Fe2O3 FeO MgO CaO Na2O K2O H2O+ Total

A. Compositions, fkj

A ......
B
C ......

End- 
member

47.52 
45.94 
47.31

Or

9,
7. 
9.

Ab

.42 0.82 11.30 

.65 .25 11.94 

.03 .03 12.03

Wo

Di

En

21.01 
26.25 
21.94

Fs

8.02 
6.48
7.75

Hy

En

1.52
1.20 
1.47

Fs

0.37 0.02 
.29 .01 
.36 .07

01 
         -    Mt

Fo Fa

100.00 
100.01 
99.99

Total

B. Norms
A ......
B ......
C ......

2.19 
1.71 
2.13

12.86 
10.15 
12.44

17.79 9.20 
14.63 7.31 
16.98 8.97

6.15
5.05 
5.93

2.36 
1.68 
2.39

5.75 
3.59 
4.39

2.21 
1.19
1.77

28.33 11.98 1.19 
39.76 14.56 .36 
31.06 13.83 .04

100.01 
99.99 
99.93

contained plagioclase, clinopyroxene, olivine (Fa J4 8 ), and 
contaminations of glass. The composition of the crystalline 
material is given in table 36B. The composition of the 
normative olivine derived from the composition scores for 
vector B is Fa 2o (table 37), about the same as the most 
magnesium-rich normative olivines computed for the 
summit lavas. (See Murata and Richter, 1966, p. A5.) 
Vector B will be accepted as representing one of the three 
end-members for the factor model. The end-member is 
interpreted to have been a mixture that tended to consist of 
about one-half olivine plus pyroxene and plagioclase in 
about equal amounts.

The composition scores were computed and were 
examined for a series of vectors located along the 
lowermost margin of the shaded area of figure 9, in search 
of a vector that might represent the glomeroporphyritic 
clots of clinopyroxene and plagioclase, which are 
associated with a relatively iron-rich olivine (Fajg), as 
described by Richter and Murata (1966, p. D4). Such clots 
were also described by White (1966, p. 270, 308). It was 
found that vector C, as represented in figure 9, has 
composition scores (table 36) that yield a normative olivine 
(table 37) of Fa 24. The normative composition also shows 
plagioclase, pyroxene, and about 2 percent orthoclase. 
This vector was taken as representing the second of the 
three end-members for the factor model. The principal 
reason for selecting it was that the normative olivine 
computed from the composition scores is a few molar 
percent richer in fayalite than the normative olivine of 
vector B; thus, the first two end-members, although 
hypothetical and of unknown actual mineral composition, 
have normative compositions that are at least roughly in 
accord with the principal mineral assemblages described by 
Richter and Murata (1966). These are (1) a less fayalitic 
olivine (Fa 13) that is not in equilibrium with the enclosing 
glass (vector B), and (2) a slightly more-fayalitic olivine 
(Faj 8 ) associated with clots of plagioclase and 
clinopyroxene (vector C). The only major discrepancy 
apparent is that the first of these end-members

(represented by vector B) contains normative plagioclase 
and pyroxene as well as olivine. It is possible, however, 
that any plagioclase and pyroxene that may have actually 
separated from the magma along with the olivine either 
could be present in the fine-grained groundmasses of the 
lavas or may have settled into a hotter magma and been 
partially or wholly resorbed.

The third and final end-member for the factor model 
will represent the parent magma, and its selection will 
determine the composition loadings for each of the 24 lava 
and pumice samples that is, the proportions of each 
end-member that must be combined with or extracted from 
the others to approximate the composition of each sample. 
A positive loading will indicate the net addition of the 
end-member to the parent magma, even though it may also 
have been precipitated and separated from the parent to 
some degree. A negative loading will indicate a net loss of 
the end-member from the parent magma, even though it 
may also have been added to some lesser degree. This kind 
of interpretation is necessary in order to reconcile the 
model with the concept of a magma chamber that is both 
precipitating mineral phases at least throughout its upper 
part, losing these phases by gravitational settling, and 
receiving precipitated phases from above.

According to the petrographic descriptions of the lava 
and pumice samples that were given by Richter and Murata 
(1966, p. D3 - D4), the more fayalitic olivine (Fa 18 ) and 
clots of plagioclase and pyroxene were found only in 
samples S-l, S-3, and S-25; they were not found in 
samples S - 9 or S - 20. Therefore, a parent magma must 
be selected such that the composition loadings on vector C 
(representing the more fayalitic olivine, plagioclase, and 
pyroxene) will be positive for samples S-l, S-3, and 
S-25 and zero or negative for samples S - 9 and S - 20. 
This requires that the composition of the parent magma be 
such that it can be represented by a vector that lies in the 
parent magma plane indicated in figure 9. The plane was 
drawn through vector B so that it separates the vectors 
representing samples S-25 and S -9.
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TABLE 38. Composition loadings, a ik , and increments o/K 2O/or the Kilauea factor model

G39

Sample No. -

S  1
S  2
S  3
S  3A
S  4
S  5
S  7
S  8
S-9
Iki  51
S-IO
S  11

A

3.386
3.806
3.344
3.532
2.622
1.660
1.929
2.355
2.380
3.228
2.606
2.585

«ik

B

-2.850
-2.064
-2.701
-2.020
-1.738

-.045
-1.461
-2.107
-1.363
-1.951
-1.569
-1.087

C

0.464
-.741

.357
-.512

.116
-.616

.532

.753
-.017
-.276
-.037
-.499

Increment of
K f\

(in percent)

-0.02
.08

-.07
-.02
-.02
-.02
-.02

.03

.00
-.02

.00

.00

Sample No.

S  12
S-13
S  14
S  14A
S  15
S  19
S  20
S  21
S  22
S  24
S  25
S  25A

A

3.481
3.708
5.246
3.603
1.726
2.316
2.553
1.787
1.499
2.032
3.250
2.822

"ik

B

-2.461
-1.890
-2.465
-2.353
-.170
-.617
-.898
-.201
-.452
-.315

-2.432
-2.452

C

-0.019
-.818

-1.781
-.250
-.556
-.699
-.655
-.587
-.046
-.717

.182

.630

Increment of
K2O

(in percent)

0.00
.03

-.04
-.02
-.02

.00

.07

.03

.00
-.01
-.02

.00

Selection of the vector in the parent magma plane that 
may represent the composition of the parent magma is 
difficult, but I assumed that the lavas and pumices were 
erupted from the upper parts of the magma chamber and 
that each sample formed from parent magma that had 
undergone at least some net loss in the less fayalitic olivine. 
Thus, the parent magma vector must be to the right 
(toward the positive end of varimax axis If) of a plane 
through vector C and the vector representing sample S - 5. 
Vector A (fig. 9) was selected for this reason, but its 
composition scores (table 36) are, for the most part, 
strikingly similar to the average composition of oceanites 
as given by Macdonald (1968, p. 502). The only notable 
exceptions are the score values for Fe2O3 and FeO 
(compare vector A and material "a" in table 36), but the 
total iron values are in almost perfect accord. Macdonald 
(1968, p. 511) judged oceanite to be the most likely single 
parent for the Hawaiian lavas.

The composition loadings for all samples with respect to 
reference vectors A, B, and C in figure 9 are given in table 
38; also included are the increments of K^O that must be 
added to each sample to account for the additional 15 
percent of the variability in this constituent. Sample S - 1, 
for example, is viewed as having originated from 3.386 
parts original magma (vector A) from which 2.850 parts of 
the less fayalitic olivine as well as plagioclase and pyroxene 
(vector B) have been subtracted and 0.464 parts of the 
more fayalitic olivine plus plagioclase and pyroxene (vector 
Q have been added. The sum of these three loadings is 
unity; the source of the 3.386 parts original magma, 
presumably, was a lower part of the magma chamber 
where magma was displaced upwards by settling crystalline 
phases from above. The magnitudes of the loadings on the 
vector representing the parent magma (vector A in table 
38) indicate that the model requires a magma chamber at 
least several times the volume of the erupted materials.

Combination of the three end-members represented in 
table 37 in the proportions indicated in table 38, addition 
of the corresponding increment of K 2O, and minor 
adjustment of each analysis to sum to 100 yield the

Goodness-
of-fit 
statistic

d}.. ......

d" .......

r. ....... .
J 
r* ........
J

Variable (/)

SiO2

0.04 

.28 

.98 

.96

A1 203

0.03 

.29 

.98 

.96

Fe203

-0.01 

.39

.84 

.71

FeO

0.02 

.35 

.88

.77

MgO

-0.11 

.82 

.98

.97

CaO

0.04 

.33 

.97 

.94

Na2O

0.00 

.06 

.97 

.95

K2O

0.00 

.00 

1.000 

1.000

H2O +

0.01 

.01 

.96 

.93

reproduced data given in table 33B. Correspondence of the 
reproduced data to the original data given in table 33^4 is 
measured by the goodness-of-fit statistics given in table 39. 
The values of rj show that the model explains more than 90 
percent of the variance in all constituents except Fe 2O3 
and FeO.

TABLE 39. Goodness-of-fit statistics for the Kilauea factor model
[djj = Xjj-Xjj-, d? = mean of d,y; rfj* = standard deviation of dtf, TJ = correlation coefficient for 

%  and *(y; r? = coefficient of determination]

LAYERED SERIES OF THE
SKAERGAARD INTRUSION,

GREENLAND

The Skaergaard intrusion in eastern Greenland has been 
the object of some classical studies in igneous petrology by 
L. R. Wager and his colleagues, and it is generally 
acknowledged as having attained its compositional 
variation almost entirely by fractional crystallization of a 
basaltic magma and by redistribution of crystals through 
settling and convection. The geology, petrology, and 
chemistry of the intrusion have been described in detail by 
Wager and Brown (1968), who also tabulated selected 
analytical data. The intrusion is exposed over an area of 50 
km 2 and is interpreted to have the form of an inverted 
cone. Most of it consists of a layered series that formed by 
gravity stratification of plagioclase, pyroxene, and olivine. 
The layered series has been subdivided into zones and 
subzones on the basis of cumulus minerals, those that 
precipitated and collected at the bottom of the magma. 
The three zones of the exposed part of the layered series are 
a lower zone (LZ) containing cumulus olivine, a middle 
zone (MZ) in which cumulus magnesian olivine is absent,
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and an upper zone (UZ) containing cumulus olivine that is 
richer in iron than that in the lower zone (Wager and 
Brown, 1968, p. 30). Wager and Brown estimated that 70 
percent of the layered series is hidden beneath the part that 
is exposed (1968, p. 204).

The factor-variance diagram derived from 19 analyses 
of specimens from the layered series (table 40) is given in 
figure 11. It shows that a petrologic model with five 
end-members could account for more than 85 percent of 
the variance in each compositional variable; each addition 
of an end-member beyond five will result in only small 
increases in the accountable variance for each constituent. 
However, an extensive search for five end-members failed 
to reveal a set that could be accepted as geologically 
plausible. Similarly, a search was made for sets of six to 
eight end-members. Again, no models that seemed 

-geologically acceptable could be found. The most common 
reason for the rejection of models containing five to eight 
factors was the appearance of negative composition 
loadings on the reference vector representing the 
composition of the parent magma, which would indicate 
that some samples formed by subtraction of the parent 
magma from crystallizing minerals. The composition of 
the parent magma was taken as that of specimen 4507 of 
Wager and Brown (1968, p. 150-151 and table 4) with the 
value for HsCH- set to 0.25 percent (Wager and Brown, 
1968, p. 192), and the composition was adjusted so that the 
nine constituents summed to 100 percent.

TABLE 40. Analyses, xjj, of samples from the layered series of the 
Skaergaard intrusion, adjusted so that nine major oxides sum to 100 
percent

[Analyses from Wager and Brown (1968, table 5 and fig. 15)1

Zone of layere 
series and 
sample Nos.

UZc:
5166
1881
4139
4142
1974

UZb:
4145
4272

UZa:
5181
1907
5322
5321

MZ:
3661
3662

LZa:
2308
2307

LZb:
4077

LZc:
5109
5108
4087

d

Si02

50.83
50.00
46.55
46.02
45.63

46.68
45.58

47.62
46.07
29.39
54.65

46.82
49.43

24.43
47.33

46.84

50.98
40.44
46.18

A1 203

9.61
8.89
9.65
8.22
8.04

12.39
11.20

15.29
14.35
1.71

22.44

15.47
18.50

5.63
13.75

16.99

25.71
3.36

16.67

Fe203

3.80
4.21
5.95
4.22
4.15

2.17
4.75

2.97
3.86
8.68
2.47

3.50
2.59

15.60
5.16

1.54

1.12
2.73
2.12

*

FeO

21.57
23.71
24.48
27.77
26.12

24.01
19.30

16.48
17.13
44.60

5.38

15.24
9.75

37.60
13.70

10.55

4.10
23.39
9.43

j

MgO

0.09
1.25

.44

.26

.39

1.81
4.15

4.35
5.70

10.88
.51

6.51
5.39

9.23
6.59

9.71

1.91
26.35
11.83

CaO

9.29
7.69
9.32

10.46
10.92

9.22
10.98

8.73
8.77
4.16
8.26

9.41
10.44

6.49
10.67

11.41

11.82
2.34

10.62

Na2O

3.19
2.74
2.50
2.24
2.88

3.12
3.59

3.86
3.44

.21
5.69

2.54
3.55

.61
2.34

2.48

3.56
.49

2.09

K2O

0.63
.35
.50
.49
.33

.37
.32

.28

.34

.06

.50

.29
.14

.07

.23

.20

.36

.08

.27

H20 +

0.99
1.17
.59
.31

1.55

.23

.12

.42

.35

.32

.09

.23

.21

.33

.22

.29

.44

.83

.78

1234567 

NUMBER OF FACTORS

FIGURE 11. Factor-variance diagram for the layered series of the 
Skaergaard intrusion.

The only geologically acceptable factor model that could 
be derived contained nine end-members, equal to the 
number of compositional variables used in the analysis. 
The disadvantage of a nine-factor model is that none of the 
variance in each constituent can be attributed to either 
analytical error, to compositional variation within each 
end-member, or to other geologic and petrologic processes 
not included in the model. Although the resultant model 
accounts for the observed data exactly, the three other 
general sources of variation are almost certain to have 
exerted at least a small amount of influence on the 
variation in the data. Consequently, the exactness with 
which the observed data are reproduced is, to some degree, 
a false indication of the correctness of the model. 
Nevertheless, the model can be expected to at least 
approximate a general process by which the Skaergaard 
intrusion may have formed.

The eigenvalues of the cosine theta matrix for the data in 
table 40 are given in table 41; the corresponding values of 
CPN when plotted against the number of factors display a 
smooth curve, having no prominent breaks that might 
indicate the proper number of end-members to include in 
the model.

The concept of the general process by which the layered 
series of the Skaergaard intrusion formed is that of a 
parent magma which was modified in composition during
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TABLE 41. First nine eigenvalues of the cosine 
theta matrix for the layered series of the 
Skaergaard intrusion and CPN '

No.

1
2
3
4
5
6
7
8
9

Eigenvalue

15.240
1.935
.688
.613
.241
.131
.091
.038
.022

CPN

0.8021
.9040
.9402
.9724
.9851
.9920
.9968
.9988

1.0000

Total............18.999

'Cumulative proportions of N.

the process of solidification from the bottom of the magma 
chamber upward. Modification resulted from the 
crystallization of mineral phases and redistribution of 
these phases throughout the chamber by gravity settling 
and convection (Wager and Brown, 1968, p. 101). The 
problem of deriving a factor model, therefore, is one of 
finding mineral phases that (1) are conformable with the 
compositional series formed by the samples from the 
layered series and (2) can be represented by reference 
vectors on which the sample vectors have composition 
loadings that are subject to plausible interpretation. Above 
all, as stated previously, the loadings on the vector 
representing the composition of the parent magma must be 
all nonnegative. As pointed out in part I, however, when 
the number of factors in the model equals the number of 
compositional variables (m = M), any combination of the 
variables fits the model perfectly (all communalities are 
exactly one), and testing of mineral phases for conformity 
with the samples is impossible. Because of this, the mineral 
phases were tested within eight-factor space, even though 
the phases found to be satisfactory were then used in the 
nine-factor model. The validity of this procedure seemed 
apparent from the examination of the feldspar system.

The feldspar system of albite-anorthite-orthoclase was 
examined throughout at equal increments of 2 molar 
percent. That is, 1,326 compositions within this system 
were tested using a computer program based on the 
procedures given in parts I and II. Of these, only 54 
showed communalities equal to or greater than the average 
sample communality (0.9988) for the eight-factor solution 
(table 41). Nearly all of these 54 feldspar compositions 
included 2 molar percent orthoclase (fig. 12). This finding 
is in excellent accord with the data and the observations of 
Wager and Mitchell (1951, p. 146-147), who found, by 
analysis of three plagioclase specimens, 2 molar percent 
orthoclase in two specimens and 3 molar percent 
orthoclase in the third. They observed further that during 
fractionation of the magma the change in the K2O content 
of the plagioclase was small. Two of the end-members for

Anorthite

Albite Orthoclase

FIGURE 12.  Molar compositions in the system albite-anorthite- 
orthoclase that have communalities in excess of 0.9988 in the eight- 
factor varimax solution for the layered series of the Skaergaard 
intrusion.

the nine-factor model are taken as Ab98 Oro2 
An 98 Or 02 .

Cumulus olivines from the layered series vary in 
composition from Fa33 to almost pure fayalite (Wager and 
Brown, 1968, p. 28). Testing of the complete range of 
olivine compositions throughout the series, at increments 
of one molar percent, showed that all compositions have 
high communalities in the eight-factor space (fig. 13). 
Therefore, two additional end-members for the nine-factor 
model were taken as pure forsterite and pure fayalite.

The most abundant pyroxenes in the layered series are

1.000 r

0.999 -

0.998

0.997 -

0.996

Range of layered series olivines

10 20 30 40 50 60 70 80 90 100

Fa CONTENT OF OLIVINE, IN MOLAR PERCENT

FIGURE 13. Communalities of olivines in the eight-factor varimax 
solution for the layered series of the Skaergaard intrusion.
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augites that vary in composition between diopside 
(CaMg(SiO 3 ) 2 ) and hedenbergite (CaFe(SiO3 ) 2 ). An 
Mg-Ca-Fe diagram given by Wager and Brown (1968, p. 
39), however, shows that these ideal compositions are not 
those of the actual end-members in the augite series. The 
compositional series formed by five augite specimens for 
which analyses are available (Wager and Brown, 1968, p. 
42) was examined by means of a special Q-mode analysis 
using the same procedures described throughout this 
report. The two-factor varimax solution is represented by 
the vector diagram given in figure 14 and shows that the 
augites can be well represented as a two-component 
system that is, all vectors representing pyroxene 
specimens are of near unit length. The theoretical extreme 
end-members in the system are represented by the two 
extreme vectors with all nonnegative composition 
scores vectors A and B in figure 14. Because vector A is 
close to vectors 13 and 15 (representing augite specimens 13 
and 15 of Wager and Brown), no particular advantage is 
gained by using the theoretical composition that vector A 
represents as an end-member composition in the factor 
model. Wager and Brown (1968, p. 39) regarded specimen 
15 as the extreme in the series and suggested that the 
composition of specimen 13 had been affected by processes 
of exsolution. Consequently, the compositions of the 
end-members for the augite series, used in the nine-factor 
model for the layered series, are taken as the composition

Parent
magma' . .

Forsterije^ . .
Fayalite^ . . .
Ca-poor

pyroxene' .
Mg-augite4 . .
Fe-augite4 . . 
Iron ore'. . . .
Anorthite" . .
Albite6 .....

flcj (in percent)

SiO2

49.10
42.69
29.48

52.70
51.68
47.23 

0
43.62
68.65

A1 203

17.58
0
0

2.10
3.33

.94 
0

36.28
19.42

Fe203

1.35
0
0

1.00
1.52
0.60 

31.74
0
0

FeO

8.62
0

70.52

18.10
.48

31.83 
68.26

0
0

MgO

8.80
57.31
0

22.70
22.16

.14 
0
0
0

CaO

11.62
0
0

3.20
20.21
18.% 
0

19.76
0

Na2O

2.42
0
0

.20

.59

.26 
0
0

11.57

K20

0.26
0
0

0
.03
.03 

0
.34
.36

H2O +

0.25
0
0

0
0
0 
0
0
0

INITIAL VARIMAX LOADING, an

FIGURE 14. Q-mode vector diagram for a series of augite specimens 
from the layered series of the Skaergaard intrusion. Vectors A and B 
represent, respectively, the theoretical Fe- and Mg-augite extremes. 
Numbers on other vectors refer to specimen numbers of Wager and 
Brown (1968, p. 42).

of augite specimen 15 adjusted to sum to 100 and as the 
composition scores for vector B in figure 14. The 
end-members are referred to, respectively, as Fe-augite and 
Mg-augite, and their compositions are given in table 42.

Calcium-poor pyroxenes are far less abundant than 
augites in the layered series (Wager and Brown, 1968, table 
5) but are present there as well as in the border phases of 
the intrusion (Wager and Brown, 1968, p. 42). Analyses of 
two Ca-poor pyroxenes, a bronzite from the border phase 
and an inverted pigeonite from the middle zone of the 
layered series, are given by Wager and Brown (1968, p. 42), 
and the average, adjusted to sum to 100, is taken as the 
composition of another end-member for the nine-factor 
model (table 42).

TABLE 42.   Compositions, fjq , of end-members for the Skaergaard 
factor model

1 Sample 4507 of Wagner and Brown (1968, table 7) with H2O+ set to 0.25 percent, adjusted 
sum to 100.

2 Theoretical.
3 Average of two analyses from Wager and Brown (1968, table 1), adjusted to sum to 100.
4 The composition of the Mg-augite is the theoretical extreme in the series of five analyses given 

by Wager and Brown (1968, table 1). The composition of the Fe-augite is taken as the analysis of 
augite specimen 15 from Wager and Brown (1968, table 1), adjusted to sum to 100.

' Theoretical mixture of iron ores. (See text.)
6 Anorthite is theoretical AnggOr^- Albite is theoretical AttygO^-

The reference vectors chosen thus far for the nine-factor 
model represent the parent magma, two extremes in the 
plagioclase series, two extremes in the olivine series, two 
extremes in the augite system, and a Ca-poor pyroxene. It 
seems that the remaining reference vector should represent 
the composition of the iron-ore minerals, principally 
ilmenite and magnetite, which constitute the only other 
cumulus mineral group of quantitative importance 
throughout the layered series. Although ilmenite is thought 
to have formed a cumulus mineral phase slightly before 
magnetite in the differentiation process, ilmenite and 
titaniferous magnetite tend to be found together (Wager 
and Brown, 1968, p. 49). It is appropriate, therefore, to 
represent these minerals by a single reference axis in the 
factor model. The composition of magnetite was taken as 
69 percent Fe2O3 and 31 percent FeO; because the data for 
TiO2 were not used in this exercise, the composition of 
ilmenite in terms of the constituents that were used is 100 
percent FeO. Neither of these compositions has a high 
communality in the eight-factor space for the layered series 
rocks, but, as shown in figure 15, a mixture of 46 percent 
magnetite and 54 percent FeO has a communality of
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1.000

0.950

0.900

46-percent Fe 3O 4

0 10 20 30 40 50 60 70 

FeO, IN PERCENT

80 90 100

100 90 80 70 60 50 40 30 

Fe 3O4 , IN PERCENT

20 10

FIGURE 15. Communalities of theoretical mixtures of ferrous iron oxide 
and magnetite in the eight-factor varimax solution for the layered 
series of the Skaergaard intrusion.

almost precisely 1 (h2 > 0.9999). Using the ideal composi­ 
tions of magnetite and ilmenite, this mixture is that present 
in a cluster consisting of 29 percent magnetite and 71 
percent ilmenite, having a chemical composition of about 
32 percent Fe2 O3 and 68 percent FeO. This chemical 
composition is accepted as that of the final end-member 
for the Skaergaard model (table 42).

Composition loadings for the 19 samples from the 
layered series with respect to the nine selected reference 
vectors are given in table 43. The loadings on the vector 
representing the parent magma range from about 0.4 to 
6.2, indicating that the model calls for some samples to 
have formed with a net addition of the constituents of the 
cumulus minerals to the parent magma (an < 1.0) and 
others to have formed with a net loss of these constituents 
(an > 1.0). The greatest losses of the constituents of the 
cumulus minerals, according to the model, were from the 
uppermost parts of the upper zone (UZc) and from the 
lowermost parts of the lower zone (LZa). As the cumulus 
minerals precipitated and either settled or were swept away 
by convection currents, they were replaced by influxes of 
magma from elsewhere in the magma chamber. Some of 
this additional magma, according to the model, must have 
been derived from outside of the volume occupied by the 
exposed layered series, because the exposed layered series 
as a whole requires about 1.454 parts parent magma (table 
43C). This value is the weighted average of the 
composition loadings on the parent material reference 
vector, using the volume weights for the zones and 
subzones of the layered series given by Chayes (1970, p. 
4). The most likely source of the additional parent material 
is the part of the magma chamber now occupied by the 
hidden part of the layered series.

The composition loadings of the 19 layered series 
samples on the vectors representing cumulus minerals 
(table 43) should not be interpreted as gains and losses due 
to precipitation of the end-members in the following 
two-component compositional series: forsterite-fayalite,

TABLE 43.   Composition loadings, 
model, average loadings for each 
weighted averages for all zones

aik. for the 
zone of the

Skaergaard factor 
layered series, and

Zone of 
layered series1 Forsterite Ca-poor Fe-augite Anorthite 
and sample Parent pyroxene 
Nos magma Fayalite Mg-augite Iron ore

A. Composition loadings.

UZc:
5166
1881
4139
4142
1974

UZb:
4145
4272

UZa:
5181
1907
5322
5321

MZ:
3661
3662

LZc:
2308
2307

LZb:
4077

LZa:
5109
5108
4087

UZc ....
UZb. . . .
UZa....
MZ ....
LZ .....

3.975
4.686
2.344
1.257
6.204

.933

.469

1.669
1.400
1.280
.378

.907

.825

1.322
.886

1.171

1.772
3.301
3.123

3.693
.701

1.182
.866

1.929

3.171
-1.132

3.026
4.020

-2.814

1.992
1.741

-.385
.898

-.480
2.507

.683
-1.871

 .931
.172

-.878

-.653
-1.946
-1.457

1.255
1.867

.635
-.594
-.949

-3.922
.577

-3.630
-4.442

2.459

-2.035
-1.794

.404
 .946

.845
-2.787

-.771
1.957

1.017
-.400

1.043

.520
2.341
1.459

B.

 1.792
-1.915

-.621
.593

-.997

-1.029
.198

 .775
-1.048

.017

-.626
-.640

-.100
-.392

.084
-.624

-.096
.485

.119

.132

.088

.041

.466

.092

-8.776
.931

-7.995
-9.876

4.851

-4.830
 3.873

.637
-2.234

1.146
-6.009

-J.746
4.286

2.193
-.639

2.168

1.036
4.467
2.990

aik

8.484
-1.747

7.999
10.276

-5.840

5.043
4.332

-.803
2.212

-1.280
6.144

1.753
 4.396

-2.325
.714

-2.238

-1.402
-5.283
-3.567

0.244
-.085

.345
.392

-.256

.185

.254

.010

.140

.185

.253

.125
-.092

.370

.138

-.066

-.065
-.184
-.145

-0.864
-1.674
 .280

.201
-2.457

.122

.190

 .405
-.153
-.500

.548

.063
-.201

-.480
 .034

-.196

-.166
-1.398
-.950

Albite

-0.283
-.754
-.035

.219
-1.164

.218

.323

-.028
.075

-.281
.590

.081

.007

-.284
.031

-.092

-.084
 .764
 .545

Zone averages

-0.527
-.633
 .258

.195

.156

-4.173
-4.352
 1.615

1.270
2.036

3.834
4.687
1.568

-1.322
-2.350

0.128
.220
.147
.017
.008

-1.015
.156

 .127
 .069
 .537

-0.404
.270
J389
.044

 .290

C. Weighted averages for all zones 2

1.454 -0.266 0.248 0.014 0.425 -0.552 0.051  0.288 -0.085

1 From Wager and Brown (1968, p. 15 and table 5).
2 Weights used for UZc, UZb, UZa, MZ, and LZ were, respectively, 6.0, 11.4, 6.2, 37.1, and 

39.3 (Chayes, 1970, p 4).

Mg-augite - Fe-augite, and anorthite-albite. Rather, the 
loadings indicate the net effects of the precipitation of 
species of varying composition within each of these series. 
For example, the first sample (No. 5166) in table 43 formed 
from the parent magma partly by the precipitation of 
olivine of varying composition and partly by the 
concentration of the constituents of olivine in the residual 
magma; and so the net effect was the gain of 3.171 parts 
forsterite and the loss of 3.922 parts fayalite. This amounts 
to a net loss of 0.751 parts olivine, even though the 
constituents of olivine were both gained and lost during the 
course of differentiation. A detailed interpretation of the 
chemical and mineralogical changes in the parent magma 
that produced sample 5166 is given in table 44. It shows 
that the precipitation of olivine led to a net loss of FeO and 
net gains in MgO and Si(>2, even though there are no 
means of specifying the compositions of individual olivine 
crystals that were added to and lost from the parent 
magma. Similarly, the precipitation of compositions in the
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TABLE 44. Interpretation of chemical and mineralogical modifications of the parent magma required 
to produce sample 5166 from the Skaergaard intrusion

Minerals and
mineral SiO2 
groups

FeO MgO CaO Na2O K2O H2O Total

A. 3.9752 parts of parent magma

1.9519 0.6988 0.0537 0.3427 0.3498 0.4619 0.0962 0.0103 0.0099 3.9752

B. Gains aad losses by precipitation of minerals and mineral groaps

Olivine . .
Ca-poor

pyrox­
ene . . .

Augite .
Iron

ore . . .
Plagio-

clase . .
Total . . .

.. 0

.   .
  .

. 0

_
. -1.

.1975

,5420
5277

5716
4438

0

-.0216
-.2125

0

-.1686
-.6027

0

-.0103
-.0828

.0775

0
-.0156

-2.7659

-.1862
2.6586

.1666

0
-.1269

1.8174

-.2335
-1.9330

0

0
-.3491

0

-.0329
-.1652

0

-.1708
-.3689

0

-.0021
-.0295

0

-.0328
-.0644

0

0
-.0001

0

-.0040
-.0041

0

0
0

0

0
0

-0.7510

-1 .0286
-.2922

.2441

-1.1478
-2.9755

C. Net results as percentages

50.81 9.61 3.81 21.58 0.07 9.30 3.18 0.62 0.99 99.97

1 Compare with analyses of sample 5166 given in table 40. Subtract total in B from corresponding value in A and multiply by 100.

augite series caused a net loss of all chemical constituents 
except FeO. The net gain in FeO (table 44) may have 
resulted from the introduction of Fe-rich augite or its 
dissolved constituents into that part of the magma 
chamber at a late stage in the differentiation process, 
whereas augites that formed earlier and settled out were 
Mg-rich. The composition loadings for anorthite and albite 
show that the parent magma underwent a net loss of 
plagioclase in the formation of sample 5166, even though it 
is possible that some plagioclase, of undetermined 
composition and in either crystalline or dissolved form, 
was introduced into that part of the magma chamber 
sometime during the differentiation process. In fact, 
Wager and Brown (1968, table 5) reported the presence of 
cumulus plagioclase in this sample. The net result of the 
introduction and loss of crystalline or dissolved plagioclase 
from that part of the magma, however, is interpreted, on 
the basis of table 44, to have been a loss in all the 
constituents of plagioclase.

Interpretation of the positive composition loadings of 
table 43 as proportions of mineral phases in dissolved as 
well as crystalline form is important and necessary. For 
example, the composition loadings for sample 5166 on the 
iron-ore end-member is + 0.244, indicating that more than 
24 percent iron ore (comprised of 32 percent Fe2O3and 68 
percent FeO, table 42) has been added to this sample by the 
differentiation process. However, Wager and Brown 
(1968, table 5) reported only 6 percent iron ore in sample 
5166. If the iron ore had been added entirely in crystalline 
form, it is unlikely that it could have been resorbed into the 
magma, and it should be present in the rock. If added at 
least partly in dissolved form, however, it could provide 
the iron needed for the formation and precipitation of

olivine and pyroxene (tables 43, 44). Thus, some of the 
positive composition loadings on mineral end-members are 
interpreted to reflect residual concentration of the 
constituents of these minerals in the magma. Residual 
concentration of iron in the Skaergaard magma has been 
firmly established (Wager and Brown, 1968, p. 242).

Several features of the model presented in tables 42 and 
43 support its creditability, and others must be 
rationalized. Notable among the latter are that (1) the 
model does not account for the effects of other cumulus 
minerals present in minor amounts, such as apatite, and (2) 
it leaves none of the variance in each constituent to be 
attributed to the effects of analytical error, to minor 
petrologic processes, or to compositional variation within 
each of the end-member mineral phases. Regarding 
variation in the end-member mineral phases, the 
compositions of the Ca-poor pyroxenes in the Skaergaard 
intrusion, for example, are not perfectly represented by the 
end-member composition given in table 42, and the olivine 
compositions are not perfectly explained as mixtures of 
ideal forsterite and fayalite. At best, the model can be 
accepted as only an approximation of the effects of 
magmatic differentiation on each sample, in spite of the 
fact that it accounts for the observed data exactly.

On the other hand, the eight end-member compositions 
representing the average compositions of Ca-poor 
pyroxene, the iron-ore minerals, and the end-members in 
the olivine, augite, and plagioclase series are at least good 
approximations of the compositions certain to have been 
involved in the differentiation of the layered series. The 
least certain end-member composition is that of the parent 
magma, which was taken as interpreted by Wager and 
Brown (1968). The model, therefore, may be viewed as a
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test of their interpretation, and the test shows no evidence 
that they were wrong.

If the model is accepted as approximately correct, the 
net gains and losses of the constituents of each mineral in 
the parent magma can be shown for each sample. In figure 
16 the gains and losses are plotted against the respective 
structural elevations of each sample in the layered series. 
The plots show that the constituents of olivine and 
Ca-poor pyroxene were largely lost from the parent magma 
in the upper parts of the magma chamber and that they 
were both lost from and added to the parent magma in the 
lower parts. Addition is interpreted to have been by crystal 
settling from upper parts of the chamber and by the 
transfer of crystalline material and magma with 
convection. Augite and plagioclase were mostly lost from 
the parent magma in the lower parts of the magma 
chamber, but they were both lost from and added to the 
upper parts. Inspection of the relative loadings on the 
Mg-augite and Fe-augite end-members (table 43) indicates 
that the added augites tended to be rich in iron. Similarly, 
the added plagioclases tended to be richer in sodium than 
in calcium. The addition of augite and plagiolcase, 
therefore, is interpreted to have been by concentration in

residual magma and transfer of the magma either by 
convection or by upward displacement due to settling 
crystals. Iron-ore minerals tended to be lost from the lower 
parts of the lower zone (LZa and LZb), which accords with 
Wager and Brown's (1968, p. 71) observation that 
magnetite and ilmenite are not present there as cumulus 
minerals. Above these zones, however, the constituents of 
these minerals were concentrated in the residual magma or 
were added as cumulus minerals perhaps both.

The concentration of iron-ore minerals in the residual 
magma in the upper parts of the magma chamber is 
significant with respect to the volume of the hidden part of 
the layered series. The requirement that the exposed part of 
the series formed from 1.454 parts parent magma implies 
that the hidden part forms at least 31 percent of the series 
as a whole. However if the model is correct with respect to 
iron-ore minerals, the part of the magma chamber now 
occupied by the exposed layered series received an addition 
of about 0.051 parts (table 43Q, or 5 percent, iron-ore 
minerals, either as crystalline magnetite and ilmenite or as 
dissolved phases. Judging from the communalities of the 
total range of mixtures (fig. 15), the iron-ore minerals 
would contain 46 percent magnetite, indicating the
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FIGURE 16. Interpretation of the net gains and losses of minerals in the parent magma plotted against structural height of sample in the layered 
series of the Skaergaard intrusion. The horizontal scale, representing gains and losses, is in units of proportions. The amounts of parent magma 
that contributed to the formation of each sample are given in table 43.
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addition of 2.3 percent magnetite to the exposed layered 
series, presumably from the part of the layered series that 
is hidden. If the original magma of the hidden layered 
series had the composition assumed for the parent magma 
(table 42), it contained a maximum of 2 percent magnetite 
and would have had to more than equal the exposed 
layered series in volume in order to have supplied the 
constituents of magnetite in the amounts required. If only 
one-half of the dissolved magnetite in the hidden layered 
series were transferred to the exposed part by residual 
concentration or by any other mechanism, the hidden 
layered series would necessarily have composed 70 percent 
of the total intrusion in order to supply the required 
amount. The estimate of 70 percent, however, is given only 
to illustrate how such estimates will vary with the assumed 
amounts of iron depletion in the hidden zone; the only 
absolute requirement of the model is that the hidden 
layered series forms at least one-half of the layered series as 
a whole. As pointed out before, Wager and Brown gave an 
estimate of 70 percent; Chayes (1970) suggested that 81 
percent is more correct.

SUMMARY

The four series of igneous rock analyses to which the 
extended method of Q-mode factor analysis has been 
applied vary a great deal in complexity. The series of 
analyses from the layered series of the Skaergaard 
intrusion is complex, not because the analyses for each 
constituent exhibit large variation among the samples 
(table 18) but because the compositional variation within 
the intrusion was caused by a complex interaction of 
many processes specifically, the precipitation of minerals 
of changing composition from a melt that also changed in 
composition as the processes continued. In contrast, 
although similar processes must have occurred to some 
extent in the formation of the rhyolite-basalt complex on 
the Gardiner River, the major part of the compositional 
variation in the complex was caused by only two 
processes the eruption of a rhyolite lava and the 
incorporation of basalt or basaltic lava. The 
factor-variance diagrams given in figures 3 and 11 clearly 
and immediately reflect this difference in origin. 
Moreover, the diagrams for the granitoid intrusive in 
eastern Nevada (fig. 5) and for the lavas and pumices of 
the 1959 summit eruption at Kilauea (fig. 8) reflect origins 
of intermediate complexity that are in at least fair accord 
with those arrived at after exhaustive field and laboratory 
study by other workers. After the samples and the data 
have been selected, the factor-variance diagrams are 
derived by a straightforward procedure with complete 
objectivity, and if the samples are representative and the 
analyses reasonably correct, they can be regarded as 
fundamental descriptors of the rock bodies or series from 
which the samples came.

The Q-mode factor analysis procedures that follow 
derivation of the factor-variance diagram may or may not 
contain some element of subjectivity. If the purpose of the 
factor analysis is only to condense geochemical or 
petrologic data into fewer variables without significant loss 
of information, then the choice of end-members is 
unimportant, and the varimax axes will serve as well as any 
other possible reference vectors. All that is required is to 
present the composition loadings for each sample with 
respect to each varimax axis in tables or on maps or to 
use these loadings to classify the samples into 
compositional groups. As a classification technique, the 
Q-mode method has an important advantage over common 
cluster methods and many petrographic diagrams that have 
been derived in that the classification scheme is not forced 
into a two-dimensional framework. Where the varimax 
axes are used as reference vectors for the compositional 
system, subjectivity enters the procedure only if and when 
an interpretation is made of what the varimax axes may 
represent. If no such interpretation is made, the varimax 
axes serve only as useful and conventional reference axes. 
Of course, the choice of the number of varimax reference 
axes could be partly subjective if, as can be expected to 
happen on some occasions, the factor-variance diagram 
does not clearly indicate how many there should be.

In the derivation of petrologic or geochemical models, it 
will usually be necessary to reject the principal components 
and varimax axes as representative of the compositions of 
the actual end-members in the compositional system. If the 
proper number of end-members in the system is clear from 
the factor-variance diagram, the search for more realistic 
end-members can be made either by the examination of the 
composition scores of selected vectors or by finding the 
vector representations of compositions of interest in the 
problem. If the proper number of end-members is not 
clear, the same procedures may have to be followed using 
factor spaces of several different dimensions. It will always 
be possible to derive a number of models that are 
mathematically satisfactory. The ultimate test of the model 
is its geologic plausibility, which must be inferred from the 
compositions of the selected end-members and the 
composition loadings of the samples with respect to them. 
The best reason for developing a factor model may be to 
subject a model developed by other means to rigorous 
quantitative examination.
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