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A STOCHASTIC MODEL FOR PREDICTING THE PROBABILITY 

DISTRIBUTION OF THE DISSOLVED-OXYGEN DEFICIT IN STREAMS 

By I. I. EsEN and R. E. RATHBUN 

ABSTRACT 

A random walk model was developed for predicting the 
distribution of the biochemical-oxygen-demand for points 
downstream from a waste source for a stream system in 
which the deoxygenation coefficient is a normally distributed 
random variable. A Monte Carlo technique for simulating a 
random walk process was used for estimating the distribu­
tion of the dissolved-oxygen deficit at downstream points in a 
stream in which both the deoxygenation and reaeration co­
efficients are normally distributed random variable:s. Equa­
tions for approximating the mean oxygen deficit and the vari­
ance of the oxygen deficit were developed by expanding the 
basic equation of the stochastic model in a Taylor series. 

The random walk model gave a lognormal distribution 
function for the biochemical-oxygen-demand. The frequency 
distributions of the oxygen deficit predicted by the stochastic 
model became flatter and skewed to the right as time of travel 
increased. The critical time of travel estimated from the 
stochastic model was always larger than the critical time of 
travel computed from the deterministic model; however, the 
percentage difference decreased as the ratio of the reaeration 
and deoxygenation coefficients decreased. 

The variance of the oxygen deficit at the critical time of 
travel was largest for small ratios of the reaeration and de­
oxygenation coefficients and smallest for the lall'ge ratios. The 
variance showed the greatest dependence on the ratio at large 
values of the ratio and the smallest dependence at small 
values of the ratio. 

The variances of the oxygen deficit computed from the 
Taylor series approximation of the stochastic model were 
comparable to the variances obtained from the stochastic 
model for small times of travel; as the time of travel in­
creased, the Taylor series approximation underestimated the 
variance. For computations at the critical time of travel, the 
variance estimated from the Taylor series approximation was 
less than that of the variance of the stochastic model over the 
entire range of conditions considered. 

The ability to predict the variances of the biochemical­
oxygen-demand and the dissolved-oxygen deficit at points 
downstream from a waste source is extremely important, in 
view of the ever-increasing concern with the maintaining of 
water-quality standards. The stochastic model of this report is 
a valuable tool for predicting variances ; however, further de­
velopment and refinements of this and other models is still 
needed. 

INTRODUCTION 

The pollution of our streams and rivers caused by 
the discharge of excessive amounts of municipal and 
industrial wastes into them has been of increased 
concern in recent years. As a result of this concern, 
the Water Quality Act of 1965 was enacted. This law 
required all States to classify rivers and streams ac­
cording to intended use and to adopt water-quality 
standards for each of the intended uses. Specific lim­
its were required for 10 water-quality parameters 
for each of 9 designated water uses; these standards, 
as of 1969, for the different States were tabulated by 
the American Public Health Association ( 1969) . Of 
the various water-quality parameters, the single 
parameter used most frequently to indicate the rela­
tive state of pollution or health of a stream is the 
dissolved-oxygen concentration. The dissolved-oxy­
gen concentration is the amount of free oxygen, that 
is, not chemically combined with other elements, 
available in the water for the respiration processes 
of the flora and fauna of the stream and for the oxi­
dation of organic waste materials. Hence, knowledge 
of the response of a stream's dissolved-oxygen con­
centration to the addition of organic wastes is essen­
tial to maintaining dissolved-oxygen concentrations 
that are adequate to support a desirable flora and 
fauna. 

The longitudinal profiles of the concentration of 
organic wastes, expressed in terms of BOD (bio­
chemical-oxygen-demand), and of the dissolved-oxy­
gen concentration, may be predicted from determin­
istic models based on the principle of the conserva­
tion of mass. The differential equations are 

oL oL o2L -+ V-=Dm-- (Kt+Ks)L+La 
()t ()X ()X2 

(1) 

oC oC o 2C -+ V-=Dm-+K2(Cs-C) 
()t ()X ()X 2 

-KtL+Ca-DB+p-rp (2) 

1 
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where L =biochemical-oxygen-demand of carbona­
ceous material; 

t =time; 
z =distance in the longitudinal or direction 

of flow; 
V =mean flow velocity in the longitudinal 

direction; 
K 1 =deoxygenation coefficient or the rate con­

stant for biochemical oxidation of 
carbonaceous material; 

K2 = reaeration coefficient or the rate con­
stant for oxygen absorption from the 
atmosphere; 

Ka =rate constant for the removal of BOD 
by sedimentation and adsorption; 

D3J =longitudinal dispersion coefficient; 
C =dissolved-oxygen concentration; 
C, =dissolved-oxygen concentration at satur­

ation; 
Ca =rate of addition of dissolved oxygen 

along the reach by all processes other 
than reaeration and photosynthesis; 

La =rate of addition of BOD along the reach; 
DB =rate of removal of dissolved oxygen by 

the benthal layer on the stream 
bottom; 

p =rate of production of dissolved oxygen 
by photosynthesis ; and 

rp =rate of consumption of dissolved oxygen 
by plant respiration. 

The development of equations 1 and 2 assumes 
that: 

1. The dissolved-oxygen concentration and BOD 
are uniformly distributed over each cross sec­
tion so that the equations can be written in 
the one-dimensional form. 

2. The processes described by the rate constants 
KH K2, and Ka are first-order processes; that 
is, the rate of removal of BOD is proportional 
to the amount of BOD remaining, and the rate 
of reaeration is proportional to D, the dis­
solved-oxygen deficit, which is the difference 
between the dissolved-oxygen concentration at 
saturation and the actual dissolved-oxygen 
concentration. 

3. Only the carbonaceous demand of the waste is 
significant. If the nitrogenous demand is im­
portant, an additional term must be added to 
equations 1 and 2. 

If DIJJ, Ka, La, caJ and DB have negligible effects on 
the BOD and dissolved-oxygen profiles, and if 
steady-state and uniform-flow conditions exist, then 

equations 1 and 2 reduce to the classical equations of 
Streeter and Phelps ( 1925). The solutions under 
these conditions are 

L=Lo exp ( -K~T) (3) 

and 

KlLO 
D=C8-C [exp ( -K~T) 

K2-Kl 
-exp ( -K2T)] +Do exp ( -K2T) (4) 

where Lo =BOD of the carbonaceous material at 
the upstream end of the reach; 

Do =dissolved-oxygen deficit at the upstream 
end of the reach; and 

T =time of travel from the upstream end of 
the reach to the point of interest at 
longitudinal position x, or 

JIIJ dx x 
T(x) = 0 -v=v (5) 

The various other modifications of equations 1 
and 2 and the various types of analytical and nu­
merical solutions of these equations that have ap­
peared in the literature were reviewed by Bennett 
and Rathbun (1972). 

The deterministic equations for the longitudinal 
distributions of the BOD and dissolved-oxygen con­
centration~ that is, equations 1 and 2 or similar 
equations with constant coefficients, give one value 
for the dissolved-oxygen concentration at each 
downstream point for a specific set of conditions. 
Similarly, most water-quality standards state that 
the dissolved-oxygen concentration must not drop 
below one specific concentration. However, because 
of the presence of random components in natural 
processes, there is a nonzero probability that the 
dissolved-oxygen concentration will fall below the 
concentration predicted by the deterministic equa­
tions, and a dissolved-oxygen concentration that is 
on the average sufficient to assure healthy fish does 
not prevent fish kills. Hence, an interest has de­
veloped in determining the probability distributions 
of the BOD and dissolved-oxygen concentration at 
downstream points in the reach. 

Previous studies have described three methods for 
the estimation of the probability distributions of 
the BOD and dissolved-oxygen concentration. 

The first of these methods, developed by Loucks 
and Lynn ( 1966), predicts the probability that a 
dissolved-oxygen concentration less than some spe­
cific concentration will exist for some specified time 
period at a point downstream from a waste dis­
charge. A Markov model was used and a first-order 
transition probability matrix for the low-flow sea-
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son was formed by making use of the available 
streamflow data. The term in the j th row and kth 
column of the transition matrix of a first-order, 
discrete-time, discrete-outcome Markov process 
gives the probability that a process which is in state 
j at time t will be in state k at time t + 1. To each 
discrete average daily streamflow, one set of pa­
rameters such as K1, K2, K3, temperature, Lo, and 
Do were assigned. Then, the critical or maximum 
dissolved-oxygen value for each set of parameters 
was assigned a probability in the transition matrix. 
Loucks and Lynn (1966) also give methods for de­
termining the probabilities of violating a particular 
stream standard for two or more consecutive days 
and of violating a standard when sewage flow de­
pends on streamflow. 

The second of these methods considers the prob­
lem essentially as a stochastic birth and death proc­
ess. Thayer and Krutchkoff ( 1966) assumed that the 
BOD and dissolved-oxygen concentration changed 
by a small amount ~ in a short time interval owing 
to additions of BOD and dissolved oxygen along the 
river, benthal demand, sedimentation of solids to 
the river bottom, deoxygenation, and reaeration. In 
their model, a change of size ~ in the concentration 
was considered to constitute a change of one state, 
and it was assumed that a change of more than one 
state in time ~T had a probability of o (~T). The 
probability of a change of one state was assumed to 
be proportional to ~T. 

Thayer and Krutchkoff ( 1966) determined the 
mean, variance, and probability distribution of BOD 
and the dissolved-oxygen deficit for a number of 
different stream and waste conditions and showed 
that the predicted mean value of the BOD and the 
oxygen deficit is the same as those computed by 
deterministic equations for the same stream and 
waste conditions. The variances of the BOD and the 
deficit, at any time of travel T, were found to be 
linear functions of ~, and a numerical value for ~ 
could be determined by experimentally determining 
the variances at some point downstream from the 
point of addition of the waste to the stream. 

The third of these methods is the Monte Carlo 
method proposed by Kothandaraman ( 1968) . He 
considered the deoxygenation coefficient, Klt and the 
reaeration coefficient, K2, to be random variables and 
showed them to be normally distributed. Then, he 
randomly selected values of K1 and K2 from normal 
distributions with known means and variances and 
computed the oxygen deficit from the Streeter­
Phelps equations for a preselected number of flow 
times. In this manner, he was able to estimate the 

probability distribution of the oxygen deficit at 
downstream points. 

Thus, the problem of predicting the response of 
the dissolved-oxygen concentration of a stream to an 
organic waste load can be approached in either of 
two ways : deterministic or probabilistic. In the de­
terministic approach, the dissolved-oxygen concen­
tration is predicted by solving two coupled differen­
tial equations (equations 1 and 2 or modifications of 
these) with appropriate assumptions and boundary 
conditions. On the other hand, the random nature of 
those factors such as turbulence, mean velocity, 
depth of flow, and type and concentration of waste 
that determine the coefficients of these equations 
and random variations in the type and concentration 
of the input waste loads suggest that a probabilistic 
approach should be more appropriate to the prob­
lem. However, the probabilistic models developed 
thus far are either too restrictive in the assump­
tions necessary or require extensive field data at 
some point upstream to predict the probability dis­
tributions of the BOD and oxygen deficit at down­
stream points. 

The purpose of this report is to : 

1. Present a discussion of the random variations 
to be expected in the deoxygenation coefficient, 
Klt and the reaeration coefficient, K2, and pos­
sible correlation between these parameters. 

2. Describe the development of a random walk 
model for estimating the probability distribu­
tion of the BOD when K1 is a random variable. 

3. Describe the use of a Monte Carlo technique for 
estimating the probability distribution of the 
dissolved-oxygen deficit when K1 and K2 are 
random variables. 

4. Describe the application of these techniques to 
the estimation of the variance and the per­
centile limits of the dissolved-oxygen deficit at 
downstream points. 

5. Describe the extension of the model so that the 
input BOD could be considered as a random 
variable, with particular emphasis on the 
critical time of travel when the maximum oxy­
gen deficit occurs. 
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This study was a part of the U.S. Geological Sur­
vey research program on reaeration in open-channel 
flow. 

VARIATIONS IN THE DEOXYGENATION AND 
REAERATION COEFFICffiNTS 

The processes of deoxygenation and reaeration 
are generally considered to be first order ; that is, 
the rate of deoxygenation is directly proportional to 
the amount of BOD remaining to be oxidized, and 
the rate of reaeration is directly proportional to the 
dissolved-oxygen deficit remaining to- be satisfied. 
Therefore, deoxygenation may be described by the 
equation 

dL 
dt = -K1L 

and reaeration by the equation 

dD 
-=-K2D 
dt 

(6) 

(7) 

The deoxygenation coefficient depends on the type of 
waste and the reaeration coefficient on the hydraulic 
conditions in the channel. Because variations in the 
type of waste and in the hydraulic conditions are in 
general random, there is ample basis for consider­
ing K1 and K2 as random variables. 

DEOXYGENATION COEFFICIENT, K1 

Possible explanations for variations in the deoxy­
genation coefficient, K1 were discussed in detail by 
Kothandaraman ( 1968) . He pointed out that be­
cause the characteristics of municipal wastes vary 
considerably with time, the rate parameter, K1, also 
varies considerably. This parameter characterizes 
biological processes which depend on the response of 
living organisms to their environment and hence, 
these processes do not have the uniformity of a 
chemical reaction. He concluded that because most 
of the contributing factors were random in nature, 
the variations in K1 could also be considered random 
and hence treated in a probabilistic manner. 

Kothandaraman (1968) determined K1 values and 
ultimate or total first-stage BOD values of carbona­
ceous material for the Ohio River data collected and 
published by the U.S. Public Health Service (1960). 
He applied several statistical tests to 83 average 
values of K1 which were determined by the least­
square procedure of Reed and Theriault (1931), and 
he accepted at the . 5 percent significance level the 
hypothesis that the K1 values were normally dis­
tributed with a mean of 0.173 days-1 and a variance 
of 0.0044 days- 2

• 

We analyzed the Ohio River data to determine the 
variation of K1 with distance downstream or travel 
time through the reach. The BOD versus time data 
given by Kothandaraman (1968) were used in this 
analysis, and these data are presented in table 10 in 
"Supplemental Data." Also given in table 10 are the 
mean values of the deoxygenation coefficient (K1) 
and the total first-stage or carbonaceous BOD (Lo) 
determined by Kothandaraman ( 1968) . 

If equation 6 is integrated and the result rear­
ranged, then it can be shown that 

X=Lo[1-exp ( -K1T)] (8) 

where X = Lo- L, the amount of BOD removed in 
travel timeT (also the amount of dis­
solved oxygen consumed up to time 
T); 

L 0 =total first stage or carbonaceous BOD; 
and 

L =BOD at timeT. 

It follows that 

1 
K1= --ln[1-X/Lo] 

T 
(9) 

The value of K1 for each increment of travel time 
was computed from 

1 zn[t X;-X;-1] 
T1- T;-1 L;-1 

(10) 

where 
L;=L;-1 exp [-K1,{Tj-T1-1)] (11) 

and j = 1, 2, 3, 4, and 5. The index i indexes the value 
of the variable at the end of the travel time T, and 
Lo was determined by the Reed and Theriault 
(1931) procedure. Values of K1 obtained from equa-
tion 10 for the Ohio River data are given in table 10 
in "Supplemental Data." Travel times larger than 5 
days were not considered because biological proc­
esses become less predictable at large times. The 
variances of the K1 values along the reach were com­
puted and these variances are presented also in 
table 10. 

Inspection of the deoxygenation coefficient values 
given in table 10 shows that K1 in general decreases 
with increase in T, or equivalently, distance down­
stream. A possible explanation for this is that the 
more easily degraded material is oxidized first in 
the stream. No attempt was made in the present 
study to develop a relation between K1 and T; how­
ever, the theoretical developments to be presented 
were generalized to take this variation into 
consideration. 
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It was also observed that the variance of the 
initial values of K1 at T = 0 was considerably larger 
than the variance of K 1 along the reach for a spe­
cific initial value of K11• A Chi-square test of the 
initial values of K1 showed that, at the 5 percent 
significance level, the data were compatible with the 
assumption that they were normally distributed 
with a mean of 0.205 days-t, and a variance of 
0.00538 days- 2

• Two extreme values of K1, com­
puted from observations numbered 37 and 80, were 
neglected in the analysis. The coefficient of varia­
tion of the initial K1 values was 0.357. The average 
variance of the K1 values along the reach was 0.0015 
days- 2

• It was assumed that the K 1 values along the 
reach were normally distributed with the above 
mentioned variance, but this hypothesis could not be 
tested, because for T < 5 days, each series of ob­
servations contained only four data points. 

The coefficient of variation, Cv, of the mean values 
of the deoxygenation coeffiicent, KH for the Ohio 
River data was 0.066/0.173 or 0.38. In the present 
study, no attempt was made to substantiate the pres­
ence of the same K1 value in all streams; however, 
as a first approximation, the coefficient of variation 
of K1 is assumed to be 

(12) 

Thus, the assumption is that the dispersion or spread 
of the K1 values about the mean is essentially the 
same as in the Ohio River data. Although the data 
in table 10 indicate that there is a difference be­
tween the variance of the initial values of K1 and the 
variance of the K1 values along the river reach, a 
coefficient of variation of 0.35 will in general be used 
to estimate both of these variances. The differences 
obtained in the probability distribution of the dis­
solved-oxygen deficit by considering different values 
of Cv(Kl) for the initial values of K1 and for the 
values of K1 along the reach, and by assuming the 
same Cv (Kl) for both variances, are discussed in the 
examples presented later. 

The probabilistic model to be described in the next 
section is capable of considering both variations in 
the initial value of K1 and variations in K1 along the 
river reach. Another possibility is that the initial 
K1 values are deterministic, but the variance of K1 
is very large during the first few hours. No data 
were available to test this supposition. 

REAERATION COEFFICIENT, K2 

In general, the reaeration coefficient, K2, of a 
stream may be considered as a property of the flow 
in the channel. As such, the variation with time of 

K 2 may be defined as the sum of a constant term, a 
periodic component, and a random component (Ma­
talas, 1971). The constant term may under some cir­
cumstances itself be a function of time or distance 
downstream. The periodic component results from 
seasonal changes or perhaps diurnal changes, for 
example, in the quantity of flow. The random com­
ponent has no simple physical explanation but is the 
resultant of a very large number of physical causes; 
for practical purposes, this random component may 
be considered as the inherent characteristic of tur­
bulent flow (Matalas, 1971). Because the intensity 
of turbulence at a point in a stream has an approxi­
mately normal distribution (Batchelor, 1959), there 
is in turn a basis for considering K2 as a normally­
distributed random variable. 

The K 2 data of Churchill, Elmore, and Bucking­
ham (1962) for streams of the Tennessee Valley are 
generally considered to be the best available data for 
natural streams. The reaeration coefficient was com­
puted from 

K _ 1 .z [ Cs-Ci J 2-- n 
J T1- T1-1 Cs- C1-1 

(13) 

where C8 =saturation concentration of dis-
solved oxygen; 

C =dissolved-oxygen concentration; 
j, j -1 =value of variable at the end of the 

time of travel T;, T1-1; and 
c.'l-CO =dissolved-oxygen deficit, where Co is 

the dissolved-oxygen concentra­
tion at the upstream end of the 
reach, assumed to be known. 

Several equations were developed by multiple re­
gression analysis, and each of these equations was 
tested by comparing computed K2 values with the 
geometric means of the experimental K2 values for 
each reach studied. The equation recommended for 
use by Churchill, Elmore, and Buckingham ( 1962) 
was 

K22o = 5.026Vo.969H-t.a7s (14) 

where V =mean velocity of flow in feet per 
second; 

H =mean depth of flow in feet; and 
K2

20 
=reaeration coefficient in days-1 at 

20°C. 

For V in metres per second and H in metres, the 
constant term in equation 14 is 2.178. Equation 14 
had a correlation coefficient of 0.822. 

Kothandaraman (1968) conducted a regression 
analysis of the Churchill, Elmore, and Buckingham 
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(1962) data using arithmetic mean values for each 
reach and obtained 

Kz2o = 5.827Vo.924H-t.7o5 (15) 

with a correlation coefficient of 0.917 (for V in 
metres per second and H in metres, the constant 1 

term in equation 15 is 2.304) . He then analyzed the ', 
distribution of the percentage errors, with the per­
centage error defined as (Kz-K2p) (100)/K2p where 
Kz is the arithmetic mean value, and Kzp is the value 
predicted by equation 15. He found that the per­
centage errors were approximately normally dis­
tributed with a mean of zero and a standard devia­
tion of 0.368. His analysis assumes that the value of 
Kz20 given by equation 15 is correct and that devia­
tions from it are probabilistic in nature; it also as­
sumes that once a process starts with a certain value 
of Kz, the rate of reaeration is constant for the 
reach. 

In the present study, we assumed that the devia­
tions of measured values of Kz for a specific reach of 
stream from the mean of all the measured K 2 values 
for that reach were normally distributed. This as­
sumption is in contrast with that of Kothandaraman 
( 1968) in that he assumed that deviations of the 
means of the experimental Kz values from Kz values 
computed from equation 15 were normally dis­
tributed. The arithmetic means, variances, and the 
coefficients of variation estimated from the K 2 data 
of Churchill, Elmore, and Buckingham (1962) are 
presented in table 11 in "Supplemental Data." The 
mean value of the coefficients of variation for all 
streams studied was 0.307. Therefore, for our study, 
we have assumed that the coefficient of variation of 
the reaeration coefficient is 0.3, or 

(16) 

CORRELATION BETWEEN DEOXYGENATION AND 
REAERATION COEFFICIENTS 

(1969) who used the stochastic model of Thayer and 
Krutchkoff ( 1966) to estimate the correlation coeffi­
cient. The correlation coefficient was defined as 

Correlation coefficient 
covariance 

(17) 
[(BOD variance) (D variance) )112 

The correlation study was run with an initial BOD 
input (L0 ) of 12.4 mg/1 (milligrams per litre), a 
saturation concentration (C8 ) of 10.4 mg/1, an ini­
tial dissolved-oxygen concentration (Co) of 5 mg/1, 
and a value of 0.1 mg/1 for the ~-parameter of 
Thayer and Krutchkoff ( 1966). Different values of 
K 11 K2, and T were used, and the resultant correla­
tion coefficients between BOD and dissolved-oxygen 
concentration obtained by Moushegian and Krutch­
koff (1969) are presented in table 12 in "Supple­
mental Data." The correlation coefficient is positive 
at all times which implies that the correlation coeffi­
cient between BOD and Dis negative. 

Moushegian and Krutchkoff ( 1969) found that in­
terpretation of the results of the correlation coeffi­
cient study was difficult, but in general it was ob­
served that the correlation coefficient between BOD 
and dissolved-oxygen concentration decreased as 
time of travel increased and the difference between 
K2 and K1 increased. On the other hand, as the time 
of travel becomes small, correlation between BOD 
and D approaches - 1. This may be seen as follows : 
for an initial dissolved-oxygen deficit of zero and 
small travel times, the exponentials in equations 3 
and 4 may be approximated by their Taylor series 
expansions. Hence 

(18) 

and 
(19) 

where ~T=an incremental value of the time of 
travel. 

The Moushegian and Krutchkoff ( 1969) study 
yielded no information on the possible correlation 
between K1 and Kz. Therefore, in the present study, 
the correlation coefficient between Kl- and K2 was 
assumed to have the value 

(20) 

Increased turbulence and mixing in a stream re­
sult in a more rapid rate of reaeration and hence a 
larger K2 and also a larger K1 as a result of in­
creased bacterial degradation of wastes; conversely, 
lower levels of turbulence result in smaller K1 and 
Kz values. Similarly, an increase in temperature in­
creases both K1 and K2. Therefore, a positive corre­
lation between K1 and K2 is expected. 

1 This correlation coefficient was applied to the K1 and 
K2 values at the same instant of time, although the 
presence of a small lag period is possible. The effect 
of different correlation coefficient values on the 

Although the interdependence between BOD and 
dissolved-oxygen deficit, D, is known, little effort has 
been directed toward determining the numerical 
value of the correlation coefficient for BOD and D. 
There has, however, been one theoretical approach j' 

to the problem by Moushegian and Krutchkoff 
oxygen-deficit distribution will be discussed in the 
examples to be presented. 
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DEVELOPMENT OF THE PROBABILISTIC 
MODEL 

SOLUTION OF EQUATIONS FOR LONGITUDINAL 
PROFILES OF BOD AND DISSOLVED­

OXYGEN CONCENTRATION 

The longitudinal profiles of the BOD and dis­
solved-oxygen concentration downstream from a 
source of organic biodegradable waste are described 
by equations 1 and 2, respectively. The assumptions 
inherent in these equations were discussed previous­
ly. With the additional assumptions of (1) the ef­
fect of longitudinal dispersion on the BOD and dis­
solved-oxygen concentration profiles is negligible 
relative to other factors; and (2) the effect of photo­
synthesis and respiration is negligible; equations 1 
and 2 reduce, respectively, to 

oL oL -+ V-=- (Kl +K3)L+La (21) at ox 
and 

ac ac -+ V-=K2C8 -K1L+Ca-DB-K2C. (22) at ax 
These equations, as well as equations 1 and 2, as­
sume that the water temperature, and hence the 
saturation concentration of dissolved oxygen, is 
constant. 

The effect of longitudinal dispersion on the BOD 
and dissolved-oxygen concentration profiles for 
steady-state and uniform flow conditions was dis­
cussed by Dobbins (1964) who concluded that the 
effect was negligible for the largest value of Dx 
known at that time. A much larger value was found 
later by Yotsukura, Fischer, and Sayre (1970), but 
the mean flow velocity was also large; and according 
to Dobbins' analysis, the effect of dispersion would 
still be negligible. In estuaries where dispersion be­
comes large and velocities small, the effect of longi­
tudinal dispersion cannot be neglected. The effect of 
photosynthesis may be extremely important in cer­
tain situations; the literature and procedures for 
treating photosynthesis were discussed by Bennett 
and Rathbun (1972). The water temperature may 
increase in the downstream direction as a result of 
both natural and manmade causes ; this problem was 
considered by Liebman and Lynn ( 1966) . Thus, 
longitudinal dispersion, photosynthesis, and changes 
in water temperature may be important in certain 
situations; for the present study, however, they 
were neglected. 

Following Li (1962), equations 21 and 22 were 
solved for a stream system with the following 
characteristics : 

1. Hydraulic conditions may vary with distance 
downstream but are steady at each cross 
section. 

2. The BOD and dissolved-oxygen concentration at 
the cross section at which the waste is added 
to the stream may be functions of time; in­
herent in the assumption of one-dimensionali­
ty is the requirement that the distance neces­
sary for complete lateral and vertical mixing 
of the BOD be small relative to the distance 
downstream to the cross section ( s) of 
interest. 

3. The rate coefficients K1, K2, and K3 are functions 
of the time of travel or distance downstream. 

4. The distributed source and sink terms, that is, 
Ca, La, and DB, vary with distance downstream 
but are steady at each cross section. 

Time of travel, T, and distance downstream, x, may 
be interchanged through the relation 

T=rx ~ lo V (23) 

Details of the solution have been presented previous­
ly (Esen, 1971), and only the results will be pre­
sented here. 

For the longitudinal profile of the BOD, the equa­
tion obtained was 

- (Kt+K3)dT o [ T [ + [<Kl+K3)dT' ] 

L=e f(~)+1TLae dT (24) 

where~ is given by 
r:c dx 

~=t-Jo v; (25) 

/(~) =function describing the variation with 
time ~of the BOD at the upstream 
end of the reach; and 

T, T' =dummy variables of integration. 

Comparison of equation 24 with equation 3, which 
!fescribes the BOD profile for the approach of 
Streeter and Phelps ( 1925), shows the differences in 
the results. If the BOD at the upstream end of the 
reach is independent of time, K3 and La are zero, and 
K1 is independent of time of travel in the reach, then 
equation 24 reduces to equation 3. 
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For the longitudinal profile of the dissolved-oxy­
gen deficit, the equation obtained was 

where 

iT (Kt+Ka)dT' 

I= [T Lae dT; and (27) 

F (') =function describing the variation 
with time' of the dissolved-oxygen 
concentration at the upstream end 
of the reach. 

In equation 26, the term C8 -F(') is the dissolved­
oxygen deficit at the upstream end of the reach; the 
first integral term is the net effect of the addition of 
dissolved oxygen along the reach by all processes 
other than reaeration and photosynthesis and the 
removal of dissolved oxygen by the benthal layer on 
the stream bottom ; the second integral term is the 
BOD added at the upstream end of the reach; and 
the third integral term is the BOD added along the 
reach. 

Comparison of equation 26 with equation 4, which 
describes the longitudinal profile of the dissolved­
oxygen deficit for the approach of Streeter and 
Phelps (1925), shows the differences in the results. 
If the dissolved-oxygen concentration at the up­
stream end of the reach is independent of time, La, 
DB, Ca, and K3 are zero, and K1 and K2 are inde­
pendent of time of travel in the reach, then equation 
26 reduces to equation 4. 

Equations 24 and 26 describe the longitudinal pro­
files of the BOD and dissolved-oxygen deficit, respec­
tively, for a stream system in which the rate coeffi­
cients KlJ K2, and K3 are unknown functions of the 
time of travel. Application of these equations to the 
estimation of the probability distributions of the 
BOD and the dissolved-oxygen deficit for a stream 
system in which K1 and K2 are normally distributed 
random variables is described in the following 
sections. 

RANDOM WALK MODELS 

There is considerable justification, as discussed 
previously, for considering the deoxygenation coeffi­
cient, KlJ and the reaeration coefficient, K2, as ran-

dom variables. Therefore, it is possible to consider 

that the values of the integrals iT K
1
dT and [T K 2dT 

are attained as a result of a simple random walk. 

DEOXYGENATION COEFFICIENT, K1 

Assume that in a time interval of A.T the quantity 
K1A.T can take only two possible values, K1 (T) A.T 
+A.K1 and K1(T)A.T-A.K1. To these two values the 
following probabilities are assigned: 

P[l(1 (T) A.T=K] (T) A.T+ A.K1] =p1 (A.K1) (28) 

P[K1 (T) A.T =K1 (T) A.T- A.K1] = ql (A.Kl) (29) 

where K1 (T) =mean value of K1 at time of travel T 
and P1 (A.Kl) + ql (A.Kl) = 1. For the present analysis, 
it will be considered that A.K1 is constant. 

Let us further assume that 

lim [q1(A.K1)-pl(A.K1)] a1 
T 

(30) 
A.K1 

lim (A.Kl) 2 f3 T 
aT~ 1 
aK1~0 A.T 

(31) 

where a1 and {31 are finite. Then the probability dis­
tribution of K1 is found to be normal (Bailey, 1964; 
Feller, 1968) with a mean of K1 -al/31 and a vari­
ance of {31. For the limiting variance to remain finite, 
(A.K1)2 1 A.T must be of the order of unity, and for 
the mean to remain finite, p 1- ql must be of the 
order of A.K1. The equations of this section satisfy 
these conditions. 

These concepts were applied to equation 24 to esti­
mate the probability distribution of the BOD for a 
stream system in which K1 is a random variable. In 
this analysis, the following assumptions were made: 

1. The BOD added along the reach is much smaller 
than the BOD added at the upstream end of 
the reach, that is 

1T LadT<«f('); 

-1"(Kt+Ks)dT 

and hence the variance of the term I e 
is negligible, where I is defined by equation 27; 
and 

2. The rate constant for the removal of BOD by 
sedimentation and adsorption, K3, is deter­
ministic throughout the river reach under con­
sideration, that is, independent of flow time. 

These assumptions are valid for many situations 
observed in natural streams; in fact, the effects of 
La and K 3 were completely neglected by several in-



DEVELOPMENT OF THE PROBABILISTIC MODEL 9 

vestigators (Streeter and Phelps, 1925 ; Kothan­
daraman, 1968). Considering K 3 as a random vari­
able does not introduce any complications into the 
analysis if K3 is considered as normally distributed 
with known mean and variance. For appreciably 
large values of La, the probability distribution of the 
BOD cannot be found analytically, but Monte Carlo 
methods can be efficiently used. 

Details of the development of the probability dis­
tribution of the BOD have been presented previously 
(Esen, 1971). It was found that the BOD was dis­
tributed according to the lognormal distribution, or 

for 

and 

fL( ·) =0 for LL.J exp (- [T (K1 +K3)dT) (32) 

The mean value of L for any time of travel Twas 
found by integrating the product of L and the den­
sity function between the limits - oo and + oo. The 
result was 

L=exp[ In fW- f (K,+K,)d.+Ta,p,+ T~, J 
+] exp (-iT (K1 +K3)dT) (33) 

Similarly the variance of L at any time of travel T 
was found by integrating the product of (L- L) 2 
and the density function between the limits - oo and 
+ oo, and the result was 

var (L) =exp[ 2[ln f(t)-r (K, +K,)d.+Ta,p,] 

+2T'p,] -exp[ 2[ln fW-r (K,+K,)d. 

+ Ta,p,] + T•p, J (34) 

The probability density function of L given by 
equation 32 reduces to that of Kothandaraman 
(1970), if K3 and La are 0 and K1 is considered to be 
independent of the time of travel. However, one of 
the advantages of the random walk model from 
which equation 32 was developed is that it can con-

sider K1 as well as the mean and variance of K1 as a 
function of time of travel. Thus in the most general 
case, /31 and a1 are functions of the time of travel. If 
the variance of K1 is considered as constant through­
out the river reach of interest, /31 is constant, and if 
it is further considered that the mean value of K1 is 
also constant, then a1 can be taken as zero. The mean 
and variance of K1 are measurable quantities, and 
numerical values can be assigned to K11 a1, and /31. 

REAERATION COEFFICIENT, K 2 

Proceeding exactly analogously as for the deoxy­
genation coefficient, we assume that in a time inter­
val of AT the quantity K2AT can take only two possi­
ble values, K2(T)AT+AK2 and K2(T)AT-AK2. To 
these two values, the following probabilities are 
assigned: 

P[K2 (T)AT=K2 (T)AT+AK2] =p2(AK2) (35) 

P[K2(T)AT=K2(T)AT-.AK!] =q2(AK2) (36) 

where K2(T) is the mean value of K2 at time of 
travel T and P2 (AK2) + q2 (6K2}~ 1. Let us further 
assume that 

lim 
l1KNO 

[ q2 (AK2) -p2 (AK2)] 

AK2 

1~~ (:~2 )
2 

f32T 
l1KNO 

T 
(37) 

(38) 

where a2 and /32 are finite. Then the probability dis­
tribution of K 2 is found to be normal (Bailey, 1964; 
Feller, 1968) with a mean of K2-a2/J2 and a vari­
ance of fJ2· These equations also satisfy the condi­
tions previously given for the limiting variance and 
the mean to remain finite. 

Because of mathematical complexities, it was not 
possible to apply this random walk model for the re­
aeration coefficient to equation 26 and obtain ana­
lytically the distribution function of the dissolved­
oxygen deficit. Therefore, the distribution of the 
oxygen deficit was estimated by using a Monte 
Carlo simulation technique. 

MONTE CARLO SIMULATION TECHNIQUE FOR 
DISSOLVED-OXYGEN DEFICIT 

The Monte Carlo simulation technique is a method 
by which a complex system with random components 
is numerically operated by random numbers chosen 
in such a manner that they simulate the physical 
behavior of these components. In the general sense, 
each random component of the system is represented 
by a numerical value randomly chosen from some 
probability distribution. 
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Monte Carlo simulation essentially involves three 
steps: 

1. Select representative probability distributions 
which will simulate the physical behavior of 
the random components of the system. 

2. Generate numerical values of the random vari­
ables from the probability distributions. 

3. Use variance-reducing techniques to accelerate 
the computations. 

A random walk model is well suited to simulation 
by Monte Carlo methods because each random com­
ponent (the increments added to K1 or K 2 in the 
present study) is allowed to take only two possible 
discrete values. This requires the simplest of random 
variable generation techniques, the generation of 
uniformly distributed random variables. The meth­
ods for the generation of uniformly distributed ran­
dom variables are discussed in various books (such 
as Hammersley and Handscomb, 1964) , and almost 
all digital computers have a built-in subroutine avail­
able for this purpose. 

The determination of the probability distribution 
of the dissolved-oxygen deficit is based on equation 
26 which may be written 

where 

-12' K2flr [ lT K2flr' 

B=e 
0 

~s-F(t) +iT (DB-Ca)e dr 

T lT (K2-K1-Ka)d,_' J 
+ i K 11 e dr (40) 

Additional assumptions are necessary besides those 
made in the development of the model for the proba­
bility distribution of the BOD. These are: 
1. the initial dissolved-oxygen deficit, C8 -F(t), is 

small and the variance of the term [C8 -F(t)] 

-12'K2flr 

e is small ; and 
2. the difference between the benthal demand term, 

DB, and the term for the addition of dissolved 
oxygen along the reach, Ca, is small, and the 

-12'K2flr 

variance of the term e 

[ 

1TK2flT' J iT (DB-Ca) e o d1' is small. 

With these assumptions and approximating the 
integrals in equation 39 by finite sums, it follows 
that 

Cs-C-B= /(t) exp (- 2: K2iAT) K -K 
11
_K 

n [ -.K 

i= 1 2t lt 3 

+ n'i:l K,,(K,<+ 1 -K,)- (K,,-K,)K,<+, 
. 

1 
(K2.-K1.-K3) (K2.+1-Kt.+1-K3) 

1,= t t t t 

exp { .± (K,;-K,;-K,) !>.T} 
J=1 

+ K _i1

n -K exp { 1: (K2i-Kli-K3)AT}] 
~ ~ 3 • 1 J= 

(41) 

Note that for nAT=T, K11=K12 = ... =K1n' K3=0, 

and K21 =K22 = ... =K2n' equation 41 reduces to the 
classical oxygen sag equation of Streeter and Phelps 
(1925) (recall eq 4). 

If K a should be a normally distributed random 
variable like K1 and K2, then Monte Carlo simulation 
requires three sets of uniformly distributed randoll} 
numbers to be generated (one each for K11, 

K2i' and Kai). There is no evidence at present, how­
ever, to suggest that Ka is a random variable. Hence, 
Ka was considered to be deterministic in the present 
study. 

The determination of the probability distribution 
of the oxygen deficit at any time of travel, T, by 
Monte Carlo simulation involves the following steps: 

1. Experimentally determine the mean and vari-
ance of K1 and K2 and the correlation coeffi­
cient between K1 and K2; or by experimentally 
determining the means, estimate the variance 
of K1 and K2 from equations 12 and 16, respec­
tively, and the correlation coefficient between 
K1 and K2 from equation 20. 

2. Choose an integer n and determine AT from 
AT=T/n. 

3. Determine AK1 and AK2 from equations 31 and 
38, respectively, as 

AK1 = y /3tT AT 

AK2 = y f32T AT 

where /31 =variance of K1; and 

/32 =variance of K2. 

4. If the mean values of K1 and K2 are assumed to 
be time-independent, then a1 = a2 = 0 and Pt = P2 
= 0.5. For time-dependent mean values of K1 



DEVELOPMENT OF THE PROBABILISTIC MODEL 11 

and K2, determine a1 and a2 from mean (Kl) 
=K1-.atf31 and mean (K2) =K2 -a2(32 (Kl and 
K2 will be estimated as the values of K1 and K2 
at T = 0), and compute P1 and P2 from equa­
tions 30 and 37 as 

Pt = (1-atAKt/T) /2 

P2= (1-a2aK2/T)/2. 

5. Compute B from equation 40 with known values 
of Cs, F ('),DB, Ca, La, K 3 , and mean values of 
K1 and K2, and consider B as deterministic at 
any time of travel, T. If B is not deterministic, 
see below for the procedure to use. 

6. Generate two sets of n uniformly distributed 
random numbers, R11 and R2

1
, between 0 and 

1, and compute K11aT and K2iaT as 

K11aT=K1aT+aK1 R1i<P1 
KtiAT=KtAT-AKt Rti"?::pl 
K21AT=K2AT+AK2 Rt;<Ph R2i~[1-r(KH K2)]/2 

or 
R11~p1, R2i< [1-r(KH K2) ]/2 

K21AT=K2AT-AK2 Rt;<PH R2i< [1-r(Kt, K2) ]/2 
or 

R11~1, R2i::::::,.[1-r(KH K2) ]/2 

7. With the value of B determined in step ( 5) and 
K11AT and K2JAT values determined in step 
(6), compute the oxygen deficit or (C8 -C) 
from equation 41. 

8. Repeat steps 6 and 7 m times to obtain an esti­
mate of the probability distribution of the oxy­
gen deficit. 

The assumptions made in the development of 
equations 32 and 41 are reasonable for many 
streams. However, if the values of La, Ca, Cs-F(,), 
and DB- C a are large and K 3 is normally distributed 
rather than deterministic, Monte Carlo methods can 
still be used efficiently. However, writing the inte­
grals involving I as finite sums requires very com­
plicated expressions, and it is more convenient to use 
a series of difference equations which can be solved 
easily on a digital computer. The difference equa­
tions for the equations describing the BOD and 
oxygen deficit distributions (eqs 24 and 26, respec:. 
tively) are 

- (K11+Ka1 ).iT L (j) 
L (j) = e [ L (i -1) + K a K 

lj+ 3; 

(K11+Ka1).iT 

(e -1)] 

j = 1' 2, . . . ( 42) 

L(O) =!(') (43) 

K1. (K21 -K11-Ks1)-iT 

+L(j-1) K2.-K:.-K3. (e -1) 
J J J 

K1
1
La (j) K21-iT 

+ (e -1) 
K2j (K11 + K3) 

K11La(j) (K21-K11-Ka1)-iT J 
-----------------------(e -1) 
(K11 +Ka1) (K21-Kt1-Kai) 

j=1, 2, ... 
C(O) =F(') 

(44) 
(45) 

where T = j aT for a specific value of the argument i. 
Therefore, if the variance of B cannot be ne­

glected, equations 42, 43, 44, and 45 are used recur­
rently in step (7) of the procedure rather than equa­
tion 41. If the variance of the initial K1 values is 
different from the variance of the K1 values along 
the river reach, then the initial K1 values can be se­
lected from a normal distribution with known mean 
and variance. The total variance of K1 equals the 
sum of the variance of the initial values of K1 and 
the variance of the K1 values along the reach. 

The sampling method used in this study is refer­
red to as "Straightforward Sampling." This method 
is based on the premise that the uncertainty in the 
mean value obtained by a Monte Carlo technique is 
always reduced when the sample size is increased. A 
number of methods are available for reducing the 
variance of the results obtained with the same m 
value used in the straightforward sampling (Kahn, 
1957; Hammersley and Handscomb, 1964). How­
ever, because of the complexity of the equations used 
in the determination of the probability distributions 
of the oxygen deficit, these methods could not be used 
in the present study. A flow chart of the straight­
forward Monte Carlo simulation procedure used in 
the present study is presented in figures 22, 23, and 
24 in "Supplemental Data." 

APPLICATION OF THE TECHNIQUE AND DISCUSSION 
OF RESULTS 

To demonstrate the application and versatility of 
the stochastic model, a hypothetical example consist­
ing of three parts was used. In addition, the model 
was applied to data from the Sacramento River. De­
tails of these examples are presented in the follow­
ing paragraphs. 

HYPOTHETICAL EXAMPLE 

The basic data used in the hypothetical example 
consisted of 
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K1 =0.15 days-1; 

K,2=0.50 days- 1 ; 

f (') = 10 mg/1 ; and 

C.s-F(') =0 mg/L 

In addition, the effects of D{J), K3 , La, and Ca on the 
profiles of the BOD and oxygen deficit were assumed 
to be negligible. The quantities f(O and C8 -F(') 
are, respectively, the BOD and oxygen deficit at the 
upstream end of the reach. 

The probability distribution of the oxygen deficit 
was estimated using three sets of conditions. In the 
first case, the variances of the initial values of K1 
and of the values of K1 along the reach were assumed 
to be equal, K1 and K2 were assumed to be uncorre­
lated, and the variance of K 2 was assumed to be con­
stant. In the second case, the variances of the initial 
values of K1 and of the values of K1 along the reach 
were different, K1 and K2 were assumed to be uncor­
related, and the variance of K2 was assumed to be 
constant. The third case assumed that the variances 
of both K1 and K2 were constant and also a constant 
correlation coefficient between K1 and K2 was as­
sumed. In all three cases, the mean values of K1 and 
K2 were assumed to be independent of time of travel, 
and therefore a1 =a2=0. 

Details of the three cases are as follows : 

Case 1: The coefficients of variation, Cv (K1) and 
Cv (K2), were assumed to be 0.35 and 0.3, respective­
ly, as discussed previously (recall eqs. 12 and 16). 
From these values, the variances of K1 and K2 were 
computed as 

var (K1) =,81 = [Cv(Kl)K1] 2 

= [ (0.35) (0.15) ] 2=0.00276 days-2 

var (K2) =,82= [Cv(K2)K2] 2 

= [ (0.3) (0.50) ] 2=0.0225 days-2 

Case 2: The analysis of the Ohio River data dis­
cussed previously showed that the variance of the 
K1 values along the reach was 0.0015 days-2 for an 
initial mean K1 value of 0.205 days-1. Hence, the 
variance of the K1 values along the reach for the 
hypothetical example was estimated as 

,8';= [ (y0.0015/0.205)0.15)2=0.00080 days-2 

The variance of the initial values, K1
1

, therefore is 

,8'1 = ,81- ,8': 

= 0.00276-0.00080 = 0.00196 days-2 

The initial values, K1
1 

were selected randomly from 
a normal distribution with a mean of 0.15 and a 
variance of 0.00196. Twelve uniformly distributed 

random numbers, R1i' were generated and K11 was 
computed from 

12 
K11 = y/0.00196 [ L R1i- 6] + 0.15 

~=1 

Then the Monte Carlo techniques were applied with 

,8"=0.00080 days-2 and ,82=0.0225 days-2. 
1 

Case 3 : The third case was essentially the same as 
the first case except that K1 and K2 were assumed to 
be linearly correlated with a correlation coefficient of 
0.5. 

Equation 41 with B=O was used in all three cases 
for the estimation of the distribution of the oxygen 
deficit. The mean values of K1 and K2 were assumed 
to be independent of time, hence a1 = a2 = 0. It follows 
that P1 =p2=0.5. 

The mean, variance, and the 10 percentile and 20 
percentile limits of the oxygen deficit obtained for 
the three cases along with the oxygen-deficit values 
computed from the Streeter and Phelps ( 1925) 
equation (recall eq 4) using mean values of K1 and 
K2 are presented in table 1. The 10 percentile and 20 
percentile limits of the oxygen-deficit distribution 
indicate the oxygen-deficit values for which 10 per­
cent and 20 percent, respectively, of the deficit 
values are larger. The frequency distributions of the 
oxygen deficits are plotted in figures 1, 2, and 3. The 
mean values of the oxygen deficits and the 10 per­
centile and 20 percentile limits are plotted in figure 
4 as a function of time of travel. 

TABLE 1.-Dissolved-oxygen deficit from equation 4 and sig-
nificant parameters of the stochastic, oxygen-deficit distri-
bution 

Vari-
ance 10 per- 20 per-

Time, Deficit Mean of centile centile 
T (eq 4) deficit deficit limit limit 

(days) (mg/l) (mg/11 (mg/1)~ (mg/1) (mg/1) 

Case 1 

1 1.09 1.04 0.121 1.48 1.31 
2 1.60 1.56 .315 2.29 2.04 
3 1.78 1.73 .528 2.64 2.33 
4 1.77 1.80 .575 2.84 2.34 
5 1.67 1.82 .931 3.07 2.45 

Case 2 

1 1.09 1.07 0.129 1.54 1.36 
2 1.60 1.67 .347 2.46 2.19 
3 1.78 1.72 .400 2.51 2.23 
4 1.77 1.81 .668 2.91 2.43 
5 1.67 1.64 .580 2.62 2.20 

Case 3 

1 1.09 1.03 0.101 1.41 1.29 
2 1.60 1.49 .191 2.06 1.86 
3 1.78 1.67 .266 2.36 2.09 
4 1.77 1.83 .372 2.68 2.28 
5 ------- 1.67 1.61 .367 2.44 2.09 
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The values of the variance of the oxygen deficit 
given in table 1 show that all three cases give com­
parable results for small times of travel. However, 
as time increases, the variances of the deficit dis­
tributions estimated for cases 1 and 2 become larger 
than the variance estimated for case 3. Case 3 is 
preferred in the present study because of the ex­
pected positive correlation between K1 and K2. Re­
call that r(Kh K2), the correlation coefficient be­
tween K1 and K2, was assumed to be +0.5 for case 3. 
At the present time, there is no experimental data 
to assist in the assigning of an exact value or func­
tion to the correlation coefficient. Inspection of the 
results presented in table 1 shows that the effect of 
the correlation coefficient on the oxygen-deficit dis­
tribution increases as travel time T increases; how­
ever, a time dependent r(Kh K2) whose average 
value is + 0.5 probably would not appreciably 
change the deficit distribution at large T. 

To determine if r(K1, K2) could be estimated from 
r(BOD, D), the correlation coefficient between BOD 
and the oxygen deficit, a correlation study between 
BOD and the deficit for case 1 [r(Kh K2) =0] and 

case 3 [r(K 1 , K2) =0.5] was made. The results are 
presented in table 2 and show that r(BOD, D) is 
rather insensitive to r(Ku K2). Hence, r(Kh K2) 
cannot be efficiently estimated from a knowledge of 
r(BOD, D) for the conditions considered in the pres­
ent study. 

The frequency distributions of the oxygen deficit 
presented in figures 1, 2, and 3 show that the deficit 
distributions become flatter and skewed to the right 
as time of travel increases. This type of skewness is 
especially favorable in the determination of proba­
bilistic stream standards because the percentile lim­
its of the oxygen deficit will be less sensitive to 
errors in the values estimated for the coefficients of 
variation of K1 and K2 and the correlation coefficient 

TABLE 2.--Correlation coefficients between BOD and ozygen 
deficit · 

Time, T 
(days) 

1 -----------
2 
3 

Correlation coefficient (BOD, D) 
Case 1 

r(K1,K2) =0 

-0.94 
-.66 
-.40 

Case 3 
r(K1, K2) =0.5 

-0.96 
-.64 
-.26 
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between K1 and K2. On the other hand, the most 
probable deficit values would not be very informa­
tive because of the flatness of the deficit distribution. 
Kothandaraman ( 1968) concluded that the most 
probable oxygen-deficit values of the deficit distribu­
tions were closer to the observed deficits than deficits 
predicted by deterministic equations at all times. At 
small times of travel, this conclusion is probably 
valid because of the high peaks in the frequency dis­
tributions. However, the largest time of travel that 
Kothandaraman (1968) considered was 0.73 day 
and for larger times of travel, the deficit distribu­
tions became flatter and the most probable deficit 
value cannot be estimated accurately. 

The deterministic critical time of travel, that is, 
the travel time at which the deficit, computed from 
the Streeter and Phelps ( 1925) equation, is maxi­
mum, was 3.44 days for the conditions of the hypo­
thetical example. The oxygen-deficit values pre-

sented in table 1 and the deficit profiles plotted in 
figure 4 show that critical time of travel for case 1 
was not reached for the 5-day period considered. For 
cases 2 and 3, the critical time of travel was at some 
point between 3 and 5 days. Additional data points 
would be necessary to determine the critical time 
more exactly. In general, however, as will be dis­
cussed in later sections, the stochastic critical time 
of travel was larger than the deterministic time of 
travel. 

SACRAMENTO RIVER DATA 

The stochastic model developed in previous sec­
tions was also applied to data from the Sacramento 
River, Calif. A detailed description of the reach of 
the river where the BOD and oxygen-deficit data 
were collected is given by Thayer and Krutchkoff 
( 1966) and the dissolved-oxygen concentration data 
for T < 6 days are presented in table 13 in "Supple­
mental Data." In addition to the dissolved-oxygen 
data, Thayer and Krutchkoff (1966) give the follow­
ing parameters for the reach : 

K1 =0.35 days-1 

K2=0.75 days-1 

La=0.20 mg/1 per day 

DB=0.10 mg/1 per day 

K3 = 0.20 days-1 

/(C) =Lo=6.8 mg/l=constant 

Ca=9 mg/1 

Cs-F(C) =Do=0.3 mg/l=constant 

The effects of longitudinal dispersion and of the ad­
dition of dissolved oxygen along the reach were 
neglected~ 

On the basis of these data, the variance of B in 
equation 41 was considered negligible, and the value 
B at any time of travel T was determined from 
equation 40 as 

B 1 a e-K2T-e-(Kl+Ka)T KL [ - - J 
(K2-K1 -K3) (K1 +Kg) 

+[C8 -F(t)]e-K2T+ -==-+ ·[1-e-K2T] - [DB K1La J -
K2 K2 (K1 + K3) 

For the above values, equation 40 becomes 

B = e-0·75T[0.300 + 0.636 (1- eo·20T) + 0.303 (e0.75T -1)] 

Following essentially the procedure used in case 3 
of the previous section, and using the values of 
C, (Kl) ,Cv (K2), and r (KHK2) given by equations 12, 
16, and 20, respectively, and the value of B deter-
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mined above, equation 41 was solved 200 times where 
T I !:lT was taken as 100. The values of the deficit 
computed from equation 39 with mean values of K1 
and K2 and the mean, variance, and 10 percentile and 
20 percentile limits of the oxygen deficit computed 
from the stochastic model are presented in table 3. 
The observed concentration of dissolved oxygen, that 
is, C = C.s- D = 9- D, is plotted in figure 5 together 
with the dissolved-oxygen concentration profile pre­
dicted by equation 39 and the mean, 10 percentile, 
and 20 percentile limits of the stochastic deficit dis­
tribution. The frequency distributions of the oxygen 
deficit are presented in figure 6. The variances of the 
experimental data are presented in figure 7 as a 
function of the time of travel; also shown in figure 7 
are the variances predicted by the stochastic model 
of Thayer and Krutchkoff ( 1966) and the stochastic 
model developed in the present study. 

The dissolved-oxygen concentrations and the 10 
and 20 percentile limit lines plotted in figure 5 can 
be used to check approximately the predicted deficit 
distribution. If the predicted distribution is correct, 

9.0,--------------,--------------
UJ 

TABLE a.-Significant parameters of the oxygen-deficit dis-
tribution for the Sacramento River data 

Vari-
ance 10 per- 20 per-

Time, Deficit Mean of centile centile 
T (eq 39) deficit deficit limit limit 

(days) (mgfl) (mg/H (mg/))2 (mg/l) (mg/1) 

1 1.48 1.40 0.107 1.78 1.68 
2 1.54 1.46 .119 1.87 1.71 
3 1.28 1.34 .159 1.84 1.63 
4 1.00 1.02 .166 1.54 1.28 
5 .76 .85 .127 1.25 1.08 

then the 10 percentile and 20 percentile lines should 
have about 10 percent and 20 percent of the data 
points below them, respectively. The number of data 
points below each of these lines was counted for 
times between 0.2 and 5 days. It was found that 9.5 
and 23.5 percent of the points lay below the lines, in 
good agreement with the expected percentages of 10 
and 20 percent. 

The frequency distributions for the oxygen deficit 
presented in figure 6 do not flatten and become 
skewed to the right as time of travel increases, as do 
the frequency distributions for the hypothetical ex-
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FIGURE 5.-Experimental dissolved-oxygen concentrations, mean dissolved-oxygen concentrations predicred by the deter­
ministic model (eq 39), and mean, 10, and 20 percentile limits of the dissolved-oxygen concentrations predicted by the 
stochastic model ( eq 41) ; Sacramento River data. 
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FIGURE 6.-Distribution of the oxygen deficit as estimated from equation 41; Sacramento River data. 

ample (recall figs. 1, 2, and 3). This difference is 
apparently a result of differences in the values of the 
coefficients and parameters used in the computations. 

There is considerable scatter in the oxygen-deficit 
variances plotted in figure 7, and as a result, it is 
difficult to decide which of the two models best fits 
the data. A disadvantage of the Thayer and Krutch­
koff ( 1966) model is that the parameter ~ must be 
determined from the measured variance at some time 
of travel. They used a time near zero; however, be­
cause of the small variances and considerable scat­
ter in the data at this time, it seems likely that ~ 
cannot be estimated very accurately. On the other 
hand, the stochastic model developed in the present 
study does not depend on a measurement of the 
deficit variance for predicting the deficit variance as 
a function of travel time. 

Thayer and Krutchkoff ( 1966) concluded that the 
oxygen-deficit variance is a maximum at the travel 
time when the deficit is maximum. For the Sacra­
mento River data (see fig. 5), the maximum deficit 

occurred between 1 and 2 days. On the other hand, 
figure 7 suggests that the deficit variance is a maxi­
mum for a time of about 3 days. The stochastic mod­
el predicted a similar behavior in that the variance 
increased rapidly for 3 days, then increased little be­
tween 3 and 4 days (see table 3) . The occurrence of 
the maximum deficit variance at a time larger than 
the critical time of travel did not appear to cause Tc 
to shift downstream relative to the deterministic 
critical time of travel. However, the 10 and 20 per­
centile limits of dissolved-oxygen concentration be­
come rather flat between the second and third days. 

ESTIMATION OF THE ACCURACY OF THE 
MONTE CARLO PROCEDURE 

The accuracy obtained from the Monte Carlo sim­
ulation procedure depends on the values chosen for 
m and n. Recall that m is the number of times the 
computations are repeated and that n, the number of 
steps in the random walk process, appeared in 
several equations where integrals were approxi-
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FIGURE 7 .-Observed and predicted variance of the oxygen­
deficit distributions as a function of time; Sacramento 
River data. 

mated by finite sums. The accuracy obtained in these 
equations depends on the functional form of K1 and 
K2; if they are constants, then the accuracy will be 
100 percent; if they are functions of time, then some 
error will result from the approximation of the inte­
grals. Although the accuracy of the simulation pro­
cedure increases as m and n are increased, the com­
putation time and resultant computer costs also 
increase. The development of equations for estimat­
ing the accuracy of the Monte Carlo method is de­
scribed in the following paragraphs. 

The comparison of the central moments of K1T 
with the central moments of the limiting normal dis­
tribution was used as the criterion for estimating the 
accuracy of the Monte Carlo procedure. Moments of 
K1T rather than K1 were compared because deter­
mining the value of K1T as the result of a random 
walk process is physically more meaningful. 

The probability that the diffusing particle of a 
simple random walk will be at some location after n 

steps is distributed according to the binomial dis­
tribution (Bailey, 1964). Hence, it follows analo­
gously that the probability density function of K1T 
is 

n 
P[K1T= L: K1r6.T- (n-2j) ~K1J =( 1!' )<P1);(q1)n-; 

. 1 J J= 
(46) 

Previously it was established, in the limit as ~T~o, 
~x1~o, that K1 was normally distributed with mean 
K1-ad31 and variance /11 for constant K1. Analo­
gously, it can be shown that K1T is normally dis­
tributed with mean K1T-a1f31T and variance f31T2

• 

Equation 46 gives exact values for the m~an and 
variance of K 1T even for very large values of ~T 
because the mean and variance depend only on a1 and 
/31 computed from equations 30 and 31. The third 
central moment of the limiting normal distribution 
is zero and therefore the error in the third central 
moment of K1T could not be computed as a percent­
age difference. As an alternative, the difference be­
tween the fourth central moments of K1T obtained 
from the limiting normal distribution, /L4 (KtT, N), 
and from the probability density function defined by 
equation 46, P.t (K1T, AT), was used as an indicator 
of the effect of the value of non the accuracy of the 
Monte Carlo simulation procedure. 

The fourth central moment of the normal distribu­
tion is 

hence 

p.4 (K1T, N) = 3f3~T4 

Similarly from equation 46, 

/L4 (K1T, AT) = (2~K1) 4JL.l (Ji) ( 47) 

where j has a binomial distribution with parameters 
nand P1· The fourth central moment of a binomial 
distribution is 

IL4=np1q1[1 + 3 (n -2)p1q1] 

hence 
JL-1 (K1T, aT)= (2AK1) 4 [3 (np1q1)2 

+np q -6np2q2
] (48) 

1 1 1 1 

For small ~T /T, it follows from equation 30 and 31 
that 

1 
T 1 

exp ( -a2f3 ~T /T). 4 1 1 
(49) 

4 
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Substituting equation 49 into equation 48 and not­
ing that n = T I aT we obtain 

P.4 (K1 T, aT= 3{3~T4 exp (- 2a~{3laT IT) + f3.~T3aT 
[4exp (-a~{31aTIT)-6exp (-2a~{31aTIT)]. (50) 

The error, E, in the fourth central moment of 
K 1 T is defined as 

E _ JL4 (K1T, aT) - P.4 (K1T, N) 

P.4 (K1T, N) . 
(51) 

Then, using equations 47 and 50, 
1 

E=--{3{32T4 [exp ( -2a.2a aTIT-1] + a 2T3aT 3f32T4 1 1P 1 P 1 
L 

[ 4 exp ( -a.:/3
1 
aT./T) -6 exp (- 2a~{31aT IT)]} 

Expanding the exponentials and taking the first two 
terms gives 

E 

For the special case when a.1 = 0, the expression for 
E becomes exact, and 

2 aT 
E=--- (52) 

3 T 
Thus, if n = T I ~T = 100, the error in the fourth 

central moment of K _ T is less than 1 percent. The 
same arguments are also valid for the fourth central 
moment of K2T. 

The effect of the choice of the integer m on the 
accuracy of the Monte Carlo procedure was esti­
mated on the basis of the weak law of large numbers 
(Mood and Graybill, 1963), or 

P[l Zm-P.I<e]~l-8 

In this expression, Zm is the sample mean of a ran­
dom sample of size m from a probability density 
with a mean of p. and a variance of u2, m is any in­
teger greater than u2le28, and e>O and 0<8<1. 

Chebyshev's inequality states that P[g(Z) >s] 
<E[g (Z) ]Is for a random variable Z and non-nega­
tive function g (·),where E[g (Z)] indicates the ex­
pected value of g (Z). Now, if we let g (Z) = (Zm- p.) 2 
and s = e2, then 

P[IZm- p.l 2<e2] ~1-E[ (Zm- p.) 2]le2; 
but 

for 

Thus, the error in an answer is inversely propor­
tional to the square root of the sample size m. For 
example, m has to be > 160 in order that one is 90 
percent certain that Zm is within ul4 of p., that is 

[m>u21(0.25u) 2(0.10) =160] 

In the hypothetical example and the treatment of 
the Sacramento River data described in the previous 
section, n = T I ~T was taken as 100. Therefore, from 
equation 52 it follows that there is less than 1 per­
cent error in the fourth central moments of K1T and 
K2T for an infinitely large sample size. The computa­
tions were repeated 200 times, that is, m=200. From 
equation 53, we are 92 percent certain that the esti­
mated mean value of the oxygen deficit will be with­
in u I 4 of the true mean where u is the standard de­
viation of the oxygen deficit. 

ESTIMATION OF THE VARIANCE OF THE 
OXYGEN-DEFICIT DISTRIBUTION 

The random walk model and Monte Carlo simula­
tion procedure described in previous sections can be 
used to predict the variance of the dissolved-oxygen 
deficit at any time of travel for a stream for which 
Lo, KlJ K2, the coefficients of variation of K1 and K2, 
and the correlation coefficient between K1 and K2 are 
known. In practice, however, it may not be feasible 
to compute the oxygen-deficit variance for all possi­
ble combinations of these variables because of the 
computer expenses involved in the simulation proc­
ess. Hence, an approximate procedure for estimating 
the variance was developed. This development is 
described in the following paragraphs. 

The basic procedure consists of expanding in a 
Taylor series the random part of the fundamental 
equation of the stochastic model, equation 41, and 
determining the expected values of the first few 
terms of the series. 

From equation 41, it follows that 
Cs-C-B=g(K11, K12, ••• , K1n' K21, K22, ••• ,K2,) (54) 
Expanding gin a Taylor series gives 

- - n - oU 
g=g(Ku K2) + L (K1i-K1)---r{ _ 

i= 1 o 1i K1i=K1 
n 

+ .2: 
t=l 



20 MODEL FOR PREDICTING THE DISSOLVED-OXYGEN DEFICIT IN STREAMS 

n _ _ 0 2g 
+ .L (K1i-K1) (K2;,-K2) K K __ + .... 

II = 1 0 1i 0 2i K 1·-K 1 
" ~ -

K2i=K2 
(55) 

The last term on the right hand side of equation 55 
has only a single summation because the terms 
E[ (K1i-K1) (K1

1
-K1) ], 

E[ (K2i-K2) (K21-K2),E[K1i-K1) (K2i-K2)] 

are zero for i¥=j. 

The mean value of g, that is E[g], is obtained 
from equation 55 as 

E[g]=E g(K1, K2) + L ---
{ 

_ _ n (K1,-K1) 2 
0

2g 

i=1 2 oK1/ K1,=K1 

+ E (K,,-K,)• o•u • - + .E 
i= 1 2 oK2i K2.=K2 t= 1 

1. 

(K1,-K~) (K2i-K2)oKtioK2i Kli=Kl . (56) 
- - o2Y } 

K2i=K2 

Computing the terms in equation 56 with g given 
by equations 41 and 54, and taking the limit as 
n ~ oo gives 

E[g]=g(Kl, K2) +G1 +G2+Ga (57) 

where 

Ga=r(KH K2) y{3t(32Tf(Ve-it2T 

K1 K2 
[-- (caT -1) + --( 1- eaT) J ( Sl) 

2a2 2a2 

a=K2-Kl-K3 (62) 

and r(K1, Kz) is the correlation coefficient between 
K1 and K2. Note that 

and 
E[ (Kli- K1) 2

] = f3tT I tiT 

E[ (K2i- K2) 2] = f32T I tiT. 

The mean value of C8 -C, that is E[C.~-C], is 

E[Cs-C] =B+Efg] (63) 

Then by definition, the variance of g, or equivalently 
the variance of Cs- C, is 

var(g) =E[ (g-E(g) )2); 

hence, from equation 55, it follows that 

(64) 

Computing the terms in equation 64 and taking the 
limit as n.~oo gives 

var(g)=G4+Gs+G6 (65) 

and a is defined by equation 62. 
Equations 63 and 65 for estimating the mean and 

variance of the oxygen-deficit distribution are based 
on only the first and second order terms in the Taylor 
series expansion, hence the estimates of the vari­
ance are less than the actual variance. No attempt 
was made in the present study to improve the ac­
curacy of the estimated variance by considering 
higher order terms of the expansion; this is possible 
but tedious. Qualitative inspection of the next higher 
order terms in equation 65 shows that they are of the 
order and form 

which indicates that the accuracy obtained in the 
variance of the deficit estimated by equation 65 de­
creases as f3H {32, and T increase and K2-K1-Ka 
decreases. 
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For constant values of C11 (Kl), Cv(K2), r(KH K2), 
and Ka, equation 65 can be put into the form 

var(C8 -C)={f(,)]2ir(K1, K 2 , T). (69) 

To facilitate obtaining first estimates of the variance 
of the oxygen-deficit distribution, ir-values were com­
puted from equations 66, 67, and 68 for K1 values 
ranging from 0 to 0.5 days-1 and K 2 values ranging 
from 0 to 2.5 days-1 for times of travel of 1, 2, and 
3 days. In these computations, it was assumed that 
Cv(Kl) =0.35, C.v(K2) =0.3, r(K1, K2) =0.5, and 
Ka=O. Values of ir are plotted as a function of K1 
and K2 in figures 8, 9, and 10 for travel times of 1, 2, 
and 3 days, respectively. The dashed line indicates 
the discontinuity at the point where K1 = K2. 

The ir-values are underestimated if Cv (K1) and 
(or) Cv(K2) are less than the true values and con­
versely. At small times of travel, C11 (K1) is most im­
portant in the determination of ir and at large times 
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of travel, Cv (K2) is most important. On the other 
hand, ir decreases at all times as r (KH K2) increases. 
Computations were not carried out for travel times 
of 4 and 5 days because equation 65 becomes less re­
liable at large T. 

The oxygen-deficit variances at T = 1, 2, and 3 days 
for cases 1 and 3 of the hypothetical example de­
scribed previously were compared with the variances 
estimated from equation 65 and figures 8, 9, and 10. 
For case 1, equation 65 was used with Gs = 0, that is, 
r(K11 K2) =0; for case 3 the variance of the deficit 
was estimated from figures 8, 9, and 10 and the 
relation 

var (D) =[f (') ] 2ir = 100ir. 

The results presented in table 4 show that the esti­
mated variances are comparable to those deter­
mined from the stochastic model for the first 2 days. 
For T = 3 days, however, the estimated variances are 

1.5 2.0 2.5 

REAERATION COEFFICIENT, IN RECIPROCAL DAYS 

FIGURE 8.-'1'-parameter as a function of the reaeration and deoxygenation coefficients; time of travel of 1 day. 
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FIGURE 9.-'l'-parameter as a function of the reaeration and deoxygenation coefficients; time of travel of 2 days. 

TABLE 4.-Variances of the oxygen-deficit distributions deter­
mined from the stochastic model and the Taylor series ap­
proximation ( eq 65) 

Time,T Variance, in (mg/1) 2 

(days) Stochastic model Equation 65 

Case 1 

1 ------------ 0.121 0.135 
2 ------------ .315 .307 
3 ------------ .528 .442 

Case 3 

1 ------------ 0.101 0.105 
2 ------------ .191 .186 
3 ------------ .266 .230 

smaller than the variances from the stochastic model. 
This is to be expected because the higher order terms 
of the Taylor series expansion were neglected in the 
development of equation 65, as discussed previously. 
Despite this restriction, however, figures 8, 9, and 10 
can be used to obtain a first estimate of the variance 

of the deficit distribution for those situations in 
which TcL3 days and when the deficit profile ob­
tained by deterministic procedures is changing 
rapidly around T=Tc. 

EXTENSION OF THE MODEL 

In the previous sections, a stochastic model based 
on Monte Carlo simulation was developed for pre­
dicting the variance of the distribution of the dis­
solved-oxygen deficit at points downstream of a 
waste source for a stream system in which K1 and K2 
are random variables. In addition, a simplified pro­
cedure based on Taylor series expansion of the equa­
tion for the stochastic model was developed for esti­
mating the variance of the oxygen-deficit distribu­
tion. In this section, the model was extended such 
that four parameters could be considered as random 
variables: the BOD of the waste at the upstream end 
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FIGURE 10.-.Y-parameter as a function of the reaeration and deoxygenation coefficients; time of travel of 3 days. 

of the reach (Lo), the deoxygenation coefficient at 
the upstream end of the reach (K1 ), the deoxygena­
tion coefficient along the reach (k), and the reaera­
tion coefficient (K2). In addition, correlation was 
assumed between K2 and k and between K1 and L0 • 

The fundamental equation of the stochastic model 
(eq 41) was used with three changes: B was as­
sumed negligible, K3 was assumed zero, and the 
variation of K1 along the reach was separated from 
the variation of the initial K1 values by the addition 
of the k parameter. These changes are for the pur­
pose of simplification only; they do not in any way 
change the basic procedures used in the computa­
tions. With these changes, equation 41 becomes 

~ { K1+k1 D=Lo exp (- L..J K2iaT) 
i=1 (K21 -Kl-kl) 

+ ni:1 (Kl + ki) (K2i+ 1)- (K2i) (Kl + ki+l) 

i= 1 (Kzi- K1- k,,) (K2i+l- K1- ki+1) 

i 
exp [ L (K2.-K1-k1)aT] 

. 1 J 
J= 

L+~ n } + K .. -K -k exp [ .L (K2j-K1-k1)aT] . (70) 
~n 1 n J = 1 

Equation 70 permits the computation of the oxy­
gen deficit for a specific time T where naT= T and n 
is the number of steps assumed for the random walk. 
Repetition of the computations m times then yields 
m values for the oxygen deficit from which the mean 
and the variance of the deficit are computed. In a 
practical situation, however, the time of travel of 
most importance is the critical time of travel or the 
time when the deficit is maximum. This is the time at 
which violations of the quality standards are most 
likely to occur and hence, the time for which esti­
mates of the variance are most necessary. There­
fore, in contrast to previous sections where compu­
tations were for general times of 1, 2, 3, 4, or 5 days, 
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calculations in this section will be specifically for the 
critical time of travel. 

However, the critical time of travel for the sto­
chastic model cannot be determined explicitly from 
equation 70, in contrast to the deterministic model 
for which Tc can be computed. In theory, Tc could be 
determined by applying the Monte Carlo simulation 
procedure to sequentially increasing times until the 
maximum deficit is found. In practice, however, the 
computer expenses would be prohibitive. Therefore, 
the procedure used was to compute the variances for 
the distributions of the deficit for the deterministic 
Tc, given by 

Ten= 1 m/1'!_, [ K2(l- Do(K2-K1) )] (71 ) 
K2-K1 K1 Lo 

and for a stochastic critical time of travel, Tc, ob-s 
tained from the Taylor series expansion approxima-
tion of equation 70. These critical times of travel in 
general will not be the same; results presented pre­
viously suggested that the critical time of travel for 
the stochastic model was larger than the determin­
istic critical time of travel. The procedure used to 
estimate the stochastic critical time of travel will be 
described shortly. 

MONTE CARLO COMPUTATIONS 

The basic Monte Carlo simulation procedure was 
as described previously and as shown in figures 22, 
23, and 24 ; however, because of the several changes 
in this section, the procedure will be outlined quali­
tatively here. Input data consisted of the coefficients 
of variation of the reaeration coefficient (K2), of the 
deoxygenation coefficient along the reach ( k) , of the 
total deoxygenation coefficient (K1 + k), and of the 
BOD at the upstream end of the reach (Lo) ; the cor­
relation coefficients between K1 and Lo and between 
K2 and k; and the critical time of travel. Steps in the 
procedure were: 

1. Selection of Lo from a normal distribution. 
2. Selection of K 1 from a normal distribution with 

the specified correlation coefficient between Lo 
and K1. 

3. Selection of K1 +k and K2 to be used in the ran-
dom walk computations ( eq 70) . 

4. Computation of the oxygen deficit. 
5. Repetition of the procedure m times. 
6. Computation of the mean and the variance from 

them values of the oxygen deficit. 

The Monte Carlo computations were completed for 
25 sets of K1 and K2 values with the following 
conditions: 

Cv(K1 +k) =0.35 

Cv(k) =0.19 

Cv (K2) = 0.30 

Cv (Lo) = 0.20 

r (KH Lo) = -0.67 

r(K2, k) =0.50 

Lo=l.O mg/1 

Do=O 

n=100 

m = 800 for most computations, 200 for some com-
putations. 

These conditions were also used in all computations 
in this section with the Taylor series approximation 
of the stochastic model. 

ESTIMATION OF THE MEAN AND THE VARIANCE 
OF THE OXYGEN-DEiFICIT DISTRIBUTION 

As in previous sections, the mean and the vari­
ance of the distribution of the oxygen deficit may be 
estimated from a Taylor series approximation of the 
stochastic model. Basically it is assumed that 

D = h (K11, K12 , ••• K1,; K21, K22 , ••• K2,; 
Lo1, Lo2 , ••• Lo,; k~t k2, ... kn). (72) 

Expanding in a Taylor series, taking expected 
values, and assuming correlation only between K1, 
and Loi and between K2i and ki gives 

- - - - var Lo o2h 
Mean D=h(K~t K2, Lo, k) + -

2 oL2 

0 

(73) 

where var implies variance and P: = f3 1 - /3': • 

Determining the derivatives from equation 70, 
evaluating at the mean values of the variables, and 
substituting into equation 72 gives 

Mean D=h+H1+H2+Ha+H4+Hs (74) 

where 

(75) 
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- - [ K.l 
Ha=r(K2, k) ({3~f3)tf2TLoe-K2T 2(K2-Kt)2 

(e<il2-il1>T-1)+ K2 (1-e<K2-K1>T)J (78) 
2(K2-K1) 2 

H4 1 o 2K2 (e<K2-Kt)T-1)- 2KzT 
{3' L e-K2T[ _ _ 

2 (K2-Kt) 3 (K2-Kl)2 

- - K1T
2 J e<Ke-Kt)T + e<K2-K1)T (79) 

(K2-Kt) 

- - [ K2 H5 =r(K1, L 0 ) ({3:)112LoCv(Lo)e-K~r (K
2

-K
1
)2 

(e<K2-Kt)T-l) e(K2-K1)T . - - K1T - - J 
K2-K1 

(80) 

The terms HH H2, and Ha represent the effects on the 
deficit of the variation of the deoxygenation coeffi­
cient along the reach, the variation of the reaeration 
coefficient, and the correlation between these coeffi­
cients, respectively; allowing for slight changes in 
nomenclature and the assumption that Ka = 0 in the 
present section, H H H 2, and H a are equivalent to G1, 
G2, and Ga (eqs 59, 60, and 61), respectively. The 
terms H4 and Hs represent the effect on the deficit 
of the variation of the initial value of the deoxygena­
tion coefficient and the correlation between the ini­
tial deoxygenation coefficient and upstream BOD, 
respectively. Variations in the upstream BOD do not 
affect estimates of the mean deficit because 
o2h/0L 2 =0. When the variables K1.,K2., Lo., and ki 

0 ~ t t 

are assumed independent of time of travel, then H 1, 

H 2, H a, H4, and H s are zero and equation 73 reduces 
to 

Mean D=h (81) 

or the classical oxygen sag equation of Streeter and 
Phelps (1925) (see eq 4). 

By similar arguments, it may be shown that 

n T h n T h 
Var D=/3" L - (~)2+,82 L-(-0

-)'2 
1 i=l D..T ok1 .i=tAT oK2i 

n 
+2r(K2, k) ({3"{3 )1/2 L _!__ (~) ( oh ) 

1 2 i=l aT oK2i oki 

+ Var Lo ( oLh )2 + {3' ( oKh ) 2 

0 0 
1 0 1 

+2r(KH Lo) ({3' var Lo)112 ( oh )( oh ). (82) 
1 oK1 oLo 

Evaluating derivatives as before, it follows that 

Var D=Hs+H1+Hs+H9+H1o+Hn (83) 

where 

( e•(K,-l!',l 7' -e<K,-lM7') J (89) 

The terms H 6' H 1' and H s represent the effects on 
the variance of the distribution of the deficit of the 
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variation of the deoxygenation coefficient along the 
reach, the variation of the reaeration coefficient, and 
the correlation between these coefficients, respec­
tively; again allowing for slight changes in nomen­
clature and the assumption that K 3 = 0 in the present 
section, H6, H7, and H 8 are equivalent to G4, G5 , and 
G6 (eqs 66, 67, and 68), respectively. The terms H 9 , 

H1o, and H11 represent the effects on the variance of 
the variation of the initial BOD, the variation of the 
initial value of the deoxygenation coefficient, and the 
correlation between these variables, respectively. 

ESTIMATION OF A STOCHASTIC CRITICAL 
TIME OF TRAVEL 

As mentioned previously, it would be very diffi­
cult to determine explicitly the critical time of travel 
for the stochastic model ; also the results of previous 
sections suggest that in general the stochastic criti­
cal time is larger than the deterministic critical time. 
To get an approximate estimate of Tcs' equation 7 4 
was used. Recall that this equation is the result of a 
Taylor series expansion of the equation for the 
stochastic model; because higher order terms of the 
expansion were neglected, the resultant Tc

8 
will be 

approximate only. 

In theory, equation 7 4 can be differentiated with 
respect to T and the result set equal to zero and 
solved to determine Tc. When this is tried, however 
it is found that a complicated expression containing 
exponentials and quadratic terms must be solved by 
a trial-and-error iterative type of solution to deter­
mine Tc. Instead of this procedure, equation 74 was 
programed for a desk-top computer so that the oxy­
gen deficit was computed as a function of T. After 
each computation, the time was incremented by 0.01 
day and the computation was repeated. Because of 
the print-out feature of the computer, it was possi­
ble to follow the computations and to stop the pro­
gram after the deficit passed through a maximum. 
In this manner, Tc

8 
could be estimated to the near­

est 0.01 day for any combination of K1 and K2 values. 

PRESENTATION AND DISCUSSION OF RESULTS 

The results presented and discussed in this section 
are directed toward the practical determination of a 
first estimate of the variance of the distribution of 
the oxygen deficit at the critical time of travel. All 
graphs are for a critical time of travel (Tc

8 
or Tcv) 

and are for a mean BOD at the upstream end of the 
reach (Lo) of 1.0 mg/1. For other values of Lo, the 
estimated mean deficit is a simple multiple of the 
value of Lo (recall eqs 70 and 7 4) and the variance 

is a multiple of L 2 (recall eqs 70 and 83). Values 
I) 

assumed for the coefficients of variation and the cor-
relation coefficients were presented previously. Also 
recall that the oxygen deficit at the upstream end of 
the reach was zero. 

CRITICAL TIME OF TRAVEL 

The critical time of travel for the deterministic 
model was computed from equation 71 with Do= 0 
for the same 25 sets of K1 and K2 values used in the 
Monte Carlo calculations, and the results are pre­
sented in table 5. Figure 11 is a plot of the deter­
ministic critical time of travel as a function of the 
deoxygenation and reaeration coefficients. The 
dashed line indicates the discontinuity at the point 
where K1 =K2. 

The critical time of travel for the stochastic model 
was estimated from the Taylor series expression for 
the oxygen deficit by the procedure described previ­
ously. The Tcs values for the 25 sets of K1 and K2 
values are presented in table 5 and figure 12 is a 
plot of the stochastic critical time of travel as a func­
tion of the deoxygenation and reaeration coefficients. 

The critical times presented in table 5 show that 
the stochastic Tc was greater than the deterministic 
Tc for all combinations of K1 and K2 considered, in 
agreement with previous results. The difference, 
however, was not constant but was largest for the 
large KdK1 ratios and in general decreased _as 
K 2/K1 decreased for most of the range of conditior.is 
considered. The percentage difference, defined as 
(Tc

8
-Tcv)100/Tc,n' is presented in table 5 and plot-

ted in figure 13 as a function of the ratio of the re­
aeration and deoxygenation coefficients. Where more 

TABLE 5.-Critical time of travel for the deterministic a11.d 
stochastic models and percentage difference 

Tc, in days Percent-
K2 K1 Ratio age 

(days-1 ) (days-1 ) K2/K1 Deter- Stochastic differ-
ministic ence 

0.60 0.025 24.0 5.53 8.21 +48.5 
1.20 .050 24.0 2.76 4.10 48.6 
1.80 .075 24.0 1.84 2.74 48.9 
2.40 .100 24.0 1.38 2.05 48.6 
.60 .045 13.3 4.67 5.9.0 26.3 

1.20 .095 12.6 2.30 2.87 24.8 
1.80 .140 12.9 1.54 1.93 25.3 
2.40 .190 12.6 1.15 1.44 25.2 

.60 .080 7.60 3.87 4.50 16.3 
1.20 .160 7.50 1.94 2.25 16.0 
1.80 .240 7.50 1.29 1.50 16.3 
2.40 .320 7.50 .97 1.13 16.5 

.40 .075 5.33 5.15 5.78 12.2 
2.00 .375 5.33 1.03 116 12.6 
.40 .100 4.00 4.62 5.07 9.7 

2.05 .500 4.10 .91 1.00 9.9 
.50 .150 3.33 3.44 3.73 8.4 

1.65 .500 3.30 1.04 1.13 8.7 
1.00 .370 2.70 1.58 1.69 7.0 
1.00 .445 2.25 1.46 1.55 6.2 

.50 .259 1.93 2.73 2.89 5.9 

.80 .415 1.93 1.70 1.80 5.9 

.30 .375 .800 2.98 3.10 4.0 

.20 .325 .615 3.88 4.05 4.4 

.10 .250 .400 6.10 6.41 5.1 
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FIGURE 11.-Critical time of travel (deterministic model) as a function of the deoxygenation and reaeration coefficients. 

than 1 percent difference exists for a ratio, the aver­
age is plotted. The percentage difference decreases as 
K2/K1 decreases for ratios larger than one, and con­
versely, increases as K2/K1 decreases for ratios 
smaller than one. This behavior suggests that the 
percentage difference between the critical times of 
travel is a minimum when the reaeration and de­
oxygenation coefficients are approximately equal. 
The K1 and K2 values used in the computations were 
chosen so as to cover the range of coefficients ex­
pected for natural streams and rivers; figure 13 can 
be used to estimate the percentage difference in the 
critical times for any ratio of coefficients for a spe­
cific situation. 

Figures 11 and 12 are graphs for estimating the 
critical time of travel for specific values of K1 and 
K2; figure 11 is for Ten and figure 12 is for Tcs· Com­
parison of these graphs shows in a general manner 
that Tc

8 
is larger than Ten; these graphs also show 

the large dependence of T c on one of the coefficients 
when the other coefficient is small. 

MEAN OXYGEN DEFICIT 

The oxygen deficit at the critical time of travel 
was computed from the deterministic model for TeD 

and from the stochastic model for both T cD and T c
8 

and the results are presented in table 6. The oxygen 
deficit is referred to as the mean oxygen deficit be­
cause the values reported for the stochastic model 
are the arithmetic means of the results of the repe­
titions of the Monte Carlo procedure for each set of 
conditions. For the Tc

8 
computations, the number of 

repetitions was 800; for the TeD computations, the 
number was either 200 or 800. Use of 200 repetitions 
for the 24.0 and 7.50 ratios probably explains why 
the variability of these means is larger than the 
variability of the means for these ratios when 800 
repetitions were used. 
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The oxygen deficits are plotted in figure 14 as a TABLE 6.-Mean oxygen deficit for deterministic and stochastic 

function of the ratio of the reaeration and deoxy- models 

genation coefficients. The results in figure 14 and Mean oxygen deficit, in mg/1 

table 6 show that the oxygen deficit for the deter- K2 K1 Ratio Deter- Sto- Sto-
(days-1 ) (days-1 ) K2/K1 minis tic chastic chastic 

mini.stic model tends to be slightly larger than the TeD TeD Tc, 

deficit for the stochastic model for small ratios, but 0.60 0.025 24.0 0.0363 0.0343 0.0380 

in general the differences among the oxygen deficits 1.20 .050 24.0 .0363 .0362 .0380 
1.80 .075 24.0 ,().363 .0377 .0380 

are negligible. Also, the relatively large difference in 2.40 .100 24.0 .0363 .0388 .0380 
.60 .045 13.3 .0608 .0632 .0625 

Tc
8 

and Ten for large ratios had relatively little effect 1.20 .095 12.6 .0637 .0644 .0647 
1.80 .140 12.9 .0627 .0651 .0628 

on the computation of the deficit by the stochastic 2.40 .190 12.6 .0637 .0641 .0653 
.60 .080 7.50 .0978 .0962 .0970 

model. 1.20 .160 7.50 .0978 .0968 .0975 
1.80 .240 7.50 .0978 .0944 .0996 
2.40 .320 7.50 .0978 .0898 .100 

The oxygen deficit was also computed from the .40 .075 5.33 .127 .122 .127 
2.00 .375 5.33 .127 .125 .121 

Taylor series approximation (recall eq 73) for Tc
8 

.40 .100 4.00 .158 .153 .152 
2.05 .500 4.10 .155 .148 .153 

and the results are presented in table 7 together with .50 .150 3.33 .179 .162 .172 
1.65 .500 3.30 .180 .171 .176 

stochastic model results for Tc . The oxygen deficits 1.00 .370 2.70 .206 .195 .200 
8 1.00 .445 2.25 .232 .219 .223 

are plotted in figure 15 as a function of the ratio of .50 .259 1.93 .256 .225 .245 
.80 .415 1.93 .256 .242 

the reaeration and deoxygenation coefficients. The .30 .375 .800 .410 .382 .386 
.20 .325 .615 .460 .436 

results show that the oxygen deficits computed for .10 .250 .400 .543 .506 .507 
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FIGURE 13.-Percentage difference in deterministic and stochastic critical times of travel as a function of the ratio of the re-
aeration and deoxygenation coefficients. 

TABLE 7.-Mean oxygen deficit for stochastic model and Taylor VARIANCE OF THE OXYGEN DEFICIT 
series approxinnation, with T c

8 
The variance of the oxygen deficit at the critical 

Mean oxygen deficit, in 
K2 K1 Ratio mg/1 time of travel was computed from the stochastic 

(days-1) (days-1) K2/K1 Sto- Taylor 
model and from the Taylor series approximation of chastic series 

0.60 0.025 24.0 0.0380 0.0387 the model for both Tcv and Tc
8 

and the results are 
1.20 .050 24.0 .0380 .0387 
1.80 .075 24.0 .0380 .0387 presented in table 8. The effect of using 800 repeti-
2.40 .100 24.0 .0380 .0387 

.60 .045 13.3 .0625 .0628 TABLE B.-Variance of the oxygen deficit from the stochastic 
1.20 .095 12.6 .0647 .0655 model and the Taylor series approximation 
1.80 .140 12.9 .0628 .0646 
2.40 .190 12.6 .0653 .0655 Variance, in (mg/1) 2 

.60 .080 7.50 .0970 .0983 K2 K1 Ratio 
Stochastic Taylor series (days-1 ) (days-1 ) K2/K1 1.20 .160 7.50 .0975 .0983 TeD Tc 8 TeD Tc 8 1.80 .240 7.50 .0996 .0983 

2.40 .320 7.50 .100 .0983 0.60 0.025 24.0 0.00024 0.00055 0.00020 0.00026 

.40 .075 5.33 .127 .126 1.20 .050 24.0 .00023 .00055 .00020 .00026 
1.80 .075 24.0 .00039 .00055 .00020 .00026 2.00 .375 5.33 .121 .126 2.40 .100 24.0 .00034 .(}0055 .00020 .00026 

0.40 .100 4.00 .152 .155 .6(} .045 13.3 .00074 .00100 .00047 .00055 

2.05 .500 4.10 .153 .152 1.20 .095 12.6 .00073 .00093 .00051 .00059 
1.80 .140 12.9 .0(}072 .00094 .00049 .00058 

.50 .150 3.33 .172 .175 2.40 .190 12.6 .00097 .00105 .00051 .00059 
1.65 .500 3.30 .176 .176 .60 .080 7.50 .00126 .00160 .00100 .00112 

1.00 .370 2.70 .200 .200 1.20 .160 7.50 .00170 .00161 .00101 .00112 
1.80 .240 7.50 .00115 .00165 .00100 .00112 

1.00 .445 2.25 .223 .224 2.40 .320 7.50 .00118 .00182 .00100 .00112 
.50 .259 1.93 .245 .246 .40 .075 5.33 .00205 .00211 .00150 .00164 

.80 .415 1.93 .242 .246 2.00 .375 5.33 .00206 .00216 .00150 .00164 
.40 .100 4.00 .00274 .00265 .00205 .00220 

.30 .375 .800 .386 .389 2.05 .500 4.10 .00271 .00273 .00200 .00214 

.20 .325 .615 .436 .436 .50 .150 3.33 .00292 .00356 .00245 .00261 

.10 .250 .400 .507 .515 1.65 .500 3.30 .00338 .00322 .00248 .00264 
1.0(} .370 2.70 .00408 .00411 .00298 .00314 

Tc
8 

from the stochastic model and the Taylor series 1.00 .44,5 2.25 .00482 .00424 .00349 .00365 
.50 .259 1.93 .00469 .00480 .00393 .00411 

approximation are essentially the same over the en- .80 .415 1.93 .00462 .00393 .00410 
.30 .375 .800 .00940 .00959 .00696 .00'719 

tire range of ratios considered. .20 .325 .615 .01135 .00799 .00828 
.10 .250 .400 .0147 .01322 .00992 .0104 
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tions in the computations for the stochastic model 
with Tc

8 
as compared with 200 repetitions for Ten is 

again noticeable, particularly for the 24.0 and 7.50 
ratios. The variability of the variances within a 
group is much larger for the calculations with 200 
repetitions. It is also interesting that the largest 
variances for the 7.50 ratio occurred for different 
combinations of K2 and K1. This probably occurs be­
cause of the random nature of the simulation process. 

The variances computed from the stochastic model 
and the Taylor series approximation with the deter­
ministic critical time of travel are plotted in figure 
16 as a function of the ratio of the reaeration and 

·deoxygenation coefficients. The average variance 
was plotted for those ratios where several variances 
were computed. The variance from the stochastic 
model is larger than the variance from the Taylor 
series approximation over the entire range of ratios 
considered. This difference undoubtedly occurred 
because higher order terms in the Taylor series ex­
pansion were neglected. Figure 16 also shows the 
random nature of the simulation process in that the 
points for the stochastic model tend to scatter about 
the trend line whereas the points for the Taylor 
series approximation all tend to lie on the trend line. 

The variances computed with the stochastic criti-
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FIGURE 16.-Variance of the oxygen deficit as a function of the ratio of the reaeration and deoxygenation coefficients; 
stochastic model and Taylor series approximation with the deterministic critical time of travel. 
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cal time of travel are plotted in figure 17 as a func­
tion of the ratio of the reaeration and deoxygena­
tion coefficients. The dependence of the variance on 
the ratio is essentially identical to the behavior for 
the deterministic critical time of travel shown in 
figure 16, with the exception that the curve for the 
Taylor series approximation falls away more rapid­
ly than the stochastic model curve for large ratio 
values. 

The effect on the variance of the type of critical 
travel time used in the computations is shown in 
figures 18 and 19. Figure 18 shows the variation 
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with the ratio of the reaeration and deoxygenation 
coefficients of the variance computed from the sto­
chastic model; figure 19 shows the variation with the 
ratio of the coefficients of the variance computed 
from the Taylor series approximation. Figure 18 
shows that the variances are essentially identical for 
the two critical times up to a ratio of about 4 at 
which point the variances computed for Ten drop off 
more rapidly than the variances computed for Tc

8
• 

Figure 19 shows essentially the same behavior for 
the Taylor series approximation except that there is 
less scatter of the points around the curves. Also the 
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FIGURE 17.-Variance of the oxygen deficit as a function of the ratio of the reaeration and deoxygenation coefficients; 
stochastic model and Taylor series approximation with the stochastic critical time of travel. 
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FIGURE 18.-Variance of the oxygen deficit as a function of the ratio of the reaeration and deoxygenation coefficients; 
stochastic model with the deterministic and stochastic critical times of travel. 

Tc
8 

results are always larger than the TeD results and 
the difference increases as the ratio of the reaeration 
and deoxygenation coefficients increases, in agree­
ment with the dependence of the difference of the 
critical times of travel on the ratio (recall fig. 13). 
Consideration of figures 13, 18, and 19 suggests that 
the variance for a specific set of conditions tends to 
increase as the estimate of the critical time of travel 
increases and the amount of the increase increases 
as the ratio of the coefficients increases. This ob­
servation is qualitatively in agreement with the re­
sults of the analysis of the Sacramento River data 
where it was concluded that the variance was a maxi-

mum for some time larger than the critical time of 
travel. 

The ·Taylor series expression for the variance (re­
call eq 83) may be used to determine the relative 
contributions of the various terms to the total vari­
ance. The terms H 6' H 1, H a, H 9' H 10, and H 11 were 
computed for each of the sets of reaeration and de­
oxygenation coefficients (see table 5) with Tc

8 
and 

the other coefficients given previously. The results 
are presented in table 9. Because the results were the 
same for each ratio of K2 and K1, only one result for 
each ratio is given in table 9. Recall that H6, H1, and 
H 8 represent the effects on the variance of the varia-
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FIGURE 19.-Variance of the oxygen deficit as a function of the ratio of the reaeration and deoxygenation coefficients; 
Taylor series approximation with the deterministic and stochastic critical times of travel. 

tion of the deoxygenation coefficient along the reach, 
the variation of the reaeration coefficient, and the 
correlation between these coefficients, respectively. 
Also the terms H 9' H 10, and H 11 represent the effects 
on the variance of the variation of the initial BOD, 
the variation of the initial value of the deoxygena­
tion coefficient, and the correlation between these 
coefficients, respectively. 

The H terms are plotted in figure 20 as a function 
of the ratio of the reaeration and deoxygenation co-

efficients. The terms Hs and Hn were negative; 
hence, the negative of these two were plotted in 
figure 20. The variation of the total variance, that is, 
the sum of H 6' H ,, H s, H 9' H 1o, and H n, with the ratio 
of the deoxygenation and reaeration coefficients was 
presented previously in figure 19. 

Figure 20 and table 9 show that H 1 changes the 
largest amount over the range of ratios considered; 
that is, H 1 is largest for the small ratios and smallest 
for the large ratios. Recall that H 1 gives the effect on 
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TABLE 9.-Distribution of the variance among the terms making up the variance estimated by the Taylor series approxima­
tion of the stochastic model 

H terms, in (milligrams per litre) 2 Variance 
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FIGURE 20.-Distribution of the variance among the terms 
making up the variance as a function of the ratio of the 
reaeration and deoxygenation coefficients. 

the variance of random variations in the reaeration 
coefficient. Thus, in a deep, slow-flowing stream with 
a small reaeration coefficient, random variations in 
K2 make the largest contribution to the variance of 
the oxygen deficit. On the other hand, for a shallow, 
rapidly flowing stream with a large reaeration coeffi­
cient and the same deoxygenation coefficient, random 
variations in K2 make the smallest contribution to 
the variance of the oxygen deficit. This difference in 
contribution may also be seen by computing the per­
centage of the total variance that each of the six 
terms contributes. For KdK1 = 24.0, the percentages 
are 29.1, 19.3, -31.7, 38.7, 109.4, .and -64.8 for H6, I 
H1, Hs, H9, H1o, and Hn, respectively; for KdK1 = 

Ho H1o Hn (mg/1)2 

0.0000990 0.000280 -0.000166 0.000256 
.000208 .000599 -.000352 .000579 
.000383 .00111 -.000650 .00112 
.000544 .00157 -.000921 .00164 
.000710 .00203 -.00120 .00219 
.000827 .00236 -.00140 .00261 
.000971 .00275 -.00163 .00315 
.00110 .00310 -.00184 .00365 
.00120 .00340 -.00202 .00410 
.00161 .00460 -.00272 .00719 
.00162 .00470 -.00275 .00829 
.00148 .00454 -.00259 .0104 

0.400, the percentages are 25.9, 113.6, -72.5, 14.2, 
43.7, and -24.9, respectively. Thus, the contribution 
of H1 increases from 19.3 percent to 113.6 percent as 
K2/K1 decreases from 24.0 to 0.400. 

Figure 20 and table 9 show that H6, H9, H1o, and 
H n all have maximum contributions to the variance 
at a ratio of 0.615 for the specific values of ratios 
considered. However, for ratios between 0.4 and 
about 2, these four factors do not change appreci­
ably. Also, as the ratio decreases, the dependence of 
the total variance on the ratio decreases (see fig. 19). 

· Recall that H11, H 9 , H10 , and Hn give the effect on the 
variance of random variations in k, random varia­
tions in Lo, random variations in KlJ and correlation 
between Lo and k, respectively. 

Figure 20 shows that H9 contributes the least to 
the total variance over most of the ratio range con­
sidered. On the other hand, H 10 contributes the most 
to the total variance for ratios larger than 1.0. Thus, 
of the two factors describing the waste at the up­
stream end of the reach, the variations in the deoxy­
genation coefficient, KlJ contribute the greater 
amount to the total variance. 

Figure 20 shows that the six terms are most near­
ly equal in the middle part of the range of ratios 
considered, that is, between ratios of about 2 and 6. 
For larger and smaller ratios, the values of the dif­
ferent terms diverge. However, for all ratios con­
sidered, all the terms contribute significantly to the 
total variance with the minimum contribution being 
the 19.3 percent of Hi for a ratio of 24.0. 

In considering the results presented in table 9 and 
figure 20, it should be remembered that these re­
sults are specifically only for the values of the co­
efficients of variation and the correlation coefficients 
used in the computations. For other values of these 
coefficients, the distribution of the total variance 
among the six terms would undoubtedly be different. 
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Further work is needed to determine the sensitivity 
of the equation to these coefficients. 

The variances computed from the stochastic model 
with Tc

8 
were used to prepare a graph showing the 

variance as a function of the reaeration coefficient 
and the critical time of travel. The result is pre­
sented in figure 21. Because the mean value of the 
BOD at the upstream end of the reach was assumed 
to be 1.0 mg/1, figure 21 is similar to the graphs pre­
sented previously for the '1!-parameter (recall figs. 
8, 9, and 10). The one important difference is that 
figure 21 is specifically for the critical time of travel 
whereas figures 8, 9, and 10 are for general times of 
1, 2, and 3 days, respectively. Note the difference in 
the figures, however. The additional constraint of a 
critical time results in the deoxygenation coefficient 
varying linearly with the reaeration coefficient for a 
specific value of the variance; on the other hand, the 
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dependence shown in figures 8, 9, and 10 in general 
is not linear but depends on the values of the vari­
ables under consideration. 

EVALUATION OF THE MODEL 

The problem of predicting the response of the dis­
solved-oxygen concentration of a stream to the addi­
tion of biodegradable wastes has been of much inter­
est ever since the pioneering work of Streeter and 
Phelps ( 1925). Much of this interest has been di­
rected toward predicting the dissolved-oxygen con­
centration or the oxygen deficit at downstream 
points as a function of the hydraulic properties of 
the stream and the deoxygenation coefficient and 
BOD of the waste. With the development of com­
puters, however, the use of mathematical techniques 
that previously would not have been practical has be-

0.ooo5 

1.5 2.0 2.5 

REAERATION COEFFICIENT, IN RECIPROCAL DAYS 

FIGURE 21.-Variance of the oxygen deficit as a function of the deoxygenation and reaeration coefficients; stochastic 
model with the stochastic critical time of travel. 
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come common. With these techniques, it has become 
possible to predict the variances of the oxygen deficit 
and the biochemical-oxygen-demand, in addition to 
the mean values, at downstream points. This ability 
adds a new dimension to water-quality standards in 
that it is possible to estimate the confidence limits 
for the mean oxygen deficit and hence the proba­
bility of failing to meet the standard by any speci­
fied amount. 

The stochastic model of this study uses Monte 
Carlo simulation in which a complex system with 
random components is operated by random numbers 
chosen so that they simulate the physical behavior 
of the components. The distribution of the dissolved­
oxygen deficit and consequently the mean and vari­
ance of the distribution are estimated by repeating 
the process a large number of times. The model has 
the capability of considering the reaeration and de­
oxygenation coefficients and the BOD at the up­
stream end of the reach as random variables; in ad­
dition, correlation between pairs of these variables 
can be considered in the model. The model does not 
require actual measurements of the variance for pre­
diction of other variances, as does the model of Thay­
er and Krutchkoff ( 1966). However, considerable 
information is needed. For each coefficient consid­
ered to be a random variable, the variance and the 
mean value, or equivalently, the coefficient of varia­
tion, must be known. For each pair of variables for 
which correlation is assumed, the correlation coeffi­
cient must be known. 

Information of this type for the most part is not 
available; it was necessary to assume values for the 
coefficients of variation of the reaeration and deoxy­
genation coefficients and for the correlation coeffi­
cient between these variables for the test of the 
model with the Sacramento River data. The values 
assumed, however, were derived from data on other 
rivers; the coefficient of variation of the deoxygena­
tion coefficient was determined from the Ohio River 
data and the coefficient of variation of the reaeration 
coefficient was estimated from data for Tennessee 
Valley streams. The value used for the correlation 
coefficient was arbitrarily assumed. Consideration of 
the physical processes involved in the reaeration and 
deoxygenation process suggests that a positive cor­
relation would be expected but gives no indication of 
the magnitude of the coefficient. It is well known that 
the deoxygenation and reaeration coefficients deter­
mined for one stream or one particular reach of a 
stream should be used for other streams or other 
reaches only with caution because of the sensitivity 
of these coefficients to changes in conditions. But 

note that in this instance it is the variability of the 
coefficients with respect to the mean values that is 
transferred between streams rather than the mean 
values. Thus, the assumption is that variations in 
the coefficients of variation for different streams 
will be considerably less than variations in the mean 
values. This assumption is supported by the data for 
the Tennessee Valley rivers presented in table 11. 
Note that the reaeration coefficients vary over about 
a 22-fold range, whereas the coefficients of variation 
vary only over about a 6-fold range. 

The tests of the stochastic model with the hypo­
thetical examples, the Sacramento River data, and 
the computations of the variances at the critical time 
of travel for the most part gave reasonable values 
for the variance of the oxygen deficit. This result 
suggests that the values assumed for the coefficients 
of variation and the correlation coefficients were 
reasonable~ 

As discussed in the previous section, the stochastic 
model also has the capability of handling the division 
of random variations in the deoxygenation coeffi­
cient between those of the coefficient at the upstream 
end of the reach and those of the coefficient along 
the reach. The variances of these two coefficients 
may be significantly different, as the analysis of the 
Ohio River data showed; furthermore this differ­
ence may significantly affect the calculation of the 
variance of the deficit distribution. The stochastic 
model in general can consider any coefficient as a 
normally distributed random variable if the mean 
and variance are known; additionally, correlation 
between any two variables can be treated if the cor­
relation coefficient is known. The problem is the de­
termination of the coefficients of variation and the 
correlation coefficients for the variables of interest. 
Further work in this area is needed. 

Comprehensive studies of water quality usually 
require segmenting the stream when conditions 
change appreciably with distance downstream. In 
segmenting, the conditions at the downstream end 
of each segment serve as the input conditions to the 
next segment. The stochastic model can be used in 
this situation, however, a small modification is 
needed. Recall that in the development of the basic 
equation of the stochastic model, equation 41, it was 
assumed that the variance of the initial dissolved­
oxygen deficit, Cs-F(~), was small. With segment­
ing, this assumption is probably valid only for the 
first segment because in reality it is the variance of 
this term, C.y- F (~), which the stochastic model esti­
mates for the downstream end of each reach. Hence, 
the input deficit to the next reach (or segment) is a 
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random variable with some variance that cannot be 
neglected. This modification requires that C8 -F(') 
be removed from the B factor (recall equation 40) 
and added to the right hand side of equation 41 as 

n 
the term[C8 -F(')] exp (- L K2iD.T). 

i=1 
Another approach that could be used in applying 

the stochastic model to a segmented stream is to use 
equations 42, 43, 44, and 45. These difference equa­
tions segment the stream at D.T intervals and there­
fore could be used recurrently in the computation 
procedure, as described previously. Similarly, the 
Taylor series approximations of the stochastic mod­
el could be applied readily to a segmented stream 
system. 

The basic equation of the stochastic model can be 
expanded in a Taylor series to give an approximate 
equation for the variance. This equation involves 
sums and differences of exponentials and can be 
solved without a computer; the Monte Carlo com­
putations, on the other hand, can be done efficiently 
only on a computer. It is possible to prepare charts 
for estimating the variance (recall figs. 8, 9, 10, and 
21); these, however, are for specific conditions. 
Thus, in the event that a preliminary estimate of the 
variance is desired for conditions not covered by 
the available charts, the approximate equation may 
be used. The approximate equation may also be 
used to indicate how the variance is divided among 
the various terms describing the total variance, as 
described previously. 

The stochastic model is a step toward the fulfill­
ment of the need for a procedure for predicting the 
variances, in addition to the mean values, of the bio­
chemical-oxygen-demand and the dissolved-oxygen 
deficit at points in a stream downstream from a 
waste source. Further work is needed, however, on 
both the experimental and theoretical aspects of the 
problem. Experimental aspects needing further 
study are the: 

1. Coefficients of variation of the various coefficients 
and the dependence, if any, on the type of 
stream. 

2. Correlation coefficients between the reaeration 
and deoxygenation coefficients and possible de­
pendence on the time of travel. 

3. Possible correlation between BOD and the oxy­
gen deficit and between BOD and the deoxy­
genation coefficient. 

4. Possible variations in Ks, the rate constant for 
removal of BOD by sedimentation to the 
stream bottom. 

An experimental problem fundamental to all aspects 
of dissolved-oxygen balance studies is the time inter­
val required for the BOD determinations; for 
reaches where the input BOD varies with time, the 
standard procedure is not satisfactory. Work is 
needed in the area of correlating BOD with some 
quantity that can be measured rapidly, for example, 
total organic carbon. Some work of this type has 
been done, however, considerable additional effort 
is needed. 

Theoretical aspects needing further study are: 

1. Possible analytical methods for determining the 
probability distribution of the oxygen deficit. 

2. Methods for considering lateral variations in the 
rate coefficients and the concentrations of BOD 
and dissolved oxygen. 

3. Sensitivity analysis of the stochastic model to 
determine which of the coefficients of variation 
and correlation coefficients are most important 
in the determination of the variance. 

4. Accelerated Monte Carlo techniques to reduce the 
computer time required in the determination 
of the oxygen-deficit distributions. 

SUMMARY 

A random walk model was developed for predict­
ing the distribution of the biochemical-oxygen-de­
mand for points downstream from a waste source 
for a stream system in which the deoxygenation co­
efficient is a normally distributed random variable. 
The model has the capability of considering both the 
mean and variance of the deoxygenation coefficient 
as functions of the time of travel through the reach. 

A stochastic model using a Monte Carlo technique 
for simulating a random walk process was developed 
for estimating the distribution of the dissolved­
oxygen deficit for points downstream from a waste 
source for a stream system in which both the deoxy­
genation and reaeration coefficients are normally 
distributed random variables. The model has the 
capability of considering the mean and variance of 
the two coefficients as functions of the time of travel 
through the reach. The model has the additional 
capabilities of considering the biochemical-oxygen­
demand at the upstream end of the reach as a nor­
mally distributed random variable and of dividing 
random variations of the deoxygenation coefficient 
into variations of the deoxygenation coefficient at 
the upstream end of the reach and of the deoxygena­
tion coefficient along the reach. 

Equations for approximating the mean oxygen 
deficit and the variance of the oxygen deficit were 
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developed by expanding the basic equation of the 
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deterministic and stochastic critical time of 
travel were essentially negligible. stochastic model in a Taylor series. 

Principal conclusions for the range of conditions 
considered are: 

1. Random variations in the type and concentration 
of wastes discharged into a stream and random 
variations in the hydraulic conditions within a 
stream provide ample basis for considering the 
deoxygenation and reaeration coefficients and 
the biochemical-oxygen-demand at the up­
stream end of the reach as random variables. 

2. The distribution function for the biochemical­
oxygen-demand derived from the random walk 
model shows that the BOD is distributed ac­
cording to the lognormal distribution. 

3. The random walk model simulated by the Monte 
Carlo technique efficiently estimates the vari-
ance of the dissolved-oxygen deficits for points 
in a stream downstream from a waste source. 
The error in the simulation process was found 
to be inversely proportional to the number of 
steps used in the random walk process and in­
versely proportional to the square root of the 
number of times the process is repeated. 

4. The predicted frequency distributions of the oxy­
gen deficit became flatter and skewed to the 
right as time of travel increased. This type of 
skewness is favorable in the determination of 
probabilistic water-quality standards because 
the percentile limits of the oxygen deficit will 
be less sensitive to errors in the values esti­
mated for the coefficients of variation of the 
deoxygenation and reaeration coefficients and 
the correlation coefficient between these two 
coefficients. 

5. The critical time of travel estimated from the 
stochastic model was always larger than the 
critical time of travel computed from the de­
terministic model; the difference decreased as 
the ratio of the reaeration and deoxygenation 
coefficients decreased. 

6. The critical time of travel for both the stochastic 
and deterministic models was extremely sensi­
tive to the reaeration coefficient when the de­
oxygenation coefficient was small and extreme­
ly sensitive to the deoxygenation coefficient 
when the reaeration coefficient was small, for 
the range of coefficients considered. 

7. Differences among the mean oxygen deficits com­
puted from the deterministic model, the sto­
chastic model, and the Taylor series approxi­
mation of the stochastic model with both the 

8. The variance of the oxygen deficit seems to be 
maximum for some time of travel larger than 
the critical time of travel. The Sacramento 
River data, although containing considerable 
scatter, tend to demonstrate this effect. 

9. The variance estimated from the Taylor series 
approximation of the stochastic model was 
comparable to the variance obtained from the 
stochastic model for small times of travel; as 
the time of travel increased, the Taylor series 
approximation underestimated the variance 
because of the neglecting of higher order 
terms. 

10. The variance at the critical time of travel esti­
mated from the Taylor series approximation 
was less than the variance of the stochastic 
model over the entire range of deoxygenation 
and reaeration coefficients considered. The 
same behavior was found for both the deter­
ministic and the stochastic critical times of 
travel. 

11. The variance at the critical time of travel showed 
the greatest dependence on the ratio of there­
aeration and deoxygenation coefficients at large 
values of the ratio and the smallest dependence 
at small values of the ratio. On the other hand, 
the variance was largest for the small ratios 
and smallest for the large ratios. 

12. The distribution of the variance among the six 
terms making up the Taylor series approxima­
tion of the stochastic model shows that the 
term giving the effect of random variations in 
the reaeration coefficient varies the largest 
amount over the range of conditions consid­
ered. Of the two factors describing the waste 
at the upstream end of the reach, the deoxy­
genation coefficient contributes the greater 
amount to the variance. 

13. The stochastic model developed in this study re­
quires estimates of the coefficient of variation 
of the deoxygenation and reaeration coefficients 
and of the correlation coefficient between these 
variables for estimating the variance of the 
oxygen deficit as a function of the time of 
travel. In comparison, the model of Thayer and 
Krutchkoff ( 1966) requires the measurement 
of the variance at some time of travel for pre­
dicting the variance at other times of travel. 

14. There is considerable need for a procedure for 
predicting the variances, in addition to the 
mean values, of the biochemical-oxygen-de-
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mand and the dissolved-oxygen deficit at points 
in a stream downstream from a waste source. 
The stochastic model developed in this study 
is a step toward the fulfillment of this need. 
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TABLE 10.-Biochemical-oxygen-demand data for the Ohio TABLE 10.-Biochemical-oxygen-demand data for the Ohio 
River (from Kothandaraman, 1968) and results of the River (from Kothandaraman, 1968) and results of the 
data analysis data analysis-Continued 

Observa- T BOD K1 Lo K1 var Observa- T BOD K1 Lo K1 var tion (K1l tion (K1) No. (days) (mg/1) (days-1) (mg/l) (days-1) (days-2 ) No. (days) (mg/1) (days-1 ) (mg/1) (days-1 ) (days-2 ) 

1 --- 0.99 2.42 0.286 9.8 0.280 0.0013 19 --- .98 1.76 .237 8.5 .218 .0003 
1.86 4.19 .315 1.85 2.84 .201 
2.95 5.60 .266 2.79 3.96 .235 
4.85 7.02 .217 4.84 5.49 .200 

2 --- .85 2.01 .317 8.5 .284 .0009 20 --- .89 1.47 .242 7.6 .211 .0006 
1.52 3.18 .298 1.55 2.23 .201 
2.60 4.39 .239 2.64 3.37 .219 
4.51 6.06 .273 4.54 4.56 .174 

3 --- 1.02 2.49 .281 10.0 .240 .0011 21 --- 1.02 1.32 .174 8.1 .164 .0002 
2.21 4.21 .219 2.21 2.33 .136 
3.12 5.24 .215 3.12 3.14 .166 
4.91 6.63 .193 4.91 4.30 .149 

4 --- .95 2.44 .298 9.9 .277 .0009 22 --- .96 1.84 .217 9.8 .181 .0007 
1.96 4.35 .293 1.96 3.01 .159 
2.88 5.40 .228 2.88 3.86 .145 
4.83 7.12 .247 4.90 5.59 .170 

5 --- .68 1.73 .286 9.8 .254 .0013 23 --- .64 1.23 .224 9.2 .193 .0012 
1.68 3.55 .256 1.64 2.72 .207 
2.59 4.84 .254 2.55 3.45 .131 
4.89 6.58 .188 4.57 5.34 .197 

6 --- .96 2.35 .267 10.4 .239 .0007 24 --- 1.01 1.26 .141 9.5 .127 .0004 
1.88 3.91 .234 1.93 2.16 .126 
2.86 5.18 .222 2.92 2.81 .094 
4.81 6.80 .191 4.86 4.40 .140 

7 --- 0.97 2.62 .317 9.9 .275 .0013 25 --- 1.00 1.55 .204 8.4 .195 .0001 
1.84 4.01 .244 1.88 2.60 .189 
2.93 5.54 .276 2.96 3.73 .201 
4.85 7.05 .221 4.86 5.05 .175 

8 --- .86 1.49 .227 8.4 .216 .0007 26 --- .90 1.13 .127 10.5 .105 .0002 
1.53 2.53 .243 1.56 1.71 .097 
2.59 3.52 .174 2.65 2.62 .100 
4.52 5.18 .215 4.55 3.88 .092 

9 --- 1.02 2.25 .229 10.8 .201 .0006 27 --- 1.02 1.22 .152 8.5 .135 .0002 
2.21 4.03 .196 2.21 2.20 .121 
3.12 5.02 .174 3.10 2.85 .122 
4.91 6.49 .164 4.91 4.13 .142 

10 --- .96 2.53 .269 11.1 .218 .0014 28 --- .96 1.34 .160 9.4 .142 .0003 
1.96 3.96 .183 1.96 2.37 .137 
2.88 5.03 .176 2.88 3.20 .137 
4.83 6.98 .199 4.90 4.44 .110 

11 --- .67 1.48 .268 9.0 .233 .0010 29 --- .62 .82 .144 9.6 .120. .0002 
1.67 3.08 .239 1.62 1.79 .117 
2.58 4.09 .206 2.54 2.62 .122 
4.60 5.63 .186 4.56 3.92 .102 

12 --- 1.03 2.04 .259 8.7 .226 .0011 30 --- .96 1.11 .131 9.4 .122 .0001 
1.95 3.30 .228 1.88 2.06 .132 
2.94 4.13 .169 2.86 2.78 .105 
4.89 5.62 .202 4.81 4.16 .120 

13 --- .96 2.29 .230 9.7 .241 .0009 31 --- .87 1.61 .316 6.7 .207 .0052 
1.83 3.66 .235 1.87 2.41 .171 
2.92 4.84 .199 2.92 3.07 .159 
4.82 6.52 .223 4.75 3.84 .130 

14 --- .88 1.52 .230 8.3 .207 .0005 32 --- .96 1.86 .241 9.0 .185 .0021 
1.54 2.35 .198 1.56 2.62 .188 
2.62 3.35 .170 2.60 3.42 .129 
4.53 4.91 .198 4.44 4.64 .134 

15 --- 1.02 1.79 .178 10.8 .151 .0005 33 --- 1.19 2.06 .155 12.2 .128 .0003 
2.21 3.07 .129 2.54 3.48 .118 
3.12 4.09 .156 3.23 4.17 .119 
4.91 5.39 .120 5.10 5.62 .106 

16 --- .96 2.35 .292 9.6 .254 .0018 34 --- .83 1.59 .221 9.5 .154 .0022 
1.96 4.01 .260 1.98 2.77 .140 
2.88 4.84 .175 2.87 3.42 .114 
4.83 6.64 .244 4.75 4.48 .102 

17 --- .66 1.23 .210 9.5 .186 .0006 35 --- .46 .87 .190 10.4 .157 .0014 
1.66 2.67 .191 1.60 2.74 .192 
2.57 3.72 .183 2.50 3.50 .116 
4.59 5.15 .141 4.38 4.86 .117 

18 --- .98 1.73 .232 8.5 .197 .0008 36 --- 1.13 1.82 .246 7.5 .196 .0018 
1.90 2.81 .189 2.02 2.64 .175 
2.89 3.64 .159 2.85 3.29 .173 
4.83 4.99 .168 4.77 4.20 .129 
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TABLE 10.-Biochemical-oxygen-demand data for the Ohio TABLE 10.-Bwchemical-oxygen-demand data for the Ohio 
River (from Kothandaraman, 1968) and results of the River (from Kothandaraman, 1968) and results of the 
data analysis-Continued data analysis-Continued · 

Observa- T BOD K1 Lo K1 var Observa- T BOD K1 Lo K1 var 
tion (days) (mg/1) (days-1) (mg/1) (days-1) (K1) tion (days) (mg/l) (days-1) (mg/1) (days-1) (K1) 
No. (days-2 ) No. (days-2 ) 

37 --- .87 1.61 .416 5.3 .286 .0095 55 --- .96 1.28 .201 7.3 .146 .0020 
1.87 2.34 .220 1.56 1.60 .091 
2.92 2.79 .157 2.60 2.16 .099 
4.75 3.62 .219 4.44 3.46 .158 

38 --- .96 1.68 .264 7.5 .208 .0019 56 --- 1.19 1.40 .130 9.8 .097 .0005 
1.56 2.33 .197 2.54 2.22 .076 
2.60 3.03 .140 3.23 2.66 .087 
4.44 4.36 .192 5.10 3.62 .077 

39 --- 1.19 1.70 .118 13.0 .090 .0005 57 --- .83 1.28 .207 8.1 .165 .0013 
2.54 2.82 .077 1.98 2.46 .165 
3.23 3.40 .085 2.87 3.21 .160 
5.10 4.34 .055 4.75 4.08 .104 

40 --- .83 1.44 .253 7.6 .174 .0037 58 --- .54 .59 .199 5.8 .152 .0018 
1.98 2.46 .157 1.69 1.58 .183 
2.87 3.13 .157 2.58 1.90 .089 
4.75 3.76 .081 3.42 2.36 .149 

41 --- .46 .82 .221 8.5 .163 .0026 59 --- 1.13 1.44 .164 8.5 .125 .0009 
1.60 2.23 .178 2.02 2.16 .121 
2.50 3.02 .150 2.85 2.66 .099 
4.38 4.07 .113 4.77 3.54 .085 

42 --- 1.13 1.79 .196 9.0 .168 .0014 60 --- .88 2.10 .119 21.1 .093 .0005 
2.02 2.86 .180 1.88 3.42 .072 
2.85 3.63 .161 2.75 4.72 .088 
4.77 4.54 .097 4.88 6.75 .062 

43 --- .87 1.57 .370 5.7 .274 .0044 61 --- .90 4.09 .186 26.6 .122 .0001 
1.87 2.34 .206 1.81 6,19 .108 
2.92 3.10 .244 2.40 7.20 .086 
4.75 3.93 .210 4.52 10.43 .086 

44 --- .96 1.39 .173 9.1 .119 .0012 62 --- 2.04 4.05 .101 21.8 .084 .0003 
1.56 1.85 .103 3.23 5.43 .068 
2.60 2.45 .083 5.00 6.95 .055 
4.44 3.51 .094 6.96 9.07 .079 

45 --- 1.19 1.74 .185 8.8 .154 .0007 63 --- 1.04 2.60 .199 13.9 .191 .0030 
2.54 2.98 .143 1.79 4.61 .261 
3.23 3.55 .149 2.98 5.88 .124 
5.10 4.52 .109 4.75 7.60 .136 

46 --- .82 1.34 .320 5.8 .260 .0166 64 --- .73 2.97 .244 18.2 .173 .0034 
1.98 2.48 .254 1.35 4.88 .216 
2.87 2.66 .063 2.54 6.72 .125 
4.75 4.36 .415 4.31 8.71 .108 

47 --- .54 .57 .144 7.6 .119 .0005 65 --- 1.04 3.42 .137 25.7 .121 .0005 
1.69 1.54 .129 2.23 6.32 .117 
2.58 1.96 .081 3.17 7.74 .081 
3.42 2.48 .115 4.98 11.57 .133 

48 --- 1.13 1.94 .226 8.6 .182 .0015 66 --- .94 1.54 .052 32.4 .048 .0001 
2.02 2.89 .173 1.88 2.60 .037 
2.85 3.62 .165 2.81 3.57 .036 
4.77 4.63 .118 4.62 6.50 .059 

49 --- .87 1.56 .315 6.5 .252 .0037 67 --- .88 1.50 .071 24.8 .051 .0002 
1.87 2.68 .257 1.88 2.65 .051 
2.92 3.50 .230 2.75 3.51 .046 
4.75 4.20 .145 4.88 5.07 .036 

50 --- .96 1.37 .234 6.8 .165 .0022 68 --- 2.04 6.03 .105 25.2 .116 .0004 
1.56 1.74 .118 3.23 7.72 .078 
2.60 2.34 .121 5.00 11.18 .125 
4.44 3.36 .141 6.96 13.14 .077 

51 --- .82 1.28 .164 10.2 .117 .0009 69 --- 1.01 2.30 .228 11.2 .204 .0006 
1.98 2.40 .116 1.76 3.59 .209 
2.87 3.00 .090 2.95 4.98 .169 
4.75 4.11 .089 4.72 6.65 .177 

52 --- .54 .60 .185 6.3 .130 .0021 70 --- .78 2.35 .180 17.9 .143 .0011 
1.69 1.45 .140 1.35 3.67 .156 
2.58 1.83 .092 2.54 5.82 .138 
3.42 2.15 .088 4.31 7.61 .091 

. 53 --- 1.13 1.73 .147 11.3 .107 .0009 71 --- 1.04 2.76 .094 29.7 .084 .0003 
2.02 2.52 .097 2.23 5.22 .080 
2.85 3.03 .072 3.17 6.42 .053 
4.77 4.13 .106 4.98 10.23 .099 

54 --- .87 1.58 .351 6.0 .313 .0336 72 --- .94 1.18 .051 25.4 .053 .0004 
1.87 2.52 .239 1.88 2.26 .049 
2.29 3.36 .658 2.81 3.22 .046 
4.75 4.32 .184 4.62 5.44 .095 
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TABLE 10.-Biockemical-oxygen-demand data for the Ohio TABLE ll.-Mean, variance, and coefficient of variation of the 
River (from Kothandaraman, 1968) and results of the reaeration coefficient data of Churchill, Elmore, and Buck-
data analysis-Continued ingham (1962) 

Observa- T BOD K1 Lo K1 var Num-
tion (days) (mg/1) (days-1) (mg/1) (days-1) (K1) Experi- her K2 Var No. (days-2) ment of (days-1) (Kz) c.,(Kd 

No. observa- (days-2) 
73 --- .59 1.38 .184 13.4 .142 .0008 tions 

1.53 2.76 .130 
2.47 3.78 .108 1 19 2.920 2.741 0.56 
4.28 5.94 .140 2 19 1.449 .027 .11 

74 --- .88 1.39 .086 19.0 .065 .0002 3 25 1.061 .152 .37 
1.88 2.56 .069 4 29 .550 .051 .40 
2.75 3.31 .054 5 29 .842 .139 .43 
4.88 4.79 .047 6 30 1.170 .092 .26 

75 --- 2.04 3.55 .110 17.7 .096 .0003 7 26 .315 .018 .43 
3.23 5.03 .093 8 30 3.422 .414 .19 
5.00 6.35 .062 9 16 2.819 .146 .14 
6.96 8.19 .090 10 5 1.574 .023 .10 

76 --- .94 2.01 .233 10.2 .226 .0137 11 31 .505 .043 .41 
1.69 3.71> .318 12 26 .420 .023 .36 
3.88 5.32 .127 13 27 .300 .015 .41 
4.65 6.74 .467 14 26 .660 .114 .51 

77 --- .73 1.63 .113 20.6 .082 .0003 15 18 .559 .017 .23 
1.35 2.65 .089 16 7 .670 .085 .43 
2.54 4.16 .074 17 20 1.309 .184 .33 
4.31 5.92 .064 18 8 0.284 .006 .28 

78 --- .59 1.06 .089 20.7 .061 .0005 19 8 0.261 .016 .49 
1.53 2.24 .066 20 8 1.896 .063 .13 
2.47 2.70 .027 21 8 .870 .051 .26 
4.28 4.38 .054 22 6 .934 .101 .34 

79 --- .94 2.39 .372 8.1 .314 .0029 23 7 .983 .135 .37 
1.69 3.26 .220 24 7 1.006 .025 .16 
2.88 4.66 .287 21> 8 .557 .012 .20 
4.65 6.06 .295 26 8 .903 .043 .23 

80 --- .73 1.20 .041 40.4 .036 .0000 28 16 5.858 3.289 .31 
1.35 1.86 .027 29 16 1.812 .336 .32 
2.54 3.29 .032 30 19 3.265 .285 .16 
4.31 5.55 .035 Average C., (K2) =0.307 

81 --- .94 1.34 .187 8.3 .178 .0005 
1.69 2.30 .198 
2.88 3.32 .157 
4.65 4.42 .141 

82 --- .73 1.32 .170 11.3 .159 .0014 
1.35 2.58 .218 
2.54 3.98 .147 
4.31 5.33 .115 

83 --- 1.04 2.96 .305 10.9 .295 .0045 
2.23 5.20 .279 
3.17 6.38 .247 
4.98 8.80 .424 
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TABLE 12.-Correlation coefficient between the biochemical-oxygen-demand and the dissolved-oxygen concentration (from 
Moushegian and Krutchkoff, 1969) 

Correlation coefficient, r(BOD, C) 

K2 ----··------ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 

Kt T = 1 day 

0.1 ---------- .70 .59 .52 .49 .46 .45 .43 .43 .42 .42 .41 .41 .41 
.2 ---------- .69 .61 .56 .53 .51 .50 .48 .47 .46 .46 .45 .44 
.3 ---------- .80 .70 .63 .59 .56 .53 .51 .50 .48 .47 .46 .45 .44 
.4 ---------- .81 .64 .60 .56 .53 .51 .50 .48 .47 .46 .44 .43 
.5 ---------- .81 .71 .64 .59 .56 .53 .51 .49 .47 .46 .44 .43 .42 

Kt T = 2 days 

0.1 ---------- .67 .56 .51 .48 .46 .45 .44 .43 .42 .41 .40 .39 .38 
.2 ---------- .60 .53 .50 .47 .44 .43 .41 .39 .38 .36 .35 .34 
.3 ---------- .70 .58 .52 .47 .44 .41 .39 .37 .36 .34 .32 .31 .30 
.4 ---------- .68 .49 .41 .41 .38 .36 .34 .32 .30 .29 .27 .26 
.5 ---------- .65 .53 .45 .41 .37 .34 .37 .30 .28 .27 .25 .24 .23 

K1 T = 3 days 

0.1 ---------- .63 .53 .48 .45 .43 .41 .39 .37 .35 .34 .32 .31 .29 
.2 ---------- .52 .46 .41 .38 .36 .33 .31 .29 .28 .26 .25 .24 
.3 ---------- .60 .47 .41 .36 .33 .30 .28 .26 .24 .23 .22 .24 .20 
.4 ---------- .54 .35 .31 .27 .25 .23 .21 .20 .19 .17 .17 .16 
.5 ---------- .49 .36 .30 .23 .21 .19 .19 .17 .16 .15 .14 .13 .13 

Kt T = 4 days 

0.1 ---------- .60 .50 .44 .41 .38 .35 .33 .31 .29 .27 .26 .25 .24 
.2 ---------- .44 .38 .34 .30 .27 .25 .23 .22 .21 .20 .19 .18 
.3 ---------- .49 .37 .31 .27 .24 .21 .19 .18 .17 .16 .15 .14 .13 
.4 ---------- .41 .24 .21 .18 .16 .15 .13 .12 .12 .11 .10 .10 
.5 ---------- .35 .24 .19 .16 .14 .12 .11 .10 .09 .09 .08 .08 .07 

K1 T = 5 days 

0.1 ---------- .56 .46 .40 .36 .32 .30 .27 .25 .24 .23 .21 .20 .20 
.2 ---------- .37 .31 .27 .24 .21 .19 .18 .17 .16 .15 .14 .14 
.3 ---------- .40 .29 .23 .19 .17 .15 .14 .12 .12 .11 .10 .10 .09 
.4 ---------- .31 .17 .14 .12 .10 .09 .09 .08 .07 .07 .07 .06 
.5 ---------- .24 .16 .12 .10 .08 .07 .06 .06 .05 .05 .05 .04 .04 
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TABLE 13.-Dissolved-oxygen concentration data for the Sacra- TABLE 13.-Dissolved-oxygen concentration data for the Sacra-
mento River (from Thayer and Krutchkoff, 1966) mento River (from Thayer and Krutchkof!, 1966)-Continued 

Dissolved Dissolved 
oxygen oxygen 

con centra- con centra-
River T tion River T tion 
mile 1 (days) (mg/1) mile 1 (days) (mg/l) 

46.3 0.00 8.3 28.4 1.33 7.4 
8.6 7.5 
8.9 7.6 

45.1 .05 8.2 27.4 1.52 7.3 
8.7 7.0 
8.6 7.6 

43.4 .14 8.0 26.8 1.63 7.1 
8.6 7.3 
8.3 6.8 
8.4 7.4 

42.1 .22 8.1 25.5 1.96 7.3 
8.0 7.5 
8.4 6.8 
8.5 24.3 2.09 7.2 

41.1 .29 8.2 7.5 
8.0 6.8 
8.2 7.7 

39.8 .39 7.9 23.3 2.25 7.6 
7.9 7.1 
8.0 7.3 
8.3 22.3 2.43 7.2 

38.6 .47 7.7 7.3 
8.0 7.3 

37.2 .58 7.9 21.1 2.65 7.2 
7.9 7.7 

35.9 .68 7.8 8.0 
34.4 .80 8.1 7.5 
33.5 .87 8.0 20.1 2.83 7.2 

7.9 7.7 
32.5 .95 7.8 8.2 
31.6 1.02 7.9 7.6 

7.7 18.8 3.03 7.2 
7.8 7.8 

30.1 1.15 7.4 8.2 
7.5 17.5 4.2 8.1 
7.7 8.5 

15.1 
8.7 

5.6 8.1 
8.4 
8.8 

1 River kilometre=river mile X 1.609. 
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KH ah {31, K2, a2, {32, 
r(Kh K2), Lo, La, Co, 
Ca, CB, DB, Ka, T, m, n 

~T =Tin 
:---::==---:= 

~K1 =yf31T~T 

aK2 = v f32T ~T 

P1 =-----
2 

Call random number 
generator for 

R1i 

FIGURE 22.-Flow chart for the computer program for the stochastic model for 
estimating the variance of the oxygen deficit. 
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Call random number 
generator for 

R2, 

FIGURE 23.-Continuation of the flow chart for the computer program for the stochastic model for estimating the 
variance of the oxygen deficit. 
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A D 

1 

m Dk 
MeanD = ~ --

k=l m 

m (Dk) 2 

Var (D) = ~ -[mean DF 
k=l m 

Order Dk such 
that Dk < Dk+1 for 

all k 

Write mean D, var (D), and 
Dk for k=l, m 

Stop 

FIGURE 24.-Completion of the flow chart for the computer 
program for· the stochastic model for estimating the 
variance of the oxygen deficit. 








