Vanadium Resources in Titaniferous Magnetite Deposits
1. Asbestos ore
2. Lead ore, Balmat mine, N. Y.
3. Chromite-chromium ore, Washington
6. Ribbon asbestos ore, Quebec, Canada
7. Manganese ore, banded rhodochrosite
8. Aluminum ore, bauxite, Georgia
10. Porphyry molybdenum ore, Colorado
11. Zinc ore, Edwards, N. Y.
12. Manganese nodules, ocean floor
14. Tungsten ore, North Carolina
Vanadium Resources in Titaniferous Magnetite Deposits

By R. P. FISCHER

GEOLOGY AND RESOURCES OF VANADIUM DEPOSITS

GEOLOGICAL SURVEY PROFESSIONAL PAPER 926-B
APPRAISAL OF MINERAL RESOURCES

Continuing appraisal of the mineral resources of the United States is conducted by the U.S. Geological Survey in accordance with the provisions of the Mining and Minerals Policy Act of 1970 (Public Law 91-631, Dec. 31, 1970). Total resources for purposes of these appraisal estimates include currently minable resources (reserves) as well as those resources not yet discovered or not currently profitable to mine.

The mining of mineral deposits, once discovered, depends on geologic, economic, and technologic factors; however, identification of many deposits yet to be discovered, owing to incomplete knowledge of their distribution in the Earth’s crust, depends greatly on geologic availability and man’s ingenuity. Consequently, appraisal of mineral resources results in approximations, subject to constant change as known deposits are depleted, new deposits are found, new extractive technology and uses are developed, and new geologic knowledge and theories indicate new areas favorable for exploration.

This Professional Paper discusses aspects of the geology of vanadium as a framework for appraising resources of this commodity in the light of today’s technology, economics, and geologic knowledge.

Other Geological Survey publications relating to the appraisal of resources of specific mineral commodities include the following:

Professional Paper 820—“United States Mineral Resources”
Professional Paper 907—“Geology and Resources of Copper”
Professional Paper 933—“Geology and Resources of Fluorine in the United States”
GEOLOGY AND RESOURCES OF VANADIUM DEPOSITS

VANADIUM RESOURCES IN TITANIFEROUS MAGNETITE DEPOSITS

BY R. P. FISCHER

ABSTRACT

Titaniferous magnetite deposits are magmatic accumulations of magnetite and ilmenite. They commonly contain 0.2 to 1 percent V_2O_5, most of which is concentrated in the magnetite, and they have become the world's principal source of vanadium.

These deposits are mostly associated with mafic igneous rocks that occur in thick stratiform sheets or complex intrusive bodies of deep-seated origin. The ore minerals crystallized with the rock-forming minerals from the magma, and they commonly occur disseminated in large masses of rock or segregated in extensive layers; some bodies of magnetite and ilmenite occur as plugs or dikes that were injected as solutions or melts into these forms. The deposits vary widely in size; some are very large.

Vanadium can be recovered from titaniferous magnetite ore by either of two processes: (1) precipitating a vanadium salt from a leach of ore roasted with salt, or (2) precipitation from a leach of salt-roasted vanadium-rich slag obtained by smelting the ore to make a vanadium-bearing pig iron, which is then blown in a converter to make the vanadium-rich slag. About 75 percent of the world's supply of vanadium was derived from titaniferous magnetite deposits in 1970; virtually no vanadium was obtained from this raw-material source before the 1950's. The vanadium in known titaniferous magnetite deposits represents several thousands of years supply at the current rate of world consumption, about 25,000 short tons of vanadium yearly.

INTRODUCTION

Titaniferous magnetite deposits are magmatic accumulations of ilmenite and magnetite, or related minerals, that are arbitrarily defined as containing more than about 1 percent TiO$_2$. Characteristically they are vanadium-bearing, and they have become the world's principal source of vanadium. This report briefly reviews their geology, vanadium production, and resources.

GEOLOGY

Vanadium is considered to be a minor element, but it is a rather abundant one. Its crustal abundance is in the order of 100–150 ppm (parts per million). It is one of the lithophile elements that occur mainly in silicate rocks, but it does not form an important part of any common rock-forming mineral. In igneous rocks, vanadium occurs mainly in the insoluble 3-valent state and substitutes for iron and perhaps aluminum in iron and ferromagnesian minerals. It is most abundant in the mafic igneous rocks (about 200 ppm), less abundant in the ultramafic and intermediate rocks (about 50 ppm), and sparse in the silicic ones (about 25 ppm). Vanadium is concentrated in magmatic titaniferous magnetite deposits, and it commonly constitutes from 1,000 to 5,000 ppm (about 0.2 to 1 percent V_2O_5) in these deposits.

Vanadium-bearing titaniferous magnetite deposits are mainly associated with mafic igneous rocks, most commonly with gabbro and anorthosite; some occurrences are associated with alkalic igneous rocks. The mafic igneous rocks are of deep-seated origin, and they occur in thick stratiform sheets, such as the Bushveld complex in South Africa (Willemse, 1969; Allard, 1970), or in complex intrusive bodies, such as Taberg, Sweden (Hjelmqvist, 1950), Otanmäki, Finland (Pääkkönen, 1956), and Lake Sanford, New York (Gross, 1968). Most of the titaniferous magnetite deposits exposed are in continental shield areas and are of Precambrian age; a few are younger.

Magnetite (Fe_3O_4) and ilmenite ($FeTiO_3$) are the principal ore minerals, but hematite (Fe_2O_3) is present in some deposits as is some rutile (TiO_2) and perovskite ($CaTiO_3$). These minerals occur in medium- to fine-grained intergrowths and in exsolution and solid-solution relations; ulvospinel (Fe_2TiO_4) and titanomagnetite ($FeTi_3O_4$) or ($FeTi)_2O_3$ are two mineral names commonly applied to some of these exsolution and solid-solution forms. Small blebs and exsolution blades of coulsonite (Fe, V)$_3O_4$ have been recognized in magnetite in a few deposits, but no vanadium mineral has been recognized in most deposits. Although some vanadium occurs in ilmenite and other titanium minerals, most of the vanadium in these deposits is in the magnetite (magnetic concentrates).
The ore minerals crystallized with the silicate minerals from the magma, and commonly they occur disseminated in large masses of rock or were segregated by crystal settling into extensive lenses or layers as much as several feet thick. Some bodies of magnetite and ilmenite occur as plugs, dikes, and irregularly shaped masses that presumably were injected into these forms when changing conditions in sites of earlier accumulation caused remobilization of iron and titanium. Vanadium-bearing titaniferous magnetite deposits vary widely in size—from those too small to be mined to those that contain several billion tons of ore containing several million tons of vanadium.

For additional information on the mineralogy and geology of titaniferous magnetite deposits, the reader is referred to reports by Gross (1967), Klemic, Marsh, and Cooper (1973), Lawthers (1957), Rose (1973), Willemse (1969), and to several papers in Visser and von Gruenewaldt (1970).

PRODUCTION

Figure 1 is a generalized graph showing vanadium production by geologic types of deposits for every tenth year from 1910 to 1970 (Fischer, 1973a). The type “Sandstone, and others” represents total vanadium production from the United States, most of which was derived from vanadium-bearing sandstone ores, but some of which was derived from base-metal vanadate deposits, from phosphate rock, from a deposit associated with an alkaline intrusion, and from petroleum residues. The type “Asphaltite” represents total production from the vanadium-bearing asphaltite deposit at Mina Ragra, Peru. The type “Vanadates” represents production from base-metal vanadate deposits, mostly from Namibia (formerly South-West Africa) and Zambia (formerly Northern Rhodesia). And the type “Iron deposits” represents vanadium obtained from titaniferous magnetite deposits in Finland, South Africa, Norway, and the U.S.S.R. The production data for Finland, South Africa, and Norway are published by the U.S. Bureau of Mines; those for the U.S.S.R. are partly estimated by the writer. A little vanadium has been obtained from still other types of raw materials, but the amounts are too small to be shown at the scale of figure 1.

In 1970, about 18,000 tons of vanadium, representing about 75 percent of the world’s supply, was derived from titaniferous magnetite deposits; a little vanadium was obtained from this source before the 1950’s, but the amount was negligible. The technology of vanadium recovery from titaniferous magnetite ore and the productive deposits are briefly described below.

Vanadium can be recovered from titaniferous magnetite ore or a magnetite concentrate of the ore by either of two general processes. In one process the ore or concentrate is mixed with a sodium salt and roasted, which yields a water-soluble sodium vanadate, which is leached by water and then recovered by precipitation from the solution (Tikkanen, 1956; Guise-Brown and Atmore, 1968). In the second process the ore or concentrate is introduced as iron ore into a blast furnace, which yields a vanadium-bearing pig iron, which is then blown in a converter, yielding a vanadium-rich slag; the slag is then salt-roasted, leached, and a vanadium salt precipitated (Polyakov, 1959; Douglas and others, 1968; Engineering and Mining Journal, 1972). A modification of this process permits the production of ferrovanadium directly from the vanadium-rich slag (Christiania Spigerverk, 1969). Direct smelting of ore in an electric furnace to yield coproduct iron, titanium, and vanadium has been proposed (Udy, 1962).

The titaniferous magnetite deposit at Otanmäki, Finland (no. 58, fig. 2, and table 1), is in a complex group of intrusive rocks consisting mainly of amphibolite, anorthosite, and gabbro. The ore occurs in lenticular bodies of varied size. In the mill, the ore is ground to moderate fineness and magnetically separated to make a marketable titanium concentrate and a vanadium-bearing magnetite concentrate, which is salt-roasted to recover vanadium, and the tailings of this operation are used as an iron ore. Vanadium oxide containing 15,342 short tons of vanadium was recovered in 1956–72. Reserves total...
about 50,000,000 tons of ore. A similar deposit at Mustavaara, Finland (no. 57, fig. 2, and table 1), is being developed and is expected to yield about 1,700 short tons of vanadium yearly after 1976 (Mining Magazine, 1972).

The stratiform mafic and ultramafic rocks of the Bushveld igneous complex in South Africa (no. 95, fig. 2, and table 1) are host to plugs and extensive layers of vanadium-rich titaniferous magnetite. These plugs and layers crop out for a distance of about 200 miles (300 kilometres), and they have been mined at several localities. Vanadium has been recovered as the principal product of salt-roasting the ore and as a byproduct in slags from pig iron. Reported production from these deposits during 1958–72 totals 30,872 short tons of vanadium in oxide and other vanadium concentrates and about 18,620 short tons of vanadium in slags; a considerable part of these slags have been exported for vanadium recovery in other countries. Reserves that can be mined by opencut methods total more than 200,000,000 tons of titaniferous magnetite ore (Nel and Luyt, 1964), and reserves and resources that can be mined underground are a few times that figure; total resources of at least 2 billion tons of titaniferous magnetite are estimated.

Titaniferous magnetite deposits in the Ural Mountains are the principal source of vanadium in the U.S.S.R. They are associated with mafic and ultramafic intrusive bodies, and they range from moderately small, high-grade, massive deposits to large, low-grade, disseminated deposits. Production probably began in the mid-1930’s from the Kusinskoie deposit (no. 48, fig. 2, and table 1) and about the same time or in the 1940’s from the Pervouralsk deposit (no. 47, fig. 2, and table 1), but these operations probably were on a small scale and perhaps desultory until the 1950’s. Yearly production from these deposits was about 4,000,000 tons of ore in the mid-1960’s (Sokolov, 1970, p. 385). Operations at Mount Kachkanar (no. 45, fig. 2, and table 1) began about 1963, and currently (1974) this deposit probably is being mined at the rate of about 30,000,000 tons of ore yearly (Sokolov, 1970, p. 385). Vanadium is being recovered from pig-iron slags, some of which have been exported. Production records are not available, but it seems likely that the cumulative yield from these deposits probably amounts to about 50,000 short tons of vanadium, and that the current yearly yield is on the order of 8,000 to 10,000 short tons of vanadium. Reserves at Mount Kachkanar total 12 billion tons of ore (Sokolov, 1970, p. 398). The Pudozhgorskoe and Tsagin deposits and deposits in the Keyv intrusive (nos. 55, 52, and 51, fig. 2, and table 1) in the Karelo-Kola region in the northwestern part of the Soviet Union are being considered for exploitation in the future (Yudin and Zak, 1970).

The titaniferous magnetite bodies at the Rodsand mine, Norway (no. 67, fig. 2, and table 1), are lenses and layers in mafic rocks. The current annual yield of the mine is a little more than 1,000 short tons of vanadium in ferrovanadium, which is converted directly from vanadiferous slags. Although vanadium production data for Norway have been reported by the U.S. Bureau of Mines only since 1963, some vanadium had been recovered from vanadiferous slags that were exported to other European countries prior to 1963. Reserves at Rodsand total 10,000,000 tons of ore.

H. A. Taylor, Jr., U.S. Bureau of Mines, has reported (oral commun., 1974) that some vanadium has been recovered in the United States and in Japan from vanadium-bearing residues derived from producing titanium dioxide from titaniferous magnetite ores and titanium-bearing beach-sand deposits.

Plans to recover vanadium from titaniferous magnetite deposits at several other localities have been reported in recent years: Barrambie, Australia (no. 102, fig. 2, and table 1) (Mining Journal, 1971a); Wundowie, Australia (no. 104, fig. 2, and table 1) (Mining Journal, 1971b); Singhbhum-Mayurbhanj, India (no. 78, fig. 2, and table 1) (Mining Journal, 1971c); and Tete, Mozambique (no. 92, fig. 2, and table 1) (Taylor, 1973).

RESOURCES

Figure 2 shows most of the known titaniferous magnetite deposits in the world, and table 1 lists these deposits and gives the available significant resource information regarding them. The resource data have many limitations. Many deposits, including some of the productive ones, are obviously large but have not been thoroughly explored. Many “ore” tonnage estimates are crude, and probably somewhat low, and many grade figures are based on scant sampling. Tonnage estimates for a given deposit commonly vary considerably from one report to another, and generally the later report has the higher estimate; most of the tonnage estimates used are from a report prepared for the United Nations (1970). The qualitative words “small,” “medium,” and “large” used in the “ore” resources column are those used in the source reports; generally no indication of quantitative significance was given. These same words where used in the vanadium resources column imply the writer’s estimates of “less than 100,000,” “100,000–1,000,000,” and “more than 1,000,000 short tons of vanadium.”
Figure 2.—Distribution of known titaniferous magnetite deposits. The numbers identify the deposits listed in table 1.
Table 1.—Resource data on the known titaniferous magnetite deposits of the world

<table>
<thead>
<tr>
<th>Map No. (fl)</th>
<th>State, Province, or region</th>
<th>Mine, deposit, area, or source rock</th>
<th>Grade of "ore" (percent)</th>
<th>Grade of magnetic concentrate (percent)</th>
<th>"Ore" resources (millions of tons)</th>
<th>Vanadium resources (thousands of tons)</th>
<th>Geology</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fe TiO₂ V₃O₅ Ti₂O₅ V₅O₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rhode Island</td>
<td>Iron Mine Hill</td>
<td>33</td>
<td>9</td>
<td>22</td>
<td>7</td>
<td>40</td>
<td>x</td>
</tr>
<tr>
<td>21</td>
<td>New York</td>
<td>Elizabethtown</td>
<td>3674</td>
<td>829</td>
<td>40-82</td>
<td>21</td>
<td>Small</td>
<td>300</td>
</tr>
<tr>
<td>22</td>
<td>do</td>
<td>Lake Sanford</td>
<td>34</td>
<td>19</td>
<td>.45</td>
<td>56</td>
<td>9-10</td>
<td>122</td>
</tr>
<tr>
<td>23</td>
<td>do</td>
<td>Diana Complex</td>
<td>20</td>
<td>7</td>
<td>.06</td>
<td>65</td>
<td>.15</td>
<td>Large</td>
</tr>
<tr>
<td>24</td>
<td>New Jersey</td>
<td>Hager</td>
<td>66</td>
<td>7</td>
<td>.16</td>
<td>65</td>
<td>.15</td>
<td>Large</td>
</tr>
<tr>
<td>25</td>
<td>do</td>
<td>Van Syckle</td>
<td>50</td>
<td>10-15</td>
<td>13.36</td>
<td>6</td>
<td>Small</td>
<td>300</td>
</tr>
<tr>
<td>26</td>
<td>North Carolina</td>
<td>Piedmont province</td>
<td>40-65</td>
<td>12±</td>
<td>.6</td>
<td>65</td>
<td>.15</td>
<td>Large</td>
</tr>
<tr>
<td>27</td>
<td>North Carolina-Tennessee</td>
<td>Appalachian province</td>
<td>40-60</td>
<td>5-7</td>
<td>.2</td>
<td>Small</td>
<td>.15</td>
<td>Large</td>
</tr>
<tr>
<td>28</td>
<td>Minnesota</td>
<td>Duluth Complex</td>
<td>30</td>
<td>14</td>
<td>.12</td>
<td>65</td>
<td>10</td>
<td>Large</td>
</tr>
<tr>
<td>29</td>
<td>Oklahoma</td>
<td>Wichita Mountains</td>
<td>42±45</td>
<td>14-18</td>
<td>.1</td>
<td>Small</td>
<td>1</td>
<td>Large</td>
</tr>
<tr>
<td>30</td>
<td>Wyoming</td>
<td>Iron Mountain</td>
<td>17-45</td>
<td>10-20</td>
<td>.17-64</td>
<td>6</td>
<td>Small</td>
<td>x</td>
</tr>
<tr>
<td>31</td>
<td>do</td>
<td>Owen Lake</td>
<td>29</td>
<td>9</td>
<td>.02-2</td>
<td>Small</td>
<td>Small</td>
<td>x</td>
</tr>
<tr>
<td>32</td>
<td>Colorado</td>
<td>Caribou</td>
<td>36-59</td>
<td>6-30</td>
<td>.06</td>
<td>Small</td>
<td>Small</td>
<td>x</td>
</tr>
<tr>
<td>33</td>
<td>do</td>
<td>Iron Mountain</td>
<td>45-50</td>
<td>14</td>
<td>.41-45</td>
<td>Small</td>
<td>Small</td>
<td>x</td>
</tr>
<tr>
<td>34</td>
<td>do</td>
<td>Cebolla Creek</td>
<td>9-30</td>
<td>4-32</td>
<td>.1</td>
<td>100</td>
<td>50</td>
<td>x</td>
</tr>
<tr>
<td>35</td>
<td>California</td>
<td>San Gabriel Mts.</td>
<td>46</td>
<td>20</td>
<td>.63</td>
<td>10</td>
<td>30</td>
<td>x</td>
</tr>
<tr>
<td>36</td>
<td>Alaska</td>
<td>Union Bay</td>
<td>19-50</td>
<td>2-35</td>
<td>30</td>
<td>x</td>
<td>1,000</td>
<td>x</td>
</tr>
<tr>
<td>37</td>
<td>do</td>
<td>Snootsibam</td>
<td>19</td>
<td>2-6</td>
<td>.09</td>
<td>64</td>
<td>3.5</td>
<td>Large</td>
</tr>
<tr>
<td>38</td>
<td>do</td>
<td>Klukwan</td>
<td>15-20</td>
<td>2</td>
<td>.2</td>
<td>62-64</td>
<td>2.4</td>
<td>Medium</td>
</tr>
<tr>
<td>39</td>
<td>do</td>
<td>Klukwan fom</td>
<td>15-20</td>
<td>2-3</td>
<td>.06</td>
<td>Small</td>
<td>Small</td>
<td>x</td>
</tr>
<tr>
<td>40</td>
<td>do</td>
<td>Haines Lake</td>
<td>12-19</td>
<td>1.3-30</td>
<td>.02</td>
<td>40-60</td>
<td>3.1-5</td>
<td>7,000</td>
</tr>
</tbody>
</table>

See footnotes at end of table.
<table>
<thead>
<tr>
<th>Map No. (fig. 2)</th>
<th>State, Province, or region</th>
<th>Mine, deposit, area, or source rock</th>
<th>Grade of "ore" (percent) Fe TiO₂ V₂O₅</th>
<th>Grade of magnetic concentrate (percent) Fe TiO₂ V₂O₅</th>
<th>"Ore" resources (millions of tons)</th>
<th>Vanadium resources (thousands of tons V₃)</th>
<th>Geology</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Seoul</td>
<td>Soyonpyongdo</td>
<td>53-17</td>
<td>10-100</td>
<td>6-10</td>
<td>60-120</td>
<td>Small</td>
<td>Gallagher and others (1962), Nishiwaki (1970), Gallagher (1963)</td>
</tr>
</tbody>
</table>

TABLE 1 — Resource data on the known titaniferous magnetite deposits of the world—Continued
<table>
<thead>
<tr>
<th></th>
<th>Country</th>
<th>Location</th>
<th>Tonne (Short Tons)</th>
<th>Unit</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>Andhra Pradesh</td>
<td>Tiruvuru</td>
<td>55 14 1.7</td>
<td>Medium</td>
<td>Bhimasankaram (1963), Kruehan (1964).</td>
</tr>
<tr>
<td>80</td>
<td>Myore</td>
<td>58 60 Up to 12 Some</td>
<td>131 Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Strandzha Planina</td>
<td>54 14 1.7</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Bukk Mountains</td>
<td>10 20</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Szorvaak</td>
<td>15 30</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Rio de Oro</td>
<td>10 20</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>South Africa</td>
<td>50 150</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Bugisu</td>
<td>50 150</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>do</td>
<td>10 20</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Bugisu</td>
<td>10 20</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Strandzha Planina</td>
<td>58 12 6 60 18 30 15</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Luando</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Luando</td>
<td>10 20</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Luando</td>
<td>5 60 18</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Muanda</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Tete</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Tete</td>
<td>10 20</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Tete</td>
<td>5 60 18</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Tete</td>
<td>5 60 18</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Tete</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Tete</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Tete</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Tete</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Tete</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Tete</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Tete</td>
<td>50 60</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>South Island</td>
<td>50</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Many source reports do not designate whether the tonnage figures are in "short," "long," or "metric" tons. Furthermore, most tonnages are estimated and the figures are rounded, and generally they are considered to indicate only orders of magnitude; the inaccuracies of the figures are judged to be greater than the differences among these units, hence the kind of tons is not specified.

*Estimated only to a depth of 15 ft (4.5 m).
*Estimated only to a depth of 25 ft (7.5 m).
*Estimated only to a depth of 30 ft (9 m).
Ore grades in the titaniferous magnetite deposits from which vanadium is being recovered vary widely: 16-60 percent Fe, 1.5-38 percent TiO₂, and 0.1-2 percent V₂O₅. This wide range indicates that technology it is possible to obtain vanadium from all or almost all of the deposits listed in Table 1. Other factors—such as economics, mining technology, and politics—also influence the successful exploitation of a mineral deposit, and generally these factors cannot be appraised for the deposits listed on the basis of published information. Nevertheless, it is obvious that the titaniferous magnetite deposits contain enormous vanadium resources, representing thousands of years’ supply at the current rate of world consumption, about 25,000 short tons of vanadium yearly. Titaniferous magnetite deposits will continue to be the principal source of vanadium, unless the economics and technology of recovery of vanadium from petroleum and petroleum products (Fischer, 1973b) favor this possible alternative source in the future.

REFERENCES CITED

Lengyel, Endre, 1957, A Szárvaskő környéki titán-vanáadium-

vasérchutatas újabb eredményei [Recent results of study of the
titanium-vanadium-iron ores near Szárvaskő (also in

Ming Magazine, 1972, Table C—major new projects and expansion programmes: Mining Mag., v. 127, no. 3, p. 310.

Mining World [Seattle], 1961, Oceania—Union Carbide prospecting big Australian V₂O₅ deposits: Mining World [Seattle], v. 23, no. 1, p. 56.

Mining World [Seattle], 1962, Union Carbide explores Australian vanadium: Mining World [Seattle], v. 24, no. 1, p. 61.

Western Australia Department of Mines, 1966, Vanadium, in Mineral resources of Western Australia: Western Australia Dept. Mines, p. 44.

