
The Geologic Retrieval and
Synopsis Program (GRASP)

GEOLOGICAL SURVEY PROFESSIONAL PAPER 966

The Geologic Retrieval and
Synopsis Program (GRASP)
By ROGER W. BOWEN and JOSEPH MOSES BOTBOL

GEOLOGICAL SURVEY PROFESSIONAL PAPER 966

A portable data-retrieval system
requiring minimal user training

UNITED STATES GOVERNl\fENT PRINTING OFFICE, WASHINGTON 1975

UNITED STATES DEPARTMENT OF THE INTERIOR

THOMAS S. KLEPPE, Secretary

GEOLOGICAL SURVEY

V. E. McKelvey, Director

First printing 197 5
Second printing 1976

Library of Congress Cataloging in Publication Data

Bowen, Roger W.
The geologic retrieval and synopsis program (GRASP)

(Geological Survey professional paper; 966)
Supt. of Docs. no.: I 19.16:966
1. Information storage and retrieval systems--Geology. I. Botbol, Joseph Moses, joint author. II. Title.

III. Series: United States. Geological Survey. Professional paper; 966.
QE48.8.B68 029 '.9 '55 75-619314

For sale by Branch of Distribution, U.S. Geological Survey,
1200 South Eads Street, Arlington, VA 22202.

Abstract _____ ----- ___________ ------------- ___ ---
Introduction _________________ ---------- ___ -------

Purpose and scope --------------------------­
General system description ------------------------

Design philosophy ---------------------------­
Machine portability ----------------------­
Data-base independence ------------------­
User community ------------------------­
Time sharing ----------------------------

Present utilization ----------------------------
COLFIL -------------------------------­
MANFIL ------------------------------­
RASS -----------------------------------

Future plans ---------------------------------
Detailed system description ------------------------

Data-file structures ---------------------------

Mask file --------------------------------
Definitions file ---------------------------
Dictionary file --------------------------­
Multiple-choice file ----------------------­
Numeric Master file -----------------------·

Data compression --------------------­
Machine dependencies ------------------------­
Internal structure and functions --------------­
Processing user input -------------------------

Conditional expressions ------------------­
Logical expressions ----------------------­
Number lists -----------------------------
N arne lists ______________________________ _

Arithmetic expressions --------------------

Searches -------------------------------­
Output ----------------------------------

Data-base implementation -------------------------

Use of GRASP ----------------------------------
References cited _________________________________ .

GRASP software specifications ---------------------
Module name: DRIVER ---------------------­
Subroutine name: ACCESS ------------------­
Subroutine name: BDEF --------------------­
Subroutine name: BFIND -------------------·
Subroutine name: BINIT --------------------­
Subroutine name: BINTYP ------------------­
Subroutine name: BLIST ---------------------

CONTENTS

Page

1
1
1
1
1
1
2
2
2
2
2
2:
3
3

3
3
3
4
4
4
5
5
6
6
6
6
6
8
8
8
8
9

9

10
12
13
13
15
17
19
20
21
22

GRASP software specifications-Continued
Subroutine name: COLPNT ------------------­
Function name: COMP ----------------------­
Subroutine name: CONDS -------------------­
Subroutine name: CONDTN -----------------­
Subroutine name: DECOMP ------------------­
Subroutine name: DEFINE ------------------­
Subroutine name: DEFLST ------------------­
Subroutine name: DUMPIT ------------------­
Function name: EVAL ----------------------­
Subroutine name: FDRIVE ------------------­
Subroutine name: FILES --------------------­
Subroutine name: FIND ---------------------­
Subroutine name: FINDGP ------------------­
Subroutine name: FIT -----------------------­
Subroutine name: FTNC ---------------------­
Subroutine name: GETPUT ------------------­
Subroutine name: HELP --------------------­
Function name: ICONV ---------------------­
Subroutine name: IFILE ---------------------­
Subroutine name: INIT ----------------------­
Subroutine name: KEYBRD -------------------
Subroutine name: LENGTH -----------------­
Subroutine name: LIST ---------------------­
Subroutine name: LOGEXP ------------------­
Subroutine name: MEAN -------------------­
Subroutine name: NAME --------------------­
Subroutine name: OBEY --------------------­
Subroutine name: OFILE --------------------­
Subroutine name: OPREP -------------------­
Subroutine name: PACK --------------------­
Subroutine name: PARSE -------------------­
Subroutine name: PAUSE -------------------­
Function name: PNTER ---------------------­
Subroutine name: PREVAL ------------------­
Subroutine name: QUIT ----------------------
Subroutine name: RELEXP ________________ _: __

Subroutine name: RETRVE -----------------­
Subroutine name: RLIST --------------------­
Subroutine name: ROWPNT -----------------­
Subroutine name: SCAN --------------------­
Subroutine name: START -------------------­
Function name: UNCODE -------------------­
Subroutine name: VLIST ---------------------

ILLUSTRATIONS

FIGURE 1.
2.
3.

Example of Mask-file and Dictionary-file arrangement -----------­
Example of Numeric Master file arrangement prior to compression __
Pictorial summary of GRASP subroutine interrelationships ________ _

Page

4
5
7

III

Page

23
25
27
28
29
31
32
33
35
37
38
39
40
41
43
45
46
47
48
49
50
51
52
53
56
58
59
61
62
63
64
68
69
71
72
73
76
79
81
83
84
85
86

THE GEOLOGIC RETRIEVAL AND SYNOPSIS PROGRAM (GRASP)

By RoGER W. BowEN and JosEPH ~losEs BoTBOL

ABSTRACT

The Geologic Retrieval and Synopsis Program (GRASP)
was designed and written to specifically accommodate inter­
active access to earth-science data banks. GRASP is portable,
easy to use, and data-base independent.

Data banks accessed by GRASP must be partitioned and
reformatted into five files which make up both data bank and
pointers to parts of the bank. Machine dependencies include
FORTRAN I/0 unit numbers, direct-(random-) access input,
in-core read/write, and "prompting." GRASP isolates these
dependencies to FORTRAN subroutines designed to serve
these functions specifically. GRASP is manipulated by 11 user
commands which select, describe, access, retrieve, summarize,
and display data.

INTRODUCTION

The U.S. Geological Survey presently has the re­
sponsibility of developing and maintaining resource­
data banks. Initially, many storage and retrieval
systems were critically reviewed for their data-bank
characteristics, ease of use, flexibility, portability,
and applicability to Surv·ey activity. The authors con­
cluded that no available system was wholly adequate
for the needs of the Survey data banks. Generally,
the obs-erved systems were difficult to use, machine
bound, or were oriented toward one type of data
(for example, text oriented). The only logical al­
ternative was to design, develop, and implem·ent a
geologic-data storage and retrieval system to be
used primarily by geologists.

PURPOSE AND SCOPE

The Geologic Retrieval and Synopsis Program
(GRASP) was written to p·rovide a means of in­
teractive access to geologic data stored in a time­
sharing computer.

GRASP can be implemented on any time-sharing
computer system that has a FORTRAN IV com­
piler. Data bases accessed by GRASP must con­
tain fixed field data in alphameric, alphanumeric,
and/or numeric modes.

GENERAL SYSTEM DESCRIPTION

To obtain a broad overview of the GRASP sys­
tem, consideration should first be given to the
philosophy governing the de,sign of the system, use
of the present system, and future system plans.
This overview provides the "framework" and the
anticipated "operational environment" which are
necessary for the development of any system. Both
the present utilization and future system plans
show the correctness of the parameters and tech­
niques used as well as the original assumptions re­
garding "how," "by whom," and "where" the sys­
tem will be used.

DESIGN PHILOSOPHY

Three vital questions that must be answered prior
to the implementation of any system are: (1) On
what computer(s) will this system be used? (2)
What are the characteristics of the data to be proc­
essed? (3) Who will use the system? As is the case
in many computer-system applications, these ques­
tions originally had no definite answers. A 3-month
effort was necessary to establish criteria that would
govern GRASP design.

MACHINE PORTABILITY

To serve as broad a spectrum of the scientific
co-mmunity as possible, a system should be as port­
able as possible. Because of differences in computer
design, no system can be used on all computers with­
out some modification. ANSI FORTRAN IV is uni­
vers,ally accepted as a standard programming lan­
guage. It may be used on the vast majority of pres­
ent-day computers that have the capacity for imple­
menting compiler-level l~anguages in a time-sharing
mode of operation. For this reason, all the process­
ing subroutines in GRASP are written in ANSI
FORTRAN IV (machine-dependent features iso­
lated to facilitate implementation). In this way,
GRASP can be installed on virtually any modern

1

2 GEOLOGIC RETRIEVAL AND SYNOPSIS PROGRAM (GRASP)

time-sharing computer. By designing GRASP to be
portable, a much wider spectrum of the scientific
community can be served by the system. Data need
not be transferred from their resident banks in
order to be acoessed. GRASP could be used on most
computers in order to access data files wherever
they may reside. This machine independence elimi­
nates the need for tedious data transformations to
one system configuration, where the aggregating
data eventually flood to the point of uselessness the
peripheral storage of a central machine-dep·endent
data bank. The authors believe that a common ac­
cessing system for data residing in different com­
puters is preferable to an accessing system that can
be used for data resident in only one computer.

DATA-BASE INDEPENDENCE

GRASP is designedto operate using any data base
that can be represented in conventional matrix
form. In matrix form, the records (that is, items to
be described) are the rows, and the attributes of
each record are the columns. The real structure of
the data base can be thought of as the titles and
arrangement of the columns of a data matrix where
the rows are merely instances or occurrences de­
scribed by the columns. For example, a geochemical
data base would have a matrix representation in
which the columns might represent chemical anal­
yses of various elements, and each row would rep­
resent one S!ample. GRASP can function on any
data matrix. The only requirement is that the vari­
ables (or columns) be defined ahead of time in
terms of their types (that is, alpha or num·eric),
and, where necessary, dictionaries of legitimate al­
phameric entries must be provided for alphameric
variables. Thus, becapse of the matrix orientation
of GRASP, any fixed field data base can be ac­
commodated by the system.

USER COMMUNITY

GRASP is a retrieval system having its own rules
and command language for operation. In other
words, to use GRASP, the user doe·s not need to be
familiar with FORTRAN or any other computer
language. The GRASP command language is de­
signed to provide users with the ability to ask ques­
tions of a data base and retain all items that an­
swer "true" to the questions. The control language
used to ask the questions (discussed in the section
on "Use of GRASP" in this report) allows "retri~eve
only" data access to any GRASP user and does not
require prior user knowledge of computer languages

or system functions. Thus, GRASP can be imple­
mented for a wide variety of users.

TIME SHARING

Inasmuch as GRASP is portable, data-base in­
dependent, and serves a wide variety of users,
GRASP should be implemented in a computational
mode that has the most readily available user ac­
cess, namely, time sharing. In its simplest form,
time sharing allows any user to communicate with
the computer from a ter·minal near a telephone. The
entire design of GRASP is based on the premise
that the user community will converse directly with
a computer (via a terminal) in order to access, re­
trieve, manipulate, summarize, and display data.
This mode of computation provides the "instant"
response necessary for timely decisionmaking, and
also allows access by the user from the environment
in which the computer response is of most value, that
is, the laboratory, field, office, or conference room.

PRESENT UTILIZATION

In 1975, the GRASP syste~m was being used to ac­
cess data from six totally different data banks: (1)
oil- and g~as~pool characteristics of Colorado, (2)
mineral deposits of the world, (3) geochemical ex­
ploration data from the United States, (4) coal re­
sources of the United States (prototypic data bank),
(5) index of U.S. geologic map coverage (prototypic
system), and (6) geothermal data bank (in Pisa,
Italy). The first three of the above systems were
implemented directly by the authors, and no attempt
was made to redesign any of the original data-bank
structures.

COLFIL

This file contains as many as 390. characteristics
for each of 800 oil and (or) gas pools in Colorado.
This file served as the original model for GRASP
design and ultimately will contain 60,000 records.

MANFIL

The mineral deposits of the world (MANFIL)
were the second file implemented using GRASP. It
is a computerized batch-processing-oriented file con­
taining geologic, production, and reserves data from
about 4,000 nonferrous metal deposits throughout
the world. Each record represents one deposit, and
contains as many as 250 variables. Although GRASP
was designed using the oil- and gas-pool file as a
model, implementation of the world-mineral-de­
posits file showed the flexibility of GRASP with re­
spect to its data-base independence.

DETAILED SYSTEM DESCRIPTION 3

RASS

The RASS (Rock Analysis Storage System) file
is ·a batch-oriented geochemical data bank contain­
ing limited geologic descriptions and comprehensive
geochemical analyses of all samples processed by the
laboratories of the U.S. Geological Survey. This file
contains a unique type of numeric data called "quali­
fied values." Because of the upper and lower de­
tectability limits of analytic devices, elements whose
presence is known but whose content is out·side the
analytical range of a device are sometimes reported
at a given analytical cutoff value, accompanied by a
letter indicating whether the content is less than,
greater than, or in interference with another ele­
ment. Typical qualified entries would appear as
L5000, GlOOO, or HlOO, where L signifies a content
less than the attached value, G signifies a content
greater than the attached value, and H signifies
analytical interference at a concentration of the at­
tached value. Because many of the RASS data were
accompanied by alpha qualifiers, GRASP was modi­
fied to accept and process this type of data in addi­
tion to the conventional numeric- and alpham~eric­
data types.

All the above files are implemented in a retrieve
mode only, and graphics have not yet been added.
Input to the files is done by people who are respon­
sible for data entry and does not fall in the domain
of the user.

FUTURE PLANS

Currently, the development of GRASP is primar­
ily oriented toward implementation of techniques
for interactive graphics storage and retrieval. Three
problem areas are presently being researched: auto­
matic recognition of features on scanned input docu­
ments, annotation methods, and resolution of "in­
tersecting feature" problems. Present research ef­
forts are directed toward feature recognition and
subsequent computational extraction of simple
boundary vectors from scanned digital maps and
photographs. In addition to recognition of features,
methods are also being developed for annotation of
both graphics-data entry and presentation of
graphics data on output.

One of the major anticipated technical and philo­
sophical problems is concerned with the graphical
resolution of intersecting features. Techniques are
being developed that should resolve these problems
for any particular data set.

All the GRASP graphics output is being designed
primarily for interactive graphics cathode ray tube

(CRT) representation. This is in keeping with
GRASP's original "totally interactive" design philo­
sophy.

DETAILED SYSTEM DESCRIPTION

GRASP is designed as a highly modular, hier­
archically structured set of subroutines (see section
"GRASP Software Specifications"). Each subrou­
tine performs a fixed task. The higher level sub­
routines are primarily concerned with the flow of
control required to execute a user command. ~he
lower level subroutines are primarily concerned With
extremely independent and specific tasks (such as
"get a record," "access a dictionary," and "accept
user input," and so on). All information related to
a specific data base is obtained from various files
associated with that data base. Structuring the sys­
tem in this way leads to a high degree of functional
isolation. These design characteristics simplify the
development, documentation, maintenance, growth,
and inevitable change inherent in a system that sup­
ports a variety of data bases on a wide spectrum of
computer main frames. The section on GRASP soft­
ware specifications is intended for use by those fa­
miliar with FORTRAN language.

DATA-FILE STRUCTURES

Upon initial execution, the GRASP system reads
an "index" file which contains the names of data
bases available for access. Each record of the index
file corresponds to a data base and contains the
names of the files associated with that data base
and a 40-character description of the data base.

Each data base is composed of five files which con­
tain the actual data, information on the structure
of records, names which will be used to refer to par­
ticular items within records, descriptive information
on the names themselves, and a grouping int~ cate­
gories of information. These files are called Mask,
Definitions, Dictionary, Multiple-choice, and Nu­
meric Master files.

MASK FILE

The Mask file contains the item names, item types
(integer, real, character string, multiple choice, and
qualified real), and pointers to the first entry in the
Dictionary file for each character-type item. This
file is read once and rewound when a data base is
selected via the FILE command. An example of
Mask file arrangement is shown in figure 1.

4 GEOLOGIC RETRIEVAL AND SYNOPSIS PROGRAM (GRASP)

Conceptual noncomputerized dictionaries
for three character type variables:

Variable No.1 Variable No.2 Variable No.3

Continent Country Province (State)

North America USA California

South America Canada Virginia

Europe Mexico British Columbia

Argentina Quebec

Brazil Cordova

Chile

Germany

l

In the computer, the MASK File is arranged as follows:

Mask File

Variable N arne Variable Type Starting Position in
Dictionary File

..... -

......
~

In the computer, the Dictionary File
is arranged as follows:

Dictionary File

Item No. Pointer to
next item

1 2

2 3

3 0

4 5

5 6

6 7

7 8

8 9

9 10

10 0

North America

South America

Europe

USA

Canada

Mexico

Argentina

Brazil

Chile

Germany

~ 11 12 California

12 13 Continent Character 1 - Virginia

Country Character

Province (State) Character

Production Numeric, real

*Note: This variable is numeric, and does
not require a pointer to the
Dictionary File

4

11

*

13

14

15

14 British Columbia

15 Quebec

0 Cordova

("0" indicates end
of list for particular
variable)

FIGURE 1.-Example of Mask-file and Dictionary-file arrangement.

DEFINITIONS FILE

The Definitions file contains the following infor­
mation:
1. The number of categories in the file.
2. 'The maximum number of (computer) words in

a category na.me.
3. The category names.
4. For each category the following information is

recorded:
(a) category number.
(b) number of lines used to describe this cate­

gory.
(c) maximum length (in computer words) of

a description in this category.
(d) number of variables appearing in this

category. In some cases this will be dif­
ferent from item b (the number of lines
for deseription).

(e) indices of the variables appearing in this
category.

(f) the variable names, types, and descrip­
tions for this category.

DICTIONARY FILE

The Dictionary file contains all character-string
values which are assumed by character-type items.
Each record contains a pointer to the ~record con­
taining the next value, followed by the current value.
The last value assumed by a character-type item is
indicated by a pointer value of zero (the record
containing the first character-string value for a
character-type item is pointed to by a v·alue in the
Ma.sk file) . The Dictionary file is designed as a ran­
dom-access file whose values form a linked list. Fig­
ure 1 shows an example of the Dictionary-file ar­
rangement.

MULTIPLE-CHOICE FILE

The Multiple-choice file contains the acronyms and
acronym meanings for the values assumed by mul-

DETAILED SYSTEM DESCRIPTION 5

tiple-choice items. Each record of this file is com­
posed of an item number indicating the multiple­
choice item, the number of possible values this item
assumes, the maximum length of an acronym value
description, and a list of acronyms (which are
double words) and their descriptions.

NUMERIC MASTER FILE

The Numeric Master file is composed of the rec­
ords for a data base in a compressed form. Values
for integer-type items are stored as integers. Values
for floating-point- (or real-) type items are stored
as real numbers. Values for character-type items are
stored as integer pointers to the entry number in
the Dictionary file. Values for multiple-choice-type
items are stored as integers containing a binary en­
coding that r,epresents the value set. (For example,
if the second and fifth bit of the word are "on," the
value assumed is the second and fifth acronym
value.) Each record of the compressed Master file
is variable length in form and corresponds to an ex­
panded 400-word record. Expansion of the com­
pressed record is performed by subroutine GET­
PUT. Figure 2 shows an example of the Numeric
Master file prior to compression.

DATA COMPRESSION

The compression technique used is a form of
blank suppression. The words of the compressed
record are one of the following four types :
A. Integer value.
B. Real value.
C. Integer blank count.
D. Integer word count.
The first word of all records is of type D (above)
and is used to give the length of the record. Subse­
quent words may be types A, B, and C. For types A
and C, the last two bits give the type of the next
word. The value of the word is obtained by divid­
ing rby 4. The type of the next word is obtained via
the rem1ainder modulo 4, wherre the numbers 1-3
correspond to types A, B, and C. Type-A words are
used for numeric integers, pointers to entries in
character dictionaries, and binary encodings of mul­
tiple-choice-type items. Type-C words are used to
count the number of consecutive blanks to be in­
serted in the expanded record. Type-B words are
used for floating-point numeric values. The type of
the next word is contained in the last 2 bits of the
whole (integer) part of the words. For example,
consider ,a data word having a value of 49.723. The

Given the following two successive noncomputerized records to be entered into the Numeric Storage File:

Continent*

1

2

Continent ---------------------------------

Country ------------------------------------

Production __ ------------------------------

Identification No. ____________________ _

Province (or State) ___________________ _

Record 1

North America

United States

39281.6

38

Virginia

Record 2

South America

Argentina

49298.7

39

Cordova

Prior to compression, the computerized Numeric Storage File is arranged as follows:

Country* Production ID No. Province* etc.

39281.6 38 2

11111111

1

4 49298.7 39 5

*See figure 1-for dictionary codification of continent, country, and province

FIGURE 2.-Example of Numeric-Master-file arrangement prior to compression.

6 GEOLOGIC RETRIEVAL AND SYNOPSIS PROGRAM (GRASP)

floating-point value would be 12.723 (12=49/4),
and the type of the next word would be 49 - (4 X
12) =1 or A.

MACHINE DEPENDENCIES

Although most of the GRASP-system code is
written in ANSI FORTRAN IV, certain isolated
functions must be tailored to the particular FOR­
TRAN compiler on any given machine. These func­
tions deal with the dynamic as·sociation of data set
names and FORTRAN I/0 unit numbers, direct­
(random-) access input, the method of accommodat­
ing "prompting," and internal (in-core) transfer
(writes) using format control.

For the dynamic association of data-set names
and FORTRAN unit numbers, the routines IFILE,
OFILE and DEFINE are used. Details of these
routines can be found in the section "GRASP Soft­
ware Specifications."

Direct-access input is used to access the Diction­
ary file (in subroutine ACCESS). The FORTRAN
unit number, an integer expression giving the record
number, and an input list are supplied in the READ
statement. This form of direct-access input is com­
patible with most FORTRAN compiler·s which sup­
port direct-access input. Systems not having direct­
access capabilities can be accommodated by modify­
ing the logic of this subroutine. This modification
involves positioning of a sequential file to the ap­
propriate record prior to execution of the READ
statement.

For systems which do not accept the "prompt" op­
tion in the READ statement, user "prompting" can
be accomplished by using WRITE statements im­
mediately preceding (in time) user input. The
"prompt" message is contained in a FORMAT state­
ment, along with a character which inhibits the
g·eneration of the normal carriage-return/line-feed
usually associated with output directed to a time­
share terminal. If a particular system does not ha~ve
this capability, the "prompting" message will ap­
pear on a separate line immediately preceding the
user input.

The internal transfer of data under format con­
trol is accomplished via the ENCODE statement.
The ENCODE statement is us·ed in subroutine
COLPNT to construct a line of output. The only
other use of ENCODE is in subroutine PACK which
is used to convert characters from unpacked to
packed form. Most non-IBM FORTRANS support
this statement in one form or another. In the case
of IBM FORTRAN, a routine must be provided that
allows internal data transfer under format control.

INTERNAL STRUCTURE AND FUNCTIONS

GRASP is designed to accept a "command" (or
directive) from the user. Once the command has
been recognized, the appropriate subroutine is exe­
cuted. This subroutine will, in most cases, call other
subroutines in order to accom·plish its intended task.
In some cases subroutine calls are nested to a depth
of six. Figure 3 gives a pictorial summary of the
calling hierarchy for subroutines which are in
G RAS.P. This figure will be useful in implementing
or modifying the GRASP system.

PROCESSING USER INPUT

All user input to GRASP is pass·ed to the system
in unpacked character form. At the highest level
are single words used to execute a GRASP "com­
mand." In this case, the characters are packed, and
the result is compared to the list of available com­
mands. After a command has been issued, supple­
mentary user input is usually required. This sup­
plementary input must then be "parsed" (that is,
converted) into a form more meaningful to the
GR.ASP system. This parsed form is entir·ely nu­
meric in nature. The numbers themselves may rep­
resent values, integer encodings, or pointers. Sup­
plem·entary input falls into five independent areas :
conditional expressions, logical expressions, number
lists, name lists, and arithmetic expressions.

CONDITIONAL EXPRESSIONS

A conditional expression is an attribute name, fol­
lowed by a relation, followed by a value. The attri­
bute name is identified using the binary-search
technique. The relation is identified by a sequential
table lookup. The value is converted to correspond
in type with the attribute name referenced. This
may result in a pointer to a character entry in the
Dictionary file, a binary encoding of an acronym
value in a record of the Multiple-choice file, or sim­
ply a numeric value. Each conditional expression
entered is associated with a letter (A-Z).

LOGICAL EXPRESSIONS

Logical expressions are composed of letters refer­
ring to conditional expressions, the grouping sym­
bols used to control the order of evaluation, and the
logical operators .AND. (*), .OR. (+), .NOT. (-).
For ease of evaluation logical expressions are con­
verted to reverse-Polish form. This is a parenthesis­
free form which permits rapid evaluation using a
push-down stack technique. For a detailed descrip­
tion of the conversion to and evaluation of reverse-

L

·parreJ a.re lln{l saunno.rqns OllU!od sM.o.r.ru al{.L ·sd!l{Suonura.r.ra:J.U! aupno.rqns dSV'HD JO .A:.ruwums rupo+J!d-'f: :IHfl!H.!l

....
....

' '

' '
....

....

.....

.....

....
.....

....

....

....

' ' ' '
.....

....

' '

.....

....
.... ~

'
trj "'%j < r.n ::0 ~ ::0 A) "t1 "t1
< t: ~ 0 trj trl C! z > t"" > ~ t-3 t"" -t-3 ::0 > trj en ~ ::0 trj t-3 trj en t"" en t-3 "t1 ~ z < >< ::0 trj

t-3 trj '"l::j

....
....

....

.... '
....

.... '
.... ' ' '

....
....

.....

....
.....

.... '
.....

' '

' ' ' ' ' ' ' ' '

....

' '

'

.....
'

,,
.....

0 0 z ~ t"" t"" ~ ::I: "rj "'%j t:l
"t1 ::a > trj 0 trj '".rj trj ~ - C!
::0 C1 en ><:

.....
t"" z ~

t"" ~ > t-3 t"" ~ trj trj ttl 1-ij 0 trj trj z trj "t1
"t1 >< ::0 -1-ij t:l t-3

S3WVN 3NI.LflOHHflS

NOI.LdiHOS30 W3.LSXS 03'11Y.L30

....

....
....

....
....

....
.....

.....

....

....

' '

.....

.....

....

....
t::l t:l 0 l.l 0
tz:j trj 0 0 0
"rj 0 z z t""
t"" 0 t:l t::l "t1
en ~ t-3 en z
t-3 "t1 z ~

....

.....

.....

.....

....
to
t::l
tz:j
"rj

3G08Nfl

NV8S

.LNdM.OH

.LSI'lH

dX3'13H

'1VA3Hd

3SflVd

)J;)Vd

d3Hd0

..\.380

H.LDN3'1

GHHX.3)J

.LIN I

3'lldl

AN081

.Lfld.L3D

dDGNid

GNid

3AIHGd

'1VA3

H3AIHG

.LS'ld3G

3Nid3G

dW083G

dWOJ

.LNd'lOJ

.LSI'lH

dX..LNIH

.LINIH

GNidH

d3GH

SS388V

en
C!
to
::0
0
C!
~ z
trj

z
>·
~
trj
en

8 GEOLOGIC RETRIEVAL AND SYNOPSIS PROGRAM (GRASP)

Polish form expressions, the reader is referred to
Lee (1967, p. 162-180).

NUMBER LISTS

Number lists are composed of one or more in­
teger numbers or number ranges (for example, 1,
2-7, 10). Each pair of elements in a number list
must be separated by a comma. Individual elements
are generated from the unpacked character form by
constructing each number, one digit at a time, us­
ing a sequential lookup on each character. Number
ranges .are generated by filling in the interior num­
bers from the pair of extremes.

NAME LISTS

Name lists are composed of one or more names.
When the name list contains a single element such
as a file name, the packed form is obtained and as­
sociated with the appropriate FORTRAN unit num­
ber. If the name list is one or more attribute names,
each pair of which is separated by a comma, each
elem·ent is packed and looked up using the binary­
search technique.

ARITHMETIC EXPRESSIONS

Arithmetic expressions may be entered in the
place of single attribute names as supplementary
input to the LIST command. These arithmetic ex­
pressions may be composed of constants, the group­
ing symbols () , attribute names, the arithmetic
operators +, *, /, -, and the functions square
(SQR), square root (SQRT), log base 10 (LOG)
and power of 10 (EXP). The arithmetic expression
is converted on input to reverse-·Polish form. Eval­
uation is done on output. If any of the attributes in
the expression has no value for a given record, the
expression is not evaluated. All conversion to re­
verse-Polish form is done using transition-matrix
parsing. Bauer and Samelson (1960) give a discus­
sion of this technique.

SEARCHES

The two general types of GRASP searches are ex­
ternal file and internal table. External-file searches
are made on the Dictionary file, Multiple-choice file,
and Numeric Master file.

The Dictionary file i.s searched in two ways. The
first way is as an indexed sequential file. When a con­
dition relating an attribute name to a character­
string value is entered, the record number of the
first entry of the dictionary for that attribute is
obtained from the "unnamed" common area. That

record is read (directly), giving the entry value and
a pointer to the record containing the next entry.
The entry value is compared with the character­
string value, and, if not equal, the record containing
the next entry is read. This process continues until
an entry is found that matches the character-string
value, or until all entries of the dictionary have been
read. The latter condition is detected by a next­
record-pointer of zero. The second way of searching
the Dictionary file is as a direct- (random-) access
file. To display the value of a character-type at­
tribute, its pointer is obtained from the current
record of the selected Numeric Master file 1 and its
value is obtained by a direct-access read on the
Dictionary file.

Multiple-choice acronym values are obtained when
a condition is entered involving a multiple-choice­
type attribute and when the value (s) of a multiple­
choice-type attribute is to be displayed. Each record
of the Multiple-choice file contains all the acronym
values for a particular multiple-choice attribute. In
all cases, the Multiple-choice file is read in direct­
(random-) ~access mode using a pointer from the
"unnamed" common area. After the correct record
has been obtained, the attribute values are available
in a tabular (array) form.

The Numeric Master file is searched in a purely se­
quential fashion. This search involves the application
of a "question" to each record of the file where the
"answer" can only be "yes" or "no." If the answer is
"yes," the record is written on an output file. The
question is posed by previously entering conditions
and relating them by a logical expression.

Internal table searches are made on attribute
names and single characters. All lookups on attri­
bute names are done using the "binary search" tech­
nique on a ~sorted list. The list of names are read
and sorted by execution of the FILE command. The
interval that possibly contains the desired name is
~repeatedly halved until it is of length one. At that
point, the position of the name is known, or the
name is not in the list.

Single characters are looked up s·equentially when
the list of possibilities is short, as in the case of
digits in a number. A "hash code" technique is
applied for longer list1s such as alphabetic letters.
This technique involves the initial storage of pos:si­
bilities in a position dictated by a function applied
to the value itself. This is done in a table whos.e
size is greater than the number of possibilities. If

1 The selected Numeric Master file most probably will be some retrieved
subset of the true Numeric Master file.

DATA-BASE IMPLEMENTATION 9

the position is already occupied, an additional func­
tion is applied to the value until an unoccupied
position is found. Once the possibilities have been
stored in this manner, the lookup of an arbitrary
character is accomplished by applying the same pro­
cedure. If an empty position is detected during look­
up, the character is not in the list. Bell and Kaman
(1970) give a more detailed description of the tech­
nique.

OUTPUT

A data-retrieval system designed for interactive
use should provide the user with information re­
garding us·e of the system, the structure and con­
tent of a particular data base, and the capability of
displaying selective attribute values for records of
some partition of a data base. These capabilities
have been incorporated in GRASP and are individ­
ually discussed in the following paragraphs.

Information regarding use of the GRASP system
is provided in two ways. First, all us·er response is
preceded by system-generated "prompts" which
indicate the type of response desired. Secondly, a
command (HELP) has been implemented that gives
the user a brief description of each command rec­
ognized by the system.

Information regarding the structure and content
of a particular data base is obtainable via the
NAMES and FUNCTION commands. The NAMES
command allows the user to determine attribute
names (acronyms) and corresponding data types.
A brief description is provided for each attribute
name printed. After the selected attribute names
have been printed, the user may examine the set
of possible values assumed by character-and
multiple-choice-type attributes. For numeric-type
attributes, the user may obtain arithmetic means
and ranges by selecting the MEAN function after
issuing the FUNCTION command.

A partition of a data base is created when a
retrieval has been made using the CONDITIONS,
LOGIC, and SEARCH commands. The displaying of
selective attribute values for records of this partition
is accomplished by using the LIST or DUMP com­
mands. The DUMP command permits the user to
print all values present for attributes in a selected
set of categories. The values are printed one to a
line with the corresponding attribute name. The
LIST command permits the selection of specific
attribut·es or arithmetic expressions containing
attribute names for printing. The printing is select­
ably formatted into columns or rows. For columnar

output, the user may create a separate data set
which could be used by other programs at a later
time.

DATA-BASE IMPLEMENTATION

In the previous section on file description, it was
noted that the various fHes were integral to and
nec·essary for GRASP to function. There are ap­
proximately as many methods of data collection as
there are data bases, and it is not the intention of
the writers to dictate data-base structures or meth­
ods of data collection. However, the following sug­
gestions will facilitate the construction of the files
necessary for GRASP implementation.

The structure of any GRASP data base must be
such that it can be manifest in a tabular fashion.
The table representing a data base is composed of
columns that ·are attributes and rows that are items
described by these attributes. For purposes of this
report, the word "record" will be used in reference
to rows. Before any files can be constructed, a com­
prehensive list of names of attributes (or column
headings) must be compiled. Keep in mind that this
arrangement of attributes will describe every rec­
ord in the data base, and that although provision
is made for all attributes, no record need contain
data on every attribute. For each attribute that
assumes a character-string value, a dictionary is
compiled whose entries are the values assumed by
that attribute. These dictionaries are used to create
the Dictionary file. Once the Dictionary file is con­
structed, the record number (that is, pointer) of
the first entry (that is, value) for each character­
type attribute is known. By using this information
and the previously compiled list of names of attri­
butes, the Mask file can be created. Next, all attri­
butes should be grouped into categories of related
information. This grouping provides the informa­
tion necessary for the construction of the Defini­
tions file. For multiple-choice-type attributes one
simply needs to assign and to delineate value ac­
ronyms for each attribute in a record. Each group
of value acronyms forms a set, and the collection of
sets forms the Multiple-choice file.

Finally, the Numeric Master file is constructed,
one record at a time. The individual record is con­
structed by assigning values for each attribute in
the order of its occurrence in the Mask file. For
integer or r·eal attributes, the value is inserted direct­
ly. For character-type attributes, the entry number
of the value in the appropriate dictionary is inserted.

10 GEOLOGIC RETRIEVAL AND SYNOPSIS PROGRAM (GRASP)

For multiple-choice-type attributes, the binary en­
coded word that describes its value is inserted. The
record is then compressed as described in the sec­
tion "Data File Structures."

USE OF GRASP

From the viewpoint of a user, GRASP is a mech­
anism for obtaining information from a data bank
in a very ~simplistic and rigid manner. The "lang­
uage" which is used to "direct" GRASP is composed
of 11 "commands." These commands can logically
be divided into four groups.

GROUP 1 (FILES, NAMES) is used to:
A. Select or change the data bas·e of interest.
B. Obtain information regarding the nomenclature

and content of the selected data base.
GROUP 2 (LIST, DUMP, FUNCTION) is used

to:
A. Examine a selected set of records that is called

a file.
B. Perform -selected computations of numeric attri­

butes in a file.
GROUP 3 (CONDITIONS, LOGIC, SEARCH)

is used to perform a retrieval (SEARCH) on the
data bank based on given criteria (CONDI­
TIONS) which are combined via a logical ex­
pression (LOGIC), a shorthand method of indi­
cating which records of the data bank are to be
retrieved.

GROUP 4 (HELP, REVIEW, QUIT) is used to:
A. Obtain brief information about the commands

that GRASP will accept.
B. Obtain information regarding the history and

status of the current session with GRASP.
C. Terminate the current ses-sion with GRASP.

All commands except HELP and REVIEW will
ask for some type of response. Each response enter­
ed must end by striking the "cr" (RETURN) key.
If a typing error or incorrect response is given, the
system asks for another response. If at any point
the system seems to be idle it is a good practice to
strike the cr key. Certain commands (SEARCH,
LIST, DUMP, FUNCTION) require an input file
name. Entering a blank name in response to
prompts generated by these commands (that is, cr
only) results in the selection of the current Numeric
Master file (as specified in the most recent FILE
command). The LIST and DUMP commands also
ask for the number of lines per pag·e. This causes the
system to pause after each printing of this number
of lines, awaiting a response from the user. The
user may then make a hard copy and (or) clear

the screen if using a CRT terminal. Also, the user
may terminate the printing altogether. At each
pause, the user should enter a nonblank character
followed by a cr if it is desired to abort the rest of
the printout; otherwise, only a cr will continue
printing. The method of calling the GRASP system
into execution will vary, depending on what compu­
ter is used. At the beginning of execution, the
GRASP system will print out the names and descrip­
tions of the data bases available. The data-base
name corresponds. to the name of the Numeric
Master file. Assume, for purposes of explanation,
that a data consisting of oil and ga;s pools in the
State of Colorado is available and named COLFIL.
Following is a discussion of each command:

FJLES.-This command is us~ed to select a data
base and may be issued at any time during a session.
The individual-attribute names for any one data
ba:se will not be recognized by GRASP until this
command has been issued. The user must enter a
data-base name when the system asks for it.

NAMES.-This command is used to list the ac­
ronyms which will be us.ed to identify individual
attributes within a record (that is, pool) and their
meaning. First, 17 categories are printed. Then the
system asks the user to enter a list of numbers cor­
responding to the categories of interest. The list
should be composed of individual numbers or num­
ber ranges (such as 2-5), each of which must be
separated by a comma. The list must be terminated
by the cr key: for example, 1, 2-5, 9 cr and 1--4,
10, 11 cr. The system then lists each acronym
and its meaning for all the categories of inter­
est. After ~each category is· complete, the sys­
tem pauses. At this point the user must enter
cr to continue, or enter any letter (or digit)
followed by cr to stop. After all categories have
been completed, the system asks if the user would
like to see the possible values of any character-type
or multiple-choice-type item:s. The user must then
enter Y or N followed by cr to indicate his decision.
If the user enters N, the ~system will ask the user
to enter his next command. If the user enters Y, the
system asks for the names (acronyms) of the attri­
butes of interest. The names are prompted and are
given one per line followed by a cr. After each name
is given, the system skips to the next line and prints
a numeral. To end the list (a maximum of 10 names
may appear), enter cr (with no name). The system
then starts printing the attribute names and possi­
bl·e values, pausing after each name is complete. A
pause also occurs after 30 lines of print. At each
paus·e, enter cr to continue or any letter (or digit)

USE OF GRASP 11

followed by cr to stop. After this process is com­
pleted, the system then asks if the user would like
to see any more possible values. Again, enter Y for
yes or N for no.

LIST.-This command is used to output selected
attribute values (or expressions) from a selected
file. Output may be to an interactive terminal or to
a specified data set which could be processed at some
later time by other programs. The system first asks
the user for the input-file name and the number of
lines per page. The user· is next asked to enter C for
column printing or R for row printing. If column
output is selected, the user is ·asked if he wants out­
put to be to a disk ~ata set in character form. If so,
the system will ask for a data-set name. Column
output prints the ·selected acronyms as headings and
their respective values below. E-ach column is com­
posed of 8 character positions in a field of 10. One
line of column output corresponds to one record.
Row output consists of lines, each of which contain
an acronym and its corresponding value. If the
value for a selected attribute is missing, the attri­
bute name is not printed. Records are separated by
a line of asterisks. Before output proceeds, the sys­
tem asks for the names of attributes or expressions
which are desired. This is done by prompting with
index numbers.

Expressions may optionally be preceded by some
name. Five intrinsic functions are available: square
root (SQRT), square (SQR), log base 10 (LOG),
power of ten (TEN), and absolute value (ABS).
Expressions may involve these intrinsic functions
attribute names, numeric constants, the arithmeti~
operators (+, -, *, /), and the grouping symbols
() . The following is an example of a list to be
output:

1. POOL
2. FIELD
3. DEPTH
4. LOG (DEPTH)
5. WELLAV = CRUAN69/ (NUMPOOL­

TOTPROD)
6.

In the abov·e example, GRASP has prompted with
the index numbers 1-6. Note that the list is termi­
nated by a blank entry.

DUMP.-This command is very similar to the
LIST command having row printing specified. In­
stead of asking for a list of names, the system asks
for a list of category numbers. It then prints (in
row fashion) the attribute name and value for each

attribute present in the selected categories of the
specified file.

FUNCTION.-This command performs functions
on a file. Currently, the only functions available are
the arithmetic mean (MEAN) and a linear least­
square fit (FI1) of two attributes. The system a·sks
for the name of the input file. Next, the user is asked
for the name of the function and names of the argu­
ments. The argument nam·es are the acronyms for
attributes within a record; as many as five may be
given. For instance, if MEAN DEPTH, TOTPROD,
CRUCM70 cr were entered, the range, mean, root
m·ean square, sum, and sum of squares for DEPTH,
TOTPROD, and CRUCM70 would be computed and
printed. If FIT DEPTH, ·TOTPROD cr were en­
tered, the system would respond with the slope,
intercept, and correlation coefficient. Values for all
attributes in a record must be present for that rec­
ord to be included in a computation.

CONDITIONS.-This command is used to enter
a set of retrieval criteria. Each criterion must be
given in the form acronym relation value, where
acronym is an attribute name (such as COUNTY,
CRUCM69, POOL), where relation is EQ, NE, GT,
LT, LE, GE, or BE, and where value is a number
or a series of letters (such as ADAMS, 19342, MIS­
SIS.SIPPIAN). The above relations have the follow­
ing meanings :

EQ-equal to.
NE-not equal to.
GT-greater than.
LT -less than.
LE-less than or equal to.
GE-greater than or equal to.
BE-between (numerically, inclusive).

The system precedes each condition with a letter
prompt (up to 26 may be entered) , which will be
used in the logic expression that combines the con­
ditions. Entering cr by itself terminates the list of
conditions. Following is an example of a set of con­
ditions:

A. COUNTY
B. DEPTH
C. TOTPROD
D. LITHOL
E. COUNTY
F. POOL
G.

EQ
BE
GE
NE
EQ
NE

BACA
5000,6000
10
DOLOMITE
ADAMS
MISSISSIPIAN

In the a-bove example, the system provided the let­
ters A through G as prompts.

LOGIC.-This command is used to enter a logical
or connective expression which combines the pre-

12 GEOLOGIC RETRIEVAL AND SYNOPSIS PROGRAM (GRASP)

viously entered conditions to form the retrieval cri­
terion. The logical expression may be composed of
the logical connectives (operators), the letters cor­
responding to the criteria entered via the CONDI­
TIONS command, and the grouping symbols () .
The logical connectives ar·e AND, inclusive OR, and
NOT (written .AND., .OR., .NOT.). Note that they
are each bracketed by periods. Provision has also
been made to use * (for AND), + (for OR), - (for
NOT). Assume that the example conditions given
in the preceding CONDITIONS command section
had been entered. If the user wanted to retrieve the
pools in B.aca County that had a depth of 5,000-6,000
feet, the logic expre·ssion would be A .AND. B cr.
If all the pools in Adams and Baca Counties except
those of Mississippian age having dolomite lithology
were desi~ed, the logic expression would be (A .OR.
E) .AND. (D .AND. F) cr. Note that the last pair
of parenth·eses is not really needed. The ANDs will
be applied befo~e the ORs. NOTs are applied before
ANDs and ORs. Hence, the first set (A. OR. E) is
neces,sary so that the E is connected to A instead
of to D. If one wanted to retrieve all pools with at
least 10 producing wells having a depth greater than
6,000 feet or less than 5,000 f·eet, the logic expression
would be .NOT. B .AND. C cr. If one wanted to
retriev·e all pools having less than 10 producing
wells in the same range as above, one could use·
.NOT. (B .OR. C) cr for a logic expression. This
expression, in words, ~says "if the pool has a depth
of 5,000-6,000 feet, or if it has 10 or more pro­
ducing wells, I don't want it."

SEARCH.-After the system has been given the
conditions and connecting logic that compose the
question to be asked of some file, an actual search
of the data bank can be made. This is done with the
SEARCH command. The system will ask for the
name of the file to be searched (input file) and the
name to call the file of records found (output file) .
After the search has been made, the system types

the number of records searched and the number of
records found. The capability of entering both input
and output file names allows the user to perform
"nested" searches. This means searches of files that
were the result of previous searches. Frequently
this is the most economical way of performing
multiple or complex retrievals. For instance, sup­
pose one wanted information on ~several sets of
pools, all of which were in one county. One would
first create an output file that contained all the
pools in that county and then use that file as the
input file for subsequent searches.

HELP.-This command is used to print a list of
the possible commands and a brief description of
their functions.

REVIEW.-This command provides a review of
the conditions and logic which are currently in
effect. The nam,es of input and output files for the
last 10 retrievals are also printed. This command
is used to refresh one's memory on what was done
rec·ently during the current session.

QUIT.-This command is used to exit from the
GRASP system. A list of the files created during
this ~session is printed, and the user is permitted to
.sav~e them for future use. Abnormal session inter­
rupts and terminations will cause GRASP to cease
functioning. However, all files created during the
active session are either saved or not saved, accord­
ing to the abnormal termination rules of the partic­
ular computing system. On abnormal termination,
GRASP neither saves nor deletes files.

REFERENCES CITED

Bauer, F. L., and Samelson, K., 1960, Sequential formula
translation: Assoc. Computing Machinery Commun., v.
2, no. 2, p. 76-83.

Bell, J. R., and Kaman, C. H., 1970, The linear quotient hash
code: Assoc. Computing Machinery Commun., v. 13, no.

I 11, p, 675-677,

I

Lee, J. A. N., 1967, The anatomy of a compiler: New York,
, Reinhold Publishing Corp., 275 p.

GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP) 13

GRASP SOFTWARE SPECIFICATIONS

MODULE NAME: DRIVER

Purpose: DRIVER is used primarily as a switching/calling
mechanism. User commands are accepted and decoded. Con­
trol is then passed to the routine designed to process the
given command. This process continues until the user "quits."

Subroutines called: START, KEYBRD, CONDTN, LOGEXP,
RETRVE, FTNC, FILES, CONDS, HELP, DUMPIT,
NAME, LIST, QUIT, PACK.

Common data referenced: None
Called by: None
Error checking and reporting: The command entered by the

user is checked against the list of legal commands. If a
command is not recognized, it is echoed back to the user

G R A S P S 0 U R C E

terminal with a message suggesting use of the HELP com­
mand.

Program logic:
1. Initialization is performed by zeroing counters and call­

ing START.
2. An unpacked character string is accepted from the user

via subroutine KEYBRD.
3. A four-character command is formed by packing the above

string into COMMAND.
4. COMMAND is then compared with the list (WORDS) of

acceptable command words (NAMES). When a match is
found, control is transferred to the appropriate subroutine
via a computed GO TO.

5. Steps 2 through 4 are repeated until an end-of-file (EOF)
condition is sensed on the terminal or until the QUIT com­
mand is executed.

P R 0 G R A M

INTEGER WORDS(11) ,COMANO,NAMEPT(26) ,RCOOE(26), IVAL(26t ,POLISH(30)000000l
1 ,IMAGE(5),IFILES(20),0FILES(20) 0000002

DATA WORDS/ 1 COND' , 1 LOGI 1 , 1 SEAR','LIST 1 , 1 FILE', 1 QUIT','NAME','HELP'0000003
1' I REV I • ' I DUMP.' I FUNC 1 /' I BLNK / 1 I I

NFILES=O
LPS=O
CALL START

110 TYPE 270
COMAN D= I B LNK
CALL KEYRRD(&260,1MAGE,4)
CALL PACK(IMAGE,COMAND,4,41
00 120 1=1, 11
IF (COMANO.EQ.WORDS(l)) GO TO 130

120 CONTINUE
TYPE 290, COMAND
GO TO 110

130 GO TO (140,150,160,24G,190,260,230,210,180,220,170),
140 CALL CONOTN(&llO,NAMEPT,RCOOE,IVAL,NREXP)

GO TO 110
150 CALL lOGEXP(&llO,POLISH,LPS,NREXP~

GO TO 110
160 CALL RETRVE(&150,&11C,IFILES,OFILES,NFILES,POLlSH,LPS,NAMEPT,

1 RCOOE,IVAL,NREXP)
GO TO 110

17C CALL FTNC(&1101
GO TO 110

190 CALL FILES(&110)
GO TO 110

180 CALL CONDS(NREXP,LPS)
IF (NFILES.GT.OI GO TO 200
TYPE 300
GO TO 110

20C TYPE 310, (IFILES(I),OFILES(I),l=1,NFILES)
GO TO 110

2 1 C C All HE L P (W 0 RD S)
GO TO 110

220 CAll DUMP IT
GO TO 110

OOOOJ04
0000005
0000006
0000007
ocoooos
0000009
OOOOJlO
0000011
0000012
0000013
0000014
0000015
0000016
0000017
0000018
0000019
0000020
0000021
0000022
0000023
0000024
0000025
0000026
0000027
0000028
0000029
0000030
0000:131
0000032
0000033
0000034
0000035
0000036
0000037
0000038

14 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

230 CALL NAME(&l10t
GO TO 110

24C CALL LIST(&llO)
GO TO 110

260 CALL QUIT(OFILES,NFILES)
STOP

270 FORMAT (// 1 ENTER COMMAND: ',S)
290 FOR~AT (1X,A5, 1 ILLEGAL COMMAND. ENTER HELP IF YOU WISH TO SEE',

l' THE LEGAL COMMANDS. 1 /)

300 FORMAT (1 NO FILES HAVE BEEN USED AT THIS TIME.')
310 FORMAT (1 INPUT: OUTPUT: 1 /(2X,A5,2X,A5/))

END

0000039
0000040
0000041
0000042
0000043
0000044
0000045
0000:>46
0000047
0000048
0000049
0000050

GRASP SOFTWARE SPECIFICATIONS 15

SUBROUTINE NAME: ACCESS

Purpose: ACCESS looks up character-string values in dic­
tionary files. In order to minimize disk accesses, five previous
values are saved for as many as 100 distinct character-type
items.

Calling sequence: CALL ACCESS(NUMD,IVAL,TANK,
NWORDS,ISWTCH)

Arguments:
NUMD-Item number of the character-type variable whose

values are to be accessed.
IV AL-Direct-access key under which value is stored.
TANK-Contains the character value accessed.
NWORDS-The number of words in TANK.
ISWTCH-Switch to control which of the following four

functions are desired :
1. Initialization for dictionary lookup.
2. Lookup a random item.
3. Return the direct-access key of the first item in this

dictionary.

G R A S P S 0 U R C E

4. Return the indicated (by IV AL) entry and the KEY for
the next entry (that is, reset IVAL).

Subroutines called: None
Common data referenced: IDPT in /DACOMM/
Called by: BDEF, COLPNT, DUMPIT, PNTER, ROWPNT
Error checking and reporting: None
Program Logic: The logic is divided into four sections relat­

ing to values of. ISWTCH.
1. If ISWTCH=1, initialize saved pointer arrays (USED,

LASTDX) and set character variable counter NCVAR to
zero.

2. If ISWTCH=2, see if the value has been stored in BUF­
FER. If so, return it; otherwise access it on FORTRAN
unit 21 and save its value (TANK), index (IVAL) and
the item number (NUMD).

3. If ISWTCH=3, return the direct-access key for the first
entry of the dictionary pointed to by NUMD.

4. If ISWTCH=4, access the entry pointed to by IVAL and
reset IV AL to the key for the next entry in this dictionary.

P R 0 G R A M

SUBROUTINE ACCESS(NUMD,IVAL,TANK,NWORDS,ISWTCH)
COMMON /DACOMM/ NV,IOPT

0000051
0000052
0000053
OOOOJ54
0000055
0000056
0000057
0000058
0000059
0000060
0000061
0000062
0000063
0000064
0000065
0000066
0000067
0000068
OOOOQ6q
0000070
0000071
0000072
0000073
0000074
0000075
0000076
0000077
0000078
0000079
0000080
0000081
0000082
0000083
0000084

INTEGER TANK(l),BUFFER(5,100,5),USE0(100),1NDEX(l00),
l LASTOX(5,100),10PT(500)

DATA I B LNK, NO I C T / 1 1 , 21/
GO TO (5,15,100,150),ISWTCH

5 NCVAR=O
DO 10 J=l,lOO
USED(J)=O
DO 10 1=1,5

10 LASTDX(I,J)=-999999
GO TO 320

15 IFCNCVAR.EQ.O) GO TO 30
DO 20 KK-=l,t..cVAR
IF(I~OEX(KK).EQ.NUMD) GO TO 40

20 CONTINUE
30 NCVAR-=NCVAR+l

IF(NCVAR.GT.l00) NCVAR=lOO
KK=NC VAR
INDEX(KKJ=NUMD

40 IF(USEO(KKI.EQ.O) GO TO 240
DO 5C K=l,5
IF(IVAL.EQ.LASTOX(K,KK)) GO TO 60

50 CONTINUE
GO TO 240

60 NWORDS= 5
DO 70 I=l,NWORDS

7C TANK(I)=BUFFERCI,KK,K)
GO TO 320

100 IVAL=IOPT(NUMD)
GO TO 320

150 REAO(NOICT' !VAL) NP,NWORDS, (TANK (I), l=l,NWORDS.
I VAL =NP
GO TO 320

16 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

240 ISTART=IDPT(NUMO)
READ(NOICT'ISTART+IVAL-1) NP,NWOROS,(TANK(I),I=l,NWORDS)
USED(KK)=MOO(USEO(KK),5)+1
NUS ED=US EO(KK)
DO 26C 1=1,5

260 BUFFER(l,KK,NUSED)=IBLNK
NWORO=MINO(NWOR0$,5)
DO 27C I=l,NWORO

270 BUFFER(l,KK,NUSED)~TANK(I)
LASTOX(NUSED,KK)=lVAl

320 RETURN
END

0000085
0000086
0000087
0000088
0000089
0000090
0000091
0000092
0000093
0000094
0000095
0000096

GRASP SOFTWARE SPECIFICATIONS 17

SUBROUTINE NAME: BDEF

Purpose: BDEF provides access to the character and multiple­
choice dictionaries.

Calling sequence: CALL BDEF (&n)
Argument:

n-Statement number (in caller) to which a branch is made
if an EOF is sensed by KEYBRD.

Subroutines called: KEYBRD, VLIST, ACCESS, PAUSE,
BINTYP, IFILE

Common data referenced:
FNAMES, WHICH in /FILNAM/
ITYPE in blank common

Called by: NAME
Error checking and reporting: The user response to a "yes/

no'' question is checked. If illegal, a message is typed, and
the user is prompted for another :vesponse. If i:m item is
selected that is not a multiple-choice or character-type item,
a message is typed, and the user is requested to reenter a
list of item names.

G R A S P S 0 U R C E

SUBROUTINE BDEF(*)
COMMON NAMES,ITYPE,IPTS,IPAD
COMMON /FILNAM/ FNAMES,WHICH,PAO

Program logic: The user is prompted to determine if a list of
multiple-choice or character-type valu-es is desired. If the
response (obtained from KEYBRD) is "N", a branch is
made to the end of the routine. If the response is. "Y," a list
of item names is obtained by a call to VLIST. If an EOF
is sensed, the nonstandard return (from VLIST) exits via
the nonstandard return of BDEF. The data type is deter­
mined for each name (TAGS) returned by VLIST. If the
type is not multiple choice or character, that message is
typed, and the next element of TAGS is considered. If the
type is multiple choice, a call to BINTYP is used to ob­
tain the permissible values, for printing. If the type is char­
acter, calls to ACCESS are made to obtain the possible
values. When the second argument of ACCESS is returned
as zero, all possible values have been referenced. A pro­
grammed pause is generated after each 30 lines of print
and after each item in TAGS is processed. Just prior to re­
turn (standard or nonstandard) , unit 22 (the binary or
multiple-choice file) is rewound, and the unit number is
reassociated with the current file name via a call to IFILE.

PROGRAM

DOUBLE PRECISION LABEL(25),NAMES(500),TAGS(20)
INTEGER IPTS(500),FNAMES(21t,WHICH,PA0(4t
INTEGER BINL(20),YES,NO,REPLY,BITEM(15,25),1TYPE(500),TANK(25)
EQUIVALENCE (BITEM(l,l),TANK(l))

0000:>97
0000098
0000099
0000100
0000101
0000102
0000103
0000104
0000105
0000106
0000107
0000108
0000109
0000110
0000111
0000112
0000113
0000114
0000115
0000116
0000117
0000118
0000119
OJ00120
0000121
0000122
C000123
0000124
0000125
0000126
0000127
0000128
0000129
0000130
0000131

DATA YES,NO,NBIN/'V','N',22/
10 TYPE 120
20 TYPE 130

CALL KEYBRDC&llO,REPLY,l)
IF (RfPLY.EQ.NO) GO TO 100
IF (REPLY.EQ.YES) GO TO 30
TYPE 150
GO TO 20

3 0 CAlL VL I S T (& 110 , TAGS, B I Nl, NUM)
DO 90 N=l,NUM
INDEX=BINL(NJ
IF (ITYPE(INDEXt-3) 60,40,70

40 TYPE 190, TAGS(NI
CAll ACCESS (INDEX, K, TANK, NOM, 3)
DO 50 J=l,lOOOO
CALL ACCESS(INDEX,K,TANK,M,4)
TYPF 160, (TANK(I),I=1,M)
IF(K.EQ.O) GO TO 90
IF (M0D(J,30).NE.O) GO TO 50
CALL PAUSE(&100)

50 CONTINUE
60 TYPE 170, TAGS(N)

GO TO 90
70 IF(ITYPE(INDEXt.NE.4) GO TO 60

CALL BINTYP(INOEX,LABEL,BITEM,K,M)
TYPE 190, TAGS(Nt
DO 80 J=l,M

80 TYPE 180, LABEL(J),(BITEM(I,J),I=1,K)

18 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

90 CALL PAUSE(&100f
GO TO 10

100 REWIND NBIN

0000132
0000133
0000134
0000135
0000136
0000137
0000138

110

CALL IFILE(NBIN,FNAMESC16+WHICHt)
RETURN

REWIND NBIN
CALL IFILE(NBIN,FNAMfS(l6+WHICHt)
RETURN 1 0000139

120 FORMAT (' WOULD YOU LIKE TO SEE THE POSSIBLE VALUES •,•OF MULTIPLE0000140
0000141
0000142
0000143

1 CHOICE'/' OR CHARACTER TYPE ITEMS?')
130 FORMAT(' CENTER Y FOR YES, N FOR NO): •,S)
150 FORMAT (1 YOUR REPLY WAS NOT UNDERSTOOD.')
160 FORMAT (10X,l2A5J
17C FORMAT (1X,A8, 1 IS NOT A MULTIPLE
180 FORMAT (11X,A7, 1 - 1 ,15A4J
190 FORMAT (1X,A8, 1 =1)

END

0000144
CHOICE OR CHARACTER TYPE ITEM.•) 0000145

0000146
0000147
0000148

GRASP SOFTWARE SPECIFICATIONS 19

SUBROUTINE NAME: BFIND

Purpose: BFIND is used to look up a double-word-item name
in a list of double-word-item names having a given sorted
order.

Calling sequence: CALL BFIND (&n,KEY~IPOST,KEYS,
INDEX,K)

Arguments:
n-Statement number (in caller) to which a branch is made

if the name KEY is not in the list of names KEYS.
KEY-The double-word item to be looked up.
!POST-The position in KEYS of the item KEY.

G R A S P S 0 U R C E

KEYS-The list of double-word names that will be used to
look up KEY.

INDEX-Gives the indices of the sorted form of KEYS.
K-The number of elements in KEYS.

Subroutines called: None
Common data referenced: None
Called by: DECOMP, PARSE, RELEXP, VLIST
Error checking and reporting: None
Program logic: The standard binary-search technique is used,

which repeatedly halves the interval of search on a sorted
list. If the interval of search goes negative, the element is
not in the list and the nonstandard return is taken.

PROGRAM

SUBROUTINE BFIND(*,KEY,IPOST,KEYS,INOEX,K)
DOUBLE PRECISION KEY,KEYS(l)

0000149
0000150
0000151
0000152
0000153
0000154
0000155
000015b
0000157
0000156
0000159
0000160
0000161
0.000162
0000163
0000164
0000165
0000166

DIMENSION INDEX(l)
ll=l
LZ=K

70 IF (l2.LT.Llt RETURN 1
J=(ll+l2)/2
I=INOEX(J)
IF (DABS (KEVJ .GT .DABS(KEVS(I))) GO TO 90
IF (OASS(KEY).LT.OABS(KEYS(I)Jt GG TO 80
GO TO 100

80 LZ=J-1
GO TO 70

90 l1=J + 1
GO TO 70

100 IPOST=I
RETURN
END

20 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: BINIT

Purpose: BINIT is used to sort a list of double-precision words
(NAMES, in this instance) into ascending order and re­
turn an array of indices giving the sorted order of the
elements in terms of the unsorted order.

Calling sequence: CALL BINIT (KEYS,INDEX,M)
Arguments:

KEYS-The list of double-precision words to be sorted.
INDEX-An array of indicies giving the unsorted order

G R A S P S 0 U R C E

SUBROUTINE BINIT(KEYS,INOEX,M)
DOUBLE PRECISION KEYS(l),KTEMP
INTE:GER INDEX(1)
DO 10 J=l ,M

10 INDEX(J)=J
MO=M

20 IF tMO.LE.l) GO TO 60
J=4
IF (MO.GT.l5) J=8
M0=2*(MO/J)+l
KO=M-MO
JO=l

30 I=JO
40 J= I+MO

of KEYS.
M-The number of words in the KEYS and INDEX arrays.

Subroutines called: None
Common data referenced: None
Called by: FILES
Error checking and reporting: None
Program logic: An in-place sort is performed using the stand­

ard "Shell" technique .. The original order of KEYS is over­
written, and the sorted order is returned in INDEX.

P R 0 G R A M

IF (OABS(KEYS(l)).LE.DABS(KEYS(J))) GO TO 50
KTEMP=KEYS(IJ

0000167
0000168
0000169
0000170
OOC0171
0000172
0000173
0000174
0000175
0000176
0000177
0000178
0000179
0000180
0000181
0000182
0000183
0000184
0000185
0000186
0000187
0000188
0000189
0000190
0000191
0000192
0000193

KEYS(IJ=KEYS(J)
KEYS(J)=KTEMP
ITEMP=INDEX(I)
INDEX (I)= INDEX(J)
INDEX(Jt=ITEMP
I=I-MO
IF (I -1) 50 , 40, 40

50 JO=JO+l
IF (JO-KO) 30,30,20

60 RETURN
END

GRASP SOFTWARE SPECIFICATIONS 21

SUBROUTINE NAME: BINTYP

Purpose: BINTYP reads the values (LABEL, BITEM)
which can be assumed by the multiple-choice-type item
whose number is NUMD.

Calling sequence: CALL BINTYP,(NUMD,LABEL,BITEM,
LNG,NUM)

Arguments:
NUMD-Integer specifying a multiple-choice-type item.
LABEL-Set of values (double word) that may be assumed

by this item.
BITEM-Set of descriptions corresponding to elements of

LABEL.

G R A S P S 0 U R C E

LNG-Maximum length of a description.

NUM-The number of descriptions.
Subroutines called: I FILE
Common data referenced: FNAMES, WHICH in /FILNAM/
Called by: BDEF, COLPNT, DUMPIT, PNTER, ROWPNT
Error checking and reporting: None
Program logic: Records of the multiple-choice (binary) file

are read sequentially until the correct record is obtained.
If the fi,le was positioned past the desired record at call
time, an EOF is sensed, the file is rewound, and the cur­
rent multiple-choice file name is reassociated with unit 22.

P R 0 G R A M

SUBROUTINE BINTYP(NUMO,LABEL,BITEM,LNG,NUM)
COMMON /FILNAM/ fNAMES,WHICH,PAD

0000194
0000195
0000196
0000197
0000198
0000199
0000200
0000201
0000202
0000203
0000204
0000205
0000206

DOUBLE PRECISION LABEL(l)
INTEGER FNAMES{2l),WHICH,PA0(4),BITEM(l5,25)
DATA NBIN/22/

300 REAO(NBIN,END=310) NAME,NUM,LNG,
A (LABEl (J) , (BIT EM (I , J) , I= 1, LNG), J = 1, NUM)

JF(NUMD-NAME) 310,320,300
310 REWIND NBIN

CALL IFILE(NBIN,FNAMES(l6+WHICHtt
GO TO 300

320 RETURN
END

22 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: BLIST

Purpose: BLIST returns a list of numbers giving the bit posi­
tions of the "ones" in a binary word.

Calling sequence: CALL BLIST(LIST,NUML,ICODE)
Arguments:

LIST-Array of integers giving the bit positions in ICODE
which are "ones," counting right to left.

NUML-The number of items in LIST.
ICODE-The binary word to be examined by BLIST.

Subroutines called: None

Common data referenced: None
Called by: COLPNT, DUMPIT, ROWPNT
Error checking and reporting: None

Progrann logic: ICODE is moved to IDUM. IDUM is suc­
cessively divided by 2, and the least significant bit is ac­
cessed by the MOD function. If the least significant bit is
"one," the position counter ts added to LIST.

G R A S P S 0 UR C E P R 0 G R A M

SUBROUTINE BLIST(LIST,NUML,ICODE)
INTEGER ll S T(1)
NUML=O
IOUM-=ICODE
DO 10 1-= 1, 2 5
IF (IOUM.EQ.O) GO TO 20
IF (M00(10UM,2).EQ.Ot GO TO 10
NUML = NUML + 1
LIST(NUMLI=I

10 IDUM=IDUM/2
20 RETURN

END

0000207
OOOOZ08
0000209
0000210
0000211
0000212
0000213
0000214
0000215
0000216
0000217
0000218

GRASP SOFTWARE SPECIFICATIONS 23

SUBROUTINE NAME: COLPNT

Purpose: COLPNT outputs the values of as many as 20 se­
lected items or expressions. Output is columnar and is di­
rected to the terminal or to a disk data set.

Calling sequence: CALL COLPNT(&n,NPAGE)
Arguments:

n-Statement (in calling routine) to which a branch is
made if the nonstandard return is taken from VLIST
(KEYBRD senses EOF).

NPAGE-Numbm- of lines between pauses per page of
terminal output.

Subroutines called: KEYBRD, OFILE, VLIST, ACCESS,
GETPUT, PAUSE, EVAL, UNCODE, BINTYP, BLIST,
PACK

Common data referenced:
POLISH, ICODE, LPS in/EXPRNS/
ITYPE in blank common

G R A S P S 0 U R C E

SUBROUTINE COLPNTl*rNPAGE)
COMMON NAMES,ITYPE,IPTS,IDIM
COMMON /EXPRNS/ POLISH,ICODE,LPS

Called by: LIST
Error checking and reporting: None

Program logic:
1. The user is asked if he would like the output to go to disk.

His reply is returned by KEYBRD. If affirmative a logical
flag is set, and he is prompted for a data-set name. This
name is then associated with unit 24 via a call to OFILE.

2. A call to VLIST returns the item names (or expression
pointers) that· are selected.

3. A call to ACCESS is made to initialize the lookup of
character dictionary values.

4. Each record of the selected file is then obtained via GET­
PUT, and a line (or record) of output is constructed. For
numeric data, a format is constructed to maximize the num­
ber of significant digits displayed, and the constructed line
is printed.

P R 0 G R A M

DIMENSION ITYPE(500),81TEM(l5,25),1TEMS(20),IRECC500),1PTS(500),
1RECC500), NAMES(500), TANKC25), LABEL(25), LISTl25), POLISH(
215,8), ICODEll5,8), LPS(8), IQUAL(6)

0000219
0000220
0000221
0000222
0000223
0000224
0000225
0000226
0000227
0000228
0000229
0000230
0000231
0000232
0000233
0000234
0000235
0000236
0000237
0000238
0000239
0000240
0000241
0000242
0000243
0000244
0000245
0000246
0000247
0000248
0000249
0000250
0000251
0000252
0000253

DOUBLE PRECISION DBLNK,AREA,LINE(20J,NAMES,LABEL 1 VNAMESl20),
1 F M T (3) , F MT S(8)

INTEGER BLANK,TANK,YES
LOGICAL BLNK,TTY
EQUIVALENCE (REC,IREC),(IVAL,VAL),(TANK,LISTJ,(BLANK,IQUALJ
DATA FMT,FMTS/'(•,• 1 , 1 ,Al) •, 1 F8.o •,•F8.5 •,

1 'F8.4 '•'F8.3 1 , 1 f8.2 1 , 1 F8.1 1 , 1 F8.0 1 , 1 1PE8.1 1 /,

2 OBLNK,YES,IQUAL/ 1 •,•y•,• 1 , 1 G1 , 1 H', 1 L1 , 1 N1 , 1 T1 /

TYPE 100
CALL KEYBRDC&290,1 9 1t
T T Y = I • N E • YE S
IFCTTY) GO TO 115
NPAGE=lOOOOOOO
TYPE 105
CALL KEYBRDC&290,1TEMS,5)
J:BLANK
CALL PACK(ITEMS,I,5,5)
CALL OFILE(24,1)

115 KOUNT=O
CALL VLIST(&290,VNAMES,ITEMS,NUM)
IF (NUM.EQ.O) GO TO 280
IF(TTYJ TYPE 300, (VNAMES(l),l=l,~UM)
CALL ACCESS(II,IVAL,TANK,LK,lt

120 CALL GETPUT(&270,1REC,1)
K OUNT =K OUNT + 1
IF (KOUNT.LE.NPAGE) GO TO 130
KOUNT=O
CALL PAUSE(&270)
TYPE 300, (VNAMES(It,I=l,NUM)

24

65

130

140

150

160

170

180

190
200

205

210

250

260

210
280

290
100
1C5
215

300
310

311
320

GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

DO 26C JJ-= 1, NUM
AREA=OBLNK
II=ITEMS(JJ)
I F (I I • G T • G) G 0 T 0 140
11=-II
VAL=EVAL(IREC,ICODE(1 9 ll),POLISH(1,ll),LPS(II),BLNK)
I F (BL NK) GO TO 26C
GO TO 160
IVAL=IREC(II)
IF (IVAL.EQ.BLANK) GO TO 26C
KIND=ITYPE(ll)
GO TO (150, 160,210,250, 205), KINO
ENCOOE:(8,320,AREA) IVAL
GO TO 260
IF (VAL.EQ.O.) GO TO 180
A=ALOGlO(ABS(VAL))
IF (A.GE.5.) GO TO 190
IF (A.LE.-4.) GO TO 190
IF (A.LE.O.) GO TO 170
._K-=IFIX(A)+2
GO TO 200
LK=1
GO TO 200
LK=2
GO TO 200
LK=8
FMT (2)= FMTS (LK)
IF(KINO.NE.5) IQ=l
ENCDDE(9,FMT,AREA) VAL,IQUAL(IQ)
GO TO 260
VAL=UNCOOE(VAL,IQ)
GO TO 160
CALL ACCESS(II,IVAL,TANK,LK,2)
ENCODE(8,215,AREA) (TANK(l),l=l,LK)
GO TO 260
CALL BINTYP(II,LABEL,BITEM,K,Mt
CALL BLISTCLIST,NUMS,IVAL)
A R E A= LA B El (l I S T (1))
LINE(JJ)=AREA
IF(TTY) GO TO 65
W R I T E (2 4 , 31 0) { l I N E (J J) , J J = l , N UM)
GO TO 120

TYPE 3ll,(LINE(JJ),JJ=l,NUM)
GO TO 120
CONTINUE

If (.N 0 T • T T Y) R E W IN 0 2 4
RETURN
RETURN 1

FORMAT(' WOULD YOU LIKE OUTPUT TO BE TO DISK? (Y OR N): •,$)
FORMAT(' tNTER NAME OF DISK DATA SET TO BE CREATED: •,$)
FORMAT(A5,A31

F 0 RM AT (Ill 1 X , 8 A 10)
FORMAT (20A 10)

FORM AT (lX, 8A 10)
FORMAT (18)
END

0000254
0000255
0000256
0000257
0000258
0000259
0000260
0000261
0000262
0000263
0000264
0000265
0000266
0000267
0000268
0000269
0000270
0000271
0000272
0000273
0000274
0000275
0000276
0000277
0000278
0000279
0000280
0000281
OOC0282
0000283
0000284
0000285
0000286
0000287
0000288
0000289
0000290
0000291
0000292
0000293
0000294
0000295
0000296
0000297
0000298
0000299
0000300
0000301
0000302
0000303
0000304
0000305
0000306
0000307
0000308
0000309

GRASP SOFTWARE SPECIFICATIONS 25

FUNCTION NAME: COMP
Purpose: COMP evaluates a relational expression. The rela­

tional operators may be (in FORTRAN notation) EQ, LT,
GT, LE, GE, NE, or BE (denoting between). The evalua­
tion .is performed on integer, real, or binary-(that is, bit)
type data.

Calling sequence: HIT = COMP(IVAR,IVAL,VAR,VAL,
ICODE,ISWTCH), where HIT is of type LOGICAL.

Arguments:
IV AR, IV AL-Integer-type arguments to be compared if

ISWTCH is 1.
V AR, VAL-Real-type arguments to be compared if

ISWTCH is 2.
!CODE-Encoding of comparison to be made. Assumes

values 1 through 7, respectively, indicating the relations
EQ,LT,GT,LE,GE,NE,BE.

ISWTCH-Indicates the type of arguments for the com­
parison (integer, real, or binary) .

Subroutines called: None
Common data referenced: IVALS in /BTWN/
Called by: RETRVE
Error checking and reporting: If ISWTCH i·s 3 (that is,

binary-type arguments), !CODE is tested for 1 or 6 (EQ
or NE). If the test fails, a message is typed and COMP
returns FALSE as a value.

Program logic:

1. The logical variable NONBLK is set to indicate nonblank
operands.

2. If ISWTCH is less than 3, the two operands are compared
according to !CODE. If !CODE is 7 (indicating the between
operator), the operands are obtained from IVALS in
/BTWN I by use of IV AL as a pointer to the appropriate set.

3. If ISWTCH is 3, a bit (binary) comparison is made by
examining the IV AL'th bit in IV AR.

G R A S P S 0 U R C E P R 0 G R A M

LOGICAL FUNCTION COMPCIVAR,IVAL,VAR,VAL,ICOOE,ISWTCH)
COMMON /BTWN/ IVALS,NBE
DIMENSION IVALSC2,10), VALS(2 1 10)
LOGICAL COMPAR,NONBLK
EQUIVALENCE (IVALS(1,1),VALS(1,l)), (I,VI), (BLANK,IBLNK)
DATA BLANK/ 1 1 /

NONBLK=IVAR.NE.IBLNK.ANO.IVAL.NE.IBLNK
IF(ISWTCH-2) 5,85,165

5 GO T 0 (10, 20, 30, 40, 50, 6 0, 70), I CODE
1 0 C OM PA R= I V AR • E Q. I VAL

GO TO 160
20 COMPAR=IVAR.LT.IVAL.ANO.NONBLK

GO TO 160
30 COMPAR=IVAR.GT.IVAL.AND.NONBLK

GO TO 160
40 COMPAR=IVAR.LE.IVAL.AND.NONBLK

GO TO 160
50 COMPAR=IVAR.GE.IVAL.AND.NONBLK

GO TO 160
60 COMPAR= IVAR .NE. IVAL

GO TO 160
70 COMPAR=IVAR.GE.IVALS(l,IVAL).AND.IVAP.Lf.IVALS(2,IVALt.AND.NONBLK

GO TO 160
85 NONBLK=VAR.NE.BLANK.AND.VAL.NE.BLANK

G 0 T J (9 0 , 1 0 0 , 11 0 , 12 0 , 1 3 0 , 14 0 , 1 5 0) , I C 00 E
90 COMPAR=VAR.EQ.VAL

GO TO 160
100 COM PAR=VAR.l T. VAL. AND .NONBLK

GO TO 160
110 COMPAR=VAR.GT.VAL.AND.NONBLK

GO TO 160
120 COMPAR=VAR.LE.VAL.ANO.NCNBLK

GO TO 160
130 COMPAR=VAR.GE.VAL.AND.NONBLK

GO TO 160
140 COMPAR=VAR.NE.VAL

GO TO 160

0000310
0000311
0000312
0000313
0000314
0000315
0000316
JJJ0317
0000318
0000319
0000320
0000321
0000322
0000323
0000324
00003·25
0000326
000032 7
0000328
0000329
0000330
0000331
~JJ0332

0000333
JJ00334
0000335
0000336
0000337
0000338
0000339
0000340
0000341
0000342
0000343
0000344
0000345
0000346

26 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

150 VI=VAL
COMPAR=VAR.GE.VALS(1,1).AND.VAR.LE.VALS(2,It.AND.NONBLK

160 COMP-=CCMPAR
GO TO 180

165 IF(NONBLK) GO TO 170
lf(ICODE.EQ.1) GO TO 10
IFtiCODE.EQ.6) GO TO 60
TYPE 200

COMP=. FALSE.
GO TO 180

170 IDIGIT=IVAR/2**(1VAL-lt
IF (ICODE.NE.l) GO TO 190
COMP=MOD(IDIGIT,2).EQ.l

GO TO 180
190 IF (ICOOE.NE.6) TYPE 200

COMP=MOD(IDIGIT,2).NE.l
180 RETURN
200 FORMAT (52H RELATION MUST BE .EQ.I.NE. FOR BINARY TYPE VARIABlE)

END

0000347
0000348
0000349
0000350
0000351
0000352
0000353
0000354
0000355
0000356
0000357
0000358
0000359
0000360
0000361
0000362
0000363
0000364
0000365

GRASP SOFTWARE SPECIFICATIONS 27

SUBROUTINE NAME: CONDS

Purpose: CONDS types out the last set of conditions and logic
entered.

Calling sequence: CALL CONDS(NCONDS,LPS)
Arguments:

NCONDS-The number of conditions currently entered.
LPS-The length of the current logical expression.

Common data referenced: EXPR, LOGIC in /INPUT/

G R A S P S 0 U R C E

Called by: DRIVER
Error checking and reporting: None
Program logic:

1. If any conditions have been entered (that is, NCOND >O),
they are typed out.

2. If a logic expression has been entered (that is, LPS >0), it
is typed out.

P R 0 G R A M

SUBROUTINE CONOS(NCOND,LPS) 0000366
COMMON /INPUT/ EXPR,LOGIC 0000367
Dl~ENSION LA8ELS(26) 0000368
DOUBLE PRECISION EXPR(4,261,LOGIC(8) 0000369
o A r A LA s E L s / 1 A I , I a • , • c I , I o I , I e • , • F I , • G I , • H • , • 1 • , • J • , I K • , I L • , • M • , I No o o o 3 1 o

1 I ' • 0. ' • p. ' • Q. ' I R I ' Is • ' I T • ' I u. ' • v ' ' • w. ' I X I ' I y I ' • l • I 00003 71
TYPE 40 0000372
IF CNCOND.EQ.O) GO TO 20 0000373
00 10 J=l,NCONO 0000374

10 TYPE 50, LABELS(JI,(EXPR(l,JI,I=1,4) 0000375
GO TO 30 0000376

20 TYPE 60 0000377
30 IF (LPS.NE.O) TYPE 70, LOGIC 0000378

RETURN 0000379
40 FORMAT (//) 0000380
50 FORMAT (4X,Al,'• 1 ,4A10) 0000381
60 FORMAT (1 NO CONDITIONS HAVE BEEN ENTERED YET.') 0000382
70 FORMAT (1 LOGIC STATEMENT IS: 1 ,8Al0) 0000383

END 0000384

28 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: CONDTN

Purpose : This subroutine is used to control the entry of
"conditions" (see RELEXP). Conditions are entered via
KEYBRD, decoded via RELEXP, and saved (in char­
acter form) in the common area named INPUT.

Calling sequence: CALL CONDTN (&n,VARS,CODES,V ALS,
NCOND)

Arguments:
n-Statement number (in caBer) to which a branch will

be made on a nonstandard return.
V ARS-Array of pointel'\s to items. referenced in the set of

entered conditions.
CODES-Array of integers giving the individual relational

operators in the entered conditions.
V ALS-Array of values associated with the conditions en­

tered.
NCOND-Counter giving the number of conditions entered.

Subroutines called: KEYBRD, RELEXP, PACK
Common data referenced:

G R A S P S 0 U R C E

NBE in IBTWNI
EXPR in I INPUT I

Called by: DRIVER
Error checking and reporting: An error flag returned by

RELEXP is tested. If set, a request to retype the condition
is issued.

Program logic:
1. A letter (A-Z) is printed as a prompt.
2. The user respontse (a condition) is obtained via KEYBRD

and passed to RELEXP.
3. If no errors have been detected by RELEXP, the user re­

sponse is packed into AREA and then moved (first 40 char­
acters) into the INPUT common block.

4. Steps 1-3 are repeated and incrementally counted until
an aU-blank response is entered. When this occurs, execu­
tion resumes at statement 40, which sets the number of
conditions entered. Control returns to the caller.

5. The nonstandard return is taken if an EOF i.s sensed from
the terminal.

PPOGRAM

SUBROUTINE CONOTN(*,VARS,CODES,VALS,NCONO)
COMMON /BTWN/ IVALS,NBE

0000385
0000386
0000387
0000388
0000389
0000390

COMMON /INPUT/ EXPR,LOGIC
DOUBLE PRECISION EXPR(4,26),AREA(4),LOGIC(8)
INTEGER IMAGE(80J,VARS(l),VALS(l),CODEStl),IVALS(2,10t,PROMPT(26)
LOGICAl ERR
OAT A PR 0 M p T I I A. ' ' I B • I ' I c • ' ' • 0. ' ' • E • I ' • F. I ' I G. I ' I H •• ' I I • I ' • J •• ' • K. I 0 0 0 0 3 91

1 ' I L. I ' • M. I ' • N •• ' I 0 •• ' • p •• ' I Q. ' ' • R •• , • s •• ' • T. I ' I u. ' , • v. I ' t w •• ' • x •• '00 003 92
z•y.•,•z.•J

NBE-=0
J=l

10 TYPE 50, PROMPT(J)
CALL KEYBR0(&45,IMAGE,80)
CALL RELEXP(&40,1MAGE,VARS(J),CODESCJt,VALS(J),ERR)
IF (ERR) GO TO 30
CALL PACK(IMAGE,AREA,40,40)
DO 20 1=1,4

20 EXPR(I,J)-=AREA(1)

J=J +1
GO TO 10

30 TYPE 60
GO TO 10

40 NCONO=J-1
RETURN

45 RETURN 1
50 FORMAT (1X,A3,$)
60 FORMAT (1 RE-TYPE CONDITION')

END

0000393
0000394
0000395
0000396
0000397
0000398
0000399
0000400
0000401
0000402
0000403
0000404
0000405
0000406
0000407
0000408
0000409
0000410
0000411
0000412

GRASP SOFTWARE SPECIFICATIONS 29

SUBROUTINE NAME: DECOMP

Purpose: DE CO MP extracts a list of item names and a cor­
responding list of item numbers from an unpacked character
string.

Callng sequence: CALL DECOMP(&l,&m,IMAGE,NLIST,
LIST,N)

Arguments:
1-Statement (in caller) which will be branched to if an

invalid item name is detected.
m-Statement (in caller) which will be branched to if the

input string contains no item names.
IMAGE-Unpacked input-character string.
NLIST-List of item names (offset by one from LIST).
LIST-A function name followed by a li.st of item numbers.
N-Total number of items in LIST.

Subroutines called: BFIND, PACK
Common data referenced: NAMES, IPTS, IDIM in blank

common
Called by: FTNC
Error checking and reporting: BFIND takes the nonstandard

return if a name is not found. This causes an error message
to be typed and a new input to be requested. If a comma

i·s detected before the list of item names begins, a message
is typed and new input is requested.

Program logic: The input-string IMAGE i.s scanned, a char­
acter at a time, via a transition matrix. The list of names
is created and the list of item numbers is obtained via calls
to BFIND. The following transition matrix is used:

blank comma
1 f(0)/1 error
2 f(2)/3 error
3 f(0)/3 f(0)/3
4 f(2)/3 f(2)/3

where the f(i) are:

!MAT (4, 3)

non blank
f(l)/2
f(0)/2
f(3)/4
f(0)/4

f(O)-No operation.
f(l)-Mark first character.

purpose
start function name
find end of function name
start item name
find end of item name

f(2)-Mark last character. Pack and find index of item
name (that is, find item number).

f(3)-Increment list item counter and mark first char-
acter of new list item.

The entire input stream is scanned, and control is returned
to caller. Refer to pll'ogram logic section of LOGEXP for a
more complete discussion of transition-matrix parsing.

G R A S P S 0 U R C f P R 0 G R A M

SUBROUTINE DECOMP(*t*tiMAGE,NLIST,LIST,N)
COMMON NAMES, ITYPE, IPTS, IDIM
DIMENSION ITYPE(500), IMAGE(1), LIST(!), IPT$(500), IMAT(4,3)
DOUBLE PRECISION NAMES(500),NA~E,DBLNK,NLIST(5)
EQUIVALENCE (INAME,NAME)
DATA OBLNK,IBLNK,ICOMMA/ 1 ',• ',• ,•!
DATA IMAT/1,23,3,23,2*40,3,23,12,2,34,4/
N=l
I ROW= 1
DO 90 I= 1, 80
IF (IMAGE(I).EQ.ICOMMA) GO TO 10
IF (IMAGE(I).NE.IBLNK) GO TO 20
IVAL=IMAT(IROW,1)
GO TO 30

10 IVAL=IMAT(IPOW,2)
GO TO 30

20 IVAL=IMAT(IROW,3l
30 IROW=MOO(IVAL,lO)

JOB=I VAL/10 +l
GO TO (90,50,70,40,120), JOB

40 N=N+l
50 IC=I

GO TO 90
70 LC=I-1

NAME=DBLNK
CALL PACK(IMAGE(IC),NAME,LC-IC+l,8)
IF (N.GT.1t GO TO 80
LIST(11-=INAME
GO TO 90

80 CALL BFINO(&lOO,NAME,LIST(N),NAMES,IPTS,IDIMI
Nll ST (N-1 t =NAME

0000413
0000414
0000415
0000416
0000417
0000418
0000419
0000420
0000421
0000422
0000423
0000424
0000425
0000426
0000427
0000428
0000429
0000430
0000431
0000432
0000433
0000434
0000435
0000436
0000437
0000438
OC00439
0000440
0000441
0000442
0000443

30 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

90 CONTINUE
IF (N.EQ.1) RETURN 2
RETURN

100 TYPE 140, NAME
110 RETURN 1
120 TYPE 150 1 IMAGE(!)

GO TO 110
140 FORMAT (1X,A8, 1 1S AN INVALID NAME. RE-E~TER LINE.')
150 FORMAT (1 PUNCTUATION ERROR CAUSED BY 1

1 Alt'• RE-ENTER LINE.')
END

0000444
0000445
0000446
0000447
0000448
0000449
0000450
0000451
00004-52
0000453

GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP) 31

SUBROUTINE NAME: DEFINE

Purpose: DEFINE is used to define the structure and name
of a direct-access disk-data set having fixed-length records.
Individual records may then be directly accessed by specify­
ing the record number.

Calling sequence: CALL DEFINE(U,S,V,F,PJ,PG)
Arguments:

U-The FORTRAN unit number expressed as an integer.
S-The size of the records within the file, expressed as an

integer. For formatted records, S gives the number of
characters per record. For unformatted records, S gives
the number of words per record.

V-The associated integer val'liable. The record number
which would be accessed next if II 0 were to continue
sequentially is returned as an integer in the associated
variable after each random read or write.

F-The name of the file which will be accessed when an II
0 statement references U (the above unit number) .

PJ-The project number in octal of the disk area in which
the file resides.

PG-The programmer number in ootal of the disk area in
which the file resides.

Subroutines called: None
Common data referenced: None
Called by: FILES
Error checking and reporting: None
Program logic: This is a DEC 1070, TOPS-10 system resi­

dent routine. It provides the capab.i\lities referred to in the
Purpose section above. If the GRASP system is to be im­
plemented on some other main frame, a comparable routine
must be written or acquired. No listing is shown here.

32 GRASP SOFTWARE SPECIFICATIONS

SUBROUTINE NAME: DEFLST

Purpose: DEFLST outputs the category names to the user and
allows him to indicate which categories are of interest.

Error checking and reporting: All user response is checked
for validity. If errors are detected, the response is requested
again.

Program logic: Calling sequence: CALL DEFLST(&m,&n,CAT,NUMC,MC,
LIST)

Arguments:
m-Statement (in calling routine) that will be branched to

if no category numbers are given when asked for.
n-Statement (in calling routine) that will be branched to

if an EOF is sensed in KEYBRD.
CAT-Contains the category names as read from unit 20

(the "definitions file").
NUMC-Number of categories selected by the user.
MC-Maximum length in words of a category name.
LIST-The category numbers selected.

Subroutines called: !FILE, KEYBRD, LENGTH, RLIST
Common data referenced: FNAMES, WHICH in /FILNAM/
Called by: NAME, DUMPIT

G R A S P S 0 U R C f

1. A call to !FILE associates the "definitions" file name with
FORTRAN unit 20, and the category names are read from
this file.

2. The user is asked if he lis interested in all categories. His
response is checked against "Y" or "N." If invalid, an
error message is typed, and he is asked to respond again.

3. If the user's response was "Y ," LIST is set to all the
category numbers and control is returned to the calling
routine.

4. If the response was "N," the user is asked to enter a list
of category numbers of interest.

5. His response, contained ·in IMAGE, is passed to RLIS~ to
generate the values of LIST.

PROGRAM

SUBROUTINE OEFLSTl*t*tCAT,NUMC,MC,LIST) 0000454
COMMON /FILNAM/ FNAMES,WHICH,PAD 0000455
INTEGER CAT(8,l),LIST(l),IMAGE(30),fNAMES(21),WHICH,PAD(4) 0000456
DATA IYES,NO/'Y', 'N'/ 0000457
CALL IFILE(20,FNAMES(8+WHICH)) 0000458
READ (20) NCAT,MC,l(CAT(I,J),I=l,MC),J=l,NCAT) 0000459

25 TYPE 30 0000460
CALL KEYBRD(&lOO,I,1) 0000461
IF(I.EQ.IYESl GO TO 40 0000462
lf(I.EQ.NO) GO TO 5 0000463
TYPE 35 0000464
GO TO 25 0000465

40 NUMC=NCAT 0000466
DO 45 I=l,NUMC 0000467

45 LIST(I)=I 0000468
GO TO 85 0000469

5 TYPE 110 0000470
DO 10 J=1,NCAT 0000471
CALL LENGTH(CAT(l,J),MC,MCL) 0000472

10 TYPE 120, J,(CAT(I,JI,I=l,MCL) 0000473
TYPE 130 0000474

20 CALL KEYBRD(&lOO, IMAGE,30) 0000475
CALL RLIST(&20,IMAGE,LIST,NUMC,NCAT) 0000476
If (NUMC.EQ.O) GO TO 90 0000477

85 RETURN 0000478
90 RETURN 1 0000479

100 RETURN 2 0000480
30 FORMAT(' SHALL All CATEGORIES BE CONSIDERED? (YES OR NO): •,$) 0000481
35 FORMAT(' YOUR REPLY WAS NOT UNDERSTOOD.') 0000482

110 FORMAT (1 EACH RECORD HAS BEEN DIVIDED INTO THE FOLLOWING •,•GENER0000483
1Al CATEGORIES: 1 /8X, 1 CAT. # CAT. NAME 1 /8X,•------ ---------•t 0000484

120 FORMAT (10X,I2,4X,9A5) 0000~85
130 FORMAT (1 ENTER A LIST Of ASCENDING NUMBERS MATCHING •,•YOUR CATEG0000486

10RIES OF INTEREST'/' (IE. 1,3,5 OR 2-5)') 0000487
END 0000488

GRASP SOFTWARE SPECIFICATIONS 33

SUBROUTINE NAME: DUMPIT

Purpose: DUMPIT outputs to the terminal those values for
all items present in a set of user-selected categories. The
values are obtained from a user-selected file.

Calling sequence: CALL DUMPIT
Arguments: None
Subroutines called: OPREP, DEFLST, FINDGP, ACCESS,

GETPUT, PAUSE, LENGTH, UNCODE, BINTYP,
BLIST

Common data referenced:
NFILE in /IOUNIT/
NAMES, ITYPE in blank common

Called by: DRIVER
Error checking and reporting: None
Program logic:
1. Page size (NPAGE), input file name, and file unit are

set up by a call to OPREP.
2. A call to DEFLST is made to determine categories to be

dumped.
3. Calls to FINDGP are made to determine pointers (KLIST)

for those items in the selected categories. As DEFLST and
FINDGP used FORTRAN unit 20, the "definitions" file
for the current data base, the unit is rewound.

4. A call to ACCESS is made to initialize character dictionary
lookups.

5. Each record 'in the input file is obtained by GETPUT, the
selected items are tested for nonMank characters, and their
value is output.

6. The output algorithm is basically as follows:
(a) Determine item type and switch to appropriate code

section via a computed GOTO.
(b) If type is integer, print under an I format.
(c) If type is real, print under a G format.
(d) If type is character, obtain string value by a call to

ACCESS and print under an A format.
(e) If type is multiple choice, obtain possible values by a

call to BINTYP, and select the actual subset via a
call to BLIST. Print this subset under an A format.

(f) If type is qualified real, obtain value and qualifier via
a call to UNCODE. Print under a G and A format.

(g) After each line is printed, increment and test KOUNT
against page size. If KOUNT is greater than page
size, call PAUSE for a programmed pause and re­
indtialize KOUNT to zero.

(h) After each record has been processed, print a line of
asterisks as a record separator.

G R A S P S 0 U R C E PROGRAM

SUBROUTINE OUMPIT
COMMON NAMES,ITYPE,IPTS,IPAD
COMMON /IOUNIT/ NFILE,IOF
DIMENSION ITYPE(5001, BITEM(l5,25), IRECC500), IQUALC6),

1 RECC500), TANK(25), LABEL(25), LIST(25)
DOUBLE PRECISION LABEL,NAMESI, NAMESC500)
INTEGER TANK,CAT(8,17),KLISTC17J,SELECTC500t,IPTSC500)
LOGICAL PNT HOG, NEWCAT, HIT
EQUIVALENCE (REC,IREC),(IVAL,VAL),(TANK,LIST),(IBLNK,IQUALI
DATA IQUAL/' •,•G•-, 1 H1 , 1 L1 , 1 N','T'/
KOUNT =0
CALL OPREP(t200,t205,NPAGE)
CALL DEFLST(t200,&200,CAT,NUMC,MC,KLIST)
NTOT=O
DO 20 K=l ,NUMC
CALL FINDGP(t200,KLIST(K),I,J 1 NG,IREC)
READ (20)
DO 10 I=l,NG
NTOT=NTOT+l

10 SELECT(NTOT)=2*1REC(I)
SELECT(NTOT-NG+l)=SELECTINTOT-NG+l)+1

20 CONTINUE
REWIND 20
CALL ACCESSIII,IVAL,TANK,J 1 1)

40 CALL GETPUTC&200,IREC,l)
HIT=.FALSE.
KNT=O
DO 190 JJ=l,NTOT
II=SELECT(JJ)/2
NEWCAT=SELECT(JJ).NE.2*11
If (NEWCAT) KNT=KNT+1
PNTHDG=PNTHOG.OR.NEWCAT

0000489
0000490
0000491
0000492
0000493
0000494
0000495
0000496
0000497
0000498
0000499
0000500
0000501
0000502
0000503
0000504
0000505
0000506
0000507
0000508
0000509
0000510
oouos11
0000512
0000513
0000514
0000515
0000516
0000517
0000518
0000519
0000520

34 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

NA M E S I= NAME S (I I)
IVAL=IREC(II)
If (IVAL.EQ.IBLNK) GO TO 190
HIT=.TRUE.
KOUNT=KOUNT +1
IF (KOUNT.LE.NPAGE) GO TO 50
KOUNT=O
CALL PAUSE (&200)

50 KIND=ITYPE(II)
IF(.NOT.PNTHDG) GO TO 55
KL=KLIST(KNT)
CALL LENGTH(CAT(1,KL),MC,MCL)
TYPE 21Q,(CAT(t,KL),I=1,MCL)
PNTHDG=.FALSE.

55 GO TO (60, 70,80, 170, 160) ,KIND
60 TYPE 230, NAMESI,IVAL

GO TO 1~0

70 TYPE 240, NAMESI,VAL
GO TO 190

80 CALL ACCESS(II,IVAL,TANK,J,2)
TYPE 250, NAMESI,(TANK(l),l=l,J)
GO TO 190

16G

170

180
190

200

205
210
220
23C
240
250
260

VAL=UNCODE(VAL,IQ)
TYPE 240,NAMESI,VAL,IQUAL(IQ)
GO TO 190
CALL BINTYP(II,LABEL,BITEM,K,M)
K OUNT=KOUNT +l
TYPE 250, NAMES!
CALL BLIST(LIST,NUMS,IVAL)
DO 180 I=l,NUMS
J=LlSTtll
TYPE 260, LABEL(J),(BITEM(L,J),L=l,K)
CONTINUE
IF (HIT) TYPE 220
GO TO 40
REWIND NFILE
REWIND 20

RETURN
FORMAT(' CATEGORY: •,8A5)
FOR~AT (1X,3(8H********))
FORMAT (2X,A8,1X,I9)
FORMAT (2X,A8,1X,lPG12.5,Al)
FOR~AT (2X,A8,1X,l2A5/11X,l2A5)
FORMAT (5X,A8,15A4)
END

0000521
0000522
OOC0523
OOC0524
0000525
0000526
0000527
0000528
0000529
0000530
0000531
0000532
0000533
0000534
0000535
00005 36
0000537
0000538
0000539
0000540
0000541
0000542
0000543
0000544
0000545
0000546
0000547
0000548
0000549
0000550
0000551
0000552
0000553
0000554
0000555
0000556
0000557
0000558
0000559
0000560
0000561
0000562
00005&3
0000564
0000565

GRASP SOFTWARE SPECIFICATIONS 35

FUNCTION NAME: EVAL

Purpose: By using a particular set of values as operands,
EVAL evaluates a previously parsed Reverse-Polish-form
arithmetic expression.

Calling sequence: VAL=EVAL(VALUES,TYPE,POLISH,
I,BLNK)

Arguments:
VALUES-Set of operand values.
TYPE, POLISH-Arrays containing the encoded Reverse­

Polish form of the expression to be evaluated. The encod­
ing is as follows: Let ITY be the I'th element of TYPE.
If ITY =0, the I'th element of POLISH ~s a numeric
constant. If ITY>O, ITY is an index to the array
VALUES. If ITY <0, ITY corresponds to an arithmetic
operator or function.

1-Gives the length of the arrays TYPE and POLISH.
BLNK-Logical variable set to TRUE if any operand with

a blank value is sensed.
Subroutines called: UNCODE
Common data referenced: !TYPE in blank common

Called by: COLPNT, ROWPNT
Error checking and reporting:
1. Division by zero attempted.
2. Log of a nonpos.itive value attempted.
3. Square root of a negative value attempted.
Program logic: A push-down stack technique is used to evalu­

ate the Reverse-Polish string contained in TYPE and POL­
ISH. TYPE is scanned, an element at a time, pushing
operand values down on the stack until an operator is
sensed. Either the top or topmost two stack elements are
then used as operands resulting in a new topmost-stack
element which is the resulting value of the operator. Unary
operators/functions (absolute value, ABS; square root,
SQRT; logarithm, LOG; square, SQR; ten exponent, TEN:
minus, -) operate on the top stack element. Binary opera­
tors (+, -, *, I) operate on the topmost-two stack elements.
After all elements of TYPE have been processed, the stack
should have one vaJlue in it. This value, the result, is re­
turned. If a blank operand value is detected, the flag BLNK
is turned on and zero is returned.

G R A S P S 0 U R C E PROGRAM

FUNCTION EVAL(VALUES,TYPE,POLISH,I,BLNK)
COMMON NAMES,ITYPE,IPTS,IPAD
DIMENSION NAMES(500), VALUES(!), POLISH(l), STACK(41), TYPE(!),

1YPE(500J,IPTS(500)
DOUBLE PRECISION NAMES
INTEGER TOP,TYPE,VALUES
LOGICAL BLNK
E QU IV Al EN C E (VAl , I VAl)
DATA IBLNK/' 'I
BLNK=.FALSE.
TOP=O
DO 190 J=l,I
INDEX=TYPE(J)
IF (INDEX) 40,30,10

10 TOP=TOP+l
IVAL=VALUES(INDEX)
If (IVAL.EQ.IBLNK) GO TO 195
IF (ITYPE(INDEX).EQ.2) GO TO 15
IF(ITYPE(INDEX) .NE .5) GO TO 20
VAL=UNCODE(VAL,IQ)

15 STACK(TOP)=VAL
GO TO 190

20 STACK(TOP)=IVAL
GO TO 190

30 TOP=TOP+1
STACK(TOP)=POLISH(JJ
GO TO 190

40 IF (INDEX.GE.-4) GO TO 130
INOEX=INDEX+11
GO TO (50,6C,80, 100, 110,120), INDEX

50 STACK(TOPI=ABS(STACK(TOP)J
GO TO 190

0000566
0000567

IT0000568
0000569
0000570
0000571
0000572
0000573
0000574
0000575
0000576
0000577
0000578
0000579
0000580
0000581
0000582
0000583
0000584
0000585
0000586
0000587
0000586
0000589
000059C
0000591
0000592
0000593
0000594
0000595
0000596
0000597

36 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

60 TV= S T ACK (TOP)
IF (TV.GE.O.) GO TO 70
TYPE 230
GO TO 200

70 STACK(TOP)=SQRT(TV)
GO TO 190

80 TV=ST ACK (TOP)
IF (TV. G T. 0.) G 0 T 0 90
TYPE 220
GO TO 200

90 STACK(T0Pt=ALOG10(TV)
GO TO 190

10C STACK(TOPt=STACK(TOP)**2
GO TO 190

110 STACKCTOP)=lO.**STACKCTOP)
GO TO 190

120 STACK(TOP)=-STACK(TOP)
GO TO 190

130 INDEX=INDEX+5
V T= STACK (TOP)
TOP=TOP-1
GO TO (150,140,180,170), INDEX

140 STACKCTOP)=STACK(TOP)*VT
GO TO 190

150 If (VT.NE.O.OJ GO TO 160
TYPE 240
GO TO 200

160 STACKCTOPt=STACKCTOP)/VT
GO TO 190

170 STACK(TOP)=STACKCTOP)+VT
GO TO 190

180 STACK(TOP)=STACKCTOPt-VT
190 CONTINUE

IF (TOP .NE. 1) GO TO 200
EVAL=STACK(1)
GO TO 210

19 5 B L NK = • TRUE.
200 EVAL=O.O
210 RETURN
220 FORMAT (1 ATTEMPTED TO TAKE LOG Of A ZERO OR NEG. VALUE.')
230 FORMAT(' ATTEMPTED TO TAKE SQRT OF A NEGATIVE VALUE.')
240 FORMAT (1 DIVIDE BY ZEPO ATTEMPTED.')

END

0000598
0000599
ovoo6oo
0000601
0000602-
0000603
0000604
0000605
0000606
0000607
0000608
0000609
0000610
0000611
0000612
0000613
0000614
0000615
0000616
0000617
0000618
0000619
0000620
0000621
0000622
0000623
0000624
0000625
0000626
0000627
0:>00628
0000629
0000630
0000631
0000632
0000633
0000634
0000635
0000636
0000637
0000638
0000639
0000640

GRASP SOFTWARE SPECIFICATIONS 37

SUBROUTINE NAME: FDRIVE

Purpose: FDRIVE provides for the single-pass computation
of all implemented mathematical or statistical functions. Us­
ing this routine to make all calls to the subroutines cor­
responding to implemented functions simp>lifies the addition
of new functions.

eating phase 1, 2, or 3. The phases are initialization, body,
and postprocessing.

Subroutines called: MEAN, FIT

Common data referenced: None

Called by: FTNC
Error checking and reporting: None Calling sequence: CALL FDRIVE (ISWTCH)

Arguments:
ISWTCH-Integer code passed to called subroutines indi-

Program logic: This routine merely makes calls to the func­
tions JSe•lected by the user via computed GOTO.

G R A S P S 0 U R C E P R 0 G R A M

SUBROUTINE FDRIVE(ISWTCH)
COMMON /FTNCOM/ TAGS,IREC,ARGS,NARGS,IFTN,NFTN
DOUBLE PRECISION TAGS(5,5)
INTEGER ARGS(6,5),NARGS(5),IFTN(5),1REC(500t
DO 30 J= 1 ,NFTN
I= I FTN(J »
GO TO (10,20,30,30,30,30), I

10 CALL MEAN(J,ISWTCH)
GO TO 30

20 CALL FIT(J,ISWTCH)
30 CONTINUE

RETURN
END

0000641
0000642
0000643
0000644
0000645
0000646
0000647
0000648
0000649
0000650
0000651
0000652
0000653

38 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: FILES

Purpose: FILES prompts for and accepts a data-base name.
After the name has been provided and verified, the Mask
file of data-base characteristics associated with that name is
read. Some preliminary processing is done on these char­
acteristics.

Calling sequence: CALL FILES(&n)
Argument:

n-Statement (in caller) to which a branch is made if the
nonstandard return from KEYBRD is taken (namely, an
EOF is sensed).

Subroutines called: KEYBRD, !FILE, BINIT, DEFINE,
PACK

Common data referenced:
NAMES, !TYPE, IPTS, IDIM in blank common.
MASTER, MASK, DFILE, BFILE, NUMF, NUMI, !DIMS
in /FILNAM/.
I, IDPT in /DACOMM/.

Called by: DRIVER

G R A S P S 0 U R C E

SUAROUTINE FILES(*)
COMMON NAMES,ITYPE,IPTS,IDIM

Error checking and reporting: The data-base name entered by
the user is compared wdth the list (MASTER) of those
available. If the data-base name is not recognized, an error
message is typed.

Program Logic:
1. A data-base name is prompted for and accepted via KEY­

BRD, and is then packed into FILEID and compared with
the list (MASTER) of available names. If not found, an
error message and the list of available names is typed fol­
lowed by a prompt for another name.

2. Once the data base has been established, its corresponding
Mask file is read to fill the blank common area.

3. The item names from MASK are sorted via a call to
BINIT and the array of pointers (IPTS) to the sorted
NAMES is returned from BINIT.

4. NAMES is restored to its unsorted form and DEFINE
is called to associate the name of the direct-access character
dictionary with unit 21. !FILE is then called to associate
the name of the multiple-choice file with unit 22.

P R 0 G R A M

COMMON /FILNAM/ MASTER,MASK,OEFTN,OFILE,BFILE,NUMF,NUMI,IDIMS
COMMON /DACOMM/ I,IOPT

0000654
0000655
0000656
0000657
0000658
0000659
0000660
0000661
0000662
0000663
0000664
0000665
0000666
0000667
0000668
0000669
0000670
0000671
0000672
0000673
0000674
0000675
00(,0676
0000677
0000678
0000679
0000680
0000681
0000682
0000683
0000684
0000685
0000686
0000687
0000688

DIMENSION ITYPE(500t, IPTS(500), IOPT(5COt, IDIMS(4)
DOUBLE PRECISION NAMES(500),VNAMES(500)
INTEGER MASTER(4),MASK(4),0EFTN(4),0fllE(4),BfllE(4J,FILEID
DATA 120,121,122/20,21,22/

1 TYPE 11
CALL KEYBR0(&999,ITYPE,5)
CALL PACK(ITYPE,FILEID,5,5)
DO 3 J= 1 , NU Mf
IF(MASTER(J).EQ.FILEIDI GO TO 5

3 CONTINUE
TYPE 4,FILEID,CMASTER(I),I=l,NUMF)
GO TO 1

5 NUMI=J
CALL IFILE(l20,MASK(NUMI))
I 0 I M= I D I M S (N UM I)
READ (I 20) (IT YP E (I) , I= 1, I 0 1M) , (I D P T (I) , I= 1, I D 1M I ,

1 CNAMES(I),I=1,IDIM)
REWIND I 20
DO 10 1=1,IDIM

10 VNAMES(l)=NAMES(I)
CALL RINIT(NAMES,IPTS,IDIM)
DO 20 I=1,IDIM

20 NAMES(l)=VNAMES(I)
CALL DEFINECI21,27,I,OFILE(NUMI),"412,"176)
CALL IFILECI22,BFILECNUMI)J
RETURN

999 RETURN 1
4 FORMAT(lX,A6, 1 NOT AN AVAILABLE DATA BASE NAME. •,

1 'USE ONE Of THE FOLLOWING: 1 /(1X,A5))
11 FORMAT(' ENTER DATA BASE NAME: 1

9 $)

END

GRASP SOFTWARE SPECIFICATIONS 39

SUBROUTINE NAME: FIND

Purpose: FIND is used to look up a word in a "hash coded"
table and return a code associated with its position. The
"Linear quotient" technique, as described by Bell and Kaman
(1970) , is used.

Calling sequence: CALL FIND (&n,ISYMBL,KODE,CHARS,
CODES,M)

Arguments:
n-Statement (in caller) to which a branch is taken if

ISYMBL is not in CHARS.
ISYMBL-Word to be looked up.
KODE-Integer from the position in CODES corresponding

to the position of ISYMBL in CHARS.
CHARS-"Hash coded" table of words to be looked up.

G R A S P S 0 U R C E

CODES-Table corresponding to CHARS giving the original
position of the word to be looked up.

M-Tabl'e size (a prime number) for CHARS and CODES.
Subroutines called: None
Common data referenced: None
Called by: LOG EXP, PARSE
Error checking and reporting: If ISYMBL is not in CHARS,

the nonstandard return is taken.
Program logic: An initial location I and displacement J is

determined from the internal machine representation of the
word stored in ISYMBL. Initial and successive probes to
CHARS are made until an empty location is probed. If
ISYMBL is not in CHARS, the nonstandard return is taken.
If ISYMBL is found in CHARS, the corresponding element
of CODES is returned in KODE.

P R 0 G R A M

SUBROUTINE FIND(*,ISYMBL,KOOE,CHARS,CODES,M)
INTEGER CHARSClJ,COOES(l),FILLER

0000689
0000690
0000691
0000692
0000693
0000694
0000695
0000696
0000697
0000698
0000699
0000700
0000701
0000702
0000703

DATA FILLER/ 1 VOI0 1 /

L=IABS(ISVMBL)
J=l/M
I=L-M*J
IF (MOO(J,M).EQ.O) J=l

5C ICHAR=CHARS(I+l)
If (ICHAR.EQ.ISYMBL) GO TO 60
IF (ICHAR.EQ.FILLERJ RETURN 1
I =MOO (I+ J, M)
GO TO 50

60 KODE=CODESII+l)
RETURN
END

40 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: FINDGP

Purpose: FINDGP positions the file associated with FORTRAN
unit 20 to a particular record paid associated with a category.
Data concerning that category are returned to the caller.

Calling sequence: CALL FINDGP (&n,KNUM,NUM,MAXL,
NG,GROUP)

Arguments:
n-Statement number (in caller) to which control is passed

if an EOF is sensed on unit 20.
KNUM-The category number to which the file will be

be positioned.
NUM-The number of descriptions in this category.
MAXL-The maximum length (in words) for a description.
NG-Number of items referred to in this category.
GROUP-List of item pointers associated with this category.

Subroutines called: !FILE
Common data referenced: FNAMES, WHICH in/FILNAM/
Called by: NAME, DUMPIT
Error checking and reporting: None
Program logic:
1. The next record on unit 20 is read, giving a category

number KK and values for the last four arguments.
2,. KK is tested against KNUM.

(a) If KK<KNUM, record pairs are .skipped up to the
one of interest.

(b) If KK=KNUM, return.
(c) If KK>KNUM, rewind unit 20 and reassociate it with

the correct name via a call to !FILE having
FNAMES and WHICH as arguments. Next, reposi­
tion the file to the number pair of interest.

G R A S P S 0 U R C E PROGRAM

SUBROUTINE FINOGP(*,KNUfJI,NUM,MAXL,NG,GROUP)
COMMON /FILNAM/ FNAMES,WHICH,PAD
INTEGER GROUP(l),FNAMESC2lt,WHICH,PA0(4)
DATA NOEF/20/

30 READ (N0Ef,EN0=90) KK,NUM,MAXL,NG,(GROUP(I),J=l,NGI
If (KK-KNUM) 40,80,70

40 J=KNUM-KK-1
50 REAO(NDEf)

IF (J.LT.l) GO TO 30
DO 60 I= l,J
READ(NOEF)

60 REAO(NDEFt
GO TO 30

70 REWIND NDEF
CALL IFILECNOEF,FNAMES(8+WHICH))
J=KNUM
GO TO 50

80 RETURN
90 RETURN 1

END

0000704
0000705
0000706
0000707
0000708
0000709
0000710
0:> 00711
0000712
0000713
0000714
0000715
000071&
0000717
0000718
0000719
0000720
0000721
0000722
0000723

GRASP SOFTWARE SPECIFICATIONS 41

SUBROUTINE NAME: FIT

Purpose: FIT is used to provide a least-square linear fit be­
tween two items within a selected file.

Calling sequence: CALL FIT(J,ISWTCH)
Arguments:

J-Pointer used to retrieve argument values from the com­
mon area /FTNCOM/.

ISWTCH-Switch indicating which of three parts (initial­
ization, body, postprocessing) of the code is to be executed.

Subroutines called: UN CODE
Common data referenced:

!TYPE in blank common
TAGS, IREC, ARGS, NARGS, in /FTNCOM/

Called by: FDRIVE
Error checking and reporting: If two arguments are not given,

an appropriate error message is typed and return is immedi­
ate. If the computation would yield an infinite slope, that
message is typed.

Prograrm logic: The value of ISWTCH determines which of
three sections of the code is executed. If ISWTCH=l, the
number of arguments is checked, and various sums are set

to zero. If ISWTCH=2, the error flag is tested. If not set,
the appropriate values of the arguments are tested for non­
blank. If nonblank, they are added to the appropriate sums.
If ISWTCH = 3·, the slope, intercept, and correlation coeffi­
cient are calculated (if possible), using the sums previously
determined. They are then printed out using the appropriate
item names. All summations and least-square determinations
are done using double-precision arithmetic to minimize the
round-off effects introduced by performing the computation
using only one pass on the data.
Assuming the function FIT X,Y had been issued, the calcu­
lations are performed using the following formula:

D=N ·l:X2 -l:X ·l:X
B1= (N·l:XY-~X·~Y) !D
Bo= (l:Y -B1·l:X) IN
C=D·Bdv D· (N·l:Y2-~Y·l:Y)

where:

Bo=intercept,
B1=slope,
C =correlation coefficient, and
N =number of non blank X, Y points.

G R A S P S 0 U R C E P R 0 G R A M

SUBROUTINE FIT(J,ISWTCH)
COMMON NAMES,ITYPE,IPTS,IPAD
COMMON /FTNCOM/ TAGS,IREC,ARGS,NARGS,IFTN,NFTN
DOUBLE PRECISION NAMES(500),TAGS(5,5J,SUMX,SUMY,SUMXY,

1 SUMXS,SUMYS,D,FN,Vl,V2
INTEGER IPTS(500)
INTEGER ARGS(6,5),NARGS(5), IFTN(5) ,ITYPE(500), IREC(500)
LOGICAL ERR
E QU IV AL EN C E (IV All , VAL 1) , (I VA l2, VA l2 I
DATA IBLNK/' 1 /

I F (I S W TC H- 2) 2 , 4 , (>
2 ERR=NARGSCJ).NE.2

IF (ERR) GO TO 20
N=O
SUMX=O.OOO
SUMY=O. 000
SUMXY=O. ODO
SUMXS=O .000
SUMVS=O. 000
GO TO 30

4 IF (ERR) GO TO 30
IVAll=IREC(ARGS(2,Jt)
IF (IVALl.EQ.IBLNK) GO TO 30
IVAL2=1REC(ARGSC3,J))
IF (IVAL2.EQ.IBLNK) GO TO 30
Vl=IVAll
V2=1VAl2
IF (ITYPE(ARGSC2,J)).EQ.2) Vl=VAll
IF (ITYPE(ARGS(3,Jt).E0.2) V2=VAL2
lF(ITYPElARGS(2,J)).EQ.5) Vl=UNCODE(VALl,IQ)
If(ITYPE(ARGS(3,J)).EQ.5) V2=UNCODE(VAL2,IQ)
N=N+l
SUM X= SUM X+V 1

0000724
0000725
0000726
0000727
0000728
0000729
0000730
0000731
0000732
0000733
0000734
0000735
0000736
0000737
0000738
0000739
0000740
0000741
0000742
0000743
0000744
0000745
0000746
0000747
0000748
0000749
0000750
0000751
0000752
0000753
0000754
0000755
0000756

42 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUMXS=SUMXS+Vl*Vl 0000757
SUMXY=SUMXY+Vl*V2 0000758
SUMY=SUMY+V2 0000759
SUMYS=SUMYS+V2*V2 0000760
GO TO 30 0000761

6 IF (ERR) GO TO 30 0000762
FN=N 0000763
D=FN*SUMXS-SUMX*SUMX 0000764
If (D.EQ.O.OOO) GO TO 10 0000765
Bl=(FN*SUMXY-SUMX*SUMY)/0 0000766
BO=(SUMY-Bl*SUMX)/FN 0000767
CC=(FN*SUMXY-SUMX*SUMY)/DSQRT((FN*SUMXS-SUMX*SUMX)*(fN*SUMYS-SUMY*0000768

lSUMY)) 0000769
TYPE 40, N,TAGS(l,Jt,TAGS(2,Jt,Bl,BO,CC 0000770
GO TO 30 0000771

10 TYPE 50, N 0000772
GO TO 30 0000773

20 TYPE 60 0000774
30 RETURN 0000775
40 FORMAT (/1X,I5,' POINTS USED TO FIT •,A8, 1 TO •,AS/' SLOPE=' ,1PE12.0000776

15,' INTERCEPT=',il2.5,• CORR. COEFF.=',El2.5) 0000777
50 FORMAT (' UNABLE TO CALCULATE FIT WITH',I5,' POINTS') 0000778
60 fORMAT ('THE fiT FUNCTION MUST HAVE 2 ARGUMENTS') 0000779

END 0000780

G~SP SOFTWARE SPECIFICATIONS

SUBROUTINE NAME: FTNC

Purpose: This routine acts as a driver for the processing of
the FUNCTION command. It accepts (via KEYBRD) the
function names and arguments, sets up system-required
input-file information, and is then used to supply input
records to the routines that actually calculate the requested
functions.

Calling sequence: CALL FTNC(&n)
Argument:

n-Statement (in caller) to which a branch is made if the
nonstandard return (EOF) from KEYBRD is taken.

Subroutines called: KEYBRD, OBEY, DECOMP, FDRIVE,
GETPUT, PACK

Common data referenced:
FNAMES, WHICH in /FILNAM/
TAGS, IREC, ARGS, N ARGS, IFTN, NFTN in /FTNCOM/
NFILE in /IOUNIT I

Called by: DRIVER
Error checking and reporting: Function names entered by

G R A S P SOURCE

SUBROUTINE FTNC(*)
COMMON /FILNAM/ fNAMES,WHICH,PAO

the user are checked against a list of those available. If an
invalid function name is entered, that message is typed.

Program logic:
1. A prompted input-file name is obtained via KEYBRD,

packed via a call to PACK, and associated with the FOR­
TRAN input unit number via OBEY.

2. A list of the implemented function names is typed along
with a request to enter the names of desired functions and
their corresponding arguments.

3. As each function name is entered (via KEYBRD), it and
its argument names are identified via DECOMP.

4. After the names have been entered and identified, a call to
FDRIVE using an argument of 1 is issued to perfonn
initialization.

5. Each record of the selected file is obtained via GETPUT
and processed via a call to FDRIVE using an argument of 2.

6. Finally, a call to FDRIVE using an argument of 3 is made
to accomplish any wrap-up processing associated with the
selected function, and the input file is rewound.

PROGRAM

COMMON /FTNCOM/ TAGS,IREC,ARGS,NARGS,IFTN,NFTN
COMMON /IOUNIT/ NFILE,IPAO

0000781
OOG0782
OOCOl83
0000784
0000785
0000786
0000787
0000788
0000789
0000790
0000791
0000792
0000793
0000794
0000795
0:>00796
0000797
0000798
0000799
0000800
0000801
0000802
0000803
0000804
0000805
0000806
0000807
0000808
0000809
0000810
0000811
0000812
0000813
OOC0814
0000815
0000816

DOUBLE PRECISION TAG$(5,5)
INTEGER DFAULT,FILE,OBLNK,FNAMES(21),WHICH,PA0(4),IFTN(51,

1EQUATE(4),FTNS(5),ARGS(6,51,IMAGE(80),NARGS(5),1REC(5001,
2 PROMPT (5)

LOGICAL ANY,GOOO
DATA DBLNK,EQUATE/ 1 •,•EQUA','TE 1 1 , 1 1 1 , 1 1 /

DATA IMPLTO,FTNS/2, 1 MEAN 1 , 1 FIT 1 ,3*' 1 /

DATA PROMPT/ 1 1. 1 , 1 2. 1 , 1 3. 1 , 1 4. 1 , 1 5. 1 /

E QU IV AL EN CE (EQ UA T E (4) , F ILE)
TYPE 100
OFAUL T=FNAMES(WHICH)
CALL KEYBR0(&90,IMAGE,5)
CALL PACK(IMAGE,FILE,5,5)
If (FILE.EQ.OBLNK) FILE=DFAULT
CALL OBEYI&85,EQUATE,4)
TYPE 120, (FTNS(I),I=l 1 1MPLTO)
TYPE 130

10 NFTN= 1
20 TYPE 150, PROMPT(NFTNt

CALL KEYBR0(&90,IMAGE,80)
CALL DECOMP(&20,&30,1MAGE,TAGSC1,NFTN),ARGS(1,NFTNI,NARGI
NARGS(NFTN)=NARG-1
NfTN=NfTN+l
IF INFTN-IMPLTD-lt 2G,30,30

30 NFTN=NFTN-1
IF (NFTN.EQ.O) RETURN
ANY=. FALSE.
DO 60 I=l,NFTN
GOOD=. TRUE.
INAME=ARGS(1,1t
DO 40 J=l,IMPLTD
IF (I~AME.EQ.FTNSCJ)) GO TO 50

44

85

GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

40 CONTINUE 0000817
0000818
0000819
0000820
0000821
0000822
0000823
0000824
0000825
0000826
0000827
0000828
0000829
0000830
0000831
0000832

50
60

70

80

90
100
120
130
150
160

TYPE 160, I NAME
J=6
GOOD= .FAlSE •
I FTN (I) =J
A NY=A NY. OR. GOOD
IF (.NOT.ANY) GO TO 10
CALL fORIVE(l)
CALL GETPUT(&80,IREC,1)
CALL FOR I VE (2 t
GO TO 70
CALL FORI VE I 3)
REWIND NFILE

RETURN
RETURN 1
FORMAT(' ENTER NAME OF FILE: •,$)
FORMAT (' FUNCTIONS AVAILABLE AT THIS TIME ARE:'/1X,5A8t
FORMAT (' fNTER FUNCTION NAMES AND CORRESPONDING ARGUMENTS. 1)

FORMAT (lX,A3,$)

0000833
0000834
0000835

FORMAT (1X,A5,' IS NOT AN AVAILABLE FUNCTION AND HAS •, 'BEEN
lED.')

END

IGNOR0000836
0000837
0000838

GRASP SOFTWARE SPECIFICATIONS 45

SUBROUTINE NAME: GETPUT

Purpose.: GETPUT is used to read and unpack a record from
the current input file, or to write the last-packed record
obtained from the current input file on the current output
file.

Calling sequence: CALL GETPUT(&n,IREC,ISWTCH)
Arguments:

n-Statement (in caller) to which a branch is made if an
EOF is sensed on the current input file.

IREC-Contains the expanded record from the current input
file.

ISWTCH-Switch indieating whether record is to be read
or written.

Subroutines called: None
Common data referenced: IN, IOUT in /IOUNIT/
Called by: COLPNT, DUMPIT, FTNC, RETRVE, ROWPNT
Error checking and reporting: None
Program logic:
1. If ISWTCH=l, the next input record is read into TANK

G R A S P S 0 U R C E

SUBROUTINE GETPUT(*,IREC,ISWTCH)
COMMON /IOUNIT/ IN,IOUT

on the unit referenced by IN in /IOUNIT I. If an EOF is
sensed, the nonstandard return is taken. If ISWTCH>l,
the last-read input record is output on the unit referenced
by IOUT in /IOUNIT I.

2. The first word of TANK is assumed to be of type
INTEGER and corresponds to the first word of IREC. The
last 2 bits contain the type of the next word in TANK.
TYPE values are:

TYPE
1
2
3

Indicates
Next word is an integer value.
Next word is a real value.
Next word is a blank counter.

The value part of types 1 and 3 is in the leading bits (that
is, 2-bit truncation).

3. If the word is of type REAL, it may be visualized as being
composed of an integer and a fraction. The type for the
next word is in the last 2 bits of the integer part and the
associated real value is obtained by adding the fractional
part to the leading bits of the integer part.

P R 0 G R A M

INTEGER IRECI 1 t, ITANK(150),8LANK,TYPE
REAL TANK(l50)

0000839
0000840
0000841
0000842
0000843
0000844
0000845
000084b
0000847
0000848
0000849
0000850
0000851
0000852
0000853
0000854
0000855
0000856
0000857
0000858
0000859
OOC0860
0000861
0000862
0000863
0000864
0000865
0000866
0000867
0000868
0000869
0000870
0000871
0000872
0000873

EQUIVALENCE CFRACT,IVAL), (ITANK(li,TANK(l))
OAT A BLANK/' 1 /

IF(ISWTCH-21 5,70,70
5 READ (IN,END=llO) NUM,(TANK(ll,l=l,NUM)

TYPE=l
I PT= 1
DO 50 I = 1, N UM
lf(TYPE.LT.O) TYPE=-TYPE
IF (TYPE- 2) 10, 20, 3 0

10 IVAL=ITANK(l,/4
TYPE=ITANK(I)-4*IVAL
GO TO 25

20 TYPE=TANK(I)
FRACT=TANKIIt-TYPE
J=TYPE/4
TYPE=TYPE-4*J
FRACT=J+FRACT

25 IREC(IPT)=IVAL
I PT=I PT+l
GO TO 50

3 0 J = I T A NK (I) I 4
TYPE=ITANK(1)-4*J
DO 40 K= 1 ,J
IR EC(IPT, =BLANK

4 0 I P T·= I P T + 1
50 CONTINUE
60 RETURN
10 WRITE(IOUT)NUM,(TANK(I),l=l,NUM)

GO TO 60
110 RETURN 1

END

46 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: HELP

Purpose: HELP types the names and descriptions of GRASP
commands available to the user.

Subroutines called: None
Common data referenced: None
Called by: DRIVER
Error checking and reporting: None

Calling sequence: CALL HELP(WORDS)
Argument:

WORDS-An array containing the command names that
may be issued by the user.

G R A S P S 0 U R C E

Program logic: The text associated with each of the commands
is initialized in DATA statements. Each command name (in
WORDS) is typed with its corresponding description in
TEXT.

P R 0 G R A M

SUBROUTINE HELP{WOROS) 0000874
INTEGER WOROS(l) 0000875
DOUBLE PRECISION TEXT(ll,ll),MSGl(ll),MSG2(ll),~SG3(llt, 0000876

1 MSG4(ll),MSG5(11J,MSG6(ll),MSG7(ll),MSG8(11J,MSG9(llt, 0000877
2 MSGlO(llt,MSGll(llt 0000878

EQUIVALENCE (MSG1(l),TEXT(l,1)),{MSG2(1),TEXT(l,2)), 0000879
1 (MS G 3 (1) , TEXT (1 , 3)) , (M S G4 (1 J, TEXT (1, 4)) , (M SG 5 (1) , TEXT I 1, 5)) , 00008 80
2 (MSG6(l),TEXT(1,6)),(MSG7(1) 9 TEXT(1,7)),(MSG8(l),TEXTI1,8)J, 0000881
3 CMSG9(l),TEXT(1,9)),(MSGlO(lJ,TEXT(19 10) I ,(MSGll(l) ,TEXT(l,llt) 0000882

DATA MSGl/ 1 - INITIA 1 , 1 TES THE 1 , 1 REQUEST 1 , 1 FOR RETR 1 , 1 IEVAL CR', 0000883
l'ITERIA T1 , 1 0 BE ENT 1 , 1 ERED IN 1 , 1 THE FORM•,•: NAME R1 , 1 EL VALUE'/ 0000884

DATA MSG2/ 1 - INITIA','TES THE 1 , 1 REQUEST 1 , 1 FOR A L0 1 , 1 GICAL EX', 0000885
l'PRESSION',' TO BE E','NTERE0 1 , 1 USING LO','GICAL OP','ERATORS.'/ 0000886

DATA MSG3/ 1 - I~ITIA 1 , 1 TES THE 1 , 1 SEARCH 0 1 , 1 F A fiLE',' BASED u•, 0000887
l'PON PREV','IOUSLY E1 , 1 NTERE0 1 , 1 CONDITI0 1 ,'NS AND L','OGIC. 'I 0000888

DATA MSG4/'- ALLOWS•,• THE USE','R TO LIS 1 , 1 T SELECT 1 , 1 EO VALUE', 0000889
l'S CVARIA 1 , 1 BLE NAME','S WILL 1 , 1 BE ASKED',' FOR) IN',' A FILE.'/ 0000890

DATA MSGS/ 1 - ALLOWS•,• THE USE 1 , 1 R TO SEL 1 , 1 ECT OR C1 , 1 HANGE TH', 0000891
l 'E DATA B','ASE TO B1 , 1 E USED. 1 ,3*' 1 / 0000892

DATA MSG6/ 1 - TERMIN 1 , 1 ATES THE•,• SYSTE~.•,• ENTERIN','G IN R', 0000893
11 ESPONSE 1 , 1 TO A PR0 1 , 1 MPT WILL 1 , 1 ALSO ST0 1 , 1 P THE SY 1 , 1 STEM. 1 / 0000894

DATA MSG7/ 1 - USED r•,•o PRINT 1 , 1 ITEM NA~ 1 , 1 ES, THEI 1 , 1 R TYPES', 0000895
l'AND DEfi','NITIONS 1 , 1 IN A 1 , 1 SELECTE0 1 , 1 SET OF 1 , 1 GROUPS. 1 / 0000896

DATA MSG8/ 1 - USED T1 ,•o OBTAIN•,• THE AB0 1 , 1 VE COMMA 1 , 1 ND DEFIN 1 , 0000897
l'ITIONS.',5*' 1 / 0000898

DATA MSG9/ 1 - LISTS 1 , 1 THE FlLE 1 , 1 S WHICH 1 , 1 HAVE BEE','N USED A', 0000899
l'S WELL A','S THE C0 1 , 1 NDITIONS 1 , 1 ANO LOGI't'C ENTERE•,•o. 1 / 0000900

DATA MSGl0/ 1 - PRINTS•,• ALL ITE 1 , 1 MS PRESE 1 , 1 NT FOR E1 , 1 ACH REC0 1 ,0000901
l'RD IN A•,•SELECTEO•,• FILE.','WAITS AF 1 , 1 TER EACH•,• N LINES'/ 0000902

DATA MSGll/'- PROVID', 1 ES FOR T1 , 1 HE COMPU 1 , 1 TATION O','F FUNCTI 1 ,0000903
l'ONS ON I','TE~S IN','A DATA 1 , 1 SET COR','FILEJ.•,• 1 / 0000904

TYPE 10, (WORDS(J),(TEXT(l,J),I=l,ll),J=l,ll) 0000905
RETURN 0000906

10 FOR~AT ('OTHE COMMANDS WHICH MAY BE ISSUED •,•(AND THEIR MEANING) 0000907
lARE LISTED BELOW:'/(' 1

9 A4,8A8/7X,3A8)) 0000908
END 0000909

GRASP SOFTWARE SPECIFICATIONS 47

FUNCTION NAME: ICONV

Purpose: ICONV is used to convert a number from unpacked­
character form to numeric fixed-point form.

Calling sequence: IVAL=ICONV(TANK,LNGTH,EXP,
ERR)

Arguments:
TANK-Contains the number to be converted in unpacked­

character form.
LNGTH-The number of elements in TANK.
EXP-The power of 10 to which the value returned must

be raised to obtain the floating point value represented.
ERR-An error flag which is turned on if an error is de­

tected.
Subroutines called: None

G R A S P S 0 U R C E

Common data referenced: None
Called by: OPREP, PARSE, RELEXP
Error checking and reporting: Each character is checked. If

an invalid character is detected, an error message is typed,
and the error flag is turned on.

Program logic: If all characters are blank, blank is returned
as a value. Leading blanks and imbedded commas are
ignored, and a blank acts as a string deliminator. If a
decimal point is sensed, the position counter EXP is initial­
ized to 1 and incremented for each subsequent digit. As
each digit is detected in a left-to-right fashion, the value is
shifted left one digit, and the detected digit is added to the
least significant part of the value. If all (LNGTH) char­
acters have been scanned or if a trailing blank is detected,
the scan is terminated and control is returned to the caller.

PROGRAM

INTEGER FUNCTIONICONV(TANK,LNGTH,EXP,ERR) 0000910
0000911
0000912
0000913
0000914
0000915
0000916
0000917
0000918
0000919
0000920
0000921
0000922
0000923
0000924
0000925
0000926
0000927
0000928
0000929
0000930
00009 3.1
0000932
0000933
0000934
0000935
000093•6
0000937
0000938
0000939
0000940
0000941
0000942
0000943
0000944
00009't5

INTEGER TANK(1),D IGITS(10) ,BLANK, COMMA, POINT ,EXP,VALUE
LOGICAL ERR
DATA BLANK,COMMA,POINT/4H ,4H, ,4H. /,DIGITS/4HO ,4H1

14H2 ,4H3 ,4H4 ,4H5 ,4H6 ,4H7 ,4H8 ,4H9 I
ERR=. FALSE.
EXP=O
IF (LNGTH.GT.O) GO TO 10
ICONV=BLANK
GO TO 90

10 VALUE=O
DO 20 K=1 ,L NGTH
IF (TANK(K).NE.BLANK) GO TO 30

20 CONTINUE
GO TO 80

30 DO 70 J=K,LNGTH
NEXT=TANK(J)
IF (NEXT.EQ.COMMA) GO TO 70
IF (~EXT. EQ .BLANK) GO TO 80
IF (NEXT.NE.POINT) GO TO 40
E XP= 1
GO TO 70

40 IF {EXP.GT.O) EXP=EXP+1
DO 50 l= 1, 10
IF (NEXT.EO.DIGITS(l)) GO TO 60

50 CONTINUE
TYPE 100, VALUE,EXP,(TANK(L),L:::l,LNGTH)
ERR=. TRUE.
GO TO 90

60 VALUE=lO*VALUE+L-1
70 CONTINUE
80 EXP=MIN0(0,1-EXP)

I CONV= VALUE
90 RETURN

100 FORMAT (l5H BAD CHARACTER ,lll,I5,3X,64A1)
END

48 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: IFILE

Purpose: This subroutine is used to associate dynamically
the name of an existing data set with a FORTRAN
input unit number (that is, logical device number). When
this subroutine is called, the file is opened and read; state­
ments referencing the unit number given in the argument
list are directed to the named file. The file may be closed
by use of a rewind statement.

Calling sequence: CALL !FILE (I,NAME)
Arguments:

I-An integer variable or constant specifying a logical de­
vice number.

NAME-Either a literal (hollerith) constant or a variable
containing a file name consisting of five or fewer char­
acters.

Subroutines called: None
Common data referenced: None
Called by: BINTYP, DEFLST, FINDGP, OBEY, START,

FILES
Error checking and reporting: None
Program logic: This is a DEC 1070, TOPS-10 system resi­

dent routine. It provides the capab.i\lities referred to in the
Purpose section above. If the GRASP system is to be im­
plemented on some other main frame, a comparable routine
must be written or acquired. No listing is shown here..

GRASP SOFTWARE SPECIFICATIONS 49

SUBROUTINE NAME: INIT

Purpose: !NIT initializes a set of words and codes for future
table lookup. The initialization assumes that the "linear
quotient hash code" technique willl be used for table lookup.
See Bell and Kaman (1970) for a complete description of
the technique.

Calling sequence: CALL INIT(CHARS,CODES,M,SYMBOL,
N)

Arguments:
CHARS-Table which is to contain the symbols in "hash­

coded" order.
CODES-Table giving the index of the symbol as it was

stored in CHARS.
M-Table size for CHARS and CODES. Note this must

be a prime number.

G R A S P S 0 U R C E

SYMBOL-Table of words to "hash" into CHARS.
N-Number of words in SYMBOL.

Subroutines called: None
Common data referenced: None
Called by: LOGEXP, PARSE
Error checking and reporting: None
Program logic:
1. CHARS is filled with "VOID," the flag for an empty loca-

tion.
2. Each element of SYMBOL is then inserted into CHARS

at the "hashed" address. "Collisions" are handled via the
Linear-quotient method.

3. As each element of SYMBOL is "hashed" into CHARS, its
position is stored in CODES.

4. The initial probe ·address and collision dispiacement are de­
termined from the contents of each element of SYMBOL.

P R 0 G R A M

SUBROUTINE INIT(CHARS,CODES,M,SYMBOL,N)
INTEGER FILLER,CHARS(l),COOEStlJ,SYMBOL(l)
DATA FILLER/ 1 VOID'/

0000946
0000947
0000948
0000949
0000950
0000951
0000952
0000953
0000954
0000955
0000956
0000957
0000958
0000959
0000960
0000961
0000962
0000963

DO 10 I=l,M
10 CHARS(l)=flLLER

00 40 I CODE =1 ,N
ICHAR=SYMBOL(ICOOE)
L= I ABS (I CHAR)
J=l/M
I=l-M*J
IF (MOO(J,M).EQ.O) J=l

20 IF (CHARS(I+l).EQ.FILLERJ GO TO 30
I=MOD(I+J,M)
GO TO 20

30 CHARS(I+l)=ICHAR
40 COOES(l+l,=ICODE

RETURN
END

50 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: KEYBRD

Purpose: KEYBRD accepts all user input in unpacked char­
acter form and returns it to the caller.

Calling sequence: CALL KEYBRD(&m,IMAGE,N)
Arguments:

m-Statement number (in caller) to which a branch is
made if an EOF is found.

IMAGE-Contains the user input in unpacked character
form.

G R A S P S 0 U R C E

SUBROUTINE KEYBRD(*,IMAGE,N)
DATA I XI' ' I
DIMENSION I~AGE(l)

REA0(5,20,END=lC) (1MAGE([),I=1,N)
IF(IMAGE(1) .EQ.IX) GO TO 10
RETURN

10 RETURN 1
20 FORMAT(BOA l)

END

N-Number of characters to be read.
Subroutines called: None
Common data referenced: None
Called by: BDEF, COLPNT, CONDTN, DEFLST, FTNC,

LIST, LOGEXP, OPREP, QUIT, RETRVE, VLIST,
FILES, DRIVER, OBEY, PAUSE

Error checking and reporting: None
Program logic: KEYBRD accepts input from the user (unit 5,)

and takes nonstandard return if EOF occurs.

P R 0 G R A M

0000964
0000965
0000966
0000967
0000968
0000969
0000970
0000971
0000972

GRASP SOFTWARE SPECIFICATIONS 51

SUBROUTINE NAME: LENGTH

Purpose: LENGTH determines the number of leading non­
blank words in a character stl'ling.

Calling sequence: CALL LENGTH (VECT,N,L)
Arguments:

VECT-Array containing the character string to be ex­
amined.

10
20

G R A S P S 0 U R C E

SUBROUTINE LENGTHCVECT,N,L)
INTEGER VECTC 1)
DATA IBLNK/' 'I
L=O
DO 10 l=l,N
lF(VECT(II.EQ.IBLNK) GO TO 20

l=l+1
RETURN

END

N-The number of words to check.
L-The number of nonblank leading words.

Subroutines called: None
Common data referenced: None
Called by: DEFLST, DUMPIT, NAME
Error checking and reporting: None
Program logic: The first full-word blank is searched for; its

position is returned in L.

P R 0 G R A M

0000973
0000974
0000975
0000976
0000977
0000978
0000979
0000980
0000981

52 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: LIST

Purpose: LIST is used as a driver for the listing of items
from a selected file. LIST performs initialization common
to both row and column forms of p.rintout, and rewinds the
input file after returning from the routine which created
the printout.

Calling sequence: CALL LIST (&n)
Argument:

n-Statement (in caller) that is branched to if an EOF is
sensed in any of the caHed routines.

Subroutines called: OPREP, KEYBRD, ROWPNT, COLPNT
Common data referenced: None

G R A S P S 0 U R C E

SUBROUTINE LIST(*)
COMMON /IOUNIT/ NFILE,IOFILE
DATA IC,IR/ 1 C1 , 1 R1 /

CALL OPREP(t50,&45,NPAGE)
10 TYPE 60

CALL KEYBR0(&50,IM,1)
IF (IM.EQ.ICt GO TO 30
IF (IM.EQ.IR) GO TO 20
TYPE 70
GO TO 10

20 TYPE 80
CALL ROWPNT(&50,NPAGE)
GO TO 40

30 TYPE 80
CALL COLPNT(&50,NPAGE)

40 REWIND NFILE
45 RETURN

50 REWIND NFILE
RETURN 1

Called by: DRIVER
Erro'i' checking and reporting: The user response returned by

KEYBRD is checked for validity. If in error, a message is
typed, and the user is prompted again.

Program logic:
1. The input file name and page size are set by a call to

OPREP.
2. The user is prompted for "C" (column) or "R'' (row)

to establish the desired output form.
3. Either ROWPNT or COLPNT is called depending on the

user's response to step 2 above.
4. The input file is rewound prior to the return to DRIVER.

P R 0 G R A M

60 FORMAT(' ENTER C FOR COLUMN ORR FOR ROW PRINTING: •,$1
70 FORMAT (' YOUR REPLY WAS NOT UNOE~STOOO.•)

0000982
0000983
0000984
0000985
0000986
0000987
0000988
0000989
0000990
0000991
0000992
0000993
0000994
0000995
0000996
0000997
0000998
0000999
0001000
0001001
0001002

80 FORMAT I' AT EACH PAUSE PRESS CR KEY TO CONTINUE. •,•TO ABORT
1R A •')

END

ENTE0001003
0001004
0001005

GRASP SOFTWARE SPECIFICATIONS 53

SUBROUTINE NAME: LOGEXP

Purpose: This routine accepts a logical expression as user in­
put via a call to KEYBRD and returns the encoded Re­
verse-Polish form of the expressions. The logical expression
may be composed of single-letter (A-Z) operands which
refer to previously entered conditions, the logical operators
"and," "or," "not," and the grouping symbols (,). Each of
the logical operators may be denoted in two ways, as fol­
lows: .AND. or*, .OR. or +,.NOT. or-.

Calling sequence: CALL LOGEXP(&n,POLISH,LPS,NCOND)
Arguments:

n-Statement number (in calling routine) to which a branch
will be made if an EOF is sensed by KEYBRD.

POLISH-Contains the encoded Reverse-Polish form of a
logical expression. Let n denote the value of some ele­
ment of POLISH. Then 1~ n~26 implies reference to
the nth condition entered. If 29~n~31, the logical op­
perators OR, AND, NOT correspond to these three values.
No other values will be assumed by elements of POLISH.

LPS-Gives the number of elements in POLISH.
NCOND-Gives the number of conditions which have been

entered by a previous call to CONDTN.
Subroutines called: INIT, KEYBRD, SCAN, FIND, PACK
Common data referenced: LOGIC in /INPUT I
Called by: DRIVER
Error checking and reporting: The logic expression entered is

checked for syntactic correctness. Following are eight error
messages which may be typed:

1. LOGICAL OPERATOR NOT PRECEDED BY A) OR
A LETTER (A-Z).

2. UNBALANCED PARENTHESIS.
3. LETTER (A-Z) NOT SEPARATED BY AN OPERA­

TOR.
4. UNEXPECTED LEFT PARENTHESIS OR .NOT. OP­

ERATOR (-).
5. INVALID CHARACTER IN EXPRESSION.
6. UNDETERMINED SYNTAX-ERROR. CONTACT PRO­

GRAMMER.
7. LOGIC EXPRESSION REFERENCES A CONDITfON

(A-Z) WHICH WAS NOT ENTERED.

8. OPERATOR NOT ENCLOSED WITH PERIODS. RE­
ENTER LOGIC.

Program logic:
1. On the first call to LOGEXP, a call to INIT is made to

"hash-code" the elements of SYMBOL into CHARS. CODES
is used to save the original indices.

2. A prompt message is typed and a call to KEYBRD is
made to get the input string which is then packed into
LOGIC.

3. After initialization of pointers and counters, a call is made
to SCAN to bracket the nonblank section of STRING.

4. At this point the actual algorithm begins. Transition mat­
rix parsing is used . with the following transition matrix
(!MAT):

A-Z + • (-) blank
1. f(l)/2 f(7)/1 f(4)/l f(7)/2 f(2)/l f(6.)/l
2. f(7)/3 f(3)/1 f(7)/4 f(5)/2 f(2)/2 f(6)/l

where f (i) I j means "do the i'th job and set the next row
value to j." The jobs are:
f(l)-Insert character code into Reverse-Polish string and

test to determine if there has been a condition entered
for it.

f(2)-Go scan next character.
f(3)-Pop stack into POLISH until value of topmost ele­

ment is less than character code. Then do f (4) .
f(4)-Push down character code into stack.
f (5)-Pop stack into POLISH until the value for (is

reached. Remove value for (.
f (6)-Period character sensed, find next matching period

and determine logical operator.
f(7)-Type the error message pointed to by the row value,

then request reentry of .Jogic.
Each character of STRING is scanned using the subroutine
FIND to obtain its code !CODE. !CODE is an index to
ICOLS which then determines the proper column of IMAT.
This element IFTN is then broken down into a function
pointer JOB and a next row value STATE. Control is then
passed to the function indicated by JOB. After the func­
tion has been completed, the next character of STRING is
scanned if an error was not detected. If an error was de­
tected, the appropriate message is typed.

G R A S P S 0 U R C E P R 0 G R A M

SUBkOUTlNE LOGEXP(*,POLISH,LPS,NCONO)
COMMON /INPUT/ EXPR,LOGIC
DOUBLE PRECISION ERRMSG(7,61,EXPR(4,26),LOGIC(8)
INTEGER POLISH(lt,ICOLS(33),CHARS(411,TOP,FC,STATE,OR,ANO,STACK(l

15),IMAT(2,6I,CODES(41),SYMBGL(33),STRING(80),PERIOO,BLANK
LOGICAL CALLED

0001006
0001007
0001008
0001009
0001010
0001011

OAT A sv MBOL ,. A' '. B I '. c I' • 0. t IE I' IF I' I G I t 'H.' I 1 '' 'J.' • K. ' • L. ''HI t I NOOO 1012
1 I ' 'o • ' 'P • '• Q' '• R • ' • s • '' T • '• u• '' v • ' • w I ' • x • ' • v • ' • z• ' ' ' I ' • , ' ' I + • ' I *I 'o o o 10 13
2 1 - 1 , 1 ., ••• , 0001014

DATA ICOLS/26*1,3,4,2,2,3,5,6/, CALLED/.FALSE./ 0001015
DATA IMAT/12,73,71,31,41,74,72,52,21,22,61,61/ 0001016
DATA ERRMSG/ 1 LOGICAL 1

1
1 0PERATOR',' NOT PRE','CEDED BY•,• A OR', 0001017

l'A LETTER•,• (A-ZI.', 1 UNBALANC 1 , 1 ED PAREN 1 , 1 THESIS.',4*' •, 0001018
£'LETTER (1 , 1 A-Z) NOT•,• SEPARAT 1 , 1 ED BY AN•,• OPERATO','R. •, 0001019
3' 1 , 1 UNEXPECT 1 , 1 ED LEFT','PARENTHE 1

1
1 SIS OR .•,•NOT. OPE', 0001020

4 1 RATOR (- 1 , 1). 1 , 1 INVALI0 1 , 1 CHARACTE 1 , 1 R IN EXP 1 , 1 RESSION.•, 0001021

54 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

53*' •,•UNDETERM 1 , 1 1NEO SYN','TAX ERR0 1 , 1 R. CONTA 1 , 1 CT
6'AMMER.•,• 1 /,0R,ANO,NOT/ 1 0R 1 , 1 AN0 1 , 1 NOT 1 /

EQUIVALENCE (SYMBOL(32t,BLANK),(SYMBOL(33),PERI00)
IF (CALLED) GO TO 20
CALLED=. TRUE.
CALL INITCCHARS,CODES,41,SYMBOL,33)

20 TYPE 250
CALL KEYBRD(S245,STRING,80)
CALL PACK(STRING,LOGIC,80,80)
TOP=l
STACK{l)=O
LPS=O
STAT E=1
CALL SCAN(&30,STRING,l,IPT,LNGTH,2)
IPT=IPT-1
GO TO 40

30 RETURN
40 N STATE= STATE

IPT=IPT+l
IF (I P T • G T. LNG TH) G 0 T 0 2 30
CALL FIND(S50,STRING(IPT),ICOOE,CHARS,COOES,41t
GO TO 60

50 STATE=5
GO TO 220

60 IFTN=IMAT(NSTATE,ICOLS(ICOOE)J
JOB= I FTN/10
STATE=IFTN-10*JOB
GO TO (70,40,90,100,110,130,220) ,JOB

70 LPS=LPS+1
POLISH{LPSJ=ICODE
IF (ICODE.LE.NCONDJ GO TO 40
TYPE 270
GO TO 20

90 IF CSTACKtTOP).LT.ICODE) GO TO 100
L PS=L PS+ 1
POLISH(LPS)=STACK(TOP)
TOP= TOP-1
IF (TOP.GT.OJ GO TO 90
STATE=6
GO TO 220

100 TOP=TOP+1
STACK(TOP)=ICODE
GO TO 40

110 IF ($TACKITOP).EQ.27) GO TO 120
LPS=LPS+ 1
POLISH(LPSJ=STACK(TOP)
TOP=TOP-1
IF (TOP.GT.O) GO TO 110
STATE=2
GO TO 220

120 TOP=TOP-1
IF (TOP.GT.OJ GO TO 40
STA TE=2
GO TO 220

130 FC=IPT+1
DO 14C I=FC,80
IF (STRING(IJ.NE.BLANK) GO TO 160

140 CONTINUE
150 TYPE 280

GO TO 20

PROGR',0001022
0001023
0001024
0001025
0001026
0001027
0001028
0001029
0001030
0001031
00010 32
0001J33
0001034
0001035
0001036
0001037
00010 38
0001039
0001040
0001041
0001042
0001043
0001044
0001045
0001046
0001047
0001048
0001049
0001050
0001051
0001052
0001053
0001054
0001055
0001056
00010 57
0001058
0001059
0001060
0001061
0001062
0001063
0001064
0001065
0001066
0001067
0001068
0001069
0001070
0001071
0001072
0001073
0001074
0001075
0001076
0001077
0001078
0001079
0001080
0001081

GRASP SOFTWARE SPECIFICATIONS

160 FC=I
DO 170 IPT=FC,80
IF tSTRING(IPT).EQ.PERIOOJ GO TO 180

170 CONTINUE
GO TO 150

180 NCHAR=3
I CODE =0

190 NCHAR=NCHAR-1
NCH=FC+NCHAR
10P=CHARS(21t
CALL PACK(STRING(FCJ,IOP,NCH-FC+l,4)
I F (I 0 P • E Q. AN 0) 1 C 0 0 E= 30
IF (JOP.EQ.NOTt ICODE=3l
If (lOP .EQ.OR) ICOOE=29
IF (ICODE.NE.OJ GO TO 200
IF (NCHAR.GT.l) GO TO 190
STATE=6
GO TO 220

200 IF (ICOOE.LT.31) GO TO 210
IF (NSTATE.EQ.l) GO TO 100
STATE=4
GO TO 220

210 IF (NSTATE.EQ.2) GO TO 90
STATE= 1

220 TYPE 300, (ERRMSG(I,STATE),I=1,7)
GO TO 20

230 IF (TOP.EQ.1) GO TO 30
IF (STACK{T0P).GT.28) GO TO 240
STATf:=2
GO TO 220

240 LPS=LPS+l
POLISH(LPSJ=STACK(TOPJ
TOP=TOP-1
GO TO 230

245 RETURN 1
250 FORMAT (1 ENTER LOGIC: 1 ,$)
270 FORMAT (1 LOGIC EXPRESSION REFERENCES A CONDITION (A-Z)•,• WHICH

lAS NOT ENTERED. 1)

280 FORMAT (' OPERATOR NOT ENCLOSED WITH PERIODS. RE-ENTER LOGIC.')
30C FORMAT (' LOGICAL ERROR:'/1X,7A8)

END

55

0001082
0001083
0001084
0001085
0001086
0001087
0001088
0001089
0001090
0001091
0001092
0001093
0001094
0001095
0001096
0001097
0001098
0001099
0001100
0001101
0001102
0001103
0001104
0001105
0001l06
0001107
0001108
0001109
0001110
0001111
0001112
0001113
0001114
0001115
OJ01116
0001117

wooo 1118
0001119
0001120
0001121
0001122

56 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: MEAN

Purpose: MEAN provides for the computation of range, mean,
sum, root mean square, and sum of squares for as many as
five specified items in a specified file.

Calling sequence: CALL MEAN (J,ISWTCH)
Arguments:

J-Pointer used to retrieve argument values from the com­
mon area /FTNCOM/.

ISWTCH-Switch indicating which of three parts (initiali­
zation, body, postprocessing) of the code is to be executed.

Subroutine called: UNCODE
Common data referenced:

!TYPE in blank common
TAGS, IREC, ARGS, NARGS in /FTNCOM/

Called by: FDRIVE
Error checking and reporting: None

Program logic: The value of ISWTCH determines which of
three sections of the code is executed.

If ISWTCH=l, sums and range values are initialized. If
ISWTCH=2, the type for each argument value is deter­
minted and its value is added to the appropriate sums.
Range values are updated if required. If ISWTCH = 3, the
final computations are performed and the results typed out
to the user.

The mean is determined using X =~X IN and the root mean
square is determined using RMS=~X2/N, where N is the num­
ber of nonblank values of X.

G R A S P S 0 U R C E P R 0 G R A M

SUBROUTINE MEAN(J,ISWTCH)
COMMON NAMES,ITYPE,IPTS,IDIM
COMMON /FTNCOM/ TAGS,IREC,APGS,NARGS,IFTN,NFTN
DIMENSION ARG$(6,5), NARG$(5), IFTN(5), ITYPE(500), IREC(500),

11PTS(500),NSUM(5), SUMX(5), SUMXS(5), VMAX(5), VMIN(5)
DOUBLE PRECISION NAMESC500),TAGS(5,5)
INTEGER ARGS
EQUIVALENCE CIVAL,VAL)
DATA IBLNK/ 1 1 /

IF(ISWTCH-2) 5,15,25
5 K=NARGS(J)

DO 10 I= 1 ,K
SUMX (I)=0.
VM AX (I) =-1. E30
NSUM(I)=0
VMIN(I)=l.E30

10 SUMXS (I) =0.
GO TO 55

15 K=NARGS(J)
DO 20 l=l,K
I V Al = I R E C (A R G S (I + 1 , J))
IF (IVAL.EQ.IBLNK) GO TO 20
NSUM(I)=NSUM(I)+l
VALUE=IVAL
IF(ITYPE(ARGSCI+l,J)).EQ.5) VALUE=UNCOOECVAL,IQ)
IF (I TYPE(ARGS(1+1,J)) .EQ.2) VALUE=VAL
IF (VALUE.LT.VMIN(I)) VMIN(It=VALUE
IF (VALUE.GT. VMAX(It I VMAX(I) =VALUE
SUMX(I)=SUMX(I) +VALUE
SUMXS(I)=SUMXS(I)+VALUE*VALUE

20 CONTINUE
GO TO 55

25 K=NARGS(J)
DO 50 1=1,K
IF (NSUM(l).EQ.O) GO TO 30
TYPE 60, TAGSCI,J),NSUM(I)
AMEAN=SUMX(It/NSUM(l)
RMS=SUMXS(l)/NSUM(I)
IF (ITYPE(ARGS(l+l,J)).EQ.2) GO TO 40
If (ITYPE(ARGS(l+l,J)).EQ.5t GO TO 40

0001123
0001124
0001125
0001126
0001127
0001128
0001129
0001130
0001131
0001132
0001133
0001134
0001135
0001136
JJ~1137
0001138
0001139
0001140
0001141
0001142
~J01143
0001144
0001145
0001146
0001147
OJ01148
0001149
0001150
0001151
0001152
0001153
0001154
0001155
0001156
0001157
0001158
0001159
0001160
0001161
0001162

M I N= V M I N (I t
MAX=VMAX(It

GRASP SOFTWARE SPECIFICATIONS

TYPE 80, MIN,MAX,AMEAN,RMS,SUMX(li,SUMXS(l)
GO TO 50

30 TYPE 70, TAGS(I ,J)
GO TO 50

40 TYPE 80, VMIN(l),VMAX(I),AMEAN,RMS,SUMX(l),SUMXS(ll
50 CONTINUE
55 RETURN
60 FORMAT(/' MEAN STATISTICS FOR •,A8, 1 WITH 1 ,I6, 1 ITEM(S).'I
70 FORMAT (/' NO VALUES PRESENT FOR 1 ,AB)
80 FORMAT (1 MIN= 1 ,1PG9.2,' MAX= 1 ,G9.2, 1 MEAN= 1 ,G9.2,' ROOT MEAN

1SQ.=',G9.2/' SUM=',Gl2.5,' SUM OF SQUARES:',G12.5)
END

57

0001163
0001164
0001165
0001166
0001167
0001168
000116q
0001170
0001171
0001172
0001173
0001174
0001175
0001176

58 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: NAME Called by: DRIVER

Purpose: NAME provides the user with the mechanism for
examining the structure and content of the current data
base. The user iSI permitted to select categories of interest.
Item names, types, and descriptions for alii entries in selected
categories are printed. The user is aliSo permitted to see the
values which are assumed (in the current data base) by
character- and multiple-choice-type items.

Error checking and reporting: None
Program logic:

1. DEFLST is caJlled to select those categories of interest
(LIST).

2. For each category selected, a call is made to FINDGP
to obtain the names, types, and descriptions for all items
within that category. They are then printed under thecate­
gory name.

Calling sequence: CALL NAME (&n)
Argument:

n-Statement number (in caller) to which a branch is made
if the .second nonstandard return is taken from DEFLST
(EOF sensed by KEYBRD), or EOF is sensed in BDEF.

Subroutines called: DEFLST, PAUSE, FINGDP, LENGTH,
BDEF

Common data referenced: None

G R A S P S 0 U R C E

3. Programmed pauses after each category or 30 lines of out­
put are provided via calls to PAUSE.

4. A call to LENGTH is made to determine the number of
nonblank words in the description.

5. Unit 20 (used by DEFLST and FINDGP) is rewound
prior to returning to DRIVER.

P R 0 G R A M

SUBROUTINE NAME(*) 0001177
INTEGER CAT(8,17t,DESC(12,45),TYPE(45),LIST(l7J 0001178
DOUBLE PRECISION NAMES(45) 0001179
CALL OEFLST(&50,&60,CAT,NUMC,MC,LIST) 0001180
TYPE 70 0001181
CALL PAUSE(&50) 0001182
DO 30 K=l,NUMC 0001183
KNUM=liST(K) 0001184
CALL FINDGP(&50,KNUM,NU~,MAXL,NG,OESC) 0001185
READ (20) (NAMES(Jt,TYPE(J),(DESC(I,J),l=1,MAXL),J=l,NUMI 0001186
CAlL LENGTH(CAT(1,KNUM),MC,MCLJ 0001187
TYPE 90, (CAT(I,KNUM),I=1,MCL) 0001188
TYPE 91 0001189
LINE=O 0001190

10 LINE=LINE+1 0001191
IF (LINE.GT.NUM) GO TO 30 0001192
IF (M00(LINE,301.NE.O) GO TO 20 0001193
CALL PAUSEC&50) 0001194
TYPE 90, {CAT(l,KNUM),I=l,MCL) 0001195
TYPE 100 0001196
TYPE 91 0001197

20 CALL LENGTHCDESCC1,LINE),MAXL,MXL) 0001198
TYPE 110, NA~ES(LINE),TYPE(LINE),(DESC(I,LINEJ,I=l,MXL) 0001199

GO TO 10 0001200
30 CALL PAUSE(&50) 0001201
50 REWIND 20 0001202

CALL RDEF(&60) 0001203
RETURN 0001204

60 RFTURN 1 0001205
7G FORMAT (1 IN EACH CATEGORY, THE ITEM NAMES, TYPE CODES,•,• AND DES0001206

1CRIPTIONS WILL BE'/ 1 LISTED. TYPE CODES: 1 /9X, 1 1 =WHOLE NUMBERS'/90001207
2X,'R = NUMBERS WITH FRACTIONAL PARTS 1 /9X, 1 A = ALPHANUMERIC STRINGS0001208
3'/9X,•B =MULTIPLE CHOICE TYPES 1 /9X, 1 Q =QUALIFIED NUMERIC VALUES 1 0001209
4 /' AT EACH PAUSE STRIKE CR KEY TO CONTINUE (STARTING NOW).•) 0001210

9C FORMAT(' CATEGORY: 1 ,9A5t 0001211
91 FORMAT(' NAME TYPE DESCPIPTION'/' ----•, 0001212

1. ---- -----------·· 0001213
100 FORMATC 1 + 1 ,T50, 1 (CON 11 T) 1) 0001214

110 FOR~AT (1X,A7,1X,A1,2X,12A5) 0001215
END 0001216

GRASP SOFTWARE SPECIFICA'TIONS 59

SUBROUTINE NAME: OBEY

Purpose: OBEY associates input or output file names with
FORTRAN unit numbers and provides a degree of file­
name checking and protection.

Calling sequence: CALL OBEY(&m,MSG,N)
Arguments:

m-Statement (in caller) to which a branch will be made
if a protected (output) or unknown (input) file name is
referenced.

MSG-Contains (in packed-character form) either of the
following:
"EQUATE 11 name," indicating input,
"EQUATE 12 name," indicating output.

N-The number of words in MSG.
Subroutines called: KEYBRD, IFILE, OFILE
Common data referenced:

IN, lOUT in /IOUNIT/
FNAMES, NUMI, WHICH in /FILNAM/

Called by: RETRVE, OPREP, FTNC
Error checking and reporting:
1. Input file names are checked for recognition.
2. Output file names are checked to prevent writing on a

"protected" file.

3. The total number of output files is checked against the
maximum 20.
Error messages for each of the above three checks are
provided.

Program logic:
l. If the message length N is not 4 or if the first 4 char­

acters in MSG are not EQUA, return is immediate.
2. MASTER is set to the cur.rent data-base name in

/FILNAM/ and MSG is moved to IMSG.
3. If the third word of IMSG is not "2," input is assumed,

and the file name (last word of IMSG) is checked against
the names of files created during this session. If no match
is found, the user is informed and given the opportunity to
exit and enter a new command. Finally, IFILE is called to
associate unit 23 with the file name provided.

4. If the third word of IMSG is "2.," output is assumed, and
the file name FN AME (last word in IMSG) is checked
against the Ust of protected file names in /FILNAM/. If a
match is found, the nonstandard return is taken. Otherwise,
FNAME is added to the list FILES, and unit 24 is associ­
ated with the file FNAME via a call to OFILE.

G R A S P S 0 U R C f P R 0 G R A M

SUBROUTINE OBEY{*,MSG,Nl
COM~ON /IOUNIT/ IN,IOUT
COMMON /FILNAM/ FNAMES,NUMI,WHICH,PAD
INTEGER MASTER,FNAME,FILESC20),MSG{l),IMSG(4),FNAMES(20),WHICH

1 ,PA0(4)
EQUIVALENCE (IMSG{4),FNAMEt
DATA 12,NUMf, IEQ/'2',0, 'EQUA'/,IYES/'Y'/
IF{N.NE.4) GO TO 100
lf(MSG{l).NE.IEQ) GO TO 100
MASTtR=FNAMES (WHICH)
DO 2 I= 1, 4

2 IMSG(l)=MSG(I)
1F(IMSG(3).EQ.I21 GO TO 10
I N=23
IF(f~AME.EQ.MASTER) GO TO 6
IFCNUMF.GT.OJ GO TO 4

3 TYPE 5CO
CALL KEYBRDC&lOO,I,l)
IF(I.FO.IYESt GO TO 6

8 RETURN 1
4 DO 5 I = 1 , NU M F

IF(FILES(I).EQ.FNAME) GO TO 6
5 CONTINUE

GO TO 3
6 CALL IF I l E (IN, F NAME I

GO TJ 1CO
10 DO 11 J=l,5

K=4* (J-1)
DO . 11 I= 1, N UM I
IFCFNAMES(K+I).EQ.FNAME) GO TO 14

11 CONTINUE
GO TO 12

JJ01217
0001218
0001219
0001220
0001221
0001222
0001223
0001224
0001225
0001226
OOC1227
0001228
0001229
0001230
0001231
0001232
0001233
0001234
00012.35
0001236
0001237
0001238
0001239
0001240
0001241
J001242
0001243
0001244
0001245
0001246
0001247
0001248

60 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

14 TYPE 501,FNAME
GO TO 8

12 IF(NU~F.EQ.Ot GO TO 20
DO 13 I =1 ,NUMF
IFCFILES(I).EQ.FNAME) GO TO 21

13 CONTINUE
20 NUMF=NUMF+1

IF(NU~F.LE.20) GO TO 22
NUMF=20
TYPE 23
GO TO 8

22 FILES(NUMF)=FNAME
21 IOUT=24

CALL OFILE(IOUT,FNAME)
100 RETURN

23 FORMAT(' NO MORE THAN 20 FILES MAY BE CREATED IN ONE RUN.')
500 FORMAT(' ATTEMPT TO REFERENCE A FILE NOT CREATED THIS RUN.'/

1 ' DO YOU STILL WANT IT? (Y OR N): •,$)
501 FORMAT(lX,A6,'MAY NOT BE USED AS AN OUTPUT FilE NAME')

END

0001249
0001250
0001251
0001252
0001253
00012~4
0001255
00012 56
0001257
0001258
0001259
0001260
0001261
0001262
0001263
0001264
0001265
0001266
0001267
0001268

GRASP SOFTWARE SPECIFICATIONS 61

SUBROUTINE NAME: OFILE

Purpose: This subroutine is used to associate dynamically the
name of a new data set with a FORTRAN output unit num­
ber (that is, logical device number). When this subroutine
is caHed, the file is opened, and write statements referenc­
ing the unit number given in the argument list are directed
to the named file. The file may be closed by use of a rewind
statement.

Calling sequence: CALL OFILE(I,NAME)
Arguments:

I-An integer variable or constant specifying a logical de­
vice number.

NAME-Either a literal (hollerith) constant or variable
containing a file name consisting of five or fewer char­
acters.

Subroutines called: None
Common data referenced: None
Called by: COLPN.T, OBEY
Error checking and reporting: None
Program logic: This routine is a DEC 1070, TOPS-10 sys­

tem resident routine. It provides the capabilities referred to
in the section "Purpose" above. If the GRASP system is to
be implemented on some other main frame, a comparable
routine must be written or acquired. Therefore, a listing
has not been provided.

62 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: OPREP

Purpose: This routine is used to prompt for and accept the
name of a :file and a page size.

Calling sequence: CALL OPREP(&n,&m,NPAGE)
Arguments:

n-Statement number (in calling routine) to which a branch
will be made if an EOF is sensed by KEYBRD.

m-Statement number (in calling routine) to which a branch
will be made if the nonstandard return from OBEY is
taken.

NPAGE-Page size (in lines) as entered by us-er.
Subroutines called: KEYBRD, OBEY, ICONV, PACK
Common data referenced: NAMES, WHICH in /FILN AM/

G R A S P S 0 U R C E

SUBROUTINE OPREPl*t*tNPAGEa
COMMON /FILNAM/ FNAMES,WHICH,PAD

Called by: DUMPIT, LIST
Error checking and reporting: An error flag set by ICONV is

tested. If set, the user is requested to reenter the value.
Program logic:
1. A file name is prompted for and accepted (via KEYBRD).

This name is then packed into FNAME and compared with
blank.

2. If blank, FNAME is set to the default file name obtained
in /FILNAM/.

3. FNAME is then passed to OBEY via EQUATE.
4. A page size is then prompted for and accepted in char­

acter form. The numeric value is obtained by a reference
to ICONV. If zero, then NPAGE is set to 10 million.

P R 0 G R A M

INTEGER DBLNK,OFAULT,FNAME,EQUATE(4),TANK(5),FNAMES(2l),WHICH

0001269
J001270
0001271
0001272
0001273
0001274
0001275
0001276
0001277
0001278
0001279
0001280
0001281
0001282
0001283
0001284
00012 85
0001286
0001287
0001288
0001289
0001290
0001291
0001292

1 ,PA0(4)
LOGICAL BAD
EQUIVALENCE (EQUATE(4),FNAME)
0 AT A DB L N K ' E QUA T E I • • ' ' E QlJ A t ' • T E 1 • ' • 1 I ' I • I
TYPE 20
DFAULT=FNAMES(WHICH)
CALL KEYBR0(&15,TANK,5)
CALL PACK (T A NK , F N A M E, 5, 5)
IF(FNAME.EQ.OBLNK) FNAME=DFAULT
CALL OBEY(&l8,EQUATE,4)

10 TYPE 30
CALL KEYBRD(&15,TANK,5)
NPAGE=ICONV(TANK,S,I,BADt
IF (BAD) GO TO 10
IF (NPAGE.EQ.O) NPAGE=10000000
RETURN

15 RETURN l
18 RETURN 2

20 FORMAT ('ENTER NAME OF FILE: 1
1 $)

30 FORMAT(' ENTER NUMBER OF LINES/PAGE: •,$)
END

GRASP SOFTWARE SPECIFICATIONS 63

SUBROUTINE NAME: PACK

Purpose: All user input to the GRASP system is in unpacked
form (in other words, one single left-justified character per
word). PACK is used to convert from this unpacked form
to packed form. This is necessary because character data
in files accessed by GRASP is in packed form to conserve
space.

Calling sequence: CALL PACK(SOURCE,DESTN,N,SIZE)
Arguments:

SOURCE-The array containing the unpacked character
string.

DESTN-The array which is to contain the packed char­
acter string.

G R A S P S 0 U R C E

N-The number of characters to pack.
SIZE-The size (in characters) of the area to receive the

packed data.
Subroutines called: None
Common data referenced: None
Called by: DRIVER, COLPNT, CONDTN, DECOMP, FILES,

FTNC, LOGEXP, OPREP, PARSE, PNTER, RELEXP,
RETRVE, VLIST

Error checking and reporting: None
Program logic: The ENCODE .statement is used to move the

characters from the unpacked string (SOURCE) to the
packed string (DES TN) .

PROGRAM

SUBROUTINE PACK(SOURCE,DESTN,N,SIZE)
I NT E G E R S OUR C E (1) t 0 E S TN (1 J , S I l E

0001293
0001294
0001295
0001296
0001297
0001298

ENC 00 E (S I Z E, 1, 0 EST N t (SOURCE (I) , I= 1, N)
1 FORMAT(80Al)

RETURN
END

64 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: PARSE

Purpose: PARSE converts arithmetic expressions to an en­
coded Reverse-Polish fonn. Extensive syntax checking, con­
version, and preliminary addressing are performed to facili­
tate later evaluation by EV AL. The arithmetic expressions
may contain the usual arithmetic operators (+,-,*,/),
numeric constants, item names, and the following functions:

ABS () -absolute value;
SQRT () -square root;
LOG ()-log base 10;
SQR () -square;
TEN () -power of 10.

Parentheses may be used for grouping to control the order
of evaluation.

Calling sequence: CALL PARSE (EXPR,L,TYPE,POLISH,
I,ERR)

Arguments:
EXPR-Arithmetic expression to be parsed in unpacked

character form.
L-The length of EXPR.
TYPE, POLISH-Arrays which will contain the encoded

Reverse-Polish form. See s•ection on subroutine EV AL
for additional encoding information.

!-Length of TYPE and POLISH.
ERR-Logical flag set if an error is detected.

Subroutines called: INIT, FIND, BFIND, INCONV, PACK
Common data referenced: NAMES, IPNTS, IDIM in blank

common.
Called by: PREV AL
Error checking and reporting: The expression is checked for

normal FORTRAN-like syntax (such as balanced paren­
theses, binary operators bracketed by valid names or expres­
sions, and correct spelling of function names) . The message
"ERROR IN EXPRESSION"is typed if an error is detected.
If an operand or function name is not recognized, that
message is typed.

Program logic: The logical variable CALLED is tested. If it
has not been set by a previous call, it is set to .TRUE. and
INIT is called to "hash code" the elements of SYMBOL

G R A S P S 0 U R C E

into CHARS and CODES. Next, the variables ERR, ROW,
TOP, I, and C are initialized. The remainder of the com­
putation involves scanning EXPR, an element at a time.
As in LOGEXP, a transition-matrix technique is used to
parse the expression, converting it to reverse-Polish form.
The transition matr.ix (TM) is given below:

A-Z + I blank 0-9
%

1. f(l)/2 f(S)/1 error error error f(l0)/1 error f(2)/1 f(ll)/3
2. f(3)/2 f(4)/1 f(5)/l f(6)/1 f(7)/l f(12)/l f(9)/2 f(2)/2 f(3)/2
3. error f(4)/l f(5)/1 f(6)/l f(7)/1 error f(9)/3 f(2)/3 f(3)/3

where the f (i) are separate tasks as follows:
f (1) -Start a name.
f (2) -Go scan next character.
f(3)-Append current character to name.
f(4-7)-Binary arithmetic operator sensed: Set CODE to

indicated operator; pop stack until CODE is less than
the topmost stack element; push CODE down on stack.

f(8)-Unary minus sensed: set CODE and push down on
stack.

f(9)-Right parenthesis sensed: pop stack until topmost
element is code for left parenthesis (P AREN) ; decrease
size of stack by one.

f(l())-Left parenthesis sensed; push down parenthesis
code PAREN.

f(ll)-Digit or period sensed: start a constant. NAME is
used to contain the constant in character form.

f (12)-Left parenthesis sensed in row 2: hence, the contents
of NAME are assumed to be a function name. Check for
validity and print an error message if invalid; otherwise,
set CODE and push down on stack.

The proper element of TM is selected by the variables ROW
and COLUMN. The COLUMN value is determined by a lookup
(via FIND) of the current character and the ROW value is set
by the last element of TM referenced. Once the proper element
of TM is selected, the next ROW value is set and a branch
is made to the current task.

This process is repeated until all elements of EXPR have
been processed. See the section on subroutine EV AL for details
of the encoding of TYPE and POLISH.

P R 0 G R A M

SUBROUTINE PARSE(EXPR,L,TYPE,POLISH,I,ERR) OG01299
COMMON NAMES,ITYPE,IPNTS,IDIM 0001300
DIMENSION NAMES(500), POLISH(1), STACK(41), EXPR(l), NAME(8), TM(30001301

1,9), SYMBOL(45), COLS(45), TYPE(l), ITYPE(500), IPNTS(500), IFNCTS0001302
2(5), CHARS(47), CODES(47) 0001303

DOUBLE PRECISION N~MES,VARBLE,OBLNK 0001304
INTEGER TM,TOP,ROW,COLUMN,ELEMNT,SWITCH,TYPE,C,COLS,SYMBOL,CHARS,C0001305

10DES,CHAR,EXPR 0001306
LOGICAL POP,NUM,ERR,CALLED 0001307
DATA TMI12,32,0,81,2*41,0,2*51,0,2*61,0,2*71,101,121,2*0,92,93,21,0001308

122,23,113,32,331 0001309
DATA s y M B OL I • A. t • B • ' I c I ' ' D • ' I E I ' • f ' ' • G ' ' • H • ' I I • ' • J • t • K ' ' ' L • ' ' M • t • N 00 0 13 1 0

1. t • 0. ' • p. ' • Q I ' I R. 'I s. '. T I 'I u I '. v. ' • w I ' I X. ' • y' ' • Z1 ' • 0. ' • 1. ' • 2. ' I 3. '000 1311
2 1 4.' • 5.' • 6.' I 7.' • 8.' • 9 I 'I. I 'I • ' 1 + • '·-. '.*I '.I. 'I (I '. , I '. %1 I 0001312

DATA COLS/26*1,11*9 9 8,3,2 1 5,4 1 6 1 7,11 0001313
DATA IALNK,CALLED,OBLNK/ 1 •,.FALSE.,' 1 / 0001314
DATA PAREN,PluS,OIFF,PROD,OlV,UNARY/0.,-1.,-2.,-3.,-4.,-5.1 0001315

GRASP SOFTWARE SPECIFICATIONS

DATA IFNCTS/'ABS' ,•SQRT' , 1 LOG't'SQR 1 , 1 TEN'/
If (CALLED) GO TO 20
C ALL E 0= • T RU E •
CALL INITCCHARS,CODES,47,SYMBOL,45)

20 ERR=.FALSE.
ROW=1
TOP=O
1=0
C=O

30 C=C+ 1
I F (C • L E • L) GO T 0 50
If (ROW.EQ.1) GO TO 350
IF (POP) GO TO 250
IF (NUM) GO TO 40
SWITCH=1
GO TO 300

40 SWITCH=2
GO TO 320

50 CHAR=EXPR(C)
CALL FIN0(&350,CHAR,COLUMN,CHARS,COOES,47)
COLUMN=COLSCCOLUMN)
ELEMNT=TM(ROW,COLUMN)
JOB=ELEMNT/10
ROW=ELEMNT-lO*JOB
GO TO (60,30,70,130,140,150,160,170,180,230,240,270), JOB
GO TO 350

60 NAME(!)=CHAR
NCHAR= 1
POP=. FALSE.
NUM=. FALSE.
GO TO 30

70 NCHAR=NCHAR+1
NAME (N CHAR) =CHAR
GO T 0 30

80 IF (POP) GO TO 100
POP=. TRUE.
IF (NUM) GO TO 90
SWITCH= 3
GO TO 300

90 SWITCH=4
GO TO 320

100 If (TOP.EQ.O) GO TO 120
IF CCODf.LT.STACK(TOP)) GO TO 120
SWITCH=5
VALUE=STACK(TOPt
INDEX= VALUE
GO TO 330

110 TOP=TOP-1
GO TO 100

120 TOP=TOP+1
STACKlTOP)=CODE
GO TO 30

130 CODE= D IFF
GO TO 80

140 CODE=PLUS
GO TO 80

150 CODE=OIV
GO TO 80

160 CODE=PROO

65

0001316
0001317
0001318
0001319
0001320
0001321
0001322
0001323
0001324
0001325
0001326
0001327
0001328
0001329
0001330
0001331
0001332
:>:>01333
0001334
0001335
0001336
0001337
0001338
0001339
0001340
0001341
0001342
0001343
0001344
0001345
0001346
0001347
0:>01348
0001349
0001350
0001351
0001352
0001353
0001354
0001355
0001356
0001357
0001358
0001359
0001360
0001361
0001362
0001363
0001364
0001365
0001366
0001367
OOC1368
0001369
0001370
0001371
0001372
0001373
0001374

66 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

GO TO 80
1 7C COOt:; UNARY

GO TO 120
180 IF (POP) GO TO 200

POP=. TRUE.
IF CNUM) GO TO 190
SWI TCH=6
GO TO 300

190 SWITCH=7
GO TO 320

200 IF (TOP.EQ.O) GO TO 350
IF CPAREN.EQ.STACK(TOPt) GO TO 220
SWt TC H=8
VALUE=STACK(TOP)
INOEX=VALUE
GO TO 330

210 TOP=TOP-1
GO TO 200

220 TOP=TOP-1
GO TO 30

230 TOP=TOP+l
STACKCTOP)=PAREN
GO TO 30

240 NAMEC1»=CHAR
NCHAR= 1
NUM=.TRUE.
POP=. FALSE.
GO TO 30

250 IF CTOP.EQ.O) GO TO 370
SW I TC H=9
VALUE=STACKCTOP)
IF (VALUE.EQ.PARENt GO TO 350
INDEX= VALUE
GO TO 330

260 TOP:::TOP-1
GO TO 250

270 IVAL=IBLNK
IF (NCHAR.EQ.O) GO TO 350
CALL PACKCNAME,IVAL,NCHAR,4)
DO 280 J=1,5
IF (I VAL • E Q • IF NC T S (J)) G 0 T 0 2 90

280 CONTINUE
TYPE 410, IVAL
GO TO 350

290 COOE=J-11
TOP=TOP+l
STACK (TOP)= CODE
GO TO 230

300 VARBLE=DBLNK
CALL PACKCNAME,VARBLE,NCHAR,8)
CALL BFIND(&310,VARBLE,INDEX,NAMES,IPNTS,IDIM)
GO TO 330

310 TYPE ~90, VARBLE
GO TO 360

320 VALUE=ICONV(NAME,NCHAR,J,ERR)
IF (ERR) GO TO 350
INDEX :::0
IF (J.NE.O) VALUE=VALUF*10.**J

0001375
OJ01376
0001377
0001378
0001379
0001380
0001381
0001382
0001383
0001384
0001385
0001386
0001387
0001388
0001389
0001390
0001391
0001392
0001393
0001394
0001395
0001396
0001397
0001398
OJ01399
0001400
0001401
0001ft.02
0001403
0001404
0001405
0001406
0001ft.07
0001408
0001409
OJ01ft10
0001411
0001412
0001413
0001414
0001415
0001416
OOC1417
0001418
0001419
0001420
0001421
0001422
0001423
0001424
0001425
0001426
0001427
0001428
00(;1429
0001430
0001431
0001432

GRASP SOFTWARE SPECIFICATIONS

330 I~I+l

IF (I .L E. 15) GO TO 340
TYPE 420
GO TO 350

340 POLISH(I)=VALUE
TYPE(It=INDEX
GO TO (250,250,100,100,110,200,200,210,26Ct, SWITCH

350 TYPE 380, (EXPR(Jt ,J=l ,L)
360 ERR=.TRUE.
370 RETURN
380 FORMAT(' ERROR IN EXPRESSION: 1

1 50Al/23X,30Al)
39C FORMAT (' UNDEFINED NAME 1

1 A8)
410 FORMAT (1X,A5,'IS NOT A PERMISSIBLE FUNCTION. HENCE')
420 FORMAT(' MORf THAN 15 NAMES AND OPERATCRS USED. HENCE't

END

67

0001433
0001434
0001435
0001436
0001437
0001438
0001439
J001440
0001441
0001442
0001443
0001444
0001445
0001446
0001447

68 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: PAUSE

Purpose: This routine is used to provide a system-generated
pause in output. If a nonblank character is entered by the
user, the nonstandard return is taken.

Calling sequence: CALL PAUSE (&n)
Argument:

n-Statement (in caller) to which a branch will be made
,if a nonblank character is returned by KEYBRD, or if

G R A S P S 0 U R C E

SUBRJUTINE PAUSEC*t

the nonstandard return is taken from KEYBRD.
Subroutine called: KEYBRD
Common data referenced: None

Called by: BDEF, COLPNT, DUMPIT, NAME, ROWPNT
Error checking and reporting: None

Program logic: PAUSE accepts a single (left-justified) char­
acter from KEYBRD. If an EOF is sensed or the character
is nonblank, take the nonstandard return.

PROGRAM

DATA IBLNK/' 'I,IBELL/"0340GCOOOOOO/
TYPE l,IBELL

0:>01448
0001449
0001450
0001451
0001452
0001453
JJOllt54
0001455

CALL KEYBRO(&lC,I,l)
IF (l.EQ.IBLNK) RETURN

10 RETURN 1
1 FORMAT(lX,A1)

END

GRASP SOFTWARE SPECIFICATIONS 69

FUNCTION NAME: PNTER

Purpose: PNTER is used to look up user-entered character­
string or multiple-choice-type values in the value part of
"conditions" statements. Lookup is performed in the appro­
priate dictionary, and the value returned is a pointer to the
particular dictionary item. If the value is not found, an
error flag is set and zero is returned.

Calling sequence: IPT = PNTER (VALUE,IDIM,NAME,
ITYPE,ERR)

Arguments:
VALUE-Unpacked character-string value to be looked up.
!DIM-Length of the string in VALUE.
NAME-Item number for which the character string repre­

sents a value.
ITYPE-Item type of item pointed to by NAME.
ERR-Error flag which is set if the value is not found in

the dicitionary pointed to by NAME.
Subroutines called: ACCESS, BINTYP, PACK
Common data referenced: None
Called by: RELEXP

G R A S P S 0 U R C E

Error checking and reporting: If the character-string value is
not found, a message is typed, the error flag is set, and
zero is returned as the value of PNTER.

Program logic: If the length of the string is given as zero,
a value of blank is returned immediately. Otherwise, the
string is packed into STRING. The value of ITYPE then
determines whether the character-type dictionarie's should
be accessed (via ACCESS) or the multiple-choice-type dic­
tionaries should be accessed (via BINTYP). If a character­
type dictionary is indicated, a call to ACCESS is made,
where the fifth parameter has a value of 31. This returns K
as the pointer to the first dictionary item. ACCESS is then
called, using the value 4 as the fifth parameter (which re­
turns the K'th entry and updates K to point to the next
entry) , until all entries have been returned or until a match
is found. If a match is found, the entry number is returned
as a value. Otherwise, zero is returned as a value, and the
nonstandard return is taken. If a multiple-choice-type dic­
tionary is indicated, a call to BINTYP returns the possible
values in LABEL. The string (equivalenced to BLABEL) is
then compared with the items of LABEL.

P R 0 G R A M

INTEGER FUNCTIONPNTER(VALUE,IOIM,NAME,ITYPE,ERR)
DOUBLE PRECISION LAREL(25),BLABEL

0001456
0001457
0001458
0001459
OOG1460
0001461
0001462
0001463
0001464
0001465
0001466
0001467
0001468
0001469
0001470
0001471
0001472
0001473
0001474
O:>Olft75
0001476
0001477
0001478
0001479
0001480
0001481
0001482
0001483
0001484
0001485
0001486
0001487
0001488
0001489

INTEGER VALUECl),TANKC25),BlTEM(l5,25),STRING(l2)
LOGICAL ERR
EQUIVALENCE (STRING(1),BLABEL)
DATA IBLNK/ 1 '/

ERR=. FALSE.
N=IBLNK
IF (I 01~. EQ .0) GO TO 110
DO 10 1=1,12

10 STRING(I)=IBLNK
CALL PACK(VALUE,STRING,IDIM,60)
00 20 1=1,12
IF (STRING(13-I).NE.IBLNK) GO TO 30

20 CONTINUE
GO TO 110

30 LENGTH= 13-1
IF(ITYPE-3) 35,35,80

35 CALL ACCESS(NAME,K,TANK,NU~,3)

N=O
40 IF(K.EQ.Q) GO TO 60

N=N+l
CALL ACCESS(NAME,K,TANK,NWORDS,4)
IF (NWORDS.LT.lENGTHt GO TO 40
DO 50 1=1 ,LENGTH
IF (TANK(U.NE.STRING(J)) GO TO 40

50 CONTINUE
GO TO 110

60 ERR=.TRUE.
TYPE 130, (VALUE(I),I=l,IDI~)
GO TO 100

80 CALL BINTYP(NAME,LABEL,BITEM,L,M)
DO 90 N=1,M
IF (BLABEL.EQ.LABEL(N)) GO TO 110

70 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

90 CONTINUE 0001490
00Cl491
000lft92
0001493
0001494
000lft95

100
110

130
140

T Y P E 14 0 , B LAB E l
ERR=.TRUE.
N=O
PNTER=N
RETURN
FORMAT ('
FORMAT (1

END

CHARACTER TYPE VARIABLE DOES ~OT ASSUME VALUE: 1 /1X,60Al)0001496
BINARY TYPE VARIABLE DOES NOT ASSUME VALUE •,AS) 0001497

0001498

GRASP SOFTWARE SPECIFICATIONS 71

SUBROUTINE NAME: PREV AL

Purpose: PREY AL acts as an interface between the calling
routine (YLIST) and the arithmetic-expression parsing
routine PARSE. This interface allows a reduction in the
number of dimensions for the variables in /EXPRNS/
which contain the Reverse-Polish form of the arithmetic
expressions entered by the usel'.

Calling sequence: CALL PREY AL (&n,IEXPR,L,KNT)
Arguments:

n-Statement (in calling routine) to which a branch is made
if the routine PARSE sets an error flag.

IEXPR-Contains (in unpacked character form) the ex­
pression to be parsed.

L-The length of IEXPR.

KNT-Arithmetic expression counter.
Subroutine called: PARSE
Common data referenced: POLISH, ITYPE, LPS in

/EXPRNS/
Called by: YLIST
Error checking and reporting: Error flag returned from

PARSE is tested ..

Program logic:
1. The expression counter KNT is incremented.
2. Call PARSE, passing the input arguments IEXPR, L, and

the KNT'th columns of ITYPE, POLISH along with the
KNT'th element of LPS, and an error flag.

3. Take the nonstandard return if the error flag ERR has been
set.

G R A S P S 0 U R C E P R 0 G R A M

SUBROUTINE PREVAL(*,IEXPR,L,KNT)
COMMON /EXPRNS/ POLISH,ITYPE 1 LPS
DIMENSION POLISH(l5,8), ITYPE(l5,8), LPS(8J, IEXPRC1t
LOGICAL ERR
KNT=KNT+l
CALL PARSECI~XPR,L,ITYPE(l,KNT),POLISH(l,KNTt,LPSCKNT),ERR)
I F (ERR) R E TURN 1
RETURN
END

0001499
0001500
0001501
0001502
0001503
0001504
0001505
0001506
eoo1so1

72 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: QUIT

Purpose: QUIT performs "wrap-up" processing prior to exiting
from the GRASP system. This involves a typed statement
regarding the disposition of files created during the current
session.

Error checking and reporting: The user's response to prompts
is checked for validity.

Program logic:

1. The list of created file names is typed, and the user is
asked if he would like to save any of them.

Calling sequence: CALL QUIT(OFILES,NFILES)
Arguments:

2. If so, he is asked to enter a list of numbers corresponding
to those files he wishes to save.

OFILES-List of output files created during this session.
NFILES-The number of items in OFILES.

Subroutines called: KEYBRD, RLIST
Common data referenced: None
Called by: DRIVER

3. The system then instructs him how to delete the files he
does not wish to save. This routine is provided primarily for
bookkeeping. The file-maintenance functions can be per­
formed at the program level on those systems having this
capability.

G R A S P S 0 U R C E P R 0 G R A M

SUBROUTINE QUIT(OFILES,NFILES)
DIMENSION IMAGE(30),LIST(20), KLIST(201
INTEGER OFILES(20),FILE,VES,REPLY
DATA YES,N0/ 1 Y1 , 1 N1 /

IF (NFILES.EQ.O) GO TO 100
TYPE 110, (l,OFILES(I),l=1,NFILESJ
TYPE 120

10 TYPE 130
CAll KEYBRD(&100,REPLY,1)
IF (REPLY.EQ.VES) GO TO 40
IF (REPLY.EQ.NO) GO TO 20
TYPE 150
GO TO 10

20 NKILL=NFILES
00 30 1=1,NFILES

30 KLIST(I)=I
GO TO 80

40 IF (NFILES.EQ.1) GO TO 100
TYPE 160

50 CALL KEVBR0(&100,IMAGE,30)
CALL RLIST(&50,1MAGE,LIST,NSAVE,20)
IF (NSAVE.EQ.O) GO TO 20
NKILL=O
DO 70 l=l,NFILES
DO 60 J= 1,NSAVE
IF (llST(J).EQ.l) GO TO 70

60 CONTINUE
NKILL=NK Ill +1
KllST(NKILL)=I

70 CONTINUE
IF (NKILL) 100,100,80

BC TYPE 90,(0FILESCKLISTtl)),l=l,NKill)
100 RETURN

0001508
0001509
0001510
0001511
0001512
0001513
0001514
0001515
0001516
0001517
0001518
0001519
0001520
0001521
0001522
0001523
JJ01524
0001525
0001526
0001527
0001528
0001529
0001530
0001531
0001532
C001533
0001534
0001535
0001536
0001537
000153B
0001539
0001540

9C FORMAT(' ISSUE .DEL COMMANDS FOR THE
110 FORMAT (//' THE FOLLOWING FILES HAVE

FOLLOWING FILES: 1 /(1X,10A6)) 0001541
BEEN CREATED •,•DURING THIS SOOC1542

1ESSION: 1 /(15,5X,A6) t
120 FORMAT (// 1 00 YOU WISH TO SAVE ANY OF THEM?')
13C FORMAT (1 (ENTER YES OR NO): •,$)
150 FORMAT ('YOUR REPLY WAS NOT UNDERSTOOD.')
160 FORMAT (1 ENTER A LIST OF NUMBERS CORRESPONDING

1 YOU WI SH TO SAVE (IE. 1-3,5) • 1)

END

0001543
0001544
0001545
0001546

TO 'I' THOSE FILES0001547
0001548
0001549

GRASP SOFTWARE SPECIFICATIONS 73

SUBROUTINE NAME: RELEXP

Purpose: This subroutine is used to decode the "condition"
appearing in IMAGE into the· components NAMEPT,
RCO DE, and IV AL. If it is unsuccessful, an error message
is typed and an error flag is set. The "condition"' is in
unpacked character form and is assumed to be a name
followed by a relation followed by a value. Name must be
an item name in the current data base (as established by the
file command). Relation must be one of the following: EQ,
equal; LT, less than; GT, greater than; LE, less than or
equal; GE, greater than or equal; NE, not equal; BE, be­
tween. Value must be a number, number pair, character
string, set of qualifiers, permissible multiple-choice acronym,
or blank. The following table gives valid constructions for
"conditions":

Item type

Integer or reaL __

Character -------

Multiple choice __

Qualified real ----

Relation

EQ, LT, GT, LE, GE, NE __
BE ------------

EQ, LT, GT, LE, GE, NE __
BE ------------

EQ, NE --------------------

EQ, LT, GT, LE, GE, NE __
BE ------------

EQ, NE ------------

Value

Numeric.
Numeric pair.
Any printable string.
Printable string con-

taining comma.
Multiple-choice

acronym.
Numeric.
1\lumeric pair.
Qualifier set 1 in

parentheses.

1 Qualifier set is one or more of the following characters, each of
which occur, at most, once; G, H, L, N, T, or blank.

Calling sequence: CALL RELEXP(&n,IMAGE,NAMEPT,
RCODE,IVAL,ERR)

Arguments:
n-Statement number (in ca:lling routine) to which a branch

will be made if an all-blank condition is detected.
IMAGE-Contains "condition" in unpacked-character form.
NAMEPT-Returned pointer to item name.
RCODE-Returned encoding of relation having the follow-

ing possible values:
1-7 corresponding to the relations
EQ,LT,GT,LE,GE,NE,BE.
11 or 16 corresponding to the relations EQ or NE,
applied to a set of qualifiers.

IV AL-Returned as one of the following:
1. Integer or real value.
2. Pointer to a particular entry in the character dictionary

associated with the item pointed to by NAMEPT.
3. Bit encoding, giving the position of a particular multiple­

choice acronym in the file containing possible acronym
values for the item pointed to by NAMEPT.

4. Pointer to the number pair in the common block BTWN
which will be used by this instance of the BE relation.

5. Bit encoding of a qualifier set.

ERR-Returned error flag that is set if an error is detected.
Subroutines called: SCAN, BFIND, ICONV, PNTER, PACK
Common data referenced:

G R A S P S 0 U R C E

NAMES, !TYPE, PNTERS, IDIM in blank common
IVALS, NBE in /BTWN/

Called by: CONDTN
Error checking and reporting:
1. All testing is performed to insure conformity to the table

of valid constructs appearing in the preceding "purpose"
section.

2. An error flag that may be set by the routines ICONV or
PNTER is tested.

3. A nonstandard return from BFIND indicates an invalid
name.
An error meEsag.e is printed reporting any of the following
errors:
a. Unable to find relation (that is, EQ, LT, GT, LE, GE,

NE, BE).
b. Incorrect qualifier set.
c. Qualifier codes are .referenced in forms other than EQ

orNE.
d. Invalid name as first syntactic unit of condition.
e. No comma separating a value pair used with the BE

relation.
Program logic:
1. A call to SCAN is made to bracket the name as the first

syntactic element. If the image is all blank, the nonstandard
return is taken.

2. The name ~s packed into NAME via ENCODE, and
BFIND is used to do the lookup. If the name is not
found, a message is typed, and the error flag is set.

3. The next ca:ll to SCAN brackets the relation. It is packed
into REL and tested against the list of valid relations. Note
that RCODE is used as the index. If invalid, a message is
typed, and the error flag is set.

4. The value part of the condition is then bracketed via the
next call to SCAN. If the value field is blank, IVAL is set
to blank.

5. Otherwise, the type of name is determined using ITYPE
in blank common.

6. The logical variable BE (indicating the "between" rela­
tion) is determined. If set, the second value is determined
and stored in the BTWN common area, and IV AL is set
to point to the BTWN location. The second value deter­
mination is logically similar to the first which is described
in step 8.

7. If BE was not set, the value element is tested as a qualifier
set. If it is one, the appropriate tests are made, and IV AL
is bit encoded to show which codes are present. RCODE is,
also, incremented by 10 as a flag indicating comparison of
qualifier cores.

8. If the value element was not a qualifier set, and the rela ..
tion was not BE, IVAL is set via a call to ICONV, if type
was numeric. Note that for real values, VAL (equivalenced
to IV ALL) is set. IV AL is then set by IV ALL, which shares
.storage with VAL. For character and multiple-choice types,
IV AL is set using the external function PNTER.

PROGRAM

SUBROUTINE RELEXP(*,IMAGE,NAMEPT,RCOOE,IVAL,ERR)
COMMON NAMES,ITYPE,PNTERS,IOIM

0001550
0001551
0001552 COMMON /BTWN/ IVALS,NBE

DIMENSION RELS(7), IVALS(2,10), IMAGE(80), ITVPE(500t, NAMES(500) 0001553

74 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

DOUBLE PRECISION NAME,NAMES,OBLNK 0001554
INTEGER FCNAME,FCOP,FCCON,RCOOE,PNTER,BLANK,PNTERS(500),E,REL,RELS0001555

l,COMMA,RPAREN,IQUAL(6)
LOGICAL ERR ,BE
EQUIVALENCE (VAL, I VALL), (I QUAL, BLANK)
DATA COMMA,RPAREN,LPAREN,OBLNK,IQUALI 1

9
1 , 1) 1 , 1 (1 ,'

1' '•'G','H','L','N','T'I,
1 REL S I' E Q', 'l T' , 'GT ', 'L E 1 , 1 GE 1 , 1 N E 1 , 1 BE' I

ERR=. FALSE.
I= 1
CALL SCANI&295,IMAGE,I,FCNAME,LCNAME,11
NAME=DBLNK
CALL PACK(IMAGE(FCNAMEJ,NAME,LCNAME-FCNAME+1,8)
CALL BFIND(&llO,NAME,NAMEPT,NAMES~PNTERS,IDIM)
I=LCNAME+l
CALL SCAN(&20,IMAGE,I,FCOP,J,1)
IF(J.NE.FCOP+1) GO TO 20
REL=BLANK
CALL PACK(IMAGE(FCOPJ,REL,2,4)
00 10 RCODE=1,7
lf(RELS(RCOOE).EQ.REL) GO TO 30

10 CONTINUE
20 TYPE 320

GO TO 144
30 I=J+l

CALL SCAN(&4Q,IMAGE,I,FCCON,LCCON,2)
GO TO 140

40 IVAL=BLANK
GO TO 210

295 RETURN 1
140 J=ITYPE(NAMEPT)

BE=RCODE. EQ. 7
IF(BE) GO TO 220
IF(IMAGE(FCCON).NE.LPAREN) GO TO 150
lf(J.NE.5) GO TO 150
IF(IMAGE(LCCONt.EQ.RPAREN) GO TO 142

1405 TYPE 141
GO TO 144

142 IF(RCOOE.EQ.1) GO TO 145
IF(RCODE.EQ.6) GO TO 145
TYPE 143

144 ERR=.TRUE.
GO TO 210

145 RCODE=RCODE+10
I VAL=O
FC CON= FCCON + 1
LCCON=LCCON-1
DO 147 K=FCCON,LCCON
J= IMAGE(K)
DO 146 I= 1, 6
IF(IQUAL(I).EQ.J) GO TO 147

146 CONTINUE
GO TO 1405

147 IVAL=IVAL+2**(1-1)
GO TO 210

110 TYPE 310, NAME
GO TO 144

150 GO TO (160,170,190,19t,170),J
160 IVAL=ICONV(IMAGECFCCONt,LCCON-FCCON+1,E,ERR)

GO TO 200

''

0001556
0001557
0001558
0001559
0001560
0001561
0001562
0001563
OOC1564
0001565
OOC1566
0001567
0001568
0001569
0001570
0001571
0001572
0001573
0001574
0001575
0001576
0001577
0001578
0001579
000158C
OOC1581
0001582
0001583
0001584
0001585
0001586
0001587
0001588
0001589
0001590
0001591
0001592
0001593
0001594
0001595
0001596
0001597
0001598
0001599
0001600
0001601
0001602
0001603
0001604
0001605
0001606
0001607
0001608
0001609
0001610
0001611
0001612
~J01613

GRASP SOFTWARE SPECIFICATIONS

170 K=ICONV(IMAGE(FCCON),LCCON-FCCON+1,E,ERR)
IF (K.NE.BLANK) GO TO 180
I VAL= K
GO TO 200

180 VAL=K*lO.**E
I VAL= I VALL
GO TO 200

l9C IVAL=PNTER(IMAGEtfCCON),LCCON-FCCON+l,NAMEPT,J,ERR)
200 IF (ERR) GO TO 210

IF l.NOT.BEJ GO TO 210
NBE=N BE+ 1
IVALS(1,NBE)=IVAL
I VAL=NB E

210 RETURN
220 DO 230 J=FCCON,LCCON

IF (IMAGE(IJ.EQ.COMMA) GO TO 240
230 CONTINUE

TYPE 330
GO TO 144

240 GO TO (250,260,280,280,260),J
250 IVAL=ICONV(IMAGE(l+1J,LCCON-I,E,ERR)

GO TO 290
2b0 K=ICONV(IMAGE(l+1t,LCCON-I,E,ERR)

IF (K.NE.BLANK) GO TO 270
IVAL=K
GO TO 290

270 VAL=K*lO.**E
IVAL=IVALL
GO TO 290

280 IVAL=PNTER(IMAGE(I+l),LCCON-I,NAMEPT,J,ERR)
290 IF (ERR) GO TO 210

I VALS (2 ,NBE+1 J=IVAL
LCCON=I-1
GO TO 150

141 FORMAT(' QUALIFIER CODES MUST BE ONE OR MORE OF "Lt ,N,T,G,H"',
1 1 AND ENCLOSED IN PARENTHESIS.')

143 FORMAT(' ONLY EQ/NE CAN BE USED WITH QUALIFIER CODES.')
310 FORMAT (1 INVALID NAME= •,AS)
320 FORMAT(' UNABLE TO FIND RELATION (LT,GT,LE,GE,EQ,NE,BE)')
330 FORMAT (1 NO COMMA SEPARATING CONSTANTS FOLLOWING BE OPERATOR')

END

75

0001614
0001615
0001616
0001617
OOC1618
0001619
0001620
0001621
0001622
0001623
0001624
0001625
0001626
0001627
0001628
0001629
0001630
0001631
0001632
0001633
0001634
0001635
0001636
0001637
0001638
0001639
OOC1640
0001641
ouot642
0001643
000164-4
0001645
0001646
0001647
0001648
0001649
0001650
0001651
0001652
0001653
0001654

76 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: RETRVE

Purpose: RETRVE is used to retrieve records from a selected
file and write them on some other selected file. User-specified
encoded retrieval criteria are passed to RETRVE via its
argument list.

Calling sequence: CALL RETRVE (&n,&m,IFILES,OFILES,
NFILES,POLISH,LPS,V ARS,CODES,V ALS,NCOND)

Arguments:
n-Statement number (in calling routine) to which a branch

is made if previously undetected (by LOGEXP) errors
are encountered.

m-Statement number (in calling routine) to which a branch
is made if KEYBRD senses an EOF.

!FILES, OFILES-Arrays of input and output file names,
respectively.

NFILES-Number of elements in either !FILES or
OFILES (!FILES and OFILES are of equal size).

POLISH-Array containing the Reverse-Polish form of the
logic expression to be used for data retrieval.

LPS-The number of elements in POLISH.
VARS, CODES, VALS-Arrays that give an encoding of

the conditional expressions entered by the user.
NCOND-Number of e•lements in V ARS, CODES, and

VALS.
Subroutines called: KEYBRD, OBEY, GETPUT, COMP,

UNCODE, PACK
Common data referenced:

FNAMES, SELECT in /FILNAM/
!TYPE in blank common
INPUT, OUTPUT in /IOUNIT/

Called by: DRIVER
Error checking and reporting:
1. Check to assure entry of retrieval criteria (that is, LPS>O)
2. Check to assure absence of undetected errors in the re­

trieval criteria.

G R A S P S 0 U R C E

Messages are typed corresponding to the two error situa­
tions above.

Program logic:
1. LPS is checked to insure that retrieval criteria have been

entered.
2. The elements of V ALS are moved to IV AL to allow the

equivalencing necessary for mixed modes (in particular,
integer and rea:l) possible in retrieval criteria.

3. Input- and output-file names are prompted and accepted,
then associated with FORTRAN unit numbers via calls to
KEYBRD and OBEY. The new file names are added to
!FILES and OFILES.

4. The input file is then read, one record at a time (via
GETPUT), until the nonstandard (EOF) return is taken.
After each call to GETPUT, the record (IREC) is tested
against the retrieval criteria indicated in POLISH, V ARS,
CODES, and VALS via the logical valued push-down stack
technique described as follows: Any element of POLISH
less than 27 points to one of the conditional expressions en­
coded in VARS, CODES, VALS. That expression is evalu­
ated via a reference to the logical function COMP, and the
.result is placed in the push-down stack. If POLISH (I) >26,
it points to one of the logical operators "and," "or," "not"
(denoted by *, +, -) . If the operator is -, the "not" op­
eration is performed on the topmost stack element. If the
operator i.s * or +, the operation is performed on the top­
most two stack elements, the size of the stack is decremented,
and the resultant (!logical) value replaces the new topmost
stack element. After the last element of POLISH has been
processed, the size of the stack should be 1, and the value
of this element indicates whether or not the record meets
the retrieval criteria. If ,so, it is added to the output file
by a call to GETPUT. Counts of records read and records
retrieved are kept and typed at the end of retrieval process­
ing.

P R 0 G R A M

SUBROUTINE RETRVE(*,*tiFILES,OFILES,NFILES,POLISH,LPS,VARS,CODES, 0001655
0001656
0001657
0001658
0001659
0001660
OOC1661
0001662
0001663
0001664
0001665
0001666
0001667
0001668
0001669
0001670
0001671
0001672
0001673
0001674
0001675

1VALS,NCONDt
COMMON NAMES,ITYPE,IPTS,IDIM
COMMON /IOUNITI INPUT,OUTPUT
COMMON IFILNAMI FNAMES,SELECT,PAD
DIMENSION VAL(26)
DOUBLE PRECISION NAMES(500t
INTEGER IVAL(26),CODES(1),VARS(lt,wHICH,DREC(500),0UTPUT,TOP,POL

1ISH(l),ITYPE(500J,ONE,TWO,VALS(l),EQUATE(4) 9 IPTS(5001,SELECT
INTEGER FILEIO,OBLANK,IFILES(1),0fiLES(l),OFAULT,FNAMES(21)
LOGICAL COMP,VALUE,STACK(20),EVAL,PA0(4)
EQUIVALENCE (IREC,REC),(IVAL,VAL),(STACK,EVAL),(EQUATE(4),FILEID)
DATA ONE , T WO , 0 BlANK I ' 1 1 , 1 2 1 , ' 1 I , E QUAT E I 1 E QUA 1 , 1 T E 1 • , 2 * ' • I
If {LPS.GT.O) GO TO 10
TYPE 180
GO TO 170

10 DO 20 I=1,NCOND
2 0 I VAL (I) =VAL S (I)

DFAULT=FNAMES(SELECTJ
NRECS=O
NFOUND=O

NF IL E S=NF IL ES+ 1
EQUATE(3)=ONE
TYPE 190

GRASP SOFTWARE SPECIFICATIONS

CALL KEYBR0(&175,0REC,5)
CALL PACK(OREC,FllEI0,5,5)
IF (FILEIO.EQ.DBLANK) FILEIO=OFAULT
IFILES(NfllfS)=fiLEIO
CALL OAEV(&170,EQUATE,4)
EQUATE(3)=TWO
TYPE 210
CALL KEYBR0(&175,DREC,5)
CALL PACK(DREC,FILEI0,5,5)
OFILES (NF IL ES)=FILE ID
CALL OBtY(&170,EQUATE,4)

30 CALL GETPUT(&140,DREC,1)
NRECS=NRECS+1
TOP=O
DO 110 J= 1, LPS
INDEX=POLISH(Jt
IF (INDEX.GT.26t GO TO 70
TOP=TOP+ 1
WH I CH =VA R S (I NO E X)
l=ITYPE(WHICH)
I REC= OR EC (WHICH)
GV TO (40,50,40,60,62), I

40 STACK(TOP)= COMP(IREC ,IVAL(INOEX),01,02,COOES(INDEX),1)
GO TO 110

50 STACK(TOP)= COMP(10l,I02,REC ,VAL(INOEX),COOEStiNDEX),2)
GO TO 110

6C STACK(TOPt= COMP(IREC ,IVAL(INOEX),Ol,02,COOES(INDEX),3J
GO TJ 110

62 IF(IREC.NE.OBLANK) GO TO 63
IFtCDDES(INDEX).LT.lll GO TO 50
STACKCTOP)=.FALSE.
GO TO 110

63 REC=UNCODE(REC,IQ)
IF(CODES(INOEX)-11) 50,64,66

64 STACK(TOP)=M00(1VAL(INDEX)/2**(1Q-1),2).EQ.1
GO TO 110

66 STACKtTOP)=MOD(IVAL(INOEX)/2**(IQ-11,2).EQ.O
GO TO 110

7u VALUE=STACK(TQP)
IF (INDEX-30) 80,90,100

80 TOP=TOP-1
STACK(TOP)=STACK(TOP).OR.VALUE
GO TO 110

90 TOP=TOP-1
STACK(TOP)=STACK(TOP).AND.VALUE
GO TO 110

100 STACK(TOP)=.NOT.STACK(TOP)
110 CONTINUE

IF (TOP.EQ.1) GO TO 120
TYPE 220
REW I NO INPUT
RETURN 1

120 IF (EVAL) GO TO 130
GO TO 30

130 CALL GETPUT(&l40,DREC,2)
NFOU~ 0= NFOU ND+1
GO TO 30

77

0001&76
0001677
0001678
0001&79
0001680
0001681
0001682
0001683
0001684
0001685
0001686
0001687
0001688
0001689
0001690
0001691
0001692
0001693
0001694
0001695
0001696
0001697
0001698
0001699
0001700
0001701
0001702
0001703
~0~1704
0001705
0001706
0001707
0001708
0001709
000171C
0001711
0001712
0001713
0001714
0001715
0001716
0001717
0001718
0001719
0001720
0001721
0001722
0001723
0001724
0001725
OJJ1726
0001727
0001728
0001729
aoo 1130
0001731
0001732
0001733
0001734
0001735

78 GEOLOGIC RETRIEVAL AND SYNPOSIS PROGRAM (GRASP)

140 TYPE 230, NRECS,IFILES(NfiLES)
IF (NfOUND.GT.O) GO TO 150
TYPE 240
NFI L ES=NF IL ES-1
GO TO 160

150 TYPE 250, NFOUND,FILEID
160 REWIND INPUT

REWIND OUTPUT
170 RETURN

0001736
0001737
0001738
0001739
0001740
0001741
0001742
0001743
0001744
J001745

(' LOGIC MUST BE SUPPLIED BEFORE
(' EN T E R I N P U T f I l E NA ME : 1 , $)
(' ENTER OUTPUT FILE NAME: 1 ,$)

175 RETURN 2
180 FORMAT
190 FORMAT
210 FORMAT
220 FORMAT
230 FORMAT
240 fORMAT
250 FORMAT

A RETRIEVAL CAN BE MADE') 0001746
0001747
0001748

1 E BEEN
END

(' ERROR IN LOGIC EXPRESSION')
(1 ALL',I6,' RECORDS OF 1 ,A6, 1 SEARCHED. 1 J
(1 THERE ARE NO RECORDS WHICH SATISFY THE REQUEST')
(110, 1 RECORDS FOUND WHICH SATISFY THE REQUEST.'/' THEY
STORED IN 1 ,A6)

0001749
0001750
0001751

HAV0001752
0001753
0001754

GRASP SOFTWARE SPECIFICATIONS 79

SUBROUTINE NAME: RLIST

Purpose: RLIST is used to convert an unpacked character
string representing a list of user-entered numbers into a
correSJPonding numeric list.

Calling sequence: CALL RLIST(&n,IMAGE,LIST,NUMC,
MOST)

Arguments:
n-Statement number (in caller) to which a branch will be

made if an uncorrectable error in the entered character
string is detected.

IMAGE-The unpacked character-string form of the list
of numbers.

LIST-The list of numbe1~s which are returned in numeric
form.

NUMC-The number of items in LIST.
MOST-The maximum number of items that LIST may

contain.
Subroutines called: None
Common data referenced: None
Called by: DEFLST, QUIT
Error checking and reporting: If an illegal character (not

0~9, dash, or comma) is detected, an error message is
typed and the nonstandard return is taken. If the list isn't

G R A S P S 0 U R C E

composed of numbers or number ranges separated by com­
mas, an error message is typed, and the nonstandard re­
turn is taken.

Program logic: Each character of the unpacked string is proc­
·essed via the following transition matrix:

Q-9

1. f (1) /2 error
2. f(2)/2 f(3)/1
3. f(l)/4 error
4. f(2)/4 f(4)/1

f (i) are defined as :
f (1) -Start a number value.

error
f(3)/3
error
error

f(2)-Build number value by adding digit on right.
f(3)-Number built, add it to list.
f(4)-Fill LIST with values up to and including current

value.
Rows 1 and 2 are used to process a single list element or
the first of a number-range pair.
Rows 3 and 4 are used to process the second of a num­
ber-range pair. Blanks are completely ignored.

The columns of the transition matrix are associated with
the indicated characters, and the rows correspond to indi­
vidual states.

P R 0 G R A M

SUBROUTINE RLIST(*,IMAGE,LIST,NUMC,MCST) 0001755
0001756
0001757
0001758
0001759
0001760
0001761
0001762
0001763
0001764
0001765
0001766
0001767
0001768
0001769
0001770
0001771
0001772
0001773
0001774
0001775
0001776
0001777
0001778
0001779
0001780
0001781
0001782
0001783
0001784
0001785

INTEGER LIST(l),IMAGE(3Q),CHAR(12),COL(12),1MAT(4,3)
DATA IMAT/12,22,14,24,C,3l,C,4l,0,33,0,0/,IBLNK/ 1 1 /

0 AT A cHAR I • 0 ' ' t 1. ' • 2. ' • 3 I ' • 4. ' I 5 ' ' • 6. ' • 1 • ' • 8. ' • 9. ' • ' • '. -. I
DATA COL/10*1,2,3/
NUMC=C
LAST= 1
IP=O
I ROW= 1

10 IP=IP+l
IF (IP.GT.30) GO TO 120
I CHAR= IMAGE (I P)
IF (I CH A R • E Q • I B l N K) GO T 0 1 0
DO 20 1=1,12
IF (ICHAR.EQ.CHAR(1)) GO TO 40

20 CONTINUE
TYPE 150, ICHAR

30 RETURN 1
35 TYPE 145,IVAL

GO TO 30
40 IFS=IMAT(IROW,COL(I))

IF (lFS.NE.O) GO TO 60
50 TYPE 160

GO TO 30
60 IROW=M00(1FS,10)

IFS=IfS/10
GO TO (70,80,90,100), IFS

70 IVAL=I-1
GO TO 10

80 IVAL=10*1VAL+I-l
GO TO 10

80 GEOLOGIC RETRIEVAL AND SNYPOSIS PROGRAM (GRASP)

90 NUMC=NUMC+1 0001786
IF (NUMC.GT.MOSTI GO TO 110 0001787
IF(IVAL.GT.MOST) GO TO 35 0001788
LIST(NUMCt=IVAL OOC1789
GO TO (10,140), LAST 0001790

100 LIST(NUMC+l)=LIST(NUMC)+l 0001791
NUMC=NUMC+l 0001792
IF (NUMC.GT.MOST) GO TO 110 0001793
IF(IVAL.GT.MOST) GO TO 35 00u1794
IF (LIST(NUMC).LT.IVAL) GO TO 100 0001795
GO TO (10,140), LAST 0001796

110 TYPE 170, MOST 0001797
NUMC=MOST 0001798
GO TO 140 0001799

120 IF (NUMC.NE.OI GO TO 130 0001800
IF (IROW.EQ.1) GO TO 140 0001801
NUMC=1 0001802
LIST(1)=1VAL 0001803
GO TO 140 0001804

130 IF (MQO(IROW,2t.NE.OI GO TO 50 0001805
LAST=2 0001806
IROW=IROW/2 0001807
GO TO (90,100), IROW 0001808

140 RETURN 0001809
145 FORMAT(I5,' DOES NOT CORRESPOND TO A CATEGORY. RE-ENTER NUMBERS') 0001810
150 FORMAT (lX,Al,• IS AN ILLEGAL CHARACTER. RE-ENTER NUMBERS.' t 0001811
160 FORMAT (' EACH NUMBER OR NUMBER RANGE (IE. 4-7) EXCEPT •,•THE l~ST0001812

1 MUST BE FJLLOWED BY A COMMA. 1 / 1 RE-ENTER NUMBERS.•) 0001813
170 FORMAT (' TOO MANY NUMBERS GIVEN. ONLY THE FIRST',I3, 1 WILL BE USE0001814

10. 1) 0001815
END 0001816

GRASP SOFTWARE SPECIFICATIONS

SUBROUTINE NAME: ROWPNT

Purpose: ROWPNT prints selected items or expressions, one
to a line, from a selected file.

Called by: LIST
Error checking and reporting: None

Program logic:

81

Calling sequence: CALL ROWPNT(&n,NPAGE)
Arguments:

n-Statement (in caller) to which VLIST will branch when
an EOF is encountered by KEYBRD.

1. The list of items to be printed is obtained via a call to
VLIST.

NPAGE-Number of lines per page of printed output.

2. A caB to ACCESS is made to initialize the lookup of dic­
tionary-type items.

Subroutines called: VLIST, ACCESS, GETPUT, PAUSE,
EVAL, UNCODE, BINTYP, BLIST

Common data referenced:

3. Each record of the ,selected file is obtained via GETPUT
and a line counter is incremented and tested. If it exceeds
the page size, a pause is generated via PAUSE.

POLISH, !CODE, LPS in /EXPRNS/
ITYPE in blank common

4. After each record is obtained, the selected items are evalu­
ated (if necessary) and printed.

G R A S P S 0 U R C E

SUBROUTINE ROWPNT(*,NPAGE)
COMMON NAMES,ITYPE,IPTS,IPAD
COMMON /E XPRNS/ POLISH, ICODE, LPS

P R 0 G R A M

DOUBLE PRECISION NAMES,LABEL,NAMESI,VNAMES(20)
INTEGER BlANK,TANK,IPTSC500),1QUALC6J,POLISH(15,8),

1 ICODE(15,8),LPSC8)
DIMENSION ITYPEC500), BITEM(l5,25), ITEMS(20), IRECC500J,

1 REC(500), NAME$(500), TANK(25), LABEL(25), LIST(25)
LOGICAL ERR
EQUIVALENCE (REC,IREC),(IVAL,VAL),(LIST,TANK),(BLANK,IQUAL)
DATA IQUAL/ 1 1 , 1 G1 , 1 H1 , 1 L1 , 1 N1 , 1 T1 /

KOUNT=O
CAll VLIST(&270,VNAMES,ITEMS,NUM)
IF (NUM.EQ.O) GO TO 260
TYPE 280
CALL ACCESSCII,IVAL,TANK,J,1)

12u CALL GETPUT(&260,IREC,l)
KOUNT=KOUNT+NUM+1
If (KOUNT.LE.NPAGEt GO TO 130
KOUNT=O
CALL PAUSE (&260)

130 DO 240 JJ=l,NUM
I I= IT EMS (JJ)
IF(II.GT.O) GO TO 135
I I=- I I
NAMESI=VNAMES(JJ)
VAl=EVAL(IPEC,ICOOE(1,IIJ,POLISHl1ell),LPS(II),ERR)
IF(ERRt GO TO 240
GO TO 150

135 IVAL=IREC(Il)
If (IVAL.EQ.BLANK) GO TO 240
KIND=ITYPE(II)
NAMESI=VNAMESCJJ)
GO TO (140,150,160,220,170), KIND

140 TYPE 300, NAMESI,IVAL
GO TO 240

150 TYPE 310, NAMESI,VAL
GO TO 240

160 CALL ACCESSCII,IVAL,TANK,J,2)
TYPE 320, NAMESI,(TANK(I),I=1 9 J)
GO TO 240

0001817
0001818
0001819
0001820
0001821
0001822
0001823
0001824
0001825
0001826
0001827
0001828
0001829
0001830
0001831
0001832
0001833
0001834
0001835
0001836
0001837
0001838
0001839
0001840
0001841
0001842
0001843
0001844
0001845
0001846
0001847
0001848
0001849
0001850
0001851
00018 52
0001853
0001854
0001855
0001856
0001857

82 GEOLOGIC RETRIEVAL AND SNYPOSIS PROGRAM (GRASP)

17C VAl=UNCODECVAL,IQ) 0001858
TYPE 310,NAMESI,VAL,IQUAL(IQ) 0001859
GO TO 240 OOC1860

220 CALL BINTYP(li,LABEL,BITEM,K,M) 0001861
KOUNT =KOUNT +l 0001862
TYPE 340, NAMESI 0001863
CALL BLIST(LIST,NUMS,IVALI 0001864
DO 230 I=l,NUMS 0001865
KOUNT=KOUNT+l 0001866
J =LIST (I) 0001867

230 TYPE 330, LABEL(J),(BITEM(L,J),L=1,K) 0001868
240 CONTINUE 0001869

TV PE 290 ouo1a7o
GO TO 120 0001871

26C RETURN 0001872
270 RETURN 1 0001873
280 FORMAT ,,,,, 0001874
290 FORMAT (1X,3(8H********t) 0001375
30C FORMAT (l X , AS , 1 H=, I 9) 0001876
310 FORMAT (1X,A8,lH=,lPG12.5,A1) 0001877
320 FORMAT (1X,A8,1H=,l2A5/l5X,l2A5) 0001878
330 FORMAT (5X,A8,15A4) 0001879
340 FORMAT (1X,A8,1H=) 0001880

END 0001881

GRASP SOFTWARE SPECIFICATIONS 83

SUBROUTINE NAME: SCAN

Purpose: This subroutine is used to set character-position
pointers for the syntactic elements of a condition (name,
relation, value (s)) or a logical expression.

Calling sequence: CALL SCAN(&n,IMAGE,IS,Il,I2,IT)
Arguments:

n-Statement number (in calling routine) to which a
branch will be made if IMAGE is all blanks.

IMAGE-String of unpacked left-justified characters.
IS-Starting position of the scan.
11-Pointer to first character of syntactic element.
I2-Pointer to last character of syntactic element.
IT-Embedded blank switch.

G R A S P S 0 U R C E

Subroutines called: None
Common data referenced: None
Called by: RELEXP, LOGEXP
Error checking and reporting: None
Program logic:
1. The position of the first nonblank character is determined.
2. If all characters after the IS'th are blank, the nonstandard

return is taken.
3. If no embedded blanks are permitted (IT=1), the position

of the last nonblank character to the right of the position
found in step 1 is determined, and control passes to the caller.

4. Otherwise (if, IT=2.), the position of the first nonblank
character to the left of position 80 is determined and control
returns to the caller.

P R 0 G R A M

SUBROUTINE SCAN(*, IMAGE,IS, 11,12,ITI
INTEGER IMAGE(lJ

0001882
0001883
0001884
0001885
0001886
0001887
0001888
0001889
0001890
0001891
0001892
0001893
0001894
0001895
0001896
0001897
0001898
0001899
0001900
0001901
0001902
0001903

OAT A I B l NK I ' ' I
DO 1 I=IS,80
IF(IMAGE(IJ.NE.IBLNKJ GO TO 2

1 CONTINUE
RETURN 1

2 I 1= I
J=l1+1
G 0 TO (3, 10) , IT

3 DO 4 12=J,80
IF(I~AGE(l2).EQ.IBLNKJ GO TO 5

4 CONTINUE
12= 81

5 I 2= 12-1
6 RETURN

10 DO 11 I=J,80
12=80-1 +J
IF(IMAGE(I2).NE.IBLNK) GO TO 6

11 CONTINUE
GO TO 6
END

84 GEOLOGIC RETRIEVAL AND SNYPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: START

Purpose: START determines availability of data bases and

Called by: DRIVER
Error checking and reporting: None
Program logic:

their associated files.
Calling sequence: CALL START
Arguments: None

1. The name GFILE is associated with FORTRAN input
unit 20.

Subroutine called: I FILE
2. A welcoming message is typed and records of GFILE are

read to fill the /FILNAM/ common area.
Common data referenced:

All variables in /FILN AM/ except NUMF
3. As each record is read, parts of it are output to the termi­

nal.

G R A S P S 0 U R C E P R 0 G R A M

SUBROUTINE START
COMMON /FILNAM/ MASTER 1 MASK,OEFTN 1 0FILE,BFILE,NUMF,NUHI,IOIMS
DOUBLE PRECISION CONTNT(4)
INTEGER MASTER(4J,MASK(41,DEFTN(4J,OFILE(4),8FILE(4),101MS(4)
CALL IFILE(20, 1 GFILE')
NUMf= 1
TYPE 1

10 REA0(20tl1,END:20) MASTERCNUMFJ,CONTNT,MASK(NUMFJ,
1 DEFTN(NUMF),OFILE(NUMFJ,BFILE(NUMFJ,IOIMS(NUMFJ

TYPE 12,MASTERCNUMFt,CONTNT
NUMF=NUMF+l
GO TO 10

20 NUMF=NUMF-1
REWIND 20
TYPE 2
RETURN

1 FORMAT(/' WELCOME TO THE USGS GRASP RETRIEVAL SYSTEM.'/
1 1 AT THE CURRENT TIME THE FOLLOWING DATA BASES ARE AVAILABLE:')

2 FORMAT(/ 1 BEFORE ANY OF THESE DATA BASES MAY BE ACCESSED,'/
1 1 THE 11 Fil E" COMMAND SHOULD BE USED TO IDENTIFY THE OAT A',
2 ' BASE Of INTEREST.' J

11 FORMAT(A5,1X,4Al0,4(1X,A5),141
12 FORMAT(/1X,A6, 1 - 1 ,4Al0)

END

0001904
0001905
0001906
0001907
0001908
0001909
0001910
0001911
J001912
0001913
0001914
0001915
0001916
0001917
0001918
0001919
0001920
0001921
0001922
0001923
0001924
0001925
0001926
0001927

GRASP SOFTWARE SPECIFICATIONS 85

FUNCTION NAME: UNCODE

Purpose: UNCODE breaks down each qualified real value into
a real value and a qualifier code.

Calling sequence: VALUE=UNCODE(VAL,ID)
Arguments:

VAL-Packed value and qualifier.
ID-Encoding of qualifier value.

Subroutines called: None

Common data referenced: None
Called by: COLPNT, DUMPIT, FIT, MEAN, RETRVE,

ROWPNT, EVAL
Error checking and reporting: None
Program logic: The type REAL argument VAL may be visual­

ized as composed of both whole and fractional parts. ID is
set to the 3 low-order bits of the whole part. The whole part
is then shifted right 3 bits, and the result is added to the
fractional part to form the value returned by the function.

G R A S P S 0 U R C E PROGRAM

FUNCTION UNCOOE(VAL,ID)
RSIGN=SIGN(l.O,VAL)
V Al = A B S (VAL)
IPART=VAL
RE ST=VAL-IPART
I 0= M 0 0 (I P ART , 8)
UNCOOE=RSIGN*((JPART/8)+REST)
RETURN
END

0001928
0001929
0001930
0001931
0001932
0001933
0001934
0001935
0001936

86 GEOLOGIC RETRIEVAL AND SNYPOSIS PROGRAM (GRASP)

SUBROUTINE NAME: VLIST

Purpose: VLIST prompts for and accepts (via KEYBRD) a
set of item names or arithmetic expressions that will be
printed by the caller. The user is provided the ability to reuse
the list that was last entered.

names. If not, the values of the arguments as set by a pre­
vious call are returned. Otherwise, a new list is processed
as below.

2. The routine requests the user to enter a set of item names
or expressions. Each entry is processed as specified below
until a blank entry is detected. Control is then returned to
the caller. Calling sequence: CALL VLIST(&m,VNAMES,LIST,N)

Arguments:

m-Statement number (in caller) to which a branch will be
made if an EOF is sensed by KEYBRD.

VNAMES-List of item names to be printed.
LIST-Item numbers corresponding to VNAMES.
N-Number of elements in VNAMES and LIST.

Subroutines called: KEYBRD, SCAN, BFIND, PREVAL,
PACK

Common data referenced:
NAMES, PNTS, !DIM in blank common

Called by: BDEF, COLPNT, ROWPNT
Error checking and reporting: None
Program logic:
1. The user is asked if he wishes to enter a new list of item

G R A S P S 0 lJ R C E

3. An entry is accepted via KEYBRD, and leading and/or
trailing blanks are eliminated via SCAN.

4. If the entry length is greater than seven characters, an
expression is assumed. If the entry is not found to be an
item name (via BFIND), an expression is assumed.

5. If the entry is determined to be an item name, that name
is stored in VNAMES, and the corresponding item number
is stored in LIST.

6. If the entry is an expression, a call to PREV AL is made
to parse it into Reverse-Polish form for later evaluation.
KNT points to the Reverse-Polish form (stored in /EXPNS/
by PREV AL), and the negative of KNT is returned in LIST.

7. The values of the arguments are saved for future calls if
required.

P R 0 G R A M

SUBROUTINE VLISTC*,VNAMES,LIST,Nl 0001937
CO~MON NAMES,TYPE,PNTS,IDIM 0001938
DOUBLE PRECISION NAMESC500),NAME,BLANK,VNAMES(1),VSAVE(20t 0001939
INTEGER PNTSC500),TYPEt500),LIST(1),EXPR(80),HALVESC2),EXPHDGC20) OG01940

1 ,LSAVEC20) 0001941
EQUIVALENCE (HALVES(1J,NAME) 0001942
DATA IEQUAL,BLANK/'='•' 'I,NSAVE,NO/O,'N'/ 0001943
DATA EXPHDG/ 1 1. 1 , 1 2.', 1 3. 1 , 1 4. 1 , 1 5.','6.','7.•,•8.','9.','10.','110001944

1 •• ' • J. 2 • • ' • 1 3 •• ' • 14. • ' • 1 5 •• ' • 1 6. I ' • 1 1. • ' • 1 8. ' ' • 1 9 •• ~ • 2 0 •• I 0 0 0 19 4 5
IFCNSAVE.EQ.O) GO TO 5 0001946
TYPE 4 0001947
CALL KEYBRDC&110,I,l) J001948
IF(I.NE.NO) GO TO 5 0001949
N:NSAVE 0001950
DO 6 1=1,NSAVE 0001951
LIST(I)=LSAVE(l) 0001952

6 V NAME S (I) = V SA VE C I ~ 0 0 0 19 53
GO TO 130 0001954

5 N=O 0001955
KNT=O 0001956
TYPE 120 0001957

10 N=N+1 0001958
TYPE 140, EXPHDG(N) 0001959
CALL KEYBRD(&llO,EXPR,80t 0001~60
CALL SCAN(&ll5,EXPR,l,Ll,L,2) 0001961
IFCL-L1.GT.6) GO TO 60 0001962
L2=L1+6 0001963
NAME=BLANK 0001964
CALL PACK(EXPR(ll) ,NAME,L2-Ll+1,8) 0001965
CALL BFIN0(&60,NAME,I,NAMES,PNTS,JDIM) 0001966

30 VNAMESlNt=NAME 0001967
LIST(N)=I 0001968
IF (N.E0.20) RETURN 0001969
GO TO 10 0001970

60 IF (KNT.EQ.8) RETURN
NAME= BLANK
DO 70 K=l,10

GRASP SOFTWARE SPECIFICATIONS

IF (EXPR(K+ll-1).EQ.IEQUAL) GO TO 80
70 CONTINUE

K=l
HALVES(2)=EXPHOG(N)
GO TO 90

80 J=MINO(K-1,7)+L1-1
CALL PACKCEXPR(ll),NAME,J -L1+1,8)
K=K+1

90 CALL PREVAL(&100,EXPR(K+Ll-1),L,KNTI
1=-KNT
GO TO 30

100 N=N-1
GO TO 10

110 RETURN 1
115 N=N-1

NSAVE=N
DO 116 I= 1, NSA VE
LSAVE(I)=LIST(I)

116 VSAVE(I)=VNAMES(I)
130 RETURN

4 fORMAT(' DO YOU WISH TO ENTER A NEW LIST Of NAMES OR',
1 ' EX PRES SI ONS? (YES OR NO): 1 , $)

120 FORMAT(' ENTER THE NAMES OF ITEMS OR THE EXPRESSIONS •,
1'WHICH YOU WANT PRINTED.')

140 FORMAT (1X,A4,$)
END

87

0001971
0001972
0001973
0001974
0001975
0001976
000197,7
0001978
0001979
0001980
0001981
0001982
0001983
0001984
0001985
0001986
0001987
0001988
0001989
0001990
0001991
0001992
0001993
0001994
0001995
0001996
0001997
0001998
0001999

