
The Structure of a Turbulent Flow in a 
Channel of Complex Shape

GEOLOGICAL SURVEY PROFESSIONAL PAPER 983





The Structure of a Turbulent Flow in a 
Channel of Complex Shape
By H. J. TRACY

GEOLOGICAL SURVEY PROFESSIONAL PAPER 983

UNITED STATES GOVERNMENT OFFICE, W A S H I N G T O N : 1 9 7 6



UNITED STATES DEPARTMENT OF THE INTERIOR 

THOMAS S. KLEPPE, Secretary

GEOLOGICAL SURVEY 

V. E. McKelvey, Director

Library of Congress Cataloging in Publication Data

Tracy, Hubert Jerome, 1918-
The structure of a turbulent flow in a channel of complex shape.

(Geological Survey Professional Paper 983)
Bibliography: p. 24.
Supt.ofDocs.no.: I 19.16:983
1. Turbidity. 2. Channels (Hydraulic engineering) I. Title. II. Series: United States Geological Survey Professional Paper 983.
QE75.P9 no. 983 [GB665] 557.3'08s [532'.517] 76-608249

For sale by the Superintendent of Documents, U.S. Government Printing Office

Washington, D.C. 20402
Stock Number 024-001-02875-1



CONTENTS

Page

Abstract ____________________________________________________ 1
Introduction ________________________________________________ 1

Acknowledgments.-___-___________________________________-___ 1
Preliminary considerations _________________________-________--_ 2
Equipment __________________________________________-________ 2
Procedure ________________________________________-___ 3
Results_______-__________-____-___________________________ 5

Distribution of longitudinal mean velocity _____________________________ _ 5
Distribution of normal turbulent stresses ______________________--___-- 7
Distribution of turbulent shear stress ________________________-_ 7
Secondary motion pattern _____________________________________    __ 15

Origin of the secondary motions ________________________________ 16
Role of the secondary motions ____________________________________ __ 19
Conclusions ____________________________________________ 23
References cited _______________________________________________ 24

ILLUSTRATIONS

Page

1. Schematic drawing showing components of turbulent stress on an elementary particle _ _ _ _ ____ ___ _   ______    1
2. Schematic drawing of test conduit ____ _ ___ ___ _ _ _ _ _ _ _ __ _ _ _ __ _ ____ _ __ _ _ __ __ ___ __ ___   2
3. Schematic drawing of channel section _ ____ _ _ ____ _ __ _ ____ __ __ __ _ __ ___ __ ___ _ __ _   __ ___ ___ 4
4. Graph showing mean pressure along channel _ __ _ _ ___ ____ _ _ __ ___ _ _ ___ _ _ _ __ _ __ _     ___     4
5. Graph showing distribution of longitudinal velocity near wall _ __ _ _ _ ___ __ _ __ ___ _   __ ___     _       5
6. Graph showing distribution of longitudinal velocity away from wall _ __ ___ __   ___ _ __    __    _    __       6

7.-12. Graphs showing distributions of turbulence quantities:
7. u'lU ____________ _ _______ _ _____ __ __________________ __ _______________________________ _ - __ _______ 8
8. v'lU ______________________________________________________________________ 9
9.

10.

w'/U 10

11. Uw/U* 2 ____________________________________________________________________ 12
1 O     IT 79 1O12. vw/U* _____________________________________________________________________________________________________ io

13. Graph showing comparison of velocity gradient, turbulent shear-stress, and correlation coefficient ____   -___    __ 15
14. Graph showing distributions of correlation coefficients uv/u'v' _____________-______   __       -          16
15. Graph showing distributions of correlation coefficients uwlu'w' ______________________________     17
16. Chart showing secondary motions in channel _____________________________________       ___    18
17. Graph showing distribution of i; 2  _i£2 ___________ _______________________________________ 20

s\9. /To _ .o\

18. Graph showing variation of
dy dz

19. Graph showing balance of first equation of motion aty/d=O.OS______________________ ___    __    __-_   22
20. Graph showing distribution of sum of turbulent shear farces __________________________   23

SYMBOLS

C=constant used to describe velocity variation
d=half height of channel, 6 in. (15.2 cm)
D= height of channel
p=piezometric pressure; Pm is pressure of measuring station
#=hydraulic radius, ratio of cross-sectional area to section peri­ 

meter
£=time
U, V, W=mean velocity parallel tox, y, z directions, respectively
[7o=maximum value of longitudinal mean velocity in the channel
[7* = "friction" velocity, VWp
u, v, w= instantaneous values of velocity fluctuations parallel to the 

x, y, z directions, respectively

u', v', w'=root mean square of velocity fluctuations u, v, w, respec­ 
tively

x= longitudinal coordinate along channel, x=0 correspondents to test 
section

y=vertical coordinate, y=0 corresponds to channel floor
z= lateral coordinate, z=0 corresponds to channel side wall
£=rotation iny-z plane
(JL= dynamic viscosity
p=density
TO=average shear stress on boundary
t>=kinematic viscosity, n,lp

ill





THE STRUCTURE OF A TURBULENT FLOW 
IN A CHANNEL OF COMPLEX SHAPE

By H. J. TRACY

ABSTRACT

Measurements of the Reynolds stresses and the mean motion pat­ 
tern were made in a uniform turbulent motion in a conduit consist­ 
ing of a large, nearly square section joined by a smaller rectangular 
section. The results indicate that the boundary shearing stress is 
nearly constant over large segments of the boundaries. It is shown 
that the magnitudes of the lateral and the vertical components of 
turbulence are not the same near a boundary and that the compo­ 
nent normal to the boundary is smaller than the component parallel 
to the boundary. The difference in the two components in the corner 
regions of the channel produces secondary mean motions in the plane 
of the channel section. The strength of the motion depends upon the 
angle subtended by the corner.

The magnitude of a component of turbulent shearing stress is a 
function of boundary proximity. In the corner regions, the effect of 
the combination of the two walls is to create large shear stress gra­ 
dients, or forces. The forces are frequently larger than those of the 
pressure. Depending upon the variation of the mean streamwise ve­ 
locity, the shear force may either oppose or act in the same direction 
as the pressure force.

A principal function of the secondary motions is to transfer 
momentum into the corner regions and, elsewhere, to compensate for 
the excess force due to the shear gradients. In the absence of the 
secondary motions, the fluid must stagnate and separate from the 
boundaries in certain regions and be greatly accelerated in others.

The secondary motions are conventionally described in terms of 
symmetrical rotations in cells bounded by the corner bisectors. The 
measured motion pattern is at variance with this view, unless the 
symmetry is confined to a very local region.

INTRODUCTION

The mean flow characteristics are usually the ulti­ 
mate concern of those who deal with the movement of 
fluids in open channels and in closed conduits. Often, 
engineering solutions of satisfactory accuracy may be 
obtained from equations of the Manning or Chezy type, 
or from one-dimensional energy and momentum con­ 
siderations. As the body of experimental information 
grows, however, it becomes increasingly evident that 
the rational interpretation of many of the phenomena 
that are encountered depends upon a better knowledge 
of the internal structure of the flow than is presently 
available. In particular, much of the current work in 
this field is devoted to an understanding of the role of 
the turbulent fluctuations in shaping the mean flow 
field.

Presently, comprehensive data are limited to simple

examples of turbulent flow. These include (1) a two- 
dimensional flow (Laufer, 1951), (2) an axially sym­ 
metrical flow (Laufer, 1954), and flow in (3) a square 
conduit (Brundrett and Baines, 1964), (4) a rectangu­ 
lar conduit (Tracy, 1965), and in (5) a trapezoidal con­ 
duit (Rodet, 1960); all examples are for a uniform flow 
condition. The present study was carried out in a 
channel having a boundary form more complex in con­ 
figuration than any of those listed above. Its principal 
added feature is a corner subtending an angle greater 
than 180 degrees.

In section, the test channel consisted of a larger rec­ 
tangular channel joined by a smaller rectangular 
overbank channel. The selection of this arrangement 
was influenced by the procedures commonly used in 
natural stream channel flow computations. The section 
of natural stream channels is frequently subdivided, 
and each subchannel is subsequently treated as an in­ 
dependent entity for flow computation purposes. The 
subdivisions are usually made at major changes in 
boundary alignment and at points on the boundary at 
which the boundary roughness changes significantly. 
The test data, though restricted in application by the 
somewhat idealized shape and uniformity of the labo­ 
ratory channel, and by its smallness, should neverthe­ 
less yield information relevant to the validity of the 
subdivision procedure.

The objective of the investigation was a study of the 
turbulent and the secondary mean motions generated 
in the larger of the two channels, and an evaluation of 
the effect of the various corners of the section in terms 
of the momentum transport engendered by the mo­ 
tions. To this purpose, measurements were made of the 
mean motions, both primary and secondary, and of the 
relevant statistical quantities of the turbulence over 
the section. These, when substituted into the equations 
of motion, can be expected to show the manner in 
which a given flow adjusts to the configuration of its 
boundaries, even though many of the mechanisms by 
which this is accomplished are yet unknown.
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PRELIMINARY CONSIDERATIONS

The continuity equation and the Reynolds equation 
in rectangular coordinates for incompressible flow may 
be written as follows:

-
ay

DU 
Dt

Dt dy

__ duv duw ~dx~ + ~dy~ +~dz~'

cduv d> 
dx~ ~d>

DW _ dp
Dt dz

dz

duw dvw dw 2 T;    t-~    l--r   
dx dy dz

(D

(2)

(3)

(4)

where the superscript bar is used to denote a time av­ 
erage; DlDt refers to the total derivative

D _ d rrd d d 
Dt ~ dt + ~dx + ~dy +W ~(te' 

and V 2 to the operator
^2 /)2 Q2

V 2 = dx2
_dz2

U, V, and W are the components of mean velocity in 
the x, y, and z directions, respectively, and u, v, and w 
are the correspondingly directed values of the turbu­ 
lent velocity fluctuations. The mean pressure at a point 
is p, and p and ^ are the density and_dynamic viscosity 
of the fluid. The normal stresses pu2 , pv 2 , and pur^and 
the tangential stresses puv, puw, and pmv are orien­ 
tated as shown in figure 1.

In a steady, uniform motion, the velocity field is in­ 
dependent of the longitudinal coordinate Gc) and of 
time. The equations therefore become:

dV dW n J,  r~z   = 0
dy dz

dU dU duv. duw.

(5)

(6)

9^ dw1*. 
dz2 '

The abbreviated equations describe the motion to be 
considered here and, except possibly for the terms in­ 
volving the viscosity, may not be further simplified. 
The viscous terms are of relative significance in a fully

puv

dy

pvw

puw

pwr

puv

puw

pu'

dx

FIGURE 1. Components of turbulent stress on an elementary
particle.

developed turbulent flow only in regions very close to a 
boundary.

EQUIPMENT

Test Conduit. The experimental measurements 
were made in the closed-circuit air tunnel shown 
schematically in figure 2. A cross section of the test 
channel is shown in figure 3.

The test channel was constructed of commercial 
aluminum plate and standard aluminum structural 
shapes. The transition section at the entrance to the 
channel and at its end were formed from aluminum 
sheet. The return section and the upstream and 
downstream turn boxes were constructed of interior 
grade plywood. The measurement cross section was lo­ 
cated 84 ft (25.6 m) downstream from the end of the 
upstream transition section.

Air was supplied to the tunnel from a centrifugal 
blower powered by a 15 horsepower (11.2 kW) 
variable-speed direct-current motor. Blower speed, 
over a continuous range, was controlled by variations 
in the current supplied to the motor. The variable 
speed feature of the motor and blower was utilized for 
inplace calibration of the hot-wire probes used during 
the investigation.

Hot-wire equipment. A commercially j(&Vailable 
two-channel DISA Electronics1 constant-temperature 
hot-wire instrument was used during the study. Each 
channel consisted of a 55 D 01 anemometer unit, a 55 D 
10 linearizer, and a 55 D 25 auxiliary unit. Outputs 
were measured with a 55 D 30 DC meter and a 55 D 35 
RMS meter. A model 823 Fluke voltmeter, in conjunc­ 
tion with a wave generator, was used as a voltage

'The use of brand names in this report is for identification purposes only and does not 
imply endorsement by the U.S. Geological Survey.
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FIGURE 2. Schematic of test conduit.

standard for the calibration of both the AC and the DC 
DISA meters.

The hot wires were either 0.0001 in. (0.0025 mm) or 
0.0002 in. (0.0051 mm) diameter platinum wire and 
were used either singly or in x arrays depending upon 
the variable to be measured. Wire length for the 
single-wire probes was 0.030 in. (0.76 mm), and for the 
x arrays, 0.042 in. (1.06 mm). The x array wires sub­ 
tended a central angle of 90 degrees and were sepa­ 
rated by a distance of about 0.020 in. (0.51 mm). The 
wires, in both cases, were supported by fine sewing 
needles projecting from one end of short lengths of 
small diameter brass tubing.

Traversing device. The probes were traversed over 
the channel section by independent vertical and hori­ 
zontal mechanisms. Vertical movement was registered 
on scales attached to rack-and-pinion mounted plates 
inserted into the two vertical faces of a transparent 
working section on one side of the channel at the 
measurement station. Horizontal movement was 
measured on a sliding scale extending through and 
perpendicular to the plates. The probe support was fas­ 
tened to the end of the sliding scale.

Zero readings of the traverse scales were found by 
placing the probe tip arbitrarily close to the vertical 
and horizontal walls and by then measuring the dis­ 
tance between the tip and its image in the appropriate 
wall on an ocular micrometer. The traversing scale 
reading corresponding to one-half of the observed dis­ 
tance marked the location of the wall.

PROCEDURE
The test channel was constructed so that its axis of 

symmetry was vertical, with the smaller channel 
above the larger. Cartesian coordinates are used for 
point location and are orientated with x along the

length of the channel, y in the vertical direction, and 2 
horizontally directed. For economy in the required 
number of figures and for ease of comparison, the 
measurements in the upper and in the lower halves of 
the larger channel are often shown together. For this 
purpose only, the origin of coordinates fory and 2 for all 
data in the upper half of the channel is located at the 
upper left corner of the channel. For data in the lower 
half, the origin fory and 2 is the lower right corner. For 
any other purpose, only the lower origin is used, and y 
increases continuously from the lower to the upper 
boundary. For x, the origin is at the measuring station 
and is positive in the downstream direction. The 
root-mean-square values of the turbulent components 
in the x, y, and 2 directions are denoted by u', v', and 
w'. The height of the lower channel is D. The half- 
height, d, is used as a reference length to nondimen- 
sionalize the location of the points at which data were 
taken.

The channel was sufficiently long (LID greater than 
80) for full development of the flow at its downstream 
end. Velocity measurements were made on each side of 
the axis of symmetry to verify that the motion was 
symmetrical with respect to the axis. All tests were 
made with the maximum channel velocity maintained 
constant at 75 ft/s (22.9 m/s), corresponding to a 
Reynolds number of about 440,000, using D as the ap­ 
propriate length.

The longitudinal mean pressure was measured from 
piezometer taps located every 3 ft (0.91 m) along the 
channel for the last 45 ft (13.7 m) of length. The results 
are shown in figure 4. The pressures are referenced to 
the pressure at the measuring station, pm .

Mean velocities were measured by small diameter 
total head tubes used in conjunction with wall 
piezometers and by hot wires. The total head tubes
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 VB" aluminum plate

I
4"x 158" x'/s" 

aluminum channel

Dimensions are in feet and 
inches-1 inch=25.4 mm

_iy2" x r/2" x'/s"
aluminum angle

FIGURE 3. Channel section.

were either 0.035 in. (0.89 mm) or 0.020 in. (0.51 mm) 
in diameter. The smaller diameter tubes were used for 
measurements in the vicinity of the wall.

The longitudinal mean velocity measurements were 
corrected for the effect of the turbulent velocity fluctu­ 
ations by the relation

U (corrected) = U (measured)
U2 (measured)

Hot-wire measurements, except those for V and W, 
were obtained by standard techniques described by 
Schubauer and Klebanoff (1946), Hinze (1954), and

100

-10 -20 -30 -40 -50

x/2d

FIGURE 4. Mean pressure along channel.

Rodet (1960). The measurement of V and W follows 
from the geometric relationships between U, V, and W 
and their relative magnitudes and from certain 
characteristics of the hot wire. These are outlined 
below.

The secondary velocities are at right angles to the 
velocity, U, and are small relative to U. Their effect is 
a change in the local direction of the mean flow from 
the direction parallel to U. The angular deviation, in 
radian measure, from the U direction is V/U in the x-y 
plane and W/U in the x-z plane.

The heat loss from a hot wire is a function of the 
magnitude of the component of velocity normal to the 
wire. The heat loss from each of two wires which are 
arranged in an x configuration and which are inde­ 
pendently maintained at a constant temperature thus 
depends upon the degree to which each wire is normal 
to the flow, or upon the angle which each subtends to 
the flow. Since the position of each wire relative to the 
other is fixed, a rotation of the array to increase the 
exposure of one of the wires will decrease the exposure 
of the other and thus change the heat-loss characteris­ 
tics of each wire. Correspondingly, a change in the di­ 
rection of the flow with the array in an unchanged 
angular position will have the same effect. Hence, a 
given array may be calibrated to sense a change in the 
angular direction of the flow by a procedure in which 
the heat loss difference between the two wires is de­ 
termined as a function of flow angle and velocity. After 
calibration in this manner, the probe may be inserted 
into the flow and traversed throughout the section, 
maintaining the array in an invariant angular orien­ 
tation. The difference between the losses can be related 
to V/U for the array placed in the x-y plane and to W/U 
for the array in the x-z plane by the results of the cali­ 
bration.

On the other hand, the directional sensitivity of the* 
array probe type was a source of considerable incon-
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venience during the measurement of the turbulent 
shearing stresses puv, puw, and pvw. The measure­ 
ments require that each wire of the array subtend the 
same angle with respect to the mean flow direction at 
each measurement point, which necessitated a point- 
to-point alinement of the angular position of the array 
to correspond to the variations in mean flow direction 
due to the superposed secondary motions. Equal volt­ 
ages through each of the two matched wires indicated 
the proper setting to place each wire at the same angle 
to the mean flow. The response of the arrays to the 
normal stresses pv 2 andpTP is less critically dependent 
upon probe orientation.

Hot wires placed close to a boundary are affected by 
heat transfer into the boundary. The transfer is vari­ 
able, depending upon boundary distance. Some com­ 
pensation for the effect is provided by the constant- 
temperature feature of the mode of operation, which 
allows the transfer, and therefore the slope of the 
voltage-velocity relationships upon which the turbu­ 
lence computations depend, to remain somewhat con­ 
stant at a given wall distance, irrespective of velocity 
variation. Also, the large mean velocity gradients near 
a boundary are also a source of error. When parallel to 
the boundary, the wires of a two-wire array are ex­ 
posed to velocity differences which may be quite large 
for wires separated by even small distances. When 
normal to a wall, the mean velocity distribution along 
the wires of single and two-wire arrays alike is 
nonuniform.

Adjustments have not been made to the hot-wire 
data to account for the boundary effects. The data 
closer to the wall than about 3 mm must thus be con­ 
sidered less reliable than elsewhere.

RESULTS

DISTRIBUTION OF LONGITUDINAL MEAN VELOCITY

The variation of the mean longitudinal component of 
velocity over the left one-half of the nearly rectangular 
portion of the test channel is shown in figures 5 and 6. 
Each curve represents a traverse horizontally outward 
from the vertical wall. Velocity measurements close to 
the wall are shown in figure 5 and the remainder of the 
traverse to the channel centerline is shown in figure 6. 
The vertical location (yld) of each traverse with respect 
to distance from the upper horizontal boundary or from 
the lower horizontal boundary is shown in the legend. 
Velocities in the lower quadrant of the channel are 
identified by open symbols. A slash mark through the 
symbol designates an observation in the upper quad­ 
rant. The half-channel height, d, is 6 in. (152.4 mm).

The distributions shown in figure 5 in the two parts 
of the channel superpose on the basis of yld, except

0 0.050 
Q 0.0333 

0.0167 
0 0.00833 
O 0.00500 
Q 0.00291

O 1.0
D 0.833
A 0.500 

0.333 
0.167

O 0.0833

Open symbol-origin at lower channel corner 
Line symbol-origin at upper channel corner

0.01 0.02 0.03

VALUE OF z/d

FIGURE 5.   Distribution of mean velocity near wall.

near y/d = 1.0. The variation, to a good approximation, 
can be represented by the equation

U-= C (*-)*> U0 C( d }

with n equal to about 7.5. The curves in the two quad­ 
rants of the channel diverge farther from the wall 
(fig. 6). The relatively greater number of observations 
near the horizontal boundaries tend to emphasize the 
differences in the flow in the two quadrants, whereas 
the differences are actually minimal outside a limited
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FIGURE 6. Distribution of mean velocity away from wall.



RESULTS

region (y/d<0.17). The effect of the upper adjoining 
channel on the mean flow is essentially restricted to 
the vicinity of the junction between the two channels. 
The differences outside the limited region are pri­ 
marily related to differences in the secondary motion 
patterns of the two quadrants.

The secondary motions are a system of mean circula­ 
tions in the plane of the channel section, which trans­ 
fer mass from one region to another region of the flow. 
If the velocities in the two regions are not the same, 
momentum is either gained or lost by the migrating 
mass, and a corresponding retarding or accelerating 
force is exerted on the flow during the course of the 
movement.

The decrease in velocity at the outer ends of many of 
the curves of figure 6 is an example of the effect of the 
circulations. The decrease can be explained by an up­ 
ward motion (and the measurements of the motion to 
be shown later indicate this to be true) near z/d = 1.0 
near the lower horizontal boundary and by a down­ 
ward motion in a corresponding location in the upper 
half of the channel. In each case, the motion is from a 
region of a lower velocity to one of a higher velocity, 
which retards the flow along its path. The motions, and 
their effects, are discussed in a later section of the re­ 
port.

Although the larger channel is nearly square in 
shape, the coordinates y and z are not interchangable, 
even in the lower quadrant of the channel which is the 
most removed from the effects of the smaller channel. 
The characteristic decrease in velocity at the outer 
ends of many of the U/Uo versus z/d curves is not typi­ 
cal of the variation of U/Uo versus yld. The velocity 
increases in a continuous manner in a direction verti­ 
cally outward from each of the horizontal boundaries to 
the effective horizontal centerline of the channel.

The channel section is not suitably proportioned to 
establish a region of two-dimensional flow. Neverthe­ 
less, except for some flattening at the outer end where 
dU/dz is zero, the velocity curve for yld = 1.0 approxi­ 
mates a logarithmic distribution of the form

U /-,/-,!

where [7* is the "friction" velocity, Vro/p, and v is the 
kinematic viscosity. The average shear stress at the 
channel boundaries, TO, was computed from the mea-

r\

sured longitudinal pressure gradient,   , and from the
ox

geometric properties of the flow section as follows:

OP T,TO =   ~ R, 
dx

where R is the ratio of cross-sectional area to section 
perimeter. The constants C l and C2 are 4.5 and 6.6, 
respectively, which agree only approximately with 
those obtained by others in a two-dimensional flow. 
The differences are functions of channel aspect ratio 
(ratio of width to height) and boundary roughness.

DISTRIBUTION OF NORMAL TURBULENT STRESSES

The distributions of the measured values of u'lU, 
v'/U, and w'/U over the test channel are shown in 
figures 7, 8, and 9. As for the velocity measurements, 
the traverses at a common distance from the upper and 
from the lower horizontal boundaries are designated 
by the same symbol. The traverses in the upper half of 
the channel are distinguished from those in the lower 
half by a slash mark through the symbol. The u'lU 
values were computed from the response of a linearized 
anemometer, and the values of v'/U and w'/U from a 
non-linear signal.

The measurements represent the standard devia­ 
tions of the velocity fluctuations in the three directions 
divided, in each case, by the mean longitudinal point 
velocity. The ratio is defined as the relative intensity of 
turbulence. The standard deviation is a measure of the 
spread or dispersion of the component about its 
mean the greater the value, the larger the dispersion. 
Although they are a convenient and useful device, the 
measurements do not, obviously, completely describe 
the eddy formations.

The measured distributions show that the turbu­ 
lence is nearly isotropic in the center of the channel 
and has its smallest values there. All three compo­ 
nents become larger in any direction toward a bound­ 
ary. The longitudinal component increases at a faster 
rate than the others and at the boundary attains 
roughly twice the magnitude of the larger of the re­ 
maining two.

A comparison of figures 8 and 9 indicates that v'/U 
increases at a faster rate than does w'/U near a vertical 
boundary and that the reverse is true near a horizontal 
boundary. A boundary acts, apparently, to restrain the 
eddy in the direction normal to the boundary, whereas 
the eddy is not restrained in the direction parallel to 
the boundary.

The results of Laufer (1951, 1954), Brundrett and 
Baines, (1964), and Tracy (1965) confirm these gener­ 
alizations to a good approximation over a Reynolds 
number range of about 12,000 to nearly 500,000.

DISTRIBUTION OF TURBULENT SHEAR STRESS

The turbulent cross-products uv, uw, and vw, after 
division by U* 2 , are shown in figures 10, 11, and 12, 
respectively. They are referenced to coordinate origins
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FIGURE 7. Distribution of u 717.
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FIGURE 8. Distribution ofv'IU.

at the upper and lower corners, as for figures 5-8. The 
signs of the stresses, where they depend upon the ver­ 
tical coordinate, are assigned on the basis of the lower 
origin, with y increasing continuously from the lower 
to the upper boundary. 

The quantities puv,puw, and pvw are physically sig­

nificant as tangential, or shearing, stresses, which re­ 
sult from the turbulent interchanges of mass and 
momentum between neighboring flow regions. The 
concept, and its details, are well documented in hy­ 
draulic literature. The exchanges, in all directions, 
lead to the stress system shown in figure 1. The sign of
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FIGURE 12. Distribution of uw/U* 2 .

the stress is a function of the mean velocity gradient in 
the direction of the transfer. The nature of the transfer 
process is to produce a negative correlation between 
the two members of the ishearing-stress terms for a 
positive gradient that is, a velocity increasing in a 
positive direction outward from a boundary.

The signs of the tangential stresses are related, also, 
to the rotational aspects of the stresses. Thus, each of 
the tangential stresses and as well, the normal 
stresses is opposed by its counterpart on the opposite, 
parallel face of figure 1. The tangential components in 
opposite directions along parallel faces are stress 
couples which tend to rotate the particle. The sign of 
the stress component indicates the angular direction of 
the rotational tendency, which can be shown to be a 
function of the velocity gradient normal to the stress 
couple. Because the stresses are negative for a positive 
gradient, they are shown with negative signs on 
figures 10, 11, and 12.

The surface force due to a stress is the product of the 
stress intensity and the area of the face over which it 
acts. The resultant surface force on the particle of 
figure 1 due to a given stress component is the differ­ 
ence between the oppositely directed forces on the op­ 
posite, parallel faces, and is conveniently expressed in 
gradient form. The resultant surface force, per unit of 
volume, of a tangential stress is its gradient normal to 
the stress couple. For a normal stress, the resultant, 
also per unit of volume, is the gradient of the stress in 
the direction of the stress. The resultant of all surface 
forces due to the turbulent exchanges, per unit of vol­

ume, in the x, y, and z directions are the turbulence 
terms on the right side of equations (2), (3), and (4). For 
the case of a uniform motion, they are given by the 
right side of equations (6), (7), and (8).

The total intensity of shear is the sum of the turbu­ 
lent stress and that due to direct viscous action. The 
second is small relative to the first, except at locations 
where the mean velocity gradients are large. In the 
test channel, the gradients are large near the bound­ 
aries. Elsewhere, the turbulent stresses are a close ap­ 
proximation to the total stress. By ignoring the de­ 
creasing portion of the turbulent stress distributions 
near the boundaries, the distributions of figures 10 and 
11 may be projected to the boundaries to obtain an 
estimate of the value of the total stress at the bound­ 
ary. The value ofuw/U* 2 projected in this manner to 
the vertical boundary of the larger section is remark­ 
ably constant over almost the entire length of the 
boundary (the immediate corner regions are the ex­ 
ception) and equal to 1.13. A corresponding projection 
of uv/U* 2 to the upper and lower boundaries is simi­ 
larly constant and equal to 1.17 and 1.11, respectively. 
Measurements made in the upper channel (not shown) 
yield boundary values smaller than these, equal to 
0.61 on the horizontal boundary and 0.76 on the verti­ 
cal wall. An average, obtained by weighing the bound­ 
ary stresses for the large and small channel against 
peripheral length, is 1.01, which is a favorable com­ 
parison between the average boundary stress com­ 
puted from the hot-wire measurements and from the 
piezometric grade line. The comparison serves as a
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general check on the hot-wire techniques used during 
the study and on the magnitude of the stress terms. It 
is suggested, moreover, that the apparent constancy of 
the boundary shear stress over large segments of the 
test channel periphery may be typical of flow in more 
complex channels. This observation is substantiated by 
the successful use of equations of the Manning or 
Chezy type in the large variety of channels to which 
they have been applied.

Because of the dependency of the sign of the stresses 
upon a mean velocity gradient and because of the anal­ 
ogy with laminar flow, in which the stress is directly 
proportional to the gradient, attempts have been made 
to relate the magnitude of the turbulent stresses to the 
magnitude of the velocity gradients, without complete 
success. An example is shown in figure 13, on_which is 
plotted the variation of uv/U* 2, dU/dy, and uv/u'v' for 
yld = 0.167 in the upper half of the channel. The vari­ 
ables are imperfectly correlated, and over a part of the 
length of the curves, dU/dy actually is decreasing while 
uv is increasing.

In explanation, Schubauer and Klebanoff (1951), 
point out that a fundamental difference between lami­ 
nar and turbulent flow is the scale of the mixing, that 
for turbulent flow being much larger. Their measure­ 
ments of correlation distance show that the large-scale 
components of the eddies occupy a large portion of the 
width of the channel. Their simplified model describes 
a transfer of energy from larger to successively smaller 
eddies, the action of viscosity becoming progressively 
greater with diminishing size. Because the largest ed­ 
dies thus make the greatest contribution to the aver­ 
age shearing stress, they suggest that the stress should 
be expected to depend upon a velocity gradient aver­ 
aged over a distance, rather than upon the local gra­ 
dient at a point.

While the foregoing is reasonable, the selection of an 
averaging distance to reconcile the velocity gradients 
with observed values of the turbulent stress is not ob­ 
vious. According to figure 13, the distance is evidently 
variable, depending upon location. It is also frequently

r\ -T T

zero. In figure 11 and figure 6, for example, uw and -*-

are perfectly correlated in the numerous instances 
where both are equal to zero (in addition to the obvious 
case at zld = 1.0) at identical locations. It thus appears 
that a simple method of predicting the magnitude of 
the turbulent stress from the mean velocity variation 
is not at hand.

The variation of uw and uv over the section creates 
force components that frequently act in the same direc­ 
tion as the pressure force that is, a "negative" shear­ 
ing force. Reversals in the direction of the forces occur

duv duw
at changes in the sign of the gradients "^77 and dz

Figure 11 shows many such locations for
duw 
dz for

duv0.7<z/d<0.9. The reversals in the sign of ^ (fig. 10)
_cty

are less evident, because the variation of uv with y is 
not shown. The gradient does change sign, however, at 
many locations in the vicinity of the 260-degree corner. 

An inspection of figures 10 and 11 also shows that 
the stress gradients become large in all corner regions.

The combination {  T  - ̂   ) of stress gradients pro­ 

duces large positive forces (in opposition to the pres­ 
sure force) in the 90-degree corner regions and large 
negative forces in the 270-degree corner regions, and 
at locations near the vertical axis of symmetry of the 
channel. A numerical evaluation of the forces in the 
upper half of the channel is given in the last section of 
the report.

The shear-stress variation at the junction of the 
larger and the smaller channel is pertinent to the 
channel subdivision procedures commonly used in en­ 
gineering practice. The procedure does not consider the 
junction to be a shear surface and hence omits its 
length from the "wetted" perimeter of each subsection, 
which is to say that the shear-stress component normal 
to the junction (puv) is assumed to be zero everywhere 
along the junction.

A reference to figure 10 indicates that puv is not zero 
at the junction; in fact, it is large over the portion adja­ 
cent to the apex of the corner. Figure 10 also indicates 
that the stress decreases rapidly with distance above 
the junction, however, and at yld =0.0167 above the 
junction it is almost insignificant. The large stress val­ 
ues at the corner are probably due to locally large val-

f\TT

ues of   at the corner. If the locally large values of the
dy

stress are discounted, the zero stress assumption is 
probably more valid than one in which the junction is 
treated as a solid boundary.

The values of vw/U* 2 of figure 12 depend upon the 
separation of a small difference between two large sig­ 
nals, each of which is characterized by some degree of 
uncertainty. The individual measurements must 
therefore be accepted with reserve. The measurements, 
together, probably can serve to indicate the order of 
magnitude of the stress with more confidence, and the 
figure is shown primarily for this purpose. No average 
lines have been drawn through the points.

The Uw component of stress is a momentum ex­ 
change which depends upon the intensity of its turbulent 
components and upon some function of the gradients 
dV/dz and dW/dy. The gradients may be appreciable, even 
though V and W are small relative to U.

The correlation coefficients uv/u'v' and uw/u'w' are 
shown in figures 14 and 15. Maximum values of the
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FIGURE 13. Comparison of velocity gradient, turbulent shear-stress, and correlation coefficient at yld = 0.167 in
upper half of channel.

coefficients are dependent upon Reynolds number 
(Laufer, 1951). The maximum values in figures 14 and 
15 (about 0.4) are close to those obtained by Laufer at a 
similar Reynolds number in a one-dimensional flow, 
except at the 270-degree corner, where they are great­ 
er in the case of uv/u'v'.

SECONDARY MOTION PATTERN

The secondary motions in the section of the nearly 
square lower channel are shown in figure 16. The vec­ 
tors of the figure are the combination of separate 
evaluations of V and W. The untipped end of each vec­ 
tor represents the point at which the measurements 
were made, and the length of the vector is proportional 
to the velocity. A reference vector equal to 0.0133 Uo 
(1 ft/s, 0.305 m/s) is shown on the figure.

The secondary velocity components are difficult to 
measure accurately because of their small magnitude. 
On the other hand, the measurements are relatively 
easy to obtain, and so each was repeated several times 
to minimize error sources, such as voltage drift.

The void space in the center of the figure is an 
acknowledgment of a lower limit to the velocity signal 
separable from instrument noise and normal voltage 
drift. Although they probably are not zero, the motions 
in the region are small enough to be inconsequen­ 
tial. Elsewhere, the components were compared on 
the basis of continuity, using the relationship 
8V/dy--dW/dz. From this standpoint, the measured 
motion pattern was reasonable everywhere except at 
the upper 90-degree corner, where the motions are 
small, and probably wall influenced, resulting in poor 
definition in this area.

The secondary motions consist of one large cell in the 
upper and in the lower part of the channel and a small­ 
er cell alongside each of the larger eddies. The adjacent 
cells are counterrotating. The magnitude of the mo­ 
tions in the lower half of the channel are comparable to 
those of an earlier study (Tracy, 1965) in a narrow, 
rectangular channel at a Reynolds number of 96,000 
and to those in a square channel at a Reynolds number 
of 83,000 (Brundrett and Baines, 1964). The Reynolds 
number of the present study is about 450,000.

From this data, and the fact that the motions in the 
upper large cell near the 270-degree corner are larger 
than those in the lower cell by a factor of almost three, 
it appears that the boundary configuration in the vicin­ 
ity of the motion is a more decisive influence upon the 
strength of the motion than is Reynolds number. It 
may be conjectured, also, that the effects of a given 
boundary feature are not entirely local. The differences 
between the secondary motions in the upper and lower 
90-degree corner regions are probably an indication 
that the strong motions in the vicinity of the 270- 
degree corner affect those of the upper 90-degree 
corner.

In any event, the measured pattern is at variance 
with the conventional view held of the motions. They 
are usually described in terms of symmetrical rota­ 
tions in cells bounded by the corner bisectors, the rota­ 
tion having the opposite sense in adjacent cells. The 
measured motions are symmetrical only in a local re­ 
gion about the bisector of the lower corner, and because 
of the poor definition at the corresponding upper 
corner, they may also be locally symmetrical there. 
The motions at the 270-degree corner are divided into
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FIGURE 14. Correlation coefficient uv/u'v'.

two distinct circulations; interestingly, they are di­ 
rected toward the corner along the boundaries and 
outward elsewhere, in contrast to the motions at the 
interior corners. The bisector, however, only approxi­ 
mately divides the cells.

The peculiarities in the distributions of longitudinal 
velocity of figure 6 are consistent with the measured 
secondary motion pattern.

The exchange of fluid between the two parts of the 
channel of their junction is not zero. Fluid is trans­ 
ported out of the larger channel at the center, and an 
equal amount is returned near the boundary.

ORIGIN OF THE SECONDARY MOTIONS

The secondary motions are believed to have their 
origin in the characteristic behavior of the normal 
stress components 17* and H^ in the corner regions of 
noncircular conduits. The typical unbalance of the 
components near a boundary has been outlined in an 
earlier section of the report.

A connection between the normal stresses and the 
secondary motions can be established by a minipula- 
tion and combination of equations (7) and (8), which

describe the forces and the resultant accelerations in 
the plane of the secondary motions. The pressure terms 
may be eliminated by the differentiation of each equa­ 
tion with respect to the direction of action of the other 
and by the subsequent subtraction of one from the 

.other. A further use of equation (5) produces the follow­ 
ing result:

_ a2
pvw +dy'- dydz

'   +   ), (9) 
' dy 2 dz2

where£ =   -J -jand is a measure of the rotation of a
* dy \dz '

fluid particle about an axis normal to the y z plane.
Equation (9) may be obtained in an alternative fash­ 

ion. Brundrett and Baines (1964) suggest that it can be 
derived directly by equating the rate of change of an­ 
gular momentum of a volume of fluid the terms on 
the left side to the moments of the surface forces on 
the volume, which are the terms on the right side.

A laminar, uniform state of motion is described by
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FIGURE 15. Correlation coefficient uw/u'w'.

the accelerative terms on the left of equation (9) and by 
the last term on the right. Using the laminar condition 
as a starting point, Maslen (1958) demonstrated math­ 
ematically that if the secondary components are zero 
anywhere in a viscous motion, they are zero 
everywhere. Because they are zero at a boundary, the 
transverse velocities must vanish in a uniform, lami­ 
nar flow. The terms involving the viscosity are thus 
counterproductive to the generation of the secondary 
motions.

The relative importance of the terms containing 
vw the first and second terms on the right of equation 
(9) are difficult to assess experimentally because of

the small magnitude of vw and the probable measure­ 
ment error. For the purpose of eliminating vw as a 
possible cause of the secondary motions, it probably 
suffices to remark that the stress depends upon the 
existence of V and W (or, more strictly, upon their gra­ 
dients) and not the reverse. It is to be noted, moreover, 
that the vw terms of equation (9) are the turbulent 
counterparts of the viscous terms and may reasonably 
be expected to behave in a parallel manner that is, to 
retard the rotation of the fluid particles.

To the extent that the latter conclusion is justified, 
the remaining term on the right side of equation (9), 
which is descriptive of the action due to the forces fJ2
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FIGURE 16. Secondary motions in channel.
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and w 2 , is evidently responsible for the existence of 
nonzero values of the accelerative terms on the left and 
thus for nonzero values of V and W. The magnitude of 
U2 and w2 is a function of location, Reynolds number, 
and boundary configuration and roughness. It is re-

marked that the structure of _   dydz
__

(v 2 -w2 ) (or of its

equivalent in cylindrical coordinates) precludes a non­ 
zero value of the term in an axially symmetric or two- 
dimensional flow. The observation that secondary mo­ 
tions are not present in these types of flow is support 
for the conclusion just drawn.

The variation of v2 -w2 over the section of the large 
channel is shown in figure 17. The measurements of u 2 
aty/d=Q.QQ16 in both the upper and the lower half of 
the channel appear erroneous, and the probable value 
of v2  w2 at these locations is indicated as a dashed 
line. The principle function of figure 17 is to show that 
the velocity fluctuations in the plane of the channel 
section v and w vary in a consistent manner near a 
boundary, with the component of turbulence normal to 
the wall always being smaller than the component 
which is parallel to the wall, and that the typical vari­ 
ation will always produce a nonzero value of
d2 r^L ^-    (v* w*) in a corner region.
dydz

The result of the combination of boundary effects on
a 2 -  

the variation of
dydz

(v2  w2) is shown in figure 18 for

the upper one-half of the larger channel. The correla­ 
tion of the magnitude of the derivative with the mag­ 
nitude of the secondary motions is good (see fig. 16).

ROLE OF THE SECONDARY MOTIONS

The turbulent shear gradients, and thus the turbu­ 
lent shear forces, become very large in the corner re­ 
gions of the channel. Without the secondary motions, 
which compensate for the force excess, the motion pat­ 
tern in the channel would be greatly different from 
that which actually exists. The role of the motions is 
thus an essential one. It is described by equation (6) 
which expresses the longitudinal force balance in the 
channel:

dy dz dy

dy dz

The terms on the left, excluding p, are the longitudi­ 
nal acceleration of a volume of fluid. The terms on the 
right, in order, are the forces due to pressure, viscosity,

and turbulent shear, all per unit of volume. The nega­ 
tive pressure gradient indicates a decreasing pressure 
in the downstream direction. The negative turbulent 
shear terms are in recognition of the forementioned 
fact that the turbulence components normally corre­ 
late in the negative sense.

Despite their accelerative significance, and like the 
turbulent products, the terms on the left side of equa­ 
tion (6) can also be interpreted as forces due to momen-

r\ -T T

turn transport. Consider, for example, the term p V -^ ,

in which V is a volume rate of vertical flow per unit of 
area. As the volume is carried from one region to 
another the U velocity generally being different in 
the two regions it undergoes a momentum change per

r\T T

unit of volume equal to p dy in the distance dy. In
dy

contrast to a turbulent fluctuation, which is assumed 
to retain its U velocity throughout its migration, the 
volume transported by V undergoes a continuous 
change in U. The integral of the product of V and

£\T T

p   dy is thus the rate of transport of momentum per 
dy

unit of area as a result of the secondary motion V and 
is equivalent to the stress intensity due to the momen­ 
tum exchange. The resultant surface force per unit of 
volume is the differential, with respect toy, of the inte-

ftTTgral, which is pV   and which is the first term of 
dy

equation (6).
The viscous forces are small relative to the other 

forces except near a boundary where the velocity de­ 
rivatives upon which they depend are large. At a 
boundary distance equal to 0.07d, the viscous forces 
are typically less than 3 percent of the pressure force. 
The viscous forces have been omitted from considera­ 
tion at greater distances.

Thus, not too close to the boundaries, equation (6) is 
a balance between the momentum transfer due to tur­ 
bulence, the transfer due to the secondary motions, and 
the pressure force. Because the pressure force is 
everywhere constant over the section, a variation in 
one of the transfer forces must be accompanied by an 
opposite variation in the other.

The forces have been evaluated from experimental 
data at yld =0.0833 in the upper and in the lower parts 
of the section and are shown in figure 19. To facilitate 
comparison, the negative of the secondary motion 
trasnport forces have been plotted in the figure. (To be 
noted, also, is the division of each term of equation (6) 
by. the mass density, p, so that the force significance of 
each is lost. The result, however, is proportional to 
force.)
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FIGURE 17. Distribution of ~v*-~w*.
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FIGURE 19. Balance of first equation of motion aty/d=0.0833.

The force variation shown in figure 19 is a function 
of the details of the motion pattern in the vicinity of 
the variation. The motion pattern is described primar­ 
ily by boundary geometry, with Reynolds number of 
secondary importance. The extremes of variation of 
figure 19 occur near points of change in boundary 
alignment, or corners. To the extent that the corners 
are isolated from the direct influence of other corners, 
the motions and the resulting forces near each are 
"mostly" representative of the corner, although they 
are affected to some degree by every element of the 
boundary, however distant.

The 90-degree corners, for example, are charac­ 
terized by large positive values of turbulent shear 
force, which are opposed by the pressure and the sec­ 
ondary motion transport forces. The large shear forces 
are the result of the typical variation of the turbulent 
shear stress components in such regions, illustrated by 
the lowermost of the curves of both parts of figure 11, 
which detail, for example, the variation of uw at small 
values of yld. Near the corner, the magnitude of the 
component of shear stress at a point is a function of the 
relative proximity of the two walls to the point, the

closer wall having the greater effect. The stress at a 
point close to one wall is not greatly affected by the 
opposite wall until the point is located equally as close 
to the latter. As the opposite wall becomes effective, 
the stress changes rapidly. To be noted in figure 11 are 
the large stress gradients near the vertical wall. Simi­ 
lar gradients of uv in the vertical direction account for 
the large shear force values in figure 19. The secondary 
motions, and the forces therefrom, are the consequence 
of the difference in v^ and w 2 at the boundaries and the 
reversal in the sign of the difference at the corner.

A "typical" force variation near the 270-degree 
corner is more difficult to describe, because of the in­ 
fluence of the other boundary elements on the more 
complex motion pattern. The effect of such an isolated 
corner may be approximated, however, as the differ­ 
ence between corresponding force distributions in the 
upper and in the lower part of the section at the same 
value ofy/d. This assumes that the force distributions 
in the upper part of the section would be identical to 
those in the lower in the event that the junction be­ 
tween the two channel sections the upper, smaller 
rectangular section and the lower, nearly square
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larger section   were formed of a solid, smooth mate­ 
rial; a further assumption is that the distributions in 
the lower half of the larger channel would not be 
greatly affected by such a procedure. The first assump­ 
tion is completely reasonable; the second is reasonable 
enough to indicate without serious error the trends and 
magnitudes of the forces for the replaced-boundary 
condition.

When compared in this manner, the trends shown by 
the distributions of figure 19 in the upper part of the 
section are largely unchanged. The effect of the corner 
is thus to cause a large change in the magnitude of 
both sets of the variable forces and to reverse the direc­ 
tion of each from one to the other side of the corner. At 
the left, the shear forces are large and are opposed by 
the pressure force. The momentum transport forces 
due to the secondary motions act in the direction of the 
pressure. Both forces are larger than the pressure 
force. At the right side, the roles are reversed: the 
shear forces now act in the same direction as the pres­ 
sure, and the secondary motion force opposes each. 
Farther to the right, the forces again reverse.

At increased values ofy/d, the corner influences les­ 
sen, and the forces decrease. At y/d = l.Q, a two- 
dimensional flow pattern is approximated, and the 
secondary motions are small or nonexistent. The 
two-dimensional counterpart of figure 19 is a straight

horizontal line representing the value of - ~H±*L anc[ js
dz

located a constant distance equal to     -£- above the^ p dx
line corresponding to a zero force.

The force variation for y/d>0.0833 in the upper half 
of the channel is illustrated in figure 20. The sum of 
the turbulent exchange forces only is shown in the

figure. The sum of V-r  and W   differ from corres- 
dy dz

ponding values of these forces by the constant value of 

 '  -3 1, which is equal to 8.6 m/s/s.

Figures 19 and 20 graphically depict the role of the 
secondary motions that of an agency to equalize the 
large turbulent exchange forces in the corner regions. 
The turbulent forces can be much larger than the pres­ 
sure force. If the motions did not exist, the fluid must 
stagnate and separate from the boundaries in the 90- 
degree corners and would be greatly accelerated in the 
vicinity of the 270-degree corner.

CONCLUSIONS

The experimental work reported herein is devoted to 
the internal details of a fully developed turbulent mo­ 
tion in a conduit of complex boundary form. The prin­ 
cipal feature of the boundary configuration is a corner 
subtending an angle greater than 180 degrees. The re­ 
sults are principally concerned with the production 
and effect of the secondary motions in the conduit.
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FIGURE 20. Distribution of sum of turbulent shear forces.
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The following are the major results:
1. The variation of the turbulence components v and w 

in the corner regions of the conduit is the most 
probable cause of the secondary motions.

2. The magnitude of the secondary motions produced 
in a given corner region is a function of the angle 
subtended by the corner. The function may not be 
defined with the limited data at hand.

3. The secondary motions are an effective mechanism 
for the transfer of momentum in the plane of the 
channel cross section. The forces due to the 
momentum transfer are of the same order of 
magnitude as those due to turbulent shear and to 
pressure.

4. The combination of boundary effects at a corner 
produce turbulent shearing forces which are fre­ 
quently larger than the force due to pressure. The 
shearing forces may oppose the pressure force or 
act in the direction of the pressure force, depend­ 
ing upon the corner configuration.

5. The secondary motions transfer an appropriately 
directed momentum into the corner regions to 
compensate for the excess of shearing force and, 
thus, to prevent flow separation or acceleration of 
the flow in the regions.

6. The secondary motions also, apparently, act to 
equalize the boundary shear stress over consider­ 
able portions of the boundary, accounting in large 
measure for the success of equations of the Man­ 
ning or Chezy type applied to channels of complex 
form.

7. The transfer of fluid across the line separating the 
larger from the smaller channel is small. The 
shear stress at the line is also small, indicating 
that the channel subdivision practices commonly 
used are probably applicable, at least to the 
channel of this study.
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