Skip Links

USGS - science for a changing world

U.S. Geological Survey Professional Paper 1014

Late Quaternary Depositional History, Holocene Sea-Level Changes, and Vertical Crustal Movement, Southern San Francisco Bay, California

By Brian F. Atwater, Charles W. Hedel, and Edward J. Helley

Thumbnail of and link to report PDF (14 MB)Abstract

Sediments collected for bridge foundation studies at southern San Francisco Bay, Calif., record estuaries that formed during Sangamon (100,000 years ago) and post-Wisconsin (less than 10,000 years ago) high stands of sea level. The estuarine deposits of Sangamon and post-Wisconsin ages are separated by alluvial and eolian deposits and by erosional unconformities and surfaces of nondeposition, features that indicate lowered base levels and oceanward migrations of the shoreline accompanying low stands of the sea. Estuarine deposits of mid-Wisconsin age appear to be absent, suggesting that sea level was not near its present height 30,000–40,000 years ago in central California.

Holocene sea-level changes are measured from the elevations and apparent 14C ages of plant remains from 13 core samples. Uncertainties of ±2 to ±4 m in the elevations of the dated sea levels represent the sum of errors in determination of (1) sample elevation relative to present sea level, (2) sample elevation relative to sea level at the time of accumulation of the dated material, and (3) postdepositional subsidence of the sample due to compaction of underlying sediments.

Sea level in the vicinity of southern San Francisco Bay rose about 2 cm/yr from 9,500 to 8,000 years ago. The rate of relative sea-level rise then declined about tenfold from 8,000 to 6,000 years ago, and it has averaged 0.1–0.2 cm/yr from 6,000 years ago to the present. This submergence history indicates that the rising sea entered the Golden Gate 10,000–11,000 years ago and spread across land areas as rapidly as 30 m/yr until 8,000 years ago. Subsequent shoreline changes were more gradual because of the decrease in rate of sea-level rise.

Some of the sediments under southern San Francisco Bay appear to be below the level at which they initially accumulated. The vertical crustal movement suggested by these sediments may be summarized as follows: (1) Some Quaternary(?) sediments have sustained at least 100 m of tectonic subsidence in less than 1.5 million years (<0.07 mm/yr) relative to the likely elevation of the lowest Pleistocene land surface; (2) the deepest Sangamon estuarine deposits subsided tectonically about 20–40 m in about 0.1 million years (0.2±0.1–0.4±0.1 mm/yr) relative to the assumed initial elevations of the thalwegs buried by these sediments; and (3) Holocene salt-marsh deposits have undergone about 5 m of tectonic and possibly isostatic subsidence in about 6,000 years (0.8±.0.7 mm/yr) relative to elevations which might be expected from eustatic sea-level changes alone.

  • This report is available only on the Web.

For additional information:
Contact Information, Earthquake Science Center, Seattle, Washington Field Office
U.S. Geological Survey
Dept. Earth & Space Sciences
University of Washington, Box 351310
Seattle, WA 98195-1310

This report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.

Suggested citation:

Atwater, B.F., Hedel, C.W., and Helley, E.J., 1977, Late Quaternary depositional history, Holocene sea-level changes, and vertical crustal movement, southern San Francisco Bay, California: U.S. Geological Survey Professional Paper 1014, 15 p., 1 plate. (Available at





Late Quaternary Depositional History

Holocene Sea Levels

Vertical Movement of the Earth's Crust

Summary and Conclusions

References Cited

one plate

Accessibility FOIA Privacy Policies and Notices logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Contact USGS
Page Last Modified: Thursday, December 01, 2016, 04:24:03 PM