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Opening Remarks to the First William T. Pecora Memorial Symposium
By Vincent E. McKelvey,
Director, U.S. Geological Survey

Governor Kneip, Dr. Overton, Ladies, and Gentle-
men:

It is a great privilege for me to be able to open
this First William T. Pecora Memorial Symposium.
Bill Pecora was a remarkable man—a great scien-
tist, a philosopher in the broadest sense of that term,
and an inspiring leader. He considered himself to be a
“field-boot” geologist and so characterized himself, as
a matter of fact, in those terms in a speech here in
1970 when the EROS Data Center was still on the
drawing board.

But while he was, ‘indeed, an outstanding “field-
boot” geologist, by taking the lead in forming the
EROS Program and pressing hard for its develop-
ment, he showed himself to be a visionary, both
in his recognition of the possible applications of space
technology to the study of the Earth, and of the need
for it to help satisfy the requirement of a world
pressing hard in the means of assessment.

Bill saw the rapidly accelerating needs for re-
sources and for the preservation of environmental
quality as well, and he saw the great potential in
satellite observations for helping to provide the
worldwide information needed to achieve both of
those objectives. Much of Bill Pecora’s vision has al-
ready been realized. NASA has provided the tech-
nology to acquire valuable satellite data, and the peo-
ple of Sioux Falls, the Congress, and the Federal
Administration have made it possible for the full
community of scientists, technologists, and environ-
mentalists to obtain and interpret and use the data
through the Sioux Falls EROS Data Center. As pa-
pers here to be presented will show, new uses and
applications of satellite imagery are being devel-
oped and formatted. Indeed, we have already had a
glimpse of some of those applications in the descrip-
tion which Governor Kneip gave us of the activities

already in progress here in the State of South Dakota.

Many people and organizations have contributed
to these achievements, but naturally I am proud of
the part which the Geological Survey and the De-
partment of the Interior have played in bringing
about a program that has fostered international rela-
tions and improved interorganizational and interdis-
ciplinary exchange and communication and is adding
to our understanding of the Earth and its resources.
These contributions flowed from Bill Pecora’s imagi-
native leadership, and it is fitting, indeed, that this
Symposium be named in his honor.

A word, now, about the William T. Pecora Sym-
posium. This is, of course, the first of what we hope
will be a long series devoted to the exchange of
experience and knowledge in the application of re-
motely sensed data. Because of Bill Pecora’s great
interest in mineral resources and because of the
exciting progress being made in the applications of
Landsat data to mineral exploration, it seemed ap-
propiate to focus this First Symposium on mineral
and mineral fuel exploration—and we are glad that
the American Mining Congress was able to take the
lead in sponsoring it.

The next Symposium will be primarily sponsored
by the American Society of Photogrammetry and
will be held here in Sioux Falls next August 23-27.
The theme will be “Mapping with Remote Sensing,”
a topic fundamental to all resource and environ-
mental efforts. We anticipate that subsequent sym-
posia will address other themes, such as wildlife
preservation, forestry, water resources, and others.
The Survey has no desire to direct the content of
these symposia, but we do pledge continued support
to the interested scientific societies to make this a
forum for the development and exchange of knowl-
edge in keeping with the vision of a truly great man,
William T. Pecora.
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International Implications of Landsat Data From a Geological Viewpoint
By John A. Reinermund,

U.S. Geological Survey, Reston, Virginia 22092

INTRODUCTION

It is indeed a privilege and an honor for me to
have a part in this William T. Pecora Memorial Sym-
posium on the applications of remote sensing to min-
eral and mineral fuel exploration. Although I am cer-
tainly no expert on remote sensing, 1 have been
continuously involved in the international program of
the U.S. Geological Survey for about 20 years and
have been a fascinated observer of the impact re-
mote-sensing technology has had, both in our own
program and in overall cooperation between the
nations of the world.

It seems especially fitting that we should discuss
the international implications of Landsat data at a
symposium honoring Dr. Pecora. Not only was he
primarily responsible for the Survey's strong effort to
develop an earth resources satellite system, in co-
operation with the National Aeronautics and Space
Administration (NASA), but he was also vitally inter-
ested in the potential applications of that system to
international resources problems. His interest in the
international applications was a logical outgrowth of
his participation in the Survey’s international program
more than 30 years ago, when he assisted in surveys
for strategic minerals in Latin America (Pecora, 1944;
Pecora and Fahey, 1949, 1950; Pecora, Klepper, and
others, 1950; Pecora, Switzer, and others, 1950). His
enthusiasm for international cooperation, and his
recognition of the mutual benefits to be gained from
joint studies of geological phenomena, in cooperation
with scientists abroad, were to a considerable extent
responsible for the steady growth in the Survey’s pro-
gram in international geology and the strong em-
phasis on international applications of Landsat data

which has characterized the Survey’s efforts in re-
mote sensing.

SIGNIFICANCE AND SCOPE OF THIS
DISCUSSION

It is interesting to note that the problems with
which Dr. Pecora and other Survey geologists (Dorr,
1944; Johnston, 1947) were primarily involved in
their Latin American work 30 years ago—the inter-
national supply of critically needed mineral raw ma-
terials—is once again a subject of intense interna-
tional concern. This concern has been partly respon-
sible for the worldwide interest in Landsat applica-
tions. Geologists in the industrialized countries recog-
nize the need to greatly accelerate the exploration
and assessment of world resources to help meet their
nations’ future import requirements, and they look to
Landsat data as an aid in this process. Their interest
was reflected at the meeting of the European Geo-
logical Societies in Reading, England, last month when
10 percent of the 130 presentations dealt with Land-
sat applications to mineral investigations on five
continents.

We here in the United States are also increasingly
concerned, as discussed recently in a Conference on
Requirements for Fulfilling a National Materials Policy
(Promisel, 1974), for in the last 3 years our annual
imports of energy and mineral raw materials have
risen from about $4 billion or 11 percent of total
needs to about $20 billion or 27 percent of total
needs, and last year we imported more than half our
requirements of 23 mineral commodities (Secretary
of the Interior, 1975). But most developing countries
are even more concerned with the need to increase

3
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TABLE 1.—Other countries for which Landsat data have been provided by the EROS Data Center

Afghanistan Denmark Israel Nepal Spain
Algeria Dominican Republic Italy Netherlands Sudan
Argentina Ecuador Jamaica New Zealand Surinam
Australia El Savador Japan Nicaragua Swaziland
Austria Ethiopia Jordan Niger Sweden
Bangladesh Finland Kenya Nigeria Switzerland
Barbados France Khmer Republic Norway Taiwan
Belgium Gabon Korea Pakistan Tanzania
Bolivia Gambia Kuwait Panama Thailand
Brazil Germany, East Lebanon Paraguay Trinidad
Brunei Germany, West Lesotho Peru Tunisia
Bulgaria Ghana Liberia Philippines Turkey
Burma Greece Libya Poland United Arab Republic
Canada Guatemala Luxembourg Portgual United Kingdom
Central African Guinea Madagascar Rhodesia Upper Volta

Republic Guyana Malawi Romania Uruguay
Chile Honduras Malaysia Saudi Arabia US.S.R.
China Hungary Mali Senegal Venezuela
Colombia lceland Mauritania Sierra Leone Yemen
Costa Rica India Mauritius Singapore Yugoslavia
Cyprus Indonesia Mexico South Africa Zaire
Czechoslovakia Iran Morocco South Vietnam Zambia
Dahomey Ireland

worldwide resources exploration and assessment, be-
cause they not only compete for access to raw materi-
als for their own internal needs but are faced with the
necessity of increasing raw-material exports to pay for
imports of food, manufactured goods, and technology.
And it is in the developing countries, where mineral
surveys are generally not well advanced, that the use
of Landsat data can be especially helpful to accel-
erate mapping, improve existing maps, and identify
geologic conditions favorable for mineralization.

So it is that at this critical time, when industrial and
and developing countries alike are faced with the
urgent need for intensified resources studies, that the
Landsat system, along with other satellite and aircraft
systems, offers a new, powerful, and challenging tool,
the full dimensions of which have not yet been real-
ized. The worldwide interest in this tool is evident
from the number of articles, meetings, and projects
that deal with it. In our Geological Survey program
last year, for example, 58 scientists from 35 countries
attended the two international courses given here at
the EROS Data Center, and 127 scientists from 24
countries participated in seminars or workshops we
conducted abroad. About 55 governments are cur-
rently sponsoring experimental applications of Land-
sat imagery, and most of these involve cooperation
with one or more organizations in the United States.
The EROS Data Center has supplied Landsat ma-
terials to 111 countries (see table 1), and already this
year data for more than 50,000 Landsat frames have

been purchased by private and governmental users
for areas outside the United States.

In this discussion I do not propose to describe or
illustrate in detail the specific applications of Landsat
data that are, or may become, internationally impor-
tant. Many excellent presentations to follow in this
symposium will do this far better than I could. How-
ever, | would like to comment briefly on some signi-
ficant applications of Landsat data in other countries,
on the basis of the rapid growth in the international
use of Landsat data, on the more significant benefits
of participation in the Landsat program, and on con-
straints that could prevent the most effective use of
this new technology.

SIGNIFICANT INTERNATIONAL
APPLICATIONS OF LANDSAT DATA

Geologists around the world are focusing most of
their attention, in one way or another, on three major
problems: Accelerating and intensifying the explora-
tion and assessment of resources, as mentioned pre-
viously; protecting and efficiently utilizing the environ-
ment; and minimizing the effects of natural disasters.
Landsat data have important applications in each of
these problem areas, and the papers that follow illus-
trate these applications. Many of the recent applica-
tions were reviewed in the Tenth International
Symposium on Remote Sensing of Environment held
in Ann Arbor, Michigan (Environmental Research In-
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stitute of Michigan, 1975), earlier this month. An initial
evaluation of economic value of these applications
was made last year by Lietzke (1974).

With regard to resources exploration and assess-
ment, the principal applications of Landsat data have
been in accelerating the mapping of unexplored terri-
tory and in improving existing maps. The cooperative
mapping of high-relief mountain provinces such as
the Himalaya Mountains, the Alps (Bodechtel and
Lammerer, 1973) and the Andean Cordillera (Carter,
1975), which will no doubt be illustrated later this
morning by Dr. Carlos Brockmann, is especially sig-
nificant because we have not previously been able to
obtain synoptic and essentially distortion-free images
of these provinces, which are so important for an
understanding of mineral genesis. Equally significant
is the application of Landsat data to study of the
Precambrian shield areas, as has been described re-
cently by Weecksteen (1974) for West Africa, Corréa
(1975) for Brazil, and Blodget, Brown, and Moik
(1975) for Arabia. The use of Landsat multispectral
techniques permits the identification and definition of
contacts that are not readily located without the use
of this new tool. And in studies currently underway,
it has been possible to correlate the geology in the
shield areas on the opposite sides of the Red Sea
(Abdul-Gawad and Tubbesing, 1975) and to demon-
strate the value of Landsat data characteristics in
long-distance correlation of geologic units.

Extensive and highly significant revisions of struc-
tural maps are underway in many countries using
Landsat imagery, and these are especially significant
in prospecting for minerals and hydrocarbons. For
example, a new map of Thailand is nearing comple-
tion as a joint effort by Prayong Angsuwathana of the
Thai Department of Mineral Resources and S. J.
Gawarecki of the U.S. Geological Survey, and a new
map of Pakistan has been prepared by Kazmi'® in
which it has been possible to classify faults on age of
movement.

A closely related and highly significant use of
Landsat data in East Asia by Maurice Terman of the
Geological Survey, as a contribution to a 35-nation
cooperative Circum-Pacific Map Project (International
Union of Geological Sciences, 1975), is in the evalua-
tion of the relative accuracy of existing geologic maps.
This demonstrates the value of Landsat data for
checking geologic map accuracy as well as for im-
proving and augmenting map detail.

' Kazmi, A. H., 1975, Application of ERTS-1 imagery to recent
tectonic studies in Pakistan: Unpub. rept. prepared for the
Geological Survey of Pakistan.

Perhaps no use of Landsat data has created more
interest recently than the identification of major
structural lineaments, many of which seem to be re-
lated to the distribution of minerals and hydrocarbons
(Lathram and others, 1973; Saunders and Thomas,
1973). Several papers to be presented at this Sym-
posium deal with this subject, and important work
has been done in Australia and in several countries in
Asia, South America, and North America. Some im-
portant known ore bodies, such as Broken Hill in New
South Wales, seem clearly related to major linea-
ments, at least some of which reflect through-going
structures of major dimensions in the continental
crust. Agah (1975) has reported on lineaments across
the Zagros Mountains in Iran that seem related both
to facies changes in the sedimentary sequence and
to hydrocarbon distribution. This line of research is
of such widespread interest and importance that an
international research project on correlation of struc-
tural data derived from satellite and other sources
with distribution of known mineral deposits is now
being considered under the International Geological
Correlation Program jointly sponsored by the Inter-
national Union of Geological Sciences and UNESCO.

An equally challenging use of Landsat data in the
detection of ore deposits through digital-processing
techniques is discussed in six presentations to follow,
here in this Symposium. The work carried out by
Schmidt in Pakistan is especially indicative of the
impact and potential of Landsat data, when applied
to a well-studied terrain, in which the extent and
significance of the mineralization were much more
apparent after digital processing of Landsat data. The
technique of digital analysis to detect alteration in
rocks and soil, and also changes in vegetation related
to mineralization, may prove to be one of the most
important applications for accelerating mineral ex-
ploration.

Geologists concerned with environmental studies
and surficial phenomena are having spectacular suc-
cess with Landsat data. The work of McKee and
others (McKee and others, 1973; McKee, 1975), for
example, in worldwide studies of sand seas, provides
a basis for classification and evaluation of environ-
mental changes in the principal desert areas that
could not readily be made without Landsat data. In
a recent study of Landsat applications in the Sahelian
zone in Africa, Cooley and Turner (1975) demon-
strated the usefulness in identifying and mapping
laterite duricrust, locating areas favorable for ground
water, classifying land for agricultural potential,:and
many other highly significant uses. A series of en-
vironmental studies using Landsat data is being
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carried out cooperatively by Egyptian and United
States scientists (Galal, 1975), and similar programs
are underway or planned in several other African
countries. Mapping effects of tin mining in shallow-
water offshore areas has proved feasible using
Landsat data along the coast of Malaysia; the United
Nations is now studying the environmental effects of
strip mining of tin on land in that country by use of
Landsat data, comparable to studies of mining areas
in the United States (Wier and others, 1973: Chase
and Pettyjohn, 1973; Alexander and others, 1973).
George Taylor of the Geological Survey, using
Landsat data in western Brazil, identified an alluvial
fan of such huge dimensions—half as big as the State
of lowa—that it has never before been recognized.
The work in Iran to be described by D. B. Krinsley
later in this Symposium, is an outstanding example of
the application of the data in the interpretation of dry
lake deposits, monitoring of desert environments, and
engineering planning in areas typical of vast arid
regions in the developing countries.

A most promising and significant application of the
Landsat system is for the monitoring of natural dis-
asters and the development of early warning systems,
especially of flood and volcanoes. A recent study by
Robinove (1975) on behalf of the Agency for Inter-
national Development (AID) has demonstrated the
excellent possibilities for using Landsat imagery in
damage assessment for floods, drought, fire, and
glacier movement, and the possible uses of the Land-
sat Data Collection System in warning of the danger of
floods, earthquakes, volcanic eruptions, glacier move-
ments, and water pollution. Monitoring of seismicity
associated with volcanism (Ward and others, 1973)
which is now underway in Central America, the
United States, Alaska, Hawaii, and Iceland, using a
total of 18 data collection platforms relaying through
Landsat, may be prototype of a worldwide satellite
volcanic monitoring system. The applicability to as-
sessment of flood damages has already been demon-
strated through studies of flooding in the Mississippi
Valley and in Pakistan, and it is likely that programs
of flood warning, monitoring, and damage assessment,
using the Data Collection System and satellite
imagery, will eventually be established in the world’s
major river systems, assuming an operational satellite
system is established. Such a flood warning and as-
sessment system may, in fact, be an adequate justifi-
cation for an operational earth-resources satellite
system.

BASIS FOR GROWTH IN INTERNATIONAL
USE OF LANDSAT DATA

It seems pertinent to examine the basis for the
remarkable growth in the use of Landsat data around
the world. As I noted previously, this growth reflects
the recognized value of the Landsat applications in
the attack on major problem areas in geology and in
other earth-science disciplines. But what are the spe-
cial conditions under which international participation
in the Landsat program has flourished, and what can
we learn about the possibilities of future participation
from a study of these conditions?

In my opinion the widespread use of Landsat data
is mainly a result of three actions: The decision to
develop Landsat as an international system with open
participation in its use; the establishment of facilities
and procedures here at the EROS Data Center for
worldwide distribution of the data; and the efforts
that have been made to transfer knowledge of
Landsat technology to other countries.

The fundamental basis for the development of
Landsat as an operational system has, of course, been
the United States’ insistence on unrestricted avail-
ability of the data and on international cooperation
in its use. The United States position was reaffirmed
by Dr. Kissinger on August 11 in Montreal when he
stated:

Earth-sensing satellites . . . can dramatically help natians
to assess their resources and to develop their potential. in
the Sahel region of Africa we have seen the tremendous
potential of this technology in dealing with natural dis-
asters. The United States has urged in the United Nations
that the new knowledge be made freely and widely avail-
able. . . . While we believe that knowledge of the earth
and its environment gained from outer space should be
broadly shared, we recognize that this must be accompanied
by efforts to insure that all countries will fully understand
the significance of this new knowledge.

The United States position was also defined more
specifically with regard to the Landsat system earlier
this month at Ann Arbor by Dr. Leonard Jaffe of
NASA (Jaffe, 1975).

From the geological viewpoint, the NASA program
of sponsoring cooperative research projects with
scientists in other countries, to experiment with appli-
cations of Landsat data, has been of tremendous
importance. Many of the presentations to follow con-
tain results of those projects. Thirty-six countries
participated in 95 cooperative research projects with
Landsat-1 data, of which 54 projects involved geo-
science applications, and 35 countries are participating
in 39 projects with Landsat-2 data, of which 30 in-
volve the geological sciences.
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This NASA-sponsored program has not only demon-
strated uses of the data and encouraged the partici-
pation of foreign scientists, but it has also given other
countries a feeling of mutual involvement in the
development of a new technology—a feeling that they
are genuine participants and not mere bystanders.
And it is interesting to note that, in most of the coun-
tries participating actively in the Landsat program,
geological agencies have been very active. In fact, in
about 40 percent of the 55 or so countries sponsoring
Landsat applications, geological or mapping agencies
are the lead agencies in Landsat cooperation.

Most important to continuing and practical use, in
my opinion, is the availability of the data at modest
cost through the EROS Data Center here in Sioux

Falls. This has revolutionized the planning of geologic
programs around the world; for, except in areas of
persistent cloud cover, it has given national and inter-
national agencies, private industry, and research
institutions alike an assured source of data in a variety
of formats and a facility to which they could turn with
their problems. This availability of data, and guidance,
will be vastly expanded, of course, as regional receiv-
ing stations and distributing facilities are established
to augment those now operating in four countries and
as national information centers are developed such
as those already established in 17 Latin American
countries through the joint efforts of the Inter-Ameri-
can Geodetic Survey (IAGS). the U.S. Geological Sur-
vey, and local country agencies (table 2).

TABLE 2.—Other countries having existing or planned facilities using the Landsat system.

Data receiving and distribution stations

Existing Planned
Canada Chile!
Brazil iran
Italy Zaire
Data information centers
Latin America Other
Argentina Dominican Republic ~ Panama Thailand
Brazil Ecuador Paraguay Indonesia
Bolivia El Salvador Peru Iran
Chile Guatemala Venezuela Italy (Food and Agri-
culture Organization)
Colombia Honduras Uruguay Pakistan
Costa Rica Nicaragua Turkey
Data collection platforms
Canada ____________ 33 . Hydrometeorology studies.
lceland _____________ 2 . Volcano and earthquake studies.
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