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STOCHASTIC ANALYSIS OF PARTICLE
MOVEMENT OVER A DUNE BED

By BAuM K. LEE and HARVEY E. JoBsoN

ABSTRACT

Stochastic models are available that can be used to predict the
transport and dispersion of bed-material sediment particles in an
alluvial channel. These models are based on the proposition that the
movement of a single bed-material sediment particle consists of a
series of steps of random length separated by rest periods of random
duration and, therefore, application of the models requires a
knowledge of the probability distributions of the step lengths, the
rest periods, the elevation of particle deposition, and the elevation of
particle erosion. In the past, it has proven impossible to estimate
these distributions except by use of tedious and time-consuming
single particle experiments.

By considering a dune bed configuration which is composed of
‘uniformly sized particles, the probability distributions of the rest
period, the elevation of particle deposition, and the elevation of parti-
cle erosion are obtained from a record of the bed elevation at a fixed
point as a continuous function of time. By restricting attention to a
coarse sand, where the suspended load is negligible, the probability
distribution of the step length is obtained from a series of “instan-
taneous” longitudinal bed profiles in addition to the above informa-
tion. Using these probability distributions, three bed-material
transport equations and a two-dimensional stochastic model for dis-
persion of bed-sediment particles are developed.

The procedure was tested by determining these distributions from
bed profiles formed in a large laboratory flume with a coarse sand as
the bed material. The elevation of particie deposition and the eleva-
tion of particle erosion can be considered to be identically dis-
tributed, and their distribution can be described by either a “trun-
cated Gaussian” or a “triangular” density function. The conditional
probability distribution of the rest period given the elevation of parti-
cle deposition closely followed the two-parameter gamma distribu-
tion. The conditional probability distribution of the step length given
the elevation of particle erosion and the elevation of particle deposi-
tion also closely followed the two-parameter gamma density function.
For a given flow, the scale and shape parameters describing the gam-
ma probability distributions can be expressed as functions of bed
elevation.

The bed-material transport equations were tested for three flow
conditions. The errors in the predicted mean total bed-material
transport rates were —3.0, +3.5, and 80.1 percent for equation 55,
and —1.7, +26.9, and +64.1 percent for equation 63. For the run with
the large error, the mean total load concentration was small
(8.9 milligrams per liter), and flow conditions were somewhat out of
equilibrium.

INTRODUCTION

The movement of sediment in alluvial streams is so
complex a process that it may never be subjected com-
pletely to a deterministic solution. It represents, in fact,
an extreme degree of unsteady, nonuniform flow, since
the streambed as well as the water surface may be con-
tinuously changing with time and position.

Numerous formulas and equations have been
developed to predict sediment transport rates. Most of
these developments ignore the actual nature of sedi-
ment movement and have assumed that the sediment
transport rate can be described by a deterministic func-
tion of certain flow parameters. Unfortunately, after
decades of searching, no universally accepted sediment
transport equation has been found. The theories of
probability, statistics, and stochastic processes have
been used to describe the kinematics of a single bed-
sediment particle in an alluvial channel flow and to pre-
dict the dispersion characteristics of a group of such
particles. These theories have clearly demonstrated a
great potential for development of stochastic models of
sediment transport and dispersion.

Most of the stochastic models (Shen and Todorovic,
1971; Grigg, 1969; Yang, 1968; Sayre and Conover,
1967; Hubbell and Sayre, 1964; Crickmore and Lean,
1962; Einstein, 1937) are based on the proposition that
the movement of bed-sediment particles consists of a
series of steps separated by rest periods, so that deter-
mination of the probability distributions for the step
lengths and the rest periods of a bed-sediment particle
plays the major role in quantifying the bed-sediment
transport. While this movement concept can easily be
verified through laboratory observations, Einstein
(1937) was the first to use it. He developed a one-dimen-
sional probabilistic model for bedload transport. More
recently, Sayre and Conover (1967) derived a two-
dimensional stochastic model by introducing the prob-
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ability distribution of the elevation at which a bed-sedi-
ment particle is deposited.

The probability distributions of the step lengths and
the rest periods of a bed-sediment particle have been
estimated from single particle experiments (Grigg,
1969) or by using a group of tracer particles (Yang,
1968; Hubbell and Sayre, 1964; Crickmore and Lean,
1962). Because of the considerable effort required to
conduct such experiments, it seems clear that some way
must be found to estimate the probability distributions
from more readily accessible data if significant further
progress is to be expected. To apply the Sayre-Conover
(1967) two-dimensional stochastic model, the prob-
ability distribution of the elevation at which a bed-sedi-
ment particle is deposited must be known. A method for
estimating this distribution is developed in this report.

The objectives of this study are:

1. To present a method of estimating the following
probability distributions for dune-bed conditions using
only sounding records of the bed elevation — (a) prob-
ability distributions (note that there are two separate
distributions) of the elevation at which a bed-sediment
particle is eroded and deposited, and (b) conditional
probability distributions of the step lengths of a bed-
sediment particle given the elevations at which the par-
ticle is eroded and deposited. A method estimating the
conditional probability distribution of the rest periods
of a bed-sediment particle given the elevation at which
the particle is deposited has been presented by Sayre
and Conover (1967).

2. To develop bed-material transport equations based
on the above probability distributions and to compare
the results with the experimentally measured values.

3. To derive a two-dimensional stochastic model for
dispersion of bed-sediment particles as a function of the
above probability distributions.

The probability distributions of the elevation at
which a bed-sediment particle is eroded and deposited,
and the probability distribution of the rest periods, con-
ditioned on the elevation of deposition, will be obtained
from a continuous record of the bed elevation at a par-
ticular point as a function of time. The probability dis-
tribution of the step lengths, conditioned on the eleva-
tion of erosion and the elevation of deposition, will be
obtained from a series of “instantaneous” longitudinal
bed profiles. With these distributions obtained, various
related probability distributions of vital interest will be
estimated, and a relation between the rest periods and
the step lengths of a bed-sediment particle will be in-
vestigated.

Three experimental runs are analyzed and the rela-
tions between the statistics describing the postulated
probability distributions and the hydraulic conditions
are investigated. All data were obtained from a tilting

recirculating flume of rectangular cross section 61 m
long, 2.4 m wide, and 1.2 m deep. The bed material used
in these experiments was screened river sand with a
median sieve diameter equal to 1.13 mm and a
geometric standard deviation equal to 1.51.
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as those contained in a dissertation by Lee (1973). The
data were collected under the general supervision of the
second author. Special thanks are due E. V. Richardson,
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BACKGROUND
THEORETICAL MODELS

Einstein (1937) treated the movement of a single
sediment particle over an alluvial bed as a stochastic
process described by an alternating sequence of two in-
dependent random variables, namely, step lengths and
rest periods. Considering the particle movement in the
distance-time plane on a Galton’s board (Parzen, 1960),
Einstein derived exponential probability density func-
tions for the step lengths and the rest periods,

-k.,x

(x) =k, e 1 , x>0 ¢))

fX
and

,t>0 2)

1]
&
o

fr =k,

respectively, where

X T =random variables describing the step
lengths and rest periods of a parti-
cle, respectively;

x,t = distance and time, respectively;
fx @, fr= common probability density functions
of the step lengths and rest periods,
respectively; and
k,, ky = positive constants.

For a sediment particle introduced into the stream at
distance x = 01in such a way that it takes its first step at
time ¢ =0, Einstein obtained the probability density
function of the total distance traveled by the particle at
time ¢ to be

o0 1

-klx - kzt

flx; t) = kl e :

n=1

n-
(klx)
' (n)

n-1
(kzt)
T'(n) !

x>0,t>0,(3)

in which I' (+) denotes the gamma function. Equation 3
also represents the concentration distribution of a
group of identical sediment particles with respect to
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longitudinal position, x, as a function of time, ¢.

The probability density function for the case when
the particle is initially (¢ = 0) at rest at x = 0 also was
obtained by a similar procedure,

“k.x - k.t 1

f(x;t)=k1e i 2 :

n=1

(klx)" -
' (n)

(kzt)n
F'in+1) '

x>0, t>0 . (4

It should be noted that equation 4 applies only to the
particle that has taken at least one step.

Einstein (1950) also developed his well-known bed-
load equation by considering the dynamic lift force as a
random variable. The idea is that the probability of a
sediment particle being eroded from the bed surface is
equal to the probability that the lift force exerted on the
particle exceeds its submerged weight. He obtained

BY, - —
) To 2 A,
p= ] - — e z dz = T , (5)
VI Yy L T+A,0,
*tk T
o
where
p = probability of a sediment particle being
eroded;

No.4,, B, = constants;
V¥, = intensity of shear for an individual particle
size; and
@, = intensity of transport for an individual par-
ticle size.

Solving equation 5 for ®,, which is a function of the bed-
load transport rate, one obtains the bed-load discharge
for individual particle sizes from hydraulic parameters
and sediment properties.

Hubbell and Sayre (1964) presented a one-dimen-
sional stochastic model for the longitudinal dispersion
of bed-material particles in an alluvial channel. The
results are identical to Einstein’s (eqs. 1—4). The
assumptions are: (1) the flow is in equilibrium (Simons
and Richardson, 1966); (2) the particle always moves
in a downstream direction with a series of alternate
steps and rests; (3) the duration of movement is insig-
nificant compared to the rest periods; and (4) the
stochastic processes describing the number of steps
taken by a particle in a distance interval and a time in-
terval are independent of each other and both are
homogeneous Poisson processes (Parzen, 1967). These
assumptions are essentially the same as those of Ein-
stein’s (1937) although stated in a different way.

Based on the concept of continuity, Hubbell and
Sayre (1964) proposed the transport equation for the
bed material of a certain characteristic,

- x
(Qp) o =iglrg) - e)Wh(t—)c , (6)

where
@ = bed-material discharge in weight per unit time;

i. =ratio of the volume of particles possessing the
characteristic size to the volume of bed-
material particles in the zone of particle move-
ment;

v, = specific weight of the bed material;

0 = bulk porosity of the bed in place;

W = width of channel,

h = average depth of the zone in which particle

movement occurs;

x = average distance traveled by bed material in

time ¢,
t = measure of time; and

¢ = subscript that denotes terms associated with

particles possessing a certain characteristic
size.
Combining equation 6 with the result from the Hubbell-
Sayre one-dimensional stochastic model gives the total
bed-material discharge for all particle sizes,

k
_ z _ 2
Qr= : lc(ys)c(l G)Wh(k—l> . (7

c

in which k, and k, are defined in equations 1 and 2,
respectively.

Sayre and Conover (1967) extended the one-dimen-
sional stochastic model derived by Hubbell and Sayre
(1964) to two dimensions by introducing the vertical
level at which particles are deposited. Their analysis led
to the joint probability density function for the event
that a particle has, at time ¢, traveled a distance equal
to x and is located at an elevation equal to y,

flx,y.1)
Z ot e
“fy (y)rz::lfx @ [ ) [ gy @)t (@)
where
fYD( y) = probability density function for the
o m elevation of particle deposition;
fx(x), fr () = n-fold convolutions of fy(x) and fr(2),
respectively;
froy, (E\y) = conditional probability density function
for the rest periods given the eleva-
tion at which the particle is
deposited; and
t’ = sum of the first n rest periods.
If a group of identical sediment particles are released
simultaneously at x =0, y=y, and ¢ =0, equation 8
gives the concentration of the particles, which were in-
itially at rest and have moved from their respective in-
itial positions, with respect to longitudinal position, x,
and vertical position, v, as a function of time, ¢.
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In order to apply equation 8, the density functions,
fy,(¥), fry vy, (¢ \y), and fx (x) must be specified. The un-
conditional density function, fr(¢f) is related to
fryy,(t\¥ and fy () by the relation

y
fT(t) = f

min

max (9)
f. (t\y)fy, (ydy,
T\Y, Y,

in which y_ ., and y,;, are the highest and lowest eleva-
tions at which particles can be deposited, respectively.
The marginal case of equation 8 is

—m  t[m  (n+1
fan = ¥ fp J [me - fr o) ]dt

n=1

— (n)
=Y 1l PIN@ =nl, A0)
n=1
in which P{N(#) = n] denotes the probability that a par-
ticle takes n steps in a time interval ¢. Equation 10 is a
general one-dimensional stochastic model where only
longitudinal dispersion is considered. One may note
that the substitution of equations 1 and 2 into equation
10 reduces to equation 4.
Yang (1968) assumed the step lengths are gamma
distributed with a shape parameter, r, and the common
density function,

k ~k.x
5= 1 r-1 1
fX(JL) *T0) (klx) e

(11
and the rest periods are exponentially distributed with
the common density function given in equation 2.
Substituting equations 2 and 11 into equation 10, he ob-
tained

k-t & (klx)"”'l () "
flit) = ke Z: D) Tl -
n=1
x>0 t>0. (12)

Since the gamma distribution reduces to the exponen-
tial distribution when r =1, equation 4 is actually a
special case of equation 12.

Shen and Todorovic (1971) generalized the Hubbell-
Sayre one-dimensional model given in equations 1, 2,
and 4. The essential difference between the two models
is that the former was based on the nonhomogeneous
Poisson processes (Parzen, 1967), while the latter was
based on the homogeneous Poisson processes. In the
Shen-Todorovic model, the probability density func-
tions of the step lengths and the rest periods are,
respectively,

X
-f kl (s)ds
*0
fX(x) =k (x) e , x>0, (13)
and
t
-ft k2 (s)ds
_ 0
fpl) =k, () e ,t>0 (14)
where

k, (%), ky(t) = functions of x and ¢, respectively; and

X, t, = initial position and time, respectively.
The probability density function of the total travel dis-
tance of a particle, which was initially at rest and has
moved from its initial position, x,;, was found to be

x t
- kyrds- [ k,(s)ds
x t

flat) =k (x) e ° 0
(15)
x n-1 t n
- [{0 kl(s)ds] [jto k, (s)ds:i
: ) NCED)) , x>0, t>0.

n=1
It is seen from equations 13 and 14 that the mean num-
ber of steps taken by a particle in (x, x] and (2, f] are

kal (s)dsand _f;:kQ(s) ds,
0

respectively, whereas those of Hubbell-Sayre’s model
are k,(x—x;) and ky(t—ty), respectively. The Hubbell-
Sayre (1964) one-dimensional model is a special case of
the Shen-Todorovic model.

EXPERIMENTAL STUDIES

Hubbell and Sayre (1964) conducted concentration
distribution experiments both in the field and laborato-
ry to evaluate the one-dimensional stochastic model
given by equation 4. The bed configurations in these ex-
periments were large dunes in the field and ripples in
the laboratory flume. Using radioactive tracer parti-
cles, a series of longitudinal concentration-distribution
curves were obtained at different times for a given flow
condition. The longitudinal concentration-distribution
function, ® (x;?), is defined to be the weight of tracer
particles per unit volume of bed material as a function
of longitudinal distance and time and is related to flx; t)
by

w

®(et) = b flast)

Wh (16)

in which W; is the total weight of the tracer particles
placed in the channel, W is the channel width, 4 is
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average depth of the zone of bed material movement,
and flx;?) is given by equation 4. Based on equation 16,
the parameters k, and k, were estimated. With these
estimates, Hubbell and Sayre reported that the
theoretical and observed concentration-distribution
functions agree reasonably well.

Yang (1968) carried out a set of experiments using
radioactive tracer particles to verify the model given by
equation 12. Experiments were performed with ripple
and dune bed conditions in a laboratory flume 0.6 m
wide by 18.3 m long. He reported that the shape of the
experimental longitudinal dispersion curves are fairly
well represented by equation 12. Yang also made
preliminary runs with a single plastic particle in a
small flume and found that the step lengths very closely
follow a gamma distribution with the parameter r ap-
proximately equal to 2 and that the rest periods follow
an exponential distribution very closely.

The first intensive experimental study on the move-
ment of single particles was done by Grigg (1969). The
experiments were conducted in a laboratory flume with
two bed material sizes. The bed configurations were rip-
ples and dunes. Using single radioactive tracer parti-
cles, he measured the step lengths and the rest periods
directly and found the step lengths to be approximately
gamma distributed and the rest periods to be approx-
imately exponentially distributed as proposed by Yang.

Grigg found interesting correlations between: (1)
Various properties of the step length distribution, the
stream power (product of mean bed shear stress and
mean flow velocity), and the distribution of bedform
lengths; and (2) various properties of the rest period
distribution and statistical properties derived from the
variation of bed elevation with respect to time.

Based on an idea suggested by Hubbell and Sayre
(1965), Grigg also made some progress toward experi-
mentally testing the Sayre-Conover two-dimensional
stochastic model. By analyzing a record of the bed
elevation as a function of time, he showed that the con-
ditional probability density function of the rest periods
can be approximated by the exponential function,

_k3 (y)t
fT\yD (t\y) = kz(y) e . amn
and

Py (18)

in which « and 8 are constants and y measures bed
elevation in terms of the standard deviation about
mean bed elevation.
REMARKS
Based on the review given in the previous sections,
the following remarks are offered.

1. The Sayre-Conover model given by equation 10 is
the most general one-dimensional model. The rest of
the one-dimensional models, which were previously dis-
cussed, can be obtained from this model by proper
substitutions. Therefore, it may be rated as the best ex-
isting one-dimensional model.

2. The Sayre-Conover model given by equation 8 is
the only existing two-dimensional stochastic model.
The derivation of the Sayre-Conover model has been
discussed by Lee (1973). To verify equation 8, a method
of estimating the probability distribution of the eleva-
tion at which particles are deposited must be known.
One of the purposes of this report is to present such a
method.

3. In order for the stochastic model to serve a predic-
tion purpose, the relation between flow conditions and
the parameters describing the probability distributions
must be known. Without such knowledge the stochastic
models cannot contribute much to the prediction
problem.

4. A great deal of effort is required to perform disper-
sion and single particle experiments. If another method
can be developed to estimate the necessary probability
distributions from more readily accessible data, con-
siderable savings would result. The methods developed
in this report require only records of bed elevation.

DEVELOPMENT OF THEORY

CHARACTERISTICS OF PARTICLE MOVEMENT
OVER A DUNE BED

Dunes are one of the most common bed forms in
alluvial channels. Field observations by Simons and
Richardson (1966) indicated that dunes may form in
any alluvial channel, irrespective of the size of bed
material, if the stream power is sufficiently large to
cause general transport of the bed material without ex-
ceeding a Froude number of unity. The longitudinal
profile of a dune is approximately triangular in shape
with a gentle upstream slope and steep downstream
slope. The upstream slope depends somewhat on flow
conditions, whereas the downstream slope is more de-
pendent on the angle of repose of the bed material. The
length of a dune ranges from about 0.61 m to several
hundred meters, depending on the scale of the flow
system. The Chezy discharge coefficient, C/\/g, ranges
from 8 to 12, and the total bed-material discharge con-
centration ranges from 100 to 1,200 milligrams per liter
for dune flow conditions. For further information
readers may refer to Simons and Richardson (1966).

For dune flow conditions, a record of the bed eleva-
tion as a function of time at a particular location
reveals an alternating sequence of periods during
which either erosion or deposition is occurring. This
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type of record is commonly obtained from the output of
a depth sounder which is at a fixed location and
hereafter will be referred to as the y (¢) record, that is,
the elevation of the bed, y, positive upward, as a func-
tion of time, ¢, at a fixed location, x. When deposition oc-
curs, [dy,(t)/dt]|>0, and when erosion occurs,
[dy, (t/dt] < 0, provided these derivatives exist. An in-
stantaneous longitudinal bed profile may be charac-
terized by an alternating series of erosion and deposi-
tion reaches. An instantaneous longitudinal profile can
be obtained by mounting a depth sounder in a boat, pro-
vided that the speed of the boat is large relative to the
speed of bed forms. These bed profiles will hereafter be
referred to as the y,(x) records, that is, the elevation of
the bed, v, positive upward, as a function of the
longitudinal coordinates, x, at a given time, ¢{. The
longitudinal coordinate will be assumed to increase in
the downstream direction; therefore, the reaches with
positive slopes, [dy,(x)/dx] >0, represent the upstream
or stoss sides of the dunes, and the reaches with nega-
tive slopes, [dy,(x)/dx] <0, represent the downstream or
slip faces of the dunes. The dune crest is defined by a
local maximum in the y,(x) record, and the dune trough
is defined by a local minimum in the record.

Anyone who has an opportunity to observe closely the
movement of sediment is aware that dunes move
downstream owing to erosion from their. upstream face
and deposition on their downstream face. That is, the
bed forms migrate downstream because deposition oc-
curs on the downstream face, where [dy,(x)/dx] <0, and
erosion occurs on the upstream face, where
[dy,(x)/dx] > 0. It will be assumed throughout this report
that no deposition occurs on the upstream sides of
dunes and no erosion occurs on the downstream faces of
dunes. This assumption is not strictly true physically
but is necessary for the determination of the condi-
tional step length distributions. If the assumption is
true, each sediment particle on the stoss side of a dune
must make a step in the downstream direction before it
is deposited on the slip face of any dune. Once deposited
it rests there until the dune has migrated downstream
and it becomes reexposed on the stoss side. In other
words, sediment particles are transported downstream
in an alternating sequence of steps and rests of random
length and duration. The frequencies and magnitudes
of these steps and rests are of basic interest in under-
standing the nature of the movement of the sediments.

Because particles must be eroded from and deposited
on the surface of the bed, the step length of a particular
particle depends only on the elevation from which it is
eroded, the elevation at which it is deposited, the num-
ber of dune crests which it passes before being
deposited, and the scale and shape of the bed surface
(7,(x) record) during the time of its movement. Likewise

the rest period of a particular particle depends on the
scale and shape of the y, (¢) record and on the elevation
at which the particle is deposited. If the bed material
size is not uniform, the elevation of deposition or ero-
sion may also depend on the size of particles because of
vertical sorting.

The intimate relationship between the bed-form
shape, as measured by the y,(?) and y,(x) records, and
the step lengths and rest periods of a bed-material par-
ticle allow the probability distributions of the step
lengths and the rest periods to be estimated from the
bed-form data. In the following three sections, a method
of estimating the probability distributions of the rest
periods, step lengths, and elevations at which a particle
is deposited or eroded using the y,(#) and y,(x) records
will be presented. In the last two sections the bed-
material transport equations and a general two-dimen-
sional bed-material dispersion equation will be derived
as functions of these probability distributions. In the
next chapter the transport equations will be tested
using data from three flume runs and the results will be
discussed.

ESTIMATION OF THE PROBABILITY DISTRIBUTIONS OF
THE ELEVATIONS OF DEPOSITION AND EROSION

The probability that particles are deposited between
the elevations n;and n;,, may be written as

P[nj< YD_<_T]]»+ 1]

number of particles deposited

_lim within the interval (n]., e 1] in time t 19)
t—> oo number of particles deposited ’
over all intervals in time t
where

P[.] = probability;
Y, = random variable describing the elevations at
which particles are deposited;

M,,M,41 = lower and upper class limits associated with
the class mark of the elevation y; respec-
tively; and

t =time during which the observations were
made.
The elevation at which particles are deposited will
hereafter simply be referred to as the elevation of
deposition, Y.

If the number of particles per unit volume of the bed,
), is constant, the flow is stationary (statistical sense),
and both erosion and deposition cannot accur at the
same point at the same time, the numerator and the
denominator of equation 19 can be obtained from the
¥,(t) record. The total number of particles deposited per
unit area within the class interval (n; n;,,] in time ¢,
denoted by N,(y) is given by
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"
+
) =0 Ci=1,2, ..., , 20
Nd(yl) DkElAyJ'k; 1 n (20)

where
y; = class mark for the realization of Yp;
n = number of class intervals for the realization of
Yp;

Ay, = vertical rise of the bed in the class interval
associated with y; for the kth deposition
period; and

m; = maximum number of bed forms contained in
the y,(f) record and which also contain some
deposition in the class interval associated
with y; .

Figure 1 illustrates the class marks, y;, and the verti-
cal rise of the bed, Ay;, within the class intervals,
Ay;, for a typical y.(#) record. It is clear that
Ay# < Ay;=mj,; —m;. The total number of particles
per unit area deposited over all intervals, the
denominator of equation 19, is designated by Njand is
obtained by summing equation 20 over all class
marks:

m.
n n j
_ _ +
N, = ENd(y].)—QZ Eij,k. 21)
i=1 i=1 k=1

Equation 19 now becomes

y, (1)

N . (v.)

_ lim d“j
P[“j<YD§”j+1]'mj—>oo N

. (22)

n
+
YR B
j=1 k=1
Similarly an analysis of the erosion periods can be used
to estimate the probability that particles are eroded
between the elevations n;and 7.,
lim Ne (v i)
m.,»> o N
1 e

Pln<Yp<my, 1=

m'.

i
z AYi k

_ lim k=1
—m'i—> o

(23)

" T [
n

nm,
1
: EAyi,k

i=1 k=1

where
Y, = random variable describing the elevations at
which particles are eroded;
y; = class mark for the realization of Yj;
M;,Mi.; =lower and upper class limits of y;, respec-
tively;

+ -
Bikez i xs2 m
== = —-Thy

ot

Typical erosion
period |

Typical deposition
perio

Ficure 1. — Typical y,(¢#) record illustrating the class marks for deposition and erosion.
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m! = maximum number of bed forms contained in
the y.(¢) record and which also contain
some erosion in the class interval associ-
ated with y; ;

N,(y) =total number of particles per unit area
eroded from the interval (n;, nijt+1] cen-
tered at y; ;

N, =total number of particles per unit area
eroded over all intervals;

n = number of class intervals for Y;; and
Ay, = amount of erosion which occurred during the
kth erasion period in the vertical class in-
terval associated with y; (fig. 1).

In the limit as m;and m; approach infinity for a station-
ary record, the distributions of P[n; < Y, < 7;,,] and
Pn; < Yz=1,,,] must be identical. The elevation at
which particles are eroded will hereafter simply be
referred to as the elevation of erosion, Y.

To repeat, the following assumptions are necessary
for equations 22 and 23 to be valid: (1) Flow is in
equilibrium such that both deposition and erosion proc-
esses are stationary with respect to time ¢; (2) both ero-
sion and deposition do not occur at the same point dur-
ing the same time period; and (3) the number of parti-
cles per unit volume of the bed is constant.

If the measuring equipment were sensitive enough
to detect the movement of single particles, the second
assumption would not be necessary because it would
be physically impossible for one particle to be eroded
and another to be deposited at the same point and at
the same time. For y.(#) records obtained from less
sensitive equipment, of course, the assumption may
not be strictly true. When the bed material is not
uniform in size, equations 20 through 23 are not
strictly true because the number of particles per unit
volume of the bed, (), is a function of elevation due to
a vertical sorting. However, equations 22 and 23
should serve as first approximations to the true prob-
abilities, P[n; < Yp,<m,,,] and Pln; < Yp<m,4],
even for the nonuniform bed material.

If the number of particles per unit volume were
known as a function of elevation, y, assumption (3)
could be dropped. In this case, the counterpart of equa-
tion 22 is

P[n].<YD§n ]

i+l

m,
j
+
o ¥ ay
1i ! 1y]'k
_ lim =
T m, > e m, . (24)
n j
Lo L o
j Vi k
i=1 k=1

in which ) ;is the number of particles per unit volume
of the bed associated with y;. The counterpart of equa-
tion 23 would be similar. The value of ();could be ob-
tained from core-sample segments taken from
different elevations within the bed. In the next sec-
tion, ) will be assumed to be a constant in estimation
of Pln; < Yp<m;;,] and P[n; < Yz =< ;). Because
the bed material was very uniform in size, however,
the assumption should have been very good.

Equations 22 and 23 are estimated by use of the
sample probability mass functions which are defined
to be

N, (y.)

=_4d°J
pYD (y]-) N

= P[T]j <Y< "+ 1] for a large m (25)

- P[ni <Yp<n;, 1] for alarge m; ., (26)

in which Py (y,) is used to estimate equation 22 and
Py (y;) is used to estimate equation 23. Estimates of
the mean and variance of the elevation of deposition
are respectively

n =
Elvpl= ) ypy )
j=1

and 2D

2

n n
~ _ 2 ~
Var[yp] = Z YiPy,, ;) E YiPy, ;)
j =1 ] =1 )

in which E‘\[-] and Var [-] denote estimates of the ex-
pected value and variance, respectively. Replacing the
D’s with E’s and the j’s'with i’s in equation 27 gives the
estimates for the mean and variance of the elevation of
erosion,

The probability density functions for the elevations
of deposition and erosion [fy,(y) and fy(y)] may be
inferred from the probability mass functions [py (¥;)
and py.(y,)] by means of a statistical fitting pro-
cedure. This will be discussed later.

ESTIMATION OF THE PROBABILITY DISTRIBUTIONS
OF THE REST PERIODS

In this study the rest period of a particle is defined
as the time lapse between the burial and reexposure of
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the particle. This definition is consistent with the
assumption that erosion and deposition do not occur at
the same point during the same time period, and it is
also necessary in analyzing single particle measure-
ments because the measurement techniques cannot
detect momentary rests by the particle. Using the
burial definition, the y,(#) record provides a means of
estimating the probability density functions of particle
rest periods conditioned on the elevations of deposi-
tion. The method is illustrated schematically in figure
2, where the statistic {£;,;/=1,2,..,n k=1,2,..,,
m; ; jmeasures the conditional rest period, the index %
signifies a particular bed form. The term m;; desig-
nates the maximum number of bed forms which are
contained in the y,(¢) record and which also contain
both an up-crossing and a down-crossing at the eleva-
tion y;,. This use of the y,(?) record was first suggested
by Hubbell and Sayre (1965) and was partly evaluated
by Grigg (1969).

A relative frequency analysis of the statistic {¢;,}
leads to a sample conditional probability mass function

t, ,¥; = class marks for Tand Yy, respectively;
T »Tasq = lower and upper class limits of ¢, , respec-
tively; and
r = number of class intervals for T.

Equation 25 can be used to release the condition on
equation 28 and to obtain the marginal sample prob-
ability mass function for the rest periods,

n
prity) =Pl <T<t  1=Y" Priy, 4Py, 9):
=1

a=1,2, ..., r (29)

From equations 28 and 29 the corresponding prob-
ability density functions for the conditional rest
periods, fr\y,(t\y), and for the marginal rest periods,
fr (9, may be approximated by means of a statistical fit-
ting procedure.

The mean and variance of the conditional rest
periods are estimated from the sample moments

m. .
of the rest periods which is defined to be . L )
) . EIT\Yp =yl = 7— TR
pT\YD“a\yj)‘P[Ia<T§‘a+1\“j<YD§”j+1] ‘ . N el
an Ao
i=1,2, ..., ma=1,2, ..., r , (28 VarlT\Y} = y,] > (30)
m m. . 2
J.J I/
where _ 1 w0 2- | L ¢
T=random variable describing the rest T om,; j. k m. . : ik
. 7] k=1 1.1 k=1
periods; )
yx(t)
A
y | T T T T T TN T T T Ty 77n+1
R B R Mt T)n
TIME OF BURIAL IME OF RE-EXPOSURE
AND MOVEMENT
) ;) Stk snimbohuh, N ———————— g S o b ————— +1
=S s — 7l
—————————— [ Qi R P RIS, N e o - ——— ———— ———————— —— — —— — ——— ———————— - —————/——nz
NET—— .~ g g S )
tik ik
o—1 —t

FiGurEe 2. — Typical y,(¢) record illustrating the conditional rest periodsof a particle.
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Estimates of the mean and variance of the marginal
rest periods are respectively

ZE[T\Y y]py ;)
j=1
and ¢ (31)
varlT) = E(T%] - (T2, )
in which
A 2 _
1% = E ET\v, = ylpy o)
j=1
m. .
1 i )
. t. )V'p, W)
— k' Py

The joint probability density function of 7 and Y},
denoted by fTY (t,y) is estimated from the sample joint
probability mass function defined to be

pT,YD(ta’yj)= Plt, <T<t, .. N <Yp Sﬂj .11 32

wherej=1,2,..,nanda=1,2,...,r. From equations
25 and 28, Py YD(t,,, ¥;) is completely determined such
that

(33)

pT, YD (t(‘l' y]) = PT\ YD (ta\y]) pyD (y])

Finally the correlation coefficient between T'and Y, is
estimated to be

) E[TY,] - EITIE(Y))
Pry = = = . (34)
YD WarlT] \/\/ar[YD]
in which
ElTYp) Z Zt YiPr,y Y

a=1j=1

E[YD] and Var [Yp] are given in equation 27, and E(T)
and Var [T] are given in equation 31. The joint dis-
tribution expresses the relation between the rest period
and the elevation of deposition and the correlation
coefficient measures a degree of linear association be-
tween the rest period and the elevation of deposition.

If the shape of the y,(¢) record is dependent on the
flow conditions and bed-material properties, then the
rest period statistics as determined by equations 28
through 34 are also functions of flow conditions and
bed-material properties.

In summary, the probability distribution for the
marginal rest period of a sediment particle, the rest

period conditioned on the elevation of deposition, and
the elevation of particle deposition and erosion can all
be obtained from a continuous record of the bed eleva-
tion at a single point as a function of time. The only
assumptions that are needed are: (1) Both erosion and
deposition do not occur at the same point at the same
time; (2) bed elevation is stationary (in the statistical
sense); and (3) the number of particles per unit
volume of the bed is constant. These assumptions are
not severely restrictive, and the results are equally ap-
plicable to both field and laboratory analysis.

ESTIMATION OF THE PROBABILITY DISTRIBUTIONS
OF THE STEP LENGTHS

The y,(¢) record contained the information necessary
to estimate the probability distributions of the rest
periods. Both the y (¢) and the y,(x) records are neces-
sary to determine the step length statistics. Unfor-
tunately, more assumptions are also necessary and
these assumptions may be considerably more restric-
tive than the ones made up to this time.

As previously mentioned, it will be assumed that each
sediment particle on the stoss side of a dune makes a
step in the downstream direction before it is deposited
on the slip face of any dune. Once deposited it rests
there until it is reexposed on the stoss side. Let E; ; ,be
the event that a particle, eroded from elevation, y;, of
the stoss side of a dune, passes v dune crests before it is
deposited at elevation, y;. Then the statistic {x;;,;;
ij=1,2..,nv=012..;k=12..,m,) (fig 3)is
the measure of the conditional step length of the event,
E;;,. The term m,;, represents the total number of
possibilities of the event E, ;, contained in the y,(x)
record and the index % specifies a particular possibility.
In general, the term m; ; , will be different for each com-
bination of values i, j, and v.

A frequency analysis of the statistic {x,;,,} gives a
sample conditional probability mass function which is
defined to be

\V..¥.,V
Pxvyp vy E e dyY)
PGS X < A, (<Y <ny g < Yp < E L
B=1’2' , S; l,j,=1 2[ ln,'\):l, ,(35)
where

X=random variable describing the step
lengths;
xz = class mark for the realizations of X;
= lower and upper class limits of x; , respec-
tively;
s = number of class intervals for the realiza-
tions of X; and

)\ﬁ ’ )‘B+1
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y,(x)
X1,i,2,k
iydlyK Xiyiyl k41
e
W
Y
| S—
Xi,j,2,k41
Xiyi,3,K
Xiy1,9,K
0 A X
FIGURE 3. — Statistic, {x; ok ,j=1,2,..,mv=1,2..,k=12,.., m; o) for the step length of a particle.
E, = event that a particle passes v dune crests | in which
before it is deposited (fig. 3). L.
The corresponding probability density function, 1 2 _pixly = =
. . E (xi,j,v,k) =E[X Y=y vy Y EV].
fx\vg, vp.£,(x\Y', 3,0), LV k=1

may be determined from

Px\vg,vp.E,(%s\Yi, ¥, V),
and its mean and variance are estimated to be

i )
ELXO\YE =y Y =y E ] Exl]vk
=N Voo
and
Var [X\YE='yl., YD:yj'Ev] Y (36)
MV M,y 2
L s Lo
11V= l]\lk ml.],Vk=111Vk

If Yz, Yp, and E,are mutually independent (it seems
to be reasonable that after a particle passes the crest of
a dune it has probably lost track of where it came from),
the density function [fx\y, g (x\y,v)] of the step
lengths given that a particle is deposited at elevation y
after passing v dune crests is estimated from the sam-
ple conditional mass function which is given by

pX\YD'EV(DCB\y]-,V)
=P[7\,'3<XS7\.G+1\T]]-<YD§T]].+1, Ev]

E X\Y Y E (xp\y Vi V)PYE(y.) (37)
i=1

in which py(y)is given by equation 26. The mean and
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variance of the step lengths of a particle which is
deposited at y; after passing v dune crests are estimated
to be

EDX\Y) =y, E ]
n

= ) Elwvg =y, Yp=ypE ey ).
i=1

~N

and > (38)

Var [X\YD = yj’Ev]

_ Ay _ _ a4 _ 2
=E[X \YD—yj,Ev] (B[X\YD—yj,Ev]) ,

in which

Aro2 _
EXA\Y, =y, E ]

n
A 2 _ _
= E ElX \YE =y Yp= yj,Ev]pYE(yi)
i=1
Likewise, the following sample probability mass func-

tions and corresponding means and variances are ob-
tained;

Py\ Y, (xp\y}.) 3
]

=Pl <X<g \n<Yp<ni,

p

oo

- L Px\vp.E 5\ VIPIE]

v=1
(-

EX\Yp=yl= ) ED0Y, =y, E IPIE]
v=1

»(39)

Var vy =yl
=| Y ExAy, - ¥ B IPIE |- EIX\Y)) = y}.])z ;
v=l1 /

W

pX\EV(xﬁ\v) =Plag <X <hg, \E]

n
E EX\v, =yj'Ev]pY
j=1

EIE,] S0P Yo

Var [X\Ev]

n
R I @ 2
=1} Eix Yp =y E ey |- El0ED
j=1

/

and
pX(xﬁ) =P[)\B<XSKB+1] 3

= : px\‘E (xB\V)P[EV]

v=1 v
Ex1= ) EDAE IPIE ] > (41)
v=1
varxl =| ) BB IPIE |- ElxD?.
v=1 J

The density functions, fx\ y,(x\), fx\g,(*\v), and fx(x)
are estimated from equation sets 39, 40, and 41, respec-
tively.

The joint probability density function of X and Y,
conditioned on the event E,, [fx,y,\g,(x, y\v)] can be
estimated from a sample joint probability mass func-
tion,

PX,Y\E, (xg ¥;\V)

=PIy <X <hg,pmy<Yp <y +1\E,] 42)

B

and

Px, v \E, X\ V) = Pxyp B B\ Py B O\ Y)
= px\YD'Ev (xp\yj, V)PYD (y]) . (43)

Note that py,\g, O;\v) =py (%) because Ypand E,
were assumed to be independent. The correlation coeffi-
cient of Xand Yp, conditioned on the event E_, is then
estimated to be

) EIXY\E ] - E[X\E JE[Y ]
Px,Y \E ~ ‘
b™v s/Var [X\Ev] War [YD]

(44)

in which

E[XYD\EV]

8 n
= E xﬁ{zyipX\YD'Ev (xp\yj,v)pYD (yj)} . and

p=1 \j=1

B(Y,), Var [Yp], BIX\E,), and Var (X\E,] are given
by equation sets 27 and 40. Similarly, the joint prob-
ability density function of Xand Yp, [fx v (%, )] and the
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corresponding correlation coefficient, p Xy, are esti-
mated to be

p (xn,y,) = (x\y.)py (¥.) 45)
XY, BV Px\y g Py Vi
and
E[XY,] - EIXIE[Y,]
p = D b (46)
X¥p  Warixl Warlyp]
in which
S n
E[XYD] - lex[; zlyij\YD (xB\yj)pYD (yj)} )
= 1=

The joint distributions (eqs. 43 and 45) express the rela-
tion between the step length and the elevation of
deposition, and the correlation coefficients (eqs. 44 and
46) measure the degree of linear association between
the step length and the elevation of deposition.

The American Society of Civil Engineers (Task Com-
mittee on Preparation of Sedimentation Manual, 1962)
defines bedload as that material moving on or near the
bed. Accepting this general definition, it would appear
consistent to count any sediment particle which was
able to skip across a dune trough as suspended load,
since it would be extremely unlikely that a particle
would be able to pass the trough while moving on or
near the bed. A very precise, and admittedly restrictive,
definition of bedload is used for the purpose of this
report. For the purposes of this report, bed load is
defined as that part of bed material which is deposited
on the downstream face of the dune from which it is
eroded. Then the suspended load must be that material
which is not deposited on the downstream face of the
dune from which it is eroded, that is, all sediment parti-
cles which pass two or more dune crests before being
deposited. The same particle could be counted as
bedload during one step but as suspended load during
the next step. By definition then, it follows that
P[E,] = probability that a particle is transported as the
bedload; and

1-P[E]= 2 PIE] =
v=2

probability that a particle is transported as the sus-
pended load during any step. The probability distribu-
tions and moments for the step lengths of a bed-load
particle may be obtained by putting v =1 in the sets of
equations 35 through 40 and 42 through 48.

For a bed material composed of coarse sand it seems
reasonable to assume that all particles are transported
as bed load, that is, all particles eroded from the stoss
side of a dune will be deposited on the downstream side

of the same dune; and therefore, P[E] =1, and
P[E,] =0 for v= 2. For this case, a frequency analysis
of the statistic {x;;,,; .Jj=1, 2, .., n; k=1, 2, ..,
m;;,; v=1} gives a sample conditional probability
mass function which is defined to be

p (x,\Y,.¥.)
X\Yp. Y, B iy
=P <X<hg g\ <Yp<ng, oM <¥p<ng ol

p=1,2, ..., s 7

i,j=1,2, ..., n .
The corresponding probability density function,
fx\yg vp @\y',y), may b.e approxin‘lat‘ed from
Px\vg,vp(%s\y;,y;). Denoting the statistic {x;;,,;
Lj=1,2,..,k=1,2,..,m;;,;v=1] simply as |x; ;,;
j=1,2..,n k=12 .., m (fig. 3), the corres-
ponding mean and variances are estimated to be

m. .
) ] N
EIN\Yg =y, Yp=yl= 5= i,k
i,] - !
k=1
and
var [X\Yp =y, Y=y > (48)
M, "] 2
1 2 [ 1 :
o : ;1) o %,k
L] k=1 L] k=1 J

The term m, ; represents the total number of bed forms
in the sample for which the upstream side intersects
the elevation y; and the downstream side intersects the
elevation y;. In general, the term m,; will be different
for each combination of values of i and j (fig. 3).

Based on the statistic {x; ;,} and assuming that Yy
and Ypare mutually independent, the probability den-
sity functions, fy\ RCA ¥, fx(x), and fy YD(x, y) as well
as the corresponding moments are estimated by setting
P[E,] = 1in equation sets 37, 38, 39, 40, 42, and 44.

Since the bed-form shape and rate of movement are
dependent on the flow condition and bed material prop-
erties, it should be clear that equations 35 through 48
are also functions of the flow condition and bed
material properties. The statistic {x; ; ,} will be analyzed
later to estimate the various probability distributions of
the step lengths for a coarse sand for three different
flow conditions.

Summarizing this section, the step length distribu-
tions can be estimated by combining the information
contained in the y,(# and y,(x) records. Additional
assumptions are required however. These are: (1) No
deposition occurs on the upstream sides of dunes, and
no erosion occurs on the downstream faces of dunes;
and (2) the elevation of particle erosion, Yz, the eleva-



14 STOCHASTIC ANALYSIS OF PARTICLE MOVEMENT OVER A DUNE BED

tion of particle deposition, Y}, and the event that a par-
ticle passes v dune crests before it is deposited, E,, are
mutually independent. The first assumption may not be
strictly true especially, due to flow separation, in the
neighborhood of dune trough where both deposition and
erosion may occur at the same point. For dune flow con-
ditions, however, laboratory observation shows that
such an area is small enough that the results should be
applicable without an appreciable error. The second
assumption seems to be reasonable because as a sedi-
ment particle passes a dune crest it likely loses the
memory of where it came from. Estimation of P[E,]
would not appear to be a simple task. However, for a bed
material composed of coarse sand, the assumption that
all particles which are eroded from the stoss side of a
dune will be deposited on the downstream side of the
same dune seems to be reasonable.

BED-MATERIAL TRANSPORT EQUATIONS

The mean transport speed of a bed material particle,
Vr, is estimated to be

vV = Total distance traveled by a particle after m steps

T Total time required for a particle to make m steps

mE[X] _ E[X]
mé[T]

E[T]

n
E[X\Y_ =y. )
);l DYy =ylpy )
= ]— for a large m
EE[T\Y -y]pY v))
j=1

(49)

in which /VT denotes an estimate of the mean transport
speed, Vp,

£ - ffﬁ

:1 i=

m. .
1],V

L

k=1

*ijv.k
1] v

pYE (v;) pYD (y]-) P[E, ]

and
) no| o, T
T = _—
BT = ) lme L G| Py 9
j: ]’] k = D

In equation 49, the duration of particle movement is
assumed to be negligible compared to the rest period.
This assumption will be used throughout this section.

The mean transport speed could also be estimated to
be
n A -
_ E(X\Yp, =y

n (50)
j=1 EITM\Yp= y;l

pyD (¥;)

where /1\771 also estimates the mean transport speed of
a bed materlal particle. In general it can be shown
that ¥ # V and the results of this study will indicate
that . Now the question is: Which one will
give the better estimate of the mean bed material
transport rate? The difference between the two equa-
tions is the manner in which the events are averaged
or weighted. So, in order to answer the question, one
must depend upon physical arguments and reasoning.
In equation 50, the average speed of a particle at each
elevation is weighted by the number of particles with
this speed. Equation 50 gives the best estimate of the
arithmetic mean of individual particle speeds. On the
other hand, equation 49 computes the estimate of the
mean particle speed as the total distance traveled by a
number of particles divided by the amount of time re-
quired to transport the same number of particles. In
other words, the center of mass of a group of particles
is translated through a distance,

n
> RIX\ Y=y py, 3
Jj=1
Py
Equation 49 will be used in this section because it is
based on a mass flux concept and it gives an unbiased
estimate of the mean sediment transport rate. The
mean particle speed given by equation 50 will be useful
in the study of bed material dispersion because it is
based on individual particle speeds.

Defining the bed load and suspended load as given in

the previous section, the mean transport speed of a bed-
load particle, Vj, is estimated to be

in time,
E[T\Yp =y pyD(yJ)

) é[x\Ell
vo-— L G
B g1
where i\/Bis an estimate of V3 and
ElX\E)] = E E o xmxk
j=1i=1 I =1
(v.)

pv (¥))p
YE i YD j

Similarly, the mean transport speed of a suspended load
particle, Vg, is estimated to be
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E EAI[X\EV]P[E\,]

Vo= Av—Z _v=2 _ . (52)

B(T] E PIE,]
v=2

where
V5 = estimate of V;

U2 E, = union of event, E,, for v = 2.
b=

EIX\E,]is given in equation 40. Note that

\
p E PIE,] =
v = l v=1
and
o > (53)
N E X\E ]P(E ]
- E P(E ]
v=2 p
Using equations 49, 51, 52, and 53,
. [X\E ]1P[E ]
. EIX\E|] ; BT
VT= — P[E ]+ -
E[T] E[T]
= VgPIE ] + V Z P(E ]
v=2
= VgPIE|] +\?S(1 - PE))) (54)

If all bed material particles have identical transport
characteristics, which is reasonable for uniformly sized
bed material, the mean total bed material discharge is
obtained by use of the continuity concept,

éT=ys(1 - 0)WhV (55)

T °

where
Q7= estimate of the mean total bed material dis-
charge in weight per unit time;
v . = specific weight of the bed material;
© = porosity of the bed;
W = width of the channel;
h = average depth of the zone in 1 which bed material
movement occurs; and VTlS given in equa-
tion 49.

Similarly, estimates of the mean bed-load discharge
and suspended load discharge are, respectively,

Qg = ys(l - e)WhVBP[Ell , (56)

and

Qg =7v,(1-8)WhV (1-P[E] (57)
where QB and ﬁsare given in equations 51 and 52,
respectively. From equations 54 through 57,

07 =05+ Qs - (58)

Although equations 55, 56, and 57 have the form of a
continuity equation, the concept of continuity applies
only in a statistical sense, because particles move only
when they are exposed on the stoss side of a dune or
when they are in suspension. Hubbell and Sayre (1964)
proposed that the average depth of the zone of bed
material movement, A, be estimated from the y,(x)
record. For this method, the length of the reach for
which A is to be determined is divided into sections.
Starting from the upstream end, each section of length
£ extends from the dune trough at which the section
begins to the first trough downstream that is deeper
relative to a line parallel to the plane of the mean bed
surface. After sectioning, a mean depth of sand above
the projected line for each section, 4;is determined, and
the & for the total reach, L,, is computed as the
weighted average of the A;’s for each section. Expressed
mathematically,

=1+ ZQh (59)

i=1

The reasoning behind the procedure is based upon the
assumption that although the individual dunes may
change shape as they progress downstream, a statisti-
cal constancy of form exists over a long reach. Hence,
quantitatively the particles subject to movement are
those that would move if the entire profile were to
progress downstream without changing form, and the
depth of bed material movement is defined by lines that
are parallel to the mean bed surface and extend
downstream from the deepest trough.

If all bed material particles are assumed to be
transported as the bedload,

éT =Qp=v,0-0)WhV , (60)
where /I\/B is determined from equation 51. For coarse
sand P[E] is expected to be very close to unity because
the suspended load is negligible compared to the bed
load. For a fine sand for which P[E,] #1, equation 60
would give only an approximation to the total load.
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Equations 55, 56, and 57 can be used with measured
¥.(t) and y,(x) records to compute the various transport
rates. However, in order to apply the equations to the
prediction of the bed material transport rate where the
%(t) and y,(x) records are not available, the relations,
E\X\Yg=y, Yp=1y,E),

E[T\ Y, =yl, PIE), py (yj) Py,(¥), and h, to perti-
nent hydraulic and sediment parameters must be
established.

The mean transport speed of bed material particles
deposited at elevation y;, which is denoted by Vi{(;),
(more precisely, deposited between the elevations m;
and 7, , centered at y;) may be estimated

E[X\Y_, =vy.
Vo) = __A[\_D”Jl , 61)
EIT\ YD = y]]

where QT () estimates V. (j),

‘T L+

=1 i=

m

i.j,v

Z X iov.k| Py OPPIES .
i,j.v k=1 E

and

E[T\Y, = yj] =

m. .
L
m. . Z tj,k )
I =

Based on equation 61, another transport equation can
be developed as follows. Let §; denote the percentage of
volume between elevations 7m; and 7;,, occupied by

y,(x)
)

dunes over a given reach; then, ; can be estimated
from the y,(x) record (fig. 4),

5ok Do

where L, is the total length of y,(x) record, and A;, is
defined in figure 4. Applying equations 61 and 62, the
mean total bed material discharge can be expressed as

(62)

n
Q=1 -0w ) ViGayg,
j:

nooa
E[xX\Y, =y.]
=y(1—e)wE—————l—A D Ay & , (63)
iz1 E[T\Y}, = y].]
wherg\
Q7 = estimate of mean total bed material dis-
charge; and
Ay; = nonstandardized class width associated with
elevation y,(Ay; =7, — ).

Equation 63 takes into account the local variation of
the depth of the zone of bed material movement with
respect to the elevation of deposition, and demonstrates
to what extent each elevation contributes to the total
transport rate. Similarly, the mean transport speed of a
bed-load particle deposited at elevation y;, which is
denoted by Vg(j), can be estimated from equation 61 by
considering P[E;] =1 and P[E)] =0 for v=2. It can
be shown, of course, that equations 54, 56, and 57 also
apply at each elevation jas well as to depth-averaged
values.

o+——sx

» FLOW
Mt Moo N3 Na N Ne, MNa Ne Ne
e R e e =~ —— oMU
BYi=M~ "
Lx

. . . 1
FIGURE 4. — Method for estimating the percentage of volume occupied by dunes between elevations 7 jandn;, ;€= L S A
X

k
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The third method to compute the mean total bed
material discharge is based on the following reasoning:

Number of particles Weight
QT = deposited per X per

unit time and area particle

Mean distance Width
x | traveled by |x of (64)
a particle channel

where Qris the mean total bed material discharge in
weight per unit time. Restricting the attention to eleva-
tion y;, the terms in equation 64 are estimated as
follows:

7
l:Number of particles deposited per]

unit time and area at yj
m,
] +
Q. Ay.
Py Ak
- k=1
L

t

’

> (65)
Weight per particle
at yj

Mean distance traveled by a particle
which is deposited at elevation yj.

=B\ =yl L)

where L, is the total length of y,(¢) record, and all other
symbols have been defined previously. Summing the
product of the terms in equation 65 over all elevations,

m.
.o a-ew L, I,
wo _S =
o= p— ) {Eyp=y1 ¥ Ay, | ¢ (66)
j=1 k=1

where

¢ = estimate of mean total bed-material discharge;

and

W = width of channel.

Equation 66 also illustrates the contribution of each
elevation to the total transport, but its primary distinc-
tion is that the transport rate is computed from the
sounding records with a minimum number of computa-
tions.

The relationship between the three transport equa-
tions, 55, 63, and 66, will now be demonstrated. First,
the comparison of equations 55 and 66 is demonstrated.
Combining equations 22, 25, and 66,

n
L T l-ew , Ng
Qr = —"77——‘ E {E[X‘YDzyj]pYD(yj)W}
=1
T U - B)WN,
= E[x] . (67)

t

Multiplying and dividing by the marginal rest period
and utilizing equations 20, 21, 25, 30, and 31,

o - Yo - OWN 4 1y
n L 0 < .
: me Z t],k -ﬁ; E Ay],k L. ,(68)
=1\ k=1 k=1

As the value of Ay decreases the value of the last
term can be approximated without appreciable error, as

m,
J

+

Ay, 2 m.Ay.
Z Yiok T MY
k=1

(69)

Strictly speaking m;Ay; is equal to or slightly greater

than the term
m.

+
2 oo

(fig. 1). Assuming a long record with small vertical
class intervals such that equation 69 is valid and such
that m; = m;, equation 68 reduces to

ﬁ[X] n Ay . mf

An = _ ]

Qp=rgu-ow= Y = Y (T0)
E[T] i1t 1

which would be equivalent to equation 55 provided that

the average depth of the zone in which bed-material
movement occurs, /' is defined by
m,
n ]

(71)

Equation 71, is similar to equation 59 except that it is
based on the time record of depth, y,(¢), while equation
59 is based on the longitudinal profile, y,(x).

To investigate the relation between equations 63 and
66, we proceed as follows. The last term of equation 66
can be approximated without an appreciable error, as
m; Ay;using equation 69. Replacing the last term by its
approximate value, and multiplying equation 66 by the
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right-hand side of equation 30 while dividing by the
left-hand side,

Qu=y (1-0)W
n (2 "ji
E[IX\Y,=y.] m, Ay,
IR e R A
i1 E[T\YD=yj] JJ tl =1

The number of bed forms contained in the y,(#) record
and which also contains some deposition in the class in-
terval, m;, should be almost equal to the total number of
bed forms with both an upcrossing and a downecrossing
in the interval, m;. Assuming m; = m;;, equation 72 is
identical to equation 63 except that the percentage of
the volume in the class interval occupied by dunes is
computed from the y,(¢) record instead of from equation
62 which is based on the y,(x) record.

In summary, three transport equations have been
presented, equations 55, 63, and 66. Although the equa-
tions appear quite different in form, they are all based
on similar assumptions. As the record length becomes
long and the class intervals reduce to zero in the limit,
the three equations would become identical provided
that either the y,(¢) record or the y,(x) record could be
used to determine the active depth. (This should be true
for equilibrium flow.) In the following section, the total
load will be computed for three flow conditions using all
three equations, and the results will be compared.

GENERAL TWO-DIMENSIONAL STOCHASTIC MODEL
FOR DISPERSION OF
BED-MATERIAL SEDIMENT PARTICLES

Let us define the following stochastic processes:
N(@)

X =3 X, =longitudinal position of a bed-
i=0 material sediment particle at
time ¢ in which X (0) = X, = 0.

N() = counting process describing number of steps
taken by a bed-material sediment particle
in time ¢.

X, = length of ith step of a bed-material sediment
particle.

X(n) = 2 X; =longitudinal position of a bed-
=1 material sediment particle after

n steps.

Y (&) = vertical position of a bed-material sediment
particle at time ¢.
Yp(n) = elevation at which a bed-material sediment
particle is deposited after n steps.

The probability that the particle has, at time ¢, traveled
a distance equal to or less than x and that it is located at
an elevation equal to or less than y may now be ex-
pressed as the joint distribution function

F(x,y;t) =P[X(t) <x, Y(t) <y]

zp[x <x, Y() <y, N(t) =n] .(73)
n=20

Using the definition of conditional probability and

assuming that the duration of the particle movement is

negligible, equation 73 can be restated as

Y PIXm) <x Y <y N@ =nl

n=20

F(x,y;t) =

o0

Y PiXm <x N@ =niypm) <yIPIY, () <)
n=0

f}\)
ymin

) PIX(m) <x Nt
n=0

=n\Y,(n) = y']fYD (n) (y") dy' (74)
where
Ymin = lowest elevation of deposition; and
fYDm)(y) = probability density function of Yp(n).

The event, {N(f) = n }, can be expressed in terms of the
rest period of a bed-material sediment particle

(N@) =n} ={T(n) <t YT +1) >t} (75)

where
{+} = events;

ﬂ = intersection of events;

T(n) = En, T;; and

i=1
T, =random variable describing the duration of
ith rest period of a bed-material sediment
particle.

By virtue of equation 75, it follows that

P[N(t) =n] =P[T(n) <t, T(n+1) >1t]

=PIT(m) <t, T ,>t-Tm] .(76)

For further simplification of equation 74, the follow-
ing assumptions are made: (1) X(n) and N(¢) are
mutually independent for every n. (2) X;for i=1 are
independently and identically distributed according to
the probability density function fx(x), where
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0 < x < oo. Outside this range, fx(x) = 0. (3) X;is inde-
pendent of Yy (j) fori #;.(4) Yp(?) for i = 1 are indepen-
dently and identically distributed according to the prob-
ability density function fy (y), where Yy < ¥ < Yoy
Outside this range, fY (y) =0.(5) T;for i = 1 are inde-
pendently and 1dent1cally distributed according to the
probability density function f;(f), where 0 =< t¢ < oo.
Outside this range, f7(¢) =0. (6) T,is independent of
Yp(j — 1 for i #j. In other words, assumption 1 states
that the total distance X(n) traveled by a sediment par-
ticle after n steps should not depend on which time in-
terval within [0,#] that these n steps occurred. The step
lengths are always positive so that the particle always
moves in downstream direction (part of assumption 2).
Each step length depends on the elevation at which the
particle is deposited at the end of that step (assumption
3). The elevation at which the particle is deposited at
the end of any step does not depend on the elevation at
which it was deposited at the end of any previous step
(assumption 4). Finally, the duration of each rest period
depends on the elevation at which the particle was
deposited at the end of the previous step (assumption
5).
Utilizing assumption 1, equation 74 becomes
y

Fx,y: 1) =I Z (PIX(0) <x\Y(n) = y']

ymin n=0

- P[N(t) = n\Y(n) = y']fYD (n) (y') Ydy'

Yy
=f PIX(0) <x\Y[(0) = y']

Ymin

PINGW = 0V, (0) =¥y (g) )4y
f z (PIX () <x\Yp(n) =y']

n=1
Ymin

- P[N(t) = n\Y (n) 77)

=y'lf (y') }dy'
Y, (n

Under assumptions 2, 3, and 4, and using the concepts

of joint and conditional probability,

P[X(n) <x\Yp(n) = y'l

=P[X(n-1) + Xn S_x\YD(n) = y']

= f _ (xl\yl)dxl
JO‘ X(n-1) +Xn\YD(n)

X
- a ] fxin- 1, x v (m &% 5D dE
0 0 "

and using assumptions 3 and 4,
P[X(n) < x\Y,(r) =y']

X x!
[ ax g @hgy - B
D
0 0
x x' (n - 1)
=I dx‘f fx(g) vy (x' - L\y")dg (78)
Mp
0 0
in which
n-1
X(n-1) = : X; o Xg=0,
i=0
(n-1)
Ixtn-1® = 1x®
S (n-2)
=ffx(9) fy(£-0)de ; n=3,4,5, ...
0
and
n
f(€) =fy) ; n=2 (79)
In equations 78 and 79, fy, 1 x\yym@x —{\Y)

denotes the joint probability density functlon of

X(n — 1) and X,, conditioned on Yp(n), fX (C ) is the
(n —1)-fold convolution of the probability density func-
tion for the length of a single step, and it is equal to the
probability density function for the distance traveled by
the particle in (n —1) steps, and fx\ ypx \) is the con-
ditional probability density function for a single step
length given that the particle is deposited at elevation y.

Turning now to the other part of equation 77 and
using equation 76 and assumptions 4, 5, and 6,

P[N(t) = n\YD(n) -_—yl]

=P[T(n) <t, T, >t-TmN\Y, (n) =y]
t oo

) ff fT(n) T VY (n) (t', t\y') dudt’
0t-t +1'°D
t oo

) ' ') dedt!
ff IfT(n) (t)an+1\yD(n) (t\y) T
0 t-t
! (n)

t-t
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in which
n
=) T
i=1
(n) n - 1) b
frmy ) = fpt) = f t' - 0)de
n=2, 3, 4, , >(81)
and
(n)
fr Y =fp 5 n=1. J

In the above, T, ,,is the random variable describing the
duration of the (n+1)th rest period of a particle,
fron Toei\ YD(n,(t ,7\y’) is the joint probability density
function of T(n) and T,,,, conditioned on Yj(n),
friy.(t\3) is the conditional probability density func-
tion for the duration of a rest period given that the par-

(n)
ticle was deposited at elevation y, and f{(#) is the n-fold
convolution of the probability density function, f(z), for
the duration of a single rest period and is equal to the
probability density function for the duration of n suc-
cessive rest periods.
Similarly, the terms for n = 0 in equation 77 become:

P[X(0) <x\Y(0) =y'] =1 (82)
because X(0) = X;=0and 0 =< x < o0,and
PIN(t) = O\Y,(0) = y'} = P[T, > 1.Y,(0) = y']
(83)

=ff\ Wyt
t T\YD

where T is the random variable describing the dura-
tion of the first rest period in time ¢ It is important to
note that the initial condition, X(0) = X, =0, implies
that the particle starts its first rest period at ¢t = 0.

Introducing equations 78, 80, 82, and 83 into equation
71,

Flax,yit) = f Iy, <y>dyf Fryy, W)
ymln

y x'

- [ fy(y)dyz fdxf

Ymin n=1

(n-1)
fx (8)

! (n)

fX\YD (x' - g\y")dg 'ffT(t') dt'f I'T\YD (t\y') dr |.(84)
0 t-t

The first term of equation 84 represents the joint prob-
ability that the particle has not moved from its initial
position and that its initial elevation is equal to or less
than y, and it is not a function of x. Hence,

o2 o2 ¢
nd . = t !
3x3y e300 5255 | fy &y
Ymin

f (t'\y')dt' =0
[ T\YD

The corresponding density function is therefore

2
flx,y:t) = 3x3y F{x,y: t)
oo X
(n-1)
=fy, (y) f, &) . (x - §\y)dg
Y, : f X X\Y,
n=1\0
t oo

,ff(r(t) 4
t') dt'
o T

If a large number of identical particles are initially at
rest at x=0, y=y, equation 85 expresses the
longitudinal and vertical distribution at time ¢of the
particles which have moved from their respective in-
itial positions. It should be noted here that flx,y; ¢) is
not a true probability density function because

fwfm

yl'l'lll’l
That is to say, equation 85 applies only after the parti-
cle has moved from its initial position. The expression
flx, ; ©) does not exist for x =0. )
If we assume that X;is independent of Yp( ) for all i
and j and drop assumption 3, equation 85 reduces to
equation 8,

f fry @ydo .(85)
) . T\ D

X

flx,y;t)dy =1-P[N(t) =0] <1 . (86)

fle,y; t)
(n)

—fY y)EfY(x)ffT(t')dt'f

t-t

f. (t\y)dr, (8)
Y,

n=1

which is the Sayre-Conover (1967) two-dimensional
stochastic model. The difference between equations 85
and 8 is that equation 85 takes some of the dependence
between X and Yj into account whereas equation 8 is
based on the independence of X and Yj. Hence, the
Sayre-Conover model is a special case of equation 85.
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The marginal case of equation 85 gives the
longitudinal distribution at time ¢ of the particles which
have moved from their initial positions. Integrating
equation 85 over y,

max (n-1 (n)
fn= [ fleyiody = E ffx<c>d§ffT<t'>dt'
n=1
Ymin
L ymax

f dr f fX\Y (x - §\y')fT\Y My fy v)dy' .(87)
, D D D
t-t Ymin
By virtue of assumption 1,
Ymax

f (x - E\y") f oy fy (y)dy'
X\Y, Ty, Oy

ymin
Y max
-f e - g0y fy (Y)ay'
X, T\Y, b Y,
ymin

Substituting equation 88 into equation 87 and rear-
ranging terms

(n-1)

E ffxtc) fxx Qdg
n=1
t)dt'f fr )

t-t

flx; t) =

Because

(n-1)
j‘fx(c) fy b - g)ag = fx(x)

and from equation 76,

t

P[N(t) =n] = (89)

(n)
(t") dt' f fT (t)dt
t-t

Meanwhile, equation 75 can be restated as
{N@) =n} ={T(n) <O {T(n+1) >1)
={T(n) <t} -{Tn+) >t

={T() <t} -{T+1) <)

where {T(n+1) > t}c denotes the complement of the

event {T(n+1) > t}. Because {T(n+1) < ¢} is a sube-
vent of {T(n) < t}, it follows that

P[N(t) =n] =P[T(n) <t] -P[T(n+1) <t]
t

f qunt))dt' - f

From equations 89 and 90, we have the marginal prob-
ability density function,

= (n
Y re@PIN® =n)
n=1

(n+1)

(") dt' . (90)

flx;t) =

= ! (n+1)

Z fX(x) f ) - fp) [att . (91)
n=1 0
Equation 91 is identical to the Sayre-Conover (1967)
one-dimensional stochastic model which is given in
equation 10. As with equation 85, here also flx;?) is not
a true probability density function because

f flt)de =1- PIN(1) =0] <1,

where P[N(#) = 0] is the probability that the particle
has not moved from its initial position.

In order to apply equations 84 or 85, the probability
density functions fY (), frayy(E\y), and fx\y,(x\y)
must be known. These density functions are estimated
from equations 25, 28, and 39. The probability density
functions f;(¢) and fx(x) are determined by the rela-
tions

y

max
fr = f fT\yD (l\y)fYD (y)dy (92)
ymin
and
ymax
fo(x) = fs (x\y)f, (y)dy (93)
X f X\ YD YD
ymin

where y,;, and y,,, are estimated from the y,(¢) record.
Equations 92 and 93 are the continuous forms corres-
ponding to equations 29 and 40 (or 41), respectively.
With fr(f) and fx(x) determlned the corresponding

convolutions, fT (t) and fx(x) are determined from equa-
tions 81 and 79, respectively.
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ANALYSIS AND DISCUSSION OF RESULTS
EXPERIMENT AND BASIC DATA

Three dune runs were made in a tilting recirculating
flume of rectangular cross section, 61 m long, 2.4 m
wide, and 1.2 m deep. The flume has been described in
detail by Williams (1971).

The bed material used in these experiments was a
screened river sand (Cherry Creek sand), with a med-
ian sieve diameter, d;) =1.13 mm, and a geometric
standard deviation, 0, =1.51. The size distribution,
shown in figure 5, was obtained by a sieve analysis of
3,000 grams of bed material.

After an equilibrium flow, as defined by Simons and
Richardson (1966), was established, the y.(#) and y,(x)
records, the total bed-material discharge, and the hy-
draulic properties of interest were measured. The
methods and procedures of the measurements have
been described in detail by Lee (1969). The summary of
measured and derived data is given in table 1. The
values of the water discharge, depth, energy slope, bed
shape, and total bed-material concentration presented
in table 1 are the average of several individual
measurements, The sampled load was measured by a
DH-48 sampler. The number of measurements was the
same as the number of y,(x) charts.

1 T T T rrT T
99.0 -
L1 dgo = 1.I3mm 4
dgg = |.72mm
%soH o i
dig = O.75mm
900 H -
L (e, duo )
800 H 7 2 2g e )7 1S Sieve | Percent | Mean
) diameter finer | fall velocity

x s

w (mm) — (cm/sec)

Z

= 600 -

- i 2.83 | 9935 | 2260

=

8 400 F 200 | 9160 | 1900

@

w - 1.410 | 69.12 18.10
200 .00 39.86 14.60
00 L 0707 | 1287 | 1110

Q.500 2.63 845
50 |

0.350 0.78 —
20 0.250 0.20 —_
10 | Q177 0.05 —
05 | e ———
0.2 1 i 1 1 L1l 11 |

04 06 08 1.0 20 30

SIEVE DIAMETER, IN MILLIMETERS

F1GURE 5. — Size distribution curve of bed material.



ANALYSIS AND DISCUSSION OF RESULTS

TABLE 1. — Basic data and computed parameters

23

Water discharge Flow depth Energy slope Water temperature
Qws m*/s d, cm Se T, °C
Run Standard Standard Meanl%ov:'nvlglocity Standard Standard
Mean de?z?at?;n Mean de?r?ati;n ¢ Mean deviati;n Mean deviation
4A 0.464 .003 31.1 0.6 61.3 0.00167 0.00009 20.0 0.3
16 1.24 .006 90.8 09 55.8 0.00029 0.00021 22.8 0.2
17 1.53 .008 89.3 0.6 704 0.00047 0.00005 22.0 0.2
Total Bed-material discharge
Sampled load
Run Concentration Mean total concentration Mean Chezy = Mean bed Mean Stream_power
Crp, mg/L load mg/L resistance  shear stress  shear velocity Ty U,
Sonind qp,t/day-m Sondora coefficient Ty, d/em? U,,cm/s d/cm s
Mean de?ziation Mean deviatiii;n CNE
4A 1686 536 2.77 1.5 6.1 8.6 50.8 7.13 3110
16 8.9 3.1 0.39 0.0 0.0 12.1 25.9 491 1450
17 29.7 108 1.61 6.3 10.2 11.0 41.2 6.43 2900
¥, () Record y¢(x) Record
Mean Time interval of Range of
Run Froude number Length of record Lag interval Length of record Number of measurements lag interval
P L;, hours min Ly,m charts hours cm
4A 0.35 312 2.4 1235 31 6 3.7-13.0
16 0.19 80 1.2 1006 33 1 86— 136
17 0.24 109 0.6 983 30 1 72-118
The y,(x) charts were obtained by mounting a sonic | f,, (¥) =fy (¥) A
depth sounder on the instrument carriage and travers- b E
ing it along the centerline of the flume in the upstream 1.2
direction. The sonic depth sounder has been described 1, 7Y 1 9
by Karaki, Gray, and Collins (1961). Although the |  v7x R y
duration of traverse was approximately 5 minutes, the - 1 2 - SR
¥(x) record was considered to be instantaneous. The 7Y, > (94)
¥,(0) record was obtained by locating a sonic depth J— _[
sounder at the centerline of the flume 42.1 m -2.4
downstream of the headbox. Both the y,(x) and y, (9
. . for -2.4<y<2.4
records were digitized with an analog-to-digital con- =7 =
verter at the lag intervals shown in table 1. The lag in- f (y) =f, (y) =0 otherwise
terval on the y,(x) charts were not constant because the Y, Yo J

speed of the carriage was somewhat different for each
chart. The output of the converter was to computer
cards so that all statistics could be processed on the
digital computer.

PROBABILITY DISTRIBUTIONS OF THE ELEVATIONS
OF DEPOSITION AND EROSION

The sample probability mass functions for the eleva-
tion of deposition and erosion were computed using
equations 25 and 26 and the y,(f) records. The results of
calculations for the three flume runs are presented in
table 2.

The y.(f) record of each run was standardized so
that the class mark, y;, measures the elevation of
deposition or erosion in terms of the standard devia-
tion about the mean bed elevation. The class width of
0.4 was used for all class marks. The frequency
histograms for the elevation of deposition and erosion
are plotted in figure 6.

The truncated Gaussian probability density function,
defined by

appears to fit the data reasonably well. A symmetric
triangular density function defined by

1 )
for0<y< 2.4

1
fv W =Ff ¥)=-—=y+
Yp Yg Y 2.4

1

57 (95)

1
)=fy (W)= —=y+
D Yp 2.4°

fy for -2.4<y<0

fv () =fy (y) =0 otherwise ,
b Yp J

also appears to fit the data reasonably well. Equations
94 and 95 are both plotted in figure 6. In equations 94
and 95, fy (y) and fy,(y) are the probability density
functions of the elevatlon of deposition and erosion,
respectively, and y is the standardized elevation.

Both distributions assume nonzero values only for
—24<y=<24 and the two models postulate that
Ypand Yy are identically distributed. The truncation

limits on these distributions are rather arbitrary.
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FIGURE 6. — Frequency histograms, triangular density function, and truncated Gaussian density function for the elevation
of deposition and erosion.
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The mean and variance for the truncated Gaussian
density are

ELY 1 =E[Y ] =0, ]
and
- _ 2
Var[YD] = Var[YE] = E[YD] > (96)
2.4
=E[Y2] 21017 y2g (y)dy = 0.891
-2.4 J
12
where g(y) = e 7 .For the triangular density
¥4
E[YD] = E[YE] =0
and
Var(¥p] = Var[Yg] = E[Y2] ®D
2
_ 2, _ 2.4° _
—E[YE] == - 0.960

The variances of these distributions are quite sensitive
to the assumed truncation limits.

A goodness of fit test using the chi-square statistic in-
dicated that neither model would be rejected for runs 16
and 17 at a significance level of 0.05. For run 4A,
however, both models were rejected at the same level of
significance. As seen in figure 6, the truncated Gaus-
sian density appears to give a slightly better approx-
imation to fyD( y) and fYE( ¥); but, the triangular density
is much easier to handle in analytical treatments. The
variance of the triangular distribution is even more
sensitive to the assumed limits than is the variance of
the truncated Gaussian distribution. Therefore, the
triangular distribution probably should not be used in
predicting the variance.

For stationary processes, continuity requires that the
probability of erosion equal the probability of deposition
for all elevations. Therefore, the density functions for
the elevations of deposition and erosion must be identi-
cal. The mean and variance of sample histograms as
well as the total number of points available for analysis,
2m,, are shown in table 2. Little data were available for
run 16, only 134 crossings compared to 2,167 for run 4A
and 708 for run 17. Although run 16 was continued for
33 hours, the very low transport rate (table 1) and slow
movement of the bed forms limited the number of cross-
ings available for analysis. It should also be pointed out
that equilibrium flow was never attained for this flow
which was barely above the initiation of motion stage.

REST PERIOD DISTRIBUTIONS

The sample conditional probability mass function of
the rest periods were computed by determining the

difference betweeen the time of reexposure and move-
ment and the time of burial of the center of each class
mark for each crossing event, m; ;, that occurred in the
v,() record (fig. 2). The results of the measurements
are presented in tables 3 through 5, and examples of
the mass functions are presented in figures 7, 8, and 9.
The standardized y,(¢) record was used and the class
width of the elevation was taken to be the same as that
used in determining the probability distribution for the

elevation of deposition, 0.4.
The mean and variance of the conditional rest

periods were computed using equation 30, and the
results are presented in table 6. These results are also
plotted as a function of bed elevation in figure 10. As
can be seen from figure 10, both the conditional mean
and variance of the rest periods decrease with increas-
ing elevation of deposition. Inspection of figure 2 indi-
cates that the conditional mean should decrease with
increasing elevation of deposition. However, the
decrease of the variance is not so obvious. Because the
mean value is decreasing with increasing elevation, the
decrease in the variance is not too meaningful. The
coefficient of variation (standard deviation/mean) is
probably a better measure of the variability of the rest
periods. Restricting our attention to runs 4A and 17,
for reasons to be discussed later, the coefficient of
variation remained roughly constant in the range of
0.6—0.75 for elevations above the mean bed elevation,
and it increased with decreasing elevation to a value
of about 1.5 at 2.4 standard deviations below the mean
bed elevation. Thus the variability of the rest period,
as measured relative to its mean, also decreases with
increasing elevation at least up to the mean bed eleva-

tion.
As seen from figure 10, both the mean and variance

of the conditional rest periods may be approximated by
an expression of the form,

E[T\Y, =y] = Ae BY

and (98)

Vér[T\YD =y] = ce DY

The constants A, B, C, and Din equation 98 were deter-
mined by a regression analysis of the data plotted in
figure 10, and the resulting values are presented in the
figure. The values A and C represent measures of the
mean and variance of the rest period, respectively, for
the mean bed elevation. The values of B and D are
measures of the rate of change of the mean and
variance of the rest period with bed elevation, respec-
tively.

The distributions of the conditional rest periods were
approximated by the two-parameter gamma probability
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FIGURE 7. — Sample probability mass functions of the conditional rest periods with fitted two-parameter gamma
functions (run 4A).
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FIGURE 10. — Variation of the conditional mean and variance of rest periods with bed elevation.

density function which has the form,

k r -1 -(k )t
f (t\y) = _ 2.y (k, t) 2,y e 2,y
T\Y, T, y) 2,y

(99)
where )
I'(«) = gamma function; and
Ry, y» e,y = scale and shape parameters, respectively.

The scale and shape parameters were estimated by
using the method of moments,

E[T\Y} = y]
K2,y ” Vér[T\YD =y]

and > (100)
E[T\Y = y])? )

and the data contained in table 6. The variation of %, ,,
and r, ,with bed elevation are presented in table 7
along with the results of a chi-square goodness of fit
test. The ability of the two-parameter gamma distribu-
tion to fit the measured mass functions is illustrated in
figures 7, 8, and 9.

From table 7, as well as from figures 7, 8, and 9, both
the scale and shape parameters increase with increas-
ing bed elevation, with a few exceptions for the shape
parameter. The shape of the conditional density of the
rest periods (figs. 7, 8, 9) approaches a J-shape and
becomes more peaked as bed elevation decreases.
Therefore, the exponential density might fit better
than the two-parameter gamma density below the
mean bed elevation (y < 0). The exponential density
function is a special case of the gamma density with
ryy = 1. The better fit of the exponential density seems
to be consistent with the fact that all rejections of the
chi-square test (6 rejections out of 22 at a significant
level of 0.05) occurred below the mean bed elevation
(table 7). It would appear that the exponential form for
the conditional rest period as proposed by Grigg (1969)
is only valid for elevations below the mean bed eleva-
tion.

A major factor in determining the degree of fit be-
tween the measured density functions and the fitted
curves in figures 7, 8, and 9 appears to be the number of
points available from which the distribution was con-
structed. In general, if more than 100 points were
available, m,;, the fit is pretty good. The weakness of
the data for run 16 is very apparent. Even at the mean
bed elevation, only 18 crossing events were observed.
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Combining equations 98 and 100, the scale and shape
parameters can be estimated using only the constants
A B, C, and D.

- AeDy
2 y C

and > .(101)

AzeDy

rZ,y = CTBy = k2,yAe
e J

The sample joint probability mass functions of the
rest period and the elevation of deposition were com-
puted from equation 33 using the results presented in
tables 2 through 5. The results of these computations
are presented in tables 8, 9, and 10. The correlation
coefficients were computed by using equation 34, along
with the data contained in tables 2, 6, 8, 9, and 10. The
values of the correlation coefficients were —0.27, —0.53,
and —0.26 for runs 4A, 16, and 17, respectively. The
rest period and the elevation of deposition are
negatively correlated, but the degree of their linear
association is not strong.

The sample marginal probability mass functions,
pr(t,), were computed by use of equation 29 and the
data contained in tables 2, 3, 4, and 5. The results of
these computations are also presented in tables 8, 9,
and 10. The sample frequency histograms for the
marginal rest periods are plotted in figure 11. The
mean and variance of the marginal rest periods were
computed by use of equation 31. These results are also
presented in figure 11. The variance values appear to be
extremely large. For example, the standard deviation
for run 4A is almost four times the mean value. The
computed variance values are extremely dependent on
the long rest periods, the extreme events generally oc-
cur at low bed elevations. For example, by ignoring rest
periods of greater than 2,000 minutes, which have a
probability of occurrence of only 0.0015, the variance is
reduced from 42,000 to 12,000.

Also shown in figure 11 are exponential density func-
tions with a mean equal to the computed marginal
mean. The exponential density function fits the data
reasonably well; however, there would appear to be
room for improvement. A gamma density fitted by the
method of moments would be an extremely poor fit of
the data. A gamma distribution, estimated by the max-
imum likelihood method may fit the data reasonably
well.

The marginal distribution of the rest periods could
also be estimated by

2.4

f (t\y)f,, (y)dy
:é . T\YD YD

fr) = 102)

where f7\y,(¢ \) is the two-parameter gamma density
(eq. 101) w1th parameters given by equation 101, and
f Y, ( y) is given by equation 94, or it could be obtained by
ﬁttlng the frequency histograms contained in figure 11
with some assumed distribution.

STEP LENGTH DISTRIBUTIONS

The y,(x) record was standardized after removing a
straight line trend. The trend determined by the
method of least squares accounted for the possibility
that the sand bed in the flume was not paralle] to the
instrument carriage rails supporting the sonic sounder.
In standardizing the y,(x) record, the standard devia-
tion obtained from the y,(¢) record was used. With these
standardized data, the statistic {x;;,] was analyzed
(fig. 3) to estimate various probability distributions of
the step lengths.

The sample probability mass functions given the
elevations of deposition and erosion were computed by
using equation 47, and the results are presented in
tables 11 through 56. Examples of these mass functions
are shown in figures 12, 13, and 14. The corresponding
means and variances were estimated by equation 48
and summarized in tables 57, 58, and 59.

It can be seen from tables 57, 58, and 59, as well as in
figures 12, 13, and 14, that the conditional mean of the
step length decreases with an increase in either the
elevation of deposition or of erosion. This result could be
expected simply from the typical shape of the dunes.
Likewise the conditional variance of the step length
tends to decrease with an increase in the elevation of
either deposition or erosion. The above statements es-
sentially imply that longer step lengths are associated
with lower elevations at which a sediment particle is
eroded and deposited, and vice versa.

The distribution of conditional step lengths were ap-
proximated by the two parameter gamma probability
density functions,

f (x\y,y")
X\YE,YD

Kl y,y <1+"1 ) (kp, g,y
_ *_,x_y_ (xk ) Y.y INERG (103)
ry B Ly.y
Yy
where
y and y’ = arguments of Y;and Y, respec-
tively; and
k, ,,andr; ,, =scale and shape parameters,
respectively.

The parameters %, , ,-and r; , , were estimated by the
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FIGURE 12. — Sample probability mass functions of the conditional step lengths given the elevation of erosion is 0.0 with Gamma fits (run 4A).
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method of moments, using data contained in tables 57,
58, and 59 and the expressions

A . _ _ Ny
. . E[X\YE~y1 Yo=y'l
Ly.y' "z
' Var[X\YE=y, Y. =y'l
D
and
Sre v _ 2 > (104)
" - (E[X\YE—y’ YD—y'])
1, . ' 2 - — !
Y.y Var[X\YE—y, YD—y]
:A 4 = = t
E[X\YE Y. YD y]kl’y’y‘ )

The variation of , , ,-and r, , .. with the elevations of
erosion and deposition are shown in tables 60, 61, and
62. These approximations are also shown in figures 12,
13, and 14.

The chi-square test for goodness of fit was used to
test these gamma approximations. The results of these
tests are summarized in tables 63, 64, and 65. None of
the 81 distributions tested could be rejected at the 0.05
level of significance. In other words, there is no good
statistical reason to reject the hypothesis that the prob-
ability density functions for the step lengths, given the
elevation of deposition and erosion, are distributed ac-
cording to the two-parameter gamma distribution. The
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fitted gamma distributions are also plotted and the
example mass functions presented in figures 12, 13,
and 14. These figures also help to illustrate the abili-
ty of the two-parameter gamma distributions to fit the
measured conditional step length distributions.

The sample conditional mass functions, given the
elevation of deposition, were computed based on equa-
tion 37 and the data contained in tables 2 and 11-56.
These mass functions are presented in tables 66, 67,
and 68. The corresponding conditional means and
variances were computed using equation 38 and are
presented in table 69 as well as being plotted in figure
15. Again, the general decrease in the expected value of
the step length with an increase in the elevation of
deposition is apparent.

The sample joint probability mass function of the
step length and the elevation of deposition was com-
puted by equation 43, and the results are shown in
tables 70, 71, and 72. The correlation coefficients were
computed by equation 44, and their values were —0.15,
-0.15,and —0.20 for runs 4A,16, and 17, respectively, in-
dicating that the step length and the elevation of deposi-
tion are negatively correlated, but the degree of their
linear associations is not strong. The sample marginal
probability mass functions, py(xg), computed using
equation 40, are also shown in tables 70, 71, and 72. The
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FIGURE 15. — Variation of the conditional mean and variance of step lengths with bed elevation; E\[X \Yp=3l
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sample frequency histograms for the marginal rest
periods are plotted in figure 16. The mean and variance
of the marginal rest periods were computed by use of
equation 41. These results are also presented in figure
16. The range of the means is fairly small, only 0.610 to
0.799 m. The mean dune lengths, as measured by the
distance between trough points, for the three runs were
1.19, 1.66, and 1.23 m respectively for runs 4A, 16, and
17. The mean step lengths were, therefore, 54, 48, and
49 percent of the mean dune lengths. Grigg (1969)
found the mean step lengths of single tagged particles
to be about 60 percent of the mean dune length. Of
course, Grigg was working with a much finer sand, .33
to .45 mm, as compared to 1.15 mm for this study. Also
shown in figure 16 are gamma density functions for
which the parameters % and r were determined from
the mean and variance shown in the figure. The gamma
functions appear to fit the data very well for all three
runs. The value of the parameter r ranged from 4.05 for
run 4A to 4.59 for run 17. This is slightly more than
twice the value estimated by Yang (1968) from the step
length distribution of a single plastic particle.

BED-MATERIAL TRANSPORT

The following assumptions and conditions were used
to estimate the mean total bed-material transport rate
by equations 55, 63, and 66: (1) Because the bed
material was coarse sand (fig. 5), all sediment par-icles
are assumed to be transported as bed load. Expressed
mathematically, P[E;] = 1. (2) y,(1 — O) = 1602 kg/m?.
(3) Ay; = 0.4s,everywhere. By virtge of iQem 1, it follows
that Vo=V, V() =9,(/), and @p= @p. Initem 3, 5,
is the standard deviation of the bed elevation computed
from the y.(f) record.

All parameters and statistics which are required by
equations 55, 63, and 66 are summarized in tables 73
and 74. The average depth of the zone of bed material
movement, h, was determined by equation 59. It was
found that one chart of the y,(x) record (about 34 m) is
sufficient to obtain a reliable value of A, although over
30 charts of the y,(x) record were used in this study.
Each chart contained about ten dunes. Using equation
62, &, the percentage of volume between eleva-
tions 7; and Mj+1 occupied by dunes (hereafter
will be referred to as the effective volume ra-
tio) was obtained from the y,(x) record. The results
are presented in table 74 and plotted in figure 17. As
shown in figure 17 §;is nearly independent of flow con-
dition. As long as the bed forms are dunes, & does not
change appreciably. It is also shown in figure 17 that ¢;
is nearly unity and zero at y;=—2.4 and y; =+ 24,
respectively. This is partial justification for the upper
and lower limits of the elevations of erosion and deposi-
tion used in equations 94 and 95.

STOCHASTIC ANALYSIS OF PARTICLE MOVEMENT OVER A DUNE BED

Another effective volume ratio can be obtained from
the y,(#) record. Denoting this ratio by ¢,

m,
]

E bk

k=1

1
g' =
oL

(105)

where
L, = total length of y,(#) record;
m; = maximum number of bed forms contained in
the y,(#) record which also contains some
deposition at elevation y;; and

t;, = measurement of the conditional rest period.

¢h

There is no significant difference between &; and
{; (table 74) except for depths greater or less than 2.0
standard deviations from the mean. The longitudinal
profiles (y,(x) records) appear to contain a larger num-
ber of extreme events than the time record at a given
point (the y.(#)). The explanation for this is probably
that the flow was fairly stationary but that it was not
longitudinally uniform.

A comparison of measured and computed total bed-
material transport rates is shown in table 75. It is seen
that:

1. For run 4A, all three equations provide excellent
estimates to the observed mean total bed-material dis-
charges.

2. Equation 55 provided an excellent estimate to the
mean total bed-material discharge for run 17. However,
the other two equations overestimated the discharge by
more than 25 percent. The reason for the differences in
the equations is not understood.

3. None of the equations gave good estimates of the
mean total bed-material discharge for run 16. The con-
sistently overestimated discharge ranged from 64 per-
cent for equation 63 to 80 percent for equation 55. It
should be remembered, however, that the mean total
bed-material discharge was less than 9 mg/L during
this run, that the flow was not in equilibrium as illus-
trated by the large variation of energy slope (table 1),
and that very few rest period statistics were available
for analysis (fig. 8).

Taken as a whole, the results are very encouraging.
Although equation 55 gave the most accurate results
for run 17, it should be noted that equations 63 and 66
gave very consistent results for all runs when they are
compared one with the other. The discharge predicted
by equation 66 was 8.3, 8.4, and 8.5 percent larger than
that predicted by equation 63 for runs 4A, 16, and 17,
respectively. Although equation 66 is probably simpler
to evaluate than equation 63, it appears that some ac-
curacy has been sacrificed. The main difference be-
tween equations 63 and 66 is the way in which the
effective depth or effective volume ratio (eq. 62, 71) is
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TasBLE 73. — Variation of various statistics with stream power

Run 7,0 E(x]  var(x] E(T] var[T] v < ElX] 12 h s
(d/cmes) tm) m?) {mn) (min®) T £rr) femss)  ©™ G
(cm/s)
4A 3,110 0.649 0.104 53.8 42,110 0.0201 0.0378  9.66 4.26
16 1,450 0.799 0.140 180.5 93,077 0.0073 0.0166  6.89 3.01
17 2,900 0.610 0.081 60.1 60,469 0.0169 0.0372  7.13 3.61

TABLE 74. — Comparison of the effective volume ratios at elevation y;;
£, from y,(x) record and{;, from y.(t) record

Run 4A Run 16 Run 17
.YD=y.

J £ t; £ 5 £ >
-2.8 0.968 ----- 1.000  ----- 1.000  ----- '
-2.4 .963 ----- 995 ----- .998 —----
-2.0 949 0.903 975 ~eee- 989 -----
-1.6 .925 .883 935 0.890 964 0.943
-1.2 .877 .865 .865 .840 .900 .867
-0.8 .791 .787 .778 .719 .801 .756
-0.4 .668 .675 .670 .656 .669 . 645
0.0 512 .529 .535 .567 .522 .522
0.4 .344 379 .385 .388 .364 .380
0.8 .189 .222 230 .230 . .202 .234

1.2 .078 112 .103 .097 .079 .120
1.6 .015 .044 .036 .037 .020 . 046
2.0 .001 .009 .012 .008 .002 .013
2.4 L0000 -—---- .004 .001 .000 .001
2.8 | ----- eeee- .001 ----- L0000 -----

computed, and these functions were similar (table 74);
therefore, the consistency of their final result was ex-
pected. Equation 55 had the lowest average absolute er-
ror for all three runs; however, equation 63 gave the
most accurate result on two out of three runs. Because

of the similarity of equations 55 and 63, it would be
difficult to say one was more accurate than the other.
Their relative accuracy probably depends on chance oc-
currence of extreme events in one or the other records
of bed elevation.

In table 75, §'7 is the mean total bed-material dis-
charge in weight per width and time, and it was ob-
tained by dividing equations 55, 63, and 66 by the width
of the channel, W.

If we define g(j)as the mean bed-load discharge
associated with elevation y;, then based on equation 63,

ap) =1y (- OV (gAY, (106)

where §5(j) estimates g5(j) and /VB( j) is an estimate of
the mean transport speed of a bed-load particle at
elevation y;. The mean transport speed, VB(J' ), is given
by equation 61 provided that the suspended load is
negligible. With equation 106, the variation of bed-load
discharge with bed elevation may be investigated. This
variation is shown in figure 18 for all three runs. It is
seen that the maximum bed-load discharge is associ-
ated with the mean bed elevation and that an insignifi-
cant portion of the bed-load movement appears to occur
fory,< -24 and y; = +2.4.

TABLE 75. — Comparison of measured and computed total bed-material transport rates

Measured total bed-material discharge (t/day-m)
Run
Number of Maximum Minimum Standard Mean
measurements deviation
4A 54 5.30 0.91 0.88 2.77
16 32 0.72 0.18 0.14 0.40
17 32 3.04 0.59 0.59 1.61
Computed mean, ti.r (t/day m) Computed mean/measured mean
Run
Eq. 55 Eqg. 63 Eq. 66 Eq. 55 Eq. 63 Eq. 66
4A 2.68 2.72 2.94 0.970 0.983 1.066
16 0.70 0.64 0.67 1.801 1.641 1.728
17 1.67 2.05 .18 1.035 1.269 1.354
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VARIATION OF VARIOUS STATISTICS
WITH FLOW CONDITIONS AND A RELATION
BETWEEN THE STEP LENGTH
AND THE REST PERIODS

Although three flume runs are not sufficient to
establish a reliable relation between the various
statistics and flow conditions, some qualitative trends

can be determined from table 73. The stream power
(product of mean bed shear stress and mean flow
velocity) was used as a measure of the flow conditions.
From table 73, it is seen that:

1. The mean transport speed of a bed-material parti-
cle (Vy;, Vi), the average depth of the zone in which bed
material movement occurs (h), and the standard devia-
tion of the bed (s,), appear to increase with increasing

stream power (7 ,U).

2. The marginal mean of the step lengths (E[X]), the
marginal variance of the step lengths (Var [X]), the
marginal mean of the rest periods & [T]) and the
marginal variance of the rest periods (Var[T)), appear
to decrease with increasing stream power within the
range of stream power investigated here.

The variation of the ratios of the conditional mean
step length to the conditional mean rest period

(Ve = BIX\Yp=yD / (EIT\Yp=y))
and of the conditional variance of the step length to the
conditional variance of the rest period
(VAY [X\ Y, = y1/Var[T\ Yp = y])
with bed elevation, ¥, is shown in figures 19 and 20.
From these figures it is seen that both ratios increase
with increasing bed elevation.

TWO-DIMENSIONAL STOCHASTIC MODEL
FOR DISPERSION OF
BED-MATERIAL SEDIMENT PARTICLES

A two-dimensional stochastic model for dispersion of
bed-material sediment particles was derived earlier and
was given by equation 85,

X

(n-1)
fla,yit)= fYD(y) f Q) fy (e O)dg
n=1

dt> . (8B)

The one-dimensional model as a marginal case of equa-
tion 85 was

:fo f[ -f::)ljdt' . (91)

Note that yis the standardized elevation. In order to ap-
ply equations 85 and 91, the probability density func-
tions,

fYD(y) fT\YD(t\y) @, fT(t) fT(t) fx v\, fx(0),

fX(x), and fX(x) must be specified.

Although probability density functions for all these
distributions have not been determined in this report,
the measured probability mass functions have been
presented in tables 2, 3—5, 8—10, and 6668, respec-

t

f f(r‘l) ) i frvy (O)
. t') dt' f .o (n\y
T T\YD

0 t-t



SUMMARY AND CONCLUSIONS

Stochastic models were developed which can be used
to predict the transport and dispersion of bed-material
sediment particles in an alluvial channel. These models
are based on the proposition that the movement of bed-
material sediment particles consists of a series of steps
separated by rest periods and, therefore, their applica-
tion requires a knowledge of the probability distribu-
tions of the step lengths, the rest periods, and the eleva-
tion of particle deposition and erosion.

The probability distribution of the rest periods, condi-
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tively. Equations for determining the n-fold convolu-
tions of py(#) and py(x) can be obtained from equations
82 and 79 with proper substitutions (Parzen, 1967).
Further progress in the solution of either equation 85 or
91 could proceed along either of two lines. First, all
probability density functions could be replaced with the
corresponding sample probability mass functions, the
integrals approximated by summations, and the solu-
tions obtained numerically. Alternately, the mass func-
tions could be fitted by density functions of some
assumed form and an analytical solution attempted.
Lee (1973) used various fitting procedures to obtain all
the probability density functions required to solve equa-
tion 85, but the integration of the equation appears
quite formidable.

tioned on the elevation of particle deposition and the
probability distributions of the elevation of particle ero-
sion and deposition, were obtained from a record of the
bed elevation at a fixed point as a continuous function
of time [y,(?) record]. The necessary assumptions were:
(1) Equilibrium flow; (2) both erosion and deposition do
not occur at the same point during the same time
period; and (3) the number of particles per unit volume
of the bed is constant.

The probability distribution of the step lengths, con-
ditioned on the elevation of particle erosion and the
elevation of particle deposition, was obtained from a
series of instantaneous longitudinal bed profiles [y,(x)
record]. The required assumptions were: (1) All bed-
material sediment particles which are eroded from the
upstream face of a dune will be deposited on the
downstream side of the same dune; and (2) no deposi-
tion occurs on the upstream sides of dunes, and no ero-
sion occurs on the downstream faces of dunes. These
assumptions appeared to be reasonable at least for a
dune-covered bed composed of a coarse sand.

Introducing an additional assumption that the eleva-
tion of particle erosion and the elevation of particle
deposition are mutually independent, various related
probability distributions were obtained. These distribu-
tions included: (1) The marginal distributions of the
rest periods and the.step lengths; (2) the joint distribu-
tion of the rest periods and the elevation of particle
deposition; and (3) the joint distribution of the step
lengths and the elevation of particle deposition.

A two-dimensional stochastic model for dispersion of

bed-sediment particles was then derived (eq. 85). In

order to apply the model, the probability distributions of
(1) the step lengths given the elevation of particle
deposition; (2) the rest periods given the elevation of
particle deposition; and (3) the elevation of particle
deposition, must be known. The mass functions of these
distributions were estimated; however, the integrations
required by the model remained unsolved.

Applying the concept of continuity, three bed-
material transport models were presented. Application
of these models requires the estimation of: (1) The con-



REFERENCES CITED 41

ditional means of the rest periods and the step lengths;
(2) the probability distribution of the elevation of
deposition; (3) the average depth of the zone of bed-
material movement; and (4) the effective volume ratio.
These were all obtained from the y, () and y,(x) records.
In the derivation of the models, the bed load was
defined as that part of bed material which is deposited
on the downstream face of the dune from which it is
eroded, and the suspended load was defined as that part
of bed material which passes two or more dune crests
before being deposited. These definitions are very pre-
cise compared to the definitions prepared by the Task
Committee on Preparation of Sedimentation Manual
(1962).

Based on flume experiments with a coarse sand, the
following conclusions were drawn:

1. The elevation of particle erosion and the elevation
of particle deposition can be considered to be identically
distributed, and their distribution can be approximated
by either a truncated Gaussian density function or a
symmetric triangular density function. In general, the
truncated Gaussian density provides slightly better
results; although the triangular density is much easier
to handle analytically.

2. The conditional probability distribution of the rest
periods, given the elevation of deposition, can be well
described by the two-parameter gamma density func-
tion. The shape of the conditional density approaches a
J-shape and becomes more peaked as bed elevation
decreases.

A. Both the conditional mean and variance of the
rest periods increase with decreasing bed eleva-
tion. These relations can be expressed by exponen-
tial functions.

B. Both the scale and shape parameters for the
conditional distribution of the rest periods increase
with increasing bed elevation, and they can be
described by exponential functions of bed eleva-
tion.

C. The correlation coefficient between the rest
periods and the elevation of deposition indicated
that the rest periods and the elevation of deposition
are negatively correlated, but the degree of their
linear association is not strong.

3. The conditional probability distribution of the step
lengths, given the elevation of deposition and the eleva-
tion of erosion, can be approximated by the two-
parameter gamma distribution. The shape of the condi-
tional density is strongly dependent on the elevation of
deposition and erosion.

A. For a fixed elevation of deposition, both the
double conditional mean and variance of the step
lengths increase with decreasing elevation of ero-

sion. In other words, longer step lengths are associ-
ated with lower elevation at which a sediment par-
ticle is eroded or deposited and vice versa.

B. The correlation coefficient between the step
lengths and the elevation of deposition indicates
that they are negatively correlated, but the degree
of their linear association is not strong.

4. All three bed-material transport models are found
to be quite satisfactory except for run 16.

A. The effective volume ratio can be obtained
from either the y,(x) record or the y,(#) record, and
it appears to be nearly independent of flow condi-
tion.

B. The maximum bed-load movement is associ-
ated with mean bed elevation, and little movement
occurs for y< —2.4 and y= +24.

5. The mean transport speed of a bed-material parti-
cle, the average depth of the zone of bed material move-
ment, and the standard deviation of bed elevation in-
creased with increasing stream power, whereas the
marginal means and variances of the rest periods and
the step lengths decreased with increasing stream
power.

Figures 10 and 15 suggest that the step lengths and
the rest periods are positively correlated in an average
sense, but the degree of linear association was not
strong.
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