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ON MODELING MAGNETIC FIELDS ON A SPHERE 
WITH DIPOLES AND QUADRUPOLES

By DAVID G. KNAPP

ABSTRACT

This paper assists in the understanding of the global geomagnetic 
field as it is manifested in models slightly more complex than the 
centered dipole, with special emphasis on the quadrupole, which 
among the harmonic components is the chief determinant of the 
nondipole field configuration. To this end it examines the geometric 
properties of the three kinds of quadrupoles, as well as their inter- 
convertibility, and the ways in which they can be combined or re­ 
solved into constituent parts. Improved methods are developed for 
establishing the quadrupole parameters (especially the cardinal 
axes) from spherical harmonic coefficients and for using the various 
extant analyses to examine the secular change of the quadrupole. 
Earlier reports of the quadrupole's westward drift are confirmed, its 
rotation being found to be about 15 minutes per year, but the center 
of clockwise rotation is markedly displaced from the geographic 
pole and is situated in the region of the Aleutian Islands. A graphic 
display clarifies the disparities among different models, promotes 
the study of relative benefits of refinements in spherical harmonic 
analysis, and points the way toward a definitive assessment of the 
quadrupole and especially of its secular change. The way in which 
one part of the quadrupole combines with the centered dipole to pro­ 
duce the eccentric dipole is also examined (with some possible bear­ 
ing on radial-dipole models). Support is presented for the hypothesis 
that the geomagnetic quadrupole tends to hold rather closely to the 
aspect of a "normal" quadrupole—one with identical configurations 
for its positive and negative regions. Some properties of octupoles 
are discussed qualitatively.

INTRODUCTION

Ever since the time of William Gilbert nearly four 
centuries ago, there has been perennial interest in the 
devising of models to simulate the patterns of the geo­ 
magnetic field. The simpler models, though easy to un­ 
derstand and to describe, are not very faithful to na­ 
ture; as the models are made more complex in order to 
improve the fit, they depart more and more from the 
physically comprehensible. This report attempts to 
dispel some of the obscurity and stresses the geometric 
aspects of the models, particularly those that are 
slightly more detailed than the centered dipole. The 
quadrupole has never been investigated with sufficient 
geometric insight to afford a satisfying conception of 
its characteristics. The eccentric dipole is likewise of 
great interest, not only for its unitary characteristics 
(falling somewhat short of the dipole-plus-quadrupole

model in fidelity to nature but giving a somewhat truer 
picture than the centered dipole alone), but also for its 
bearing upon the characteristics of models comprising 
an array of two or more radial or other eccentric di- 
poles.

The centered dipole fails to embody two striking 
features of the world charts, namely (1) the oblique or 
"corkscrew" aspect of the agonic lines, and (2) the 
elongation of the intensity loops enclosing the Arctic 
dip pole. The eccentric-dipole model does depict feature 
(1), which, however, is not intrinsic to the field but 
rather an effect of its relation to the coordinate system 
(reflecting a longitude difference between the dipole's 
displacement vector and the meridian plane of the cen­ 
tered dipole). To account for (2), a genuine field charac­ 
teristic, requires still greater complexity in .the model.

CHARACTERISTICS OF THE FIELD OF A DIPOLE

The simplest useful model is the one developed by 
Biot (Humboldt and Biot, 1804), namely, a magnetic 
dipole at the center of the globe. The basic notion of a 
dipole grew out of the then rather novel concept of 
magnetic point poles (or as Biot preferred to say, "cen­ 
ters of action") and represents the limiting case of a 
pair of point poles of opposite kind, as they are caused 
to approach one another to within an infinitesimal sep­ 
aration, while their pole strength is increased to pre­ 
serve a constant magnetic moment. That is, they are 
conceived as separated by so small a distance that fur­ 
ther approach (short of coalescence) has no observable 
effect on the field patterns. Physicists today accord to 
the dipole a reality usually denied to the point pole 
itself; the dipole moment is a fundamental parameter 
of elementary particles, conceived as the effect of spin 
and orbital motion of electric charge, whereas little 
progress has been made (despite strenuous efforts) in 
identifying an isolated magnetic monopole. This grad­ 
ual shift in point of view away from the monopole no­ 
tion reflects the concept that magnetism is but a mani­ 
festation of electric charge in motion.

The configuration of the dipole field is specified by 
the equation for its scalar potential, Vd; namely,

1
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Vd = (Mlr2) (COS 0), (1)

where M is the magnetic moment of the dipole, r is the 
radial distance of the point of observation from it, and 
0 is the angle between the position vector of the point 
and the reversed vector moment of the dipole. If the di­ 
pole is axial, centered, and southward-directed, 6 is the 
colatitude. From this equation it is readily possible to 
develop others for the field strength and its various 
components and angular elements; thus, the total in­ 
tensity, F, is given by

F = (Mlr3 ) (1 + 3 cos2 0) °' 5 .

MULTIPOLES

(2)

To improve upon the fit of a dipole model requires 
some increased complexity, such as that obtained from 
multipoles. Two equal but opposite dipoles at an infini­ 
tesimal separation constitute a quadrupole, two 
quadrupoles of this configuration constitute an oc- 
tupole, and so on. The quadrupole field is the harmonic 
component ranking next below the dipole in magni­ 
tude, and may be the dominant constituent during in­ 
tervals in the remote past when the dipole field was un­ 
dergoing reversals for other bodies as well as the 
Earth.

Currently, the quadrupole may be seen as the chief 
determinant of the character of the nondipole field, and 
(unlike the centered dipole) as the vehicle of a substan­ 
tial part of the directional secular change of geomag­ 
netism. The rationale of the latter characteristic will 
become clear with the development of the field geom­ 
etry.

The quadrupole can be characterized by the direction 
in which the reversed dipole is displaced from the for­ 
ward one. This direction, taken in conjunction with a 
dipole axis, will usually define a characteristic plane; 
the angle 2co, which that direction makes with the for­ 
ward dipole axis, may take on any value. If 2co is 180°, 
or zero, we have a linear quadrupole (Howe, 1939) with 
the north poles outward (called positive or "red," to 
revive an old sign convention) or with the south poles 
outward (called negative or "blue"). These cases are ex­ 
ceptional in that no characteristic plane is defined in 
the sense just set forth. If 2co is 90°, or 270°, we have 
Howe's "planar" quadrupole, which I prefer to desig­ 
nate as a normal quadrupole. If 2co is neither zero nor 
any multiple of 90 °, the result is a rhombic quadrupole.

Consider now the field of a linear quadrupole. Like a 
dipole field, it has circular symmetry about an axis, so 
that when alined with the polar axis of coordinates it is 
zonal (Chapman and Bartels, 1940, p. 615). Unlike the

dipole field, it also has mirror symmetry (as to both 
magnitude and sign) about the plane through the quad­ 
rupole and normal to its axis. On the sphere, both axial 
points are dip poles of the same sign—for a positive or 
red quadrupole, N; for a negative or blue one, S—and 
no other singular points occur, but the equator is a con­ 
tinuous locus of radially directed field, with polarity 
contrary to that of the dip poles, and field strength 
equal to one-half.

The scalar potential can be obtained by replacing cos 
0 with ylr in equation (1), and differencing in the de­ 
nominator to allow for the effect of the second dipole 
through the altered r. In this way we obtain for the 
potential of the linear quadrupole field,

Vt = (MJr3) (3 cos2 0 - 1), (3)

and for total intensity,

F l = (3M,/2r4 ) [(5 cos 20 + 1) (cos 20 + 1) + 4f5 . (4)

The procedure given by Chapman and Bartels (1940, 
p. 11) for deriving the line-of-force equation for the di­ 
pole is likewise applicable to the linear quadrupole. The 
equations for the dipole and linear quadrupole are, 
respectively,

and
r = k sin2 0

r2 = k 2 | tan 0 sin3 20 |,

(5)

(6)

where k is the value of r at the remotest point on the 
line of force. One way to think of a linear quadrupole is 
to suppose the separation between the centers of the 
two constituent dipoles to be just equal to the pole 
separation of each dipole, forming a row of three poles, 
the two exterior ones being of a given pole strength 
and sign, and the interior one of twice the pole strength 
and the opposite sign (fig. 1).

FIGURE 1.—Linear quadrupoles; N 
is positive (red) and S is negative 
(blue).

N) ©

THE GENERAL QUADRUPOLE

Conventionally, the general quadrupole may be con­ 
ceived as an array of four point poles, in either of the 
two equivalent configurations shown in figure 2 (A and
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FIGURE 2.—Three conceptions of the rhombic quadrupole. For a normal quadrupole the rhombus reduces to a
square.

B), and forming a parallelogram whose sides mark the 
two directions in space separated by angle 2co. Max­ 
well (1873, v. 1, art. 219, p. 160) designated these lines 
as "axes hi and h2." Either axis may be regarded as the 
direction of a constituent dipole with its antiparallel 
counterpart; the other axis is then the line along which 
the dipoles are infinitesimally separated from one 
another to generate the quadrupole. But in the general 
case, neither of the lines is an axis of the resulting field. 
I find it preferable to denote them not as axes but 
rather as the primitive lines of the quadrupole.

The same array of poles may also be regarded as a 
pair of orthogonal linear quadrupoles of contrary 
kinds, with the double-strength interior poles super­ 
posed and neutralizing one another (fig. 2C). This inter­ 
pretation has the merit of showing unambiguously, 
and giving physical meaning to, two authentic axes of 
the field—the bisectors (as noted by Umov, 1904) of 
the acute and obtuse angles between the primitive 
lines. The bisectors may be appropriately designated 
the cardinal axes. The linear quadrupoles associated 
with them are red for the acute angle and blue for the 
obtuse angle, thereby imparting contrasting field 
characteristics to the corresponding regions. We shall 
see later that the cardinal axes can be used in a unique 
way to examine secular change. An orthogonal system 
(Howe's principal axes; Howe, 1939) is formed by the 
cardinal axes along with a third axis (the normal to the 
characteristic plane) that is here called the primary 
axis. When the constituent linear quadrupoles are of 
equal magnitude, the resulting quadrupole is a normal 
one, and in that case the primitive lines are likewise 
mutually perpendicular, forming angles of 45 ° with the 
cardinal axes.

The concept of orthogonal linear quadrupoles with 
neutralized central poles is fully valid for the rhombic 
case; the poles have equal strength with separation ad­ 
justed to achiev.e the differing strengths of the red and 
blue linear quadrupoles. That is, they mark the verti­ 
ces of a rhombus.

Equation (3) applies to a linear quadrupole alined 
with the axis of coordinates. It can be adapted to any 
attitude by replacing 8 with an expression denoting 
the angle between the point of observation and the 
desired quadrupole axis. If we let 00 and AQ denote the 
colatitude and longitude of the axis at P0 of a red linear 
quadrupole (fig. 3), we can readily write an equation for 
its potential distribution on the sphere. Then if we let 
0t and A! similarly refer to the axis at P^ of a blue linear 
quadrupole, making a right angle with the red one, we 
can form an expression for the potential of the blue 
quadrupole; and by combining these two expressions 
we have an equation for their combined potential; it is

V = (MISr3 ) { (1 + 3 cos 20) (1 + 3 cos 2 00
- 4U cos2 0t )
+ 8U sin2 0t + 12 [sin 200 cos (Ao - A)
- U sin 20t cos (At - A)] sin 20 
+ 3 [(1 - cos 200 ) cos 2 (Ao - A)
- 2U (1 - cos 20t cos2 (At - A)] [1 - cos 20]}. (7)

Equation (7) describes a general quadrupole in terms 
of two linear quadrupoles, one red and one blue, at 
right angles to each other. No other restrictions are im­ 
posed on the attitudes of the cardinal axes. Here, U is 
the ratio of the blue to the red linear quadrupole mo­ 
ment, M is the moment of the red linear quadrupole,

PI
FIGURE 3.—Linear quadrupoles di­ 

rected toward P0 and Pi. 00, AO, 
and 0!, A, are the colatitudes and 
east longitudes of the red and 
blue quadrupoles, respectively.

P PO
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and —MU that of the blue one. In this equation the 
configuration is governed by the five parameters M, U, 
00 , 61, and AQ. Parameter Xl is not independent but is re­ 
tained to simplify the equation; it is related to the oth­ 
ers by

sin (A! — AO) = sin £ /sin 0lt (8)

where £ is the true azimuth of the line extending from 
P0 to Pl given by

cos f = cos 0!/sin Q0. (9)

If we set 00 and 0: at 90 ° in equation (7), we describe a 
general quadrupole that is in the equatorial plane; and 
it may be further particularized by setting AO at zero 
and A! at 90 °, thus placing the red linear quadrupole in 
longitude zero and the blue one in longitude 90 °. Equa­ 
tion (7) can then be reduced to
V = (M/r3) {3[1 - (1 + C7)sin2 A]sin2 0 + U - 1} (10) 
and this may be further reduced to

V = (d2/4r 3) [3(cos 2A + cos 2co)sin2 0
- 2 cos 2co], (11)

where

and

62 = 2 M(l + £7), (12)

cos 2co = (1 - £/)/(! + U). (13)

For a normal quadrupole in the same attitude we need 
only set U = 1, reducing equation (10) to the form

Vn = (3Mn/r3) (cos 2A sin2 0). (14)

For the quadrupole represented by equation (14), the 
primitive lines have longitudes of 45° and 135°.

The total intensity of the fields stipulated by equa­ 
tions (10) and (14) may be written, respectively, as

F = (3d2 sin 0/2T-4) {sin2 2A + qf cos2 0
+ [—cos 2o> esc 0 (15) 
+(3/2)gnsin0]2}0 - 5,

and

F = (3M/r4) (4 + 5 sin2 0 cos2 2A)°- 5 sin 0, (16)

where
il = cos 2A + cos 2o>.

Table 1 compares the expressions for the various ele­ 
ments of the field of a dipole, of a linear quadrupole 
along the polar axis, and of a normal quadrupole in the 
equatorial plane, as stipulated for equations (1), (3), 
and (11).

SOME CHARACTERISTICS OF QUADRUPOLE FIELDS

The field of every quadrupole differs fundamentally 
from a dipole field in that the dipole field is of odd 
degree and shows asymmetry of sense (inward versus 
outward) along any straight line going through the 
center, whereas the quadrupole is of even degree and 
does not show this asymmetry. A linear quadrupole 
has a characteristic sign, and a rhombic one may be 
dominated by the sign of its stronger linear-quad- 
rupole constituent. The field of a rhombic quadrupole, 
or of a normal one, has positive and negative aspects, 
distributed in relation to its cardinal axes.

A general quadrupole cannot be fully described 
simply by specifying its primitive lines and its (un­ 
signed) moment. It is necessary somehow to distin­ 
guish between the two sorts of quadrupoles that can 
exist with identical directions of the primitive lines. 
The two are related in that the positive aspects of one 
are exactly matched by the negative of the other. The 
situation may be examined as follows: If we look at the 
parallelogram that represents the four point poles of a 
rhombic quadrupole, the signs of the point poles alter­ 
nating as we go round the figure, they may (as has been 
noted) be coupled in either of two ways to form the two 
dipoles as shown in figure 2. The angle 2co represents 
the interior angle of the rhombus at one of the positive 
or north-seeking poles. Thus, 2cu is unambiguously 
either obtuse or acute. (The definition given earlier 
made 2o> the angle from the forward direction of either 
dipole to the direction in which the other one is dis­ 
placed from it.)

If 2o> is obtuse (fig. 2B), the dominant sign of the 
quadrupole is negative. In this case the points bearing 
the <S label fall in the obtuse sectors of the characteris­ 
tic plane, and the neighboring lines of force are out­ 
ward-directed. Each of these statements must be al­ 
tered appropriately if 2o> is acute (fig. 2A). To avoid 
ambiguity, therefore, we need to state whether 2o> is 
obtuse or acute, indicating which of the angles between 
the primitive lines is 2o> and which is its supplement.

If instead of the primitive lines one is dealing with 
their angular bisectors, that is, the cardinal axes (fig. 
2C), the distinction between the axes is clear, in that 
one of them marks the positive (red) and the other the 
negative (blue) linear quadrupole of an orthogonal pair. 
The ambiguity now takes a different form. It is now 
necessary to stipulate not only which is which but also 
the strength of each, or the strength of one and their
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TABLE 1.—Expressions for the fields ofdipoles and quadrupoles
[M is the magnetic moment, r is the radial distance, 8 is the angle of the position vector, A is the longitude. See text for complete definitions.)

Function
Dipole,

southward
directed

Negative (blue)
linear 

quadrupole
Normal 

quadrupole1

TanD

Tan/-

Common factor in component ex-

Coefficients:

For north field —

For east field —

Resultant horizontal field 

For downward vertical field

For component parallel to polar 
axis (positive northward)

For component normal to (posi­ 
tive toward) polar axis and co- 
pxQ.iiQ.r witn. it ---------------——«~

0

2ctn 6

M/r3

sin 6

sin 6

2 cos 6

1-3 cos2 6

1.5 sin 26

0

3 cos 20
2 sin 26

2 sin 26

0

|2 sin 20| 

3 cos 26 + 1

(1-5 cos 20) cos 6 

(5 cos20 + 3) sin 0

sec0 tan 2A 

-1.5(csc2 0 sec2 2A- I)'06

3 M«/r<

sin 20 cos 2A 

2 sin 0 sin 2A

2(1 - sin2 0 cos2 2A)° 6 sin 0 

-3 sin2 0 cos 2A

2.5 sin 20 sin 0 cos 2A 

0.5(5 cos 20 - 1) sin 0 cos 2A
1 In equatorial plane, with red linear constituent in the zero meridian.

ratio, U, in order to round out the rhombic quadrupole 
specification.

For a normal quadrupole (primitive lines orthogonal 
and U = 1), the quadrupole moment is not predomi­ 
nantly of either sign, and the two possible varieties of 
the quadrupole that have the same primitive lines are 
alike except for a 90° rotation. Thus, equation (14) is 
affected only by a sign change when A is altered by 90 °. 
In order to complete the description of a normal quad­ 
rupole that is framed by its primitive lines, we must 
stipulate which of the quadrants of the characteristic 
plane are positive by designating which of the cardinal 
axes is the red one.

For the general quadrupole, even though the primi­ 
tive lines taken separately are devoid of any sense 
characteristic, such a characteristic is implicit in their 
interrelationship. Thus, notwithstanding their inher­ 
ent ambiguity, they may be treated in such a way as to 
bring out the distinct and unambiguous character of 
the cardinal axes—one red and one blue. Theoretically 
it would be possible for the cardinal axes of the geo­ 
magnetic quadrupole to be unaffected by secular 
change, even while the primitive lines substantially 
changed their angular separation, provided the mo­ 
tions of the primitive lines were at the same rate in op­ 
posite senses. Such a change would affect £7, the ratio 
of blue to red linear quadrupole moments.

The field developed by the normal quadrupole of 
equation (14) may be examined by constructing a set of 
schematic diagrams to map its several characteristics. 
In view of the symmetries discussed later, it is suffi­ 
cient to deal with a semilune comprising 45 ° in longi­ 
tude and 90° in latitude, as indicated by the shaded 
area in figure 4. The characteristics of the normal 
quadrupole field may be visualized or deduced with the 
aid of figures 5-7, showing the surface distribution of 
the conventional magnetic elements which would be 
found on the sphere.

In both the normal and rhombic quadrupole, the field 
has genuine mirror symmetry about each of the three 
planes whose intersections are the primary and the car­ 
dinal axes; the zero —180° and the ±90° meridians are 
both agonic lines (reminiscent of a naive medieval view 
of the real isogonic pattern). There are two N and two S 
dip poles, all on the equator where it crosses the afore­ 
said meridians. With four ordinary dip poles, it follows 
that there must be two "false" poles where the hori­ 
zontal component vanishes but where the magnetic 
meridians do not converge; these are found at the geo­ 
graphic poles. The meridian circles defined by the longi­ 
tudes of the primitive lines are loci of ±90° declina­ 
tion. The equator of the coordinate system is likewise a 
line of ±90° declination, with eight segments of alter­ 
nating sign.
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FIGURE 4.—Attitude of quadrupole shown in fig­ 
ures 5-7.

Other properties of the normal quadrupole (as 
distinct from the rhombic one) are of interest: The 
"false" poles (fig. 6) are null points, where all com­ 
ponents of the field vanish. The magnetic meridians 
containing the primitive lines are planes of quasi- 
symmetry, in that although the configurations are mir­ 
rored in them, the signs are continuous (not inverted) 
in passing across the reflecting surface, just as they 
are for the field pattern of a single dipole in respect to 
its equatorial plane. These meridians are aclinic lines, 
and four of the eight junctions along the equator 
(where it is crossed by the aclinic meridians) are max­ 
ima and minima of the east component, Y (fig. 7), and 
also maxima of the horizontal component, H (fig. 6), 
the value there being two-thirds of the total-intensity 
maximum attained at the other four junctions (the dip 
poles). The north component, X (fig. 7), has four max­ 
ima and four minima, all falling on the agonic merid­ 
ians at latitudes ±45°. These are saddle points of the 
H isolines (fig. 6), with values equal to one-third of the 
maximum total intensity, F (fig. 6).

The quadrupole part of the Earth's present magnetic 
field is very nearly that of a normal quadrupole. The 
foregoing description, however, pertains to a hypo­ 
thetical one in the equatorial plane, whereas the 
Earth's quadrupole has a quite different attitude.

CHARACTER OF LINES OF FORCE

For a dipole or linear quadrupole alined with the po­ 
lar axis, the lines of force are the traces of meridional 
planes in surfaces of revolution described by equations 
(5) and (6), just as the magnetic meridians are traces of

the same planes in the sphere. To illustrate such lines 
of force, it suffices to depict only one for the dipole and 
one for the quadrupole, figures 8 and 9, respectively. 
Others are replicas of the one curve, expanded or con­ 
tracted appropriately.

For a normal quadrupole in the equatorial plane as 
stipulated by equation (14), the character of the lines of 
force, which are now nonplanar curves, may be de­ 
duced from the expressions for the angular elements D 
and /. A line of force emanating from a point on the 
sphere with small positive latitude and longitude will 
trace a path reaching almost to the geographic pole 
before it crosses the 45 ° meridian and returns to the 
sphere at a corresponding point near latitude zero and 
longitude 90 °, as shown in figure 10.

Both rising and falling portions will conform to the 
same surface of revolution. The slope of any such sur­ 
face where it traces a given parallel of latitude on the 
sphere is the ratio of the vertical magnetic component 
to the (horizontal) north magnetic component, or —1.5 
tan 9. This function is independent of longitude, so 
that any line of force emanating from or returning to 
the sphere in that latitude will conform to this same 
surface; the shape is a useful aid to the perception of 
the character of the lines of force. By an integration 
similar to that in developing equations (5) and (6), we 
can develop the equation of the surface of revolution, r:

r = k(cos 0)15. (17)

Any given one of these surfaces of revolution will con­ 
tain a family of lines of force, forming a nest of half- 
loops that are symmetrical about the meridian marked 
by the primitive line.

Since the expressions for D and / are functions of 9 
and A only, not of r, each line of force has its direction in 
space at a given point, the same as for any higher and 
lower lines of force of the same latitude and longitude. 
Hence, all lines of force intersecting a given radius vec­ 
tor fall on the surface generated when that radius vec­ 
tor moves so as to trace on the sphere a magnetic me­ 
ridian curve.

The equation of a magnetic meridian curve can be de­ 
rived as follows: First we note than tan D is the recip­ 
rocal slope of such a curve at any point. To allow for 
the convergence of the meridians we divide tan D by 
cos 9 and write

dA
d0 —tan D esc 9

—2 tan 2A . 
sin 29

(18)

the last step is accomplished by substituting for tan D 
the expression in the last column of table 1. Equation



THE GENERAL QUADBUPOLE

FIGURE 5.—Normal-quadrupole field on the sphere: V, potential; Z, vertical intensity; and
I, inclination.

'False" pole

Magnetic meridians

D
(5 cos2 2X + 4)0.5

F
2.0

FIGURE 6.—Normal-quadrupole field on the sphere: magnetic meridians; D, declination; and horizontal (H) and total (F) inten­ 
sities.

X

FIGURE 7.—Normal-quadrupole field on the sphere: 
X, north component; and Y, east component.
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Axis of symmetry

Plane of quasisymmetry

FIGURE 8.—Dipole field line.

FIGURE 9.—Linear-quadrupole field line.

(18) states the basic condition that a magnetic meri­ 
dian curve must satisfy. It is readily integrated to give

sin 2A tan2 0 = k, (19)

where the constant k is the value of tan2 9 for A = 
45°—that is, for the minimum 0. Thus (19) is the equa­ 
tion of the magnetic meridian curves on the sphere; it 
also describes in space the singly curved surfaces 
whose intersections with the surfaces of revolution de­ 
scribed by equation (17) are the lines of force of a nor­ 
mal quadrupole having its attitude defined by equa­ 
tion (14).

INTERCONVERSION OF QUADRUPOLES

With U = 0, equation (7) gives the potential of a red 
linear quadrupole:

V = (M/8r3) {(1 + 3 cos 20)(1 + 3 cos 200 ) 
+ 12[sin 200 sin 20 cos(Ao - A)] 
+ 3[(1 - cos 200)cos 2(Ao - A)] (1 - cos 20)}. (20)

Iat0° 
,long 90°

< Equatorial plane
-Iat0° 
long 0°

FIGURE 10.—Normal-quadrupole field line.

Now if we set 00 and A,, first at 90 ° and zero, respec­ 
tively, then both at 90 °, then both at zero, we have ex­ 
pressions for the potentials of three orthogonal linear 
quadrupoles, and their sum is found to be

V, = (M/8r3) {(4 - 2 - 2)(1 + 3 cos 20) 
+ 3(2 cos 2A)(1 - cos 20) 
+ 3[2(-cos 2A)) (1- cos 20)}=0 (21)

That is, the combination of three equal, orthogonal lin­ 
ear quadrupoles of the same sign is a nullity. Con­ 
sequently, two equal mutually perpendicular linear 
quadrupoles are rigorously equivalent to a third one of 
the contrary sign (and of the same magnitude), or­ 
thogonal with both given ones. It follows that if two 
normal quadrupoles of equal strength are combined in 
such a way that their constituent linear quadrupoles of 
one sign coincide and those of the other sign are
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mutually perpendicular, the result is a new linear quad- 
rupole of triple strength. Hence, any linear quadrupole 
can be resolved into two orthogonal normal quadru- 
poles.

It can be shown that any set of three normal quad- 
rupoles having their constituent linear quadrupoles 
along orthogonal axes can be reduced to two such nor­ 
mal quadrupoles.

The randomly oriented quadrupole, whether it is lin­ 
ear, normal, or rhombic, cannot be resolved into an ar­ 
bitrarily directed orthogonal set of three linear or of 
three normal quadrupoles. However, any quadrupole 
or combination of superposed quadrupoles may be re­ 
solved into a set of five elements—namely three nor­ 
mal quadrupoles in the three coordinate planes, each 
with its cardinal axes directed at 45 ° from the coordin­ 
ate axes, plus two more normal quadrupoles in two of 
the coordinate planes, directed along the axes. Fur­ 
thermore, the general quadrupole can always be re­ 
duced to a pair of orthogonal linear quadrupoles (not 
necessarily equal and of unlike sign) if the axes are 
suitably chosen.

A rhombic quadrupole may be resolved in several 
ways that seem quite different but are in fact equiva­ 
lent. The simplest way is perhaps the above-mentioned 
combination of two orthogonal linear quadrupoles of 
contrary sign. Suppose the red one is the stronger so 
that U < 1. We may now add a set of three orthogonal 
blue linear quadrupoles of equal magnitude, two of 
them alined with the given ones. Let their strength be 
such that the given (unequal) blue and red components 
are now replaced with equal ones. Since the added set 
is a nullity, the result is merely a different way of ex­ 
pressing the original quadrupole. The new model has 
three linear quadrupoles, two blue and one red. The 
red one matches the strength of one of the blue ones, 
forming a crossed pair and comprising a normal quad­ 
rupole, whereas the other blue one has a magnitude 
that is (1 — £/)/(! + U) times that of either member of 
the crossed pair.

If we now add another set of three blue ones, this 
time choosing the magnitude to match the members of 
the crossed pair, the red one will be cancelled and the 
result will be an orthogonal combination of but two lin­ 
ear blue ones with a magnitude ratio again given by £7, 
and still rigorously equivalent to the original quadru­ 
pole.

Flux emanating from a centered normal quadrupole 
exits from the enclosing sphere in the red sectors and 
reenters it symmetrically in the blue ones. For a rhom­ 
bic quadrupole, this kind of quasisymmetry is lost, 
though true symmetry about each of the three princi­ 
pal planes is retained. If U is reduced from unity, there 
is increasing departure from the regularity of the ini­

tial pattern until for U = 0 the quadrupole becomes a 
red linear one, alined along what was the red axis of the 
original normal quadrupole, which axis now becomes 
an axis of circular symmetry. Conversely, if U is in­ 
creased to infinity, the quadrupole becomes a linear 
blue one alined on the former blue axis. Thus, U is a 
direct index of the character of the geomagnetic quad­ 
rupole field, and as such is grossly descriptive of the 
overall nondipole field, since, as will be seen, the latter 
is dominated by the quadrupole constituent.

RELATIONS WITH SPHERICAL HARMONIC
ANALYSIS

As usually undertaken, a mathematical description 
of the internally generated magnetic field on the sur­ 
face of a sphere or spheroid involves potential analysis 
by means of spherical harmonic functions. The result 
of such analysis is a set of coefficients of which the 
three first-degree terms represent a dipole, the five sec­ 
ond-degree terms a quadrupole, the seven third-degree 
terms an octupole, and so on. The quadrupole terms 
dominate the nondipole field, one or more of them be­ 
ing usually larger than any of those of higher degree.

Equations (3) and (14) gave the potential distribution 
of a linear and of a normal quadrupole with specified 
attitudes. It is easy to write corresponding expressions 
for other axis-related quadrupoles. When these expres­ 
sions are compared with the expansions of the as­ 
sociated Legendre functions for the second-degree 
terms of the spherical harmonic analysis (see Chapman 
and Bartels, 1940, p. 639, for notation used herein), the 
following conclusions are established:

1. The gl term depicts a linear quadrupole alined with 
the polar axis of the coordinate system. As noted 
on page 2, this constituent of the quadrupole part 
of the field being analyzed is zonal.

2. The gl term denotes a normal quadrupole with atti­ 
tude as specified by equation (14)—that is, one in 
the equatorial plane with its red and blue cardinal 
axes in the 0° and 90° meridian planes, respec­ 
tively.

3. The h\ term denotes a normal quadrupole in the 
equatorial plane but rotated 45° from the 
preceding one. The g\ and h\ terms together depict 
a single normal quadrupole in the equatorial 
plane, having its cardinal axes at an intermediate 
orientation, the red one in longitude Vi arctan 
(h|/g|). This is the sectorial part of the quadrupole 
field. As long as g\ and h\ are excluded, incor­ 
porating the g\ term will have no effect on the 
characteristic plane or on the cardinal axes, but it 
will cause the resultant to be a rhombic 
quadrupole, with U governed by gl.
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4. The g\ and h\ terms represent normal quadrupoles 
whose characteristic planes are the zero meridian 
and the 90° meridian, respectively, each with its 
cardinal axes tilted 45 ° from the equatorial plane 
of the coordinate system. Together, the two terms 
represent a normal quadrupole (the tesseral part) 
with similar attitude in a meridional plane whose 
longitude is given by arctan (h2lg\). The inclusion 
of nonzero values of g\ and h\, along with the other 
three terms, will cause the primary axis of the re­ 
sultant quadrupole to be inclined from the polar 
axis in the aforementioned meridional plane, and 
(unless g\ = h\] will contribute to U, so that the 
resultant quadrupole may be rhombic even if g\ is 
zero. With g\ ? h\ and #2^0, the effects on U 
might balance out, so the quadrupole could still be 
a normal one.

It will be seen that with trivial substitutions re­ 
garding (1) and (2), these five elements comprise the set 
earlier mentioned as sufficing to portray the field of 
any quadrupole. Note further that by rotating the co­ 
ordinate system to bring the polar axis into coinci­ 
dence with the primary axis of the unresolved 
quadrupole, the tesseral part (the g\ and h\ terms) 
could be extinguished, leaving only zonal and sectorial 
parts.

When a general quadrupole is dissected by spherical 
harmonic analysis, the first effect is to segregate the 
zonal part—the linear quadrupole corresponding to the 
g\ term. What then remains is a combination of two 
normal quadrupoles, each having a potential distribu­ 
tion that comprises four segments with alternating 
signs delimited by a pair of orthogonal great circles. 
For the sectorial quadrupole both circles are meri­ 
dians; for the tesseral quadrupole one is the equator 
and one is a meridian.

The sectorial-tesseral distinction is clearly an arti­ 
fact of the way the original unresolved quadrupole 
relates to the coordinate system. In this paper the 
designations "sectorial" and "tesseral" are used in the 
sense in which they were originally introduced by Max­ 
well (1873) rather than the variant usage of Jory (1956) 
who related them to the centered-dipole axis. (See 
p. 6).

The dipole and quadrupole, as specified respectively 
by the three first-degree and five second-degree spheri­ 
cal harmonic coefficients, are both artifacts in that all 
the parameters depend upon the choice of coordinate 
axes. The three dipole vectors are readily compounded 
to form the single vector that represents the aggregate 
dipole moment, the magnitude of which is invariant 
with respect to choice of axes. The quadrupole 
moments cannot be compounded in the same way as 
simple vectors. However there are means of treating

the second-degree coefficients to express the resultant 
quadrupole in a unitary form that is less dependent on 
the choice of coordinate axes. Thus, we might end up 
with a specification of the two equal constituent 
dipoles of the quadrupole, along with the value of 2cu 
and the directions of the primitive lines. This is the 
method most commonly used (for example, Winch and 
Slaucitajs, 1966). Another scheme would specify the 
moments of the essential two orthogonal linear quad­ 
rupoles and the directions of their axes (the cardinal 
axes), as set out in equation (7).

An expression describing the distribution on the 
sphere of the aggregate potential of all five axis-related 
quadrupoles can be obtained by simply combining the 
five separate expressions. Now, if we expand the terms 
of equation (7), insofar as they involve functions of 
(Ao — A) or (A! — A), and sort out the terms in cos A and 
sin A, we obtain an equation which can be compared 
directly with the one that depicts the composite field of 
the five axis-related quadrupoles; this comparison 
leads to the following equations:

(22)

(23)

(24)

(25)

= 1 - U + 3(cos 200 - t/cos 20,), 

3-° ' 5 g\ rVM = sin 200 cos AO - U sin 20, cos Alt 

3-° 5 h\ rVM = sin 200 sin AO - U sin 20, sin A,,

2 .3-0 5 gi ,3/M _ cos 2Ao (i _ Cos 200 ) 
- t/cos2A, (1 -cos 20,),

and

2 • 3-°' 6 Af rVM = sin 2A,, (1 - cos 200) 
- t/sin2A,(l-cos20i). (26)

From these equations we can obtain directly the 
spherical harmonic coefficients corresponding to any 
general quadrupole that is specified by its angular 
parameters in terms of an orthogonal pair of linear 
quadrupoles of unlike sign, with moments in a 
specified ratio.

Consider next how to find the coordinates of the 
principal axes (the two cardinal axes and the primary 
axis) when those of the primitive lines are known. 
Referring to figure 11, routine manipulation of 
triangles will yield the equations

cos 2o> = cos HI cos u2 + sin u, sin u2 cos (A2 — A,,), (27) 

cos 00 = (cos u2 + cos u,)/2 cos cu, (28) 

cos 0, = (cos u2 — cos u,)/2 sin co, (29)
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FIGURE 11.—Relations of the cardinal axes to the primitive lines, and identification of angular parameters. See p. 3 for explanations of
labels.

COS (An — A,,) =_ COS CO — COS I/! COS 00
——————;——————;——-—————'

sin M! sin 60 (30)

COS (A, — _ sin co + cos ul cos 0t — ————:———:—o———' 
sin 1/1 sin 60

cos Y] = cos

cos 6P = sin 60 sin rj,

cos (Ap — AO) = — cot 00 cot 6P.

(32)

(33)

(34)

These are supplemented by equation (12) and a variant 
of equation (13); namely

U= 1 — cos 2co 
1 + cos 2co

(35)

A more troublesome requirement is that of finding 
the principal axes when the second-degree spherical 
harmonic coefficients are known. This might be done 
by an inverse, iterative application of equations (22) to 
(26), but a closed solution, if attainable, would be less 
cumbersome. Umov (1904) developed a closed solution 
for the analogous problem of finding the primitive 
lines from the spherical harmonic coefficients, and we 
can apply his procedure explicitly and then use equa­ 
tions (27) to (31) to get the desired parameters. How­ 
ever, for this purpose it is helpful to transform two of
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his equations (the last two in the group he labeled "I") 
into the form

cot MI = x =
h21 cos AI —

and

cot uz = y =

., .- ,, 1.5M2 sm(A2 —

g21 sinA2 — h21 cos A2 
1.5M2 sin(A2 — Aj)

(36)

(37)

Umov's procedure involves the numerical solution of a 
cubic equation having three real roots, the well-known 
irreducible case. Although algebraic solution of this 
cubic is impossible, a trigonometric procedure may be 
used (Dickson, 1922, §47). Only one of the resulting 
roots will yield a meaningful value of cos 2co.

QUADRUPOLE SECULAR CHANGE 
AND ITS CONSERVATIVE ASPECT

A distinction that is rather technical, yet still funda­ 
mental, may be recognized between the dipole on the 
one hand and the quadrupole and higher multipoles on 
the other. Under secular change, the dipole axis could 
move on the sphere along a track which might or might 
not trace a great-circle path. Since there is but one 
axis, its instantaneous direction of motion contains no 
clue to the curvature of the path it traces out. Only by 
comparing the motion at two successive epochs could 
we observe such curvature and locate the center of gy­ 
ration. A multipole, on the other hand, has at least 
three axes (unless it is a linear one). By assessing the 
motion of any two of its axes we can fix the center of 
gyration describing the drift from the secular-change 
data of a single epoch.

It is well known that the secular change shows pre­ 
dominantly regional characteristics, although it is now 
also accepted that an important part must have a glob­ 
al character. To evaluate and isolate the global fea­ 
tures may be a vital step in gaining a fuller under­ 
standing of the remaining constituents.

What about the dipole field? The centered dipole 
with its wandering and reversals is important in paleo- 
magnetic studies. However, recognition is increasing 
that dwelling exclusively on the dipole presents the 
hazard of a simplistic approach that can ignore signifi­ 
cant phenomena (Harrison, 1975). Here, our concern 
with the secular change pertains to structure observed 
in historic times; and in this context the secular drift of 
the dipole is difficult to pin down. The centered dipole, 
though varying somewhat in strength, is almost fixed

in direction. That is, its very slow drift in position con­ 
tributes a nearly negligible part of the overall patterns 
of the secular-change field. Thus, the multipoles (terms 
of degree 2 or higher) must be the bearers of the domi­ 
nant features of the secular-change configurations.

The study of the character of secular change thus 
seems to link up with the study of the nondipole 
field—a task that has more than one approach. A cur­ 
rently favored and promising technique is to model the 
nondipole field (or even the entire field) by postulating 
an array of current loops just within the core bound­ 
ary—or as more expediently approximated, by assum­ 
ing a distribution of satellite dipoles. However, if we 
seek to focus on the global aspect of secular change, it 
may be also instructive to examine the nondipole field 
by the alternative approach of studying the behavior 
of the centered multipoles of higher complexity. In this 
approach, the quadrupole, as the dominant constituent 
of the nondipole field, is most likely to epitomize any 
global features that may be present in the secular 
change. Hence, the quadrupole is clearly the first thing 
to study. The techniques developed may be adaptable 
to some of the higher multipoles as well. The secular- 
change problem, then, offers a distinct and cogent in­ 
centive for probing the character and behavior of the 
geomagnetic quadrupole.

The quadrupole may exhibit the effects of secular 
change in one or more of the following ways: (1) the 
combined quadrupole moment may change; (2) the 
three principal axes may undergo systematic rotation 
about a fourth axis; or (3) Umay change. If the effect is 
(2), the primitive lines would necessarily reflect it; but 
these lines would be affected in a different way by any 
change in U— they would undergo opposing drifts in 
the characteristic plane, which might obscure the sit­ 
uation. To study the global constituent we should dis­ 
tinguish between effects (2) and (3).

With the lapse of time, rotation of a field having ax­ 
ial symmetry, such as that of a centered dipole or of a 
linear quadrupole, will be scarcely perceptible in the 
pattern of the change parameters unless the axis of 
such rotation makes a considerable angle with the axis 
of symmetry; but rotation of the field of a normal 
quadrupole, or of a rhombic one that is not much dif­ 
ferent from a normal one, will be apparent no matter 
where the axis of rotation lies. That is, the surface field 
on the sphere has a two-dimensional configuration, so 
that any kind of rotation is bound to displace some of 
the zero lines of the pattern. Consequently, if the 
secular change has any global constituent we may ex­ 
pect it to be prominently manifested as an angular 
drift of the principal axes of the quadrupole, and 
perhaps of the higher multipoles as well.
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THE ECCENTRIC DIPOLE

The resultant of the vectors represented by the three 
first-degree terms of the spherical-harmonic expansion 
is the well-known inclined, centered dipole of best fit. 
It was shown by Schmidt (1918) that an eccentric 
dipole is uniquely defined by these same three terms in 
conjunction with the five second-degree terms (those of 
the quadrupole), and that this eccentric dipole has the 
same moment and the same attitude in space as the 
centered dipole based on the first-degree terms alone.

Six parameters suffice to describe Schmidt's eccen­ 
tric dipole. These could be, for example, the three or­ 
thogonal components of the centered dipole and the 
three orthogonal components of the vector stipulating 
the displacement of the eccentric dipole away from the 
Earth's center. The field of the eccentric dipole is not 
identical with that of the combined quadrupole and 
centered dipole with which it corresponds (governed by 
eight coefficients). Nevertheless, it is of some interest 
to consider just how the displacement of the eccentric 
dipole from the center is affected by manipulating the 
quadrupole.

When a linear quadrupole is superimposed on a di­ 
pole (both centered in the sphere), the eccentric dipole 
that best approximates the composite field is one that 
is displaced, (1) along the dipole axis if the quadrupole 
is either alined with or perpendicular to that axis, or (2) 
perpendicular to the dipole axis if the quadrupole is 
tilted 45 ° from it. The effect of a normal quadrupole (or 
of a rhombic one) may be examined by considering the 
separate effects of its constituent linear quadrupoles.

FERTILE AND STERILE PARTS 
OF THE QUADRUPOLE

We have seen how the general quadrupole is resolved 
(by spherical harmonic analysis) into five constituents 
governed by the coordinate axes. A similar resolution 
could be conducted relative to any set of orthogonal 
axes. Thus, if we define the polar axis to coincide with 
the centered dipole, and define the other axes so that 
one of the resulting planes would contain the displace­ 
ment vector of the eccentric dipole, the resolution 
would break up the quadrupole into "fertile" and 
"sterile" parts, in the sense that the fertile parts would 
be responsible for the displacement of the dipole and 
the sterile parts would not, though of course they 
would still be a necessary part of the description of the 
original quadrupole field. The sterile parts ((2) and (3), 
p. 9) make up a normal quadrupole in the equatorial 
plane of the dipole, whereas the fertile parts ((1), (4), 
p. 9) constitute a rhombic quadrupole in the plane de­ 
fined by the dipole axis and the displacement vector. 
Separately, the fertile constituents comprise a linear

part whose axis coincides with the dipole axis and a 
normal part in the plane just mentioned, with its car­ 
dinal axes 45 ° from the dipole axis. The displacement 
of the dipole along its axis is proportional to the 
strength of the linear part, but the displacement of the 
dipole normal to its axis is proportional to the strength 
of the normal part.

If the field subjected to spherical harmonic analysis 
happens to be that of an eccentric dipole, the sterile 
part of the quadrupole will be zero. Further, if the 
dipole is displaced only along its axis (if it is a radial 
dipole), the quadrupole will be only a linear one along 
the same axis. If the dipole is displaced only in its 
equatorial plane, the quadrupole will be a normal one 
coplanar with the dipole, with its cardinal axes at 45 ° 
with the dipole axis. (This is approximately true of the 
Earth's field.)

It is now clear why Chargoy (1950) found that if one 
deducts from the geomagnetic field its eccentric-dipole 
component, the residuum has for its quadrupole part a 
normal quadrupole in the plane perpendicular to the 
dipole. As noted by Macht (1950), this result is not a 
fortuitous circumstance of the geomagnetic field but is 
a mathematical necessity; for the dipole by its eccen­ 
tricity allows for a certain quadrupole constituent, and 
the only remaining quadrupole constituent is a normal 
one in the equatorial plane defined by the dipole.

When the sterile part of the quadrupole is zero, the 
six parameters of the eccentric dipole describe a field 
corrresponding as nearly as possible to that of the 
eight parameters of the centered-dipole-plus-quadru- 
pole model, in the sense that no quadrupole component 
is neglected. The eccentric-dipole field, of course, em­ 
bodies not only the centered dipole plus the fertile 
quadrupole, but also an infinite series of higher 
multipole terms, and there is no reason to expect these 
components to be at all similar, or even related, to the 
terms of corresponding degree in the original spherical 
harmonic analysis, since the eccentric-dipole dis­ 
placement is governed strictly by the parameters of 
the fertile quadrupole alone. Only if that displacement 
is large, however, would a large number of multipole 
terms be required to approximate well the eccentric- 
dipole field.

The eccentric dipole specified by Schmidt's (1918) 
procedure, based on the first eight terms of the spheri­ 
cal harmonic expansion, is the dipole that best sim­ 
ulates the field represented by those terms. It is usual 
to consider that this dipole is likewise the one of best 
fit for the field of higher approximation represented by 
the more detailed analysis. Bartels (1936, p. 230) 
wrote, "If the field of a magnet like the Earth is to be 
approximated by that of a dipole not necessarily
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situated at the Earth's center, it can be shown that 
there is one point C in the magnet, called the magnetic 
center, which gives the most suitable location." 
Schmidt's eccentric dipole is defined so as to fall at the 
magnetic center, defined originally by Kelvin (1872, 
p. 374).

As a matter of fact, C is usually specified to be de­ 
termined solely by the first- and second-degree terms; 
thus it is not necessarily the site of the best fitting 
dipole if the higher terms are to be considered. This 
may be seen most readily if we simplify the circum­ 
stances by supposing that the field being modeled is 
zonal, that is, symmetrical about the axis of coor­ 
dinates, hence capable of being completely depicted by 
the terms of various degrees of order 0. In this case all 
terms are zero except #?, gl, gl, — gm and Schmidt's ec­ 
centric dipole will be displaced along the axis through 
a distance determined by gl. But if higher terms are 
considered, it is clear that each term of even degree 
will represent an incremental distribution of potential 
having two N or two S dip poles at the ends of the axis 
(like the N or S dip poles of the quadrupole term) and 
will result in a separate and independent displacement 
of the dipole along its axis; so the dipole that best ap­ 
proximates the composite field of the whole series will 
be displaced from the center by a greater or smaller 
distance than the one that depends only on the terms 
of degrees 1 and 2, unless it happens that the 
displacements due to the higher terms add up to zero.

The fallacy of regarding the eccentric dipole deter­ 
mined from the first- and second-degree terms as the 
dipole that best fits the actual field has also been 
pointed out by Bochev (1965). However, the discrep­ 
ancy may well be so small as to have theoretical in­ 
terest only.

OTHER REMARKS CONCERNING 
ECCENTRIC DIPOLES

Given the six parameters of any eccentric dipole, one 
can evaluate, by means of an equation given by Hur- 
witz (1960), those of its nearest equivalent centered- 
dipole-plus-quadrupole combination, thus finding the 
spherical harmonic coefficients of degrees 1 and 2 (of 
the eccentric-dipole field) without the necessity of con­ 
ducting a spherical harmonic analysis. (The Hurwitz 
equation is not restricted to the first two degrees but 
these are of special interest here.) And if more than one 
eccentric dipole were assumed, the resulting coeffi­ 
cients could be determined for each one, and they could 
be summed to get those of the synthetic field gen­ 
erated by all the dipoles, insofar as it was reproducible 
in terms of eight coefficients. However, the individual 
quadrupoles so derived would evidently be of a special 
character in that each of them would be a rhombic one

in the plane defined by the particular dipole and its 
displacement vector.

This constraint on the second-degree terms (limiting 
the quadrupole to a plane established by the eccentric 
dipole) would be operative no matter how the coeffi­ 
cients were derived and no matter how many higher 
degree coefficients were also determined. It implies in­ 
terrelations among the five second-degree coefficients, 
such that g\ and h\ would vanish if the coordinate axis 
were chosen to conform with the dipole. Nevertheless, 
such a capability is a useful tool for studying satellite- 
dipole field models.

The quadrupole so constrained is coplanar with the 
dipole. The longitude of its characteristic plane (again 
assuming the coordinate system chosen to conform 
with the dipole) is equal to arctan (h\lg$; and if in ad­ 
dition gl is zero, the quadrupole is a normal one. Alter­ 
natively, if all the second-degree terms except gl are 
zero, the dipole and quadrupole (now linear) are on the 
coordinate axis. More generally, for any radial dipole 
the quadrupole will be a linear one coaxial with it.

Although the five second-degree coefficients so de­ 
rived constitute a unique and correct reflection of any 
given eccentric dipole, they do not fully depict the 
quadrupole aspect of any more generalized field of 
which the eccentric dipole may be only an approxima­ 
tion, inasmuch as they fail to incorporate the former's 
sterile quadrupole constituent. Assuming a given set 
of real data subjected to spherical harmonic analysis, 
its quadrupole will contain not only the fertile constit­ 
uent disclosed by the eccentric-dipole approach but 
also the sterile part, which is lost through that ap­ 
proach. For a field free of artificial constraints, know­ 
ledge of the six parameters of the eccentric dipole 
could not suffice to recover the eight parameters of the 
slightly more detailed dipole-plus-quadrupole descrip­ 
tion.

APPLICATION TO EXTANT MODELS

By means of a computer program invoking the pro­ 
cedures explained earlier (equations (27)-(37)), the pa­ 
rameters given in table 2 have been calculated from the 
second-degree terms of a number of extant analyses, as 
indicated. 1 Figures 12-22 show similar information 
graphically for most of the models depicted in extant 
analyses, which are documented in table 3. There is of 
course redundancy in giving eight parameters in table 
2 when five would suffice to define the quadrupole, but 
the redundancy is useful in the search for the most in-

J The program is arranged to accept coefficients in any of the three alternate modes of 
normalization that have been used in the past, as well as those in the present standard 
Schmidt mode. It also includes a routine based on equations (22)-(26) for using the 
calculated quadrupole-axis parameters to reconstitute second-degree spherical-harmonic 
coefficients, and for comparing these with the input values as a safeguard against calcula­ 
tion errors.
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TABLE 2—Quadrupole parameters of specific field models
[60 , Ol , AO and Aj are the coordinates of the cardinal axes; 6P , Ap are the coordinates of the primitive axis; U is the ratio of the quadrupole moments;

d2 = 2M (1 + U); parameters in degrees and minutes]

Model — - —

Epoch ———

Barraclough Gauss

1650 1835

Dyson- 
Furner- AWC-70 AWC-70 
Fanselau

1922 1937.5 1970

IGRF

1965

Parameter:

U
l/2(J2

52 00
89 36
60 30

205 50
52 00

322 00

6.403
2417.9

46 31
24 32
56 24

153 36
62 01

264 16

0.848
1938.9

57 59
4 22

45 30
132 17
61 30

254 32

0.966
2143.5

59 11
355 41
39 57

131 05
67 13

251 10

0.950
2290.5

61 58
347 26
34 24

128 28
71 44

247 19

1.13
2516.2

61 14
348 15
35 21
128 57
71 15

247 31

1.134
2461.2

structive way to depict the secular change of the geo­ 
magnetic quadrupole. The primary axis is of interest 
because it is the normal to the quadrupole's charac­ 
teristic plane and hence defines that plane with only 
two parameters. Both cardinal axes lie in that plane 
and mark those points on the surface of the sphere 
where the quadrupole field is normal to the surface. As

we have seen, these points are the authentic surface 
dip poles of the quadrupole field (N and S).

Note that for the recent models, the colatitude and 
longitude of the red axis (00 and AJ place it off the At­ 
lantic coast of Morocco; those of the blue axis (61 and 
AJ place it in Amur, Siberia; and those of the primary 
axis (6P and Ap ) place it in the Pacific Ocean about 120

120° 105° 90° 75'

FIGURE 12.—Drift of the primary axis of the geomagnetic quadrupole since 1550. Letters refer to the groups listed in table 3.
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FIGURE 13.—Drift of the primary axis of the geomagnetic quadrupole since 1927. Letters refer to groups listed in table 3.

km from the extremity of Baja California. The three 
axes are, of course, orthogonal. Comparison of the 
Gauss model with recent ones shows clearly that all 
three axes have undergone a pronounced westward 
change of longitude, along with latitude changes sig­ 
nifying that the axis of rotation of the quadrupole is by 
no means coincident with the geographic axis. The 
1650 model likewise supports this trend, at least 
qualitatively.

The Dyson-Furner-Fanselau parameters in table 2 
agree well with the treatment by Howe (1939), which 
gives for that model the coordinates of the primary 
axis and of the cardinal axes. Most other published 
discussions of the quadrupole field lay chief stress on 
the primitive lines, and some go so far as to impute to 
their locations on the sphere the character of surface 
poles; but this concept is denied by the geometry as 
shown here.
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FIGURE 14.—Drift of the red cardinal axis of the geomagnetic quadrupole since 1550. Letters refer to groups listed in table 3.

14° 12° 10° 8° 6° 4°W.

FIGURE 15.—Drift of the red cardinal axis of the geomagnetic quadrupole since 1930. Letters refer to groups listed in table 3.
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FIGURE 16.—Drift of the blue cardinal axis of the geomagnetic quadrupole since 1550. Letters refer to groups listed in table 3.

The antipodal ends of the primary axis have no 
polarity; that is, they lack any magnetic characteristic 
that would distinguish one end from the other. The 
same is true of each of the cardinal axes, and of the 
primitive lines as well. The end of each axis chosen for 
display in table 2 and figures 12-17 is the end lying 
north of the equator. The pivot of clockwise rotation 
may fall close to the 90 ° arc that connects the blue and 
primary axis points, although it is usually somewhat 
farther south.

Since many epochs are involved, the computer work 
is arranged so that models may be grouped in se­ 
quences of two or more for comparison to bring out the 
secular change. This phase of the program incor­ 
porates a routine for locating the axis about which the 
quadrupole has turned in the interval linking the 
members of each coupled pair, and for determining the 
angle of rotation during that interval.

The analyses documented in table 3 can be thought 
of as consisting of two classes: Class I covers those 
analyses taken as models for single epochs (whether or 
not accompanying secular-change parameters were 
provided); and Class II comprises sequences of closely

related models, worked up for two or more epochs to 
determine secular change. The latter are identified in 
table 3 by listing the number of epochs for each se­ 
quence, and in figures 12-22 by using full lines to con­ 
nect the plotted points.

Although not shown in the figures, the coordinates 
of the primitive lines are also calculated by the com­ 
puter program, and where the models used are iden­ 
tical with those selected by other authors, the coor­ 
dinates are in good agreement. An exception is the 
1829 model by Erman and Petersen (1874) (Sequence 
F), which as calculated by Umov (1904) gave a con­ 
flicting result. As already noted by Winch and 
Slaucitajs (1966), Umov's result in this instance 
reflected some error in calculation and must be 
disregarded.

The Class I models are assembled in convenient se­ 
quences, and in some instances are linked with Class II 
sequences. No systematic principle governs the group­ 
ing, but an effort has been made (with only moderate 
success) to associate models not differing too greatly 
in the value of n (degree and order), and at the same 
time to ameliorate the random criss-crossing of tracks
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FIGURE 17.—Drift of the blue cardinal axis of the geomagnetic quadrupole since 1930. Letters refer to groups listed
in table 3.
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1500 1600 1700 1800 1900 2000
YEARS

FIGURE 18.—Value of U (ordinate) since 1550. Letters refer to groups listed in table 3.
manifested in preliminary versions of figures 12-17. 
The models designated as Ttt T2, and Nlt N2,...N9 are 
constructed synthetically by applying specific secular- 
change models to an arbitrarily chosen base model, 
and for this reason are omitted from figures 12-17, but 
are included in figures 19 and 20. As regards older 
models (say before 1850), it is not to be supposed that 
their clustering along seemingly definite pathways is 
necessarily indicative of their precision, for all such 
models may be similarly biased by the absence of data 
over vast regions of the globe.

ECCENTRIC-DIPOLE BEHAVIOR

Table 4 shows the parameters of the eccentric dipole 
for several models reckoned according to Schmidt's 
procedure, and figures 23-24 show some of these pa­ 
rameters for many of the models referenced in table 3. 
The parameter 6C shown in table 4 and figure 24 is the

angle (measured at the Earth's center) between the 
displacement vector and the north leg of the centered- 
dipole axis. As was noted by Bartels (1936), the ec­ 
centric dipole that Schmidt's procedure yielded on the 
basis of his adaptation of the Dyson-Furner-Fanselau 
analysis for epoch 1922 was notable in that its situa­ 
tion was almost exactly in the equatorial plane of the 
centered dipole. That is, for this model 6C is very nearly 
90°, and the fertile quadrupole is almost exactly repre­ 
sented by its normal constituent in the meridional 
plane in which the dipole is displaced. Other models 
(earlier and later) do not exhibit this characteristic so 
markedly; the value of 6C seems to vacillate in much 
the same way as U, and of course there should be a re­ 
lation between these parameters, although no attempt 
is made here to formulate it rigorously.

The eccentric dipole (as defined by the first eight 
spherical harmonic coefficients) is characterized by its
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FIGURE 19.—Value of U (ordinate) since 1925. Letters refer to groups listed in table 3.

strength, its attitude, and its position. The first two 
features (and likewise their secular changes) are iden­ 
tical to those for the centered dipole. The third—that 
is, the vector stipulating how the dipole is displaced 
from the center of the sphere—is all that distinguishes 
the eccentric dipole from the centered one. This dis­ 
placement vector does exhibit significant secular 
changes or drifts, not only a westward drift but also a 
northward shifting; this was pointed out by Nagata 
(1965) and is confirmed in figure 23 for the past 8 or 10 
decades. Those drifts in fact reflect changes in the 
strength and attitude of the quadrupole relative to the 
centered dipole. Hence it may be preferable to examine 
directly the quadrupole's changes so that its influence 
can be seen separately, uncontaminated by any 
"noise" or spurious constituents that might stem from 
uncertainties of the centered dipole.

For most of the models listed in table 3, the centered- 
dipole axis (south-seeking end) falls within the shaded 
area of figure 25; the exceptions are shown individually 
in the figure, and all relate to older models based on 
sparse data.

For an interesting treatment of multipole character­ 
istics relative to centered-dipole parameters, see Jory

(1956); his "sectorial quadrupole" appears to be what 
has been designated here as the sterile quadrupole.

RESULTS OF CALCULATIONS

The behavior brought out in figures 12-17 confirms 
the conclusions of Bullard and others (1950) and of 
other studies that the quadrupole is currently under­ 
going a pronounced drift. It may be called "westward" 
in the loose sense that the pivot or pole of clockwise ro­ 
tation is certainly in the Northern Hemisphere; but 
since that pole lies far from the geographic pole, the 
drift is not "westward" in the strictest sense. (In the 
Chukchi Sea, for example, the drift is roughly east­ 
ward.)

Figures 12-24 are offered to illustrate the capabili­ 
ties of the technique rather than to portray the exact 
quadrupole parameters. Any significance attached to 
the diagrams resides in the plotted points. The lines 
linking them in sequences should be regarded primar­ 
ily as identification aids, not as attempts to depict 
precise drift paths, particularly when the time span is 
more than 5 or 10 years. Some of the major discrepan­ 
cies manifested in figures 12-17 involve models that 
are derived wholly or chiefly from observatory data.
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FIGURE 20.—Value of U (ordinate) since 1910. Letters refer to groups listed in table 3.

Models so constructed include the L sequence, Z1958, 
Z1959, and A1960. This outcome may be due in part to 
a severe global asymmetry in the distribution of 
observatories. The wide disparity between Z1958 and 
Z1959 (of nearly the same epoch though differing in 
their selection of observatories) may indicate how 
radically a change in data distribution can affect a 
model. However, disparities in the situation of the 
quadrupole axes are evident for some other models 
that are not observatory based (for example, models 
D1955, H1945, H1955, and Z1955). Perhaps some of 
the disparities arose from variance in the way in which 
the analysts dealt with the problem of latitude 
weighting of the input data. In any event, the por­ 
trayal of quadrupole parameters as here exemplified 
affords one means of assessing the effects of various 
refinements in technique.

Notwithstanding their limitations, the figures do de­ 
pict (at least for recent decades and discounting the 
main-field aspects of the observatory-based models) 
systematic trends that are believed valid. The rate of 
rotation seems to have been fairly consistent for 
several decades (fig. 26); the mean of 37 Class II deter­ 
minations for intervals after 1900 is 15.3 ± 2.5

minutes per year. The corresponding mean coordinates 
of the pivot of clockwise rotation are: colatitude 47.4° 
± 16.1°, longitude 204° ±15°. There is no clear 
evidence of systematic secondary drift in the center of 
rotation itself (figs. 27, 28), but this is only a tentative 
conclusion because the center of rotation seems to skip 
about rather erratically. Its random motion is no doubt 
due at least in part to uncertainty in the models, aris­ 
ing from inadequacy of data. Some of it can be attrib­ 
uted to differences in analytic techniques and to the 
coupling of Class I analyses that differ from each other 
in their maximum degree and order (such as the ali­ 
asing affect on the second-degree terms entailed in a 
fluctuating limitation on higher degree terms).

It seems quite possible that the center of rotation is 
in fact rather stable at its site in the North Pacific 
Ocean, that the rate of rotation of the quadrupole 
about that center may be nearly constant, and that U 
is subject to only moderate change, perhaps none at 
all. (See next section, "Additional results.") Should 
these stabilities become well established, they would 
make possible a composite determination of the 
angular parameters of the quadrupole more credible 
than that of any individual analysis; for it would be
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FIGURE 21.—Value of the quadrupole moment. Ordinate is 1A62 in units of 100 nanotesla. Letters refer to groups listed in table 3.

founded on a selection of various analyses ranging over 
an interval of several decades. The parameters so 
determined as a function of time would be a definitive

representation of the geomagnetic quadrupole, which 
constitutes the most important global constituent of 
the nondipole field and of the secular change. I have
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FIGURE 22.—Change of the quadrupole moment over time (sheared plot). In rectangular coordinates, the graph depicts the ordinate as
( l/262 + 94.2 — 0.06 X year). Letters refer to groups listed in table 3.

refrained from attempting such a determination; in 
view of the diverse provenance of the constituent 
models and the possible impact of the results upon 
future modeling efforts, it is felt that a joint under­ 
taking by various agencies and individuals concerned 
would be more authoritative than any unilateral effort.

If future analyses with more evenly distributed data 
show that the pivot of rotation holds its position better 
than do the quadrupole axes, this finding will enhance 
the significance of the quadrupole and afford further 
testimony as to its conservative tendency.

The fact that the pivot of rotation is clearly far from 
the geographic pole lends support to a similar finding 
by Malin and Saunders (1973) with respect to the ro­ 
tation of the composite of multipole fields up to degree 
six. The further fact that the latter's pole of rotation as 
reported by those authors differs radically from that 
for the quadrupole alone as found here tends likewise 
to support their suggestion that the higher degree 
multipoles are important in establishing the secular 
drift of the field as a whole.

Figure 21 shows, for some of the Class II models, the 
changes in the combined quadrupole moment, which is 
the numerical sum of the red and blue linear com­ 
ponents marking the cardinal axes, and is denoted in 
equation (12) and in table 2 as 1A62 . These changes are

fairly steady at about 0.3 percent per year, as previ­ 
ously reported by Winch and Slaucitajs (1966). This 
graph is drawn to exclude results earlier than 1800, be­ 
cause such early values are necessarily conjectural for 
lack of pertinent intensity data.

The quantity actually given in table 2 and figure 21 
is yz62 , expressed in nanoteslas (nT) for convenient 
comparison. To convert into quadrupole moment (unit, 
weber-km2 ), multiply by 1.6477 X 10 15 . The data shown 
in figure 21 are replotted in figure 22 on a sheared 
basis—that is, with a fixed linear slope of +0.06 nT per 
year subtracted from each value before plotting, thus 
permitting an expanded ordinate scale and clarifying 
the relation of the different sequences. The absolute 
value for any plotted point may be recovered by 
scaling vertically from the inclined grid lines.

The several parameters of the quadrupole have been 
worked up as a demonstration of technique and a step 
in advancing the understanding of the nondipole field 
and its secular change. It remains to be seen to what 
extent analogous procedures and spatial concepts may 
apply to the octupole and higher multipoles. Mean­ 
while, the situation of the quadrupole is well estab­ 
lished, with its primary axis emerging in the Revilla 
Gigodo Islands off the Gulf of California, its red and 
blue axes respectively between southern Morocco and



APPLICATION TO EXTANT MODELS 25 

TABLE 3.—Grouping of extant spherical harmonic analyses

Group

A

B

C

D

E

F

G

H

J

K

Epoch

1550-1700
1750-1800

1885
1958
1960
1965

1600-1910
1960
1965

1600-1800
1964.8

1600-1770
1830
1880
1945
1955
1965

1968-1970

1780
1800
1835
1885
1922
1945
1955
1960

1965-1970
1975-1980

1600-1780
1829

1845-1880
1922

1942.5
1955
1960
1965

1835
1860
1885
1945
1960
1965

1945
1955

1907-1945
1957.5
1960
1965

1907-1955
1964.8
1975

"rnaxt

4
5
4
6
8

10

4
7
9

4
9

4
5
4

15
6

12
22

4
5
4
7
6
4
6
6
8
8

4
4
6
6
6
6
9

10

6
4
4

15
10
12

4
6

6
6
9

10

12
9

12

Model designation and reference

Braginskii (1972a) (4 epochs)
Braginskii (1972b) (3 epochs)
Neumayer and Petersen (Schmidt, 1917)
Ben'kova and Tyurmina (1961)
Fougere (1965)
AFCRL 3-15-68 (Fougere, 1969)

Barraclough (1974) (8 epochs)
GSFC (4/64) (Cain and others, 1965)
Pogo (3/68) (Cain and Cain, 1971)

Braginskii (1972b) (5 epochs)
Cosmos (9/68) (Cain and Cain, 1971)

Yukutake (1971) (4 epochs)
Kamtz (1851)
Quintus-Icilius (1881)
Fanselau and Kautzleben (1958)
Kautzleben (1965 a,b)
Malin nominee (Cain and Cain, 1971)
Pogo n-22 (Cain and others, 1974) (2 epochs)

Braginskii (1969)
Braginskii (1972b)
Gauss (1839)
Fritsche (1897)
Dyson-Furner-Fanselau (Schmidt, 1934)
Chakrabarty (1954) (ramax=2)
Finch and Leaton (1957)
Jensen and Cain (1962)
IGRF (IAGA Comm. 2, 1969) (2 epochs)
IGRF (Leaton, 1976) (2 epochs)

Fritsche (Yukutake, 1971) (4 epochs)
Erman and Petersen (1874)
Adams (1900) (2 epochs)
Dyson and Furner (1923)
Jones and Melotte (1953)
Adam and others (1963a,b) (Izmir charts)
GSFC (9/65) (Hendricks and Cain, 1966)
IZMIRAN nominee (Cain and Cain, 1971)

McDonald and Gunst (1967)
Carlheim-Gyllenskb'ld (1896); Schmidt (1917)
Schmidt (1917)
Fanselau and others (1964)
GSFC (12/66) (Cain and others, 1967)
Hurwitz and others (1966)

Afanasieva (1946) (nmax=2)
Adam and others (1962) (B. A. charts)

Vestine and others (1947) (5 epochs)
Malin and Pocock (1969)
GSFC (7/65) (Cain, 1966)
AFCRL 11-1-67 (Fougere, 1969)

Vestine and others (1963) (6 epochs)
Tyurmina (1968)
Barraclough and others (1975)
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TABLE 3.— Grouping of extant spherical harmonic analyses—Continued

Group Epoch Model designation and reference

L 1932-1958 4 Adam and others (1963a,b) (7 epochs)

M 1937-1970 12 AWC-70 (Hurwitz and others, 1974) with secular change applied from Hurwitz and Fabiano
	(1969) (7 epochs)

N 1942-1962 6 Malin (1969) (5 epochs)
1965 6 N1962.5 adjusted to epoch using RGO-2 isoporic model (Cain and Cain, 1971)

*N, 1970 8 N1965 plus AFCRL (3/68) isopors
N2 1970 8 N1965 plus AFCRL (11/67) isopors
N3 1970 8 N1965 plus GSFC isopors
N4 1970 8 N1965 plus Pogo (10/68) isopors
N5 1970 8 N1965 plus Izmir isopors
N6 1970 8 N1965 plus RGO-1 isopors from P1965
N7 1970 8 N1965 plus RGO-2 isopors
N8 1970 8 N1965 plus Pogo (3/68) isopors
N9 1970 8 N1965 plus CGS isopors

P 1958.5 6 Nagata and Oguti (1962)
1965 8 Leaton, Malin, and Evans (1965)

Q 1955 12 Vestine and others (USSR charts) (1963)
1960 11 Pogo (10/68) (Cain and Cain, 1971)
1965 12 AWC-70 (Hurwitz and others, 1974) (adjusted to epoch using Hurwitz and Fabiano, 1969)

R 1960 10 Pogo (8/69) (Cain and Sweeney, 1970)
1965 8 RGO-2 nominee (Cain and Cain, 1971)

S 1960 6 Adam and others (1963) (Izmir charts)
1964.8 9 Tyurmina and Cherevko (1967)

T 1965-1970 12 CGS nominee (Hurwitz and others, 1966) (2 epochs)

U 1975 8 AWC-75 (Fabiano and Peddie, 1975)
U, 1970 8 AWC-75 less AWC-75 isopors
U2 1970 8 AWC-75 less IGS (UK) isopors

Z 1955 24 Jensen and Whitaker (1963); Heppner (1963); ramax = 17
1958 6 Adam and others (1962) (99 observatories)

_________1959_______4 Zmuda and Neuman (1961) ______________________________
t "max refers to the maximum degree and order of the analysis.
*Formed by using each of the nine secular-change adjustments described in Cain and Cain (1971) to reduce N1965 to epoch 1970. 

Similarly, Group U is formed by applying two adjustments to reduce U1975 to epoch 1970.

the Canary Islands and in a remote part of Amur, 
Siberia, and the pivot of its clockwise drift in the 
region of the Aleutian Islands.

ADDITIONAL RESULTS

The past several decades have witnessed substantial 
growth in the Earth's quadrupole moment along with 
an unmistakable drift in the principal axes of the 
quadrupole, but these trends have not been accom­ 
panied by comparable changes in the relative 
strengths of the red and blue components. Their ratio, 
C/,has shown indecisive small changes since 1900 (figs.

18-20), with a near-unity long-term mean; and this pa­ 
rameter seems to attain greater stability as the data 
coverage improves. The older, classical analyses show 
values of U that scatter more widely but still manifest 
no clear secular trend, suggesting that the scatter is 
very possibly due to such poor data coverage that no 
genuine change of U can be discerned. It may be perti­ 
nent that when the original Gaussian data were sub­ 
jected to a new analysis by D. Watson (sequence G of 
table 3, this report) for epoch 1835, using a modern ap­ 
proach for filling in some of the data gaps (McDonald 
and Gunst, 1967), the value of U was thereby altered 
from 0.845 to 1.041. I do not imply that the new treat-
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FIGURE 23.—Coordinates of the displacement vector for the eccentric dipole. Letters refer to groups listed in table 3.

ment is automatically a major improvement on the 
original analysis, but this result does demonstrate that 
improved data distribution can substantially affect the 
value of U. In any event, recent data suggest that U 
has a pronounced conservative tendency.

HYPOTHESIS ON THE CHARACTER 
OF THE QUADRUPOLE

The efforts of recent investigators to extend spheri­ 
cal harmonic analyses backward in time are of course 
attended by great uncertainty, as pointed out by Bar- 
raclough (1974) with respect to his sequence of models 
beginning with 1600. The U values corresponding to 
the first four of his models are 2.1, 6.4, 3.8, and 1.4 (fig. 
18, sequence B). If such values were taken seriously, 
we would conclude that the quadrupole had undergone 
some profound transformations, with a strongly rhom­

bic model first approaching and then receding from the 
status of a linear quadrupole before finally settling 
down in recent decades to approximate that of a nor­ 
mal quadrupole. Such vicissitudes would necessarily 
denote marked transformations of the whole character 
and aspect of the nondipole field. Can such radical and 
erratic changes be reconciled with the conservative 
tendency otherwise characterizing the low-degree con­ 
stituents of the field? Would the needed energy 
transformations comport with reasonable assump­ 
tions as to the parameters of core dynamics? These 
questions deserve further study, but it seems intuitive­ 
ly unlikely that the field has really undergone such 
mutations, in view of the manifest stability of U in the 
recent models.

It is suggested rather that the erratic variability of 
U in the classical models and its excessive magnitude
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FIGURE 24.—Change of Bc for selected analyses. 0C is the angle measured at the Earth's center between the displacement vector and the
north leg of the centered-dipole axis. Letters refer to groups listed in table 3.

for the early Barraclough models are artifacts of the in­ 
adequacy of the data used, and it would seem to be a 
plausible hypothesis that in fact U has a strong 
tendency to remain at or near unity—that is, for 2co to 
have only insignificant departures from 90 °, as noted 
by Zolotov (1966). The indicated departures of U from 
unity are rather unsystematic, especially for recent 
years with gradually improved data distribution. Even 
now, the vector data are blighted by large gaps, and it 
is conceivable that filling in the gaps would ap­ 
preciably modify the coefficients and possibly bring U 
still closer to unity.

Zolotov's suggestion was questioned by Winch and 
Malin (1969), who found a gradual progression of 2o>, 
which passed through 90° in 1952. The sequence N 
plot of figure 20 does indeed show U ascending 
through unity in early 1952, but persistence of this 
drift as a long-term phenomenon is not strongly sup­ 
ported by other data depicted in figures 19-20. The 
secular-change data are even more seriously deficient 
(in global coverage) than those for the main field. If im­ 
proved secular-change data should in the future be 
found to reduce the apparent rate of drift of U, this 
would further support the hypothesis. And if the drift
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TABLE 4—Eccentric-dipole parameters of specific field models
[Of the two versions of the displacement-vector parameters, those on the lower h'ne of each pair are modified values obtained by imposing the constraint for U = 1, holding the 

cardinal axes unchanged. Rc, magnitude of the displacement vector in terms of Earth radii. 6C, angle measured at the Earth's center between the displacement vector and the 
north leg of the centered-dipole axis. Angles in degrees and minutes]

Model - —— —

Epoch ——— -

Dipole vector:
e
A

Displacement 
vector:

ec 

AC

6C

Rc

Barraclough

1650

7 16 
319 09

100 31 
97 33

210 01 
239 51

102 51 
96 09

0.05164 
0.03267

Gauss

1835

12 10 
296 28

103 06 
103 01

185 24 
185 24

106 36 
107 06

0.04540 
0.04452

Dyson- 
Furner- 

Fanselau

1922

11 30 
291 10

83 28 
83 25

161 44 
161 08

90 50 
90 52

0.05397 
0.05395

AWC-70

1937.5

11 30 
291 57

78 36 
78 25

156 22 
155 37

86 53 
86 49

0.06240 
0.06242

AWC-70

1970

11 26
289 47

71 27 
72 01

148 02 
149 39

80 32 
80 54

0.07270 
0.07224

IGRF

1965

11 26 
290 14

72 50 
73 24

148 46 
150 25

81 53 
82 15

0.07067 
0.07025

is real, it may change sign from time to time so that U 
never gets far from unity.

Different attempts to derive isoporic models yield 
discordant rates of change of U, despite the use of re­ 
cent data and updated techniques. Nine proposals were 
formally entered in 1968 as candidates for the time 
derivative terms of the International Geomagnetic 
Reference Field. Their second-degree terms are 
reflected in the cluster of nine short lines in figure 20 
for the interval 1965-1970. No doubt the slope dispari­ 
ty stems partly from differences in the weighting of 
data; if the well-known global imbalance of obser­ 
vatory distribution could be remedied, such a spread 
might well be minimized. (Note that the attachment of 
this grouping to a particular main-field model is ar­ 
bitrary and holds no significance as to the absolute 
value of U.)

If the hypothesis that U is constrained to remain at 
or close to unity is tenable, then many of the older 
models, if not the current ones, could be improved by 
imposing the empirical constraint that U = 1 . 
Geometrically, this constraint implies that the zonal 
element delimited by any two small circles parallel to 
the characteristic plane of the quadrupole and by 
"meridians" of the primary axis that are 180° apart 
will encompass zero net quadrupole flux (the total 
amounts that enter and leave that part of the sphere 
being equal). The hypothesis, then, in its boldest form 
asserts that the configuration of the several electric-

current vortices comprising the nondipole part of the 
geomagnetic core-dynamo is in some way physically 
regularized so that it cannot give rise to a quadrupole 
that differs significantly from a normal one.

SOME FURTHER IMPLICATIONS 
OF THE QUADRUPOLE CONSTRAINT

It is pertinent to inquire whether the hypothesis has 
any physical basis. None of a rigorous character ap­ 
pears, but a limited facet of the matter is to be noted. 
Let us regard a quadrupole as the result of two nearby 
current loops (of contrary sense) in a plasma, depicting 
two dipoles. Their detailed interplay, rather than their 
gross equivalence to simple dipoles, will govern the 
outcome.

For a normal quadrupole the loops would be 
coplanar, and their affinity would lead to an 
equilibrium configuration (fig. 29A), wherein the at­ 
traction between uncrossed remnants of the inner 
limbs is balanced by that between the overlapping seg­ 
ments (now urging the loops apart) plus the net repul­ 
sion involving the outer limbs. If the loops are con­ 
sidered to merge in their shared region (fig. 29B), the 
forces change but the equilibrium spacing is much the 
same. For a linear quadrupole the loops must be coax­ 
ial, one over the other, rather than coplanar. In this 
case (irrespective of the separation) there is no net 
attraction but only repulsion, precluding any
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FIGURE 25.—Coordinates of the centered-dipole axis. Letters refer to groups listed in table 3. For most models listed in 
table 3 the south-seeking end of centered-dipole axis falls in the shaded area.
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FIGURE 26.—Quadrupole rotation rate. Class II analyses for groups from table 3.

equilibrium mode. And for a rhombic quadrupole the 
interacting forces would cause the loops either to 
separate entirely or to become coplanar. The only 
viable sort of conjunction is that yielding the normal 
quadrupole.

These concepts apply also in a space that is 
populated by a multiple distribution of loops in various 
attitudes, free to undergo random encounters with one 
another. Normal quadrupoles may well be the only sort 
producible by such activity.

Thus it seems physically plausible to postulate that 
the normal quadrupole is the only sort that can endure 
in a simple electromagnetic situation. Although this 
analog does not preclude the existence of rhombic or 
linear quadrupoles in an artificially controlled en­ 
vironment, it does afford a rationale for hypothesizing

that in nature their occurrence, if encountered at all, 
might be regarded as anomalous and transient.

The bifoliate current of figure 295 could occur in 
either of two varieties, one the inverse of the other and 
rotated 90° about the line of conjunction of the paired 
loops. The fields of the two species would be in­ 
distinguishable at a distance. In fact, it would be (at 
least mathematically) possible for both forms of loops 
to coexist, each contributing its portion of the ag­ 
gregate quadrupole field; and if they happened to be of 
equal strength, the resultant current along the line of 
conjunction (the primary axis) would be zero. Such 
coexistence and equality are not necessary to account 
for a quadrupole field, but the symmetrical configura­ 
tion they afford is helpful in visualizing the kinds of 
symmetry appearing in the field.
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FIGURE 28.—Center of clockwise quadrupole rotation. Chiefly Class II analyses for groups from table 3.

These considerations will perhaps lend support to 
the suggestion that any substantial deviations from 
this rule, such as those that appear to occur with the 
older analyses, are but artifacts of well-known inadequa­ 
cies of the data. At least we have a common-sense ap­ 
proach for inquiring whether the imposition of such a 
constraint might afford an improvement on existing 
and future models. Furthermore, if the constraint is a 
valid one for the Earth it may apply to the other 
planets as well.

The earlier history of geomagnetic spherical- 
harmonic analysis left undetermined whether the 
monopole, nonpotential, and external terms were 
significant; but as the data and techniques have im­ 
proved it has come to be recognized that the monopole 
and nonpotential terms are almost certainly negligible

FIGURE 29.—Current loops in a schematic normal quadrupole. A, 
Attraction in uncrossed remnants balanced by that region be­ 
tween overlapping segments. B, Loops considered to merge in 
their shared region.

if not zero, and the upper limit on the exterior terms is 
assuredly much smaller than could have been deduced 
from the earlier work. The constraint hypothesized 
here may be of a 9haracter such that it can never be 
rigorously established, but if it should be found 
nominally valid to a sufficiently high accuracy, it may 
well afford another tool for refining our knowledge of 
the geomagnetic field and its secular change.

If constrained to be a normal one, the quadrupole 
would need for its specification a minimum of four pa­ 
rameters, that is, the moment, the coordinates of the 
primary axis, and the angle between, say, the blue axis 
and the meridian plane containing the primary axis.

Ideally, if the constraint is valid it should be im­ 
posed as one of the initial conditions of a spherical har­ 
monic analysis. This is not easily done when the ob­ 
jective is to modify an existing classical analysis, since 
the original technique and input data may not be 
recoverable. Alternatively, the constraint may be ap­ 
plied as an empirical adjustment of the red and blue 
moments to a mean value, with the effect of rotating 
the two primitive lines in contrary senses about the 
primary axis until they are 90° apart. As so applied, 
the constraint has no effect on any of the principal 
axes, hence this is not a satisfactory way to test the ac­ 
tual effect that the constraint would have if applied 
during an initial analysis. However, it can give some



34 ON MODELING MAGNETIC FIELDS ON A SPHERE WITH DIPOLES AND QUADRUPOLES

TABLE 5—Changes of coefficients caused by imposing the constraint for U = 1
[For ease of comparison the changes (in nanotesla) are expressed in terms of Schmidt-normalized coefficients irrespective of the mode in which the original coefficients were stated]

Model Barraclough Gauss
Dyson- 
Furner- 

Fanselau
AWC-70 AWC-70 IGRF

Epoch 1650 1835 1922 1937.5 1970 1965

Ag-£ -275.8
Agi -1684.6
Lh\ +21.6
Ag| +491.6
Lh\ +1309.2

-28.7
-21.2

-113.7
+8.1

-557.5

-5.4
-7.7

-25.9
-21.6
+ 12.7

-15.8
-12.8
-33.9
-34.8
+26.3

+58.4
+25.2
+78.2
+82.4
-86.8

+56.5
+25.2
+ 79.1
+81.7
-84.9

idea of the order of magnitude of the effects on the 
spherical harmonic coefficients and on the displace­ 
ment of the eccentric dipole. Accordingly, my program 
for calculating the quadrupole parameters has been ex­ 
tended to include an adjustment of the red and blue 
quadrupole moments to their arithmetic mean and the 
derivation of modified spherical harmonic coefficients 
and modified eccentric-dipole parameters corres­ 
ponding with the adjustment. Table 5 shows how 
much the second-degree coefficients for several models 
would be affected by imposing the constraint in this 
limited way.

It is clear that the constraint so applied causes the 
coefficients to be changed substantially even for the 
latest models. If the constraint hypothesis is valid to 
within close limits, these changes give a rough indica­ 
tion of the order of magnitude of the uncertainties in 
the extant coefficients, arising from the circumstance 
that none of the existing analyses has hitherto in­ 
corporated the constraint. It is certainly not argued 
that any analysis could be most effectively improved 
upon by this makeshift manner of imposing the con­ 
straint.

SOME QUALITATIVE REMARKS ON OCTUPOLES
Just as the quadrupole may be regarded as the com­ 

bination of two dipoles, so the octupole may be taken 
as the combination of two quadrupoles. The constit­ 
uent quadrupoles are inversely related—that is, the 
positive elements of each one correspond in strength 
and direction to the negative elements of the other. 
Taking one sense of the red cardinal axis of one of the 
quadrupoles as a reference direction, the other 
quadrupole is displaced from the first one in a definite 
direction, which may be specified by two angles. One of 
these may be the angle measured in a plane normal to 
the characteristic plane of the quadrupoles, from the 
latter plane to the line of displacement. If this angle is 
zero the two quadrupoles are coplanar. The other angle 
may be reckoned in the characteristic plane, to the 
above normal plane, or if the first angle is zero to the 
displacement direction itself. (If the first angle is 90°,

the second one is indeterminate; and if in addition the 
component quadrupoles are normal ones, the octupole 
has the configuration of a cube.)

Thus the octupole may be specified by seven pa­ 
rameters—the five parameters that define its constit­ 
uent quadrupoles (these being identical except for the 
sign change) and the two angles mentioned above. 
Note that the constituent quadrupoles may be rhom­ 
bic, normal, or linear. The resultant octupole may be 
linear (but only if the quadrupoles are linear and both 
of the angles discussed above are zero). The octupole 
may be planar (if the two quadrupoles are coplanar). In 
all other cases, it need be neither linear nor planar.

Of the several possible forms of octupole, it appears 
that the simplest nonlinear one would be cubic, formed 
of two normal quadrupoles separated along their com­ 
mon primary axis—that is, in a direction normal to 
their characteristic planes. The eight corners of the 
cube would correspond with the eight point poles mak­ 
ing up the four constituent dipoles (fig. 30). A cubic 
octupole may be regarded as the result of a cloverleaf 
or quatrefoil array of coplanar current loops, and may 
well be the only stable kind of octupole. There are three 
attitudes of the quatrefoil current array that could pro-

FIGURE 30.—Arrangement of four dipoles to form a cubic octu­ 
pole, and equivalent quatrefoil array of coplanar current loops.
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duce the identical octupole field (that is, the fields 
generated would be indistinguishable at a distance) 
corresponding to three ways of peripherally coupling 
the eight point poles of the cubic array. All three cur­ 
rent patterns might coexist, each contributing perhaps 
one-third of the aggregate octupole field. However, if 
two similar quatrefoil current patterns were combined 
so that their planes intersected normally but they both 
showed the same sense of current flow across their 
plane of symmetry, the result would be a multipole 
with n = 4—what is called a sedecimupole by Winch 
(1967).

The primitive lines of a quadrupole are established 
by its constituent dipoles under the two possible ways 
of assigning their directions in space. Similarly, the 
alternate ways of assigning the octupole field to two 
quadrupoles lead to certain directions in space, now 
three in number, which may likewise be called 
primitive lines. For a cubic octupole, they are an or­ 
thogonal set of directions corresponding to the face 
centers of the cube, and they mark the necessary six 
false poles or saddle points of the potential configura­ 
tion on the sphere.

A quadrupole has two cardinal axes, each being a 
bisector of an angle between the two primitive lines. 
The cardinal axes mark the true dip poles of the sur­ 
face field on the sphere. The octupole has four 
analogous axes, each of which is separated by equal 
angles from the three primitive lines. In the cubic oc­ 
tupole these are the diagonals of the cube, so even for 
this simple case they are not orthogonal with each 
other. However, they still mark the dip poles (eight in 
number) of the octupole field on the sphere. These 
poles, like those of a dipole field but unlike those of a 
quadrupole, will occur in pairs with unlike signs, each 
pair marking opposite ends of an axis.

It remains for further investigation to ascertain 
whether or not the geomagnetic octupole and higher 
multipoles are subject to any constraint that would 
restrict them to specific categories, analogous to the 
hypothesized restriction of the quadrupole to a normal 
one. To anticipate somewhat, if it were stipulated that 
each of the constituent quadrupoles of every higher 
multipole must be a normal one, and that they are in­ 
variably coupled in orthogonal relationships, with 
coplanar current loops, it would follow that the oc­ 
tupole (a cubic one) could be described by but four in­ 
dependent parameters, the fourth-degree multipole by 
another set of four, and so on.

SUMMARY AND CONCLUSIONS

In this report I have sought to develop improved 
understanding of quadrupole behavior by emphasizing 
the concept of the cardinal axes as distinguished from

the less fruitful primitive lines, and to bring out the 
quadrupole's unique significance in relation to the 
secular change, especially in relation to global constit­ 
uents. New insights are presented regarding the 
geometry of quadrupole fields, the way in which they 
govern the displacement of Schmidt's eccentric dipole, 
and the isolation of those quadrupole elements that 
have no such influence. The secular change of various 
parameters is graphically depicted on the basis of more 
than a hundred extant spherical harmonic analyses 
from many sources. Earlier work reporting the growth 
and westward drift of the quadrupole is confirmed and 
refined. The approaches here developed facilitate isola­ 
tion of the asymmetric components of the quadrupole 
and thereby promote understanding of the nondipole 
field as it may be manifested in extant and future 
spherical harmonic analyses. And we see that when an 
analysis is proposed on the basis of radial dipoles, 
every such dipole is associated with a series of 
multipoles having especially restricted characteristics 
that are of interest in relation to spherical harmonic 
analyses. Finally, there is offered for further consider­ 
ation and testing the hypothesis that the composite 
geomagnetic quadrupole is naturally constrained to be 
approximately normal.
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