

Geoindex

By PATRICIA FULTON and HAROLD JOHNSON,
assisted by WILLARD L. MCINTOSH, MARGARET EISTER, LAWRENCE BALCERAK,
DONALD HANSON, RICHARD THOENSEN, and PEARL PORTER

GEOLOGICAL SURVEY PROFESSIONAL PAPER 1172

Data base and data-base management system
Jor the index to geologic maps

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON:1982

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

Library of Congress catalog-card No. 82-600504

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402

CONTENTS

Abstract
Introduction
Acknowledgments
Data-base management system
Purpose
Glossary and system structure
Data acquisition
Text data
Map data
Publication copy
Storage and retrieval system
Data base
Structure of the data
Text data
Map data
Text and map data
System specifications
Status of the system
References cited
Appendixes: System specifications
Appendix A. System flowchart
Appendix B. Operational instructions
How to run the following:

comtape.ec
chkref
geofmt.ec
to-nbiD
concat
list_tape_contents
Listing 1. Example of list_tape contents ______
tapedwg

dwgdisk
Listing 2. Example of rdtape.tel _____________
seldisk
dwgtape
versatec.ec
index_ versatec
Listing 3. Parameter cards for a Versatec plot _
sort.vers.coor.ec
master
state_optima
addrad
covert.ec
gr.ec
inplot.ec
pnlé
bigsta
usmerg.ec
state__to_tape
pull_off

backup

restore

verplot

g
K

SR R N N N

Appendixes: System specifications —Continued
Appendix B. Operational instructions—Continued
How to run the following — Continued

Listing 4. Formation of the command file for
verplot and an example command file .____

Listing 5. Commands for verplot ____________
end plot
legend
linwind
outline
pattern
plot
reorg
scale
symbol

pin90
Listing 6. The 48 conterminous States and their
corresponding two-digit numbers that are

used for plotting individual States as used in

file stat90

Appendix C. Computer program reference ______________
Exec_com name: comtape.ec
Program name: chkref
Subroutine name:

rfskip_chkref
clean_chkref
reup_chkref
blankcheck__chkref
typecheck__chkref
locatl_chkref
checkitem__chkref
setup__chkref
Exec_com name: geofmt.ec
Subroutine name:
geofmt.qedx
geofmt
geofmt2.qedx
geofmt3.qedx
geofmta.qedx
embed__tabs
to_nbiPP
Program name:
to-nbiD
concat
Subroutine name:
main_concat
alter__concat
locate__concat
modify_ concat
vector__concat
wryte__concat
contrl__concat
File name: matrix

1

Page

45
48
48
48
48
48

49
49
50

51

85
87
88
89
90

94
94

v CONTENTS

Page Page
Appendixes: System specifications — Continued Appendixes: System specifications —Continued
Appendix C. Computer program reference—Continued Appendix C. Computer program reference—Continued

Program name: Exec__com name —Continued
tapedwg 96 inplot.ec 195
dwgdisk 103 Program name: pnlé 196
seldisk 110 Subroutine name:
dwgtape 118 pos 205

Exec_com name: versatec.ec 125 plo 205

Program name: index_ versatec 126 plod 206

Subroutine name: ploc6 207
legend 130 assoc 209
rotate 133 Program name: bigsta 210
rdftur 134 Subroutine name:
penchg 135 outl_bigsta 214
plotli 135 out2_bigsta 214
pllich 137 bigcal_bigsta 215
pltsel 140 Function name: irads_bigsta 216
plotch 141 Subroutine name: prim_bigsta 217
shade 1438 Function name: icards_bigsta 218
srtdup 144 Exec_com name: usmerg.ec 218
pattern 146 Program name: state__to_tape 219

Exec_com: sort.vers.coor.ec 147 Subroutine name:

Subroutine name: heading_state__to_tape 221
pgml.vers.exthdr 149 up__file_number 222
pgm2.vers.sequent 150 sts_begin 223
pgm3.vers.merge 150 Exec_com name:

Program name: master 152 disk_to_tape_fb_retain.ec 225

Subroutine name: disk__to_tape_vbs_retain.ec 225
arentr__master 154 list_state_tape.ec 225
weight_master 158 Program name: pull_off 226
adjust_master 158 Subroutine name:
work__master 159 state_pull_off 227

Function name: separate_pull_off 228
dist_master 160 Exec_com name:
ncross_master 161 tape_to_disk_fb__retain.ec 230

Subroutine name: tape_to_disk_vbs_retain.ec 230
cntest_master 161 Program name: backup 231
dm__master 165 Exec_com name:

File name: areano 165 backup.ec 231

Program name: state_optima 167 dump.ec 232

Subroutine name: optima 168 Subroutine name:

Exec_com name: backupl 232
open_si.ec 170 backup2 234
close.ec 171 Program name: restore 235

Program name: addrad 171 Exec_com name: retrieve.ec 236

Subroutine name: Program name: verplot 237
optima._addrad 174 Subroutine name:
ibound_addrad 176 change_ origin 240
decoder_addrad 177 change_ width 242
srch20_addrad 178 change__symbol 243
icoder_addrad 179 scaleplot 245
srch30__addrad 180 pattern_verplot 246
rconv_addrad 181 interpret_data 247
dms 183 newpattern 248
read2_addrad 183 plotoutline 253
srch40_addrad 184 find_octal_number 258
read40_addrad 185 find__number 259
weight__addrad 186 set_shade 261
center_addrad 187 plotlegend 262
ftnumber 189 plotfile 267

Exec_com name: covert.ec 190 pattern 280

File name: crfile 191 Program name: pin90 281

Program name: setmas 192 Subroutine name:

Exec_com name: enlrg 286
gr.ec 193 indiv 288

CONTENTS

P
Appendixes: System specifications—Continued e Appendixes: System specifications — Continued
Appendix C. Computer program reference —Continued Appendix D. Formats and notes
Subroutine name —Continued Format of refNM files
min_max 290 .
grid 291 Format of reference file
plocv 294 Notes for entering card data
ILLUSTRATIONS

FiGURE 1.

12.
13.
14.

. Part of a sheet of bibliographic references taken from the published Kentucky Index
. List of attributes (names of data fields) that constitute a record
. Photographs of a CRT plot showing:

. Partial list of text data in card image form, for reference 90, Colorado

Sheet from the published Kentucky index, showing geologic maps whose scales range from smaller than 1:63,360 through and
including 1:250,000

4. Areas of North Dakota for which geologic maps have been published at scales smaller than 1:63,360 ________________
5. Some areas of the United States that are covered by published geologic maps

. Plot showing all the areas for which geologic maps have been published in the States of Idaho, Nevada, and Arizona _________
. Plots from the on-line data base showing areas geologically mapped in the United States:

7. After 1960 and published at a scale of 1:250,000
8. At scales larger than 1:250,000

Map data in:
10. Cartesian coordinates for reference 90, Colorado
11. Radians for reference 90, Colorado
Complete record for reference 90, Colorado
Table showing names of files in permanent storage
Status map for the Geoindex, automatically generated monthly

Page

297
297
298
298

Page

14
16
18

18
18
19
20
21

CONVERSION FACTORS

Metric unit

Inch-Pound equivalent

Metric unit

Inch-Pound equivalent

Length Specific combinations—Continued
millimeter (mm) = 0.03937 inch (in) liter per second (L/s) = .0853 cubic foot per second
meter (m) = 3.28 feet (ft) cubic meter per second = 91.47 cubic feet per second per
kilometer (km) = .62 mile (mi) per square kilometer square mile [(ft3/s)/mi?]
Nl) 3.28 feet d (hydrauli
meter per day (m/d = . eet per day ydraulic
Area P v (m/ conductivity) (ft/d)
square meter (m2) = 10.76 square feet (ft2) meter per kilometer = 5.28 feet per mile (ft/mi)
square kilometer (km?2) = .386 square mile (mi2) (m/km)
hectare (ha) = 247 acres kilometer per hour .9113 foot per second (ft/s)
(km/h)
Volume meter per second (m/s) = 3.28 feet per second
cubic centimeter (cm3) = 0.061 cubic inch (in3) meter squared per day = 10.764 feet squared per day (ft27d)
liter (= 61.03 cubic inches (m2/d) (transmissivity)
cubic meter (m?) = 3531 cubic feet (fte) cubic meter per second = 22.826 million gallons per day
cubic meter = .00081 acre-foot (acre-ft) (m3/s) (Mgal/d)
fhoe hectometer (hm?) =819.7 . acrefest cubic meter per minute ~ =264.2 gallons per minute (gal/min)
liter = 1.06 quarts (qt) (m?/min)
liter = .26 gallon (gal) liter per second (L/s) = 15.85 gallons per minute
cubic meter = .00026 mﬂ}i(‘))ﬂ“ ggaallons (Mgal or liter per second per = 4.83 gallons perim)ix?éte per foot
_ _ meter [(L/s)/m] [(gal/min)/ft]
cubic meter = 6.290 barrels (bbl) (1 bbl=42 gal) kil(()l!(ne}ili per hour — 62 mile per hour (mi/h)
: m
Welg‘ht meter per second (m/s) = 2.237 miles per hour
gram (g) = 0.035 ounce, avoirdupois (oz avdp) gram per cubic = 62.43 pounds per cubic foot (1b/ft3)
gratm ¢ ® = 1.0032 pound.havoinitgu(%)gsl l})]b avdp) centimeter (g/cm3)
metric tons = .10 tons, short (2 2
1 , P gram per square 2.048 pounds per square foot (1b/ft2)
metric tons = 0.9842 ton, long (2,240 1b) centimeter (&/cm?) /
Sp ecific combinations gr%:}nntli)ﬁfetseqruare = .0142 pound per square inch (Ib/in2)
kilogram per square = 096 atmosphere (atm)
centimeter (kg/cm?) Temperature
kilgggﬁ\le;t)gi square = .98 bar (0.9869 atm) degree Celsius (°C) = 18 degrees Fahrenheit (°F)
cubic meter per second = 35.3 cubic feet per second (ft3/s) degrees Celsius =[(1.8X°C)+32] degrees Fahrenheit

(m3/s)

(temperature)

Any trade names in this publication are used for descriptive purposes only and do not constitute endorsement by the U.S. Geological Survey.

GEOINDEX

By PATRICIA FULTON and HAROLD JOHNSON,
assisted by WILLARD L. MCINTOSH,
MARGARET EISTER, LAWRENCE BALCERAK, DONALD HANSON,
RICHARD THOENSEN, and PEARL PORTER

ABSTRACT

The acquisition and the dissemination of information are ever-
increasing problems for Federal agencies engaged in research. To
facilitate the publication of its geologic index maps, the U.S. Geological
Survey has moved toward computer-based operations. The index to
geologic maps (Geoindex) has been established and developed as a data
base and data-base management system that provides three main
capabilities. The primary capability is to provide the means to generate
rapidly geologic index maps for publication. A second capability is to
provide users an immediate access to all items in the data base. The
third capability is to provide nationwide summary information to
policy makers.

INTRODUCTION

The first U.S. Geological Survey indexes to geologic
maps were published in the 1940’s. They consisted of
State base maps at scales of 1:750,000 or 1:1,000,000 on
which the outlines of published geologic maps were
shown. By the mid-1960’s, most of the indexes were out
of date. Revision was delayed because of the rising cost
of color printing (six press runs) and the mechanical dif-
ficulty of showing legibly the additional (doubled)
coverage produced in the 1950’s and 1960’s.

Some of the problems were solved in the publication of
the Montana index in 1969. Heretofore, geologic index
maps had shown all the geologic coverage. In the Mon-
tana index, only maps equal or better in quality and com-
prehensiveness than the State geologic map were in-
cluded. This limitation imposed a reasonable and stan-
dard criterion for determining what should be included
in the index. All very small scale maps, as well as many
sketchy or generalized maps, were omitted. Elimination
of such material produced a more legible index without
serious loss of geologic-map coverage. The revised in-
dex, like previous indexes, included both published and
open-file maps of the U.S. Geological Survey, published
maps of the State surveys, and maps published by other
organizations.

When computer-assisted techniques were introduced,
the project grew, and ideas continued to change and

evolve. Henceforth, maps published at the following

scale ranges will be indexed on three separate sheets:

1. Scales of 1:24,000 and larger

2. Scales smaller than 1:24,000, through and including
1:63,360

3. Scales smaller than 1:63,360, through and including
1:250,000

ACKNOWLEDGMENTS

The authors thank Joseph Moses Botbol and Roger
Bowen for their assistance in the use of the GRASP
system. Diane Lewis and Karen Shallcross completed
compilation and entered the data into the Geoindex data
base; Jane Timmins typed the manuscript and arranged
it in the proper sequence; James Fisher, Kevin Laurent,
and Maryjon McAvery helped in writing the computer
programs and in constructing the data base. All these
people are from the U.S. Geological Survey.

We also thank William Strauss, Denise Maurer, and
Ray Wisecarver of the Johns Hopkins Applied Physics
Laboratory for their invaluable assistance in the
digitization of the data.

THE DATA-BASE MANAGEMENT SYSTEM
PURPOSE

The primary purpose of the Geoindex Data-Base
Management System is to generate geologic index maps
as quickly as possible. These published reports are wide-
ly distributed to a large, diverse group. A published
geologic index consists of a series of map sheets and ac-
companying text material. The Geoindex is constructed
State by State. Each map sheet consists of a State base
map on which the outlines of published geologic maps
and identifying numbers are superimposed (Fulton and
MclIntosh, 1977). Figure 1 shows a map sheet from the
published index for the State of Kentucky.

2 GEOINDEX

8 éﬂ 86

FIGURE 1.-Sheet from the published Kentucky index, showing geologic maps

The text material is composed of bibliographic
references, each of which is numbered to correspond to
the number on the matching map outline. Figure 2
shows part of a sheet of bibliographic text from the
published index for the State of Kentucky.

Each index, then, contains the map outlines and
bibliographic references for published geologic maps for
one State. The reports are published in black and white
and folded to a size that fits the standard file cabinet.
Because the computer-based operations have introduced
economies, geologic map indexes are distributed free to
the public.

A second purpose of a data base in machine readable
form is to furnish outside users a rapid access to all

items contained in the data base. This second function is
required by a more specialized group of outside users.
For example, some specialists in the Earth sciences
have active projects and need immediate answers to
their questions. Typically, the procedures involve the
retrieval of selected items from the data base, followed
by a series of manipulations, and finally a display of
various combinations of text and graphics. Alternative-
ly, some outside users whose projects are still in the
planning stage need information that is contained in the
data base but does not appear on the published geologic
index map. To satisfy the two types of users, both text
and map data are available online from the computer
system. Aspects of this type of usage of the data-base

THE DATA-BASE MANAGEMENT SYSTEM
Y AN MR e =
* el EETEL e ryr_ e A S HER ~ «:’7
F:*_)-'v A3 :“H\ﬁ; :{* Ly 0.;4‘**4'70:**-** T W i : i : .
743
: -7uy
16 _ 85 8y 83 82

whose scales range from smaller than 1:63,360 through and including 1:250,000.

management system are discussed later, under Storage
and Retrieval System.

A third purpose of the data-base management system
is to provide nationwide information to policy makers.
Under this concept, one can access the data base as a
single entity covering the entire United States instead
of accessing merely one State at a time. The system can
present a comprehensive overview of the whole country,
but all the details shown on State maps are still avail-
able. For example, the total area for which geologic
maps are available in the United States can be com-
puted. Such statistics are valuable for national planning.

To fulfill these requirements, the geologic map index
exists in two very different forms: as computer files in
the Geoindex data base, and as published reports. An ad-

ditional reason for having two different forms is that as
soon as data have been stored in a computer, new appli-
cations become feasible. As a result, computer resident
data files serve a much larger community of users than
previously imagined. Because the data files are in digital
form, they become multifunctional in that retrievals
from the files can assume totally different appearances.
These additional capabilities more than justify the initial
cost in creating machine readable map files.

GLOSSARY AND SYSTEM STRUCTURE

A technical dicussion of the data base structure first
requires the definition of some of the terms (Honeywell
Information Systems, Inc., 1978).

4 GEQINDEX

1. Data base. An integrated collection of data upon
which operations (such as read, write, and revise)
can be performed.

2. Data-base management system. A software
system that accesses an integrated collection of
data.

3. User. A person who retrieves, updates, or deletes
data within the data base. Such a person actively
maintains the data base.

4. Qutside user. A person who retrieves data from the
data base. This is a person who uses the system
but does not maintain it.

5. Data model or schema. The description of the data
base that defines the characteristics and organiza-
tion of the data within the data base.

The Geoindex data base is a relational data base and is
derived from the mathematical theory of relations. The
Geoindex Data Base Management System is a relational
data-base management system. This structure is a
natural consequence of having the Geologic Retrieval
and Synopsis Program (GRASP) as the primary storage
and retrieval program of the system because GRASP
organizes data in relational form. GRASP is discussed
more fully in the section entitled Storage and Retrieval
System. The relational form is essentially a matrix com-
posed of the familiar rows and columns.

The mathematical terminology specific to a relational
data base must also be defined:

6. File. A collection of organized data, a relation.
7. Record. A representative “row” of data, a tuple.
8. Attribute. Name of a data field within a record, a
column of information.
9. Attribute value. Value of a data field within a
record.
10. Domain. The set of all values a data field may
assume.
11. Data submodel. User’s definition of the data base.
12 Data model. Total definition of the data base.

A relational data base is in matrix form where the
tuples (records) constitute the rows and the attributes
(data items) constitute the columns. All tuples within a
given relation have the same format (all records within a
file have the same format). This last statement is a
definitive characteristic of a relational data base.

The Geoindex is both large and complex. Size, of
course, contributes to complexity, but the major source
of complexity is the nature of the data that the system
must process. The data comprise two distinct types: text
and graphics. A record (“row,” definition 7) exists for
each map. The attribute values (columns, definition 9)
are composed of text data derived from the bibliographic
reference and of graphic data derived from the map out-

line. See figures 1 and 2. The complete list of attributes
handled by the data-base management system is shown
in figure 3.

The data-base management system is functionally
divided into four parts. The first part is composed of
computer programs and procedures designed to per-
form two vital tasks. The first task is to capture and
verify the data. The second task is to create the map
sheets and bibliographic text sheets as camera copy
ready for reproduction. The first part of the system will
be discussed in the section Data Acquisition and the sec-
tion Publication Copy. The second part of the system is
composed of computer programs and procedures that
have one task to accomplish. This part of the system
loads the data as relations into files that are accessible to
GRASP, the storage and retrieval program. The third
part of the system consists of GRASP and several plot
programs. This third part is described in the section
Storage and Retrieval System. The fourth part of the
system consists of computer programs and procedures
that insure the safety and integrity of the data by pro-
viding backup files and permanent archival data
storage.

The system flow chart, illustrated in Appendix A,
shows the chronological work flow that is virtually iden-
tical with parts one through four mentioned.

DATA ACQUISITION
TEXT DATA

The text data for an individual State are received in
draft form, which is somewhat similar to that shown in
figure 2. Each draft is examined, and a list of questions
is prepared to cover any errors, omissions, or ambig-
uities that would slow the actual data-entry process.
This list is returned to the geologist who compiled the in-
dex map and who then clarifies the uncertainties. After
questions are answered and this list is returned, the
physical keying of the text begins. The attributes, or
record items, entered at this time are listed as follows:
Identification number, author, year, title, publisher,
county or region, emphasis, scale, and series.

The text material is prepared offline in card-image
form on key-to-disk devices. These are word-processor
computer terminals, which function both as stand-alone,
offline, data-entry stations and as communications ter-
minals. Several types are available; however, each hard-
ware unit includes a keyboard for data entry, a cathode
ray tube (CRT) screen that displays the characters
entered from the keyboard and messages sent from a
computer, and dual flexible disks that store data. Line
printers, some switch-selectable among the units, supply
the necessary hard copy.

Swadley, W.C., 1972,

Geologic map of paris
of the Lawrenceburg,
Aurora, and Hooven
quadrangles, Boone
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-989.
1:24,000,

Gibbons, A.B., 1972,

Geologic map of parts
of the Burlington and
Addyston quadrangles,
Boone County, Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1025.
1:24,000.

Luft, S.J., 1971,

Geologic map of part of
the Covington
quadrangle, northern
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-955. 1:24,000.

Gibbons, A.B., 1973,

Geologic map of parts
of Newport and
Withamsville
quadrangles, Campbell
and Kenton Counties,
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-1072., 1:24,000.

Swadley, W.C., 1971,

Geologic map of part of
the Rising Sun
quadrangle, Boone
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-929.
1:24,000,

Swadley, W.C., 1969,

Geologic map of the
Union quadrangle, Boone
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-779.
1:24,000.

Luft, S.J., 1969,

Geologic map of the
Independence
quadrangle, Kenton and
Boone Counties,
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-785. 1:24,000,

Gibbons, A.B., 1871,

Geologic map of the
Alexandria quadrangle,
Campbell and Kenton
Counties, Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-926.
1:24,000,

THE DATA-BASE MANAGEMENT SYSTEM

9.

10.

11.

12.

13.

14,

15.

16.

Gibbons, A.B., Kohut,

J.J., and Weiss, M.P.,
1975, Geologic map of
the New Richmond
quadrangle,
Kentucky-Ohio: U.S.
Geol. Survey Geol.
Quad. Map GQ-1228.
1:24,000,

Kohut, J.J., Weiss, M.P.,

and Luft, S.J., 1973,
Geologic map of the
Laurel quadrangle,
Ohio-Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1075,
1:24,000.

Swadley, W.C., 1969,

Geologic map of parts
of the Patriot and
Florence quadrangles,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-846.
1:24,000,

Swadley, W.C., 1969,

Geologic map of the
Verona quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-819.
1:24,000.

Luft, S.J., 1973,

Geologiec map of the
Walton quadrangle,
north-central Kentueky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1080,
1:24,000.

Luft, S.J., 1970,

Geologic map of the De
Mossville quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-862,
1:24,000,

Luft, S.J., 1972,

Geologic map of the
Butler quadrangle,
Pendleton and Campbell
Counties, Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-982.
1:24,000,

Luft, S.J., Osborne,

R.H., and Weiss, M.P.,
1973, Geologic map of
the Moscow quadrangle,
Ohio-Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1069.
1:24,000.

Osborne, R.H., Weiss,

M.P., and Outerbridge,
W.F., 1973, Geologic
map of the Felicity
quadrangle,
Ohjo-Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1063.
1:24,000.

Outerbridge, W.F., Weiss,

M.P., and Osborne,
R.H., 1973, Geologic
map of the Higginsport
quadrangle,
Ohjo-Kentucky, and part
of the Russellville
quadrangle, Mason
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1065.
1:24,000,

Palmquist, W.N., Jr., and

Hall, F.R., 1960,
Geologic map of Boone,
Campbell, Grant,
Kenton, and Pendleton
Counties, Kentucky:
U.S. Geol. Survey
Hydrol. Inv. Atlas
HA-15. Map 1,
1:125,000.

Hall, F.R., and

Palmquist, W.N., Jr.,
1960, Geologic map of
Carroll, Gallatin,
Henry, Owen, and
Trimble Counties,
Kentucky: U.S. Geol.
Survey Hydrol. Inv.
Atlas HA-23. Map 1,
1:125,000.

Swadley, W.C., 1976,

Geologic map of part of
the Carrollton
quadrangle, Carroll and
Trimble Counties,
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-1281. 1:24,000.

Swadley, W.C., 1973,

Geologic map of parts
of the Vevay South and
Vevay North
quadrangles,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1123.
1:24,000.

Swadley, W.C., 1973,

Geologic map of the
Sanders quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1095.
1:24,000.

FiGURE 2. —Part of a sheet of bibliographic references taken from the published Kentucky Index.

GEOINDEX

Each map is uniquely identified and has the following

list of attributes:

Mnemonie Attribute

id identifying number for the
bibliographic reference

state name of the state

author authors

year year of publiecation

title title

county county or region

publish publisher

series title of publication series

emphasi type of geology - surficial, economic,
stratigraphic, oil, gas, coal, metal

area area covered by map

aunit dimension for area, generally square
kilometers

nlat extreme north latitude

slat extreme south latitude

wlong extreme west longitude

elong extreme east longitude

clat center point latitude

clong center point longitude

omaps other maps not included as outlines,
i.e., title

avail depositories where maps can be
obtained

base USGS topo, DMA-TC topo, photomosaice,
shaded relief

geology only geology shown on the map

plate plate or map or sheet identification

idstate FIPS state code

scale map scale - 1:24,000, 1:250,000, etc.

idsub sub id number, i.e., more than one map

ibound id number on the boundary outline
ties together text and graphie or
x,y files

ispan secondary number on the boundary
outline further ties text to graphic
file

othermap phrase used in Bibliography

FIGURE 3. - List of attributes (names of data fields) that constitute a record.

After a line of text data is entered on the keyboard, it
is stored on the diskette. At the option of the operator,
the data are simultaneously listed a line at a time on the
printer or listed all together at the end of a session. This
printer list is then checked for errors. The operator cor-
rects data by using a key-to-disk technique. When text
data are as error free as possible, the data-entry devices
are operated as computer terminals, and the data are
transmitted directly from the diskette to permanent
storage on a large host computer.

MAP DATA

The map data, as previously mentioned, are the
outlines of published geologic maps. These map data are
received from the geologist as ink or colored-pencil
outlines overlaid on base maps. The base maps consist of
green-line images printed on dimensionally stable
plastic.

The computer group codes a matching base on a stable
material in preparation for the digitization of county

THE DATA-BASE MANAGEMENT SYSTEM 7

outlines. These codes are the digits assigned to each
county and State by the Federal Information Processing
Standards Publications (FIPS PUBS). This digitization
or conversion from graphics to machine-readable code is
done manually on a type of drafting-table digitizer with
a resolution of 0.025 mm (0.001 in.) (Fulton, 1975).

The lower left-hand corner of the neat line is
designated as the origin, so that the entire map lies
within the positive quadrant in the Cartesian coordinate
system.

Only the end points of straight-line segments are
recorded. Where the outlines are extremely convoluted,
stream digitizing is performed and the spacing between
points is generally about 1 mm (0.04 in.). The data are
plotted for verification. Because of the complexity of the
index maps, these plots must be drawn in different col-
ors so that each outline and its identifying number is
distinct.

PUBLICATION COPY

After the computer-generated plots for the Geoindex
are judged acceptable, they need further processing to
create the final version of the maps. The first few
published indexes were drawn in black ink by means of a
drum plotter. Several different pens created the various
line weights so that overlapping areas could be
distinguished.

Index maps convey information concerning areas.
Shading portrays areal information very effectively.
Thus, those who prepared the later maps took advan-
tage of the newer technology inherent in a matrix plot-
ter. Such a plotter now generates the final maps. This
plotter has a resolution of 160 dots per inch and an effec-
tive plotting width of 18 in. To date, 10 different pat-
terns supply sufficient contrast so that various mapped
areas may be distinguished from one another. See figure
1, which shows a Kentucky map sheet listing the maps
that range in scale from 1:63,360 through 1:250,000.

At the same time that the map plots are generated,
the text data are processed. The file is in a machine-
readable form almost identical with card-image form,
but the final output must be in the traditional
bibliographic form. This change is accomplished by pro-
cessing the text data file through programs resident on
a main-frame computer that strip out the extraneous
data and codes and rearrange the order of the attributes
(items). Then the modified file is transmitted over
telephone lines back to the word-processor terminal.
The final manuscript is printed on coated paper
automatically. The map plots and text material are then
sent for photographic reduction, a process that creates
the photographic plates for mass production. See figure
2, which shows a copy of part of a sheet of text data from
the published Kentucky index.

STORAGE AND RETRIEVAL SYSTEM

This storage and retrieval system is the Geologic
Retrieval and Synopsis Program (GRASP), written and
developed within the Geological Survey by Roger W.
Bowen and Joseph Moses Botbol (1975). GRASP is used
extensively within the U.S. Geological Survey. It has
also been installed on the computers of national agencies
of several countries in South America and Europe.

The GRASP system implements searches of the text
files by individual items or by any combination of two or
more items. All the references for the published geologic
maps that meet the search criteria are retrieved. The en-
tire contents of all the retrieved text records can be
listed, or only one or two items can be selected.
However, the boundary identification number, ibound,
the bibliographic identification number, id, and the
subidentification number, idsub, are the only items re-
quired to generate a graphic image. Thus, the numeric
value of these three items are listed on a formatted disk
file for subsequent plotting. The GRASP system is ex-
ited and the plot program pn16 is invoked. This pro-
gram, too, executes in an interactive mode. Its options
provide for plots of the State outline, the graticule, the
county boundaries in solid or dotted lines, and, of
course, the file of geologic-map outlines. These graphics
can be plotted interactively on a CRT terminal and then
printed by a hard-copy unit attached to the terminal.

After a map has been drawn on the CRT, information
from other files may be added by direct overlay to the
original graphic on the screen. In addition to the
features already described, this program offers the op-
portunity to enlarge any part of the plot repetitively un-
til a cluttered area becomes readable.

At present, the newly published geologic index maps
are categorized according to scale. The retrieval can be
executed in GRASP by designating the proper scale as
the search criteria and querying the file. This first step
in map generation from digital data is accomplished in-
teractively on a graphics CRT terminal. This same file,
which has been plotted interactively, can then be
directed to a drum plotter for reproduction at the
original scale. Figure 4 shows the maps published at
scales smaller than 1:63,360 for the State of North
Dakota as drawn on the CRT screen.

Several other programs enable a user to plot the en-
tire United States. The programs take geographic coor-
dinates from either a GRASP retrieval or directly from
the map-data files. These programs convert the
geographic coordinates to Cartesian coordinates. Then
another plot program entitled pin90 operates in an in-
teractive mode similar to that of pn16 to plot these files.
1t, too, has options for specifying various combinations
of files and enlarging designated areas. Figure 5 shows
a CRT plot of some areas covered by published maps.

GEOINDEX

u9ads LY 8yl Jo ydeagojoyd e st eandy oy, '09¢‘¢9: T Uey) Jo[eus safess je paysijgqnd sdew 0130003 Suimoys ‘ejoxe YdoN Jo 97838 oy3 105 30[d LY — § dUNDI]

6 86 E6 (1]/) ¢ ToT 2oy toT vol
11 | —_—
10€E *
ﬁ)ﬁ
1ays] 1oL [1es
10221 Lw _ 102
! m_.J 20kg]
1o 19
m X 70
ﬂ, 10011
101
"
1405
Ny 2l-
f NI
J
1096 g ‘
|
100% ﬁ
1ov1
106
10971
10801
14-1d 1456
| / e

THE DATA-BASE MANAGEMENT SYSTEM

"u9aads TN oY1 Jo ydeidojoyd e st oanyg “sdew o1ojosS paysignd Aq pa1oaod seade dWOS SMOUS JeY) So3eIS PajIu[) Y3 Jo jo[d LYD -G TUNDI

10 GEOINDEX

The system also utilizes some machine-independent
plotting packages that were obtained specifically to pro-
vide diversity of output for the Geoindex as well as for
the entire U.S. Geological Survey. Figure 6, which il-
lustrates geologic mapping on a regional basis, is a map
showing all the areas covered by geologic maps in the
western States of Idaho, Nevada, and Arizona.

The storage and retrieval part of the Geoindex system
has the capability of providing nationwide summary in-
formation to policy makers. Examples of maps that pre-
sent information of special interest to national planners
are shown in figures 7 and 8. Both of these maps were
generated from queries to the Geoindex and show
geologic mapping on a national basis. These maps
reflect the data resident in the data base at the time of
query. Figure 7 shows the areas in the United States
covered by geologic maps that were published at a scale
of 1:250,000 after 1960. It includes both U.S. Geological
Survey maps and non-Survey maps. Figure 8 shows
geologic maps from all sources that were published at
scales larger than 1:250,000.

DATA BASE
STRUCTURE OF THE DATA
TEXT DATA

As previously mentioned, the Geoindex comprises two
distinct types of data: text and graphic. These two data
types are handled separately throughout most of the
system because of their dissimilar nature. After the
bibliographic data are captured as keystrokes of coded
data in digital form, they are usually called text data.

Initially, the text data in machine-readable form look
very much like a listing of ordinary punched cards. The
most obvious difference is that a printed line contains
both uppercase and lowercase characters. Actual data
fields vary from 4 to 60 characters. The Geoindex data
base is generated on a State-by-State basis. Each State
carries the two-digit code assigned by FIPS PUBS.
Every file name for a particular State contains this same
numeric code as a suffix. The leading three or four
characters of the file name are descriptive of the type of
data in the file. Thus, the initial reference data file for
Colorado is named ref08.

The format for the text data is as follows:

State identification 2 digits.
Reference number 4 digits.
Item number 2 digits.

Informational data 4 to 60 characters.

Figure 9 shows the text data for reference number 90
(a record in file ref08) for the State of Colorado as it
looks in its initial form. This is a reference that contains
four separate maps, and it was chosen to illustrate the
complexities of the data structure.

MAP DATA

As stated earlier, the map data are digitized as Carte-
sian coordinates in the positive quadrant. These coor-
dinate files are structured so that several different types
of map data are compatible and are handled efficiently
within the one system. The two major types of graphic
data are the index-map coordinates and the base-map
coordinates. The base-map coordinates consist of
political boundaries, such as State and county, and also
the geographical positions of the graticule. One
bibliographic reference may contain several maps, one
map, or no map at all. Conversely, one map outline,
typically a county, may be identified by a great number
of bibliographic references. A unique identifier for each
map is mandatory and is a combination of three at-
tributes. A primary identification number (id), a secon-
dary identification number (idsub), and a third number
(second idsub) insure uniqueness. The data for each
map outline are composed of two different parts. The
first or header section under a format of (8I5) consists of
number codes for the various map features. The
features and the feature codes are listed as follows:

1. Identification or feature number (id): neatline = 900,
State = 9INM (NM refers to FIPS code for the par-
ticular State)

2. Number of outlines that have this id

3. First subfeature: adjacent county id number, adja-

cent State = 9NM, national boundary = 993, lake
boundary = 995

Number of points

Second subfeature number

State id number

Graticule = 991, county = 992, island = 994 (values

recorded only for grid, county, and islands; blank
for others)

8. Span-—that is, one map outline for several references

The second part of the record has a format of (12F6.3)
and contains the string of Cartesian (z, y) coordinates
that define the boundary of the published geologic map.
The first Cartesian pair indicates the position for the
identifying number. A listing of both parts of the Carte-
sian coordinate data record for reference number 90 for
the State of Colorado is shown in figure 10.

NS o

TEXT AND MAP DATA

After the data are in digital form, only the map file
(fig. 10) contains the information that can be used to
complete the record, the list of attributes named in
figure 3. The area covered by each geologic map is com-
puted from the Cartesian coordinates, and that informa-
tion is then stored along with the unit of measurement
(currently square kilometers). All Cartesian coordinates

REFERENCES CITED 11

are also transformed into latitude and longitude and
stored as radians. The header cards for the radian files
are identical with the header cards for the Cartesian
coordinate files. The data are in card-image form with a
format of (6F'12.9,18). The decimal point is implied in the
data files so that there are three latitude-longitude pairs
per card image with space for sequence numbers. Figure
11 shows the radian data for reference number 90 for
Colorado. The names of the files are similar.

Using the radian values, a program determines the
maximum latitude and longitude for the four directions
and then stores each map outline. The center of each
map outline is computed in radians and is stored. The
data-base management system performs these and
other computations. The items listed above, derived
from the map data, are merged into the record, or tuple,
so that a complete record for each map contains all the
information shown in figure 3. These two files, text and
graphic, are compared to ensure that each reference is
identified by the correct outline. Figure 12 shows a text-
data record in its complete form. It represents the final
form for reference number 90 for the State of Colorado.
These text data correlate with the map-coordinate data
shown in figure 10. The data shown in figure 12 are in
the format required for the storage and retrieval
system.

Twelve files are stored permanently on two sets of
magnetic tapes. Each magnetic tape contains the data
for five States. Figure 13 describes and identifies these
files.

SYSTEM SPECIFICATIONS

The detailed system specifications are given in the ap-
pendixes. Appendix A contains the system flow chart,
which also shows the input and output files. Appendix B
contains the operational instructions, which detail the

minimum set of information needed to execute the pro-
grams,

Appendix C contains the computer-program reference
guide. This guide gives complete descriptions of the
computer programs and listings of the source code for
each program. Appendix D contains the formats and
notes needed for data entry.

STATUS OF THE SYSTEM

The data-base management system has passed the
operational phase and is a fully functional system. The
primary objective, the generation of geologic index
maps, is in a production mode, and the data base is
growing daily. Figure 14 is another computer graphic
that summarizes the present status of the Geoindex. The
system automatically generates a new status map at the
beginning of each month. The files can be accessed in an
interactive mode, and personalized index maps plotted
immediately, as shown in figures 4 and 5. The system
becomes increasingly useful as a tool for policy makers
as more States are added to the data base. Figures 6, 7,
and 8 show summary maps that can be of value in mak-
ing policy and plans.

REFERENCES CITED

Bowen, R. W., and Botbol, J. M., 1975, The Geologic Retrieval and
Synopsis Program (GRASPY: U.S. Geological Survey Professional
Paper 966, 87 p.

Fulton, P. A., 1975, Mapping and Computers, in Rubinoff, Morris, and
Yovits, M. C., eds., Advances in Computers, v.13: New York,
Academic Press, p. 73-108.

Fulton, P. A., and McIntosh, W. L., 1977, Computerized Data Base for
the Geomap Index: The American Cartographer, v. 4, no. 1, pp.
29-317.

Honeywell Information Systems, Inc., 1978, Level 68 Software
Multics Relational Data Store (MRDS) Reference Manual, p. 1-1,
2-3.

GEOINDEX

12

"BUOZLLY pU® ‘BPRASN ‘OUBp] JO S91B)g aY) Ul paysiqnd usaq aaey sdew o130[0a3 yorym IoJ seade syj [[& Suimoys 10{d —'9 TuNOI

]| b

ot .—MW [| 2y ﬁ/
0 i q_
el
U! o —
2% ")Mrl_ .
15 0
D o — 5 mw
I - _f lﬂ_uﬂu - «\\A/_%l /.
o F b
| |o T,
e o]
g
9¥ lﬁm m\ﬁ
N
I
8y ﬂ -
[%n
801 orT Z0 ¥ gl CI 021 Ze!

oy

r44

144

9%

8¥

40

GEOINDEX

40

-
o ’__‘\‘ '_}:_2
P THY Gt
D EREEYEE
) 5 0 O,
N ”J \L«u ad Df =
] +
N [
= ° ‘}D
qCJ
e s, L
g = e T=gl
R
o | | 0
e 3 0
M l. g] .= -
\L « -
7,

13

FiGure 6. -Continued.

GEOINDEX

14

107°

URE 7.~ Plots from the on-line data base showing maps published after 1960 in the United States

3

Fic

15

GEOINDEX

250,000. This plot includes both U.S. Geological Survey maps and non-Survey maps.

atascale of 1

GEOINDEX

16

P PR

FIGURE 8.~Plots from the on-line data base showing geologic maps published from

17

GEOINDEX

87°W

all sources, U.S. Geological Survey and non-Survey, at scales larger than 1:250,000.

18

90 2Colorado
90 3Atwood, W.W.
90 81918

9010sites

9017U.S. Geol.
901848000
901925000
902093750
902184480
9023Bull. 685.
9024engineering
9038geology
9039Fig. 3,
9040tig. 4,
9041fig. 6,
9042tig. 7,
9044 8

90451

90462

90473

90484

90509001
90519002
90529003
90539004

Q0 00 00 00 O0 OO0 OO OO 00 OC OC OC OC CO CO OO QO 0O Q0 00 OO 00 QO QO OC OC 0o OO

GEOINDEX

la plata

9086Also detailed maps.

90 Y9Relation of landslides and glacial deposits to reservoir
in the San Juan Mountains, Colorado:
9012mineral, hinsdale,
Survey

Ficure 9. —Partial list of text data showing attribute values, in initial (card image) form, for reference number 90, Colorado.

90 4 1 6 8 0 0

6232 3662 6162 3979 6689 3947 6677 3597 6146 3615
90 4 2 2 8 0 0

6700 3683 6627 3765 0 0 0 0 0 0
90 4 3 6 8 0 0

6650 4088 6570 4421 7015 4403 7005 4025 6558 4022
90 4 4 6 8 0 0

7133 4248 7104 4142 7374 4136 7379 3804 7098 3803

F1GURE 10. - Map data in Cartesian coordinates for reference number 90, Colorado.

90 4 1 6 8 0 0

-1873730163 0658147465 -1874116297 0659414456 -1871448603

-1871476238 0657921102 -1874159720 0657951797 -1874116297
90 4 2 2 8 0 0

-1871368160 0658268095 -1871744737 0658591828
90 4 3 6 8 0 0

-1871659176 0659890362 -1872095935 0661221254 -1869840993

-1869857850 0659663364 -1872118161 0659618394 -1872095935
90 4 4 6 8 0 0

-1869229955 0660567668 -1869367424 0660140064 -1868000881

-1867947965 0658801627 -1869368043 0658778571 -1869367424

FIGURE 11. - Map data in radians for reference number 90, Colorado.

6162 3979
0 0
6570 4421

7104 4142

0659327192
0659414456

0661181741
0661221254

0660134288
0660140064

GEOINDEX
90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S

urvey Bull. 685.
engineering 123.5 5q.
km. 3746053 3741045 10722053 10713033 3744017 10718016
geology Fig
. 3, 848000 1 9001 Also detailed maps.
90Colorado Atwood, W.W.,

1918Relation of landslides and glaeci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S

urvey Bull. 685.
engineering
3744004 3744004 10714035 10714035 3744004 10714035
geology fig
. 4, 825000 2 9002 Also detailed maps.
90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S

urvey Bull. 685.
engineering 113.2 sq.
km. 3753006 3747036 10715052 10708002 3750022 10712000
geology fig
. 6, 893750 3 9003 Also detailed maps.
90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. §

urvey Bull., 685.
engineering 60.5 sq.
km. 3749023 3744042 10706024 10701031 3747003 10704002
geology fig
.7, 884480 4 9004 Also detailed maps.

Figure 12.-Complete text-data record for reference number 90, Colorado. This shows the data in the format required by the
storage and retrieval system.

19

20

Description

GEOINDEX

Files in Permanent Storage

of file Name of file Name of file Name of file
File is File is File is
composed composed composed
of of of
alpha-numeriec Cartesian latitude and
data coordinates longitude
in radians
Identification file bginNM
written on tape for
each State. It names
all the files that
follow belonging to
that State
Outlines of maps shown coorNM cor dNM
on the index
State outline statNM s trdNM
County outlines counlNM cur dNM
Graticule gr idNM
Neat line bordNM
Centers of map entrNM
outlines
Parameters used to paraNM
transform Cartesian
coordinates to
geographie coordinates
for each State
Final form of the text redyNM

files

NM i

s the FIPS code for each State

Ficure 13. Table showing names of files in permanent storage.

APPENDIXES: SYSTEM SPECIFICATIONS

APPENDIX A. SYSTEM FLOWCHART
APPENDIX B. OPERATIONAL INSTRUCTIONS
APPENDIX C. COMPUTER-PROGRAM REFERENCE
APPENDIX D. FORMATS AND NOTES
Note:
Program and subroutine names are printed in bold sans-serif type: chkref.
Variable names are printed in italic sans-serif type: itype.

Permanent-file names are printed in sans-serif type: matrix.
Ordinary variables are printed in italics: x, y.

APPENDIX A

APPENDIX A. SYSTEM FLOWCHART

COMTAPE. EC
1 digitized text > REFom
te Multics
Y
CHKREF
IP:IE"\:::'X > check text > REFnm
for errors
Y
MATRIX GEOFMT
REFnm format text for final
Bibliographic oo
style Bibliography
REFom >— CONCAT
format text ->— STRGnm
for GRASP
\
LIST_TAPE_CONTENTS
| TAPE_IN. TCL
digitized maps CORDnm
inte Multics >| CURDnm
STRDnm
V PARAANM
Bonthm TAPEDWG
| map files on tape COORnmDW
GRIDnm - A
te digitizer BORDnmDW
STATnm AR
COUNnm drawing files > GRIDnmDW
STATomDW
‘} COUNnmDW
Pilot drawing
files on
Calcomp
Y
COORnmDW > DWGDISK
drawing files to >»— COORnmAS
ascii disk files
\
TFILES | | SELDISK
COORnmAS | separates ascii REDm
disk file and > BLUEnm
creates a drawing 'l GREENnm
file for each
map

26

GEOINDEX

plot map
separates

Y

Y

Y

BORDnmDW DWGTAPE
GRIDnmDW drawing file to
STATnmDW card image tepe
COUNnmDW | format for transfer
REDnm to Multics
BLUEnm
GREENnm

VERSATEC. EC

copies files

from DWGTAPE

into Multics

[
ggl'l')"""' l INDEX_VERSATEC
ST AT':::I | creates tepe for
COORnm versatec plotter
PVERnm
\

VERSATEC PLOT

tape created by

Index_Versatec is

plotted on versatec
REDnm I Multics
BLUEnm > Copy-Merges
GREENnm | COORnm Files

V

SORT. VERS. COOR. EC
runs:
PGM1. VERS. EXTHDR
SORT_SEG

PGM2. VERS. SEQUENT

PGM3. VERS. MERGE

|

COORnm. UNSORT —————={

PGM?. VERS. EX'

BORDnm
GRIDnm
STATam
COUNnm
REDnm
BLUEnm
GREENnm

BORDnm
GRIDnm
STATam
COUNnm
REDnm
BLUEnm
GREENnm

Plot on versatec

———> COORnm. UNSORT

THDR,
creates a file of —————3>— COORnm. UNSORT. HDR

header card images

APPENDIX A

COORnm. UNSORT. HDR ——>{ SORT_SEG

systemsotto | 5. coQRnm. SORT. HDR
put headers into

ascending order

|

COORnm. UNSORT —————— PGM2. VERS. SEQUENT
converts file from ——>—COORnm. SEQUENT

stream to sequentiel

[

COORnm. SORT. HDR PGM3. VERS. MERGE
merges coordinates > COORnm
COORnm. SEQUENT into one ordered

]

COORnm MASTER
STATam 1 calculates areas | MEASnm
AREANO :n":',“"';:’ using | AREARM
nm files lCNTan
DOUBT
f
STRDnm > STATE_OPTIMA

calculates max & ————|isting
min ¢, Afor each
state

[

MEASnm ADDRAD
STRGam > inserts map data REDYnm
CORDnm into text files >~ COMXnm
CTRDnm
Y
REDYnm COVERT. EC
HEAFSNK runs convert to o g:gﬁx o
DICN load Grasp FILE 15
INDEX0
_ [
INDXnm GR. EC
MASK | seerches Gresp files E:
DEFN ~| excutes files for 3 T3P
DICN map plots

28

BORDam
GRIDnm

GEOINDEX

INPLOT. EC

STATAm
COUNnm
COORnm
SKOD
TP

T2P

T3P

COORnm
COMXnm
STATnm

using PN16

Y

BIGSTA
Computes
statistics on

STRDam
CORDam
COUNnam
CURDam
CNTRnm
GRIDAm

CNTRam
CTRDnm

AREAnm
REDYnm

MEASam
BORDnm

PARAnm

INDXUS |

Y

existing files \

plots 3 maps ————> 3 map plots

listing

INDXnm |

BORDnm
GRIDnm

STATAm
STRDAm
COUNnm
CURDnm
COORnm
CORDnm
CNTRam
REDYnm
PARAnm

STORED

Y

PULL_OFF

FILES

Copies specified
files from tape

——>— STORED FILES

[toCPU |

USMERG. EC

appends a single

U.S. file on ———————> INDXUS

Grasp

Y

STATE_TO_TAPE BGINnm

Places data on .| BORDam

magnetic tape for gal.’r:"“‘l

permanent storage STROnm
COUNnm |, STORED
CURDnm FILES
COORnm
CORDam
CNTRnm
REDYnm
PARARM _|

APPENDIX B

29

BACKUP. EC
INDXUS > Stores the Indxus
files on tape
Y
RETRIEVE. EC
RESTORE
Copies files from |———— STORED FILES
tape to CPU which
were written by
BACKUP. EC
STATPM Y
STATS0 VERPLOT
RAWAH Versatec piot of > STATUS MAP
PUERTO RICO status map
ALASKA
Y
STAT90. PAT PN9%0
GRASP FILES I > plots entire Us > PLOT ON TEKTRONIX
on CRT

APPENDIX B. OPERATIONAL
INSTRUCTIONS

HOW TO RUN COMTAPE.EC ON MULTICS

Purpose of the program: comtape.ec allows the user to
read the tapes containing digital text in ASCII code
from outside sources into the Multics system.

Input files: Any outside tape
Output file: Segment named by the user

To run the program.:

A. Label tape “for Multics use,” and forward tape to be
processed to production control.
B. Send a message to sys op asking him to locate tape
nuRANN.
Example: sm sys op Please locate tape
nuRnnNNn
C. After you have been notified that the tape has been
found, type:
ec comtape nnnnnn SEGNAME
where nnnnnn is the 6-position volume name, and
SEGNAME is a name the user wishes to call the
file, for example, ref21.
D. You will be informed when the tape is mounted and
the tape drive on which it is mounted. You will also

receive a count number of the records copied into

SEGNAME. This file will automatically be

dprinted.

Example: copy_file -ids “tape_ibm_&1 -nlb -nb 2
-fmt fb -den 800 -rec 80 -bk 800” -ods
“record__stream__-target vfile_&2” dp &2

E. The tape number will be substituted for the &1. The
SEGNAME given by the user will be inserted
where &2 appears.

HOW TO RUN CHKREF ON MULTICS

Purpose of the program: chkref reads through a
reference file refNM and checks for various errors
that might occur.

To run the program.:
A. Before running chkref, you must link to it. Type:
Ik >udd >Geoindx >HJohnson > chkref
lk >udd >Geoindx > HJohnson > matrix
After the first link, you can run it without linking
again.
B. Type: chkref
C. When asked for the file name, type in the name, such
as, ref98

30

D. Study any error messages that chkref gives, make
corrections to the reference file, and run chkref
again until no error messages occur.

HOW TO RUN GEOFMT.EC ON MULTICS

Purpose of the program: geofmt.ec executes a series of
commands and programs to read the reference file, to
extract selected data, to arrange it in a predetermined
order, and to create a columnarized output segment
ready for printing.

Linking: Before running for the first time, you must link
to the following segments:

lk > udd >Geoindx>PPorter> geofmt.ec

lk >udd>Geoindx>PPorter> geofmt

lk >udd>Geoindx>PPorter> geofmt.qedx
lk >udd >Geoindx>PPorter> geofmta.qedx
lk >udd>Geoindx> PPorter> geofmt2.qedx
Ik >udd>Geoindx> PPorter> geofmt3.qedx
lk >udd>Geoindx> PPorter>embed__tabs
lk >udd>Geoindx>PPorter> to-nbiPP

Special instructions:

A. The program, geofmt.ec, can be run on any ter-
minal. The only time that you must be on the NBI
is to run the to-nbiPP program where you must
use the proportional space printer.

B. To get a rough draft, type anything other than nbipp
as the third argument of the exec__com.

Example: ec geofmt 84 10 nbino
Upon termination, type:

dp -dl -nep geofmt.columns
If a file has more than 550 references, do only half
the file, and after you get the dprint, run the pro-
gram again using the last half of the file starting
with a four-column page through the end of the
file.

C. When three columns are desired on the first page
with the map, follow the instructions in paragraph
B with the exception of 8 and 9. For number of
columns, enter 3 and return. In answer to the col-
umn width, enter 48 and return.

D. When using the seven-column option, you can print a
single three-column page giving the reference
numbers for that page, but if more than one page is
to be printed, you must start with a four-column
page.

To run the program:

A. Type: ec geofmt pagelength lines nbipp

Example: ec geofmt 84 10 nbipp
Note: Pagelength specifies the number of lines on
the page. It can be any number, but presently only
84 or 140 are used. Lines is an argument specify-
ing the number of lines that should be available at

GEOINDEX

the bottom of the page in order to print a complete
reference. There must be a third argument. If you
want proportional space printing, type: nbipp.
Otherwise, type some letters or some word for the
third argument.

B. Then you must respond to the following questions or
statements:

1. ENTER FILE NAME: Enter the names
(refNM) and cr (carriage return).

2. TYPE IN STATE NUMBER: Enter 2-digit
FIPS code and cr.

3. WHAT IS YOUR STARTING REFERENCE
NUMBER? (use 3 digits): Enter 3 digits and
cr. Note: We strongly recommend that you
do no more than 550 references at one time.

4. WHAT IS YOUR ENDING REFERENCE
NUMBER? (use 3 digits). Enter 3 digits and
hit cr.

5. fortran_io_: CLOSE FILES? Type yes and

cr.

6. DO YOU NEED TO EDIT? Type yes or type
no, and cr. If you typed no, go to step 7. If
you typed yes, the following will appear on
the screen:

EDIT.
Enter q to exit editor.
You are now in the edit mode. Line length is
set to 80 to make the entire line visible on
the screen. One line of geofmt.data may
print out as three lines on the NBI screen.
Make the necessary changes and be sure to
write the segment before you exit the editor.
Under no circumstances should you break or
interrupt while in gqx. After all changes,
type:

w

q

7. DO YOU WANT 7 COLUMNS? If you want a
combination of 4,3,4,3, and so forth, type:
yes. If you want four columns on every page,
type: no.

8. EMBED_TABS ENTER NUMBER OF COL-
UMNS: Enter 4 and cr.

9. EMBED_TABS ENTER COLUMN WIDTH:
Enter 42 and cr.

10. The ready message will appear on the screen,

and the job is completed.

C. Before recording geofmt.columns on the diskette,
enter gedx and check the beginning of each page
to make sure that a new reference begins in each
column. Also check the last page (not the final
page) to make sure that you specified enough
references to fill the page.

APPENDIX B

If you are using the seven-column option and do-
ing only part of the reference file, you should end
with a three-column page (unless you are doing a
single page). Delete the lines of the four-column
page, write geofmt.columns and quit the editor.
D. The file, geofmt.columns, is now ready to be
recorded on the diskette for printing. Before run-

ning to-nbiPP, issue the following commands:

stty -modes Ifecho

Type ct, and then cr. Four options will appear on

the screen. Type 4, representing computer 4, but .

not cr. Now type:
to-nbiPP cr
1. The following message will appear:

Multics file name to be sent (or q to quit):

Enter geofmt.columns followed by cr.

Multics will respond with ?.

. Hold down SHIFT key and press the XMIT
keys. The NBI now receives the document
line by line. When the last line has been
received, a single Greek character will remain
on the screen.

4. Hit BREAK key. CONVERSATIONAL will

appear on the screen.

5. Type: q cr
Multics will respond with STOP and ready
message.

6. Hit HOME key. READY will appear on the
screen and you are now back in NBI word
processing.

7. Name the document by typing:

co le,1,document name
followed by cr.

8. To print the document, insert and aline
paper and type the following command:

pr li,s:document name

oo po

HOW TO RUN TO-NBID ON MULTICS

Purpose of the program: to-nbiD allows the user to
record segments from Multics on the NBI diskette
(communications disk—four options only) while using
the NBI System II as a terminal.

To run the program:

A. Turn on machine and insert disk. After READY
appears on the screen, type ct and cr. Type 3,
representing computer 3, but not cr. If you ac-
cidently hit cr, COMMAND ERROR will appear on
the screen. If this happens, again type ct, and
when the four options appear on the screen, type:
3.

B. Type cm l,c and cr. Note: The | is an alphabetic
character and not the number one. CONVERSA-

|

Hmo 9

31

TIONAL will appear on the screen. Insert
telephone in modem and dial Multics number.
When carrier light comes on, hit cr. Wait for the
two-line Multics greeting. If you lose the carrier
light or the greeting does not appear, hang up and
redial. You are still in CONVERSATIONAL
mode.
Login to Multics as you usually do. If you cannot
login, hit cr and go back to step B.
You must have the following link in your working
directory:
Ik >udd >Geoindx >PPorter> to-nbiD
Note: To print the greater-than sign, press the
key and CTRL key at the same time.
To execute the program, type: to-nbiD cr
The following message will appear:
Multics file name to be sent (or q to quit):
Type in name of file and then cr.

. Multics will respond with ?.

Hold down SHIFT key and press the XMIT key. The
NBI now receives the document line by line. When
the last line has been received, a single Greek
character will remain on the screen.

Hit BREAK key. CONVERSATIONAL will appear
on the screen.

. Type: q cr

Multics will respond: STOP

fortran_io_: CLOSE FILES?

Type: yes

Multics will then respond with a ready message.

You may now logout of Multics as you usually do, or
you may wish to edit the document to insure that it
was received correctly. You are still in CONVER-
SATIONAL mode.

. Hit HOME key. READY will appear on the screen

and you are now back in NBI word processing.

N. Name the document by typing:

co le,1,document name cr
Note: This command expanded means copy letter,
drive 1, and name you wish to call document.

To print the document, insert and aline paper and

type the following print lines command:

pr li,s:document name cr
NBI will buzz, giving you a chance to make sure
that the paper is inserted correctly. Hit cr. Docu-
ment will start printing.

. If you are no longer on Multics, go to step Q. If you

did not logout in step L, you will now have to get
back in CONVERSATIONAL mode. Type:

cm l,c (as in step B)
CONVERSATIONAL will appear on the screen.
Logout the way you usually do. After the logout

32 GEOINDEX

message appears on the screen, press the HOME
key. READY will appear on the screen.
Q. Type: off er
Remove disk during countdown, and then turn off
machine.

HOW TO RUN CONCAT ON MULTICS

Purpose of the program: concat takes a reference file
and builds from it a file suitable for input into
Bowen's (Bowen and Botbol, 1975) program convert.
Be sure refNM is the file you want.

Input files: refNM, matrix
Output file: strgNM

To run the program:
A. Before running concat the first time, you must link
it to your working directory. Type:
lk >udd >Geoindx> HJohnson > concat
B. Type: concat
C. When asked for the State code, type in the FIPS
code for this State.
Example: concat
ENTER THE 2-DIGIT CODE FOR THE
STATE BEING PROCESSED

Type: 15
YOU GOT TO MAIN
YOU WROTE THE 25th VECTOR TO THE
STRG FILE
STOP
FORTRAN IO : CLOSE FILES?
Type: yes
HOW TO RUN LIST_TAPE_CONTENTS

ON MULTICS

Purpose of the program: list__tape_contents abstracts
files from outside tapes containing digital map data
in ASCII code.

To run the program: After the normal procedure of tak-
ing the tape to production control, sending a
message to the operator asking her to locate the
tape, and being informed that tape is there, you then
list the contents of the tape. This can be done by
list_tape_contents, which prints information
about files recorded on 9-track magnetic tape. This
command will list only ANSI (American National
Standards Institute) standard labeled and IBM
08S/870 standard labeled tapes.

Example: list_tape_contents nnnnnn -long -iom
tape_ibm__ where nnnnnn is the volume number,
-long is an argument that will cause an extensive
amount of information to be printed about the files,
and -iom tape_ibm__ invokes the I/O module to at-
tach and read the specified tape volume. The

tape_ibm__ subroutine is specified in order to list
OS standard labeled tapes. See listing 1.

Now that you have a list of the tape contents,
determine which files you want to transfer to the
disk. Transfer can be accomplished by the tape_in
command, which uses a control file written by the
user in the tape control language. See listing 2 for an
example. The volume statement is the volume
number of the tape. For most outside tapes, Tape,
Storage, Density, Format, Record, and Block will be
the same as those shown in listing 2. There will be a
file number and path statement for each file to be
transferred. The argument of the file statement will
be an asterisk. The number statement will specify
which file number it is on the tape. The argument for
the path statement will be the name that you wish
the file to be called after it has been transferred to
disk.

The control file must have a suffix of .tcl. After you
have created the control segment with a text editor,
you can accomplish semantic checking with the
following command:

tape_in rdtape.tel -ck

The -ck argument does not cause a tape to be
mounted. If any errors occur, check the tape_in
command in the Honeywell Information Systems’
“MPM Peripheral Input/Output Manual.” After
making corrections, type:

tape_in rdtape.tel
To simplify the process, procedures are listed
below in steps:

1. sm sys op Please locate tape nnnnnn.

2. list_tape_contents mnnnnn -long -iom
tape_ibm__

3. Create the .tcl segment. Use uppercase and
lowercase as shown in listing 2.

4. tape_in rdtape.tcl -ck

5. new__proc

6. tape_in rdtape.tcl

HOW TO RUN TAPEDWG ON DATA GENERAL

Purpose of the program: tapedwg reads a hexadecimal
ASCII (American Standard Code for Information In-
terchange) tape written by a 32 bit/word computer
and places it in the format of a System 101 drawing
file. The data consists of z, ¥ coordinates in the format
already specified for map data.

To run the program:

A. Bring the empty drawing file onto the table. Be sure
to display it as a check that it is empty.

B. Run the overlay program tapedwg.

APPENDIX B

. The program will print:
PAUSE MOUNT TAPE ON UNIT 0
and will pause until you enter cr. After the tape is
mounted, enter cr.
The program will print:
UNIT 1 OR 07?
and will wait until you enter 1 or 0 followed by cr.
The program will print:
CHARACTER HEIGHT =
and wait. The usual response is 0.14 and cr.
The program will print:
SYMBOL # =
and wait. The usual response is 1 and cr.
The program will print:
OF PENS = 1,2, OR 3
and wait. The usual response is 3 and cr.
. The program will print:
TEXT WANTED?? 1=YES, 0=NO.
and wait. The usual response is 1 and cr.
The program will print:
SKIP FILES??
and wait. The usual response is no and cr.

¥
i

33

J. If the drawing file is filled, the program will print:
DRAWING FILE FULL!
DO NOT REWIND TAPE!
DO NOT REWIND TAPE!
SAVE DRAWING FILE, GET NEW DRAW-
ING FILE AND RECALL TAPEDWG
OVERLAY
The program will then wait. Do exactly as the
program instructs.
K. If the drawing file is not full, but an EOF is en-
countered, the program will print:
END OF FILE REACHED?
REWIND TAPE?
and wait. The response is y for yes, and cr if there
are no more files to be read. The response is n for
no if there are more files to be read.
L. The program will print:
PROGRAM FINISHED
This means a successful completion of the pro-

gram.

LISTING 1. - Example of list_tape_contents

Mounting volume AAR793 with no write ring.
AART93 mounted on tape_01.

File listing of OS Labeled Volume AAR793 Recorded at 1600 bpi.

ID: BID.DAW.OHIOBOR Format: FB
Number: 1 Mode: EEA
Section: 1

ID: BID.DAW.OHIOLL
Number: 2

ID: BID.DAW.OHIOSB
Number: 3

ID: BID.DAW.OHIOCB
Number: 4

ID: BID.DAW.OHIO
Number: 5

ID: BID.DAW.OHIOPARM
Number: 6

ID: BID.DAW.OHIOSBRD
Number: 7

ID: BID.DAW.OHIOCBRD
Number: 8

ID: BID.DAW.OHIORAD
Number: 9

Displayed characteristics for the last 9 files are identical.
Finished listing volume AAR793 as specified.
r 1256 2.427 52.966 633

Blksize: 6400 Lrecl: 80
Created: 10/27/78 Expires: unknown
Version: 0 Generation: 0

34 GEOINDEX

M. System error messages are printed whenever a prob-
lem occurs. Consult the manuals and take appro-
priate measures.

HOW TO RUN DWGDISK ON DATA GENERAL

Purpose of the program: dwgdisk reads System 101
drawing files and creates an ASCII disk file contain-
ing the coordinate outline data in Geoindex standard
format. The sequence is eight integer values com-
prising the header card information, followed by
isfno (number of coordinate pairs) pairs of real
numbers. The second outline immediately follows
the first and so on.

To run the program:

A. Bring desired drawing file onto table. Make sure
that the drawing file does not contain extraneous
information or the program will not execute cor-

rectly. For example, if you have deleted something
from a drawing file, the deletion will change only
certain parts of that particular record to a zero.
The record still exists and will cause problems in
the program. To delete an unwanted record, save
the file and then bring it back.
B. Run the overlay program dwgdisk.
C. The program will print:
PAUSE FOR OPERATORS
and the program will wait for you to enter cr.
D. The program will print:
NAME OF DISK OUTPUT FILE = 7?
and will wait until you type a name in, followed by
cr. Depending upon your answer, the program will
type:
OLD-FILE OK??
NEW-FILE OK??
or print an error message, or end the program (if

LisTiNG 2.—Ezample of a tel

rdtape.tel

Volume: AAR793
Tape: ibmsl;
Storage: unstructured;
Density: 1600;
Format: fb;
Record: 80;
Block: 6400;
File: *;

path: ohiobor;
number: 1;
File: *;

path: ohioll;
number: 2;
File: *;

path: ohiosb;
number: 3;
File: *;

path: ohiocb;
number: 4;
File: *;

path: ohio;
number: 5;
File: *;

path: ohioparm;
number: 6;
File: *;

path: ohiosbrd;
number: 7;
File: *;

path: ohiocbrd;
number: 8;
File: *;

path: ohiorad;
number: 9;
End;

r 1455 0.077 0.828 27

11/21/78 1455.7 est Tue

APPENDIX B

cr is the first character or the escape sequence,

control d, is entered). A negative answer to the

first two will cause it to ask the question again.

After printing the error message, it will ask the

question again.

. The program will print:

DO YOU WISH TO WRITE AN EOF FLAG ON
THIS FILE??

and wait for a y (yes) or n (no). The last part of the

outline file must have an EOF flag.

. The program will print:

TYPE IN 2 DIGIT STATE NUMBER

Use the FIPS code for this State. This information

goes on the header card.

. The program will then ask:

IS THIS THE GRID BEING PUNCHED
Answer y (yes) or n (no). No other answer will be
accepted. This is needed to fill in the header card.
If the answer is yes, the next question will be skip-
ped.

The program will ask:

IS THIS THE COUNTIES BEING PUNCHED
Answer y(yes) or n(no).)

The program will start to process the data. It
assumes that there is text in the drawing file. If
not, it will print the message:

NO TEXT IN FILE!
and exit from the program.

. When execution is complete, the program prints the

message:

DONE
rings a bell, and returns control to the table.

HOW TO RUN SELDISK ON DATA GENERAL

Purpose of the program: seldisk reads an outline disk
file in Geoindex standard format and creates a System
101 drawing file. The format used is a header card
with (8I5) format followed by the outline with z, y
coordinate pairs in (12F6.3) format on each card. The
drawing file will contain only those outlines identified
by cards that have a feature number and a subfeature

number. Note: The program does not replace the file :
on the table; instead it appends this data at the end of

the existing file.

The ASCII disk file will usually be created by using -

the program dwgdisk.

The drawing file will consist of various outlines all
having the following characteristics: Each outline °

resides in the subfile with a number equal to the
feature number or 1,000 less than the feature number.
There are from one to four lines of text, followed by
one pen up and then a series of pen downs. The text
consists of the feature number, the subfeature number

35

(if ifno greater than 1), the span (if different from 0)
and the second subfeature number (if different from
0).

The outlines will alternate through the three pens so
that the colors will change for better visibility.

To run the program:

A

=

L

. Perform the steps necessary to make files available

from the digitizing table. If you wish to place the
incoming data in a drawing file by itself, CLEAR
the drawing file.

. ACTIVATE AND DISPLAY the drawing file. This

tells the program where to write the information.
Load the cards in the hopper. First will come the
T-file. This consists of cards with the feature number
and subfeature number of those outlines wanted in
the drawing file. These are in (I8,12) format. Follow
these cards with a card that has a -1 as a feature
number (columns 7 and 8). This will be used as a flag
for the end of the T-file.

Run the overlay program seldisk.
The program will print:
ISELDISK OVERLAY
'PAUSE TURN ON CARD READER
and wait for you to enter cr. This is a reminder to
make sure it is turned on. If it is not correctly turn-
ed on, the program will print:
'FOPFL ERROR!
and exit.
The program will print:
ICHARACTER HEIGHT =
and wait for you to type an answer. This will be the
height in inches of all text read in (usually 0.14).
The program will print:
ISYMBOL # =
and wait for you to type an answer. The answer is
the number of the symbol that is drawn wherever
there is a single point for an outline.
The program will print:
NAME OF COORDINATE OUTLINE FILE =
27
and wait for you to type in the name of a disk file.
If this is a file that does not exist, the program will
print:
NEW FILE TRY AGAIN!
and return to ask the question again. Any other er-
ror will cause an error message to be printed, and
then the question will be asked again. A control d
or a cr on the first character will cause the pro-
gram to terminate.
The program will execute and when finished it

returns control to the table with the new drawing
file. Any error in execution will automatically put
you into the command mode. Some kind of error

36

message will be given, and the error should be cor-
rected; then the whole procedure must be started
again. As the program executes, it will print the
feature number of all outlines selected for the draw-
ing file.

HOW TO RUN DWGTAPE ON DATA GENERAL

Purpose of the program: dwgtape reads a System 101
drawing file and writes to tape the header card and
data cards for all outlines. Each separate outline has a
header card with (815) format followed by data cards
in (12F6.3) format. The text position is in the first
position on the first data card. The program makes no
attempt to sort the outlines; it just starts at the begin-
ning of the drawing file and processes the file in se-
quential order.

Several options are available. You can punch cards
for the whole file or you can pick one subfile number
(feature number). It will process all outlines that have
the subfile number you have chosen. The second op-
tion gives you the choice of punching all the data cards
of each outline or of punching only the header card
and first data card for each outline. This is useful
when many text position changes have been made that
would affect only the first data card. The third option
lets you skip files on the tape so that your file can be
placed on a tape with other files.

To run the program:

A. Bring desired drawing file onto table. Make sure
that the drawing file does not contain extraneous
information or the program will not execute cor-
rectly. For example, if you have deleted something
from a drawing file, the deletion will change only
certain parts of that particular record to a zero.
The record still exists and will cause problems in
the program. To delete an unwanted record, save
the file and then bring it back.

B. Run the overlay program dwgtape.

C. The program will print:

PAUSE MOUNT TAPE ON UNIT 0
and will wait for you to enter cr. This gives you a
chance to mount the tape if you have not already
done so. The tape must have a write ring.

D. The program will print:

ISUBFILE# = , TYPE 9999 FOR ALL!
This gives you the option of punching only one
feature number (subfile) or everything in the file.

E. The program will print:

!DO YOU WISH THE FIRST DATA CARD
ONLY???
Answer y (yes) or answer n (no). No other answer
will be accepted.

GEOINDEX

F. The program will print:

TYPE IN 2 DIGIT STATE NUMBER.

Use the FIPS code for this State. This information
goes on the header card.
The program will then ask:

IS THIS THE GRID BEING PUNCHED??
Answer y (yes) or answer n (no). No other answer
will be accepted. This is needed to fill in the header
card. If the answer is yes, the next question will be
skipped.

. The program will ask:
IS THIS THE COUNTIES BEING
PUNCHED??
Answer y or answer n.
I. The program will ask:
SKIP FILES??
Answer y or answer n.
J. The program will ask:
HOW MANY FILES??
Type in the number of files you wish to be skipped.
. The program will start to process the data. It
assumes that there is text in the drawing file. If
not, it will print the message:

INO TEXT IN FILE!
and exit.

When execution is complete, the program prints the
message:

'DONE!
and returns control to the table.

HOW TO RUN VERSATEC.EC ON MULTICS

Purpose of the program: versatec.ec creates the files
that are to be used for input to the Multics Versatec
programs. The input files are those files that were
created on the Data General minicomputer by the pro-
gram dwgtape.

To run the program:

A. Before you run this program for the first time, the
program must be linked. This is done by typing:
lk >udd >Geoindx >PPorter >versatec.ec
' B. After this is done, the next step is to send the
systems operator a message to locate the tape:
sm sys op Please locate tape tape number
After the operator has located the tape, then type
in:
ec versatec tape number numbers of files filel
file2 . . . filen. filel, file2 . .. filen must not con-
tain more than 32 characters including blanks.
C. If there is more than one coordinate file, then these
coordinate files must be merged into one large co-
ordinate file. This can be done in the editor gedx.

APPENDIX B 37

D. The output file of the merge must be of the form:
coorNM.unsort, where NM is the State code.

HOW TO RUN INDEX__VERSATEC ON MULTICS

Purpose of the program: index_versatec plots the
various «, y data files that constitute an index map us-
ing the 18-in. Versatec plotter.

To run the program:

A. First link to the following:
Ik >udd >Geoindx>PPorter>index__versatec
1k >udd >Geoindx>PPorter>init_vals
B. For each State NM you wish to plot, place the follow-
ing files in your working directory (or link). The
program will access the data via these file
numbers:
bordNM 10
gridNM 11
statNM 12
counNM 13
coorNM 14
pverNM 15
The format of pverNM is explained in listing 3.
Note: Before executing any program on Multics,
you should do a new__proc.
C. Execute the plot program by typing: index_ver-
satec

The program will respond:

TYPE IN TWO DIGIT STATE NUMBER
Type in the State number. The program will ex-
ecute and will periodically print out information.

D. The versaplot software will do as many as 100 dif-
ferent plots and automatically store the output in
segments named vp/t00, vplt01, vplto2,.. .,
vplt98, vplt99. These will write over any existing
segments with that name. Therefore, the first
thing you should do after completing the program
is to rename these segments.

E. To execute for another State:

1. Make sure you have renamed the vp/tNM
segments.

2. Do a new__proc.

3. Go to step B.

F. To put plot segments onto tape: There is an ex-
ec_com that will place as many segments as you
wish onto a tape. The best way to do this is to copy
the exec__com into your segments along with all its
six names. Type:

copy >udd >Geoindx >PPorter >gpt.ec- all
G. To use:
1. Take a tape to production control. A label
“For Multics Use” should be on the tape.
2. Send a message to system operator to get the
tape:
sm sys op Please locate tape nnnnnn

LISTING 3.--Parameter cards for a Versatec plot

I. Read input parameter from cards for each data file.

Files Columns
A. Neat line 1-22 card 1
B. Grid 23-44 card 1
C. State 45-66 card 1
D. Counties 1-22 card 2
E. File of selected outlines 23-44 card 2
F. Outline coordinate 45-66 card 2
G. 0 = end of all plotting 67 card 1

1 = more cards follow describing another plot
II. Procedure: plot each of the first four files.

ITI. Sort the file of selected outlines into ascending order (eliminate duplicates).
Plot these selected outlines from the master file, or plot all of the master file.

Each 22-column section contains the following information:

Column 1 0 = no plot
1= plOt

Column 2 0 = plot character and lines
]_ =

plot lines (points) only
2 = plot characters only

There will be a separate subroutine for each of the column 2 choices.

Column 3

Number of different line

widths to be used in
plotting this file.

If there are more than one, the program will rotate through those specified, one for each outline.
Columns 4 through 12 provide values for each line width. Start at left. Lines widths are 1 through 5, which yield lines from 1 to 5 dots

wide.

Columns 13 through 22 are not used for versatec plotting on Multics.

38 GEOINDEX

Example: sm sys op Please locate tape
aar711.
3. Wait for message from operator saying that
she has the tape(s).
4 . Execute the exec_com. Usage is:
ec gpt &1 &2 &3 ... &n
where &1 is the tape number, and &2 to &n
are segments to be put on this tape. Example:
ec gpt aar711 plotl plot2 plot3
which places three plots on the tape. Note:
You can put approximately 1,100 pages of
segments on a 1,000-inch tape and about
2,200 pages onto a 2,000-inch tape. The
exec_com will split a segment between two
tapes, but you do not want to do this. The
plotter cannot handle a multiple-tape file pro-
duced in this fashion.

HOW TO RUN SORT.VERS.COOR.EC ON
MULTICS

Purpose of the program: sort.vers.coor.ec creates the
files that are to be used for input to the Multics Ver-
satec programs. The input files are those files on the
tape that was created on the digitizer by program
dwgtape.

To run the program:

A. Before you run these programs for the first time, the

programs must be linked. This is done by typing:
lk > udd> Geoindx> PPorter> pgm1.vers.exthdr
lk >udd >Geoindx >PPorter >pgm2.vers.sequent
lk >udd>Geoindx>PPorter> pgm3.vers.merge
lk >udd>Geoindx>PPorter> sort.vers.coor.ec

B. If there is more than one coordinate file, then these
coordinate files must be merged into one large
coordinate file. This can be done in the editor
qedx.

C. The output file of the merge must be of the form:

coorNM.unsort
where NM is the State code.

D. You must have coorNM.unsort in your directory or
be linked to it. To run, type:

ec sort.vers.coorNM
where NM is the State code.

E. This exec com is made up of three programs and one
sort. pgmi.vers.exthdr creates an unsorted
header record file from the unsorted coordinate
file that was created in the qedx editor. This un-
sorted header record file is input to the system sort
where a sorted header record file is created.

F. pgm2.vers.sequent converts the unsorted coor-
dinate file from a stream to a sequential file.

G. pgma3.vers.merge merges the sorted header file and

the sequential coordinate file into the sorted coor-
dinate file.

H. As sort.vers.coor.ec is executing, messages are
displayed on the terminal indicating the progress
of the job.

I. The files created by versatec.ec and sort.vers.-
coor.ec can be input to the index_versatec pro-
grams.

HOW TO RUN MASTER ON MULTICS

Purpose of the program: master reads coordinate files
for map outlines and calculates areas for each outline.
It begins with the area for the entire State. After com-
puting this area, the program compares the area with
the true area from a file named areano. The true area
divided by the computed area gives a factor that is
used to adjust each area computed for each outline.

At the same time, a center point is computed for
each area. Then these centers are tested to make sure
that they lie inside each outline and that they are not
too close to the boundary. If they pass the test, they
are written to a file cntrNM. Otherwise, they are put
in a file named doubt. This must be checked by hand
and, if necessary, adjusted by hand:

Input files: areano, statNM, coorNM.

Output files: areaNM, cntrNM, measNM, doubt

To run the program:

A. Before running master for the first time, you must
link it to your directory by typing:

Ik >udd >Geoindx> HJohnson > master
Ik >udd >Geoindx>HJohnson > areano

B. To run, type: master

C. When asked for it, type the FIPS code for the State.

D. When asked for it, type the denominator of the map
scale for the map used for this State, format,
(F8.0). For example, where the scale is given as
1/1,000,000, type 1000000.. Where the scale is
1/750,000, type 750000.. Be sure to include the
decimal point. ,

E. After the State outline is used to compute State
area, the machine will tell you the factor. This
should be close to 1.0. If it is very different from
1.0, you may have the scale wrong or something
may be wrong with the State file.

F. After the run is complete, list doubt and make cor-
rections.

HOW TO RUN STATE_OPTIMA ON MULTICS

Purpose of the program: state_optima prints the max-
imum latitudes and longitudes that border a State
outline.

APPENDIX B

To run the program: |
A. You must have the following links:
1k >udd >Geoindx> HJohnson > state_ optima
You must also be linked to the State radian file
strdNM. .
B. Type: state_optima i
and follow directions. You will be asked for FIPS
code for the State. 1

HOW TO RUN ADDRAD ON MULTICS

Purpose of the program: addrad inserts correct areas,
latitudes, longitudes, centers, and other data into the
strgNM files for final input to the GRASP convert
program.

Input files: strgNM, measNM, conxNM, ctrdNM
Output file: redyNM

To run the program:

A. Before running addrad for the first time, you must
link it to your directory by typing:
lk >udd >Geoindx > HJohnson > addrad
B. To run, type: addrad
C. When asked, type the FIPS code for the State.

To check out error messages in addrad:
A. While running addrad, the program may write error
messages in the form:
THERE IS NO AREA WITH IF = 28 AND ISF
=1
B. These messages must all be checked out.
C. The messages are caused by two conditions:
1. The outline for this /F and ISF is a single
point. This condition is evident from an in-

39

To run the program:
A. Before running covert.ec for the first time, you
must create the following links:
Ik >udd >Geoindx >PFulton> covert.ec
1k >udd>Geoindx >PFulton>index0
1k >udd >Geoindx>PFulton>dicn
Ik >udd >Geoindx >PFulton>defn
Ik >udd >Geoindx>PFulton>mask
1k >udd >Geoindx>PFulton>setmas
1k >udd >Geoindx>PFulton>grasp
1k >udd>Grasp>grasp
1k >udd >Grasp>convert
B. Before running, print the index0, dicn, and mask
file.
C. Type:
ec covert NM state
where NM is the FIPS code number for the State
and state is the State name. Example:
ec covert 45 SouthCarolina
D. After running covert.ec, print index0 again to be
sure it has been updated properly. Also compare
the run printout with the sample to be sure it was
successfully completed.
E. After running, be sure you give access on the new
indxNM file to *.Gmap-Indx.*
F. If the State has to be run through covert.ec again,
be sure to delete the indxNM file before running
covert.ec, and delete the State line from index0.

HOW TO RUN GR.EC ON MULTICS

Purpose of the program: gr.ec sorts the State index file
by scale and creates three files:
t1p for scales less than or equal to 1:24000

spection of coorNM file, where the ISFNO
number in the header card is 2. When this
condition occurs, no record appears in
measNM.

2. An error has occurred. When there is no outline
for this /F and ISF, then IBOUND and ISPAN
should not be present, or a record should be
found in measNM.

Inspect the reference file to see whether an
outline is present, which is indicated by values
in items 50-59, 76-85 (IBOUND and ISPAN).
No record occurs in measNM for this /F and
ISF.
D. Try running master again to see if the record in
measNM was somehow dropped.

HOW TO RUN COVERT.EC ON MULTICS

Purpose of the program: covert.ec reads the redyNM
file and creates a GRASP file for the State.

t2p for scales greater than 1:63360 and
t3p for scales between 1:24001 and 1:63360

{ To run the program:

" A. Before running gr.ec for the first time, create the
following link:

Ik >udd >Geoindx>PFulton>gr.ec

B. Before running gr.ec, you must first have run
covert.ec for the selected State.

C. Type: ec gr NM
where NM is the FIPS code for the selected State.
Example for Illinois: ec gr 17

D. The program will print the files t7p, t2p, and t3p.
These files should be inspected for accuracy. If any
discrepancy is found, the redyNM file must be cor-
rected and covert.ec rerun for the selected State.
Then gr.ec must be rerun to insure that the correc-
tions were entered properly.

E. The three files t7p, t2p, and t3p must be kept and
used in two succeeding programs:

40

1. They must be used in inplot.ec.

2. They must be used in index__versatec. After
the final Versatec plots have been sent out for
reproduction, the files should be deleted. If
several States are processed through these
programs at the same time, then the files
should be renamed t1pNM, where NM is the
FIPS code for the selected State. In this way,
the data can be stored safely until the pro-
grams are actually executed, at which time
the files must resume their original names.

F. Caution: If the execution fails, be sure to delete the
files that may have been created: t1, 12, t3, t1p,
t2p, t3p, and output_file. If not, the files will
cause other retrievals to fail.

HOW TO RUN INPLOT.EC ON MULTICS

Purpose of the program: inplot.ec plots the three files
created by gr.ec, which are t1p, t2p, and t3p. It pro-
vides a visual check of the integrity of the plot files.

To run the program.

A. Before running for the first time, you must establish

the links:

lk >udd>Grasp>assoc

Ik >udd >Grasp> closer

Ik >udd >Geoindx >PFulton> inplot.ec

Ik >udd >Geoindx >PFulton>pn16

Ik >udd >Geoindx>PFulton> pos

Ik >udd >Geoindx >PFulton> plo

Ik >udd>Geoindx> PFulton> plod

Ik >udd >Geoindx>PFulton> ploc6
This program is run soon after gr.ec for the
selected State and to access Tektronix routines
type:

setup__tektronix_ tes.

B. Before any execution of the program, you must also
have all the #, y coordinate files available, such as
bordNM, coorNM, statNM, and counNM. This
program must be run on a Tektronix terminal
because it plots directly on the screen.

C. To run the program, type: ec inplot NM state
where NM is the FIPS code for the State, and state
is the name of the selected State. Example, for II-
linois: ec inplot 17 Illinois

HOW TO RUN PN16 ON MULTICS

Purpose of the program: pn16 plots a State index map
interactively on a Tektronix CRT screen. This is a
two-step process. First, a GRASP retrieval is ex-
ecuted wherein a disk file is created that contains the
links to the coordinate Geoindex files. This GRASP

GEOINDEX

file is identified as unit 13 and is described below.
However, the program is also constructed so that the
user has the option of plotting any combination of the
input files.

| To run the program:

A. Before running pn16 you must link to it:
Ik >udd>Geoindx>PFulton> pn16
Ik >udd> Geoindx>PFulton> skod
B. Input: You must also have the State base-sheet files
or link to them.
These files are:
coorNM, bordNM, statNM, counNM, and
gridNM
Optionally, you need files created by a GRASP
retrieval or a file in the same format as the
coorNM file.
C. Type: pnl6
D. The program will supply the following prompts. The
user will supply the replies:
Prompt 1: NEED STATE CODES (Enter y
for yes.)

Reply: y (The skod file is then printed; n or
cr presents prompt 3.)
: Prompt 2: TYPE 1 AND HIT RETURN KEY
! WHEN READY.
i Reply: 1 (MANDATORY REPLY)
Prompt 3: ENTER STATE ID NUMBER.
Reply: 18 (example showing FIPS code for
Indiana)
Prompt 4: IF A COORDINATE FILE IS TO
BE PLOTTED, ENTER Y.
Reply: y (presents prompt 5)
n or cr (presents prompt 7)
Prompt 5: ENTER NAME OF FILE TO BE
PLOTTED.
Reply: t1p (example showing name of a file
created by GRASP)
Prompt 6: IF INPUT SHOULD BE SORTED,
REPLY WITH A Y FOR YES.
(This file should be sorted the first
time it is used because the pro-
gram expects the numeric iden-
tifiers in ascending order; n or er
presents prompt 7.)
Reply:
Prompt 7: ENTER TITLE FOR MAP.
Reply: Indiana for years greater than 1970
(example)
Prompt 8: TO PLOT STATE ENTER 1.
Reply: 1 (causes State boundary to be plot-
ted)
0 (No State boundary will be plot-
ted.)

APPENDIX B 41

cr (No State boundary will be plot-
ted.)
Prompt 9: COUNTY PLOT (ENTER 1 FOR
SOLID LINE, 2 FOR DOTTED,
ELSE 0.)
Reply: 1 (County boundaries will be plotted
in solid lines.)
2 (County boundaries will be plotted
in dotted lines.)
0 (No county boundaries will be
plotted—presents next prompt.)
cr (No county boundaries will be
plotted—presents next prompt.)
Prompt 10: TO PLOT GRID ENTER 1.
Reply: 1 (Latitude and longitude will be
plotted.)
0 (No latitude and longitude will be
plotted—presents next prompt.)
cr (No latitude and longitude will be

plotted—presents next prompt.)
Prompt 11: TO SUPERIMPOSE ANOTHER

FILE, ENTER 0 FOR NO, 1 FOR
LINES ONLY, 2 FOR LINES
AND CHARACTERS. (This
prompt causes another plot file to
be superimposed on the map. The
file must have the same format as
the coordinate files—for example,
the locations of silver deposits
could be plotted on the base or in-
dex map of Nevada.)

Reply: 1 (plots outlines and (or) points only;
presents prompt 12)

2 (plots outlines and (or) points with
an identifying number; presents
prompt 12)

0 or cr (No superimposed file will be
plotted; next erases screen and
starts plotting.)

Prompt 12: ENTER FILE NAME. (This ques-
tion is asked only if 1 or 2 were
the replies to prompt 9.)
Reply: cu3 (example of the name of a plot
file).
The screen is then erased, and the files are plotted.
A bell rings when the plots are completed. For one
hard copy, type the ¢ and cr keys. For multiple
hard copies, use the copy switch. When finished,
cr.
Prompt 13: FOR AN ENLARGEMENT OF A
PART OF THIS PLOT, TYPE Y.
~ Reply: n or cr (No enlargement will be
made—presents prompt 16.)
¥ (An enlargement will be made ac-

cording to the replies from
prompts 14 and 15.)

Prompt 14: POSITION CURSOR AT LOWER
LEFT OF DESIRED AREA;
TYPE C.

Reply: Physically move the crosshair cur-
sor to the required position and
type ¢ and cr.

Prompt 15: POSITION CURSOR AT UPPER
RIGHT OF DESIRED AREA;
TYPE C.

Reply: Physically move the crosshair cur-
sor to the required position and
type ¢ and cr. (For best results,
the window defined by the cross-
hair cursor should approximate
the shape of the original plot;
otherwise, geometric distortions
will be introduced into the plot.)

The program from prompt 7 through 13 is then

repeated.
Prompt 16: TO PLOT ANOTHER FILE
ENTER Y FOR YES.
Reply: y (causes a return to prompt 4)

n or cr (ends the program and
causes the message “good” to be
printed to show a successful ex-
ecution)

The system prints STOP fortran__io: Close files?
Reply: yes

HOW TO RUN BIGSTA ON MULTICS

Purpose of the program: bigsta compiles statistics on
most of the files that we use in processing one State. It
counts cards, computes lengths, and so forth,
whenever appropriate.

Input files: coorNM, comxNM, statNM,

strdNM, cordNM, counNM, curdNM, cntrNM,

ctrdNM, gridNM, areaNM, redyNM, measNM,

bordNM, and any others you wish to count
Output files: None

To run the program:

A. Before running bigsta for the first time, you must
link it to your directory by typing:

Ik >udd >Geoindx> HJohnson > bigsta

Ik >udd >Geoindx >HJohnson >bigcal__bigsta
Ik >udd >Geoindx > HJohnson >out2__bigsta

Ik >udd >Geoindx > HJohnson >prim__bigsta

1k >udd >Geoindx > HJohnson >rads__bigsta

lk >udd >Geoindx > HJohnson > cards__bigsta

42

Ik >udd >Geoindx >HdJohnson >outl_bigsta
Ik >udd >Geoindx >HJohnson >ftnumber

B. Type: bigsta

C. When asked, enter the two-digit FIPS State code.

D. After running through the standard files, the pro-

gram asks for any other files you wish processed.
You may wish to type the following: paraNM

E. After the run is complete, the total number of cards
is also given. The printout of the total should be
filed.

HOW TO RUN USMERG.EC ON MULTICS

Purpose of the program: usmerg.ec takes as input a
newly created indxNM file and appends it to the ex-
isting indxus. indxus is the GRASP file that con-
tains all the States. The output file is named usall.
At the end of the run, it is dprinted for checking.

To run the program:

A. Before running usmerg.ec for the first time, you

must establish the following links:

Ik >udd>Geoindx >PFulton> usmerg.ec

Ik >udd>Geoindx>PFulton> indxus
After establishing the link to indxus, copy it into
your directory.

B. To run, type: ec usmerg NM
where NM is the FIPS code for the State that is to
be added to the indxus file. Example: ec usmerg
17 will take indx17 for the State of Illinois and ap-
pend it to indxus.

C. Study the program run listing for any errors. usall
will be dprinted. Study the listing of usall for any
errors.

D. If there are no errors, save the existing indxus by
copying into a file called sindxus. Then delete
indxus, and rename usall, indxus.

E. Run GRASP and check new indxus.

F. If there is an error:

1. Delete usall and indxus.
2. Copy sindxus to indxus.
3. Rerun, starting at C.

HOW TO RUN STATE_TO_TAPE ON MULTICS

Purpose of the program: state_to_tape must be run
on a console that gives a printout.

To run the program:

A. Be sure you have created the following links to the
program:
lk >udd >Geoindx >HJohnson >state__to_ tape
Ik >udd >Geoindx >HJohnson>
heading__state__to__tape
Ik >udd >Geoindx >HJohnson > sts_ begin

GEOINDEX

Ik >udd >Geoindx >HJohnson>
list__state__tape.ec

Ik >udd >Geoindx >HJohnson>
disk__to__tape_fb_retain.cc

lk >udd >Geoindx > HJohnson>
disk__to__tape_vbs_ retain.ec

Be sure you have the following files in your directory
or that you are linked to an actual segment con-
taining them:

coorNM, cordNM, statNM, strdNM, counNM,
curdNM, cntrNM, gridNM, bordNM, redyNM,
paraNM

Look up the number of this tape.

Look up the last file number that was written to this
tape. If you have never run this program on this
tape, then the last file number is 1 (the file that in-
itialized the tape).

. Type:

sm sys op Please find tape number
(Tape number being your tape number)

. Wait until the operator sends a message to your con-
sole that he has found the tape.

Type: state__to__tape
(The program will prompt you for the information
it needs.)

. As directed by the machine, make two copies of the
printout. Store these printouts for future
reference. Then put the original printout in your
log for this tape. You will need to refer to it
whenever you add more records to the tape or
whenever you want to print a listing of these files.

I. Remember to use a second backup tape with these

files.

J. To drop these files from your directory, link to:

Ik >udd >Geoindx > HJohnson >drop.ec
and type: ec drop NM
where NM is the State number.

HOW TO RUN PULL_OFF ON MULTICS

Purpose of the program: pull_off enables the user to
select files from the Geoindex files and to write the
selected files to disk.

To run the program:

A. Make the following links:

lk >udd >Geoindx >HJohnson >pull__off

Ik >udd >Geoindx >HJohnson >

separate_pull__off

>udd >Geoindx >HJohnson >state__pull_off
>udd >Geoindx >HJohnson >up__file_ number
>udd >Geoindx >HJohnson >
tape_to_disk_vbs_ retain.ec

1k
1k
1k

APPENDIX B 43

lk >udd >Geoindx>HJohnson>
tape__to_disk_fb_ retain.ec
Ik >udd >Geoindx>HJohnson>
list_state__tape.ec
. You need to know the tape number.

C. You need to decide whether to take off certain
separate files, or to use all the files for one State.

D. To take off separate files, you must know their exact
names, and their file numbers (positions) on the
tape. This information can be obtained from a tape
map or by using list__state__tape.ec.

[oe]

E. Send a message to the operator to get your tape:
sm sys op Please find tape nnnnnn

F. Type: pull_off
Follow directions.

G. This program prints out a tape map at the end. If you
do not want that, just hit break key after it starts
printing.

H. Remember that many of the tape files of paraNM,
cntrNM, and redyNM have an extra record that
does not end in a newline character. You may have
to edit these files before using them.

HOW TO RUN BACKUP ON MULTICS (COMPLETE
DUMP)

Purpose of the program: backup enables you to dump
one or more segments to your tape. You can even
dump whole directories. The program creates a file
named control.dump.You must type in all the absolute
path names of the segments or directories you want to
dump to tape. Note: These must be entered in
alphabetical order.

How to run the program.:

A. First you must make the followings links:
Ik >udd >Geoindx > HJohnson >backup
Ik >udd >Geoindx >HJohnson > backup.ec
Ik >udd >Geoindx > HJohnson >backup1
Ik >udd >Geoindx > HJohnson >backup2
lk >udd >Geoindx > HJohnson >dump.ec

B. You must know the absolute path name of the
segments you want to dump for backup. Example:
>udd >Geoindx > HJohnsor > indxus
>udd >Gmap__lndx >H Inhnson
This would dump the one segment indxus and the
whole directory >udd > Gmay__Indx >HJohnson

C. You must know your tape number.

D. You must send a message to the operator to find
your tape:
sm sys op Please find tape nnnnnn
E. From operator: Go Ahead

F. Type: backup
Computer will respond: backupl

G. Prompt: DID YOU SEND A MESSAGE TO THE
OPERATOR TO FIND YOUR TAPE? IF
YOU DID, TYPE A 1
Response: 1
Computer responds with a prompt. Last part of
prompt is:
NOW TYPE IN THE ABSOLUTE PATH
NAME OF THE NEXT SEGMENT OR DIREC-
TORY YOU WANT TO BACKUP. TYPE ITS
ABSOLUTE PATH NAME
Example: >udd >Geoindx > HJohnson >indxus

H. Prompt: IF YOU WANT TO DUMP MORE
PATHS, TYPE 1; OTHERWISE, 0
Stop
Prompt: FORTRAN IO : CLOSE FILES?
Response: Yes
Message: io close file10
io detach file10
Computer prints: backup2
Prompt: TYPE YOUR TAPE NUMBER, FOR-
MAT A6
Response: nnnnnn (example, 111849)
Computer prints:
Complete__dump__control.dump HHJ -debug
>udd > Geoindx>HJohnson >indxus
Prompt: TYPE PRIMARY_DUMP_TAPE
LABEL
Response: 111849
Computer prints:
TAPE_: MOUNTING TAPE 111849 FOR
WRITING TAPE_: TAPE 111849 MOUNTED
ON DRIVE 1 DUMP FINISHED.

I. The computer prints:
THIS ROUTINE ADDS 1 OR 2 MESSAGE
FILES TO YOUR DIRECTORY WHICH ARE
AUTOMATICALLY DPRINTED. THEY ARE
VERY IMPORTANT AND SHOULD BE
PICKED UP AND SAVED IN A SAFE
PLACE.

THEY ARE THE DUMP.MAP AND POSSI-
BLE ERROR MESSAGE. SAVE THEM IN A
SAFE PLACE. THROW AWAY ANY OLD
DUMP.MAPS FOR THIS TAPE, SINCE THEY
ARE COMPLETELY OBSOLETE.

Type: Rename indxus indxus__true

44 GEOINDEX

HOW TO RUN RESTORE ON MULTICS

Purpose of the program: restore enables you to put a file
from a backup tape, (created by the program backup)
onto the Multics system

How to run the program.:

A. First make the following links:
Ik >udd >Geoindx >HJohnson >restore
lk >udd >Geoindx >HJohnson >retrieve.ec
Decide which segments you want to restore from
your backup tape. Check the dump.map for that
tape to make sure that the segments are present.
You must know their exact pathnames.

B. You must have these segments listed in the same
order that they appear in the dump.map.

C. Be sure to rename your file before bringing it back
from tape, such as change indxus to indxus__true.

Then you can use the command:
compare indxus indxus__true
to see if there are any differences.

D. Type: new_proc
and wait for system to respond; then type: restore

E. Prompt: DID YOU SEND A MESSAGE TO THE
OPERATOR TO FIND YOUR BACKUP
TAPE? IF YOU DID, TYPE: 1

NOW TYPE THE ABSOLUTE PATH
NAME OF THE NEXT SEGMENT OR
DIRECTORY THAT YOU WANT TO
RESTORE; THIS NAME IS ON YOUR
BACKUP TAPE.
Use its absolute path name. Example:

Ik >udd >Geoindx> HJohnson >indxus

G. Prompt: IF YOU WANT TO RESTORE MORE
PATHS, TYPE 1; OTHERWISE, TYPE 0

H. Prompt: TYPE THE NUMBER OF YOUR
BACKUP TAPE, FORMAT (A6). Exam-
ple: 111849
Computer prints:
RETRIEVE CONTROL.RETRIEVE -DEBUG
INPUT TAPE LABEL: 111849
TAPE_: MOUNTING TAPE 111849 FOR
READING
TAPE__: TAPE 111849 MOUNTED ON DRIVE
1
BEGIN AT 01/25/78 2053.3 EST WED.
END OF READABLE DATA.
BK_INPUT: ARE THERE ANY MORE
TAPES TO BE RELOADED?
User responds:
No

F. Prompt:

Computer prints:
NORMAL TERMINATION 01/25/78 2053.4
EST WED.
DPRINT -DL CONTROL.RETRIEVE.
RETRIEVE.MAP
1 REQUEST SIGNALLED, 0 ALREADY IN
PRINTER QUEUE 3
This routine automatically dprints a retrieve map.
Check to make sure that the requested files are in
your directory.
User should then issue list command to find out
whether the file has been restored. Example:
Is indxus
User should then issue compare command to in-
sure the segment restored is the same as the seg-
ment that was written to tape using backup. Ex-
ample: Compare indxus indxus__true
Computer responds:
NO DISCREPANCIES FOUND.

HOW TO RUN VERPLOT ON MULTICS

Purpose of the program: verplot generates the status
map for the Geoindex. This program reads a file of
commands and creates a Versatec plot file using the
instructions from that file.

To run the prograr:

A. Link to the following Multics files:
Ik >udd >Geoindx >PPorter>verplot
Ik >udd >Geoindx >PPorter >init_vals
Copy or link to the following coordinate files:
lk >udd >Geoindx >PPorter >stat90
lk >udd >Geoindx >PPorter >hawaii
lk >udd >Geoindx >PPorter>alaska
Ik >udd >Geoindx >PPorter >puerto_rico

B. Create or link to some command file. See listing 4 for
instructions on the contents of this file. An exam-
ple is shown in listing 5.

C. Run the program on Multics by typing: verplot

D. The program will ask the following question:
WHAT IS THE NAME OF YOUR COMMAND
FILE??

USE NO MORE THAN SIX CHARACTERS!
and will read your answer, then attach and open
this file for reading. A nonexistent file will give an
error message on the terminal.

E. The program reads the data and calls the subroutine
corresponding to that command. Any error in a
command causes this error message to be written
along with the entire data record:

APPENDIX B 45

THIS LINE CANNOT BE IDENTIFIED AS A
COMMAND.
Note: All error messages are written to a file
called temp10, which is created by the program
and at the end of the run dprinted to provide a
hard copy, which is always provided unless the pro-
gram does not run to completion (example: hitting
break key); if it is not dprinted, you have no means
to get the information in temp70. An abnormal
termination leaves temp10 as a zero length file.
F. As each subroutine is called, it will process the infor-
mation given in the command line and write
messages to temp10 for both valid operations and
for errors. We have tried to take into account
every type of possible error for which it gives an
appropriate error message and have the program
continue. This program should give a plot and a
progress and error report to cross-check and to
identify any errors and omissions. Any error for
which a report is not given is not a common typing
or omission error and must be resolved in a dif-
ferent manner.

G. After the program has finished the plots, it prints
this message:
PLOT FINISHED
N VECTORS LOST
N ACTIVE LINES USED
1 request signalled, N already in printer queue 3.
Stop.
H. To put plot segments onto tape: An exec_com will
place as many segments as you wish onto a tape.
The best way to do this is to copy the exec__com in-
to your segments along with all six of its names.
Type: copy ~>udd ~>Geoindex >PPorter >gpt.ec-all
I. To Use: Label a tape “For Multics Use” and take it to
production control. Send message to system
operator:
sm sys op Please locate tape number nnnnnn
Wait for message from operator saying he has the
tape(s). Execute the exec__com. Usage is:
ecgpt &l &2 &3...&n
where &1 is the tape number, and &2 to &n are
segments to be put on this tape. Example: ec gpt
aar730 plotl plot2

LISTING 4.~Formation of the command file for verplot and an example command file

The file is composed of one or more instructions taken from a list of eight commands along with a variety of keywords that give almost limitless
scope in creating a Versatec plot file. Restrictions for a command will be explained in that particular section.
I. All commands consist of records that have a maximum of 80 characters. This record length facilitates the use of cards if wanted.
II. All commands and keywords can be either uppercase or lowercase, but must all be of one type in a particular word. The types can be mixed

within a record.

II1. Each command must start in column 1 (card-image terminology used) and must be immediately followed by a semicolon.
IV. Keywords can be in any order but must be separated by commas. For each command, certain keywords are required and others are op-
tional; default values are present if an optional keyword is missing. Many keywords include some data values.
V. Except for the PLOT command, all commands and keywords must be on the same record.

VI. Blanks are ignored except in the following cases:

=Kel-- IS

asy = 20.
Note: “!” is the symbol used for a blank space.
VIL
VIIL

. All commands and keywords must be in a continuous string.

. Commands must start in column 1 and be immediately followed by a semicolon.

Keywords that require a data value must be immediately followed by the character =.

. When used in a data value as a place holder. Example: x = !!1!!, will be interpreted as z = 100. Example: y =2..!!, will be interpreted

If at any time the same keyword occurs twice in a record, the second occurrence will take precedence. _
In all commands, if an error in the data value for a keyword occurs, that value will be either ignored or set to the default value if one exists.

IX. In all commands, if any required keyword is missing, the command is ignored.

X. All numbers can be in either integer or real number format.
XI. An example of a command file, statpm, follows:

statpm

outline; npoint=5,shade=13

19.4,0.67,19.4,0.92,19.73,0.92,19.73,0.67,19.4,0.67

outline; npoint=5,shade=12

19.4,1.59,19.4,1.84,19.73,1.84,19.73,1.59,19.4,1.59

outline; npoint=5, shade=1

19.4,2.51,19.4,2.76,19.73,2.76,19.73,2.51,19.4,2.51

46 GEOINDEX

LISTING 4.~ Formation of the command file for verplot and an example command file— Continued

outline; npoint=5, shade=4
19.4,3.43,19.4,3.68,19.73,3.68,19.73,3.43,19.4,3.43
legend; x=19.88,y=0.72,height=0.1,nchar=9
PUBLISHED
legend; x=19.88,y=1.64, height=0.1,nchar=8
IN PRESS
legend; x=19.88,y=2.56,height=0.1,nchar=22
IN COMPUTER PROCESSING
legend; x=19.88, y=3.48,height=0.1,nchar=14
IN COMPILATION
reorg; x=1.0, y=1.0
outline; npoint=5
6.0,0.0,0.0,3.2,3.4,3.2,3.4,0.0,0.0,0.0
legend; x=1.35, y=3.3, height=0.1, nchar=6
ALASKA
plot; name=alaska, shadeall, pattern=1,13
end plot;
reorg; x=5.6, y=-0.4
outline; npoint=5
6.0,0.0,0.0,1.3,2.0,1.3,2.0,0.0,0.0,0.0
legend; x=0.68, y=1.42, height=0.1, nchar=6
HAWAII
plot; name=hawaii, shadeall, pattern=1,13
end plot;
reorg; x=8.0, y=0.7
outline; npoint=5
6.0,0.0,0.0,0.7,2.0,0.7,2.0,0.0,0.0,0.0
legend; x=0.37,y=0.8, height=0.1, nchar=11
PUERTO RICO
plot; name=puerto_rico, shadeall, pattern=1,13
end plot;
reorg; x=-14.6, y=-1.3
linwid; 4
outline; npoint=5
0.0,0.0,0.0,17.75,22.65,17.75,22.65,0.0,0.0,0.0
legend; x=6.775, y=16.8, height=0.3, lwidth=4, nchar=30
STATUS OF GEOLOGIC MAP INDICES
legend; x=7.725, y=16.0, height=0.3, lwidth=4, nchar=23
SATURDAY, MARCH 1, 1980
linwid; 1
plot; name=stat90, textfield=1,6, refclear=, height=0.1,
select, selshade
13
13
13
1
13
1
1

N WO OOy N P
el el)

APPENDIX B

LISTING 4.~ Formation of the command file for verplot and an example command file —Continued

13 1 12
16 1 13
17 1 13
18 1 13
19 1 13
20 1 13
21 1 13
22 1 13
23 1 13
24 1 1
25 1 1
26 1 1
27 1 1
28 1 13
29 1 13
30 1 13
31 1 13
32 1 13
33 1 1
34 1 13
35 1 13
36 1 13
37 1 13
38 1 13
39 1 13
40 1 1
41 1 1
42 1 1
45 1 13
46 1 13
47 1 1
48 1 12
49 1 13
50 1 1
51 1 13
53 1 1
54 1 13
55 1 1
56 1 13

END PLOT;

plot; name=stat90, textfield=1,6, height=0.1, select,selshade
10 1 1
44 1 1

end plot;

plot; name=stat90, select, selshade
11 1 1
25 2 1
25 3 1
51 2 13

end plot;

48 GEOINDEX

LISTING 5.—Commands for verplot

END PLOT

Purpose:
The command END PLOT informs the program that the information describing the plotting of a file is at an end. The only use is in conjunc-
tion with the PLOT command.
Command usage:
END PLOT; (or end plot;)—The program will continue reading the command file until the end plot command is reached.

LEGEND

Purpose:
The command LEGEND plots the character string given in a manner described by the keywords.

Command usage:
LEGEND; (or legend;) (keywords) followed by the text string on the next record.

Required keywords:

2= (or X=)—zx coordinate of start of text string

y= (or Y=)—y coordinate of start of text string

height= (or HEIGHT =)- Height of each character

nchar= (or NCHAR =)—Number of characters in text string on next record (Always start in column 1 and use no more than 80 characters,
which can be either uppercase or lowercase (or mixed).)

Optional keywords:

angle= (or ANGLE =)-The angle at which the text string is plotted (Default = 0 degrees.)
lwidth= (or LWIDTH =)—The width of the line in dots (Default = 1 dot wide.)

LINWID

Purpose:
The command LINWID changes the line width of all subsequent plotting to the value given.

Command usage:

linwid; (or LINWID;) (number)—The number must be 1, 2, 8, 4, or 5 because the Versatec software will accept no others. If no number is pres-
ent or an error is in the data, the default value of 1 will be used.

OUTLINE
Purpose:
The command QUTLINE plots an outline whose coordinates are on the following record(s).

Command usage:
outline; (or OUTLINE;) (keywords)—Followed by the record(s) containing the data points.

Required keywords:
npoint= (or NPOINT =)-The number of data pairs of z, y coordinate points that follow (All coordinates must be separated by commas. No
more than 20 pairs can be used, with no more than 20 values per record.)

Optional Keywords:
shade= (or SHADE =)—Tells the program to shade this outline and gives the reference number of the pattern to use in shading (The valid
reference numbers are 1 through 20 with any other number defaulting to 1. However, numbers 14 through 20 are blank patterns that
are reserved for use with the PATTERN command.)
noline (or NOLINE)—Causes the outline not to be plotted (This should not be used unless the shade option is also used).

PATTERN
Purpose:
The command PATTERN reads data values and stores these in an array that will be used as a pattern for shading at some later point in the
program.

Command usage:
pattern; (or PATTERN;) (keywords)—Followed by one or more records containing the data values.

APPENDIX B 49
LiSTING 5.—Commands for verplot—Continued

Required keywords:
refnrum= (or REFNUM =) —The reference number to be used in identifying this pattern (It must be from 14 through 20.)
numword= (or NUMWORD =)—The number of data words on the following record(s) (This number can only be 1, 2, 4, 8, or 16. Any other
number will give an error. The maximum number of words accepted by Versatec is 16, and all the others divide evenly into 16.)
type= (or TYPE =)—The only choices are INTEGER or OCTAL. The data values start on the next record. The program will read as many
records as necessary to satisfy the numword variable. All data values are separated by commas.

PLOT
Purpose:
The command PLOT reads the name of a file, attachs and opens it for input and plots the data in that file according to the other keywords or
to the default values. '

Command usage:

plot; (or PLOT;) (keywords)— Followed by records containing a selective records list. The END PLOT command must always be used in con-
junction with this.

Required keywords:

name= (or NAME =)—Contains the name of the file to be plotted (Not more than 20 characters may be used.)
Example: PLOT; NAME = filename
END PLOT;
This constitutes the simpliest use of the plot command.
Note: This command will plot only those files whose outlines have a header card where the number of pairs of points in the outlines are listed
in integer format in columns 16-20. The data points will follow in (12F6.3) format with the first data point being a text position.

Optional keywords:

height= (or HEIGHT =)—The height of each character in the header card text; default value of 0.14 in.

noline= (or NOLINE =)-Does not plot the outline but allows all other options, such as character plotting and shading (Default is to plot the
outlines.)

pattern= (or PATTERN =)-Followed by a series of numbers (The first is the count of how many more numbers follow. The remaining
numbers are a sequence of pattern reference numbers, through which the program will rotate when shading outlines. Default pattern se-
quence is 1 through 10.)

refclear= (or REFCLEAR<=)—Will clear the area around text when shading (This has one major problem. The Versatec software does not
have a clearing function. Instead, if two or more areas are given in one shading command, the software will alternate shading and clear
areas as the areas overlap. For our purpose, this is acceptable if the area to be cleared lies entirely within the outline. However, if areas
overlap or the text lies outside, effects will be confusing. Default is not to clear the area.)

select= (or SELECT=)—Will plot only those outlines listed in the selective file following the keywords.

selshade= (or SELSHADE =)—Will shade only those outlines that have a valid pattern reference number listed in the selective file following
the keywords.

shadeall = (or SHADEALL =)—Will shade all outlines and will rotate through the pattern sequence given (or 1-10 by default) (An outline pat-
tern can be changed by listing a valid pattern reference number in the selective file following the keywords.)

textfield= (or TEXTFIELD =)-Followed by a series of numbers, the first number gives the count of how many numbers follow. The remain-
ing numbers are a sequence representing some of the eight fields on the header cards. These are numbered from 1 to 8 from left to right.
This sequence of numbers tells what fields will be plotted and in what order. Any blank or zero valued field will be ignored.

Example: text field=3,8,1,6
There are three fields to plot. First field 8, then field 1, and then field 6. Each field will be lined up underneath the previous one.

The keywords may occupy more than one record. All records containing keywords, except the last, must have a comma as the last entry
on the record. This is the only indication that there are more keywords given.

A keyword with associated data values must be contained on one record. They cannot span records.

The selective file following the keywords comprises records containing the reference number (field one of the header card), the
subfeature number (field three), and an optional pattern reference number. These are all five character fields contained in column 1
through 15 of the record. The two outline identifiers must be in this field exactly as they are in the five character header card field. The pat-
tern reference number is in format (I5).

REORG

Purpose:

The command REORG changes the software origin of the plot file. This has the effect of moving the subsequent plotting commands in rela-
tion to those done previously.

50 GEOINDEX

Li1STING 5.~ Commands for verplot —Continued

Command usage:

reorg; (or REORG;) (keywords)
One, but not both, of the following keywords must be present. If one is missing, the default of 0 for that value will be used. A movement to

the left or down is negative; right or up is positive.

Keywords:
z= (or X=)—The amount of movement (inches) in a left or right direction
y= (or ¥ =)-The amount of movement (inches) up or down

SCALE
Purpose:
The command SCALE changes the scale of all subsequent plotting.

Command usage:

scale (or SCALE) (number)
A blank data value or an error will default to a scale of 1.

SYMBOL

Purpose:
The command SYMBOL changes the character plotted when a single point is encountered.

Command usage:

symbol (or SYMBOL) (number)
The number represents some character. Any error in the number will default to a small triangle (number 2).

APPENDIX B

HOW TO RUN PIN90 ON MULTICS

Purpose of the program: pin90 will plot the U.S. map
and then, if the user wishes, will plot numbers, sym-
bols, and outlines using GRASP files and will also plot
the grid file.

Input files: file14—-stat90; file15—-GRASP files;
file16 —grid file

Output files: None (The only output is the plot on the
screen.)

To run the program:

A. Before running pin90 for the first time you must link

it to your directory by typing:

Ik >udd >Geoindx>PPorter> pin90

Ik >udd >Geoindx > PPorter>enlrg

Ik >udd >Geoindx>PPorter>indiv

Ik >udd >Geoindx >PPorter>min-max

Ik >udd >Geoindx > PPorter> plocv

Ik >udd >Geoindx>PPorter> grid

B. To run, type: pin90

C. The user will then respond to the following ques-

tions:

1. NEED SYMBOL CODES? (ENTER Y FOR
YES.) If you want to see the symbol and cor-
responding number, type y and cr. Other-
wise, just enter cr and proceed to C3.

. TAP 1 AND RETURN KEY WHEN READY

. Screen is erased.

. ENTER SYMBOL NUMBER AND FILE TO
BE PLOTTED. Example: 43silver You may
enter as many as five files (maximum
number of eight characters for file name).
After each entry, enter cr and the message
will appear again. When you have entered
the last file or if you have no entry, just
enter cr.

5. FOR SYMBOL AND NUMBERS (WITH
PLOTTING), TYPE 1; FOR SYMBOL AND
(OR) OUTLINE (NO NUMBERS), TYPE 2;
FOR NUMBERS ONLY (NO SYMBOLS
OR PLOTTING), TYPE 3. If you had no en-
try for C4 just enter cr. Otherwise, type in
the number and cr.

Screen is erased.

ENTER TITLE FOR MAP. Example: U.S.
MAP

8. TO PLOT INDIVIDUAL STATES, ENTER

i]

ae

51

1-FOR ENTIRE U.S., ENTER 2. You
must enter 1 or 2.

9. TO PLOT GRID, ENTER 1. If you want the
grid, type 1 and cr; otherwise just type cr.

10. IF YOU WANT A HARD COPY UPON COM-
PLETION, TYPE C.

11. Screen is erased. If you entered 1 in response
to C8, the following will appear on the
screen:

GIVE NUMBER OF STATES TO BE

PLOTTED

LIMIT OF 10 IN ASCENDING ORDER

MUST BE A 2 DIGIT NUMBER, 01-51
For example, to plot the States of Illinois
(12), Indiana (13), Kentucky (16), Ohio (34),
and West Virginia (49), respond with the
code number for each State, as follows:
1213163449.

This means a group of as many as 10
States. The States and their corresponding
numbers appear on listing 6.

Screen is erased. The States along with
GRASP files or grid file are plotting; if the
user typed c in response to C10, a hard copy
will be made automatically at this time.

12. FOR AN ENLARGEMENT OF PART OF
THIS PLOT, TYPE Y. Type y and cr if you
want an enlargement; otherwise enter cr
and proceed to C17.

13. FOR A HARD COPY AFTER ENLARGE-
MENT, TYPE C. If the user wants an
automatic hard copy, type ¢ and cr; other-
wise just enter cr.

14. POSITION CURSOR AT LOWER LEFT OF
DESIRED AREA: TYPE C. Postion the
vertical and horizontal cursors at the desired
location, type ¢ and cr.

15. POSITION CURSOR AT UPPER RIGHT OF
DESIRED AREA, TYPE C. Position the
vertical and horizontal cursors at the upper
right location, type ¢ and cr.

16. Screen is erased. An enlargement of the
desired area is plotted, and an automatic
hard copy is made upon completion if the
user typed c in response to C13.

52 GEOINDEX

LISTING 6. —The 48 conterminous States and District of Columbia and their corresponding two-digit numbers that are used for plotting individual
States
[These are codes used on file stat 90 (not FIPS codes)]

Alabama AL 01
Arizona, AZ 02
Arkansas AR 03
Calfornia CA 04
Colorado CO 05
Connecticut CT 06
Delaware DE 07
District of Columbia DC 08
Florida FL 09
Georgia GA 10
Idaho ID 11
Ilinois IL 12
Indiana IN 13
Towa 1A 14
Kansas KS 15
Kentucky KY 16
Louisiana LA 17
Maine ME 18
Maryland MD 19
Massachusetts MA 01-04
Michigan MI 21
Minnesota MN 22
Mississippi MS 23
Missouri MO 24
Montana MT 25

Nebraska NE 26
Nevada NV 27
New Hampshire NH 28
New Jersey NJ 29
New Mexico NM 30
New York NY 31
North Carolina NC 32
North Dakota ND 33
Ohio OH 34
Oklahoma OK 35
Oregon OR 36
Pennsylvania PA 37
Rhode Island RI 38
South Carolina SC 39
South Dakota SD 40
Tennessee ™ 41
Texas TX 42
Utah uT 43
Vermont vT 44
Virginia VA 45,46,47
Washington WA 48
West Virginia wv 49
Wisconsin WI 50
Wyoming wYy 51

APPENDIX C. COMPUTER-PROGRAM
REFERENCE

EXEC_COM NAME: COMTAPE.EC

Awuthor: Pearl Porter

Purpose of the program: comtape.ec reads an outside
ASCII tape into the Multics system and writes the
tape into a segment given by the user. Comtape.ec is
written in Multics command language. All the pro-
grams in the Geoindex are written in Fortran IV
unless otherwise specified.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: ec comtape nnnnnn segname

Arguments:
-ids— Input description of the tape
-ods— Output description

Subroutines called: None

copy_file -ids "tape_ibm_ &1

-nlb -nb 2

Common data referenced: None

Input file: refNM on magnetic-tape

Output file: refNM

Arrays used: None

Called by: None

Error checking and reporting: The comtape.ec seg-

ment will work for tapes that are unlabeled and se-
cond in the file sequence and have fixed length format,
density of 800, record length of 80, and block size of
800. After the comtape.ec has been executed, do not
try to type in other commands until the process has
been completed because this can cause errors.

Constants: None

Program logic:

1. An outside ASCII tape is read into the Multics
system and written to a segment that the user
specified.

2. The user will receive a count number of the records
copied onto SEGNAME, and the file will
automatically be dprinted.

-fmt fb -den 1600 -rec 80 -bk

800" -ods "record_stream_ -target vfile_ &2" dp &2

dquit

APPENDIX C 53

PROGRAM NAME: CHKREF

Awuthor: Harold Johnson

Purpose of the program: chkref is used to check the ac-
curacy of the reference files. It checks whether certain
records are integer or real numbers, whether the
records exceed their prescribed lengths, whether the
State number is consistent, whether the records are in
the correct order within each individual reference,
whether the separate references are in correct order,
and whether the first record is correct.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: None

Arguments: None

Subroutines called: assoc, setup_chkref,
clean_chkref, checkitem_chkref, reup_chkref,
rfskip__chkref

Common data referenced: None

Input files: refNM, matrix

Output files: refINM

Arrays used: None

Called by: None

Error checking and reporting: Messages are written to
the interactive user when the State number is wrong,
when the id number is out of order, when the item
number is out of order, when the initial item number
for a reference is not 2, when the State name is wrong,
and whenever a read error occurs. The user is in-
formed of the total number of records that were read
in the reference files.

Constants: None

Program logic:
1. The file to be checked and the control file matrix are

attached to Fortran numbers 30 and 22 by calling
assoc.

c **x%x%x%%% CHKREF PROGRAM #*%*%

c SEPT. 16, 1976 H. JOHNSON

c
external io(descriptors)

2.

10.

11.

Vectors itype, ichar, and item are set up by the
subroutine setup, which describes the type and
number of character postions allocated to each
reference item.

Subroutine clean puts blanks into the words of ifile,
jfile, and ifilet.

. A reference record is read, noting its State number

istate, reference number jf, and item number jtm.
The reference data on this record is read into jfile.

. Subroutine checkitem uses jtm to check if the type

of data in jfile is integer or floating point as
prescribed by itype for this jtm and whether or
not jfile lies in limits prescribed by ichar.

jfile is read into ifile1 and reup_chkref transfers
information from jf, jtm, and jfile into if, itm, and
ifile, respectively.

. A new record is read into jstate, jf, ftm, and jfile,

and they are checked by checkitem_chkref.
istate and jstate are compared to see if they are
identical.

Where if is greater than jf, the if numbers are out of
order, and an error message notes this; where if is
less than jf, a new reference file has been reached,
and it is checked to see if item number jtm is a 2.

Where if is equal to jf, item numbers are compared
to see if jtm is greater than itm. Unless itm is 87
(indicating that there are repetitions in this
reference), an error message appears.

After an error or after satisfactorily passing each
test, reup_chkref is called to move jf, jtm, and
jfile to if, itm, and ifile. Then control passes to
step 7.

After all records have been checked, ncard, the
number of cards read, is written in a message to
the user.

1977 H. Johnson

THIS PROGRAM IS WRITTEN TO RUN ON THE NEWEST REFERENCE FILES
WHICH ARE MADE UP TO USE WITH THE NEWEST GRASP PROGRAM, IRIS AN

c
c THE FOLLOWING FILES ARE REQUIRED FOR THIS PROGRAM:
c INPUT FILES:

c 22 = "MATRIX" FILE WHICH FORMATS IRIS RECORDS.

c 30 = REFERENCE FILE TO BE CHECKED.

c OUTPUT FILE:

c 06 = MESSAGE FILE.

c

c Converted to Multics February 17,

c

c

\eD C

c EATE

o
S

GEOINDEX
THIS PROGRAM IS DESIGNED TO RUN THROUGH THE REFERENCE FILES AND

c
c CHECK FOR THEIR ACCURACY.

c IT CHECKS WHETHER THE FILE IS INTEGER OR REAL IF IT IS SUPPOSED
\c TO

c BE

c IT CHECKS IF THE FILE IS WITHIN THE PRESCRIBED LIMITS

c IT CHECKS ON THE STATE NUMBER

c IT CHECKS ON THE ORDER OF THE SEPARATE FILE SUBJECTS.

c IT CHECKS ON THE OREDER OF THE ITEMS WITHIN A SINGLE SUBJECT.

c

c

dimension itype(46),ichar(46),item(46,10),if1le(73),jf1ile(73)
dimension ialpha(5),ifilel (50)
character*32 filename
data iblank/" "/
call io ("attach","file22","vfile ","matrix","-append","-ssf")
call io ("open","file22","si")
write(6,890)
890 format(" enter the file name to be checked :")
read 895, filename
895 format (a32)
call io ("attach","file30","vfile ",filename,"-append","-ssf")
call io ("open","file30","si")

c
c
c
c
idim=46
c IDIM IS THE NUMBER OF RECORDS IN THE MATRIX FILE
c
call setup_chkref (itype,ichar,item,idim)
c THIS SET UP THE MATRICES ITYPE(IDIM),ICHAR(IDIM),ITEM(IDIM,IWII
\cDE)
c WHICH DESCRIBE THE TYPE AND NUMBER OF CHARACTER POSITIONS
c ALLOCATED TO EACH ITEM.
c
nfile=73
call clean_chkref(ifile,nfile)
c THIS ROUTINE PUTS BLANKS INTO THE WORDS OF IFILE.
c
call clean_chkref(jfile,nfile)
nfile=40
call clean_chkref (ifilel,nfile)
c
c
c
call rfskip_chkref (ncard)
c THIS ROUTINE READS DOWN FILE 30 LOOKING FOR THE FIRST TRUE RECOR
\eD,
c SKIPPING THE CARDS WHICH MERELY DESCRIBE THE REFERENCE FILE.
c NCARD IS THE KEY NUMBER FOR THE FIRST RECORD.
c IT POSITIONS 30 READY TO READ THE FIRST RECORD.
c

ncard=1

APPENDIX C

read (30,930,end=1000,err=500)istate,jf,jtm, (jfile(k),k=1,73)

930 format (i2,13,1i2,73al)
c
call checkitem chkref(idim,ncard,item,jtm,jfile ,itype,ichar
\c)
c THIS ROUTINE CHECKS IF THE FILE IS INTEGER OR FLOATING POINT
c WHEN ITS ITM NUMBER INDICATES THAT.
c IT ALSO CHECKS IF THE FILE IS CONTAINED WITHIN THE BOUNDARY SET
\cBY
c ITS ITM NUMBER.
c THESE TYPES AND LIMITS ARE READ FROM MATRIX AND FOUND HERE IN TH
\cE
c FILES ITYPE AND ICHAR.
do 5 k=1,40
ifilel(k)=jfile(k)
5 continue
call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
c THIS ROUTINE PUTS INFORMATION IN THE J-FILES,JF,JT,JFILE,
c INTO THE IFILES I1F,ITM,IFILE.
c
10 ncard=ncard+l
read(30,930,end=1000,err=500)jstate,jf,jtm, (jfile(k),k=1,73)
call checkitem chkref(idim,ncard,item,jtm,jfile,itype,ichar)
if(istate .eq. jstate) go to 20
write(6,940)ncard
940 format (" THE STATE NUMBER IS WRONG ON RECORD NUMBER ",i6)
write(6,931)jstate,jf,jtm,jfile
931 format(12,1i3,i2,73al)
call reup_chkref (itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10
c
20 if(if .le. jf) go to 30
write(6,950)ncard
950 format (" THE IF NUMBER IS OUT OF ORDER IN RECORD NUMBER ",i6
\c)

write(6,931)jstate,jf,jtm,jfile
call reup_chkref (itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)

go to 10

c

30 if(if .1t. jf) go to 40
if((itm .lt. jtm) .or. (itm .eq. 87)) go to 35
write(6,960)ncard '

960 format (" THE ITEM NUMBER IS OUT OF ORDER AROUND RECORD NUMBER",i6)
write(6,931)jstate,jf,jtm,jfile

35 call reup_chkref(itype,ichar,item,idim,if ,itm,ifile,jf,jtm,jfile)

go to 10
c
40 if(jtm .eq. 2) go to 50
write(6,970)ncard
970 format (" THE ITEM SHOULD BE 2 IN RECORD NUMBER ",i6)

write(6,931)jstate,jf,jtm,jfile
call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10

55

56 GEOINDEX

c
50 do 60 k=1,40
if(ifilel(k) .ne. jfile(k)) go to 70
60 continue
c
call reup_chkref (itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10
c
70 write(6,980)ncard
980 format (" THE STATE NAME IS WRONG IN RECORD NUMBER ",i6)
write(6,931) jstate,jf,jtm,jfile
call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10
c
c
500 write(6,990)ncard
990 format (" THERE WAS A READ ERROR ON RECORD NUMBER '",i6)
call reup_chkref(itype,ichar,item,idim,1f,itm,ifile,jf,jtm,jfile)
go to 10
c
1000 write(6,1900)ncard
1900 format (" YOU REACHED THE EOF AFTER READING ",i6," RECORDS.")
c Ikkkhkhkkhhhhhhhokhkhkkhhhhhhdhhhhkhxhhhhkkhkhrkhhkhkkkhkkkk
call io ("close","file22")
call io ("close","file30")
call io ("detach","file22")
call io ("detach”","file30")
c ARIIKRAKI KA IR AK AR KRR AR R KKK R I R IR A KRAKRRKR IR AR AR AR R KA AR KRR A kX
stop
end

C *hkkkkkkk END *hhkhkkkhkkkxk

SUBROUTINE NAME: RFSKIP_CHKREF

Author: Harold Johnson

Purpose of the program.: riskip_chkref checks to locate
the record having reference number 1 and item
number 2, which should be the first record in most
reference files.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call rfskip__chkref (j)

Arguments: j—The record number in the reference file,
which has reference number 1 and item number 2

Subroutines called: None

Common data referenced: None

Input files: refNM

Output files: None

Arrays used: None

Called by: chkref

Error checking and reporting: The record number of the

beginning record is always reported. If no correct first
record is found, a message to that effect is sent to the
user.

Constants: None

Program logic:

1. Each record is read to determine its reference
number, /b, and its item number, ic.

2. These are compared with 1 and 2 until a match is
found. This matching record is reported to the
user.

3. If no match is found, a warning message is written to
the user, the file is closed, and control returns to
chkref.

APPENDIX C 57
¢ *xxkkwx SUBROUTINE RFSKIP_CHKREF *khhknn

Cc *
Cc L EE R E R SRR SRS SRR SRS EEEEEEEEEEESRESRRSEINESSEESS SRS S & 88 8
c
subroutine rfskip_chkref(j)
data ione/" 1 "/,itwo/"2 "/
)=1
1 read(30,900,end=100)1asibsic
9090 format(alsatbsral)
if(ib .eq. ione .and. ic .eqg. ic) go to 10
=i+
go to 1
10 write(6,910))
92140 format (" THE REFERENCE DATA BEGINS AT THE",i14,"TH RECORD")
backspace 30
return
(o I 2 2SS 2SR R R RS EEIEE SRR EERE RS R EE RS E S S SRS SRS S EE SRR LR NN S

100 write(6,920)

920 format(" THERE WAS NO FIRST RECORD FOUND! what's wrong?")
rewind 30

return
end
SUBROUTINE NAME: CLEAN__CHKREF Subroutines called: None

Author: Harold Johnson Common data referenced: None

Purpose of the program: clean_chkref inserts blank ém; ut {L lefe: 1.\I§ne
characters in each word of the vector ifile. utput fi S', ; f(?ne

Data base: Geoindex Arrays used: ifile ;

Computer: Honeywell Series 60 (level 68) Called by: chkref, reup_chkre

Operating system.: Multics Error checking and reporting: None

Calling sequence: call clean__chkref (ifile,nfile) Constants: None

Arguments: Program logic: y
ifile- A vector 1. The blank character is inserted into each word of ifile
nfile — The number of elements in ifile by a do loop.

c **kkkkk SUBROUTINE CLEAN_CHKREF ***xakix

subroutine clean_chkref(ifileosnfile)
THIS ROUTINE PUTS BLANK WORDS INTO THE FILE IFILE.

HJohnson February 16, 1977

O 0O o006

dimension ifile(nfile)
data iblank/" "/
do 10 k=1,nfile
ifile(k)=1iplank
10 cont inue
return
end
Chrxksnxkkhx END CLEAN_CHKREF #xxxxhkaii

58

SUBROUTINE NAME: REUP_CHKREF

Awuthor: Harold Johnson

Purpose of the program: reup_chkref transfers the
characters in jfile to ifile.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call reup_chkref (itype,ichar,item,-
idim,if,itm, ifile,jf jtm jfile)

Arguments:
ifile— A vector containing the reference data in a

refer-record

GEOINDEX

Jjfile— The same kind of vector as ifile
Subroutines called: clean__chkref
Common data referenced: None
Input files: None
Output files: None
Arrays used: ifile(73), jfile(73)
Called by: chkref
Error checking and reporting: None
Constants: None
Program logic:
1. clean_chkref is called to put blanks into ifile.
2. Characters in jfile are written into ifile.

c **kxkkx* SUBROUTINE REUP_CHKREF ***kkkkk
subroutine reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,]j

\cfile)
dimension itype(idim),ichar(idim),item(idim,10),ifile(73),ijfile(73
&)
¢ H Johnson February 17, 1977
c
if=3f
itm=jtm
nfile=73
call clean_chkref(ifile,nfile)
c
do 10 k=1,73
ifile(k)=jfile(k)
10 continue
return
c Ahkhhkhhhkhhhhhhhhhhhhhhhhhdhhhhhkhhhhhhhhhhhhhhrhhkhkkhkhk
c
end

¢ **kkk%x%x END REUP CHKREF **kkkkk

SUBROUTINE NAME: BLANKCHECK__CHKREF

Author: Harold Johnson
Purpose of the program: blankcheck__chkref checks to
see if the information in the current record being
checked is within the limits prescribed by matrix.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call blankcheck_chkref (ichar,jfile,-
ncard)
Arguments:
ichar— The admissible length of the current reference
item
Jjfile— The vector of characters obtained from the cur-
rent reference record

ncard— The number of the record in the reference file
currently being examined

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: jfile(73)

Called by: checkitem__chkref

Error checking and reporting: When jfile is too long, a
message explaining the problem, giving the record
number along with a printing of the file jfile and the
number of the erroneous nonblank characters is sent
to the user.

Constants: None

Program logic:

1. All characters after the icharth are compared with

the blank character. Discrepancies are reported.

APPENDIX C 59

C **xkhrkx SUBROUTINE SLANKCHECK_CHKREF,FORTRAN *awkkix
subroutine blankcheck_chkref(ichars,jfilesncard)

this routine checks to see if the file jfile(73) is contained

within ichar spaces by seeing if the other spaces are blank

H Johnson February 16, 1977

O 0000

dimension jfile(73)
data iblank/" "/
1 do 10 k=1,4
i=ichar+k
if(jfile(i)
10 continue
return
20 write(6,900)ncardsi
909 format ("
CHARACTER ",i2,"

eNEe,

IS NOT BLANK'™)

THE FILE IS TOO LONG ON RECORD NUMBER

iblank) go to 20

",i6+" BECAUSE

write(6,901)(jfile(k),k=1,73)

901 format ("

return

THIS DATA IS

",73a1)

Cc B A S SRR ESERRRL SRR Rl RN RN RERRRR R R R

end

C *xxkxx*xEND SBLANKCHECK_CHKREF *xxkakx

SUBROUTINE NAME: TYPECHECK__CHKREF

Author: Harold Johnson
Purpose of the program: typecheck__chkref checks to
see whether the information in the current reference
record represents an integer or floating-point
number when that type is indicated by its item
number.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call typecheck__chref (itype,ifile,ncard)
Arguments: .
itype— One of the type of 1 or 2
ifile— A vector of characters obtained from a record of
the reference file being checked
ncard—The number of the current record being
checked

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: None

Called by: checkitem__chkref

Error checking and reporting: When ifile is wrong, this

is reported to the user, along with the record number
and copy of ifile.

Constants: None

Program logic:

1. If the item number is 1, each character in ifile is
checked to determine ifitis 0, 1, 2, 3, 4, 5,6, 7, 8, 9,
or blank.

2. If the item number is 2, each character is compared
with these same integers and then with a period.
The program checks that exactly one period occurs.

3. Any discrepancies are reported to the user.

c ***xxxx% SUBROUTINE TYPECHECK_CHKREF.FORTRAN #***kx*%
subroutine typecheck_chkref (itype,ifile,ncard)
dimension ifile(73),number(12)

c
¢ this subroutine checks whether the type indicated by itype
¢ corresponds to what is found in ifile.

¢ H Johnson February 16, 1977

60 GEOINDEX

c

data number/"0 LS | nom2 ","3 ", "4 ","S5 ","6
\C”,“?
&","8 ","9 ",“ ",". "/
1 if(itype .eq. 2) go to 20
c
c WHEN ITYPE IS 1 WE TEST TO SEE IF IFILE CONTAINS ONLY INTEGERS.
do 10 j=1,20
do 15 k=1,11
if(ifile(j) .eq. number(k)) go to 10
15 continue
go to 500
10 continue
return
c
c WHEN ITYPE IS 2 WE TEST TO SEE IF IFILE IS A REAL NUMBER.
20 continue
iflag=0

do 30 j=1,20

do 35 k=1,11

if(ifile(j) .eq. number(k)) go to 30
35 continue

if(ifile(j) .ne. number(l2)) go to 510

iflag = iflag+l

if(iflag .ne. 1) go to 510

30 continue
if(iflag .ne. 1) go to 510
return

c

500 write(6,920)ncard

920 format (" THERE IS SUPPOSED TO BE AN INTEGER IN RECORD NUMBER ",1i6
\c)
write(6,921)ifile

921 format (" THIS DATA IS ",73al)
return
c
510 write(6,930)ncard
930 format (" THERE IS SUPPOSED TO BE A REAL NUMBER IN RECORD ",
\ci6)
write(6,921)ifile
return
c AR RIAKRRI IR AKKRIKI AR ARK A KA AR ERIRRI AR A AR Ak bk hkk ko
c
end

¢ ***%*%* END TYPECHECK_CHKREF #**k*x%x&%

SUBROUTINE NAME: LOCAT1_CHKREF Computer: Honeywell Series 60 (level 68)
Awuthor: Harold Johnson Opefr:ating system: Multics o eae s
Purpose of the program: locati_chkref determines the Ca‘llmg sequence: call locatl _chkref (jtm,idim,item,-
line and column of matrix in which a given item line,kolumn)

number occurs by using the matrix, item, which was | Arguments:
constructed from matrix. jtm — An item number of the current reference record

Data base: Geoindex idim —The number of rows in item

APPENDIX C 61

line —The line in item where jtm is located
kolumn —The column in item where jtm is located

Subroutines called: None

Common data referenced: None

Input files: None

Output files: None

Arrays used: item(idim,10)

Called by: checkitem__chkref

Error checking and reporting: Done by check-
item__chkref when line = 0
Constants: None
Program logic:
1. jtm is compared with each element of item using a do
loop, checking by columns first, since most items
occur in the first column.

¢ **xkxkkx SUBROUTINE LOCATI_CHKREF **kkkxx
subroutine locatl_chkref(jtmsidimsitems,lineskolumn)

dimension item(iaim,10)
line=0

kolumn=0

go 10 k=1.,10

do 10 j3=1,idim

if(jtm .eq.
continue
return
line=j
kolumn=k
return

10

29

item(j,k)) go to 20

C Kok gk dkod kok Kok ok ok ok ok sk Kk ok dok ok ok ok k ok ok ko dk ek g gk ko dk ok ok k ok ke ke k%o ok ok ok ke ke ok

c
end
C *kkkkxx END LOCAT1_CHKREF

Kok ok ok ok okok

SUBROUTINE NAME: CHECKITEM__CHKREF

Awuthor: Harold Johnson
Purpose of the program: checkitem_chkref checks
whether jfile is integer if jtm is 1 or floating point
when jtm is 2. It checks whether the number of
nonblank characters in jfile is at most ichar(lin).
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call checkitem_chkref (idim,ncard,-
item,jfile,itype,ichar)
Arguments:
idim —The number of lines in matrix
ncard —The number of records that have been read in
the reference file
jtm —The item number on the current record being
checked
jfile —The reference data in the current record, a vec-
tor
itype —The vector of types from matrix

ichar—The vector of maximum allowable lengths
from matrix

Subroutines called: locati__chkref, typecheck _chkref,

blankcheck_chkref

Common data referenced: None

Input files: None

Output files: None

Arrays used: jfile(73), item(idim,10), itype(idim),

ichar(idim)

Called by: chkref

Error checking and reporting: When locatt_chkref

cannot match jtm with any item number in item, a
message is written along with the file jfile to the user.

Constants: None

Program logic:

1. locat1i_chkref is called to determine which line of
matrix contains jtm.

2. If itype(line) is 1 or 2, typecheck__chkref is called to
check whether jfile is a character representation of
integer or floating-point data.

3. blankcheck __chkref is called to check whether jfile
contains at most ichar(line) nonblank characters.

62 GEOINDEX

c **kxkx**x SUBROUTINE CHECKITEM_CHKREF **%xkkx%
subroutine checkitem_chkref (idim,ncard,item,jtm,jfile,itype,ichar)
dimension jfile(73),item(idim,10),itype(idim),ichar(idim)

H Johnson February 16, 1977

WHICH CONTAINS THE ITEM =

OO0 0~0 000000

if(line .gt. 0) go to 2
write(6,900)ncard
900

\e¢)
901

write(6,901)jfile
format (" THIS DATA IS
return

WHEN THE TYPE OF THE ITEM IS
if(itype(line) .gt. 2
ity=itype(line)

n

N

wvio 00 un

0 ich=ichar(line)

format (" THE MATRIX FILE DOES NOT CONTAIN THE ITEM ON

.GT.
«Or

THIS CHECKS TWO THINGS ABOUT JFILE.
DOES THE FILE CONTAIN INTEGERS OR FLOATING-
POINT NUMBERS WHEN JTM IS 1 OR 2?

IS THE FILE CONTAINED IN THE LIMITS SET BY MATRIX FOR THIS ITEM?

call locatl_chkref(jtm,idim,item,line,kolumn)

THIS SUBROUTINE LOCATE FINDS THE LINE AND COLUMN OF MATRIX
JTM.

RECORD ",i6

",73al)

CHARACTER.
to 50

2 JFILE CAN BE ANY

itype(line) .eq. O)go

call typecheck_chkref (ity,jfile,ncard)
THIS SUBROUTINE CHECKS WHETHER THE TYPE INDICATED BY
CORRESPONDS TO WHAT IS FOUND IN JFILE.

ITYPE (LINE)

call blankcheck_chkref (ich,jfile,ncard)

0

ICHAR(LINE) SPACES.

0

return

THIS CHECKS TO SEE IF JFILE IS CONTAINED IN

c khkhkhkhhkhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkhkhhhhhhkd

end

c ***%x*k*x*END CHECKITEM_CHKREF ***x*xkk%

SUBROUTINE NAME: SETUP_CHKREF

Author: Harold Johnson

Purpose of the program: setup__chkref reads the file
matrix to construct vectors itype and ichar and
matrix item that indicates for each item in the
reference file its type, its allocated space, and its item
number.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics
Calling sequence: call
ichar,item,idim)
Arguments:
itype—The vector of length idim whose kth entry is
the type of the kth kind of record in matrix (integer,
floating point, or alphanumeric)
ichar-The vector of length idim whose kth entry is
the maximum allowable length of the kth kind of
record described by matrix

setup_chkref (itype,

APPENDIX C

item—The jdim by 10 matrix giving the item
numbers in matrix allocated to the various kinds of
records
idim — The number of records in matrix
Subroutines called: None
Common dato referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: chkref

63

Error checking and reporting: When matrix does not
contain exactly the number of records indicated by the
value of idim, an error message is sent to the user.

Constants: None

Program logic:

1. Records in matrix are read into a7, a2, itype(j), b1,

b2, ichan(j), c1, c2, (item(j,k),K=1,10).

2. When the EOF of matrix is sensed, the number of

read records is compared with idim to see whether

they are equal.

c ***%% SUBROUTINE SETUP_CHKREF **k&kkx%
subroutine setup_chkref (itype,ichar,item,idim)
dimension itype(idim),ichar(idim),item(idim,10)

i=0
1 j=j+1
read(22,900,end=100)al,a2,itype(j),bl,b2,ichar(j),cl,c2,c3,(item
\C(jsk),
&k=1,10)
900 format(2a4,12,2a4,i6,2a4,al1,10i3)

go to 1
100 if(j-l.eq. idim)go to 200

write(6,910)j,idim
910 format (" J = ",i3," BUT IDIM = ",i3)
200 return
¢ khkkhkhkhhkhkhhkhkhhhkhhhhhhhhhkhhhhhhhkhkhhhkhhkhhhhhkhhkkhkhkhkkhk
c
c

end

c **x**x%* END SETUP_CHKREF #**k*%

EXEC_COM NAME: GEOFMT.EC

Authors: Kevin W. Laurent, Larry C. Harms, and
Pearl Porter
Purpose of the program: geofmt.ec executes a series of
command lines and routines without user interven-
tion.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec geofmt page lines nbipp
Arguments:
page—Number of lines on the page
lines —Number of lines needed at bottom of page to
write a complete reference
nbipp-Used to designate whether or not the
proportional-space printer is to be used
Subroutines called: geofmt, geofmt.qedx,
geofmt2.qedx, geofmt3.qedx, geofmt4.qedx are all
executed.
Common data referenced: None

I Input files: None

‘ Output files: None

Arrays used: None

Called by: None

Error checking and reporting: The user must enter the
arguments when executing geofmt.ec or she will
receive a message stating the current buffer and level
and the commands that have not been executed. This
same message will appear if the user asks for too
many references to be processed at one time. We
recommend that 550 references be the maximum
number processed at one time.

Constants: None

Program logic:

1. A command is given to turn off the COM-
MAND__LINE to prevent the commands from be-
ing written out.

2. The file name given by the user is attached to file70.

3. The output from geofmt, geofmt.data, is attached
to file11.

4. The fortran program geofmt is executed.

64

No o

10.

QU QUK XK X®EX

io

i0 attach

GEOINDEX

file10 and file11 are detached.

The user is asked if she needs to edit.

If the third argument is nbipp, subroutine geofm-
ta.qedx is executed. Otherwise, subroutine
geofmt.qedx is executed.

DL GEOFMT.RUNOFF. This will delete the old
copy (if one exists).

. FO GEOFMT. RUNOFF; RF GEOFMT; FO is a

command to direct geofmt.runoff to a segment,
and RF will run off geofmt; CO directs output
back to the terminal.

The user is queried whether she wants 7 columns or
not. This is a combination of 4 on the first page
and 3 on the next page and so forth. If she
responds yes, geofmt2.qedx is executed. If she

/* The geofmt exec_com
create 4

commanu_Line off

/* run reformat program */

attach filel10 vfile_ [response

filell vfile_ geofmt.data

geofmt

&
&
io0

io detach

&
&
&

filel0
filel?

detach

/* Edit geofmt.data =/

sif [query "Do you need to edit?"]
&then

&else &goto nextstep

Einput_Lline off

&attach

gx

r geofmt.data

estty -modes (L3880

eioa_ "Edit."/Enter "'"g""
&detach

8

&label nextstep

&

stty -modes L1132

&

g /* create runoff segment
&

&81f [equal o3
&then gx

"nbi pp'l]
jeofmta &1 &2

11

12

13

14

15

*/

answers no, geofmt3.qedx is executed, and every
page will have four columns.

. DL GEOFMT.COLUMNS. This will delete the old
copy (if one exists).
. If the third argument is nbipp, then embed__tabs

is executed. Otherwise, the next statement is ex-
ecuted.

. Four segments called overlay1, overlay2, overilay3,

and overlay4 are combined, using the overlay
command, into one segment called geofmt.col-
umns.

. Eight segments created during this process are

deleted.

. Quit,

is used to perform steps necessary to
columnar print of

input reference data., *x/

"ENTER FILE NAME:"]

to exit editor,"”

APPENDIX C

8else gyx yeofmt &1 &2

&

& /* put runoff output
&

dl geofmt.runout -bf

fo geofmt.runouts,rf geofmtsco
&

g /* break output
&

&if C[gquery "DO YOU WANT 7 COLUMNS?"]
&then gx yeofmtl &1

&else gx geofmt3 1

&

& /* create columnized output

&

dlL geofmt.columns -bt
&§if [equal &3 "nbipp"l
&then embed_tabs &1

into segment

65

*/

into 4 files (columns) */

*/

else do "fo geofmt.columns;overlay overlayl overlay2 -in 34 overlay3 -in

867 overlay4 =-in 100 -pl ¥1.co”
&

& for Linolex =-- yx geofmté &1
g
& /* delete intermediate segments x/
&
dl ygeofmt.(runoff runout data) ~-bf
dl overlay(l1 2 3 &) -pf
dquit
SUBROUTINE NAME: GEOFMT.QEDX Program logic:

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program. geofmt.qedx, an edit routine,
creates a RUNOFF segment using geofmt.data,
which was created during the execution of geofmt.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: None

Arguments:
&1 —Passed from the exec__com and contains the page

length (usually 84 or 140)
&2~ Contains the number of lines needed at the bot-
tom of the page to type a complete reference

Subroutines called: None

Common data referenced: None

Input files: geofmt.data

Output files: geofmt.runoff

Arrays used: None

Called by: geofmt.ec

Error checking and reporting: Located in geofmt.ec

Constants: None

1. The two arguments used when executing geofmt.ec
are read into a buffer called args, and the first
argument (which is the page length) is moved to a
buffer called /ines. The second argument (number
of lines needed at bottom of page for printing a
complete reference) is moved to a buffer called
need. These two argements are used with .PL and
NE, respectively, as runoff commands. The in-
itialization routine puts RUNOFF commands into
buffer 0.

2. Segment geofmt.data is read into a buffer called
tile.

3. A special character {, a brace that is made by
depressing the shift key and left bracket key
simultaneously, is appended to the end of
geofmt.data as an end of file indicator.

4. The RUNOFF commands and one line of data at a
time is moved from buffer file to buffer 0.

5. Step 4 is repeated until the special end of file in-
dicator is detected, at which time it is deleted.

6. Write geofmt.runoff.

7. Quit to exit from text editor.

66 GEOINDEX

o(main)

$a

b(file)
Tm{input)

b0

$a

<un 7

«ne \c\b(need)
Vc\b(input)
Ve\f

s/{/7</

d

w geofmt.runoff

a

\f

b(loop)

$a
\c\b(main)
\c\b(loop)
\Vf

b(args)
Im(lines)
Im(need)
b(lines)
1s/\c

/17

b(need)
1s/\c

l/

b0

$a

«pl \b(lines)
LU 30

.ma 0

«Na

.in 7

\f

b(file)

r geofmt.data
$a(\f

b0
\b(loop)

SUBROUTINE NAME: GEOFMT

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program: geofmt reads the reference file,
extracts selected data, arranges it in a predetermined
order, and writes it out as a string of data,
geofmt.data.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: geofmt

Arguments: None

Subroutines called: None

Common data referenced: None

Input files: refNM (NM, two-digit FIPS State code) used
on unit 10

Output files: geofmt.data format(i3,”. ”,396a1) used on
unit 11

Arrays used: iordr(34), istor(34), icoma(34), nuse(34),
icode(34,60), iout(396)

Called by: geofmt.ec

E'rror checking and reporting: Located in geofmt.ec

Constants: None

APPENDIX C

Program logic:

1.
2.

10.
11.
12.

13.

14.

Files are attached and opened in geofmt.ec.

The user is prompted for the State number, start-
ing reference number, and ending reference
number.

The arrays are loaded with blanks except nuse,
which is loaded with zeros.

The reference file is read until the beginning
reference number given by the user, ibgin, mat-
ches the record just read, iref. Load iref into jref.

. The item number is matched against the array ior-

dn(i).
If no match is found, go to step 4.
If item number is 87, load flag87 with an 87.
If equal, icard is loaded into icode(i), item is load-
ed into /stor(i), and a 1 is stored in nuse(i).
Continue steps 4 and 5 until jref no longer equals
iref. |

. If nuse(i), where i equals 13, 15, . . ., 31, equals 1,

load icoma(i) with a 1. Add 1 to ipnct. Load kk
with i.
This routine checks for scales and commas can be
inserted later. ipnct has the number of commas
that will have to be inserted, and kk contains the
number as specified by ordr of the last scale. This
field, kk, will be checked later to determine
whether or not a period and an extra space are re-
quired for output.

The number of characters and spaces in icode(i,j)
is loaded into isave.

. If the current record is a scale, check ipnct.

If ipnct = 0, go to step 12.

If flag87 = 87, go to step 10. If the reference has
an ITEM 87, a comma will be placed after the
scale rather than a period, as more data will
follow the scale.

If ipnct = 1, to to step 11. This indicates that there
is only one scale field and that no punctuation will
be needed.

If icoma(i) = 0, go to step 12. Add 1 to isave. Load
icode(i,isave) with a comma.

Subtract 1 from ipnct.

If the current record is not the year, ITEM 8, go to
step 13. Load icode(i,isave) with a comma.

Go to step 16.

If the current record is not the publisher, ITEM 17,
go to step 14.

If the last character of this record is a period, insert
an extra blank after the period, add 1 to isave,
and then go to step 16.

If the current record is not the series, ITEM 23, go
to the step 14A.

If the current record is ITEM 23, check istor(17) =
60, which means that the series is continued on
another record.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

67

Otherwise, put an extra space after ITEM 23 data.

Go to step 16.

If istor(i) is not = 60, go to 15. Put extra space
after ITEM 60 data.

Go to step 16.

If the current record is not a scale (item 18-22,
61-65), go to step 16. If j = kk, which means this
is the last scale in the reference, load a period at
the end of the field.

Load jout with 1:

Load jout with the scale and necessary commas
separating the field.

Go to step 17.

jout(istart) = icode(i.jj) where jj = 1, save. This
routine will load jout with the current record us-
ing isave as the counter to move the exact
number of characters and spaces for that record.
If i = kk, meaning this record is the last scale, istart
= istart + 1.

This will insert another space after the scale, giving
a total of 2 spaces between the scale and next
record.

If the value of istor(i) is not equal to 86, go to step
19.

If iston(33) equals blank, and istor(34) equals blank,
go to 20.
istart = istart + 1 will give a total of 2 spaces be-
tween the ITEM 86 record and the next record.

If istor(i) is not equal to ITEM 35, go to step 20. If
istor(34) equals blank, go to step 20.
istart = istart + 1. This will insert an extra space
after the ITEM 35 record has been written to
fout.

istart = istart + 1, iout(istarf) = blank space. This
will put a space between each record written to
iout. Repeat steps 8-20 until /i = 34, then go to
next step.

If flag87 = 87, continue reading the records, steps
8-20, until a new reference number is found. Load
flag87 = 0. Write geofmt.data on unit 11 using
jref, (fout(i), i = 1, istart), and format (i3,
“. 7,396al).

If jref = iendref, go to step 24. (This means the
reference number of the record just written is the
last record to be processed. iendref is the ending
reference number given by the user.)

If iend = 1, go to step 24. This is the last record on
the file.

Load jref with iref. iref is the reference number of
the last record read before processing the current
reference data.

Initialize the arrays by loading them with blanks. Go
to step 5.

Stop.

68

OO0 00 0 o000

1U

20

22

30

49

50

60

O o000

80

GEOINDEX

GEOFMT.FORTRAN

This program reads the reference file, extracts selected records
as determined by iordrs, stores them in icode accordinyg to iordr
and writes it out as a string of data.

General outline of program written by Larry Harms of CCD.
Wwritten in detail by Pearl B. Porter, April, 1978

dimension iordr(34),istor(34),nuse(34),icomal(34)

character*1 icard(65),icoue(34,65),i0ut(396)

data iOTdr/Sr‘:SISIQr10:11;37117:25160'39118140119l
461220062+21063+22,66,61067,62+,68,63,69,
64,70,65,86,35,34/

write (6,10)

format (" TYPE IN STATE NUMBER™)
read (5,20) jsta

format(i2)

write (6,22)

ATTENTION For Calif.r ref number will be 4 digits.

format (" WHAT IS YOUR STARTING REFERENCE WNUMBER? (use 3 digits)")
read (5,24) ibgin

ATTENTION Change (i3) to (i4) for California.

format (13)
write (6,26)

ATTENTION For Calif., ref number will bpe 4 digits.

format (" WHAT IS YOUR ENDING REFERENCE NUMBER? (use 3 digits)")
read (5,24) iendref

Initialize arrays to blanks.

do 30 1=1,65
icard(i)=" "
do 40 j3=1,34
do 40 1=1,65
icode(j,id)=" "
do 50 k=1,34
icoma(k)=" "
do 60 1=1,34
nuse (1) =0
istor(i)=" "
do 7J 121,396
iout (i) =" "
ipnct=0
flagd7=0

Read reference file until the current record equals the
vpeginning reference number given by the user,

read (10,110,end=900) istasrirefs,itemsicard
if (iref .ne. ibyin) go to 80

jref = Jref

go to 120

c

c
1390

c
110

120

130

a o o0 oo

149
154

170

O 0 00

175

184

APPENDIX C 69

jref contains the reference number of the data being processed.

read(1d,110,end=155) istarirefr,itemsicard

ATTENTION For Calif., change 13 to 14,

format(i2,13,12,65a31)
if (jref .ne. iref) go to 160
if (flag87 .egq. 87) go to 160

Does record contain an item code = to an item code in iordr

do 130 1=1,34

if (item .eg. i10ordr(i)) go to 140
if (item .eq. 87) flag87 = 87
continue

go to 100

Load icode with icard as determined by iordr, store item in istor
and turn on nuse(i) which indicates there's data for this
particular item.

do 150 j3=1,65
icode(i,j))=1card(j)
istor(id)=item
nuse(i)=1

go to 100

iend = 1

Check scales to determine how many commas will be needed
when written out to filell (geofmt.data).

do 170 1=13,31,2
if (nuse(i) .,eq. 0) go to 170
If nuse(i) = (U, there's no data for this record.
icoma(i)=1
kk=1
ipnct = ipnct+1
continue

Store in isave the total numper of characters and
significant spaces contained in the record.

if (flagd7 .egq. 87) yo to 175
istart = U

do 500 i=1,34

isave = (

if (nuse(i) .eq. 0) go to 50V

do 180 j3=1,05

if (icode(isj) .eqe " ") go to 180
isave=j

continue

Check for scales and if there's more than one scale,
insert commas after the scales.

70

O 60 00

190

230

210

220

230

240

245

250

260

279

GEOINDEX

it ((istor(i) .ge. 18 .and. istor(i) .le. 22) .or.
(istor(i) .ge. 61 .and. istor(i) .le. 65)) go to 190

go to 220

if (ipnct .eg. 0) go to 220
if (flag87 .eg. 87) ygo to 200
if (ipnct .eq. 1) go to 210

if (icoma(i) .eq. U) go to 220
isave=isave+l
icode(isrisave)=",
ipnct=ipnct-1

It 1tem 8 (year), put comma after the year.

if (istor(i) .ne. 8) go to 230
isave=isave+i
icode(is,isave)=","

go to 400

If the publisher has a period at end of field,

two spaces must follow the period.

if (istor(i) .ne. 17) go to 240

if (icode(isisave) .eq. ".") isave=isave+]

go to 400

There must be 2 spaces after the series.

if (istor(i) .ne. 23) go to 245
if (istor(11) .eq. 60) go to 245
isave=isave+1

go to 40U

if (istor(i) .ne. 6U) go to 250
isave = isavet+l
Jo to 400

Wwhen working with scales, precede the scales with "1:"

if ((istor(i) .ge. 18 .and. istor(i) .,le, 22) .or.
(istor(i) .ge. 61 .and. istor(i) .le. 65)) yo to 260

go to 400

if (1 .ne. kk) go to 270

ipnct = 0

if (flag87 .eq. 87) go to 270

isave = isave+1

icode(isisave) =",

iout(istart+i)= "1"

jout(istart+2)= ":"

istart = istart+?

ikorp = 0

if (isave .le. 3)go to 400

if (icode(irisave) .eqg. "»" .oOr.
ikorp = 1

icode(isisave)

«€Qe.

“.")

O 00000000

APPENDIX C

ithi = 3
if (ikorp .eq. 1) ithi = 4
if (isave .ne. 9) go to 280

1fir = 2
isec = 3
go to 330

Depending on the size of the scale fields there will be
from 1 to 3 moves to load the data in the output,
ithi (3rd load) will contain a 3 unless the last
position of the scale is a period or commar, then it
will contain 4, 1isec (2nd) and ifir (1st) will
be loaded according to the number of digits in the
scales. A comma is loaded after ifir and isec.
2380 if (isave .ne. 8) go to 290

isec = 3

ifie = 2

1f (ikorp .eqe 1) ifir = 1

Jo to 330

29U if (isave .ne. 7) yo to 300
isec = 3
ifir = 1
if (ikorp .eqe 1) ifir = 0
go to 330

300 if (isave .ne. 6) go to 310
ifir = 0
isec = 3
if (ikorp .eq. 1) isec = 2
40 to 330

310 if (isave .ne. 5) go to 320
ifir = 0
isec = 2
if (ikorp .eqe. 1) isec
Jo to 330

]
-

320 ifir = 0
isec = 1
if (ikorp .ege 1) isec

0
Load the first (ifir) set of digits followed by comma.

330 ipos = 1
isecmv = isec
if (ifir .,ey. U) go to 350
Jdo 340 jj=sipose.ifir
istart = istart+]
340 iout(istart)=icode(i,jj))
iout(istart+1)=","
istart = istart+1
ipos = i1fir+1
isec = isec+ifir

(2]

370

33840

400

420
425

430

450

500

510

GEOINDEX

Load the second (isec) set of digits followeu by comma.

1f (isec .eq. U) go to 37U
do 360 jj=iposrisec

istart = istart+1
iout(istart)=icode(irjj)
iout(istart+1)=","

istart = istart+1

ipos = i1postisecmv

ithi ithi+isec

Load third (ithi) set of digits.

do 380 jj)=iposr,ithi
istart = istart+1
iout(istart)=icode(i,}))
go to 425

Load iout with icode depending on isave,

do 42U jj=l,isave

istart = istart+1

iout(istart) = icode(isrj)))

if (1 .eqe. kk) distart = istart+1

If any data follows "Also other maps".,
put 2 spaces after "Also other maps".
if (istor(i) .ne. 86) go to 430
if ((istor(33) .eg. " ") .and. (istor(34) .eq. " ")) go to 450
istart = istart+l
go to 450

if (istor(i) .ne. 35) go to 450
it (istor(34) .eq. " ") go to 450
istart = istart+1

Increase istart by 1 so a space appears between records of data.

istart = istart+
iout(istart) = " "
continue

1if (flags7 .ne. 87) go to 525

if (jref .ne. iref) go to 510

if (iend .ne. 1) go to 565

istart = istart-]

if (iout(istart) .eq. "»") iout(istart) = "."
if (iout(istart) .ne. " ") go to 525

go to 510

write the string of data to filell (geofmt.data)

APPENDIX C 73

c
525 write
c ATTENTION
550

(11,55M

For Calif..,
format(i3,". "396a1)
istart = 0

change

c iendref
if (jref
if (iend

«€J.
.ed. 1) go to 1000

jref = iref

jref,Ciout(id,i=1,istart)
i3 to

14,

is the ending reference number given by the user,
iendref) go to 1000

c Initialize arrays before processing next reference.

do 560
iout (1)
do 570 j3=1,34

do 570 1=1,65
icode(j),i) = " "
do 590 1=1,34
icoma(i) = " "
nuse(i) = U
istor(i) = " "
continue

flay87 = 0

go to 120

1i=1,396

560
565

570

59U

9u0
905

write (6,905)
format ("

1000 stop

end

THE BEGINNING RECORD WAS NOT FOUND'")

SUBROUTINE NAME: GEOFMT2.QEDX

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program: geofmt2.qedx formats the file
geofmt.runout into alternating 4 and 3 columnar out-
put acceptable for use by the overlay command to
create a columnarized output segment.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: qx geofmt2 &1

Arguments: &1-1It contains the page length (84 or
140) and was passed from the exec__com, geofmt.ec.

Subroutines called: None

Common data referenced: None

Input files: geofmt.runout

Output files: overlay1, overlay2, overlay3, overlay4

Arrays used: None

Called by: Executed by geofmt.ec

Error checking and reporting: geofmt.ec

Program logic:

1. The initialization routine creates four segments:
overlayl to overlay4. A segment, geofmt.run-
out, is read into buffer, file. A special character is
appended to the segment as an end of file indicator.

2. The loop macro will move a specified number of lines
(determined by the page length argument when
geofmt.ec was executed) into each of the four
overlay segments. Then the specified number of
lines are moved into overlayl, overlay2, and
overiay3. This loop alternates in moving data to all
four segments, and then three segments, until the
end of file indicator is read.

3. All four segments are written.

4. Quit the text editor.

74

b(4col)

$a

\c\b(test)
1,\c\bfargs)m(input)
b(Cinput)

Or overtayl

1,%3w overlay1
\c\pb(test)
1,\c\b(args)m(input)
b(input)

Or overlay?

1,3w overlay?
Vc\b(test)
T,\c\blargs)im(input)
b(input)

Or overlay3

15w overlay3
\c\p(test)
1,\c\b(args)m(input)
b(input)

Or overlayé

1,%5w overlayé
\c\b(3col)

\f

b(3col)

$a

\c\b(test)
1,\c\b(arzs)m(input)
bCinput)

Or overlayi

1,%3w overlayl
\c\b(test)
1s\c\blargs)m(Cinput)
b(input)

Or overtay?

1,%w overlay?
Vc\b(test)
1s\c\blargs)m(input)
b(input)

Or overlay3

1,8w overlay3
\c\b(Cargs)+1,%d
1,8/ .%x%//

Or overtltayé

13w overlayé
Vc\b(4col)

\f

b(test)

$a

b(file)

1s/° (/1 {/

q

\f

b(args)

1s/\c¢

GEOINDEX

APPENDIX C 75

/1

b0

ecr overlay(1
b(file)

r geofmt,runout
Pa{\f

b0

\b(4col)

2 3 4)

SUBROUTINE NAME: GEOFMT3.QEDX

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program: geofmt3.qedx formats
geofmt.runout into four files acceptable for use by the
OVERLAY command to create a columnized output
segment.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: qx geofmt3 &1

Arguments: &1—Passed from the exec__com, geofmt.-
ec, and contains the page length (84 or 140)

Subroutines called: None

Common data referenced: None

Input files: geofmt.runout

Output files: overlay1, overlay2, overlay3, overlay4

b(loop)

%a

\c\b(test)
1,\Vc\b(argsd)m(input)
b(input)

Or overlay?

13w overlay?
\c\b(test)
1,\c\b(args)m(input)
b(input)

Or overlay2

1,3w overlay?
\c\b(test)
1s\c\blargs)m(input)
b(input)

Or overlay3

123w overlay3
\c\b(test)
1,\c\ovlargs)m(input)
b(input)

Or overlayé

1,3w overlayé
\c\b(loop)

\f

Arrays used: None

Called by: Executed by geofmt.ec

Error checking and reporting: Located in geofmt.ec

Constants: None

Program logic:

1. The initialization routine creates four segments:
overlay1 to overlay4. A segment, geofmt.runout,
is read into buffer, file, and a special character {, a
brace, which is made by depressing the shift key
and left bracket key simultaneously, is appended as
an EOF indicator.

2. The loop macro moves a predetermined number of
lines (page length argument used in geofmt.ec)
first to overlay1, overlay2, and so forth, until the
end of file indicator is read.

3. Write the four output segments.

4. Quit the text editor.

76

b(test)

$a

b(file)
1s/°{/{/

q

\f

bCargs)

1s/\c¢

/7

b0

ecr overlay(1 2 3 4)
b(file)

r jeofmt.runout
$al{\f

b0

\b(loop)

GEOINDEX

SUBROUTINE NAME: GEOFMTA.QEDX

Authors: Kevin Laurent and Pearl Porter

Purpose of the program: geofmta.qedx, an edit routine,
creates a RUNOFF segment using the file geofmt.-
data, which was created during the execution of
geofmt.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: qx geofmta &1 &2

Arguments:

&1 -1t contains the page length (usually 84 or 140) and
was passed from geofmt.ec.

&2-1t contains the number of lines needed at the
bottom of the page to type a complete reference and
was passed from geofmt.ec.

Subroutines called: None

Common data referenced: None

Input files: geofmt.data

Output files: geofmt.runoft

Arrays used: None

Called by: geofmt.ec

Error checking and reporting: Located in geofmt.ec
Constants: None

Program logic:

1. This gedx routine is executed if the third argument

b(main)
$a
b(file)
Tm(input)
b0

$a

~un 11

.Ne \c\b(need)

© o

of geofmt.ec is nbipp. It is very similar to
geofmt.qedx, except the .UN and .IN commands
for RUNOFF were increased to allow for
proportional-space printing. The line length was in-
creased from 30 to 42.

The two arguments used when executing geofmt.ec
are read into a buffer called args, and the first
argument (which is the page length) is moved to a
buffer called /ines. The second argument (number
of lines needed at the bottom of the page for prin-
ting a complete reference) is moved to a buffer call-
ed need. These two arguments are used with .PL
and .NE respectively as RUNOFF commands.

The initialization routine puts RUNOFF commands
into buffer 0.

Segment geofmt.data is read into a buffer called
file.

A special character {, a brace, which is made by
depressing the shift key and left bracket key
simultaneously, is appended to the end of
geofmt.data as an end-of-file indicator.

The RUNOFF commands, and one line of data at a
time is moved a from buffer file to buffer 0.

Step 6 is repeated until the special end-of-file in-
dicator is detected, at which time it is deleted.

Write geofmt.runoff.

Exit from text editor.

APPENDIX C 7

Vc\b(input)
\c\f

s/{/7{/

d

w geofmt.runoff

q

\f

b(loop)

$a
\c\b(main)
Vc\b(loop)
\f

b(args)
Tm(lines)
im(need)
b(lines)
1s/\c

//

b(need)
1s/\c

//

b0

$a

Pl \b(lines)
LU 42

.ma {

.Na

.in 11

\f

b(file)

r geofmt.data
sa{\f

b0
\b{(loop)

SUBROUTINE NAME: EMBED_TABS

Awuthor: Kevin Laurent

Purpose of the program: embed__tabs, a PL/1 program,
embeds tab commands between the columns of the file
geofmt.columns to produce a columnar proportional
spaced printout.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: embed__tabs &1

Arguments: &1 -1t contains the page length (usually 84
or 140) and is passed from geofmt.ec.

Subroutines called: None

Common data referenced: None

Input files: overlay1, overlay2, overlay3, overlay4

Output files: geofmt.columns

Arrays used: None

Called by: None

Error checking and reporting: If an error occurs the

error code is passed to the command processor, and a
Multics system message is printed.

Constants: None

Program logic:

1. The program asks for the number of columns and the
column width.

2. Tab positions are calculated depending on the column
width given by the user.

3. The program writes a SET command to geofmt.col-
umns to be used by the NBI. Left margin is set to
1; top margin is set to 0; a code, J-7, is passed that
specifies proportional spaced printing; line length
is set to 132; page length and text length are set ac-
cording to the first argument given when ex-
ecuting geofmt.ec.

4. The four overlay segments are concatenated and
written to geofmt.columns.

5. If an entire line is blank, only the first tab will be
written, in order to act as a line feed.

6. Files are closed and detached.

78 GEOINDEX
embed_tabs: et: proc (page_len); /* embed
\ctab commands in nbi proportional spaced printer stream */

/* Written by KLaurent,USGS,CCD,BSAP 6/27/78 */

/* The embed_tabs program accepts input from the overlay files and ad
\cds
the embedded commands between line segments to tab the columns. */

dcl page_len char (%*); /* page 1
\cength parameter */
dcl 1ioa_S$ioa_switch entry options (variable); /* for wr

\citing our concatenated lines to geofmt.columns */

dcl iox_S$attach_name entry (char (*), ptr, char (*), ptr, fixed bin
\c(35)); /* for all attachments */

dcl iox_S$open entry (ptr, fixed bin, bit (1) aligned, fixed bin (35)
\e)s

dcl iox_$get_line entry (ptr, ptr, fixed bin (21), fixed bin (21), f
\cixed bin (35));

dcl 1iox_Sclose entry (ptr, fixed bin (35));

dcl 1iox_$detach_iocb entry (ptr, fixed bin (35));

dcl com_err_ entry options (variable); /* com_er
\cr_ will interpret all the errors and print a standard message */
dcl error_table_S$end_of_info external fixed bin (35); /* use fo
\cr end of file check */

dcl command_query_ entry options (variable); /* use to
\c ask for ncols and col_width */

dcl continue_to_signal_ entry (fixed bin (35)); /* use to

\c pass along the error code to the command processor */

dcl 1 query_info, /* for pa
\cssing info to command_query_ */
2 vers fixed bin init (2), /* versio

\cn of structure */
2 yes_or_no_sw bit (1) unal init ("0"b),
2 suppress_name bit (1) unal init ("0"b),

2 status_code fixed bin (35) init (0), /* not us
\ced here */

2 query_code fixed bin (35) init (0); /* not us
\ced here */
dcl answer char (256) var; /* answer
\c returned from command_query_ */
dcl query_info_ptr pointer; /* used £
\cor command_query_ */
dcl (ncols, col_width) fixed bin; /* number

\c of columns; column width */
/* Retrieve number of columns and column width */

query_info_ptr = addr (query_info);

call command_query_ (query_info_ptr, answer, "embed_tabs",
\c"Enter number of columns:");

ncols = answer; /* conver
\ct to internal format */

APPENDIX C

call command quer (query info ptr, answer, "embed tabs",
y
\c"Enter column width:"); - - - -

col_width = answer;

begin;
dcl 1line (ncols) char (256) var 3 /* array
\cfor line segments to be concatenated */
del 1line_str_var char (256) var init (""); /* varyin
\cg length string */
del 1line_str char (79) init (""); /* concat
\cenated string */
del 1line_buff char (50) init (" "); /* buffer

\c for input */

del chars fixed bin (21) init (0);

dcl (sub, temp) pic"999";

del stmt_no pic"9999"; /* statem
\cent number */

del 1 fixed bin;

dcl code fixed bin (35); /* standa
\crd error code */

dcl (ov_ptr (4), tabout_ptr) pointer; /* pointe
\crs to 1o control blocks */

dcl buff ptr pointer; /* pointe

\cr to input buffer */

dcl 1 tab_format_array,
2 tab (ncols+l) char (9) var;

/* Initialization */

buff_ptr = addr (line buff); /* store
\caddress of input buffer in buffer pointer */

line (*) = ""; /* initia
\clize lines to blanks */

do sub =1 to ncols+l; /* calcul

\cate tab positions */
temp = (sub-1)* (col_width-9)+1;
tab (sub) = "#(ta," || temp || ")";
end;
call iox_S$attach_name ("ovl", ov_ptr (1), "vfile_ over
\clayl”, null (), code);
call iox_S$attach_name ("ov2", ov_ptr (2), "vfile_ over
\clay2", null (), code);
call iox_S$attach_name ("ov3", ov_ptr (3), "vfile_ over
\clay3", null (), code);
call iox_S$attach_name ("ov4"™, ov_ptr (4), "vfile_ over
\elay4", null (), code);
call iox_S$attach_name ("tabout", tabout_ptr, "vfile_ g
\ceofmt.columns”, null (), code);

do i = 1 to ncols;
call iox_$open (ov_ptr (i), 1, "O0"b, code); /* op
\cen overlay segs */
end;

80 GEOINDEX

call iox_S$open (tabout_ptr, 2, "0"b, code);
call ioa_$ioa_switch (tabout_ptr, "F 0001 #(se ml,tO0,]
\¢c-1,1132,p"a,x"a)", page_len, page_len, code); /* set margins & prop
\c print */
do stmt_no = 2 to 9999; /* do unt
\cil endfile */
do i = 1 to ncols;
call iox_$get_line (ov_ptr (i), buff_ptr, 50
\¢, chars, code);
if ((code = error_table_S$end_of_info) & (i =
\c 1)) then goto endup;
line (i) = substr (line_buff, 1, max (chars-
\el, 0)); /* move input line to hold area */

end;
if ((line (1) = "") & (line (2) = "") & (line (3)
\e = ") & (line (4) = ""))
then do;
line_str _var = "F " || stmt_no []| " " || tab
\e (1)
line_str = line_str_var; /* move v

\carying length string to non-varying string */
call ioa_$ioa_switch (tabout_ptr, line_str,
\ccode);

end;
else do;
do i = 1 to ncols;
if 1 =1
then line_str_var = "F " || stmt_no ||
\e" " || tab (i) || line (i) || "#(EX)";
else if 1 = ncols
then line_str_var = "F " || stmt_no ||
\e"+" |] tab (i) || line (i);
else line_str_var = "F " || stmt_no ||
\e"+" [] tab (1) || line (i) || "#(EX)";
line_str = line_str_var; /* move v

\carying length string to non_varying string */
call ioa_S$ioa_switch (tabout_ptr, line_
\estr, code);

end;

end;

end;
endup:

do i = 1 to ncols;

call iox_$close (ov_ptr (i), code);

call iox_Sdetach_iocb (ov_ptr (i), code);
end;

call iox_Sclose (tabout_ptr, code);
call iox_S$detach_iocb (tabout_ptr, code);
end; /* end be
\cgin block */

end embed_tabs;

APPENDIX C 81

SUBROUTINE NAME: TO-NBIPP

Awuthor: NBI personnel. Modified for use with geofmt
programs by Pearl Porter.

Purpose of the program: to-nbiPP allows the user to
record segments from Multics on the NBI diskette
when using the NBI System II as a terminal.

Data, base: Geoindex
Comgputer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: to-nbiPP
Arguments: None

Subroutines called: None
Common data referenced: None
Input files: geofmt.columns
Output files: None

Arrays used: None

Called by: None

Error checking and reporting: Provisions exist for
checking and reporting erroneous names and aborting
program.

Constants: None

to-nbiPP.fortran

(10/4/77)

00600

LINES
dimension line(79)
character file_name*32
double precision ec
equivalence(istat,ec)
c REQUEST AND ACCESS DESIRED

(¢]

13 print
readl7, file _name

17 format (v)
if(file_name.eq."q") go to 5

name = to-nibPP:SPECIAL TO SEND IN DISKETTE FORMAT

"FILE" TO BE SENT.
FOR ERRONEOUS NAMES AND ABORTING PROGRAM).
,"Multics file name to be sent (or q to quit):

Program logic:
1. The user is prompted with the message:
MULTICS FILE NAME TO BE SENT (OR Q
TO QUIT):
The user types the file name, which can be a
maximum of 32 characters.

At the end of transmission, the user types: q.

If file_name = q, go to 13.

. Attach and open file10.

If istat (which is the error code) is not equal to 0, go
to 1.

5. Read a line from the Multics segment into a format
(79al).

At end, go to step 10.

Write the line using a format (1h,79a1)

Call ioa_$nal(*?”). This prints a ? on the screen.

Read this character into iack.

If jack = 11, go to 5. Otherwise, go to 6. The above
loop, steps 5 through 9, sends each line and inputs
each ACK.

10. The next loop holds computer in program so it does
not receive ACKs while it is in ready, and NBI still
receives.

11. Read a value into end, using format (al).

12. If value of end is not equal to g, go to 11.

13. Close and detach file10 and stop the program.

Ll

© XN

NBI-MULTICS HANDSHAKE PROGRAM FOR RECEIVING TO NBI‘S DISK.

- AUTOMATIC

(PROVISIONS EXIST

call io ("attach","filelO","vfile_",file_name)

call 1o ("open","filelO","si")
if(istat.ne.0) go to 13

call ioa_$nnl ("?7")

read(5,20) iack

c LOOP IN PROGRAM WHICH SENDS EACH LINE AND INPUTS EACH ACK

(OR NAK).
read (10,10,end=3) line
0 format (79al)

— -

82

2 write(6,11) line
11 format(lh,79al)
call ioa_$nnl ("?2")
read (5,20) iack
format (i2)
if(iack.eq.11) go to 1
go to 2
EXIT PROGRAM:
RECEIVE
THEN IT CLOSES FILES.
read(5,30) end
0 format (al)
if (end.ne."q") go to 3
call io ("close","filelO")
call io ("detach","filelO")
stop
end

20

wWwn on

w

GEOINDEX

INPUT LOOP HOLDS COMPUTER IN PROGRAM SO IT DOES NOT
"ACKS" WHILE IT IS IN READY AND NBI STILL RECEIVES.

PROGRAM NAME: TO-NBID

Awuthor: to-nbiD was written by NBI personnel in Oc-
tober 1977. It is written in Fortran and is compiled on
the Honeywell Series 60 computer.

Purpose of the program: to-nbiD allows the user to
record segments from Multics on the NBI diskette
when using the NBI System II as a terminal.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)
Operating system: Multics

Calling sequence: to-nbiD

Arguments: None

Subroutines called: None

Common data referenced: None

Input files: Name of file to be transferred
Output files: Name of file transferred
Arrays used: None

Called by: None

Error checking and reporting: Provisions exist for
detecting erroneous name and halting program.

Constants: None

to-nbiD.fortran

(10/4/77)
name =
LINES
dimension 1line(133)

N0 nN0onon

Program logic:

1.

& W

o

© 0 ®

10.

11.
12.
13.

The user is prompted with the message:
MULTICS FILE NAME TO BE SENT (OR Q
TO QUIT):

The user types the file name, which can be as
many as 32 characters long.

At the end of transmission, the user types: q.

If file_name = q, go to 13.

Attach and open file10.

If istat (which is the error code) is not equal to 0, go
to 1.

Read a line from the Multics segment into a format
(133al). At end go to step 10.

Write the line using a format (1h,133a1)

Call ioa_$nal(“?”). This prints a ? on the screen.

Read this character into jack.

If iack = 11 go to 5.

Otherwise, go to 6. The above loop, steps 5 through
9, sends each line and inputs each ACK.

The next loop holds computer in program so it does
not receive ACKs while it is in ready and NBI still
receives.

Read end using format (al).

If end is not equal to g, go to 11.

Close and detach file10 and stop the program.

NBI-MULTICS HANDSHAKE PROGRAM FOR RECEIVING TO NBI‘S DISK.

to-nbiD:SPECIAL TO SEND IN DISKETTE FORMAT - AUTOMATIC

APPENDIX C

character file_name*32
double precision ec
equivalence(istat,ec)

c REQUEST AND ACCESS DESIRED

0

print
readl7, file_name

format (v)
if(file_name.eq."q") go to 5

17

"FILE" TO BE SENT.
FOR ERRONEOUS NAMES AND ABORTING PROGRAM).
,"Multics file name to be sent (or q to quit):

83

(PROVISIONS EXIST

call io ("attach","filelO","vfile ",file_name)

call io ("open","filelO","si")
if(istat.ne.0) go to 13

call ioa_$nnl ("?7")

read(5,20) iack

c LOOP IN PROGRAM WHICH SENDS EACH LINE AND INPUTS EACH ACK

c (OR NAK).
1 read (10,10,end=3) line
10 format(133al)
2 write(6,11) line
11 format(lh,133al)
call ioa_$nnl ("?2")
read (5,20) iack
format (i2)
if (iack.eq.11) go to 1
go to 2
EXIT PROGRAM:
RECEIVE
THEN IT CLOSES FILES.
read(5,30) end
0 format(al)
if (end.ne."q")

20

Wwnonoon

go to 3

5 call io ("close","filelO")
call io ("detach","filelO")
stop
end

INPUT LOOP HOLDS COMPUTER IN PROGRAM SO IT DOES NOT
"ACKS" WHILE IT IS IN READY AND NBI STILL RECEIVES.

PROGRAM NAME: CONCAT

Author: Harold Johnson

Purpose of the program: concat prepares reference files
for input to the GRASP system. Each set of records
from one reference are concatenated in the format
assigned by matrix into one long vector.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: concat

Arguments: None

Subroutines called: ftnumber, main_concat

Common data referenced: None

Input files:
matrix used onunit 22 (file22)
refNM used on unit 30 (fi/le30)

Output files:
temp77 used on unit 77 (file77)
strgNM used on unit 40 (file40)

Arrays used: None

Called by: None

Error checking and reporting: None

Constants: None

Program logic:

1. file22 is attached to matrix, file77 is attached to
a temporary file named temp77, and the user is
asked for the State id number for the reference file
being processed. file30 is attached to this State’s
reference file, and file40 is attached to a new out-
put file named strgNM, where NM is the State
FIPS code.

2. main_concat is called where the main work is pro-
cessed.

3. All files are closed.

84 GEOINDEX

C % %k K ok k ok Kk CONCAT * ok ok ok ok ok R
character*3?2 filename
character*l iblank
characterx4 file, mode
character*?2 state
character*6 outfile
dimension iout(1211),ifirst(46)sichar(46),item(46,10)sia8te(5)
data iblank/" "/
UPDATED AS OF DEC 27, 1976 He JOHNSON
Converted to Multics February 21, 1977 H Johnson
Modified to allow item 87 to indicate extra records, March 3, 1977
H Johnson,
WARNING: ANY CHANGE IN nrec MUST BE MADE BY HAND IN THE modify

THE PURPOSE OF THIS PROGRAM IS TO PREPARE REFERENCE FILES

FOR INPUT TO THE '"CREAT" PROGRAM OF "IRIS", A REFERENCE FILE
IS READ FOR EACH IF, ISF, AND A LONG VECTOR RECORD IS CREATED
WITH REFERENCE ENTRIES LOCATED IN PRE-ASSIGNED POSITIONS

REQUIRED INPUT FILES:
30 = REFERENCE FILE = "refNM"
= MATRIX FILE DESCRIBING THE ASSIGNED LOCATIONS.
05 = INPUT TO TELL REFERENCE FILE NAME AND NUMBER OF LINES OF

EXPLANATORY DATA TO BE SKIPPED .

|

|

1

|

|

|

|

|

i

I 22
|

|

|

1 REQUIRED OUTPUT FILES:

| = WORK FILE

i = "strgNM" IS THE MAIN QUTPUT FILE.
|

|

i

. - P - A B - - W P D WD M WS W WD D - - -

THIS PROGRAM CONCATENATES THE DIFFERENT "IF" FILES
FROM THE REF AND REFU FILES INTO LONG FILES FOR INPUT
TO THE CREATE PROGRAM OF GRASP.

MAIN PROGRAM

O OO0 000000 0000000000000 0000000nO0O0oO0

call o ("attach","file22","vfile_","matrix","-append","~ssf")

call 10 ("open","filel2","si")

call 10 ("attach","file?7","vfile_ ", "temp?77")

catl 10 ("open","file?7","si0")

write(6,890)
890 format(" ENTER THE 2-DIGIT CODE FOR THE STATE BEING PROCESSED™)
read(5,391) state
891 format(a?2)
encode(outfile,893)statesriblank
8935 format("ref",alsal)
mode = "si"
call ftnumber (30s,0utfilermode)

— e e G —— e G CEN R gmm G T S e - G G-

APPENDIX C 85

encode(outfile,895)state
895 format("strg",ald)
mode = "so"
call ftnumber(40,0utfilesrsmode)

c
¢ MATRIX IS THE INPUT MATRIX WAICH DESCRIBES WHERE THE INPUT
¢ RECORDS ARE TO 8E LOCATED AMONG THE POSITIONS IN THE OUTPUT
¢ FILE TEMPO1 WHICH IS SET UP FOR GRASP "CREATE"INPUT.
c
¢ IT IS ALSO REQUIRED TO EQUATE 30 TO THE INPUT REFU OR REF
¢ FILE.
¢ EQUATE 77 TO A TEMPORARY FILE USED ONLY IN THIS PROGRAM,
¢ THE OUPUT FILE IS CALLED TEMPO1
c
nrec=1211
iwide=10
1dim=46
¢ NREC IS THE LENGTH OF THE OUTPUT FILES IN TEMPO1, OR 40,
¢ IWIDE IS THE NUMBER OF POSSIBLE PLATES ON THE SAME OUTLINE.
¢ IDIM IS THE NUMBER OF DIFFERENT KINDS OF FILES IN REF OR REFU.
c
nskip = 0
call main_concat(nrecsidimsiwidesioutrifirstoichar,item,nskip)
¢ THIS READS THE REFU OR REF FILE AND SETS UP, FOR EACH "If"™
¢ A VECTOR IOUT CONTAINING DATA FROM THE REF FILE IN POSITIONS
c DESCRIBED BY THE MATRIX. IT THEN WRITES THESE VECTORS O0OUT
¢ TO FILE 40 WHOSE RECORD LENGTH IS NREC.
endfile 40
c
¢ THIS ROUTINE ADDS A BLANK RECORD TO THE END OF STRGnm
¢ THIS IS NECESSARY BECAUSE OF A PECULIARITY IN MULTICS.
c
call o ("close","file22™)
call o ("close”","filest0'")
call 10 ("close","tile30")
call io("detach","file22")
call 1o ("detach","files40")
call 10 ("detach","file30")
c
catl io0 ("close","file?7")
call io ("detach","file?7?7")
stop
c
end
SUBROUTINE NAME: MAIN_CONCAT wryte__concat to output these vectors to the strgNM
file. Each time it checks for repeated data using
Awuthor: Harold Johnson ndflg, the flag for ITEM 87.

Purpose of the program: main_concat calls con- | Data base: Geoindex
trl_concat, which sets up the control vectors and | Computer: Honeywell Series 60 (level 68)
matrices that determine positioning of data in output | Operating system: Multics
vectors. It repeatedly calls vector_concat to write | Calling sequence: call main_concat (nrec,idim,iwide,-
this information into long vectors in memory. It calls iout,ifirst,ichar,item)

86

Arguments:

nrec—The length of the output vectors

idim —The number of different kinds of items—that is,
the number of rows in matrix

iwide—The maximum number of different items
associated with a single row of matrix

iout—The output vector of length nrec

ifirst—The control vector of length idim whose kth en-
try is the starting position in jout of data associated
with the name in the kth row of matrix

ichar—The control vector of length idim whose kth
entry is the number of allowable characters for data
associated with the name of the kth row of matrix

item —The control matrix of dimension idim by 10 of

item numbers occurring in matrix

Subroutines called: contrl_concat, vector_concat,

wryte__concat, modify_.concat

Common data referenced: None

Imput files: None

Output files: None -
Arrays used: None

GEOINDEX

Called by: concat
Error checking and reporting: The user is informed:

YOU GOT TO MAIN

Number of records written to strgNM is counted, and
the user is informed every 25th record because, during
the long interactive running of this program, the user
may become anxious about loops and long CPU time.

Constants: None
Program logic:
1.

2.

3.
4. When an ITEM 87 is found, indicating repeated data,

Subroutine contrl_concat is called to set up the con-
trol matrices idim, ichar, and item.

Subroutine vector__concat is called to set up the out-
put vector for one reference.

wryte__concat is called to output that vector.

modify__concat is called to modify the previous
output vector according to the data that come after
ITEM 87.

The count of output vectors is incremented and a
message written each time the count equals a
multiple of 25.

subroutine main_concat(nrec,idim,iwide,iout,ifirst,ichar,

\citem,

&

[
(o
c

9100

Cc

[2o 2 o I o I ¢ N o BN o]

c
1

[¢]

0000000

nskip)

subroutine used in main program "concat"

updated as of dec. 27, 1976 h.
converted to multics february 27,

johnson
1977 h johnson

dimension iout(nrec),ifirst(idim),ichar(idim),ifile(60)

dimension item(idim,10)
write(6,9100)

format (" you got to main")

call contrl_concat(idim,ifirst,ichar,item)
this sets up the control matrix to run this subroutine.
item(line,kolumn) is the item number in refu.
ifirst(line) is the starting position in the output file

for the itemn.

ichar(line) is the number of positions for item(line,kolumn)

in the outfile.

kount=1

call vector_concat(nrec,idim,iout,ndflg,iwide,ichar,ifirst,item,kf
\clg)

this reads through one "if" file in refu.
it sets up a vector iout(nrec) which is to be the
it writes the other cards

1 into a file 77 which will

in kolumn=1,
first output for this "if".
having item with kolumn .gt.

be read repeatedly to produce new vectors iout.
the number of cards written to 77.

file 30 is reached.

for those items

kflg =

ndflag = 1] when end of

APPENDIX C

87

call wryte_concat(iout,nrec,item,idim,iwide,kflg,

ichar,ifirst)

file, 40.
=2 to change iout,
to kolumn=2,3,...

0nN0on0onnNe

if(ndflg .ne. -1) go to §

this writes the 1out received from vector to the output
it then reads through file 77 using the kolumn
writes this new iout vector,

then goes

call modify_concat(iout,nrec,item,idim,iwide,kflg,ichar,ifirst,ndfl

\cg)

this routine reads throught records which follow item = 87 until

the next item =

87 is encountered.

it modifies iout only in

those records which it finds in file 30 between these two items 87

it senses a new "if".

continue
kount=kount+l
1if(25*(kount/25) .lt.
write(6,9110)kount

9110

10 if(ndflg .eq. l)return
go to 1

c
end

c
c
c
c
¢ and then writes the resulting vector and proceeds to modify until
c
c
c
5

kount) go to 10

format (" you wrote the ",i5,"th vector to the strg file")

SUBROUTINE NAME: ALTER_CONCAT

Author: Harold Johnson

Purpose of the program: alter_concat modifies the out-
put vector when more than one item occurs associated
with the same name classification. Those data have
been written to file77, and alter_concat processes
them.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call alter__concat (iout,nrec,item,idim,-
kolumn, mstop,ichar,ifirst)

Arguments:
iout, nrec, item, idim, ichar, ifirst—See main_con-

cat.
kolumn—An assigned column of item, which is to
determine what data will be used to modify iout

Subroutines called: locate__concat

Common data referenced: None

Input files: None

Output files: None

Arrays used: iout(nrec), ichar(idim), ifirs¥idim),
ifile(60)

Called by: wryte__concat

Error checking and reporting: None

Constants: None

Program logic:

1. mstop is set to 0.

2. file77 is read, and id is compared with those in col-

umn number kolumn in item.

If a match is found, mstop is set to 1, iout is modified
according to the data in this record of file77, and
the reading is repeated.

3. If no match is found, the next record in file77 is read.

C *xwkkix SUBROUTINE ALTER_CONCAT *Axhikkx
subroutine alter_concat(ioutsenrecsitemosidimskolumn,mstop,

ichars,ifirst)

¢ SUBROUTINE USED IN MAIN PROGRAM "CONCAT"

¢ UPDATED AS OF DEC. 27, 1976 He
¢ Converted to Multics FEBRUARY 18,

JOHNSON

1977 H. Johnson

88 GEOINDEX

c
dimension iout(nrec),item(idim,10),ifile(6U),1ff(3)
dimension ichar(idim),ifirst(idim)
mstop = U

1 read(77,900,enad=100) istate,(iff(j),j=1,3),itm,

(ifile(k),k=1,60)

900 format(i2,3a1,i2,60a1)

c
call locate_concat(itmsidimsitemslinerskolumn)
if(line .gt. 0) go to 10
go to 1

c

10 mstop=1
no=ichar(line)
do 20 j=1.,no0
iout(ifirst(line)+j-1)=ifile(j)

20 continue
go to 1

c

100 rewind 77

return
end

C *kukkwk END ALTER_CONCAT Axkhrnwn

SUBROUTINE NAME: LOCATE_CONCAT

Awuthor: Harold Johnson

Purpose of the program: locate_concat searches the
rows of item under an assigned column to match a
given item number.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call locate_concat (itm,idim,item,-
line,kolumn)

Arguments:
idim, item —See main_concat.
itm— A given item number that is to be found in item
kolumn-A given column number whose column in

item is to be searched

C **xkxkxk SUBROUTINE LOCATE_CONCAT

line —The line number in item where itm is found in
the kolumnth column
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: item (idim,10)
Called by: vector_concat, alter_concat, modify_-
concat
Error checking and reporting: None
Constants: None
Program logic:
1. line is set at 0.
2. The column number kolumn in array item is searched
for a match with itm.
3. If found, that column is equated to line.

ok Kk kok kok

subroutine locate_concat(itmsidimsitemslinerkolumn)

UPDATED AS OF DeEC. 27, 1976 He
converted to Multics February 21,

O o000

dimension item(idim,10)
line=0
do 16

ifCitm

j=1,iqim
.eQ-

SUBROUTINE USED IN MAIN PROGRAM "CONCAT"
JOHNSON
1977 H.

Johnson

item(jo,kolumn)) go to 20

APPENDIX C

10 continue
return

20 line=j
return
end

C **xkxxx END LOCATE_CONCAT *waaans

89

SUBROUTINE NAME: MODIFY__CONCAT

Author: Harold Johnson

Purpose of the program: modify__concat reads through
the records in a reference file that lie between two suc-
cessive ITEM 87s or between 87 and the next
reference number and then modifies the previous iout
vector according to those intermediate records.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)

Operating system: Multics

Calling sequence: call modify__concat (iout,nrec,item,-
idim,iwide,kflg,ichar,ifirst,ndflg)

Argquments:
iout, nrec, item, idim, iwide, ichar, ifirst—See

main__concat.

kflg, ndflg, iout— See vector__concat.

Subroutines called: wryte__concat, locate__concat

Common data referenced: None

C **xkwxkx SUBROUTINE MODIFY_CONCAT

Input files: None
Output files: None
Arrays used: newout(1211), ifirst(idim), iout(nrec)
Called by: main__concat
Error checking and reporting: None
Constants: None
Program logic:
1. A vector newout is made identical to the input vector
iout.
2. A record from the reference file is read.
If this represents a new reference file as indicated by
a new Jif number, the input reference file is
backspaced, the newout vector is written, and pro-
gram control returns.
If the record is a new ITEM 87, newout is written
and step 1 is repeated.
If the record is neither of these, the record data is
entered into newout, and the next record is read
and step 2 is repeated.

Ahkhkkhkkk

subroutine modify_concat(ioutsnrecritemsidimesiwiderkflgerichar,
ifirst,naflg)

in the new version of concat., updated to allow

item = 87 until
iout only in those records
It then writes the resulting

"if" it returns.

iout (nrecl)esifirst(idim)srichar(idim),ifile(60)

c
C Subroutine used
¢ extra i1tems flagged by item no. 37.
¢ 4 Johnsons Marcn 3, 1977.
c
c This subroutine read through records which follow
¢ the next item 87 is noted. It modifies
¢ which it finds between items 87,
¢ vector and continues., If it senses a new
c
dimension
dimension item(idim,10),newout(1211)
c
ndflg = 0
¢ first, make newout the same as i1out.

5 do 7)=lsnrec
newout(j) = dout(j)

7 continue

C

the original vector..

10 read(30,910,end=1001)istater(newout(j),j=2+,4),itms(ifile(k),k=1,60)

910 format(i2,3al1,12,060Ual1)

90 GEOINDEX

c
¢ check to see if a new "if" has been encountered, if it has, backspace
¢ and return,
c
do 20)=2,4

if(newout(j) .ne. iout(j)) go to 1000
20 continue
c
¢ Check to see if a new item 87 has been encountered. If it has,
¢ write the newout vector and repeat the process.

c
if(itm .ne. 87) go to 100
kflg = 0
call wryte_concat(newoutsnrecoritemsidimsiwiderkflgsricharsifirst)
go to 5
c

100 continue
¢ Now locate the Line in matrix which this last-read item occurs in,
c
do 110 kolumn = 1,10
call locate_concat(itmsidimsitemslineskolumn)
if{line .ne. 0) go to 120
110 continue
c
120 continue
¢ Modify newout according to ifile in the positions indicated by
¢ ichar(line) and ifirst(line).
c
no = icnar(line)
dJo 130 3 = 1.,n0
130 newout(ifirst(line) + j - 1) = ifile(j)
c
Jo to 14
c
1000 backspace 3U
do 1020 j = 2,6
1020 newout(j) = jout())
call wryte_concat{(newoutsnrecritemsidimosiwiderskflgricharsifirst)
return
c
1001 naflg=1
return
end
C *xxkkkx END MODIFY_CONCAT Axhhkax

SUBROUTINE NAME: VECTOR_CONCAT Operating system: Multics
Author: Harold Johnson Calling sequence: call vector_concat (nrec,idim,iout,-

Purpose of the program.: vector_concat sets up the out- ndflg,iwide,ichar,ifirst,item, kflg)

put vector for one reference file. When ITEM 87 is | Arguments: . . » .
found, it writes the remaining records for the nrec, idim, iout, iwide, ichar, ifirst, item—See

reference to a temporary holding file77. main_concat.
Data base: Geoindex ndflag—Indicates by 1 that the end of the input
Computer: Honeywell Series 60 (level 68) reference has been reached

APPENDIX C

kflg—The number of records from the reference file
that vector__concat temporarily stored in file77

Subroutines called: locate__concat

Common data referenced: None

Input files: refNM

Output files: None

Arrays wused: iout(nrec), ifile(60), ichar(idim),
ifirst(idim)

Called by: main__concat

Error checking and reporting: None

Constants: None

Program logic:

1. The output vector iout is first blanked out.

2. The first reference record for the current reference

kkkaktk SUBROUTINE VECTOR_CONCAT =«

91

file is read to set up the reference id and the State
FIPS code in jout.

3. The rest of the records are read and the row and col-
umn of the matrix file is determined where the cor-
responding item is located. This is done by calling
locate__concat.

4. Data in each record is inserted into iout using the
information determined in 3.

5. When ITEM 87 has been read, control is returned to
main_concat.

6. Whenever items are found that occur in columns of
item other than the first, those records are written
to a temporary holding file77. wryte__concat pro-
cesses file77 to upda<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>