
GEOLOGICAL SURVEY PROFESSIONAL PAPER 1172

Geoindex
By PATRICIA FULTON and HAROLD JOHNSON,
assisted by WILLARD L. MClNTOSH, MARGARET EISTER, LAWRENCE BALCERAK,
DONALD HANSON, RICHARD THOENSEN, and PEARL PORTER

GEOLOGICAL SURVEY PROFESSIONAL PAPER 1172

Data base and data-base management system
for the index to geologic maps

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1982

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

Library of Congress catalog-card No. 82-600504

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402

CONTENTS

Abstract
Introduction
Acknowledgments
Data-base management system

Purpose

Text data
Map data

Storage and retrieval system
Data base

Text data
Map data

System specifications
Status of the system

References cited

Appendix A. System flowchart
Appendix B. Operational instructions

How to run the following:
comtape.ec
chkref
geofmt.ec
to-nbiD
concat
list tape contents

Listing 1. Example of list tape contents
tapedwg
dwgdisk

Listing 2. Example of rdtape.tcl
seldisk
dwgtape
versatec.ec
index versatec

Listing 3. Parameter cards for a Versatec plot
sort.vers.coor.ee
master
state optima
addrad
covert.ee
er.ec
inplot.ee
pn!6
bigsta
usmerg.ec
state to tape
pull off
backup
restore
verplot

Page

1

1

1

1

1

3
4
4
6
7
7

10
10
10
10
10
11
11
11
9°.

25
29

29
29
30
31
32
32
33
32
34
34
35
36
36
37
37
38
38
38
39
39
39
40
40
41
42
42
42
43
44
44

Appendix B. Operational instructions -Continued
How to run the following -Continued

Listing 4. Formation of the command file for
verplot and an example command file

Listing 5. Commands for verplot
end plot
leerend
Unwind
outline
pattern
plot
reorg
scale
symbol

pin90
Listing 6. The 48 conterminous States and their

corresponding two-digit numbers that are
used for plotting individual States as used in
file stat90

Subroutine name:
rfskip chkref
/*] AQi"i f»Vllf T*PT

blankcheck_chkref
typecheck chkref

Exec com name: geofmt.ec
Subroutine name:

geofmt

geofmtS.qedx
geofmta.qedx

to nbiPP

Subroutine name:
main_concat

locate concat
modify concat

contrl_concat
File name: matrix

Page

45
48
48
48
48
48
48
49
49
50
50
51

CO

5?,
5?,
53

56
57
58
58
59
60
61
6?,
63

65
66
73
75
76
77
81

8?,
83

85
87
88
89
90
9?,
94
94

III

IV CONTENTS

Page
Appendixes: System specifications-Continued

Appendix C. Computer program reference-Continued
Program name:

tapedwg _______________________ 96
dwgdisk ________________________ 103
seldisk _______________________ 110
dwgtape _______________________ 118

Exec_com name: versatec.ec _____________ 125
Program name: index_versatec ____________ 126
Subroutine name:

legend _______________________ 130
rotate ________________________ 133
rdftur __________________________ 134
penchg _______________________ 135
plotli _________________________ 135
pllich ________________________ 137
pltsel ________________________ 140
ploteh ________________________ 141
shade ________________________ 143
srtdup _______________________ 144
pattern _________________________ 146

Exec_com: sort.vers.coor.ee ______________ 147
Subroutine name:

pgml.vers.exthdr __________________ 149
pgm2.vers.sequent _________________ 150
pgmS.vers.merge __________________ 150

Program name: master __________________ 152
Subroutine name:

arcntr_master ____________________ 154
weight_master ____________________ 158
adjust_master _____________________ 158
work_master _____________________ 159

Function name:
dist_master ______________________ 160
ncross_master ____________________ 161

Subroutine name:
cntest_master _____________________ 161
dm_master ______________________ 165

File name: areano ___________________ 165
Program name: state_optima _____________ 167
Subroutine name: optima _______________ 168
Exec_com name:

open_si.ec _____________________ 170
close.ec _______________________ 171

Program name: addrad __________________ 171
Subroutine name:

optima_addrad ___________________ 174
ibound_addrad ___________________ 176
decoder_addrad __________________ 177
srch20_addrad ___________________ 178
icoder_addrad ___________________ 179
srch30_addrad ___________________ 180
rconv_addrad _____________________ 181
dms __________________________ 183
read2_addrad ___________________ 183
srch40_addrad ___________________ 184
read40_addrad ___________________ 185
weight_addrad ___________________ 186
center_addrad ___________________ 187
ftnumber _______________________ 189

Exec_com name: covert.ec ________________ 190
File name: crfile _____________________ 191
Program name: setmas __________________ 192
Exec_com name:

gr.ec __________________________ 193

Page
Appendixes: System specifications-Continued

Appendix C. Computer program reference-Continued
Exec_com name-Continued

inplot.ec _____________————————— 195
Program name: pn!6 _____________———_ 196
Subroutine name:

pos ___________________________ 205
plo ___________________________ 205
plod __________________________ 206
ploc6 _________________________ 207
assoc _________________________ 209

Program name: bigsta _________———————— 210
Subroutine name:

outLbigsta ___________————————— 214
out2_bigsta _____________________ 214
bigcal_bigsta ______________————__ 215

Function name: irads_bigsta _____———————— 216
Subroutine name: prim_bigsta _________——__ 217
Function name: icards_bigsta _________—_ 218
Exec_com name: usmerg.ec _______—————_ 218
Program name: state_to_tape _________—_ 219
Subroutine name:

heading_state_to_tape _______—————_ 221
up_file_number ___________——————__ 222
sts_begin _____________________ 223

Exec_com name:
disk_to_tape_fb_retain.ec _____—————_ 225
disk_to_tape_vbs_retain.ec ___—————__ 225
list_state_tape.ec _________—————_ 225

Program name: pull_off ___________——_ 226
Subroutine name:

state_pull_off ___________________ 227
se]5arate_pull_off _________________ 228

Exec_com name:
tape_to_disk_fb_retain.ec ____________ 230
tape_to_disk_vbs_retain.ec ____————_ 230

Program name: backup ___________————__ 231
Exec_com name:

backup.ec ______________————————— 231
dump.ec ________________________ 232

Subroutine name:
backupl _______________________ 232
backup2 _______________________ 234

Program name: restore _____——————————— 235
Exec_com name: retrieve.ec _____________ 236
Program name: verplot ____________——_ 237
Subroutine name:

change_origin ____________——————__ 240
change_width _______________——_ 242
change_symbol _____________————__ 243
scaleplot _______________—————_ 245
pattern_verplot ________——————————— 246
interpret_data ___________—————_ 247
newpattern ____________———————— 248
plotoutline _____________________ 253
find_octal_number ___________———__ 258
find_number ______________—————__ 259
set_shade _____________________ 261
plotlegend _____________________ 262
plotfile _______________________ 267
pattern ___________________—_ 280

Program name: pin90 ___________———_ 281
Subroutine name:

enlrg __________________________ 286
indiv _________________________ 288

Appendixes: System specifications-Continued
Appendix C. Computer program reference-Continued

Subroutine name-Continued
min_max _______________________ 290
grid _________________________ 291
plocv _________________________ 294

CONTENTS V

Page
Appendixes: System specifications-Continued

Appendix D. Formats and notes ___——————————— 297
Format of refATM files _________________ 297
Format of reference file ____——————————— 298
Notes for entering card data ______________ 298

ILLUSTRATIONS

FIGURE 1. Sheet from the published Kentucky index, showing geologic maps whose scales range from smaller than 1:63,360 through and
including 1:250,000 ___ 2

2. Part of a sheet of bibliographic references taken from the published Kentucky Index _______________________ 5
3. List of attributes (names of data fields) that constitute a record __________________________________ 6

4, 5. Photographs of a CRT plot showing:
4. Areas of North Dakota for which geologic maps have been published at scales smaller than 1:63,360 __________ 8
5. Some areas of the United States that are covered by published geologic maps _______________________ 9

6. Plot showing all the areas for which geologic maps have been published in the States of Idaho, Nevada, and Arizona _____ 12
7, 8. Plots from the on-line data base showing areas geologically mapped in the United States:

7. After 1960 and published at a scale of 1:250,000 ______________________________________ 14
8. At scales larger than 1:250,000 __ 16

9. Partial list of text data in card image form, for reference 90, Colorado ______________________________ 18
10, 11. Map data in:

10. Cartesian coordinates for reference 90, Colorado _____________________________________ 18
11. Radians for reference 90, Colorado ___ 18

12. Complete record for reference 90, Colorado ___ 19
13. Table showing names of files in permanent storage ___ 20
14. Status map for the Geoindex, automatically generated monthly ___________________________——————— 21

CONVERSION FACTORS
Metric unit Inch-Pound equivalent

Length
millimeter (mm)
meter (m)
kilometer (km)

= 0.03937 inch (in)
= 3.28 feet (ft)
= .62 mile (mi)

Area
square meter (m2)
square kilometer (km2)
hectare (ha)

= 10.76 square feet (ft2)
= .386 square mile (mi2)
= 2.47 acres

Volume
cubic centimeter (cm3)
liter (L)
cubic meter (m3)
cubic meter
cubic hectometer (hm3]
liter
liter
liter
cubic meter
cubic meter

= 0.061 cubic inch (in3)
= 61.03 cubic inches
= 35.31 cubic feet (ft?)
= .00081 acre-foot (acre-ft)
= 810.7 acre-feet
= 2.113 pints (pt)
= 1.06 quarts (qt)
= .26 gallon (gal)
= .00026 million gallons (Mgal or

10« gal)
= 6.290 barrels (bbl) (1 bbl = 42 gal)

Weight
gram (g)
gram
metric tons (t)
metric tons

= 0.035 ounce, avoirdupois (oz avdp)
= .0022 pound, avoirdupois (Ib avdp)
= 1.102 tons, short (2,000 Ib)
rr 0.9842 ton, long (2,240 Ib)

Specific combinations
kilogram per square

centimeter (kg/ cm2)
kilogram per square

centimeter
cubic meter per second

(mVs)

_ 0.96 atmosphere (atm)

— .98 bar (0.9*869 atm)
= 35.3 cubic feet per second (ft3/s)

Metric unit

Specific
liter per second (L/s)
cubic meter per second

per square kilometer
[(m3/s)/km2]

meter per day (m/d)

meter per kilometer
(m/km)

kilometer per hour
(km/h)

meter per second (m/s)
meter squared per day

(mVd)
cubic meter per second

(m?/s)
cubic meter per minute

(m3/min)
liter per second (L/s)
liter per second per

meter [(L/s)/m]
kilometer per hour

(km/h)
meter per second (m/s)
gram per cubic

centimeter (g/cm3)
gram per square

centimeter (g/cm2)
gram per square

centimeter

Inch-Pound equivalent

combinations — Continued
= .0353 cubic foot per second
= 91.47 cubic feet per second per

square mile [(ft3/s)/mi2]

= 3.28 feet per day (hydraulic
conductivity) (ft/A)

= 5.28 feet per mile (ft/mi)

— .9113 foot per second (ft/s)

— 3.28 feet per second
= 10.764 feet squared per day (ft2/d)

(transmissivity)
= 22.826 million gallons per day

(Mgal/d)
= 264.2 gallons per minute (gal/min)

= 15.85 gallons per minute
= 4.83 gallons per minute per foot

[(gal/min) /ft]
— .62 mile per hour (mi/h)

= 62.43 pounds per cubic foot (Ib/ft3)

= 2.048 pounds per square foot (lb/ft2)

= .0142 pound per square inch (lb/in2)

Temperature
degree Celsius (°C)
degrees Celsius

(temperature)

= 1.8 degrees Fahrenheit (°F)
= [(1.8X°C)+ 132] degrees Fahrenheit

Any trade names in this publication are used for descriptive purposes only and do not constitute endorsement by the I'.S. Geological Survey.

GEOINDEX

By PATRICIA FULTON and HAROLD JOHNSON,
assisted by WlLLARD L. MclNTOSH,

MARGARET EISTER, LAWRENCE BALCERAK, DONALD HANSON,
RICHARD THOENSEN, and PEARL PORTER

ABSTRACT

The acquisition and the dissemination of information are ever-
increasing problems for Federal agencies engaged in research. To
facilitate the publication of its geologic index maps, the U.S. Geological
Survey has moved toward computer-based operations. The index to
geologic maps (Geoindex) has been established and developed as a data
base and data-base management system that provides three main
capabilities. The primary capability is to provide the means to generate
rapidly geologic index maps for publication. A second capability is to
provide users an immediate access to all items in the data base. The
third capability is to provide nationwide summary information to
policy makers.

INTRODUCTION

The first U.S. Geological Survey indexes to geologic
maps were published in the 1940's. They consisted of
State base maps at scales of 1:750,000 or 1:1,000,000 on
which the outlines of published geologic maps were
shown. By the mid-1960's, most of the indexes were out
of date. Revision was delayed because of the rising cost
of color printing (six press runs) and the mechanical dif­
ficulty of showing legibly the additional (doubled)
coverage produced in the 1950's and 1960's.

Some of the problems were solved in the publication of
the Montana index in 1969. Heretofore, geologic index
maps had shown all the geologic coverage. In the Mon­
tana index, only maps equal or better in quality and com­
prehensiveness than the State geologic map were in­
cluded. This limitation imposed a reasonable and stan­
dard criterion for determining what should be included
in the index. All very small scale maps, as well as many
sketchy or generalized maps, were omitted. Elimination
of such material produced a more legible index without
serious loss of geologic-map coverage. The revised in­
dex, like previous indexes, included both published and
open-file maps of the U.S. Geological Survey, published
maps of the State surveys, and maps published by other
organizations.

When computer-assisted techniques were introduced,
the project grew, and ideas continued to change and

evolve. Henceforth, maps published at the following
scale ranges will be indexed on three separate sheets:
1. Scales of 1:24,000 and larger
2. Scales smaller than 1:24,000, through and including

1:63,360
3. Scales smaller than 1:63,360, through and including

1:250,000

ACKNOWLEDGMENTS

The authors thank Joseph Moses Botbol and Roger
Bowen for their assistance in the use of the GRASP
system. Diane Lewis and Karen Shallcross completed
compilation and entered the data into the Geoindex data
base; Jane Timmins typed the manuscript and arranged
it in the proper sequence; James Fisher, Kevin Laurent,
and Maryjon McAvery helped in writing the computer
programs and in constructing the data base. All these
people are from the U.S. Geological Survey.

We also thank William Strauss, Denise Maurer, and
Ray Wisecarver of the Johns Hopkins Applied Physics
Laboratory for their invaluable assistance in the
digitization of the data.

THE DATA-BASE MANAGEMENT SYSTEM

PURPOSE

The primary purpose of the Geoindex Data-Base
Management System is to generate geologic index maps
as quickly as possible. These published reports are wide­
ly distributed to a large, diverse group. A published
geologic index consists of a series of map sheets and ac­
companying text material. The Geoindex is constructed
State by State. Each map sheet consists of a State base
map on which the outlines of published geologic maps
and identifying numbers are superimposed (Fulton and
Mclntosh, 1977). Figure 1 shows a map sheet from the
published index for the State of Kentucky.

GEOINDEX

FIGURE 1.-Sheet from the published Kentucky index, showing geologic maps

The text material is composed of bibliographic
references, each of which is numbered to correspond to
the number on the matching map outline. Figure 2
shows part of a sheet of bibliographic text from the
published index for the State of Kentucky.

Each index, then, contains the map outlines and
bibliographic references for published geologic maps for
one State. The reports are published in black and white
and folded to a size that fits the standard file cabinet.
Because the computer-based operations have introduced
economies, geologic map indexes are distributed free to
the public.

A second purpose of a data base in machine readable
form is to furnish outside users a rapid access to all

items contained in the data base. This second function is
required by a more specialized group of outside users.
For example, some specialists in the Earth sciences
have active projects and need immediate answers to
their questions. Typically, the procedures involve the
retrieval of selected items from the data base, followed
by a series of manipulations, and finally a display of
various combinations of text and graphics. Alternative­
ly, some outside users whose projects are still in the
planning stage need information that is contained in the
data base but does not appear on the published geologic
index map. To satisfy the two types of users, both text
and map data are available online from the computer
system. Aspects of this type of usage of the data-base

THE DATA-BASE MANAGEMENT SYSTEM

whose scales range from smaller than 1:63,360 through and including 1:250,000.

management system are discussed later, under Storage
and Retrieval System.

A third purpose of the data-base management system
is to provide nationwide information to policy makers.
Under this concept, one can access the data base as a
single entity covering the entire United States instead
of accessing merely one State at a time. The system can
present a comprehensive overview of the whole country,
but all the details shown on State maps are still avail­
able. For example, the total area for which geologic
maps are available in the United States can be com­
puted. Such statistics are valuable for national planning.

To fulfill these requirements, the geologic map index
exists in two very different forms: as computer files in
the Geoindex data base, and as published reports. An ad­

ditional reason for having two different forms is that as
soon as data have been stored in a computer, new appli­
cations become feasible. As a result, computer resident
data files serve a much larger community of users than
previously imagined. Because the data files are in digital
form, they become multifunctional in that retrievals
from the files can assume totally different appearances.
These additional capabilities more than justify the initial
cost in creating machine readable map files.

GLOSSARY AND SYSTEM STRUCTURE

A technical dicussion of the data base structure first
requires the definition of some of the terms (Honeywell
Information Systems, Inc., 1978).

GEOINDEX

1. Data base. An integrated collection of data upon
which operations (such as read, write, and revise)
can be performed.

2. Data-base management system. A software
system that accesses an integrated collection of
data.

3. User. A person who retrieves, updates, or deletes
data within the data base. Such a person actively
maintains the data base.

4. Outside user. A person who retrieves data from the
data base. This is a person who uses the system
but does not maintain it.

5. Data model or schema. The description of the data
base that defines the characteristics and organiza­
tion of the data within the data base.

The Geoindex data base is a relational data base and is
derived from the mathematical theory of relations. The
Geoindex Data Base Management System is a relational
data-base management system. This structure is a
natural consequence of having the Geologic Retrieval
and Synopsis Program (GRASP) as the primary storage
and retrieval program of the system because GRASP
organizes data in relational form. GRASP is discussed
more fully in the section entitled Storage and Retrieval
System. The relational form is essentially a matrix com­
posed of the familiar rows and columns.

The mathematical terminology specific to a relational
data base must also be defined:

6. File. A collection of organized data, a relation.
7. Record. A representative "row" of data, a tuple.
8. Attribute. Name of a data field within a record, a

column of information.
9. Attribute value. Value of a data field within a

record.
10. Domain. The set of all values a data field may

assume.
11. Data submodel. User's definition of the data base.
12 Data model. Total definition of the data base.

A relational data base is in matrix form where the
tuples (records) constitute the rows and the attributes
(data items) constitute the columns. All tuples within a
given relation have the same format (all records within a
file have the same format). This last statement is a
definitive characteristic of a relational data base.

The Geoindex is both large and complex. Size, of
course, contributes to complexity, but the major source
of complexity is the nature of the data that the system
must process. The data comprise two distinct types: text
and graphics. A record ("row," definition 7) exists for
each map. The attribute values (columns, definition 9)
are composed of text data derived from the bibliographic
reference and of graphic data derived from the map out­

line. See figures 1 and 2. The complete list of attributes
handled by the data-base management system is shown
in figure 3.

The data-base management system is functionally
divided into four parts. The first part is composed of
computer programs and procedures designed to per­
form two vital tasks. The first task is to capture and
verify the data. The second task is to create the map
sheets and bibliographic text sheets as camera copy
ready for reproduction. The first part of the system will
be discussed in the section Data Acquisition and the sec­
tion Publication Copy. The second part of the system is
composed of computer programs and procedures that
have one task to accomplish. This part of the system
loads the data as relations into files that are accessible to
GRASP, the storage and retrieval program. The third
part of the system consists of GRASP and several plot
programs. This third part is described in the section
Storage and Retrieval System. The fourth part of the
system consists of computer programs and procedures
that insure the safety and integrity of the data by pro­
viding backup files and permanent archival data
storage.

The system flow chart, illustrated in Appendix A,
shows the chronological work flow that is virtually iden­
tical with parts one through four mentioned.

DATA ACQUISITION

TEXT DATA

The text data for an individual State are received in
draft form, which is somewhat similar to that shown in
figure 2. Each draft is examined, and a list of questions
is prepared to cover any errors, omissions, or ambig­
uities that would slow the actual data-entry process.
This list is returned to the geologist who compiled the in­
dex map and who then clarifies the uncertainties. After
questions are answered and this list is returned, the
physical keying of the text begins. The attributes, or
record items, entered at this time are listed as follows:
Identification number, author, year, title, publisher,
county or region, emphasis, scale, and series.

The text material is prepared offline in card-image
form on key-to-disk devices. These are word-processor
computer terminals, which function both as stand-alone,
offline, data-entry stations and as communications ter­
minals. Several types are available; however, each hard­
ware unit includes a keyboard for data entry, a cathode
ray tube (CRT) screen that displays the characters
entered from the keyboard and messages sent from a
computer, and dual flexible disks that store data. Line
printers, some switch-selectable among the units, supply
the necessary hard copy.

THE DATA-BASE MANAGEMENT SYSTEM

1. Swadley, W.C., 1972,
Geologic map of pario
of the Lawrenceburg,
Aurora, and Hooven
quadrangles, Boone
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-989.
1:24,000.

2. Gibbons, A.B., 1972,
Geologic map of parts
of the Burlington and
Addyston quadrangles,
Boone County, Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1025.
1:24,000.

3. Luft, S.J., 1971,
Geologic map of part of
the Covington
quadrangle, northern
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-955. 1:24,QUO.

4. Gibbons, A.B., 1973,
Geologic map of parts
of Newport and
Wi thamsvi1le
quadrangles, Campbell
and Kenton Counties,
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-1072. 1:24,000.

5. Swadley, W.C., 1971,
Geologic map of part of
the Rising Sun
quadrangle, Boone
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-929.
1:24,000.

6. Swadley, W.C., 1969,
Geologic map of the
Union quadrangle, Boone
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-779.
1:24,000.

7. Luft, S.J., 1969,
Geologic map of the
Independence
quadrangle, Kenton and
Boone Counties,
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-785. 1:24,000.

8. Gibbons, A.B., 1971,
Geologic map of the
Alexandria quadrangle,
Campbell and Kenton
Counties, Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-926.
1:24,000.

9. Gibbons, A.B., Kohut,
J.J., and Weiss , M.P.,
1975, Geologic map of
the New Richmond
quadrangle,
Kentucky-Ohio: U.S.
Geol. Survey Geol.
Quad. Map GQ-1228.
1 :24,000.

10. Kohut, J.J., Weiss, M.P.,
and Luft, S.J., 1973,
Geologic map of the
Laurel quadrangle,
Ohio-Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1075.
1 :24,000.

11. Swadley, W.C., 1969,
Geologic map of parts
of the Patriot and
Florence quadrangles,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-846.
1:24,000.

12. Swadley, W.C., 1969,
Geologic map of the
Verona quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-819.
1:24,000.

13. Luft, S.J., 1973,
Geologic map of the
Walton quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1080.
1:24,000.

14. Luft, S.J., 1970,
Geologic map of the De
Mossville quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-862.
1:24,000.

15. Luft, S.J., 1972,
Geologic map of the
Butler quadrangle,
Pendleton and Campbell
Counties, Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-982.
1:24,000.

16. Luft, S.J., Osborne,
11.H. , and Weiss, M.P. ,
1973, Geologic map of
the Moscow quadrangle,
Ohio-Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1069.
1:24,000.

17. Osborne, R.H., Weiss,
M.P., and Outerbridge,
W.F., 1973, Geologic
map of the Felicity
quadrangle,
Ohio-Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1063.
1:24,000.

18. Outerbridge, W.F., Weiss,
M.P., and Osborne,
R.H., 1973, Geologic
map of the Higginsport
quadrangle,
Ohio-Kentucky, and part
of the RusselIvi1le
quadrangle, Mason
County, Kentucky: U.S.
Geol. Survey Geol.
Quad. Map GQ-1065.
1:24,000.

19. Palmquist, W.N., Jr., and
Hall, F.R., 1960,
Geologic map of Boone,
Campbel1, Grant,
Kenton, and Pendleton
Counties, Kentucky:
U.S. Geol. Survey
Hydrol. Inv. At las
HA-15. Map 1,
1 :125,000.

20. Hall, F.R., and
Palmquist, W.N., Jr. ,
1960, Geologic map of
Carrol 1, Gallatin,
Henry, Owen, and
Trimble Counties,
Kentucky: U.S. Geol.
Survey Hydrol. Inv.
Atlas HA-23. Map 1,
1:125,000.

21. Swadley, W.C., 1976,
Geologic map of part of
the Carrol 1 ton
quadrangle, Carroll and
Trimble Counties,
Kentucky: U.S. Geol.
Survey Geol. Quad. Map
GQ-1281. 1:24,000.

22. Swadley, W.C., 1973,
Geologic map of parts
of the Vevay South and
Vevay North
quadrangles,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1123.
1:24,000.

23. Swadley, W.C., 1973,
Geologic map of the
Sanders quadrangle,
north-central Kentucky:
U.S. Geol. Survey Geol.
Quad. Map GQ-1095.
1:24,000.

FIGURE 2.-Part of a sheet of bibliographic references taken from the published Kentucky Index.

generally square

GEOINDEX

Each map is uniquely identified and has the following
list of attributes:
Mnemonic Attribute
id identifying number for the

bibliographic reference
state name of the state
author authors
year year of publication
title title
county county or region
publish publisher
series title of publication series
emphasi type of geology - surficial, economic,

stratigraphic, oil, gas, coal, metal
area area covered by map
aunit dimension for area,

k i1ome t e r s
nlat extreme north latitude
slat extreme south latitude
wlong extreme west longitude
elong extreme east longitude
clat center point latitude
clong center point longitude
omaps other maps not included

i.e., title
avail depositories where maps

obta ined
base USGS topo, DMA-TC topo,

shaded relief
geology only geology shown on the map
plate plate or map or sheet identification
idstate FIPS state code
scale map scale - 1:24,000, 1:250,000, etc.
idsub sub id number, i.e., more than one map
ibound id number on the boundary outline

ties together text and graphic or
x,y f iles

ispan secondary number on the boundary
outline further ties text to graphic
file

othermap phrase used in Bibliography

FIGURE 3. - List of attributes (names of data fields) that constitute a record.

as outlines

can be

photomosaic,

After a line of text data is entered on the keyboard, it
is stored on the diskette. At the option of the operator,
the data are simultaneously listed a line at a time on the
printer or listed all together at the end of a session. This
printer list is then checked for errors. The operator cor­
rects data by using a key-to-disk technique. When text
data are as error free as possible, the data-entry devices
are operated as computer terminals, and the data are
transmitted directly from the diskette to permanent
storage on a large host computer.

MAP DATA

The map data, as previously mentioned, are the
outlines of published geologic maps. These map data are
received from the geologist as ink or colored-pencil
outlines overlaid on base maps. The base maps consist of
green-line images printed on dimensionally stable
plastic.

The computer group codes a matching base on a stable
material in preparation for the digitization of county

THE DATA-BASE MANAGEMENT SYSTEM

outlines. These codes are the digits assigned to each
county and State by the Federal Information Processing
Standards Publications (FIPS PUBS). This digitization
or conversion from graphics to machine-readable code is
done manually on a type of drafting-table digitizer with
a resolution of 0.025 mm (0.001 in.) (Fulton, 1975).

The lower left-hand corner of the neat line is
designated as the origin, so that the entire map lies
within the positive quadrant in the Cartesian coordinate
system.

Only the end points of straight-line segments are
recorded. Where the outlines are extremely convoluted,
stream digitizing is performed and the spacing between
points is generally about 1 mm (0.04 in.). The data are
plotted for verification. Because of the complexity of the
index maps, these plots must be drawn in different col­
ors so that each outline and its identifying number is
distinct.

PUBLICATION COPY

After the computer-generated plots for the Geoindex
are judged acceptable, they need further processing to
create the final version of the maps. The first few
published indexes were drawn in black ink by means of a
drum plotter. Several different pens created the various
line weights so that overlapping areas could be
distinguished.

Index maps convey information concerning areas.
Shading portrays areal information very effectively.
Thus, those who prepared the later maps took advan­
tage of the newer technology inherent in a matrix plot­
ter. Such a plotter now generates the final maps. This
plotter has a resolution of 160 dots per inch and an effec­
tive plotting width of 18 in. To date, 10 different pat­
terns supply sufficient contrast so that various mapped
areas may be distinguished from one another. See figure
1. which shows a Kentucky map sheet listing the maps
that range in scale from 1:63,360 through 1:250,000.

At the same time that the map plots are generated,
the text data are processed. The file is in a machine-
readable form almost identical with card-image form,
but the final output must be in the traditional
bibliographic form. This change is accomplished by pro­
cessing the text data file through programs resident on
a main-frame computer that strip out the extraneous
data and codes and rearrange the order of the attributes
(items). Then the modified file is transmitted over
telephone lines back to the word-processor terminal.
The final manuscript is printed on coated paper
automatically. The map plots and text material are then
sent for photographic reduction, a process that creates
the photographic plates for mass production. See figure
2. which shows a copy of part of a sheet of text data from
the published Kentucky index.

STORAGE AND RETRIEVAL SYSTEM

This storage and retrieval system is the Geologic
Retrieval and Synopsis Program (GRASP), written and
developed within the Geological Survey by Roger W.
Bowen and Joseph Moses Botbol (1975). GRASP is used
extensively within the U.S. Geological Survey. It has
also been installed on the computers of national agencies
of several countries in South America and Europe.

The GRASP system implements searches of the text
files by individual items or by any combination of two or
more items. All the references for the published geologic
maps that meet the search criteria are retrieved. The en­
tire contents of all the retrieved text records can be
listed, or only one or two items can be selected.
However, the boundary identification number, ibound,
the bibliographic identification number, id, and the
subidentification number, idsub, are the only items re­
quired to generate a graphic image. Thus, the numeric
value of these three items are listed on a formatted disk
file for subsequent plotting. The GRASP system is ex­
ited and the plot program pn16 is invoked. This pro­
gram, too, executes in an interactive mode. Its options
provide for plots of the State outline, the graticule, the
county boundaries in solid or dotted lines, and, of
course, the file of geologic-map outlines. These graphics
can be plotted interactively on a CRT terminal and then
printed by a hard-copy unit attached to the terminal.

After a map has been drawn on the CRT, information
from other files may be added by direct overlay to the
original graphic on the screen. In addition to the
features already described, this program offers the op­
portunity to enlarge any part of the plot repetitively un­
til a cluttered area becomes readable.

At present, the newly published geologic index maps
are categorized according to scale. The retrieval can be
executed in GRASP by designating the proper scale as
the search criteria and querying the file. This first step
in map generation from digital data is accomplished in­
teractively on a graphics CRT terminal. This same file,
which has been plotted interactively, can then be
directed to a drum plotter for reproduction at the
original scale. Figure 4 shows the maps published at
scales smaller than 1:63,360 for the State of North
Dakota as drawn on the CRT screen.

Several other programs enable a user to plot the en­
tire United States. The programs take geographic coor­
dinates from either a GRASP retrieval or directly from
the map-data files. These programs convert the
geographic coordinates to Cartesian coordinates. Then
another plot program entitled pin90 operates in an in­
teractive mode similar to that of pn16 to plot these files.
It, too, has options for specifying various combinations
of files and enlarging designated areas. Figure 5 shows
a CRT plot of some areas covered by published maps.

oo o M O § O

H X

FI
GU

RE
 4

. -
 C

RT
 p

lo
t f

or
 th

e
St

at
e

of
 N

or
th

 D
ak

ot
a,

 s
ho

w
in

g
ge

ol
og

ic
 m

ap
s

pu
bl

ish
ed

 a
t s

ca
le

s s
m

al
le

r t
ha

n
1:

63
,3

60
. T

he
 fi

gu
re

 is
 a

 p
ho

to
gr

ap
h

of
 th

e
CR

T
sc

re
en

.

THE DATA-BASE MANAGEMENT SYSTEM

o

03

£
o•a

O
I

10 GEOINDEX

The system also utilizes some machine-independent
plotting packages that were obtained specifically to pro­
vide diversity of output for the Geoindex as well as for
the entire U.S. Geological Survey. Figure 6, which il­
lustrates geologic mapping on a regional basis, is a map
showing all the areas covered by geologic maps in the
western States of Idaho, Nevada, and Arizona.

The storage and retrieval part of the Geoindex system
has the capability of providing nationwide summary in­
formation to policy makers. Examples of maps that pre­
sent information of special interest to national planners
are shown in figures 7 and 8. Both of these maps were
generated from queries to the Geoindex and show
geologic mapping on a national basis. These maps
reflect the data resident in the data base at the time of
query. Figure 7 shows the areas in the United States
covered by geologic maps that were published at a scale
of 1:250,000 after 1960. It includes both U.S. Geological
Survey maps and non-Survey maps. Figure 8 shows
geologic maps from all sources that were published at
scales larger than 1:250,000.

DATA BASE

STRUCTURE OF THE DATA

TEXT DATA

As previously mentioned, the Geoindex comprises two
distinct types of data: text and graphic. These two data
types are handled separately throughout most of the
system because of their dissimilar nature. After the
bibliographic data are captured as keystrokes of coded
data in digital form, they are usually called text data.

Initially, the text data in machine-readable form look
very much like a listing of ordinary punched cards. The
most obvious difference is that a printed line contains
both uppercase and lowercase characters. Actual data
fields vary from 4 to 60 characters. The Geoindex data
base is generated on a State-by-State basis. Each State
carries the two-digit code assigned by FIPS PUBS.
Every file name for a particular State contains this same
numeric code as a suffix. The leading three or four
characters of the file name are descriptive of the type of
data in the file. Thus, the initial reference data file for
Colorado is named refOS.

The format for the text data is as follows:
State identification ____ 2 digits.
Reference number ________________ 4 digits.
Item number ___________________ 2 digits.
Informational data ________________ 4 to 60 characters.

Figure 9 shows the text data for reference number 90
(a record in file refOS) for the State of Colorado as it
looks in its initial form. This is a reference that contains
four separate maps, and it was chosen to illustrate the
complexities of the data structure.

MAP DATA

As stated earlier, the map data are digitized as Carte­
sian coordinates in the positive quadrant. These coor­
dinate files are structured so that several different types
of map data are compatible and are handled efficiently
within the one system. The two major types of graphic
data are the index-map coordinates and the base-map
coordinates. The base-map coordinates consist of
political boundaries, such as State and county, and also
the geographical positions of the graticule. One
bibliographic reference may contain several maps, one
map, or no map at all. Conversely, one map outline,
typically a county, may be identified by a great number
of bibliographic references. A unique identifier for each
map is mandatory and is a combination of three at­
tributes. A primary identification number (id), a secon­
dary identification number (idsub), and a third number
(second idsub) insure uniqueness. The data for each
map outline are composed of two different parts. The
first or header section under a format of (815) consists of
number codes for the various map features. The
features and the feature codes are listed as follows:
1. Identification or feature number (id): neatline = 900,

State = 9NM (NM refers to FIPS code for the par­
ticular State)

2. Number of outlines that have this id
3. First subfeature: adjacent county id number, adja­

cent State = 9NM, national boundary = 993, lake
boundary = 995

4. Number of points
5. Second subfeature number
6. State id number
7. Graticule = 991, county = 992, island = 994 (values

recorded only for grid, county, and islands; blank
for others)

8. Span- that is, one map outline for several references
The second part of the record has a format of (12F6.3)

and contains the string of Cartesian (x, y) coordinates
that define the boundary of the published geologic map.
The first Cartesian pair indicates the position for the
identifying number. A listing of both parts of the Carte­
sian coordinate data record for reference number 90 for
the State of Colorado is shown in figure 10.

TEXT AND MAP DATA

After the data are in digital form, only the map file
(fig. 10) contains the information that can be used to
complete the record, the list of attributes named in
figure 3. The area covered by each geologic map is com­
puted from the Cartesian coordinates, and that informa­
tion is then stored along with the unit of measurement
(currently square kilometers). All Cartesian coordinates

REFERENCES CITED 11

are also transformed into latitude and longitude and
stored as radians. The header cards for the radian files
are identical with the header cards for the Cartesian
coordinate files. The data are in card-image form with a
format of (6F12.9,I8). The decimal point is implied in the
data files so that there are three latitude-longitude pairs
per card image with space for sequence numbers. Figure
11 shows the radian data for reference number 90 for
Colorado. The names of the files are similar.

Using the radian values, a program determines the
maximum latitude and longitude for the four directions
and then stores each map outline. The center of each
map outline is computed in radians and is stored. The
data-base management system performs these and
other computations. The items listed above, derived
from the map data, are merged into the record, or tuple,
so that a complete record for each map contains all the
information shown in figure 3. These two files, text and
graphic, are compared to ensure that each reference is
identified by the correct outline. Figure 12 shows a text-
data record in its complete form. It represents the final
form for reference number 90 for the State of Colorado.
These text data correlate with the map-coordinate data
shown in figure 10. The data shown in figure 12 are in
the format required for the storage and retrieval
system.

Twelve files are stored permanently on two sets of
magnetic tapes. Each magnetic tape contains the data
for five States. Figure 13 describes and identifies these
files.

SYSTEM SPECIFICATIONS

The detailed system specifications are given in the ap­
pendixes. Appendix A contains the system flow chart,
which also shows the input and output files. Appendix B
contains the operational instructions, which detail the

minimum set of information needed to execute the pro­
grams.

Appendix C contains the computer-program reference
guide. This guide gives complete descriptions of the
computer programs and listings of the source code for
each program. Appendix D contains the formats and
notes needed for data entry.

STATUS OF THE SYSTEM

The data-base management system has passed the
operational phase and is a fully functional system. The
primary objective, the generation of geologic index
maps, is in a production mode, and the data base is
growing daily. Figure 14 is another computer graphic
that summarizes the present status of the Geoindex. The
system automatically generates a new status map at the
beginning of each month. The files can be accessed in an
interactive mode, and personalized index maps plotted
immediately, as shown in figures 4 and 5. The system
becomes increasingly useful as a tool for policy makers
as more States are added to the data base. Figures 6, 7,
and 8 show summary maps that can be of value in mak­
ing policy and plans.

REFERENCES CITED
Bowen, R. W., and Botbol, J. M., 1975, The Geologic Retrieval and

Synopsis Program (GRASP): U.S. Geological Survey Professional
Paper 966, 87 p.

Fulton, P. A., 1975, Mapping and Computers, in Rubinot'f, Morris, and
Yovits, M. C., eds.. Advances in Computers, v.13: New York,
Academic Press, p. 73-108.

Fulton, P. A., and Mclntosh, W. L., 1977, Computerized Data Base for
the Geomap Index: The American Cartographer, v. 4, no. 1, pp.
29-37.

Honey well Information Systems, Inc., 1978, Level 68 Software
Multics Relational Data Store (MRDS) Reference Manual, p. 1-1,
2-3.

12
2

12
0

1
18

1
16

1
14

1
12

1
10

10
8

48 46 42 40

O

&

O HH

£ G

& X

FI
GU

RE
 6

.-
Pl

ot
 s

ho
w

in
g

all
 th

e
ar

ea
s

fo
r

w
hi

ch
 g

eo
lo

gi
c

m
ap

s
ha

ve
 b

ee
n

pu
bl

ish
ed

 in
 th

e
St

at
es

 o
f I

da
ho

, N
ev

ad
a,

 a
nd

 A
riz

on
a.

32

12
0

1
18

16

11
4

FI
GU

RE
 6

.-C
on

tin
ue

d.

11
2

1
10

O

&

O I—
I 5!

O

& X 0
0

14 GEOINDEX

FIGURE 7. -Plots from the on-line data base showing maps published after 1960 in the United States

GEOINDEX 15

at a scale of 1:250,000. This plot includes both U.S. Geological Survey maps and non-Survey maps.

16 GEOINDEX

97° W

FIGURE 8.-Plots from the on-line data base showing geologic maps published from

GEOINDEX 17

all sources, U.S. Geological Survey and non-Survey, at scales larger than 1:250,000.

18 GEOINDEX

8 90 2Colorado
8 90 SAtwood, W.W.
8 90 81918
8 90 9Relation of landslides and glacial deposits to reservoir
8 9010sites in the San Juan Mountains, Colorado:
8 9012mineral, hinsdale, la plata
8 9017U.S. Geol. Survey
8 901848000
8 901925000
8 902093750
8 902184480
8 9023Bull. 685.
8 9024engineering
8 9038geology
8 9039Fig. 3,
8 9040fig. 4,
8 9041fig. 6,
8 9042fig. 7,
8 9044 8
8 90451
8 90462
8 90473
8 90484
8 90509001
8 90519002
8 90529003
8 90539004
8 9086Also detailed maps.

FIGLFRE 9. -Partial list of text data showing attribute values, in initial (card image) form, for reference number 90, Colorado.

90
6232
90

6700
90

6650
90

7133

4
3662
4

3683
4

4088
4

4248

160800
6162 3979 6689 3947 6677 3597 6146 3615 6162 3979
220800
6627 3765 00000000
360800
6570 4421 7015 4403 7005 4025 6558 4022 6570 4421
460800
7104 4142 7374 4136 7379 3804 7098 3803 7104 4142

FIGURE 10.-Map data in Cartesian coordinates for reference number 90, Colorado.

90 4
1873730163
1871476238
90 4
1871368160
90 4
1871659176
1869857850
90 4
1869229955
1867947965

160
0658147465
0657921102
220
0658268095
360
0659890362
0659663364
460
0660567668
0658801627

8 0
1874116297
1874159720

8 0
1871744737

8 0
1872095935
1872118161

8 0
1869367424
1869368043

0
0659414456
0657951797
0

0658591828
0

0661221254
0659618394
0

0660140064
0658778571

1871448603
1874116297

1869840993
1872095935

1868000881
1869367424

0659327192
0659414456

0661181741
0661221254

0660134288
0660140064

FIGURE 11. - Map data in radians for reference number 90, Colorado.

GEOINDEX 19

90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S
urvey Bull. 685.

engineering 123.5 sq.
km. 3746053 3741045 10722053 10713033 3744017 10718016

geology Fig
. 3, 848000 1 9001 Also detailed maps.

90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S
urvey Bull. 685.

engineer ing
3744004 3744004 10714035 10714035 3744004 10714035

geology fig
. 4, 825000 2 9002 Also detailed maps.

90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S
urvey Bull. 685.

engineering 113.2 sq.
km. 3753006 3747036 10715052 10708002 3750022 10712000

geology fig
. 6, 893750 3 9003 Also detailed maps.

90Colorado Atwood, W.W.,

1918Relation of landslides and glaci
al deposits to reservoir sites in the San Juan Mountains, Colorado:

mineral, hinsdale, la plata

U.S. Geol. S
urvey Bull. 685.

engineering 60.5 sq.
km. 3749023 3744042 10706024 10701031 3747003 10704002

geology fig
. 7, 884480 4 9004 Also detailed maps.

FIGURK 12.-Complete text-data record for reference number 90, Colorado. This shows the data in the format required by the
storage and retrieval system.

20

Descr ipt i on
of file

GEOINDEX

Files in Permanent Storage

Name of file Name of file Name of file

File is
composed

of
alpha-numer i c

data

File is
c omp o s e d

of
Cartes ian
coordinates

File is
composed

of
latitude and

longi tude
in radians

Identification file bginNM
written on tape for
each State. It names
all the files that
follow belonging to
that State

Outlines of maps shown
on the index

State outline

County outlines

Grat i cule

Neat line

Centers of map
out 1 ines

Parameters used to paraNM
transform Cartesian
coordinates to
geographic coordinates
for each State

Final form of the text redyNM
files

coorNM

statNM

counNM

gr idNM

bordNM

cntrNM

cordNM

strdNM

curdNM

MM is the FIPS code for each State

FIGURE 13. Table showing names of files in permanent storage.

IN

CO
MP
IL
RT
IO
N

o H o

I
1

IN

CO

MP
UT

ER

PR
OC
ES
SI
NG

IN

PR

ES
S

PU
BL

IS
HE

D

FIG
UR

E
14

.-S
ta

tu
s

m
ap

 fo
r t

he
 G

eo
in

de
x,

 a
ut

om
at

ic
al

ly
 g

en
er

at
ed

 m
on

th
ly

.

APPENDIXES: SYSTEM SPECIFICATIONS

APPENDIX A. SYSTEM FLOWCHART

APPENDIX B. OPERATIONAL INSTRUCTIONS

APPENDIX C. COMPUTER-PROGRAM REFERENCE

APPENDIX D. FORMATS AND NOTES

Note:
Program and subroutine names are printed in bold sans-serif type: chkref.
Variable names are printed in italic sans-serif type: itype.
Permanent-file names are printed in sans-serif type: matrix.
Ordinary variables are printed in italics: x, y.

APPENDIX A

APPENDIX A. SYSTEM FLOWCHART
25

MATRIX
REFnm

MATRIX
REFnm

REFnm

COORnm
BORDnm
GRIDnm
STATnm
COUNnm

COORnmDW-

REFnm

REFnm

final
Bibliography

STRGnm

LIST TAPE CONTENTS
TAPEJN. TCL
digitized maps
inte Multics

CORDnm
CURDnm
STRDnm
PARAAnm

COORnmDW
BORDnmDW
GRIDnmDW
STATnmDW
COUNnmDW

;Pilot drawing
files on
Calcomp

-*- COORnmAS

TFILES
COORnmAS

SELDISK
separates ascii
disk file and
creates a drawing
file for each
map

———————— >-.
REDnm
BLUEnm
GREENnm

26 GEOINDEX

(plotmap \
separates/

BORDnmDW
GRIDnmDW
STATnmDW
COUNnmDW
REDnm
BLUEnm
GREENnm

DWGTAPE
drawing file to
card image tepe
format for transfer
to Multics

BORDnm
GRIDnm
STATnm
COORnm
PVERnm

BORDnm
GRIDnm
STATnm
COUNnm
REDnm
BLUEnm
GREENnm

BORDnm
GRIDnm
STATnm
COUNnm
REDnm
BLUEnm
GREENnm

INDEX VERSATEC
creates tepe for
versatec plotter

-»-{ J Plot on versatec

VERSATEC PLOT
tape created by
Index^Versatec is
plotted on versatec

REDnm
BLUEnm
GREENnm

»- COORnm. UNSORT

SORT. VERS. COOR. EC
runs:

PGM1. VERS. EXTHDR
SORT SEG
PGM2. VERS. SEQUENT
PGM3. VERS. MERGE

COORnm. UNSORT PGM1. VERS. EXTHDR
creates a file of
header card images

COORnm. UNSORT. HDR

APPENDIX A 27

COORnm. UNSORT. HDR

COORnm. UNSORT

COORnm. SORT. HDR

COORnm. SEQUENT

COORnm
STATnm
AREANO

STRDnm

MEASnm
STRGnm
CORDnm

REDYnm
MASK
DEFN
DICN

INDXnm
MASK
DEFN
DICN

^-COORnm. SORT. HDR

PGM2. VERS. SEQUENT
converts file from
stream to sequential

-COORnm. SEQUENT

PGM3. VERS. MERGE
merges coordinates
into one ordered
file

COORnm

MEASnm
AREAnm
CNTRnm
DOUBT

ADDRAD
inserts map data
into text files

COVERT. EC
runs convert to
load Grasp

GR. EC
seerches Gresp files
excutes files for 3
map plots

REDYnm
COMXnm
CTRDnm

INDEXnm
DICN
FILE 15
INDEXO

TIP
T2P
T3P

28 GEOINDEX

BORDnm
GRIDnm
STATnm
COUNnm
COORnm
SKOD
T1P
T2P
T3P

COORnm
COMXnm
STATnm
STRDnm
CORDnm
COUNnm
CURDnm
CNTRnm
GRIDnm
CNTRnm
CTRDnm
AREAnm
REDYnm
MEASnm
BORDnm
PARAnm

INDXUS
INDXnm

BORDnm
GRIDnm
STATnm
STRDnm
COUNnm
CURDnm
COORnm
CORDnm
CNTRnm
REDYnm
PARAnm

STORED
FILES

3 map plots

listing

PULLOFF
Copies specified
files from tape
to CPU

INDXUS

BGINnm
BORDnm
GRIDnm
STATnm
STRDnm
COUNnm
CURDnm
COORnm
CORDnm
CNTRnm
REDYnm
PARAnm _

STORED FILES

STORED
FILES

APPENDIX B 29

INDXUS

STATPM
STAT90
HAWAII
PUERTO RICO
ALASKA

STAT90. PAT
GRASP FILES

RETRIEVE. EC
RESTORE
Copies files from
tape to CPU which
were written by
BACKUP. EC

STORED FILES

STATUS MAP

PLOT ON TEKTRONIX

APPENDIX B. OPERATIONAL
INSTRUCTIONS

HOW TO RUN COMTAPE.EC ON MULTICS
Purpose of the program: comtape.ec allows the user to

read the tapes containing digital text in ASCII code
from outside sources into the Multics system.

Input files: Any outside tape
Output file: Segment named by the user

To run the program:
A. Label tape "for Multics use," and forward tape to be

processed to production control.
B. Send a message to sys op asking him to locate tape

nnnnnn.
Example: sm sys op Please locate tape

nnnnnn
C. After you have been notified that the tape has been

found, type:
ec comtape nnnnnn SEGNAME

where nnnnnn is the 6-position volume name, and
SEGNAME is a name the user wishes to call the
file, for example, ref21.

D. You will be informed when the tape is mounted and
the tape drive on which it is mounted. You will also

receive a count number of the records copied into
SEGNAME. This file will automatically be
dprinted.
Example: copy__file -ids "tape_ibm_&l -nib -nb 2

-fmt fb -den 800 -rec 80 -bk 800" -ods
"recorcLstream_-target vfile_&2" dp &2

E. The tape number will be substituted for the &1. The
SEGNAME given by the user will be inserted
where &2 appears.

HOW TO RUN CHKREF ON MULTICS

Purpose of the program: chkref reads through a
reference file reftVM and checks for various errors
that might occur.

To run the program:
A. Before running chkref, you must link to it, Type:

Ik > udd > Geoindx > HJohnson > chkref
Ik > udd > Geoindx > H Johnson > matrix

After the first link, you can run it without linking
again.

B. Type: chkref
C. When asked for the file name, type in the name, such

as, ref98

30 GEOINDEX

D. Study any error messages that chkref gives, make
corrections to the reference file, and run chkref
again until no error messages occur.

HOW TO RUN GEOFMT.EC ON MULTICS
Purpose of the program: geofmt.ec executes a series of

commands and programs to read the reference file, to
extract selected data, to arrange it in a predetermined
order, and to create a columnarized output segment
ready for printing.

Linking: Before running for the first time, you must link
to the following segments:

Ik >udd>Geoindx>PPorter> geofmt.ec
Ik > udd > Geoindx> PPorter> geofmt
Ik >udd>Geoindx>PPorter>geofmt.qedx
Ik > udd > Geoindx > PPorter> geofmta.qedx
Ik > udd > Geoindx> PPorter> geofmt2.qedx
Ik > udd > Geoindx > PPorter > geofmtS.qedx
Ik > udd > Geoindx> PPorter> embed_tabs
Ik > udd >Geoindx> PPorter>to-nbiPP

Special instructions:
A. The program, geofmt.ec, can be run on any ter­

minal. The only time that you must be on the NBI
is to run the to-nbiPP program where you must
use the proportional space printer.

B. To get a rough draft, type anything other than nbipp
as the third argument of the exec_com.

Example: ec geofmt 84 10 nbino
Upon termination, type:

dp -dl -nep geofmt.columns
If a file has more than 550 references, do only half
the file, and after you get the dprint, run the pro­
gram again using the last half of the file starting
with a four-column page through the end of the
file.

C. When three columns are desired on the first page
with the map, follow the instructions in paragraph
B with the exception of 8 and 9. For number of
columns, enter 3 and return. -In answer to the col­
umn width, enter 48 and return.

D. When using the seven-column option, you can print a
single three-column page giving the reference
numbers for that page, but if more than one page is
to be printed, you must start with a four-column
page.

To run the program:
A. Type: ec geofmt pagelength lines nbipp

Example: ec geofmt 84 10 nbipp
Note: Pagelength specifies the number of lines on
the page. It can be any number, but presently only
84 or 140 are used. Lines is an argument specify­
ing the number of lines that should be available at

the bottom of the page in order to print a complete
reference. There must be a third argument. If you
want proportional space printing, type: nbipp.
Otherwise, type some letters or some word for the
third argument.

B. Then you must respond to the following questions or
statements:

1. ENTER FILE NAME: Enter the names
(refNM) and cr (carriage return).

2. TYPE IN STATE NUMBER: Enter 2-digit
FIPS code and cr.

3. WHAT IS YOUR STARTING REFERENCE
NUMBER? (use 3 digits): Enter 3 digits and
cr. Note: We strongly recommend that you
do no more than 550 references at one time.

4. WHAT IS YOUR ENDING REFERENCE
NUMBER? (use 3 digits): Enter 3 digits and
hit cr.

5. fortran_io_: CLOSE FILES? Type yes and
cr.

6. DO YOU NEED TO EDIT? Type yes or type
no, and cr. If you typed no, go to step 7. If
you typed yes, the following will appear on
the screen:

EDIT.
Enter q to exit editor.
You are now in the edit mode. Line length is
set to 80 to make the entire line visible on
the screen. One line of geofmt.data may
print out as three lines on the NBI screen.
Make the necessary changes and be sure to
write the segment before you exit the editor.
Under no circumstances should you break or
interrupt while in qx. After all changes,
type:

w
q

7. DO YOU WANT 7 COLUMNS? If you want a
combination of 4,3,4,3, and so forth, type:
yes. If you want four columns on every page,
type: no.

8. EMBED_TABS ENTER NUMBER OF COL­
UMNS: Enter 4 and cr.

9. EMBED_TABS ENTER COLUMN WIDTH:
Enter 42 and cr.

10. The ready message will appear on the screen,
and the job is completed.

C. Before recording geofmt.columns on the diskette,
enter qedx and check the beginning of each page
to make sure that a new reference begins in each
column. Also check the last page (not the final
page) to make sure that you specified enough
references to fill the page.

APPENDIX B 31

If you are using the seven-column option and do­
ing only part of the reference file, you should end
with a three-column page (unless you are doing a
single page). Delete the lines of the four-column
page, write geofmt.columns and quit the editor.

D. The file, geofmt.columns, is now ready to be
recorded on the diskette for printing. Before run­
ning to-nbiPP, issue the following commands:

stty -modes Ifecho
Type ct, and then cr. Four options will appear on
the screen. Type 4, representing computer 4, but
not cr. Now type:

to-nbiPP cr
1. The following message will appear:

Multics file name to be sent (or q to quit):
Enter geofmt.columns followed by cr.

2. Multics will respond with ?.
3. Hold down SHIFT key and press the XMIT

keys. The NBI now receives the document
line by line. When the last line has been
received, a single Greek character will remain
on the screen.

4. Hit BREAK key. CONVERSATIONAL will
appear on the screen.

5. Type: q cr
Multics will respond with STOP and ready
message.

6. Hit HOME key. READY will appear on the
screen and you are now back in NBI word
processing.

7. Name the document by typing:
co \e,l,document name

followed by cr.
8. To print the document, insert and aline

paper and type the following command:
pr \i,s:document name

HOW TO RUN TO-NBID ON MULTICS
Purpose of the program: to-nbiD allows the user to

record segments from Multics on the NBI diskette
(communications disk—four options only) while using
the NBI System II as a terminal.

To run the program:
A. Turn on machine and insert disk. After READY

appears on the screen, type ct and cr. Type 3,
representing computer 3, but not cr. If you ac-
cidently hit cr, COMMAND ERROR will appear on
the screen. If this happens, again type ct, and
when the four options appear on the screen, type:
3.

B. Type cm l,c and cr. Note: The 1 is an alphabetic
character and not the number one. CONVERSA­

TIONAL will appear on the screen. Insert
telephone in modem and dial Multics number.
When carrier light comes on, hit cr. Wait for the
two-line Multics greeting. If you lose the carrier
light or the greeting does not appear, hang up and
redial. You are still in CONVERSATIONAL
mode.

C. Login to Multics as you usually do. If you cannot
login, hit cr and go back to step B.

| D. You must have the following link in your working
directory:

Ik >udd >Geoindx > PPorter> to-nbiD
Note: To print the greater-than sign, press the

key and CTRL key at the same time.
E. To execute the program, type: to-nbiD cr
F. The following message will appear:

Multics file name to be sent (or q to quit):
G. Type in name of file and then cr.
H. Multics will respond with ?.
I. Hold down SHIFT key and press the XMIT key. The

NBI now receives the document line by line. When
the last line has been received, a single Greek
character will remain on the screen.

J. Hit BREAK key. CONVERSATIONAL will appear
on the screen.

K. Type: q cr
Multics will respond: STOP

fortran_Jo_: CLOSE FILES?
Type: yes
Multics will then respond with a ready message.

L. You may now logout of Multics as you usually do, or
you may wish to edit the document to insure that it
was received correctly. You are still in CONVER­
SATIONAL mode.

M. Hit HOME key. READY will appear on the screen
and you are now back in NBI word processing.

N. Name the document by typing:
co \e,l,document name cr

Note: This command expanded means copy letter,
drive 1, and name you wish to call document.

0. To print the document, insert and aline paper and
type the following print lines command:

pr \i,s:document name cr
NBI will buzz, giving you a chance to make sure
that the paper is inserted correctly. Hit cr. Docu­
ment will start printing.

P. If you are no longer on Multics, go to step Q. If you
did not logout in step L, you will now have to get
back in CONVERSATIONAL mode. Type:

cm l,c (as in step B)
CONVERSATIONAL will appear on the screen.
Logout the way you usually do. After the logout

32 GEOINDEX

message appears on the screen, press the HOME
key. READY will appear on the screen.

Q. Type: off cr
Remove disk during countdown, and then turn off
machine.

HOW TO RUN CONCAT ON MULTICS
Purpose of the program: concat takes a reference file

and builds from it a file suitable for input into
Bowen's (Bowen and Botbol, 1975) program convert.
Be sure refNM is the file you want.

Input files: refNM, matrix
Output file: strgNM

To run the program:
A. Before running concat the first time, you must link

it to your working directory. Type:
Ik > udd > Geoindx > HJohnson > concat

B. Type: concat
C. When asked for the State code, type in the FIPS

code for this State.
Example: concat

ENTER THE 2-DIGIT CODE FOR THE
STATE BEING PROCESSED

Type: 15
YOU GOT TO MAIN
YOU WROTE THE 25th VECTOR TO THE
STRG FILE
STOP
FORTRAN 10 : CLOSE FILES?

Type: yes

HOW TO RUN LIST_TAPE_CONTENTS
ON MULTICS

Purpose of the program: list_tape_contents abstracts
files from outside tapes containing digital map data
in ASCII code.

To run the program: After the normal procedure of tak­
ing the tape to production control, sending a
message to the operator asking her to locate the
tape, and being informed that tape is there, you then
list the contents of the tape. This can be done by
list_tape_contents, which prints information
about files recorded on 9-track magnetic tape. This
command will list only ANSI (American National
Standards Institute) standard labeled and IBM
OS/370 standard labeled tapes.

Example: list_tape_contents nnnnnn -long -iom
tape__ibm_ where nnnnnn is the volume number,
-long is an argument that will cause an extensive
amount of information to be printed about the files,
and "iom tape_ibm_ invokes the I/O module to at­
tach and read the specified tape volume. The

tape_ibm_ subroutine is specified in order to list
OS standard labeled tapes. See listing 1.

Now that you have a list of the tape contents,
determine which files you want to transfer to the
disk. Transfer can be accomplished by the tape_in
command, which uses a control file written by the
user in the tape control language. See listing 2 for an
example. The volume statement is the volume
number of the tape. For most outside tapes, Tape,
Storage, Density, Format, Record, and Block will be
the same as those shown in listing 2. There will be a
file number and path statement for each file to be
transferred. The argument of the file statement will
be an asterisk. The number statement will specify
which file number it is on the tape. The argument for
the path statement will be the name that you wish
the file to be called after it has been transferred to
disk.

The control file must have a suffix of .tcl. After you
have created the control segment with a text editor,
you can accomplish semantic checking with the
following command:

tape_Jn rdtape.tcl -ck
The -ck argument does not cause a tape to be

mounted. If any errors occur, check the tape_in
command in the Honeywell Information Systems'
"MPM Peripheral Input/Output Manual." After
making corrections, type:

tape_in rdtape.tcl
To simplify the process, procedures are listed
below in steps:
1. sm sys op Please locate tape nnnnnn.
2. list__tape_contents nnnnnn -long -iom

tape_ibm_
3. Create the .tcl segment. Use uppercase and

lowercase as shown in listing 2.
4. tape_in rdtape.tcl -ck
5. new_proc
6. tape_in rdtape.tcl

HOW TO RUN TAPEDWG ON DATA GENERAL

Purpose of the program: tapedwg reads a hexadecimal
ASCII (American Standard Code for Information In­
terchange) tape written by a 32 bit/word computer
and places it in the format of a System 101 drawing
file. The data consists of x, y coordinates in the format
already specified for map data.

To run the program:
A. Bring the empty drawing file onto the table. Be sure

to display it as a check that it is empty.
B. Run the overlay program taped wg.

APPENDIX B 33

C. The program will print:
PAUSE MOUNT TAPE ON UNIT 0

and will pause until you enter cr. After the tape is
mounted, enter cr.

D. The program will print:
UNIT 1 OR 0??

and will wait until you enter 1 or 0 followed by cr.
E. The program will print:

CHARACTER HEIGHT =
and wait. The usual response is 0.14 and cr.

F. The program will print:
SYMBOL # =

and wait. The usual response is 1 and cr.
G. The program will print:

OF PENS = 1, 2, OR 3
and wait. The usual response is 3 and cr.

H. The program will print:
TEXT WANTED?? 1 = YES, 0 = NO.

and wait. The usual response is 1 and cr.
I. The program will print:

SKIP FILES??
and wait. The usual response is no and cr.

J. If the drawing file is filled, the program will print:
DRAWING FILE FULL!!
DO NOT REWIND TAPE!!
DO NOT REWIND TAPE!!
SAVE DRAWING FILE, GET NEW DRAW­
ING FILE AND RECALL TAPEDWG
OVERLAY

The program will then wait. Do exactly as the
program instructs.

K. If the drawing file is not full, but an EOF is en­
countered, the program will print:

END OF FILE REACHED?
REWIND TAPE?

and wait. The response is y for yes, and cr if there
are no more files to be read. The response is n for
no if there are more files to be read.

L. The program will print:
PROGRAM FINISHED

This means a successful completion of the pro­
gram.

LISTING I.-Example of list_tape_contents

Mounting volume AAR793 with no write ring.
AAR793 mounted on tape_01.

File listing of OS Labeled Volume AAR793 Recorded at 1600 bpi.

ID: BID.DAW.OHIOBOR
Number: 1

ID: BID.DAW.OHIOLL
Number: 2

Format: FB
Mode: ****
Section: 1

Blksize: 6400
Created: 10/27/78
Version: 0

Lrecl:
Expires:
Generation:

80
unknown

0

ID: BID.DAW.OHIOSB
Number: 3

ID: BID.DAW.OHIOCB
Number: 4

ID: BID.DAW.OHIO
Number: 5

ID: BID.DAW.OHIOPARM
Number: 6

ID: BID.DAW.OHIOSBRD
Number: 7

ID: BID.DAW.OHIOCBRD
Number: 8

ID: BID.DAW.OHIORAD
Number: 9

Displayed characteristics for the last 9 files are identical.
Finished listing volume AAR793 as specified,
r 1256 2.427 52.966 633

34 GEOINDEX

M. System error messages are printed whenever a prob­
lem occurs. Consult the manuals and take appro­
priate measures.

HOW TO RUN DWGDISK ON DATA GENERAL

Purpose of the program: dwgdisk reads System 101
drawing files and creates an ASCII disk file contain­
ing the coordinate outline data in Geoindex standard
format. The sequence is eight integer values com­
prising the header card information, followed by
isfno (number of coordinate pairs) pairs of real
numbers. The second outline immediately follows
the first and so on.

To run the program:
A. Bring desired drawing file onto table. Make sure

that the drawing file does not contain extraneous
information or the program will not execute cor­

rectly. For example, if you have deleted something
from a drawing file, the deletion will change only
certain parts of that particular record to a zero.
The record still exists and will cause problems in
the program. To delete an unwanted record, save
the file and then bring it back.

B. Run the overlay program dwgdisk.
C. The program will print:

PAUSE FOR OPERATORS
and the program will wait for you to enter cr.

D. The program will print:
NAME OF DISK OUTPUT FILE = ??

and will wait until you type a name in, followed by
cr. Depending upon your answer, the program will
type:

OLD-FILE OK??
NEW-FILE OK??

or print an error message, or end the program (if

LISTING 2.-Example of a tcl

rdtape.tcl 11/21/78 1455.7 estTue

Volume: AAR793
Tape: ibmsl;
Storage: unstructured;
Density: 1600;
Format: fb;
Record: 80;
Block: 6400;
File: *;
path: ohiobor;
number: 1;
File: *;
path: ohioll;
number: 2;
File: *;
path: ohiosb;
number: 3;
File: *;
path: ohiocb;
number: 4;
File: *;
path: ohio;
number: 5;
File: *;
path: ohioparm;
number: 6;
File: *;
path: ohiosbrd;
number: 7;
File: *;
path: ohiocbrd;
number: 8;
File: *;
path: ohiorad;
number: 9;
End;

r 1455 0.077 0.828 27

APPENDIX B 35

cr is the first character or the escape sequence,
control d, is entered). A negative answer to the
first two will cause it to ask the question again.
After printing the error message, it will ask the
question again.

E. The program will print:
DO YOU WISH TO WRITE AN EOF FLAG ON
THIS FILE??

and wait for a y (yes) or n (no). The last part of the
outline file must have an EOF flag.

F. The program will print:
TYPE IN 2 DIGIT STATE NUMBER

Use the FIPS code for this State. This information
goes on the header card.

G. The program will then ask:
IS THIS THE GRID BEING PUNCHED

Answer y (yes) or n (no). No other answer will be
accepted. This is needed to fill in the header card.
If the answer is yes, the next question will be skip­
ped.

H. The program will ask:
IS THIS THE COUNTIES BEING PUNCHED

Answer y(yes) or n(no).
I. The program will start to process the data. It

assumes that there is text in the drawing file. If
not, it will print the message:

NO TEXT IN FILE!
and exit from the program.

J. When execution is complete, the program prints the
message:

DONE
rings a bell, and returns control to the table.

HOW TO RUN SELDISK ON DATA GENERAL

Purpose of the program: seldisk reads an outline disk
file in Geoindex standard format and creates a System
101 drawing file. The format used is a header card
with (815) format followed by the outline with x, y
coordinate pairs in (12F6.3) format on each card. The
drawing file will contain only those outlines identified
by cards that have a feature number and a subfeature
number. Note: The program does not replace the file
on the table; instead it appends this data at the end of
the existing file.

The ASCII disk file will usually be created by using
the program dwgdisk.

The drawing file will consist of various outlines all
having the following characteristics: Each outline
resides in the subfile with a number equal to the
feature number or 1,000 less than the feature number.
There are from one to four lines of text, followed by
one pen up and then a series of pen downs. The text
consists of the feature number, the subfeature number

(if if no greater than 1), the span (if different from 0)
and the second subfeature number (if different from
0).

The outlines will alternate through the three pens so
that the colors will change for better visibility.

To run the program:
A. Perform the steps necessary to make files available

from the digitizing table. If you wish to place the
incoming data in a drawing file by itself, CLEAR
the drawing file.

B. ACTIVATE AND DISPLAY the drawing file. This
tells the program where to write the information.

C. Load the cards in the hopper. First will come the
T-file. This consists of cards with the feature number
and subfeature number of those outlines wanted in
the drawing file. These are in (18,12) format. Follow
these cards with a card that has a -1 as a feature
number (columns 7 and 8). This will be used as a flag
for the end of the T-file.

D. Run the overlay program seldisk.
E. The program will print:

ISELDISK OVERLAY
IPAUSE TURN ON CARD READER

and wait for you to enter cr. This is a reminder to
make sure it is turned on. If it is not correctly turn­
ed on, the program will print:

IFOPFL ERROR!
and exit.

F. The program will print:
ICHARACTER HEIGHT =

and wait for you to type an answer. This will be the
height in inches of all text read in (usually 0.14).

G. The program will print:
ISYMBOL # =

and wait for you to type an answer. The answer is
the number of the symbol that is drawn wherever
there is a single point for an outline.

H. The program will print:
NAME OF COORDINATE OUTLINE FILE =
??

and wait for you to type in the name of a disk file.
If this is a file that does not exist, the program will
print:

NEW FILE TRY AGAIN!
and return to ask the question again. Any other er­
ror will cause an error message to be printed, and
then the question will be asked again. A control d
or a cr on the first character will cause the pro­
gram to terminate.

I. The program will execute and when finished it
returns control to the table with the new drawing
file. Any error in execution will automatically put
you into the command mode. Some kind of error

36 GEOINDEX

message will be given, and the error should be cor­
rected; then the whole procedure must be started
again. As the program executes, it will print the
feature number of all outlines selected for the draw­
ing file.

HOW TO RUN DWGTAPE ON DATA GENERAL
Purpose of the program: dwgtape reads a System 101

drawing file and writes to tape the header card and
data cards for all outlines. Each separate outline has a
header card with (815) format followed by data cards
in (12F6.3) format. The text position is in the first
position on the first data card. The program makes no
attempt to sort the outlines; it just starts at the begin­
ning of the drawing file and processes the file in se­
quential order.

Several options are available. You can punch cards
for the whole file or you can pick one subfile number
(feature number). It will process all outlines that have
the subfile number you have chosen. The second op­
tion gives you the choice of punching all the data cards
of each outline or of punching only the header card
and first data card for each outline. This is useful
when many text position changes have been made that
would affect only the first data card. The third option
lets you skip files on the tape so that your file can be
placed on a tape with other files.

To run the program:
A. Bring desired drawing file onto table. Make sure

that the drawing file does not contain extraneous
information or the program will not execute cor­
rectly. For example, if you have deleted something
from a drawing file, the deletion will change only
certain parts of that particular record to a zero.
The record still exists and will cause problems in
the program. To delete an unwanted record, save
the file and then bring it back.

B. Run the overlay program dwgtape.
C. The program will print:

PAUSE MOUNT TAPE ON UNIT 0
and will wait for you to enter cr. This gives you a
chance to mount the tape if you have not already
done so. The tape must have a write ring.

D. The program will print:
!SUBFILE# = , TYPE 9999 FOR ALL!

This gives you the option of punching only one
feature number (subfile) or everything in the file.

E. The program will print:
!DO YOU WISH THE FIRST DATA CARD
ONLY???

Answer y (yes) or answer n (no). No other answer
will be accepted.

F. The program will print:
TYPE IN 2 DIGIT STATE NUMBER.

Use the FIPS code for this State. This information
goes on the header card.

G. The program will then ask:
IS THIS THE GRID BEING PUNCHED??

Answer y (yes) or answer n (no). No other answer
will be accepted. This is needed to fill in the header
card. If the answer is yes, the next question will be
skipped.

H. The program will ask:
IS THIS THE COUNTIES BEING
PUNCHED??

Answer y or answer n.
I. The program will ask:

SKIP FILES??
Answer y or answer n.

J. The program will ask:
HOW MANY FILES??

Type in the number of files you wish to be skipped.
K. The program will start to process the data. It

assumes that there is text in the drawing file. If
not, it will print the message:

!NO TEXT IN FILE!
and exit.

L. When execution is complete, the program prints the
message:

!DONE!
and returns control to the table.

HOW TO RUN VERSATEC.EC ON MULTICS

Purpose of the program: versatec.ec creates the files
that are to be used for input to the Multics Versatec
programs. The input files are those files that were
created on the Data General minicomputer by the pro­
gram dwgtape.

To run the program:
A. Before you run this program for the first time, the

program must be linked. This is done by typing:
Ik >udd >Geoindx>PPorter>versatec.ec

B. After this is done, the next step is to send the
systems operator a message to locate the tape:

sm sys op Please locate tape tape number
After the operator has located the tape, then type
in:

ec versatec tape number numbers of files filel
file2 .. . filen. filel, file2 . . . filen must not con­
tain more than 32 characters including blanks.

C. If there is more than one coordinate file, then these
coordinate files must be merged into one large co­
ordinate file. This can be done in the editor qedx.

APPENDIX B 37

D. The output file of the merge must be of the form:
coorNM.unsort, where NM is the State code.

HOW TO RUN INDEX_VERSATEC ON MULTICS
Purpose of the program: index_versatec plots the

various x, y data files that constitute an index map us­
ing the 18-in. Versatec plotter.

To run the program:
A. First link to the following:

Ik > udd > Geoindx > PPorter> index__versatec
Ik > udd > Geoindx > PPorter > init_vals

B. For each State NM you wish to plot, place the follow­
ing files in your working directory (or link). The
program will access the data via these file
numbers:

bordNM 10
gridNM 11
statNM 12
counNM 13
coorNM 14
pverNM 15

The format of pverNM is explained in listing 3.
Note: Before executing any program on Multics,
you should do a new_proc.

C. Execute the plot program by typing: index_ver-
satec

The program will respond:
TYPE IN TWO DIGIT STATE NUMBER

Type in the State number. The program will ex­
ecute and will periodically print out information.

D. The versaplot software will do as many as 100 dif­
ferent plots and automatically store the output in
segments named vpltOO, vpltOI, vplt02, . . .,
vplt98, vplt99. These will write over any existing
segments with that name. Therefore, the first
thing you should do after completing the program
is to rename these segments.

E. To execute for another State:
1. Make sure you have renamed the vpltNM

segments.
2. Do a new_proc.
3. Go to step B.

F. To put plot segments onto tape: There is an ex-
ec_com that will place as many segments as you
wish onto a tape. The best way to do this is to copy
the exec_com into your segments along with all its
six names. Type:

copy >udd>Geoindx>PPorter>gpt.ec- all
G. To use:

1. Take a tape to production control. A label
"For Multics Use" should be on the tape.

2. Send a message to system operator to get the
tape:

sm sys op Please locate tape nnnnnn

LISTING 3.--Parameter cards for a Versatec plot

I. Read input parameter from cards for each data file.
Files

A. Neat line
B. Grid ____
C. State _

Columns
.________________________ 1-22 card 1
________________________ 23-44 card 1
.__________________________ 45-66 card 1

D. Counties ___ 1-22 card 2
E. File of selected outlines ___ 23-44 card 2
F. Outline coordinate __ 45-66 card 2
G. 0 = end of all plotting___ 67 card 1

1 = more cards follow describing another plot
II. Procedure: plot each of the first four files.

III. Sort the file of selected outlines into ascending order (eliminate duplicates).
Plot these selected outlines from the master file, or plot all of the master file.
Each 22-column section contains the following information:

Column 1 ___0 = no plot
1 = plot

Column 2 ___0 = plot character and lines
1 = plot lines (points) only
2 = plot characters only

._______________Number of different line
widths to be used in
plotting this file.

If there are more than one, the program will rotate through those specified, one for each outline.
Columns 4 through 12 provide values for each line width. Start at left. Lines widths are 1 through 5, which yield lines from 1 to 5 dots

wide.
Columns 13 through 22 are not used for versatec plotting on Multics.

There will be a separate subroutine for each of the column 2 choices.
Column 3 _________________________________

38 GEOINDEX

Example: sm sys op Please locate tape
aar711.

3. Wait for message from operator saying that
she lias the tape(s).

4 . Execute the exec_com. Usage is:
ec gpt &1 &2 &3 ... &n

where &1 is the tape number, and &2 to &n
are segments to be put on this tape. Example:

ec gpt aarTll plotl plot2 plot3
which places three plots on the tape. Note:
You can put approximately 1,100 pages of
segments on a 1,000-inch tape and about
2,200 pages onto a 2,000-inch tape. The
exec_com will split a segment between two
tapes, but you do not want to do this. The
plotter cannot handle a multiple-tape file pro­
duced in this fashion.

HOW TO RUN SORT.VERS.COOR.EC ON
MULTICS

Purpose of the program: sort.vers.coor.ee creates the
files that are to be used for input to the Multics Ver-
satec programs. The input files are those files on the
tape that was created on the digitizer by program
dwgtape.

To run the program:
A. Before you run these programs for the first time, the

programs must be linked. This is done by typing:
Ik > udd> Geoindx> PPorter> pgml.vers.exthdr
Ik >udd >Geoindx >PPorter >pgm2.vers. sequent
Ik > udd >Geoindx> PPorter> pgmS.vers.merge
Ik > udd>Geoindx> PPorter> sort.vers.coor.ee

B. If there is more than one coordinate file, then these
coordinate files must be merged into one large
coordinate file. This can be done in the editor
qedx.

C. The output file of the merge must be of the form:
coorNM.unsort

where NM is the State code.
D. You must have coorNM.unsort in your directory or

be linked to it. To run, type:
ec sort.vers.coorATM

where NM is the State code.
E. This exec com is made up of three programs and one

sort, pgml.vers.exthdr creates an unsorted
header record file from the unsorted coordinate
file that was created in the qedx editor. This un­
sorted header record file is input to the system sort
where a sorted header record file is created.

F. pgm2.vers.sequent converts the unsorted coor­
dinate file from a stream to a sequential file.

G. pgmS.vers.merge merges the sorted header file and

the sequential coordinate file into the sorted coor­
dinate file.

H. As sort.vers.coor.ee is executing, messages are
displayed on the terminal indicating the progress
of the job.

I. The files created by versatec.ec and sort.vers.-
coor.ec can be input to the index_versatec pro­
grams.

HOW TO RUN MASTER ON MULTICS
Purpose of the program: master reads coordinate files

for map outlines and calculates areas for each outline.
It begins with the area for the entire State. After com­
puting this area, the program compares the area with
the true area from a file named areano. The true area
divided by the computed area gives a factor that is
used to adjust each area computed for each outline.

At the same time, a center point is computed for
each area. Then these centers are tested to make sure
that they lie inside each outline and that they are not
too close to the boundary. If they pass the test, they
are written to a file cntrNM. Otherwise, they are put
in a file named doubt. This must be checked by hand
and, if necessary, adjusted by hand:

Input files: areano, statNM, coorNM.
Output files: areaNM, cntrNM, measNM, doubt

To run the program:
A. Before running master for the first time, you must

link it to your directory by typing:
Ik > udd > Geoindx > H Johnson > master
Ik > udd > Geoindx > H Johnson > areano

B. To run, type: master
C. When asked for it, type the FIPS code for the State.
D. When asked for it, type the denominator of the map

scale for the map used for this State, format,
(F8.0). For example, where the scale is given as
1/1,000,000, type 1000000.. Where the scale is
1/750,000, type 750000.. Be sure to include the
decimal point.

E. After the State outline is used to compute State
area, the machine will tell you the factor. This
should be close to 1.0. If it is very different from
1.0, you may have the scale wrong or something
may be wrong with the State file.

F. After the run is complete, list doubt and make cor­
rections.

HOW TO RUN STATE_OPTIMA ON MULTICS
Purpose of the program: state_optima prints the max­

imum latitudes and longitudes that border a State
outline.

APPENDIX B 39

To run the program:
A. You must have the following links:

Ik > udd > Geoindx > HJohnson > state_optima
You must also be linked to the State radian file
strdNM.

B. Type: state_optima
and follow directions. You will be asked for FIPS
code for the State.

HOW TO RUN ADDRAD ON MULTICS

Purpose of the program: addrad inserts correct areas,
latitudes, longitudes, centers, and other data into the
strgNM files for final input to the GRASP convert
program.

Input files: strgNM, measNM, conxNM, ctrdNM
Output file: redyNM

To run the program:
A. Before running addrad for the first time, you must

link it to your directory by typing:
Ik > udd > Geoindx > H Johnson > addrad

B. To run, type: addrad
C. When asked, type the FIPS code for the State.
To check out error messages in addrad:
A. While running addrad, the program may write error

messages in the form:
THERE IS NO AREA WITH IF = 28 AND ISF

= 1
B. These messages must all be checked out.
C. The messages are caused by two conditions:

1. The outline for this IF and ISF is a single
point. This condition is evident from an in­
spection of coorNM file, where the ISFNO
number in the header card is 2. When this
condition occurs, no record appears in
measNM.

2. An error has occurred. When there is no outline
for this IF and ISF, then I BOUND and IS PAN
should not be present, or a record should be
found in measNM.
Inspect the reference file to see whether an
outline is present, which is indicated by values
in items 50-59, 76-85 (IBOUND and ISPAN).
No record occurs in measNM for this IF and
ISF.

D. Try running master again to see if the record in
measNM was somehow dropped.

HOW TO RUN COVERT.EC ON MULTICS

Purpose of the program: covert.ec reads the redyNM
file and creates a GRASP file for the State.

To run the program:
A. Before running covert.ec for the first time, you

must create the following links:
Ik > udd > Geoindx > PFulton > covert, ec
Ik >udd>Geoindx>PFulton>indexO
Ik >udd >Geoindx>PFulton> dicn
Ik > udd >Geoindx >PFulton> defn
Ik >udd >Geoindx> PFulton> mask
Ik > udd >Geoindx> PFulton> setmas
Ik > udd > Geoindx > PFulton > grasp
Ik > udd > Grasp > grasp
Ik > udd > Grasp > con vert

B. Before running, print the indexO, dicn, and mask
file.

C. Type:
ec covert NM state

where NM is the FIPS code number for the State
and state is the State name. Example:

ec covert 45 SouthCarolina
D. After running covert.ec, print indexO again to be

sure it has been updated properly. Also compare
the run printout with the sample to be sure it was
successfully completed.

E. After running, be sure you give access on the new
indxNMftie to *.Gmap-Indx.*

F. If the State has to be run through covert.ec again,
be sure to delete the indxNM file before running
covert.ec, and delete the State line from indexO.

HOW TO RUN GR.EC ON MULTICS
Purpose of the program: gr.ec sorts the State index file

by scale and creates three files:
tip for scales less than or equal to 1:24000
t2p for scales greater than 1:63360 and
t3p for scales between 1:24001 and 1:63360

To run the program:
A. Before running gr.ec for the first time, create the

following link:
Ik >udd >Geoindx>PFulton>gr.ec

B. Before running gr.ec, you must first have run
covert.ec for the selected State.

C. Type: ec gr NM
where NM is the FIPS code for the selected State.
Example for Illinois: ec gr 17

D. The program will print the files tip, t2p, and t3p.
These files should be inspected for accuracy. If any
discrepancy is found, the redyNM file must be cor­
rected and covert.ec rerun for the selected State.
Then gr.ec must be rerun to insure that the correc­
tions were entered properly.

E. The three files tip, t2p, and t3p must be kept and
used in two succeeding programs:

40 GEOINDEX

1. They must be used in inplot.ec.
2. They must be used in index_versatec. After

the final Versatec plots have been sent out for
reproduction, the files should be deleted. If
several States are processed through these
programs at the same time, then the files
should be renamed tlpNM, where NM is the
FIPS code for the selected State. In this way,
the data can be stored safely until the pro­
grams are actually executed, at which time
the files must resume their original names.

F. Caution: If the execution fails, be sure to delete the
files that may have been created: t1, t2, t3, tip,
t2p, t3p, and output file. If not, the files will
cause other retrievals to fail.

HOW TO RUN INPLOT.EC ON MULTICS
Purpose of the program: inplot.ec plots the three files

created by gr.ec, which are tip, t2p, and t3p. It pro­
vides a visual check of the integrity of the plot files.

To run the program:
A. Before running for the first time, you must establish

the links:
Ik >udd>Grasp>assoc
Ik > udd > Grasp > closer
Ik >udd >Geoindx>PFulton> inplot.ec
Ik >udd >Geoindx>PFulton> pn!6
Ik > udd > Geoindx > PFulton> pos
Ik > udd >Geoindx> PFulton> plo
Ik >udd>Geoindx>PFulton> plod
Ik >udd>Geoindx>PFulton>ploc6

This program is run soon after gr.ec for the
selected State and to access Tektronix routines
type:

setup_tektronix__tcs.
B. Before any execution of the program, you must also

have all the x, y coordinate files available, such as
bordNM, coorNM, statNM, and counNM. This
program must be run on a Tektronix terminal
because it plots directly on the screen.

C. To run the program, type: ec inplot NM state
where NM is the FIPS code for the State, and state
is the name of the selected State. Example, for Il­
linois: ec inplot 17 Illinois

HOW TO RUN PN16 ON MULTICS
Purpose of the program: pn16 plots a State index map

interactively on a Tektronix CRT screen. This is a
two-step process. First, a GRASP retrieval is ex­
ecuted wherein a disk file is created that contains the
links to the coordinate Geoindex files. This GRASP

file is identified as unit 13 and is described below.
However, the program is also constructed so that the
user has the option of plotting any combination of the
input files.

To run the program:
A. Before running pn16 you must link to it:

Ik >udd>Geoindx>PFulton>pn!6
IE >udd>Geoindx>PFulton> skod

B. Input: You must also have the State base-sheet files
or link to them.

These files are:
coorNM, bordNM, statNM, counNM, and
gridNM

Optionally, you need files created by a GRASP
retrieval or a file in the same format as the
coorNM file.

C. Type: pn!6
D. The program will supply the following prompts. The

user will supply the replies:
Prompt 1: NEED STATE CODES (Enter y

for yes.)
Reply: y (The skod file is then printed; n or

cr presents prompt 3.)
Prompt 2: TYPE 1 AND HIT RETURN KEY

WHEN READY.
Reply: 1 (MANDATORY REPLY)
Prompt 3: ENTER STATE ID NUMBER.
Reply: 18 (example showing FIPS code for

Indiana)
Prompt 4: IF A COORDINATE FILE IS TO

BE PLOTTED, ENTER Y.
Reply: y (presents prompt 5)

n or cr (presents prompt 7)
Prompt 5: ENTER NAME OF FILE TO BE

PLOTTED.
Reply: tip (example showing name of a file

created by GRASP)
Prompt 6: IF INPUT SHOULD BE SORTED,

REPLY WITH A Y FOR YES.
(This file should be sorted the first
time it is used because the pro­
gram expects the numeric iden­
tifiers in ascending order; n or cr
presents prompt 7.)

Reply: y
Prompt 7: ENTER TITLE FOR MAP.
Reply: Indiana for years greater than 1970

(example)
Prompt 8: TO PLOT STATE ENTER 1.
Reply: 1 (causes State boundary to be plot­

ted)
0 (No State boundary will be plot­

ted.)

APPENDIX B 41

cr (No State boundary will be plot­
ted.)

Prompt 9: COUNTY PLOT (ENTER 1 FOR
SOLID LINE, 2 FOR DOTTED,
ELSE 0.)

Reply: 1 (County boundaries will be plotted
in solid lines.)

2 (County boundaries will be plotted
in dotted lines.)

0 (No county boundaries will be
plotted—presents next prompt.)

cr (No county boundaries will be
plotted—presents next prompt.)

Prompt 10: TO PLOT GRID ENTER 1.
Reply: 1 (Latitude and longitude will be

plotted.)
0 (No latitude and longitude will be

plotted—presents next prompt.)
cr (No latitude and longitude will be

plotted—presents next prompt.)
Prompt 11: TO SUPERIMPOSE ANOTHER

FILE, ENTER 0 FOR NO, 1 FOR
LINES ONLY, 2 FOR LINES
AND CHARACTERS. (This
prompt causes another plot file to
be superimposed on the map. The
file must have the same format as
the coordinate files—for example,
the locations of silver deposits
could be plotted on the base or in­
dex map of Nevada.)

Reply: 1 (plots outlines and (or) points only;
presents prompt 12)

2 (plots outlines and (or) points with
an identifying number; presents
prompt 12)

0 or cr (No superimposed file will be
plotted; next erases screen and
starts plotting.)

Prompt 12: ENTER FILE NAME. (This ques­
tion is asked only if 1 or 2 were
the replies to prompt 9.)

Reply: cu3 (example of the name of a plot
file).

The screen is then erased, and the files are plotted.
A bell rings when the plots are completed. For one
hard copy, type the c and cr keys. For multiple
hard copies, use the copy switch. When finished,
cr.

Prompt 13: FOR AN ENLARGEMENT OF A
PART OF THIS PLOT, TYPE Y.

Reply: n or cr (No enlargement will be
made—presents prompt 16.)

y (An enlargement will be made ac­

cording to the replies from
prompts 14 and 15.)

Prompt 14: POSITION CURSOR AT LOWER
LEFT OF DESIRED AREA;
TYPE C.

Reply: Physically move the crosshair cur­
sor to the required position and
type c and cr.

Prompt 15: POSITION CURSOR AT UPPER
RIGHT OF DESIRED AREA;
TYPE C.

Reply: Physically move the crosshair cur­
sor to the required position and
type c and cr. (For best results,
the window defined by the cross­
hair cursor should approximate
the shape of the original plot;
otherwise, geometric distortions
will be introduced into the plot.)

The program from prompt 7 through 13 is then
repeated.

Prompt 16: TO PLOT ANOTHER FILE
ENTER Y FOR YES.

Reply: y (causes a return to prompt 4)
n or cr (ends the program and

causes the message "good" to be
printed to show a successful ex­
ecution)

The system prints STOP fortran_io: Close files?
Reply: yes

HOW TO RUN BIGSTA ON MULTICS
Purpose of the program: bigsta compiles statistics on

most of the files that we use in processing one State. It
counts cards, computes lengths, and so forth,
whenever appropriate.

Input files: coorNM, comxNM, statNM,
strdNM, cordNM, counNM, curdNM, cntrNM,
ctrdNM, gridNM, areaNM, redyNM, measNM,
bordNM, and any others you wish to count

Output files: None

To run the program:
A. Before running bigsta for the first time, you must

link it to your directory by typing:
Ik > udd > Geoindx > HJohnson > bigsta
Ik >udd >Geoindx > HJohnson > bigcal_bigsta
Ik >udd >Geoindx > HJohnson > out2_bigsta
Ik > udd > Geoindx > HJohnson > prim__bigsta
Ik > udd > Geoindx > HJohnson > rads_bigsta
Ik > udd > Geoindx > HJohnson > cards_bigsta

42 GEOINDEX

Ik >udd >Geoindx >HJohnson >outl_bigsta
Ik >udd>Geoindx>HJohnson >ftnumber

B. Type: bigsta
C. When asked, enter the two-digit FIPS State code.
D. After running through the standard files, the pro­

gram asks for any other files you wish processed.
You may wish to type the following: paraNM

E. After the run is complete, the total number of cards
is also given. The printout of the total should be
filed.

HOW TO RUN USMERG.EC ON MULTICS
Purpose of the program: usmerg.ec takes as input a

newly created indxNM file and appends it to the ex­
isting indxus. indxus is the GRASP file that con­
tains all the States. The output file is named usall.
At the end of the run, it is dprinted for checking.

To run the program:
A. Before running usmerg.ec for the first time, you

must establish the following links:
Ik > udd > Geoindx > PFulton> usmerg. ec
Ik > udd > Geoindx > PFulton> indxus

After establishing the link to indxus, copy it into
your directory.

B. To run, type: ec usmerg NM
where NM is the FIPS code for the State that is to
be added to the indxus file. Example: ec usmerg
17 will take indx17 for the State of Illinois and ap­
pend it to indxus.

C. Study the program run listing for any errors, usall
will be dprinted. Study the listing of usall for any
errors.

D. If there are no errors, save the existing indxus by
copying into a file called sindxus. Then delete
indxus, and rename usall, indxus.

E. Run GRASP and check new indxus.
F. If there is an error:

1. Delete usall and indxus.
2. Copy sindxus to indxus.
3. Rerun, starting at C.

HOW TO RUN STATE_TO_TAPE ON MULTICS
Purpose of the program: state_to_tape must be run

on a console that gives a printout.
To run the program:
A. Be sure you have created the following links to the

program:
Ik > udd >Geoindx > HJohnson > state_to_tape
Ik >udd >Geoindx>HJohnson>

heading_state__to_tape
Ik > udd >Geoindx > HJohnson > sts_begin

Ik >udd >Geoindx >HJohnson>
list_state_tape.ec

Ik > udd >Geoindx > HJohnsori>
disk_to_tape_fb_retain.t'C

Ik > udd > Geoindx > HJohnson >
disk_to__tape__vbs_retain.ec

B. Be sure you have the following files in your directory
or that you are linked to an actual segment con­
taining them:

coorNM, cordNM, statNM, strdNM, counNM,
curdNM, cntrNM, gridNM, bordNM, redyNM,
paraNM

C. Look up the number of this tape.
D. Look up the last file number that was written to this

tape. If you have never run this program on this
tape, then the last file number is 1 (the file that in­
itialized the tape).

E. Type:
sm sys op Please find tape number
(Tape number being your tape number)

F. Wait until the operator sends a message to your con­
sole that he has found the tape.

G. Type: state_to_tape
(The program will prompt you for the information
it needs.)

H. As directed by the machine, make two copies of the
printout. Store these printouts for future
reference. Then put the original printout in your
log for this tape. You will need to refer to it
whenever you add more records to the tape or
whenever you want to print a listing of these files.

I. Remember to use a second backup tape with these
files.

J. To drop these files from your directory, link to:
Ik > udd > Geoindx > HJohnson > drop, ec

and type: ec drop NM
where NM is the State number.

HOW TO RUN PULL_OFF ON MULTICS
Purpose of the program: pull_off enables the user to

select files from the Geoindex files and to write the
selected files to disk.

To run the program:
A. Make the following links:

Ik >udd >Geoindx > HJohnson >pull_off
Ik >udd >Geoindx > HJohnson >

separate_pull_off
Ik >udd >Geoindx >HJohnson >state_pull_off
Ik >udd >Geoindx >HJohnson >up^file__number
Ik >udd Xjeoindx >HJohnson >

tape_to_disk_vbs_retain.ec

APPENDIX B 43

Ik >udd>Geoindx>HJohnson>
tape_to_disk_jfb_retain.ec

Ik > udd > Geoindx > HJohnson >
list_state_tape.ec

B. You need to know the tape number.
C. You need to decide whether to take off certain

separate files, or to use all the files for one State.
D. To take off separate files, you must know their exact

names, and their file numbers (positions) on the
tape. This information can be obtained from a tape
map or by using list_state_tape.ec.

E. Send a message to the operator to get your tape:
sm sys op Please find tape nnnnnn

F. Type: pull_off
Follow directions.

G. This program prints out a tape map at the end. If you
do not want that, just hit break key after it starts
printing.

H. Remember that many of the tape files of paraNM,
cntrNM, and redyNM have an extra record that
does not end in a newline character. You may have
to edit these files before using them.

HOW TO RUN BACKUP ON MULTICS (COMPLETE
DUMP)

Purpose of the program: backup enables you to dump
one or more segments to your tape. You can even
dump whole directories. The program creates a file
named control.dump. You must type in all the absolute
path names of the segments or directories you want to
dump to tape. Note: These must be entered in
alphabetical order.

How to run the program:

A. First you must make the followings links:
Ik > udd > Geoindx > H Johnson > backup
Ik > udd > Geoindx > H Johnson > backup, ec
Ik > udd >Geoindx > H Johnson > backupl
Ik > udd > Geoindx > H Johnson > backup2
Ik > udd > Geoindx > H Johnson > dump.ec

B. You must know the absolute path name of the
segments you want to dump for backup. Example:
>udd >Geoindx>HJohnso" ^indxus
>udd >Gmap_Indx >H Johnson
This would dump the one segment indxus and the
whole directory >udd > Gmaj __Indx >HJohnson

C. You must know your tape number.

D. You must send a message to the operator to find
your tape:

sm sys op Please find tape nnnnnn

E. From operator: Go Ahead
F. Type: backup

Computer will respond: backupl
G. Prompt: DID YOU SEND A MESSAGE TO THE

OPERATOR TO FIND YOUR TAPE? IF
YOU DID, TYPE A 1

Response: 1
Computer responds with a prompt. Last part of
prompt is:

NOW TYPE IN THE ABSOLUTE PATH
NAME OF THE NEXT SEGMENT OR DIREC­
TORY YOU WANT TO BACKUP. TYPE ITS
ABSOLUTE PATH NAME

E xample: > udd > Geoindx > H Johnson > indxus
H. Prompt: IF YOU WANT TO DUMP MORE

PATHS, TYPE 1; OTHERWISE, 0
Stop

Prompt: FORTRAN 10 : CLOSE FILES?
Response: Yes
Message: io close filelO

io detach filelO
Computer prints: backup2
Prompt: TYPE YOUR TAPE NUMBER, FOR­

MAT A6
Response: nnnnnn (example, 111849)
Computer prints:

Complete_dump_control.dump HHJ -debug
> udd > Geoindx >H Johnson > indxus

Prompt: TYPE PRIMARY_DUMP_TAPE
LABEL

Response: 111849
Computer prints:

TAPE_: MOUNTING TAPE 111849 FOR
WRITING TAPE_: TAPE 111849 MOUNTED
ON DRIVE 1 DUMP FINISHED.

I. The computer prints:
THIS ROUTINE ADDS 1 OR 2 MESSAGE
FILES TO YOUR DIRECTORY WHICH ARE
AUTOMATICALLY DPRINTED. THEY ARE
VERY IMPORTANT AND SHOULD BE
PICKED UP AND SAVED IN A SAFE
PLACE.

THEY ARE THE DUMP.MAP AND POSSI­
BLE ERROR MESSAGE. SAVE THEM IN A
SAFE PLACE. THROW AWAY ANY OLD
DUMP.MAPS FOR THIS TAPE, SINCE THEY
ARE COMPLETELY OBSOLETE.

Type: Rename indxus indxus_true

44 GEOINDEX

HOW TO RUN RESTORE ON MULTICS

Purpose of the program: restore enables you to put a file
from a backup tape, (created by the program backup)
onto the Multics system

How to run the program:
A. First make the following links:

Ik >udd >Geoindx >HJohnson >restore
Ik >udd Xjeoindx >HJohnson >retrieve.ec

Decide which segments you want to restore from
your backup tape. Check the dump.map for that
tape to make sure that the segments are present.
You must know their exact pathnames.

B. You must have these segments listed in the same
order that they appear in the dump.map.

C. Be sure to rename your file before bringing it back
from tape, such as change indxus to indxus_true.
Then you can use the command:

compare indxus indxus__true
to see if there are any differences.

D. Type: new_proc
and wait for system to respond; then type: restore

E. Prompt: DID YOU SEND A MESSAGE TO THE
OPERATOR TO FIND YOUR BACKUP
TAPE? IF YOU DID, TYPE: 1

F. Prompt: NOW TYPE THE ABSOLUTE PATH
NAME OF THE NEXT SEGMENT OR
DIRECTORY THAT YOU WANT TO
RESTORE; THIS NAME IS ON YOUR
BACKUP TAPE.

Use its absolute path name. Example:
Ik > udd > Geoindx > HJohnson > indxus

G. Prompt: IF YOU WANT TO RESTORE MORE
PATHS, TYPE 1; OTHERWISE, TYPE 0

H. Prompt: TYPE THE NUMBER OF YOUR
BACKUP TAPE, FORMAT (A6). Exam­
ple: 111849

Computer prints:
RETRIEVE CONTROL.RETRIEVE -DEBUG
INPUT TAPE LABEL: 111849
TAPE_: MOUNTING TAPE 111849 FOR
READING
TAPE_: TAPE 111849 MOUNTED ON DRIVE
1
BEGIN AT 01/25/78 2053.3 EST WED.
END OF READABLE DATA.
BK_INPUT: ARE THERE ANY MORE
TAPES TO BE RELOADED?

User responds:
No

Computer prints:
NORMAL TERMINATION 01/25/78 2053.4
EST WED.
DPRINT -DL CONTROL.RETRIEVE.

RETRIEVE.MAP
1 REQUEST SIGNALLED, 0 ALREADY IN
PRINTER QUEUE 3

This routine automatically dprints a retrieve map.
Check to make sure that the requested files are in
your directory.

User should then issue list command to find out
whether the file has been restored. Example:
Is indxus

User should then issue compare command to in­
sure the segment restored is the same as the seg­
ment that was written to tape using backup. Ex­
ample: Compare indxus indxus_true
Computer responds:

NO DISCREPANCIES FOUND.

HOW TO RUN VERPLOT ON MULTICS
Purpose of the program: verplot generates the status

map for the Geoindex. This program reads a file of
commands and creates a Versatec plot file using the
instructions from that file.

To run the program:

A. Link to the following Multics files:
Ik >udd>Geoindx>PPorter>verplot
Ik >udd >Geoindx>PPorter>init_vals

Copy or link to the following coordinate files:
Ik >udd >Geoindx >PPorter >stat90
Ik >udd >Geoindx >PPorter >hawaii
Ik >udd >Geoindx > PPorter > alaska
Ik >udd >Geoindx >PPorter >puerto_rico

B. Create or link to some command file. See listing 4 for
instructions on the contents of this file. An exam­
ple is shown in listing 5.

C. Run the program on Multics by typing: verplot
D. The program will ask the following question:

WHAT IS THE NAME OF YOUR COMMAND
FILE??
USE NO MORE THAN SIX CHARACTERS!

and will read your answer, then attach and open
this file for reading. A nonexistent file will give an
error message on the terminal.

E. The program reads the data and calls the subroutine
corresponding to that command. Any error in a
command causes this error message to be written
along with the entire data record:

APPENDIX B 45

THIS LINE CANNOT BE IDENTIFIED AS A
COMMAND.

Note: All error messages are written to a file
called temp 10, which is created by the program
and at the end of the run dprinted to provide a
hard copy, which is always provided unless the pro­
gram does not run to completion (example: hitting
break key); if it is not dprinted, you have no means
to get the information in temp 10. An abnormal
termination leaves tempIO as a zero length file.

F. As each subroutine is called, it will process the infor­
mation given in the command line and write
messages to tempW for both valid operations and
for errors. We have tried to take into account
every type of possible error for which it gives an
appropriate error message and have the program
continue. This program should give a plot and a
progress and error report to cross-check and to
identify any errors and omissions. Any error for
which a report is not given is not a common typing
or omission error and must be resolved in a dif­
ferent manner.

G. After the program has finished the plots, it prints
this message:

PLOT FINISHED
N VECTORS LOST
N ACTIVE LINES USED
1 request signalled, N already in printer queue 3.
Stop.

H. To put plot segments onto tape: An exec_com will
place as many segments as you wish onto a tape.
The best way to do this is to copy the exec_com in­
to your segments along with all six of its names.
Type: copy > udd >Geoindex>PPorter>gpt.ec-all

I. To Use: Label a tape "For Multics Use" and take it to
production control. Send message to system
operator:

sm sys op Please locate tape number nnnnnn
Wait for message from operator saying he has the
tape(s). Execute the exec_com. Usage is:

ec gpt &1 &2 &3 . . . &n
where &1 is the tape number, and &2 to &n are
segments to be put on this tape. Example: ec gpt
aar730 plotl plot2

LISTING 4. -Formation of the command file for verplot and an example command file

The file is composed of one or more instructions taken from a list of eight commands along with a variety of keywords that give almost limitless
scope in creating a Versatec plot file. Restrictions for a command will be explained in that particular section.

I. All commands consist of records that have a maximum of 80 characters. This record length facilitates the use of cards if wanted.
II. All commands and keywords can be either uppercase or lowercase, but must all be of one type in a particular word. The types can be mixed

within a record.
III. Each command must start in column 1 (card-image terminology used) and must be immediately followed by a semicolon.
IV. Keywords can be in any order but must be separated by commas. For each command, certain keywords are required and others are op­

tional; default values are present if an optional keyword is missing. Many keywords include some data values.
V. Except for the PLOT command, all commands and keywords must be on the same record.

VI. Blanks are ignored except in the following cases:
A. All commands and keywords must be in a continuous string.
B. Commands must start in column 1 and be immediately followed by a semicolon.
C. Keywords that require a data value must be immediately followed by the character =.
D. When used in a data value as a place holder. Example: x = Ml!!, will be interpreted as x = 100. Example: y = 2!.!!, will be interpreted

as y = 20.
Note: "!" is the symbol used for a blank space.

VII. If at any time the same keyword occurs twice in a record, the second occurrence will take precedence.
VIII. In all commands, if an error in the data value for a keyword occurs, that value will be either ignored or set to the default value if one exists.

IX. In all commands, if any required keyword is missing, the command is ignored.
X. All numbers can be in either integer or real number format.

XI. An example of a command file, statpm, follows:

statpm

outline; npoint = 5,shade= 1 3
19.4,0.67,19.4,0.92,19.73,0.92,19.73,0.67,19.4,0.67

outline; npoint^S,shade= 1 2
19.4,1.59,19.4,1.84,19.73,1.84, 19.73,1.59,19.4,1.59

outline; npoint=5, shade=l
19.4,2.51,19.4,2.76,19.73,2.76,19.73,2.51,19.4,2.51

46 GEOINDEX

LISTING 4. -Formation of the command file for verplot and an example command file-Continued

outline; npoint=5, shade=4
19.4,3.43,19.4,3.68,19.73,3.68,19.73,3.43,19.4,3.43

legend; x=19.88,y=0.72,height=0.1,nchar=9
PUBLISHED
legend; x=19 88,y=1.64, height=0.1,nchar=8
IN PRESS
legend; x=19.88,y=2.56,height=0.1,nchar=22
IN COMPUTER PROCESSING
legend; x=19.88, y=3.48,height=0.1,nchar=14
IN COMPILATION
reorg; x^l.O, y=1.0
outline; npoint=5
0.0,0.0,0.0,3.2,3.4,3.2,3.4,0.0,0.0,0.0

legend; x-1.35, y=3.3, height=0.1, nchar=6
ALASKA
plot; name-alaska, shadeall, pattern=l,13
end plot;
reorg; x=5.6, y=-0.4
outline; npoint=5
0.0,0.0,0.0,1.3,2.0,1.3,2.0,0.0,0.0,0.0

legend; x=0.68, y=1.42, height=0.1, nchar=6
HAWAII
plot; name=hawaii, shadeall, pattern=l,13
end plot;
reorg; x=8.0, y=0.7
outline; npoint=5
0.0,0.0,0.0,0.7,2.0,0.7,2.0,0.0,0.0,0.0

legend; x=0.37,y=0.8, height=0.1, nchar=ll
PUERTO RICO
plot; name=puerto_rico, shadeall, pattern=l,13
end plot;
reorg; x=-14.6, y=-1.3
linwid; 4
outline; npoint=5
0.0,0.0,0.0,17.75,22.65,17.75,22.65,0.0,0.0,0.0

legend; x=6.775, y=16.8, height=0.3, lwidth=4, nchar=30
STATUS OF GEOLOGIC MAP INDICES
legend; x=7.725, y=16.0, height=0.3, lwidth=4, nchar=23
SATURDAY, MARCH 1, 1980
linwid; 1
plot; name = stat90, textfield = 1,6, refclear=, height = 0.1,

select, selshade
1 1 13
4 1 13
5 1 13
6 1 1
8 1 13
9 1 1

12 1 1

APPENDIX B 47

LISTING 4. -Formation of the command file for verplot and an example command file -Continued

13 1 12
16 1 13
17 1 13
18 1 13
19 1 13
20 1 13
21 1 13
22 1 13
23 1 13
24 1 1
25 1 1
26 1 1
27 1 1
28 1 13
29 1 13
30 1 13
31 1 13
32 1 13
33 1 1
34 1 13
35 1 13
36 1 13
37 1 13
38 1 13
39 1 13
40 1 1
41 1 1
42 1 1
45 1 13
46 1 13
47 1 1
48 1 12
49 1 13
50 1 1
51 1 13
53 1 1
54 1 13
55 1 1
56 1 13

END PLOT;
plot; name = stat90, textfield= 1,6, height = 0.1, select,selshade

10 1 1
44 1 1

end plot;
plot; name=stat90, select, selshade

11 1 1
25 2 1
25 3 1
51 2 13

end plot;

48 GEOINDEX

LISTING 5. -Commands for verplot

END PLOT

Purpose:

The command END PLOT informs the program that the information describing the plotting of a file is at an end. The only use is in conjunc­
tion with the PLOT command.

Command usage:

END PLOT; (or end plot;)-The program will continue reading the command file until the end plot command is reached.

LEGEND

Purpose:

The command LEGEND plots the character string given in a manner described by the keywords.

Command usage:

LEGEND; (or legend;) (keywords) followed by the text string on the next record.

Required keywords:

x- (or X=)-x coordinate of start of text string
y= (or Y=)-y coordinate of start of text string
height = (or HEIGHT'=)-Height of each character
nchar= (or ATCHAR =)-Number of characters in text string on next record (Always start in column 1 and use no more than 80 characters,

which can be either uppercase or lowercase (or mixed).)

Optional keywords:

angle = (or ANGLE=)-The angle at which the text string is plotted (Default = 0 degrees.)
lwidth= (or LWIDTH=)-The width of the line in dots (Default = 1 dot wide.)

LINWID

Purpose:

The command LINWID changes the line width of all subsequent plotting to the value given.

Command usage:

linwid; (or LINWID;) (number)-The number must be 1,2, 3, 4, or 5 because the Versatec software will accept no others. If no number is pres­
ent or an error is in the data, the default value of 1 will be used.

OUTLINE
Purpose:

The command OUTLINE plots an outline whose coordinates are on the following record(s).

Command usage:

outline; (or OUTLINE;) (keywords)-Foliowed by the record(s) containing the data points.

Required keywords:

npoint= (or NPOINT=) - The -number of data pairs of x, y coordinate points that follow (All coordinates must be separated by commas. No
more than 20 pairs can be used, with no more than 20 values per record.)

Optional Keywords:

shade = (or SHADE=)- Tells the program to shade this outline and gives the reference number of the pattern to use in shading (The valid
reference numbers are 1 through 20 with any other number defaulting to 1. However, numbers 14 through 20 are blank patterns that
are reserved for use with the PATTERN command.)

noline (or NOLINE)- Causes the outline not to be plotted (This should not be used unless the shade option is also used).

PATTERN

Purpose:

The command PATTERN reads data values and stores these in an array that will be used as a pattern for shading at some later point in the
program.

Command usage:

pattern; (or PATTERN;) (keywords)-Foliowed by one or more records containing the data values.

APPENDIX B 49

LISTING 5. -Commands for verplot-Continued

Required keywords:

refnum= (or REFNUM-)-T\\e reference number to be used in identifying this pattern (It must be from 14 through 20.)
numword= (or NUMWORD-)-The number of data words on the following record(s) (This number can only be 1, 2, 4, 8, or 16. Any other

number will give an error. The maximum number of words accepted by Versatec is 16, and all the others divide evenly into 16.)
type= (or TYPE=)-The only choices are INTEGER or OCTAL. The data values start on the next record. The program will read as many

records as necessary to satisfy the numword variable. All data values are separated by commas.

PLOT

Purpose:
The command PLOT reads the name of a file, attachs and opens it for input and plots the data in that file according to the other keywords or

to the default values.

Command usage:

plot; (or PLOT;) (keywords)-Followed by records containing a selective records list. The END PLOT command must always be used in con­
junction with this.

Required keywords:
name= (or NAME=)-Contains the name of the file to be plotted (Not more than 20 characters may be used.)

Example: PLOT; NAME=filename
END PLOT;
This constitutes the simpliest use of the plot command.

Note: This command will plot only those files whose outlines have a header card where the number of pairs of points in the outlines are listed
in integer format in columns 16-20. The data points will follow in (12F6.3) format with the first data point being a text position.

Optional keywords:
height= (or HEIGHT =)-The height of each character in the header card text; default value of 0.14 in.
noline= (or M)L/M?=)-Does not plot the outline but allows all other options, such as character plotting and shading (Default is to plot the

outlines.)
pattern= (or PATTERN=)~ Followed by a series of numbers (The first is the count of how many more numbers follow. The remaining

numbers are a sequence of pattern reference numbers, through which the program will rotate when shading outlines. Default pattern se­
quence is 1 through 10.)

refclear= (orREFCLEAR=)-Wi\\ clear the area around text when shading (This has one major problem. The Versatec software does not
have a clearing function. Instead, if two or more areas are given in one shading command, the software will alternate shading and clear
areas as the areas overlap. For our purpose, this is acceptable if the area to be cleared lies entirely within the outline. However, if areas
overlap or the text lies outside, effects will be confusing. Default is not to clear the area.)

select= (or SELECT=)-Will plot only those outlines listed in the selective file following the keywords.
selshade= (or SELSHAD£?=)-Will shade only those outlines that have a valid pattern reference number listed in the selective file following

the keywords.
shadeall = (or SHADEALL =) - Will shade all outlines and will rotate through the pattern sequence given (or 1-10 by default) (An outline pat­

tern can be changed by listing a valid pattern reference number in the selective file following the keywords.)
textfield= (or TEXTFIELD=)- Folio wed by a series of numbers, the first number gives the count of how many numbers follow. The remain­

ing numbers are a sequence representing some of the eight fields on the header cards. These are numbered from 1 to 8 from left to right.
This sequence of numbers tells what fields will be plotted and in what order. Any blank or zero valued field will be ignored.

Example: text field=3,8,1,6
There are three fields to plot. First field 8, then field 1, and then field 6. Each field will be lined up underneath the previous one.

The keywords may occupy more than one record. All records containing keywords, except the last, must have a comma as the last entry
on the record. This is the only indication that there are more keywords given.

A keyword with associated data values must be contained on one record. They cannot span records.
The selective file following the keywords comprises records containing the reference number (field one of the header card), the

subfeature number (field three), and an optional pattern reference number. These are all five character fields contained in column 1
through 15 of the record. The two outline identifiers must be in this field exactly as they are in the five character header card field. The pat­
tern reference number is in format (15).

REORG

Purpose:
The command REORG changes the software origin of the plot file. This has the effect of moving the subsequent plotting commands in rela­

tion to those done previously.

50 GEOINDEX

LISTING 5. -Commands for verplot-Continued

Command usage:
reorg; (or REORG;) (keywords)

One, but not both, of the following keywords must be present. If one is missing, the default of 0 for that value will be used. A movement to
the left or down is negative; right or up is positive.

Keywords:
x- (or .X"=)-The amount of movement (inches) in a left or right direction
y= (or r=)-The amount of movement (inches) up or down

SCALE

Purpose:

The command SCALE changes the scale of all subsequent plotting.

Command usage:
scale (or SCALE) (number)

A blank data value or an error will default to a scale of 1.

SYMBOL

Purpose:

The command SYMBOL changes the character plotted when a single point is encountered.

Command usage:
symbol (or SYMBOL) (number)

The number represents some character. Any error in the number will default to a small triangle (number 2).

APPENDIX B 51

HOW TO RUN PIN90 ON MULTICS
Purpose of the program: pin90 will plot the U.S. map

and then, if the user wishes, will plot numbers, sym­
bols, and outlines using GRASP files and will also plot
the grid file.

Input files: f/7e74-stat90; file 15 -GRASP files;
file16-grid file

Output files: None (The only output is the plot on the
screen.)

To run the program:
A. Before running pin90 for the first time you must link

it to your directory by typing:
Ik > udd > Geoindx > PPorter> pin90
Ik > udd >Geoindx > PPorter> enlrg
Ik >udd >Geoindx > PPorter> indiv
Ik > udd >Geoindx > PPorter> min-max
Ik > udd >Geoindx> PPorter>plocv
Ik >udd >Geoindx> PPorter> grid

B. To run, type: pin90
C. The user will then respond to the following ques­

tions:
1. NEED SYMBOL CODES? (ENTER Y FOR

YES.) If you want to see the symbol and cor­
responding number, type y and cr. Other­
wise, just enter cr and proceed to C3.

2. TAP 1 AND RETURN KEY WHEN READY
3. Screen is erased.
4. ENTER SYMBOL NUMBER AND FILE TO

BE PLOTTED. Example: 43silver You may
enter as many as five files (maximum
number of eight characters for file name).
After each entry, enter cr and the message
will appear again. When you have entered
the last file or if you have no entry, just
enter cr.

5. FOR SYMBOL AND NUMBERS (WITH
PLOTTING), TYPE 1; FOR SYMBOL AND
(OR) OUTLINE (NO NUMBERS), TYPE 2;
FOR NUMBERS ONLY (NO SYMBOLS
OR PLOTTING), TYPE 3. If you had no en­
try for C4 just enter cr. Otherwise, type in
the number and cr.

6. Screen is erased.
7. ENTER TITLE FOR MAP. Example: U.S.

MAP
8. TO PLOT INDIVIDUAL STATES, ENTER

1-FOR ENTIRE U.S., ENTER 2. You
must enter 1 or 2.

9. TO PLOT GRID, ENTER 1. If you want the
grid, type 1 and cr; otherwise just type cr.

10. IF YOU WANT A HARD COPY UPON COM­
PLETION, TYPE C.

11. Screen is erased. If you entered 1 in response
to C8, the following will appear on the
screen:

GIVE NUMBER OF STATES TO BE
PLOTTED
LIMIT OF 10 IN ASCENDING ORDER
MUST BE A 2 DIGIT NUMBER, 01-51

For example, to plot the States of Illinois
(12), Indiana (13), Kentucky (16), Ohio (34),
and West Virginia (49), respond with the
code number for each State, as follows:
1213163449.

This means a group of as many as 10
States. The States and their corresponding
numbers appear on listing 6.

Screen is erased. The States along with
GRASP files or grid file are plotting; if the
user typed c in response to CIO, a hard copy
will be made automatically at this time.

12. FOR AN ENLARGEMENT OF PART OF
THIS PLOT, TYPE Y. Type y and cr if you
want an enlargement; otherwise enter cr
and proceed to C17.

13. FOR A HARD COPY AFTER ENLARGE­
MENT, TYPE C. If the user wants an
automatic hard copy, type c and cr; other­
wise just enter cr.

14. POSITION CURSOR AT LOWER LEFT OF
DESIRED AREA: TYPE C. Postion the
vertical and horizontal cursors at the desired
location, type c and cr.

15. POSITION CURSOR AT UPPER RIGHT OF
DESIRED AREA, TYPE C. Position the
vertical and horizontal cursors at the upper
right location, type c and cr.

16. Screen is erased. An enlargement of the
desired area is plotted, and an automatic
hard copy is made upon completion if the
user typed c in response to C13.

52 GEOINDEX

LISTING 6. - The 48 conterminous States and District of Columbia and their corresponding two-digit numbers that are used for plotting individual
States

[These are codes used on file stat 90 (not FIPS codes)]

Alabama
Arizona
Arkansas
Calfornia
Colorado
Connecticut
Delaware
District of Columbia
Florida
Georgia
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana

AL
AZ
AR
CA
CO
CT
DE
DC
FL
GA
ID
IL
IN
IA
KS
KY
LA
ME
MD
MA
MI
MN
MS
MO
MT

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
01-04
21
22
23
24
25

Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming

NE
NV
NH
NJ
NM
NY
NC
ND
OH
OK
OR
PA
RI
SC
SD
TN
TX
UT
VT
VA
WA
WV
WI
WY

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45,46,47
48
49
50
51

APPENDIX C. COMPUTER-PROGRAM
REFERENCE

EXEC_COM NAME: COMTAPE.EC

Author: Pearl Porter
Purpose of the program: comtape.ec reads an outside

ASCII tape into the Multics system and writes the
tape into a segment given by the user. Comtape.ec is
written in Multics command language. All the pro­
grams in the Geoindex are written in Fortran IV
unless otherwise specified.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec comtape nnnnnn segno/me
Arguments:

-ids- Input description of the tape
-ods- Output description

Subroutines called: None

Common data referenced: None
Input file: refNM on magnetic-tape
Output file: refNM
Arrays used: None
Called by: None
Error checking and reporting: The comtape.ec seg­

ment will work for tapes that are unlabeled and se­
cond in the file sequence and have fixed length format,
density of 800, record length of 80, and block size of
800. After the comtape.ec has been executed, do not
try to type in other commands until the process has
been completed because this can cause errors.

Constants: None
Program logic:
1. An outside ASCII tape is read into the Multics

system and written to a segment that the user
specified.

2. The user will receive a count number of the records
copied onto SEGNAME, and the file will
automatically be dprinted.

copy_file -ids "tape.ibm_ &1 -nib -nb 2 -fmt fb -den
800" -ods "record_stream_ -target vfile_ &2" dp &2
iqu i t

1600 -rec 80 -bk

APPENDIX C 53

PROGRAM NAME: CHKREF
Author: Harold Johnson
Purpose of the program: chkref is used to check the ac­

curacy of the reference files. It checks whether certain
records are integer or real numbers, whether the
records exceed their prescribed lengths, whether the
State number is consistent, whether the records are in
the correct order within each individual reference,
whether the separate references are in correct order,
and whether the first record is correct.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: None
Arguments: None
Subroutines called: assoc, setup_chkref,

clean_chkref, checkitem_chkref, reup_chkref,
rfskip__chkref

Common data referenced: None
Input files: refNM, matrix
Output files: refNM
Arrays used: None
Called by: None
Error checking and reporting: Messages are written to

the interactive user when the State number is wrong,
when the id number is out of order, when the item
number is out of order, when the initial item number
for a reference is not 2, when the State name is wrong,
and whenever a read error occurs. The user is in­
formed of the total number of records that were read
in the reference files.

Constants: None
Program logic:

1. The file to be checked and the control file matrix are
attached to Fortran numbers 30 and 22 by calling
assoc.

2. Vectors itype, ichar, and item are set up by the
subroutine setup, which describes the type and
number of character postions allocated to each
reference item.

3. Subroutine clean puts blanks into the words of if He,
/file, and ifilel.

4. A reference record is read, noting its State number
istate, reference number jf, and item number/f/n.
The reference data on this record is read into I file.

5. Subroutine checkitem uses jtm to check if the type
of data in /file is integer or floating point as
prescribed by itype for this jtm and whether or
not jfile lies in limits prescribed by ichar.

6. I file is read into ifilel and reup_chkref transfers
information from jf, jtm, and jfile into if, itm, and
if He, respectively.

7. A new record is read into jstate, jf, ftm, and jfile,
and they are checked by checkitem_chkref.
i state and jstate are compared to see if they are
identical.

8. Where if is greater than jf, the if numbers are out of
order, and an error message notes this; where if is
less than jf, a new reference file has been reached,
and it is checked to see if item number jtm is a 2.

9. Where if is equal to jf, item numbers are compared
to see if jtm is greater than itm. Unless itm is 87
(indicating that there are repetitions in this
reference), an error message appears.

10. After an error or after satisfactorily passing each
test, reup_chkref is called to move jf, jtm, and
jfile to if, itm, and if He. Then control passes to
step 7.

11. After all records have been checked, ncard, the
number of cards read, is written in a message to
the user.

c ******** CHKREF PROGRAM *****
c SEPT. 16, 1976 H. JOHNSON
c
external io (descriptors)
c

THE FOLLOWING FILES ARE REQUIRED FOR THIS PROGRAM:
INPUT FILES:
22 - "MATRIX" FILE WHICH FORMATS IRIS RECORDS.
30 - REFERENCE FILE TO BE CHECKED.
OUTPUT FILE:
06 - MESSAGE FILE.

c
c
c
c
c
c
c
c
c
c
\cD
c

Converted to Multics February 17, 1977 H
THIS PROGRAM IS WRITTEN TO RUN ON THE

Johnson
NEWEST REFERENCE FILES

WHICH ARE MADE UP TO USE WITH THE NEWEST GRASP PROGRAM, IRIS AN

EATE

54 GEOINDEX

c THIS PROGRAM IS DESIGNED TO RUN THROUGH THE REFERENCE FILES AND
c CHECK FOR THEIR ACCURACY.
c IT CHECKS WHETHER THE FILE IS INTEGER OR REAL IF IT IS SUPPOSED
\c TO
c BE
c IT CHECKS IF THE FILE IS WITHIN THE PRESCRIBED LIMITS
c IT CHECKS ON THE STATE NUMBER
c IT CHECKS ON THE ORDER OF THE SEPARATE FILE SUBJECTS.
c IT CHECKS ON THE OREDER OF THE ITEMS WITHIN A SINGLE SUBJECT.
c
c

dimension itype(46),ichar(46),item(46,10),ifile(73),jfile(73)
dimension ialpha(5),ifilel(50)
character*32 filename

data iblank/" "/
call io ("attach","file22","vfile_ ","matrix","-append","-ssf")

call io ("open'V'file22","si")
write(6,890)

890 format(" enter the file name to be checked :")
read 895, filename

895 format (a32)
call io ("attach","file30","vfile_",filename,"-append","-ssf")
call io ("open","file30","si")

c
c
c
c

idim=46
c IDIM IS THE NUMBER OF RECORDS IN THE MATRIX FILE
c

call setup_chkref(itype,ichar,item,idim)
c THIS SET UP THE MATRICES ITYPE(IDIM),ICHAR(IDIM),ITEM(IDIM,IWII
\cDE)
c WHICH DESCRIBE THE TYPE AND NUMBER OF CHARACTER POSITIONS
c ALLOCATED TO EACH ITEM.
c

nfile=73
call clean_chkref(ifile,nfile)

c THIS ROUTINE PUTS BLANKS INTO THE WORDS OF IFILE.
c

call clean_chkref(jfile,nfile)
nfile=40
call clean chkref(ifile1,nfile)

call rf skip__chkref (ncard)
c THIS ROUTINE READS DOWN FILE 30 LOOKING FOR THE FIRST TRUE RECOR
\cD,
c SKIPPING THE CARDS WHICH MERELY DESCRIBE THE REFERENCE FILE,
c NCARD IS THE KEY NUMBER FOR THE FIRST RECORD,
c IT POSITIONS 30 READY TO READ THE FIRST RECORD,
c

ncard=1

APPENDIX C 55

C
read(30,930,end=1000,err=500)istate,jf,jtm,(jfile(k),k-l,73)

930 format(12,13,12,73al)
c

call checkitem_chkref(Idim,ncard,Item,jtm,jfile ,ltype,ichar
\c)
c THIS ROUTINE CHECKS IF THE FILE IS INTEGER OR FLOATING POINT
c WHEN ITS ITM NUMBER INDICATES THAT.
c IT ALSO CHECKS IF THE FILE IS CONTAINED WITHIN THE BOUNDARY SET
\cBY
c ITS ITM NUMBER.
c THESE TYPES AND LIMITS ARE READ FROM MATRIX AND FOUND HERE IN TH
\cE
c FILES ITYPE AND ICHAR.

do 5 k=l,40
ifilel(k)=jfile(k)

5 continue
call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)

c THIS ROUTINE PUTS INFORMATION IN THE J-FILES,JF,JT,JFILE,
c INTO THE IFILES IF,ITM,IFILE.
c
10 ncard=ncard+l

read(30,930,end=1000,err=500)jstate,jf,jtm,(jfile(k),k=1,73)
call checkitem_chkref(idim,ncard,item,jtm,jfile,itype,ichar)
if(istate .eq. jstate) go to 20
write(6,940)ncard

940 format(" THE STATE NUMBER IS WRONG ON RECORD NUMBER M ,i6)
write(6,93 l)jstate,jf,jtm,jfile

931 format(i2,13,i2,73al)
call reup_chkref(itype,ichar,it em,idim,if,itm,iflle,jf,jtm,jfile)

.go to 10
c
20 if(if .le. jf) go to 30

write(6,950)ncard
950 format(" THE IF NUMBER IS OUT OF ORDER IN RECORD NUMBER ",i6
\c)

write(6,93 l)jstate,jf,jtm,jfile
call reup_chkref(itype,ichar,it em,idim,if,itm,ifile,jf,jtm,jfile)

go to 10
c
30 if(if .it. jf) go to 40

if((itm .It. jtm) .or. (itm .eq. 87)) go to 35
write(6,960)ncard

960 format(" THE ITEM NUMBER IS OUT OF ORDER AROUND RECORD NUMBER",i6)
write (6,93 l)jstate,jf,jtm,jfile

35 call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10

c
40 if(jtm .eq. 2) go to 50

write(6,9 70)ncard
970 format (" THE ITEM SHOULD BE 2 IN RECORD NUMBER If ,i6)

write(6,93l)jstate,jf,jtm,jfile
call reup_chkref(itype,ichar,item,idim,if,itm,if lie,j f,jtm,jfile)

go to 10

56 GEOINDEX

c
50

60
c

do 60 k=l,40
if (ifilel(k)
cont inue

ne. jfile(k)) go to 70

call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)
go to 10

c
70 write(6,980)ncard
980 format(" THE STATE NAME IS WRONG IN RECORD NUMBER ",i6)

write(6,931) jstate,jf,jtm,jfile
call reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,jfile)

go to 10
c
c
500 write(6,990)ncard
990 formatC" THERE WAS A READ ERROR ON RECORD NUMBER ",16)

call reup_chkref(itype,ichar,item,idim,if,itm,if ile,j f,jtm,jfile)
go to 10

c
1000 write(6,1900)ncard
1900 format(" YOU REACHED THE EOF AFTER READING ",i6," RECORDS.")
c **

call io ("close","file22")
call io ("close","fileSO")
call io ("detach","file22")
call io ("detach","fileSO")

c **
stop

end
c ******** END **********

SUBROUTINE NAME: RFSKIP_CHKREF

Author: Harold Johnson
Purpose of the program: rfskip_chkref checks to locate

the record having reference number 1 and item
number 2, which should be the first record in most
reference files.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call rfskip_chkref (j)
Arguments: j-The record number in the reference file,

which has reference number 1 and item number 2
Subroutines called: None
Common data referenced: None
Input files: refNM

Output files: None
Arrays used: None
Called by: chkref
Error checking and reporting: The record number of the

beginning record is always reported. If no correct first
record is found, a message to that effect is sent to the
user.

Constants: None
Program logic:
1. referenceEach record is read to determine its

number, ib, and its item number, /c.
2. These are compared with 1 and 2 until a match is

found. This matching record is reported to the
user.

3. If no match is found, a warning message is written to
the user, the file is closed, and control returns to
chkref.

APPENDIX C 57

c ******* SUBROUTINE R F SKI P_C HKR E F *******
c *
c ***
c

subroutine r f sk i p_chk ref (j)
data ione/" 1 "/7itwo/"2 "/

1
900

read (30,900,end = 1 00) ia/ib/ic
format Ca2/a4,a1)
if(ib .eq. ione .and. ic .eq, ic) go to 10

go to 1
10 wri te(6/910) j
910 formatC" THE REFERENCE DATA BEGINS AT THE",i4,"TH RECORD")

back space 30
return

c ***
100 write(6,920)
920 formatC' THERE WAS NO FIRST RECORD FOUND! what's wrong?")
rewind 30
return
end

SUBROUTINE NAME: CLEAN_CHKREF
Author: Harold Johnson
Purpose of the program: clean_chkref inserts blank

characters in each word of the vector if lie.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call clean_chkref (ifile,nfile)
Arguments:

if He-A vector
n file-The number of elements in if He

Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: if He
Called by: chkref, reup_chkref
Error checking and reporting: None
Constants: None
Program logic:
1. The blank character is inserted into each word of I file

by a do loop.

c ******* SUBROUTINE CLEAN_CHKREF *******
subroutine clean.chkrefCifi Le/nf i Le)

c THIS ROUTINE PUTS BLANK WORDS INTO THE FILE IFILE.
c
c HJohnson February 16/ 1977
c

dimension ifile(nfile)
data iblank/" "/
do 10 k = 1,nfi Le
i fi le(k) = id Lank

10 cont i nue
retu rn
end

c ********* END CLEAN.CHKREF *********

58 GEOINDEX

SUBROUTINE NAME: REUP_CHKREF
Author: Harold Johnson
Purpose of the program: reup_chkref transfers the

characters in /file to if He.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call reup_chkref (itype,ichar,item,-

idim,if,itm,ifile,jf,jtm,jfile)
Arguments:

if He A vector containing the reference data in a
refer-record

jfHe- The same kind of vector as if lie
Subroutines called: clean_chkref
Common data referenced: None
Input files: None
Output files: None
Arrays used: ifile(73), jfile(73)
Called by: chkref
Error checking and reporting: None
Constants: None
Program logic:
1. clean_chkref is called to put blanks into If He.
2. Characters in jfile are written into if He.

c ******* SUBROUTINE REUP_CHKREF *******
subroutine reup_chkref(itype,ichar,item,idim,if,itm,ifile,jf,jtm,j

\cfile)
dimension itype(idim),ichar(idim),item(idim,10),ifile(73),jfile(73

&)
c H Johnson February 17, 1977
c

If-Jf
itm=j tm
nfile=73
call clean_chkref(ifile,nfile)

10

c
c

do 10 k=l,73
ifile(k)=jfile(k)
con tinue
return

end
c ******* END REUP CHKREF *******

SUBROUTINE NAME: BLANKCHECK_CHKREF

Author: Harold Johnson
Purpose of the program: blankcheck__chkref checks to

see if the information in the current record being
checked is within the limits prescribed by matrix.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call blankcheck__chkref (ichar,jfile, -

ncard)
Arguments:

ichar- The admissible length of the current reference
item

I file- The vector of characters obtained from the cur­
rent reference record

ncard- The number of the record in the reference file
currently being examined

Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: jfile(73)
Called by: checkitem_chkref
Error checking and reporting: When jfile is too long, a

message explaining the problem, giving the record
number along with a printing of the file jfile and the
number of the erroneous nonblank characters is sent
to the user.

Constants: None
Program logic:
1. All characters after the icharih are compared with

the blank character. Discrepancies are reported.

APPENDIX C 59

******* SUBROUTINE 3LANKCHtCK_CHKREF.FORTRAN *******
subroutine blankcheck_chkref(ichar*jfile^ncard)

this routine checks to see if
within ichar spaces by seeing

H Johnson February 16* 1977

the file jfile(73) is contained
if the oth^r spaces are blank

10

900

dimension jfile(73)
data iblank/" "/
Jo 10 k=1,4
i = i c har + k
ifCjfileCi) .ne. iblank) go to 20
con t i nue
return
wri teC6,9UO)ncard/i
formatC" THE FILE IS TOO LONG ON RECORD NUMBER i6 BECAUSE

CHARACTER ",i2/" IS NOT BLANK")
writeC6,901)CjfileCk),k=1,73)

901 formatC" THIS DATA IS "*73a1)
return

c **

end
C *******£NO BLANKCHECK.CHKREF *******

SUBROUTINE NAME: TYPECHECK_CHKREF

Author: Harold Johnson
Purpose of the program: typecheck_chkref checks to

see whether the information in the current reference
record represents an integer or floating-point
number when that type is indicated by its item
number.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call typecheck__chref (itype,ifile,ncard)
Arguments:

itype- One of the type of 1 or 2
if He A vector of characters obtained from a record of

the reference file being checked
ncard-The number of the current record being

checked

Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: checkitem_chkref
Error checking and reporting: When if He is wrong, this

is reported to the user, along with the record number
and copy of if He.

Constants: None
Program logic:
1. If the item number is 1, each character in if fie is

checked to determine if it is 0,1,2,3,4, 5, 6,7,8,9,
or blank.

2. If the item number is 2, each character is compared
with these same integers and then with a period.
The program checks that exactly one period occurs.

3. Any discrepancies are reported to the user.

******* SUBROUTINE TYPECHECK_CHKREF.FORTRAN *******
subroutine typecheck__chkref (itype, if lie , ncard)
dimension ifile(73),number(12)

this subroutine checks whether the type indicated by itype
corresponds to what is found in ifile.
H Johnson February 16, 1977

60

c

\c","7
&","8

1
c
c

GEOINDEX

data number/"0 1

15

10

c
c
20

II It Q It It It II II /
» " » > « /

if(itype .eq. 2) go to 20

WHEN ITYPE IS 1 WE TEST TO SEE IF IFILE CONTAINS ONLY INTEGERS,
do 10 j=l,20
do 15 k=l,11
if(ifile(j) .eq. number(k)) go to 10
c ont inue
go to 500
cont inue
return

WHEN ITYPE IS 2 WE TEST TO SEE IF IFILE IS A REAL NUMBER.
cont inue
iflag=0
do 30 j-1,20
do 35 k=l,11
if(ifile(j) .eq. number(k)) go to 30
cont inue
if (if il-e(j) .ne. number(12)) go to 510
iflag = iflag+1
if(iflag .ne. 1) go to 510
cont inue
if(iflag .ne. 1) go to 510
return

c
500 write(6,920)ncard
920 format(" THERE IS SUPPOSED TO BE AN INTEGER IN RECORD NUMBER ",i6
\c)

write(6,92 l)ifile

35

30

921

c
510
930
\ci6)

format(" THIS DATA IS ",73al)
return

write(6,930)ncard
format(" THERE IS SUPPOSED TO BE A REAL NUMBER IN RECORD ",

write(6,921)ifile
return

**

end
c ******* END TYPECHECK CHKREF *******

SUBROUTINE NAME: LOCAT1_CHKREF
Author: Harold Johnson
Purpose of the program: Iocat1_chkref determines the

line and column of matrix in which a given item
number occurs by using the matrix, item, which was
constructed from matrix.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call locatl_chkref (jtm,idim,item,-

line,kolumn)
Arguments:

jtm-An item number of the current reference record
idlm -The number of rows in item

APPENDIX C 61

line -The line in item where jtm is located
kolumn-The column in item where jtm is located

Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: item(idim, 10)
Called by: checkitem_chkref

Error checking and reporting: Done by check-
item_chkref when line = 0

Constants: None
Program logic:
1. jtm is compared with each element of item using a do

loop, checking by columns first, since most items
occur in the first column.

c ******* SUBROUTINE LOCAT1_CHKREF *******
subroutine Iocat1_chkref(jtm/idifn/item/line/kolumn)
dimension item(ioim/10)
line=U
koIumn=U
ao 10 k = 1 ,10
do 10 j=1/idim
if(jtm .eq. item(jsk)) go to 20

10 cont inue
return

20 Li ne = j
koIumn=k
re t u rn

c ***

end
END LOCAT1 CHKREF *******

SUBROUTINE NAME: CHECKITEM^CHKREF

Author: Harold Johnson
Purpose of the program: checkitem_chkref checks

whether jfile is integer if jtm is 1 or floating point
when jtm is 2. It checks whether the number of
nonblank characters in jfile is at most ichar(lin).

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call checkitem_chkref (idim,ncard,-

item,jfile,itype,ichar)
Arguments:

idim- The number of lines in matrix
ncard-The number of records that have been read in

the reference file
jtm-The item number on the current record being

checked
jfile-The reference data in the current record, a vec­

tor
itype-The vector of types from matrix

ichar-The vector of maximum allowable lengths
from matrix

Subroutines called: Iocat1_chkref, typecheck_chkref,
blankcheck_chkref

Common data referenced: None
Input files: None
Output files: None
Arrays used: jfile(73), item(idim,10), itype(idim),

ichar(idim)
Called by: chkref
Error checking and reporting: When Iocat1_chkref

cannot match jtm with any item number in item, a
message is written along with the file jfile to the user.

Constants: None
Program logic:
1. Iocat1_chkref is called to determine which line of

matrix contains jtm.
2. If itype(line) is 1 or 2, typecheck_chkref is called to

check whether jfile is a character representation of
integer or floating-point data.

3. blankcheck_chkref is called to check whether jfile
contains at most ichar(line) nonblank characters.

62 GEOINDEX

H

900
\c)

901

c
c
2

c
c
c
50

c
c
c

c
c

******* SUBROUTINE CHECKITEM_CHKREF *******
subroutine checkitem_chkref(idim,ncard,item,jtm,jfile,itype,ichar)

dimension jfile(73),item(idim,10),itype(idim),ichar(idim)
THIS CHECKS TWO THINGS ABOUT JFILE.
DOES THE FILE CONTAIN INTEGERS OR FLOATING­
POINT NUMBERS WHEN JTM IS 1 OR 2?

IS THE FILE CONTAINED IN THE LIMITS SET BY MATRIX FOR THIS ITEM?

Johnson February 16, 1977
call locatl_chkref(jtm,idim,item,line,kolumn)

THIS SUBROUTINE LOCATE FINDS THE LINE AND COLUMN OF MATRIX
WHICH CONTAINS THE ITEM = JTM.

if(line .gt. 0) go
write(6,900)ncard

formatC1 THE MATRIX FILE

write(6,901)jfile
format(" THIS DATA
return

to 2

DOES NOT CONTAIN THE ITEM ON RECORD

IS ",73al)

i6

IS .GT. 2 JFILE CAN BE ANY
.or. itype(line) .eq. 0)go

WHEN THE TYPE OF THE ITEM
if (itype(line) .gt. 2
ity=itype(line)
call typecheck_chkref(ity,jfile,ncard)

THIS SUBROUTINE CHECKS WHETHER THE TYPE INDICATED
CORRESPONDS TO WHAT IS FOUND IN JFILE.

ich=ichar(line)
call blankcheck_chkref(ich,jfile,ncard)

THIS CHECKS TO SEE IF JFILE IS CONTAINED IN
ICHAR(LINE) SPACES.

return

CHARACTER,
to 50

BY ITYPE(LINE)

end
*******END CHECKITEM CHKREF *******

SUBROUTINE NAME: SETUP_CHKREF

Author: Harold Johnson
Purpose of the program: setup__chkref reads the file

matrix to construct vectors itype and ichar and
matrix item that indicates for each item in the
reference file its type, its allocated space, and its item
number.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)

Operating system: Multics
Calling sequence: call setup_chkref (itype,

ichar,item,idim)
Arguments:

itype-The vector of length idim whose /cth entry is
the type of the kth kind of record in matrix (integer,
floating point, or alphanumeric)

ichar-The vector of length idim whose kth entry is
the maximum allowable length of the kth kind of
record described by matrix

APPENDIX C 63

item -The idlm by 10 matrix giving the item
numbers in matrix allocated to the various kinds of
records

idim-The number of records in matrix
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: chkref

Error checking and reporting: When matrix does not
contain exactly the number of records indicated by the
value of idim, an error message is sent to the user.

Constants: None
Program logic:
1. Records in matrix are read into a 1, a2, itype(j), b1,

b2, ichary), d, c2, (item(j,k\K= 1,10).
2. When the EOF of matrix is sensed, the number of

read records is compared with idim to see whether
they are equal.

c ***** SUBROUTINE SETUP_CHKREF *******
subroutine setup_chkref(itype,ichar,item,idim)
dimension itype(idim),ichar(idim),item(idim,10)
J-o

1 J-J+1
read(22,900,end=100)al,a2,itype(j),bl,b2,ichar(j),cl,c2,c3,(item
\c(j,k),
&k=l,10)
900

100

910
200
c
c
c

format(2a4,i2,2a4,i6,2a4,al,10i3)
go to 1
if(j-l.eq. idim)go to 200
write(6,910)j,idim
format(" J = ",i3," BUT IDIM = ",i3)
return

end
c ****** END SETUP CHKREF *****

EXEC_COM NAME: GEOFMT.EC

Authors: Kevin W. Laurent, Larry C. Harms, and
Pearl Porter

Purpose of the program: geofmt.ec executes a series of
command lines and routines without user interven­
tion.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec geofmt page lines nbipp
Arguments:

page- Number of lines on the page
lines- Number of lines needed at bottom of page to

write a complete reference
nbipp-Used to designate whether or not the

proportional-space printer is to be used
Subroutines called: geofmt, geofmt.qedx,

geofmt2.qedx, geofmtS.qedx, geofmt4.qedx are all
executed.

Common data referenced: None

Input files: None
Output files: None
Arrays used: None
Called by: None
Error checking and reporting: The user must enter the

arguments when executing geofmt.ec or she will
receive a message stating the current buffer and level
and the commands that have not been executed. This
same message will appear if the user asks for too
many references to be processed at one time. We
recommend that 550 references be the maximum
number processed at one time.

Constants: None
Program logic:

1. A command is given to turn off the COM­
MAND—LINE to prevent the commands from be­
ing written out.

2. The file name given by the user is attached to fileW.
3 . The output from geofmt, geofmt.data, is attached

tofile11.
4. The fortran program geofmt is executed.

64 GEOINDEX

5. fileW and file11 are detached.
6. The user is asked if she needs to edit.
7. If the third argument is nbipp, subroutine geofm-

ta.qedx is executed. Otherwise, subroutine
geof mt.qedx is executed.

8. DL GEOFMT.RUNOFF. This will delete the old
copy (if one exists).

9. FO GEOFMT. RUNOFF; RF GEOFMT; FO is a
command to direct geofmt.runoff to a segment,
and RF will run off geofmt; CO directs output
back to the terminal.

10. The user is queried whether she wants 7 columns or
not. This is a combination of 4 on the first page
and 3 on the next page and so forth. If she
responds yes, geofmt2.qedx is executed. If she

answers no, geofmtS.qedx is executed, and every
page will have four columns.

11. DL GEOFMT.COLUMNS. This will delete the old
copy (if one exists).

12. If the third argument is nbipp, then embed_tabs
is executed. Otherwise, the next statement is ex­
ecuted.

13. Four segments called over I ay 1, over I ay2, overlays,
and overt ay4 are combined, using the overlay
command, into one segment called geofmt.col­
umns.

14. Eight segments created during this process are
deleted.

15. Quit.

&
& /* The geofmt exec_com is used to perform steps necessary to
& create a columnar print of input reference data* */
&
icomman online off
&
i /* run reformat program */
£
io attach f i I e 1 0 vfile_ [response "ENTER FILE NAME:"]
io attach file11 vfile. geofmt. data
geofmt

io detach filelO
io detach file11

& /* Edit geofmt. data */
£
iif [query "Do you need to edit?"]
it hen
&else igoto nextstep
& i nput .Line off
&a 1 1 ach
qx
r geofmt. data
est ty -modes I 180
eioa. "Edi t. " /Enter
&det ac h
i
& I abe I nextstep
&
s 1 1 y -modes I 1 1 32
&
& /* create runoff segment */
&
&if [equal &3 "nbipp"]
&then qx jeofmta i 1 ci 2

"" q "" to exit editor.

APPENDIX C 65

Seise qx geofmt S1 &<?
&
& /* put runoff output into segment */
S
dt geofmt.runout -bf
fo geofmt.runout » rf geofmt^co
S
5 /* break output into A files (columns) */
6
Sif Cquery "00 YOU WANT 7 COLUMNS?"]
Sthen qx geofmt2 S 1
Seise qx geofmt3 i1
&
£ /* create columnized output */
&
dl geofmt.columns -bf
&if Cequal S3 "nbipp"J
Sthen embed_tabs & 1
Seise do "fo geofmt.coIumns^over lay overlayl overlay? -in 34 overlay3 -in
S67 overlayA -in 100 -pi Si;co"
&
5 for linolex -- qx geofmtA £1
6
S /* delete intermediate segments */
S
dl geofmt . (runoff runout data) -bf
dl over lay(1 2 3 A) -bf
Squi t

SUBROUTINE NAME: GEOFMT.QEDX

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program: geof mt.qedx, an edit routine,
creates a RUNOFF segment using geofmt.data,
which was created during the execution of geof mt.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: None
Arguments:

&1 - Passed from the exec_com and contains the page
length (usually 84 or 140)

<£#-Contains the number of lines needed at the bot­
tom of the page to type a complete reference

Subroutines called: None
Common data referenced: None
Input files: geofmt.data
Output files: geofmt.runoff
Arrays used: None
Called by: geofmt.ec
Error checking and reporting: Located in geofmt.ec
Constants: None

Program logic:
1. The two arguments used when executing geofmt.ec

are read into a buffer called argrs, and the first
argument (which is the page length) is moved to a
buffer called lines. The second argument (number
of lines needed at bottom of page for printing a
complete reference) is moved to a buffer called
need. These two argements are used with .PL and
.NE, respectively, as runoff commands. The in­
itialization routine puts RUNOFF commands into
buffer 0.

2. Segment geofmt.data is read into a buffer called
file.

3. A special character {, a brace that is made by
depressing the shift key and left bracket key
simultaneously, is appended to the end of
geofmt.data as an end of file indicator.

4. The RUNOFF commands and one line of data at a
time is moved from buffer file to buffer 0.

5. Step 4 is repeated until the special end of file in­
dicator is detected, at which time it is deleted.

6. Write geofmt.runoff.
1. Quit to exit from text editor.

66 GEOINDEX

b (ma i n)
$a
b(f i le)
1 m (i nput)
bO
Sa
. un 7
.ne \c \b (need)
\ c \b(input)
\c\f

w geof mt . runof f
q
\f
b(Loop)
Sa
\ c \b (ma i n)
\c\b(loop)
\f
b (args)
1 in (I i nes)
1 m (need)
b(I i nes)
1s/\c
//
b (need)
1s/\c

bO
$a
-Pi
.11
. ma
. na
.in 7
\f
b(f i le)
r geofmt
$a<\f
bO
\bdoop)

\bdines)
30
0

dat a

SUBROUTINE NAME: GEOFMT

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program: geof mt reads the reference file,
extracts selected data, arranges it in a predetermined
order, and writes it out as a string of data,
geofmt.data.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: geofmt

Arguments: None
Subroutines called: None
Common data referenced: None
Input files: refNM(NM, two-digit FIPS State code) used

on unit 10
Output files: geofmt.data format(i3,". ",396al) used on

unit 11
Arrays used: iordr(34), istor(34), icoma(34), nuse(34),

/cocte(34,60), iout(396)
Called by: geof mt.ec
Error checking and reporting: Located in geof mt.ec
Constants: None

APPENDIX C 67

Program logic:
1. Files are attached and opened in geofmt.ec.
2. The user is prompted for the State number, start­

ing reference number, and ending reference
number.

3. The arrays are loaded with blanks except nuse,
which is loaded with zeros.

4. The reference file is read until the beginning
reference number given by the user, ibgin, mat­
ches the record just read, /re/. Load iref into /re/.

5. The item number is matched against the array /or-

If no match is found, go to step 4.
If item number is 87, load flag87 with an 87.

If equal, /care/ is loaded into icode(i), item is load­
ed into istor(i), and a 1 is stored in nuse(i).

6. Continue steps 4 and 5 until jref no longer equals
iref.

7. If nuse(i), where / equals 13, 15, . . ., 31, equals 1,
load icoma(i) with a 1. Add 1 to ipnct. Load kk
with /.
This routine checks for scales and commas can be
inserted later, ipnct has the number of commas
that will have to be inserted, and kk contains the
number as specified by ordr of the last scale. This
field, kk, will be checked later to determine
whether or not a period and an extra space are re­
quired for output.

8. The number of characters and spaces in icode(i,j)
is loaded into /'save.

9 . If the current record is a scale, check ipnct.
If ipnct = 0, go to step 12.
If flag87 = 87, go to step 10. If the reference has

an ITEM 87, a comma will be placed after the
scale rather than a period, as more data will
follow the scale.

If ipnct = 1, to to step 11. This indicates that there
is only one scale field and that no punctuation will
be needed.

10. If icoma(i) = 0, go to step 12. Add 1 to /save. Load
icode(i,isave) with a comma.

11. Subtract 1 from ipnct.
12. If the current record is not the year, ITEM 8, go to

step 13. Load icode(i,isave) with a comma.
Go to step 16.

13. If the current record is not the publisher, ITEM 17,
go to step 14.

If the last character of this record is a period, insert
an extra blank after the period, add 1 to /save,
and then go to step 16.

14. If the current record is not the series, ITEM 23, go
to the step 14A.

If the current record is ITEM 23, check istor(11) =
60, which means that the series is continued on
another record.

Otherwise, put an extra space after ITEM 23 data.
Go to step 16.
If istor(i) is not = 60, go to 15. Put extra space

after ITEM 60 data.
Go to step 16.

15. If the current record is not a scale (item 18-22,
61-65), go to step 16. If / = kk, which means this
is the last scale in the reference, load a period at
the end of the field.

Load lout with 1:
Load iout with the scale and necessary commas

separating the field.
Go to step 17.

16. iout(istart) = icode(i,jj) where // = 1, save. This
routine will load iout with the current record us­
ing /save as the counter to move the exact
number of characters and spaces for that record.

17. If / = kk, meaning this record is the last scale, istart
= istart + 1.

This will insert another space after the scale, giving
a total of 2 spaces between the scale and next
record.

18. If the value of lstor(l) is not equal to 86, go to step
19.

If istor(33) equals blank, and istor(34) equals blank,
go to 20.
istart = istart + 1 will give a total of 2 spaces be­
tween the ITEM 86 record and the next record.

19. If istor(i) is not equal to ITEM 35, go to step 20. If
istor(34) equals blank, go to step 20.
istart = istart + 1. This will insert an extra space
after the ITEM 35 record has been written to
iout.

20. istart = istart + 1, iout(istart) = blank space. This
will put a space between each record written to
iout. Repeat steps 8-20 until / = 34, then go to
next step.

21. If flag87 = 87, continue reading the records, steps
8-20, until a new reference number is found. Load
flag87 = 0. Write geofmt.data on unit 11 using
jref, (iout(i), i = 1, istart), and format (13,-
". ",396al).

If jref = iendref, go to step 24. (This means the
reference number of the record just written is the
last record to be processed, iendref is the ending
reference number given by the user.)

If lend = 1, go to step 24. This is the last record on
the file.

22. Load jref with iref. iref is the reference number of
the last record read before processing the current
reference data.

23. Initialize the arrays by loading them with blanks. Go
to step 5.

24. Stop.

68 GEOINDEX

GEOFMT. FORTRAN
This program reads the reference file/ extracts selected records

as determined by iordr/ stores them in icode according to iordr
and writes it out as a string of data.

General outline of program written by Larry Harms of CCD.
Written in detail by Pearl B. Porter/ April/ 1978

dimension iordr(34)/i stor(34)/nuse(34)/icoma(34)
character*! icard(65) /i code(34/65)/iout (396)
data iordr/3/4/5/8/9/10/11/37/17/23/60/39/18/40/19/

& 41 ,20/42/21 /43/22/66/61/67/62/ 68 /63/69/
& 64/70/65/86/35/34/

10

20

22

24

26

30

40

50

60

70

80

STATE NUMBER")
write (6/10)
format(" TYPE IN
read (5/20) j st a
f orma t (i 2)
write (6/22)

ATTENTION For Calif./ ref
format (" WHAT IS YOUR
read (5/24) ibgin

ATTENTION Change (i3) to
f o rmat (i 3)
write (6/26)

ATTENTION For Calif./ ref number will be 4 digits
format (" WHAT IS YOUR ENDING REFERENCE NUMBER?
read (5/24) iendref

number will be 4 digits.
STARTING REFERENCE NUMBER? (use

(i4) for California.

3 digits)")

(use 3 digits)")

Initialize arrays to blanks

do 30 i=1/65
icard(i)=" "
do 40 j=1/34
do 40 i=1/65
i code(j /i) = "
do 50 k=1/34
icoma(k)=" "
do 60 i =1 /34
nu se (i) =0
i stor(i)=" "
do 70 i=1/396
iout (i) =" "
i pnc t = 0
f I

Read reference file until the current record equals the
beginning reference number given by the user.

read (1 O/ 1 1 0/end = 900) i s t a/ i re f / i t em/ i c a rd
if (iref .ne. ibyin) go to 80
j ref = iref
go to 120

APPENDIX C 69

c jref contains the reference number of the data being processed,
c
100 read(1J/110/end=155) ista/iref/item/icard

c ATTENTION For Calif./ change i3 to i4.
110 format(i2/i3/i2/65a1)

if (jref .ne. iref) go to 160
if (flag87 .eg. 87) go to 160

c
c Does record contain an item code = to an item code in iordr
c
120 do 130 i=1/34

if (item .eq. iordr(i)) go to 140
if (item .eq. 87) flag87 = 87

130 cont i nue
go to 100

c
c Load icode with icard as determined by iordr* store item in istor
c and turn on nuse(i) which indicates there's data for this
c particular it em.
c
140 do 150 j=1/65
150 icode(i / j) = icard(j)

i s tor(i) = i t em
nuse(i)=1
go to 100

c
155 iend = 1

c
c Check scales to determine how many commas will be needed
c when written out to file11 (geofmt.data) .
c
160 do 170 i=13/31/2

if (nuse(i) .eq. 0) go to 170
c If nuse(i) = O/ there's no data for this record,

i coma(i) = 1
kk = i
i pnc t = i pnc t + 1

170 continue
c
c Store in isave the total numoer of characters and
c significant spaces contained in the record,
c

if (flag87 .eq. 87) go to 175
i start = 0

175 do 500 i=1/34
i save = 0
if (nuse(i) .eq. 0) go to 50J
do 180 j=1/o5
if (icode(i/j) .eq. " ") go to 180
i save= j

180 cont i nue
c
c Check for scales and if there's more than one scale/
c insert commas after the scales.

70 GEOINDEX

C
if ((istor(i) .ge. 18 .and. istor(i) .le. 22) .or.

& (istorCi) .ge. 61 .and. istor(i) .le. 65)) go to 190
go to 220

190 if (ipnct ,eq. 0) go to 220
if (flag87 .eq. 87) go to 200
if (ipnct .eq. 1) go to 210

c
200 if (icoma(i) .eq. 0) go to 220

i save = i save + 1
icode(i/isave)="/"

210 i pnc t = i pnct-1
c
c If item d (year)/ put comma after the year,
c
220 if (istor(i) .ne. 8) go to 230

i s ave = isave+1
icode(i/isave)="/"
go to 400

c
c If the publisher has a period at end of field/
c two spaces must follow the period,
c
230 if (istor(i) .ne. 17) go to 240

if (icode(i/isave) .eq. ".") isave=isave+1
go to 400

c
c There must be 2 spaces after the series,
c
240 if (istor(i) .ne. 23) go to 245

if (istordl) .eq. 60) go to 245
i save = i save + 1
go to 400

c
245 if (istor(i) .ne. 60) go to 250

i save = i save + 1
go to 400

c
c When working with scales/ precede the scales with "1:"
c
250 if ((istor(i) .ge. 18 .and. istor(i) .le. 22) ,or.

& (istor(i) .ge. 61 .and. istor(i) .le. 65)) go to 260
go to 400

260 if (i .ne. xk) go to 270
i pnc t = 0
if (flag87 .eq. 87) go to 270
i save = i save + 1
icode(i/isave)="."

270 iout(istart+1)= "1"
iout(istart+2)= ":"
i sta rt = i star t + 2
i korp = 0
if (isave .le. 3)go to 400
if (icode(i/isave) .eq. "/" .or. icooe(i/isave) .eq. ".*'

& ikorp=1

APPENDIX C 71

i thi = 3
if (i ko rp . eq.
if (isave . ne.
if ir = 2
i sec = 3
go to 330

1)
9)

i th i = 4
go to 280

c
c Depending on the size of the scale field/ there will be
c from 1 to 3 moves to load the data in the output,
c ithi (3rd load) will contain a 3 unless the last
c position of the scale is a period or comma/ then it
c will contain 4, isec (2nd) and ifir (1st) will
c be loaded according to the number of digits in the
c scales. A comma is loaded after ifir and isec.
c
280 if (isave .ne. 8) go to 290

isec = 3
ifir = 2
if (ikorp .eq. 1) ifir = 1
go to 330

c
29U if (isave .ne. 7) y o to 300

isec = 3
ifir = 1
if (ikorp .eq. 1) ifir = 0
go to 330

c
300 if (isave .ne. 6) go to 310

ifir = 0
isec = 3
if (ikorp .eq. 1) isec = 2
go to 330

c
310 if (isave .ne. 5) go to 320

ifir = 0
isec = 2
if (ikorp .eq. 1) isec = 1
go to 330

c
320 ifir = 0

i sec = 1
if (ikorp .eq. 1) isec = 0

c
c Load the first (ifir) set of digits followed by comma,
c
330 i pos = 1

i seemv = isec
if (ifir .eq. 0) go to 350
Jo 340 j j = i pos/ifir
istart = istart-H

340 iout(istart)=icode(i/jj)
iout(i start +1)="/"
istart = istart-H
ipos = i f i r+ 1
isec = i sec + i f i r

72 GEOINDEX

C
c Load the second (isec) set of digits followed Dy comma,
c
350 if (isec .eq. U) go to 370

do 360 jj=ipos/isec
is tart = istart+1

360 iout(istart) = icode(i/jj)
iout(istart+1)="/"
istart = istart+1
i pos = i pos + i s ecmv
ithi = i t h i + i s e c

c
c Load third (ithi) set of digits,
c
370 do 380 jj=ipos/ithi

istjrt = istart+1
380 iout(istart)=icode(i/jj)

90 to 425
c
c Load iout with icode depending on isave.
c
400 do 420 j j = 1 /isave

istart = istart+1
420 iout(istart) = icode(isjj)
425 if (i .eq. kk) istart = istart+1

c
c If any data follows "Also other maps"/
c put 2 spaces after "Also other maps",

if (istor(i) .ne. 86) go to 430
if ((istor(33) .eq. " ") .and. (istor(34) .eq. " ")) go to 450
istart = istart+1
go to 450

c
430 if (istor(i) .ne. 35) go to 450

if (istor(34) .eq. " ") go to 450
istart = istart+1

c
c Increase istart by 1 so a space appears between records of data
c
450 istart = istart+1

iout(istart) = " "
500 c ont i nue

c
if (flag&7 .ne. 87) go to 525
if (jref .ne. iref) go to 510
if (iend .ne. 1) go to 565

510 istart = istart-1
if (iout (istart) .eq. "/") iout(istart) = "."
if (iout (istart) .ne. " ") go to 525
go to 510

c
c
c Write the string of data to file11 (geofmt.data)

APPENDIX C 73

AT
550

560
565

570

590

900
905

1000

write (11/550) jref/(iout (i) * i = 1/istart)
TENTION For Calif./ change i3 to iA.
format(i3/". "396a1)
i start = 0

iendref is the ending reference number given by the user
if (jref .eq. iendref) go to 1000
if (iend .eq. 1) go to 1000

jref = iref

Initialize arrays before processing next reference.

do 560 i=1,396
iout(i) = " "
do 570 j=1/3A
do 570 i=1,65
icode(j/i) = " "
do 590 i=1/3A
icoma(i) - " "
nuse(i) =0
i stor(i) = " "
cont i nue
flag87 = 0
go to 120

write (6/905)
format (" THE BEGINNING RECORD WAS NOT FOUND")

stop
end

SUBROUTINE NAME: GEOFMT2.QEDX

Authors: Kevin W. Laurent, Larry C. Harms, and Pearl
Porter

Purpose of the program: geofmt2.qedx formats the file
geofmt.runout into alternating 4 and 3 columnar out­
put acceptable for use by the overlay command to
create a columnarized output segment.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: qx geofmt2 &1
Arguments: &1-H contains the page length (84 or

140) and was passed from the exec_com, geofmt.ec.
Subroutines called: None
Common data referenced: None
Input files: geofmt.runout
Output files: overlayl, overlay2, overlays, overlay4

Arrays used: None
Called by: Executed by geofmt.ec
Error checking and reporting: geofmt.ec
Program logic:
1. The initialization routine creates four segments:

overlayl to overlay4. A segment, geofmt.run­
out, is read into buffer, file. A special character is
appended to the segment as an end of file indicator.

2. The loop macro will move a specified number of lines
(determined by the page length argument when
geofmt.ec was executed) into each of the four
overlay segments. Then the specified number of
lines are moved into overlayl, overlay2, and
overlays. This loop alternates in moving data to all
four segments, and then three segments, until the
end of file indicator is read.

3. All four segments are written.
4. Quit the text editor.

74 GEOINDEX

b(4col)
$a
\c\bC test)
1*\c\b(args)m(input)
b(inpu t)
Or over Lay1
1/$w over lay 1
\c\D(test)
1*\c\b(args)m(input)
b C i nput)
Or overlay?
1/$w overlay2
\c\b(test)
1*\c\b(args)m(input)
b(i nput)
Or overlays
1/Sw overlay3
\c\o(test)
1*\c\b(args)m(input)
b C input)
Or ove r I ay4
1/$w overl ay4
\c\b(3col)
\f
b(3col)
$a
\c\b(test)
1/\c\b(args)m(input)
b(inpu t)
Or ove r I ay 1
1*$w over lay 1
\c\b(test)
1/\c\b(args)m(input)
b(i nput)
Or overl ay<2
1 f $w overlay2
\c\bCtest)
1/\c\b(args)m(input)
b(input)
Or overlays
1*$w overl ay3
\c\b(args)+1^$d
U$s/".*$//
Or overlay4
1 f $w ove r Iay4
\c\b(4col)
\f
b(test)
$a
b(file)
1s/"<:/t/
q
\f
b Cargs)
1s/\c

APPENDIX C 75

bO
ec r over lay(1 2 3 A)
b(file)
r geofmt•runout
ia{\f
bO
\bUcol)

SUBROUTINE NAME: GEOFMT3.QEDX
Authors: Kevin W. Laurent, Larry C. Harms, and Pearl

Porter
Purpose of the program: geofmtS.qedx formats

geofmt.runout into four files acceptable for use by the
OVERLAY command to create a columnized output
segment.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: qx geofmtS &1
Arguments: &1- Passed from the exec_com, geofmt.-

ec, and contains the page length (84 or 140)
Subroutines called: None
Common data referenced: None
Input files: geofmt.runout
Output files: overlay 1, overlay2, overlays, overlay4

Arrays used: None
Called by: Executed by geofmt.ec
Error checking and reporting: Located in geofmt.ec
Constants: None
Program logic:
1. The initialization routine creates four segments:

overlayl to overlay4. A segment, geofmt.runout,
is read into buffer, file, and a special character {, a
brace, which is made by depressing the shift key
and left bracket key simultaneously, is appended as
an EOF indicator.

2. The loop macro moves a predetermined number of
lines (page length argument used in geofmt.ec)
first to overlayl, over I ay2, and so forth, until the
end of file indicator is read.

3. Write the four output segments.
4. Quit the text editor.

b (loop)
$a
\c\b(test)
1*\c\b(arcjs)m(input)
b (i npu t)
Or overlayl
1 * $w overlayl
\c\b<test>
1*\c\b(args)m(input)
b (i npu t)
Or ove rIay2
1 * $w over lay 2
\c\b(test)
1*\c\b(args)m(input)
b (input)
Or overt ay3
1 * $w overlay3
\c\b(test)
1*\c\o(arjs)m(input)
b (input)
Or ove rIayA
1 f $w overt ayA
\c\b(toop)
\f

76 GEOINDEX

bCtest)
$a
b(fi le)
1s/"</{/
q
\f
b(arjs)
1s/\c

bO
ecr overt ay(1 2 3 4)
b(fi le)
r -jeof m t. runout
$aUf
bO
\b(loop)

SUBROUTINE NAME: GEOFMTA.QEDX

Authors: Kevin Laurent and Pearl Porter
Purpose of the program: geofmta.qedx, an edit routine,

creates a RUNOFF segment using the file geofmt.-
data, which was created during the execution of
geofmt.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: qx geofmta &1 &2
Arguments:

&1 -It contains the page length (usually 84 or 140) and
was passed from geof mt.ec.

&2-lt contains the number of lines needed at the
bottom of the page to type a complete reference and
was passed from geof mt.ec.

Subroutines called: None
Common data referenced: None
Input files: geofm t. da ta
Output files: geofmt.runoff
Arrays used: None
Called by: geof mt.ec
Error checking and reporting: Located in geofmt.ec
Constants: None
Program logic:
1. This qedx routine is executed if the third argument

of geof mt.ec is nbipp. It is very similar to
geofmt.qedx, except the .UN and .IN commands
for RUNOFF were increased to allow for
proportional-space printing. The line length was in­
creased from 30 to 42.

2. The two arguments used when executing geof mt.ec
are read into a buffer called args, and the first
argument (which is the page length) is moved to a
buffer called lines. The second argument (number
of lines needed at the bottom of the page for prin­
ting a complete reference) is moved to a buffer call­
ed need. These two arguments are used with .PL
and .NE respectively as RUNOFF commands.

3. The initialization routine puts RUNOFF commands
into buffer 0.

4. Segment geofmt.data is read into a buffer called
file.

5. A special character {, a brace, which is made by
depressing the shift key and left bracket key
simultaneously, is appended to the end of
geofmt.data as an end-of-file indicator.

6. The RUNOFF commands, and one line of data at a
time is moved a from buffer file to buffer 0.

1. Step 6 is repeated until the special end-of-file in­
dicator is detected, at which time it is deleted.

8. Write geofmt.runoff.
9. Exit from text editor.

b C ma i n)
Sa
b(fi le)
1m(i nput)
bO
$a
. un 11
.ne \c\o(need)

APPENDIX C 77

\ c \b (i nput)
\c\f

w geof mt . runo f f
q
\f
b (loop)
$a
\ c \b (ma i n)
\c\b(loop)
\f
b (args)
1 m (I i nes)
1 m (need)
b(lines)
1s/\c
//
b (need)
1s/\c

bO
Sa
• Pi
. II
.ma
. na
. i n
\f
b(fi le)
r 9 e o f m t
$a<\f
bO
Vb(loop)

\bUines)
42
0

11

data

SUBROUTINE NAME: EMBED_TABS

Author: Kevin Laurent
Purpose of the program: embecLtabs, a PL/1 program,

embeds tab commands between the columns of the file
geofmtcolumns to produce a columnar proportional
spaced printout.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: embed__tabs &1
Arguments: &1 -It contains the page length (usually 84

or 140) and is passed from geofmt.ec.
Subroutines called: None
Common data referenced: None
Input files: overlay 1, overlay2, overlays, overlay4
Output files: geofmtcolumns
Arrays used: None
Called by: None
Error checking and reporting: If an error occurs the

error code is passed to the command processor, and a
Multics system message is printed.

Constants: None
Program logic:
1. The program asks for the number of columns and the

column width.
2. Tab positions are calculated depending on the column

width given by the user.
3. The program writes a SET command to geofmt.col-

umns to be used by the NBI. Left margin is set to
1; top margin is set to 0; a code, J-1, is passed that
specifies proportional spaced printing; line length
is set to 132; page length and text length are set ac­
cording to the first argument given when ex­
ecuting geofmt.ec.

4. The four overlay segments are concatenated and
written to geofmtcolumns.

5. If an entire line is blank, only the first tab will be
written, in order to act as a line feed.

6. Files are closed and detached.

78 GEOINDEX

embed_tabs: et: proc (page_len); /* embed
\ctab commands in nbi proportional spaced printer stream */

/* Written by KLaurent,USGS,CCD,BSAP 6/27/78 */

/* The embed__tabs program accepts input from the overlay files and ad
\ cds

the embedded commands between line segments to tab the columns. */

del page_len char (*); /* page 1
\cength parameter */
del ioa_$ioa_switch entry options (variable); /* for wr
\citing our concatenated lines to geofmt. columns */
del iox_$attach_name entry (char (*), ptr, char (*), ptr, fixed bin
\c(35)>; /* for all attachments */
del iox_$open entry (ptr, fixed bin, bit (1) aligned, fixed bin (35)
\c);
del iox_$get_line entry (ptr, ptr, fixed bin (21), fixed bin (21), f
\cixed bin (35)) ;
del iox_$close entry (ptr, fixed bin (35));
del iox_$detach_iocb entry (ptr, fixed bin (35));
del com_err_ entry options (variable); /* com_er
\cr_ will interpret all the errors and print a standard message */
del error_table_$end_of_info external fixed bin (35); /* use fo
\cr end of file check */
del command_query_ entry options (variable); /* use to
\c ask for ncols and col_width */
del continue_to_signal_ entry (fixed bin (35)); /* use to
\c pass along the error code to the command processor */

del 1 query__info, /* for pa
\cssing info to command_query_ */

2 vers fixed bin init (2), /* versio
\cn of structure */

2 yes_or_no_sw bit (1) unal init ("0"b),
2 suppress_name bit (1) unal init ("0"b),
2 status_code fixed bin (35) init (0), /* not us

\ced here */
2 query_code fixed bin (35) init (0); /* not us

\ced here */

del answer char (256) var ; /* answer
\c returned from command_query_ */
del query_info_ptr pointer; /*usedf
\cor command_query_ */
del (ncols, col_width) fixed bin; /* number
\c of columns; column width */

/* Retrieve number of columns and column width */

query_info_ptr = addr (query_info);
call command_query_ (query_info_ptr, answer, "embed_tabs",

\c"Enter number of columns:");
ncols = answer; /* conver

\ct to internal format */

APPENDIX C

ca

ArrrjiNjjiA \^,

11 command_query_ (query_Info_ptr, answer, "embed_tabs",
umn width:");

79

^— U. .*-_•- W V/ 111 «* t* i.& VI VJ U

\c"Enter column width:");
col_width = answer;

begin;

del line (ncols) char (256) var ; /* array
\cfor line segments to be concatenated */
del line_str_var char (256) var init (""); /* varyin
\cg length string */
del line_str char (79) init (""); /* concat
\cenated string */
del line_buff char (50) init (" "); /* buffer
\c for input */
del chars fixed bin (21) init (0);
del (sub, temp) pic"999";
del stmt_no pic"9999"; /* statem
\cent number */
del i fixed bin;
del code fixed bin (35); /* standa
\crd error code */
del (ov_ptr (4), tabout_ptr) pointer; /* pointe
\crs to io control blocks */
del buff_ptr pointer; /* pointe
\cr to input buffer */
del 1 tab_f ormat_array,

2 tab (ncols+1) char (9) var;

/* Initialization */

buff_ptr = addr (line_buff); /* store
\caddress of input buffer in buffer pointer */

line (*) = ""; /* initia
\clize lines to blanks */

do sub = 1 to ncols+1; /* calcul
\cate tab positions */

temp = (sub-1)* (col_width-9)+1;
tab (sub) = "#(ta," || temp || ")";

end;
call iox_$attach_name ("ovl", ov_ptr (1), "vfile_ over

\clayl", null (), code);
call iox_$attach_name ("ov2", ov_ptr (2), "vfile_ over

\clay2", null (), code);
call iox_$attach_name ("ov3", ov_ptr (3), "vfile_ over

\clay3", null (), code);
call iox_$attach_name ("ov4", ov_ptr (4), "vfile_ over

\clay4", null (), code);
call iox_$attach_name ("tabout", tabout_ptr, "vfile_ g

\ceofmt.columns", null (), code);

do i = 1 to ncols ;
call iox_$open (ov_ptr (i), 1, "0"b, code); /* op

\cen overlay segs */
end ;

80 GEOINDEX

call iox_$open (t about_p tr, 2, "O lf b, code);
call ioa_$ioa_switch (tabout_ptr, "F 0001 #(se ml,tO,j

\c-l, 11 32 , p~a ,x~a) " , page__len, page_len, code); /* set margins & prop
\c print */

do stmt_no = 2 to 9999; /* do unt
\cil endfile */

do i - 1 to ncols;
call iox_$get_line (ov_ptr (i), buff_ptr, 50

\c, chars, code) ;
if ((code = error_table_$end_of_info) & (i =

\c 1)) then goto endup;
line (i) = substr (line__buff, 1, max (chars-

\cl, 0)); /* move input line to hold area */
end ;
if ((line (1) = "") & (line (2) = "") & (line (3)

\c = "") & (line (4) = ""))
then do;

line_str_var = "F " | | stmt_no | | " " | | tab
\c (1);

line_str = line_str_var; /* move v
\carying length string to non-varying string */

call ioa_$ioa_switch (tabout_ptr, line_str,
\c code) ;

end;
else do;

do i = 1 to ncols;

if i = 1
then line_str_var - "F " || stmt_no ||

\c" " || tab (i) || line (i) || "//(EX)";
else if i = ncols
then line_str_var = "F " || stmt_no ||

\c"+" || tab (i) || line (i);
else line_str_var = "F " || stmt_no ||

\c"+" || tab (i) || line (i) || "//(EX)";
line_str = line_str_var; /* move v

\carying length string to non_varying string */
call ioa_$ioa_switch (tabout_ptr, line_

\cstr, code);
end ;

end ;
end;

endup :
do i = 1 to ncols ;

call iox_$close (ov_ptr (i), code);
call iox_$detach_iocb (ov_ptr (i), code);

end;
call iox_$close (tabout_ptr, code);
call iox_$detach_iocb (tabout_ptr, code);

end; /* end be
\cgin block */

end embed_tabs;

APPENDIX C 81

SUBROUTINE NAME: TO-NBIPP

Author: NBI personnel. Modified for use with geofmt
programs by Pearl Porter.

Purpose of the program: to-nbiPP allows the user to
record segments from Multics on the NBI diskette
when using the NBI System II as a terminal.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: to-nbiPP
Arguments: None
Subroutines called: None
Common data referenced: None
Input files: geofmt.columns
Output files: None
Arrays used: None
Called by: None
Error checking and reporting: Provisions exist for

checking and reporting erroneous names and aborting
program.

Constants: None

Program logic:
1. The user is prompted with the message:

MULTICS FILE NAME TO BE SENT (OR Q
TO QUIT):

The user types the file name, which can be a
maximum of 32 characters.

At the end of transmission, the user types: q.
2. If file^name = q, go to 13.
3. Attach and open fileW.
4. If istat (which is the error code) is not equal to 0, go

tol.
5. Read a line from the Multics segment into a format

(79al).
At end, go to step 10.

6. Write the line using a format (lh,79al)
7. Call ioa_$nal("?"). This prints a ? on the screen.
8. Read this character into lack.
9. If lack = 11, go to 5. Otherwise, go to 6. The above

loop, steps 5 through 9, sends each line and inputs
each ACK.

10. The next loop holds computer in program so it does
not receive ACKs while it is in ready, and NBI still
receives.

11. Read a value into end, using format (al).
12. If value of end is not equal to q, go to 11.
13. Close and detach fileW and stop the program.

to-nbiPP.fortran

(PROVISIONS EXIST

c NBI-MULTICS HANDSHAKE PROGRAM FOR RECEIVING TO NBI'S DISK.
c (10/4/77)
c name = to-nibPP:SPECIAL TO SEND IN DISKETTE FORMAT - AUTOMATIC
c LINES

dimension line(79)
character file_name*32
double precision ec
equivalence(istat,ec)

c REQUEST AND ACCESS DESIRED "FILE" TO BE SENT,
c FOR ERRONEOUS NAMES AND ABORTING PROGRAM).
13 print ,"Multics file name to be sent (or q to quit):

read!7, file_name
1 7 format(v)

if(file_name.eq."q") go to 5
call io (If attach","filel0","vfile_ n ,file_name)
call io ("open","filelO","si")
if (istat.ne.O) go to 13
call ioa_$nnl ("?")
read(5,20) iack

c LOOP IN PROGRAM WHICH SENDS EACH LINE AND INPUTS EACH
c (OR NAK).
1 read (10,10,end-3) line
10 format(79al)

ACK

82 GEOINDEX

2 write(6,ll) line
11 format(lh,79al)

call ioa_$nnl ("?")
read (5,20) lack

20 format(i2)
if (lack.eq.11) go to
go to 2

c EXIT PROGRAM: INPUT
c RECEIVE "ACKS"
c THEN IT CLOSES
3 read(5,30) end
30 format(al)

if (end.ne."q") go to 3
5 call io ("close","fllelO")

call io ("detach","filelO")
s top
end

LOOP HOLDS COMPUTER IN PROGRAM SO IT DOES NOT
WHILE IT IS IN READY AND NBI STILL RECEIVES.
FILES .

PROGRAM NAME: TO-NBID

Author: to-nbiD was written by NBI personnel in Oc­
tober 1977. It is written in Fortran and is compiled on
the Honeywell Series 60 computer.

Purpose of the program: to-nbiD allows the user to
record segments from Multics on the NBI diskette
when using the NBI System II as a terminal.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: to-nbiD
Arguments: None
Subroutines called: None
Common data referenced: None
Input files: Name of file to be transferred
Output files: Name of file transferred
Arrays used: None
Called by: None
Error checking and reporting: Provisions exist for

detecting erroneous name and halting program.
Constants: None

Program logic:
1. The user is prompted with the message:

MULTICS FILE NAME TO BE SENT (OR Q
TO QUIT):

The user types the file name, which can be as
many as 32 characters long.

At the end of transmission, the user types: q.
2. If file_name - q, go to 13.
3. Attach and open filelO.
4. If istat (which is the error code) is not equal to 0, go

tol.
5. Read a line from the Multics segment into a format

(133al). At end go to step 10.
6. Write the line using a format (lh,133al)
7. Call ioa_$nal("?"). This prints a ? on the screen.
8. Read this character into lack.
9. If lack = 11 go to 5.

Otherwise, go to 6. The above loop, steps 5 through
9, sends each line and inputs each ACK.

10. The next loop holds computer in program so it does
not receive ACKs while it is in ready and NBI still
receives.

11. Read end using format (al).
12. If end is not equal to q, go to 11.
13. Close and detach filelO and stop the program.

to-nbiD.fort ran

c NBI-MULTICS HANDSHAKE PROGRAM FOR RECEIVING TO NBI'S DISK,
c (10/4/77)
c name = to-nbiD:SPECIAL TO SEND IN DISKETTE FORMAT - AUTOMATIC
c LINES

dimension line(133)

APPENDIX C 83

character file_name*32
double precision ec
equivalence(istat,ec)

c REQUEST AND ACCESS DESIRED "FILE" TO BE SENT. (PROVISIONS EXIST
c FOR ERRONEOUS NAMES AND ABORTING PROGRAM).
13 print ,"Multics file name to be sent (or q to quit): "

readl?, file_name
1 7 format(v)

if(file_name.eq."q") go to 5
call io ("attach","filelO","vfile_",file_name)
call io ("open","filelO","si")
if (istat.ne.O) go to 13
call ioa_$nnl ("?")
read(5,20) iack

c LOOP IN PROGRAM WHICH SENDS EACH LINE AND INPUTS EACH ACK
c (OR NAK).
I read (10,10,end-3) line
10 format(133al)
2 write(6,ll) line
II format(lh,133al)

call ioa_$nnl ("?")
read (5,20) iack

20 format(i2)
if (iack . eq . 1 1) go to 1
go to 2

c EXIT PROGRAM: INPUT LOOP HOLDS COMPUTER IN PROGRAM SO IT DOES NOT
c RECEIVE "ACKS" WHILE IT IS IN READY AND NBI STILL RECEIVES,
c THEN IT CLOSES FILES.
3 read(5,30) end
30 format(al)

if(end.ne."q") go to 3
5 call io ("close","filelO")

call io ("detach","filelO")
stop
end

PROGRAM NAME: CONCAT

Author: Harold Johnson
Purpose of the program: concat prepares reference files

for input to the GRASP system. Each set of records
from one reference are concatenated in the format
assigned by matrix into one long vector.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: concat
Arguments: None
Subroutines called: ftnumber, main_concat
Common data referenced: None
Input files:

matrix used onunit 22 (file22)
refNM used on unit 30 (file30)

Output files:
temp77 used on unit 77 (file??)
strgNM used on unit 40 (file40)

Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:
1. file22 is attached to matrix, file?? is attached to

a temporary file named temp??, and the user is
asked for the State id number for the reference file
being processed. file30 is attached to this State's
reference file, and file40 is attached to a new out­
put file named strgNM, where NM is the State
FIPS code.

2. main__concat is called where the main work is pro­
cessed.

3. All files are closed.

84 GEOINDEX

c ******* CONCAT *******
character*32 filename
character*1 iblank
character*^ file/ mode
character*2 state
character*6 outfile

dimension iout(1211),i first(46),ichar(46),item(46,10),iate(5)
data iblank/" "/
c UPDATED AS OF DEC 27, 1976 H, JOHNSON

Converted to Multics February 21, 1977 H Johnson
Modified to allow item 87 to indicate extra records, Ma
H J ohnson.

WARNING: ANY CHANGE IN nrec MUST BE MADE BY HAND IN THE
SUBROUTINE *********************************! ' J ' ! * • J ' J

rch 3, 1977

mod i fy
i i i i i i i i i i

THE PURPOSE OF THIS PROGRAM IS TO PREPARE REFER
FOR INPUT TO THE "CREAT" PROGRAM OF "IRIS". A REF
IS READ FOR EACH IF, ISF, AND A LONG VECTOR RECORD
WITH REFERENCE ENTRIES LOCATED IN PRE-ASSIGNED POS

ENCE FILES
ERENCE FILE
IS CREATED

ITIONS

REQUIRED INPUT FILES:
30 = REFERENCE FILE = "refNM"
22 = MATRIX FILE DESCRIBING THE ASSIGNED LOCATIONS.
05 = INPUT TO TELL REFERENCE FILE NAME AND NUMBER OF LINES OF
EXPLANATORY DATA TO BE SKIPPED .

REQUIRED OUTPUT FILES:
77 = WORK FILE
40 = "strgNi-J" IS THE MAIN OUTPUT FILE.

THIS PROGRAM CONCATENATES THE DIFFERENT "IF" FILES
FROM THE REF AND REFU FILES INTO LONG FILES FOR INPUT
TO THE CREATE PROGRAM OF GRASP.

MAIN PROGRAM

FOR THE STATE BEING PROCESSED")

call io ("attach","fiIe22","vfile_","matrix","-append",
call io ("open","file22","si")
call io ("attach","fiIe77","vfi le. ","temp77")
call io ("open","fiIe77","sio")

wri te(6,890)
890 format(" ENTER THt 2-DIGIT CODE
read(5,891) state
891 format(a2)
encodeCoutfile,893)state,iblank

mode = "si"
call ftnumber(30,outfiIe,mode)

-ssf")

APPENDIX C 85

encodeCoutfi le/89!>)state
895 f ormatC'st rg",a2)
mode = "so"

call ftnumberC40/outfiIe/mode)

MATRIX IS THE INPUT MATRIX WHICH DESCRIBES WHERE THE INPUT
RECORDS ARE TO 3E LOCATED AMONG THE POSITIONS IN THE OUTPUT
FILE TEMP01 WHICH IS SET UP FOR GKASP "CREATE"INPUT.

IT IS ALSO REQUIRED TO EQUATE 30 TO THE INPUT REFU OR REF
FILE.
EQUATE 77 TO A TEMPORARY FILE USED
THE OUPUT FILE IS CALLED TEMP01

ONLY IN THIS PROGRAM.

nrec=1211
i wi de = 10
i d i m = 46

NREC IS THE LENGTH OF THE OUTPUT FILES
IwIDE IS THE NUMBER OF POSSIBLE PLATES
IDIM IS THE NUMBER OF DIFFERENT KINDS

TEMP01, OR 40.
THE SAME OUTLINE.

FILES IN REF OR REFU.

C NREC IS THE LENGTH OF THE OUTPUT FILES IN
C IwIDE IS THE NUMBER OF POSSIBLE PLATES ON
C IDIM IS THE NUMBER OF DIFFERENT KINDS OF
c
nsk i p = 0

call main_concat(nrec/idifn/iwide/iout*ifirst/ichar/item,nskip)
c THIS READS THE REFU OR REF FILE AND SETS UP* FOR EACH "If"
c A VECTOR IOUT CONTAINING DATA FROM THE REF FILE IN POSITIONS
c DESCRIBED BY THE MATRIX. IT THEN WRITES THESE VECTORS OUT
c TO FILE 40 WHOSE RECORD LENGTH IS NREC.
endfile 40
c
c THIS ROUTINE ADDS
c THIS IS NECESSARY

A BLANK RECORD TO THE END OF STRGnm
BECAUSE OF A PECULIARITY IN MULTICS.

call io ("close","file22")
call io ("close","file40")
call io ("close","ti Ie30">
calI io("detach","fi Ie22")
call io ("detach","fiIe40")
call io ("detach","fiIe30")

call io C"close","fi Ie77">
call io ("detach","file77")

stop

end

SUBROUTINE NAME: MAIN_CONCAT

Author: Harold Johnson
Purpose of the program: main_concat calls con-

trLconcat, which sets up the control vectors and
matrices that determine positioning of data in output
vectors. It repeatedly calls vector_concat to write
this information into long vectors in memory. It calls

wryte_concat to output these vectors to the strgNM
file. Each time it checks for repeated data using
ndflg, the flag for ITEM 87.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call main_concat (nrec,idim,iwide,-

iout,ifirst,ichar,item)

86 GEOINDEX

Arguments:
wee-The length of the output vectors
idim - The number of different kinds of items - that is,

the number of rows in matrix
iwide-The maximum number of different items

associated with a single row of matrix
iout-The output vector of length nrec
ifirst-The control vector of length idim whose /rth en­

try is the starting position in iout of data associated
with the name in the kth row of matrix

ichar-The control vector of length idim whose kth
entry is the number of allowable characters for data
associated with the name of the kth row of matrix

item-The control matrix of dimension idim by 10 of
item numbers occurring in matrix

Subroutines called: contrLconcat, vector_concat,
wry te__co neat, modify_concat

Common data referenced: None
Input files: None
Output files: None
Arrays used: None

Called by: concat
Error checking and reporting: The user is informed:

YOU GOT TO MAIN
Number of records written to strgNM is counted, and
the user is informed every 25th record because, during
the long interactive running of this program, the user
may become anxious about loops and long CPU time.

Constants: None
Program logic:
1. Subroutine contrLconcat is called to set up the con­

trol matrices idim, ichar, and item.
2. Subroutine vector_concat is called to set up the out­

put vector for one reference.
3. wryte_concat is called to output that vector.
4. When an ITEM 87 is found, indicating repeated data,

modify_concat is called to modify the previous
output vector according to the data that come after
ITEM 87.

5. The count of output vectors is incremented and a
message written each time the count equals a
multiple of 25.

subroutine main_concat(nrec,idim,iwide,iout,ifirst,ichar,
\citem,
& nskip)
c subroutine used in main program "concat"
c updated as of dec. 27, 1976 h. Johnson
c converted to multics february 27, 1977 h Johnson

dimension iout(nrec),ifirst(idim),ichar(idim),ifile(60)
dimension itern(idim,10)
write(6,9100)

9100 format(" you got to main")
c

call contrl_concat(idim,ifirst,ichar,item)
this sets up the control matrix to run this subroutine,
item(line,kolumn) is the item number in refu.
ifirst(line) is the starting position in the output file
for the item.
ichar(line) is the number of positions for itern(line,kolumn)
in the outfile.

kount= 1
c
1 call vector_concat(nrec,idim,iout,ndflg,iwide,ichar,ifirst,item,kf
\clg)
c this reads through one "if" file in refu. for those items
c in kolumn=l, it sets up a vector iout(nrec) which is to be the

first output for this "if", it writes the other cards
having item with kolumn .gt. 1 into a file 77 which will
be read repeatedly to produce new vectors iout. kflg =
the number of cards written to 77. ndflag = 1 when end of
file 30 is reached.

APPENDIX C 87

call wryte_concat(lout,nrec,item,idim,iwide,kflg,
ichar,ifirst)
this writes the iout received from vector to the output
file, 40. it then reads through file 77 using the kolumn
=2 to change iout, writes this new iout vector, then goes
to kolumn = 2,3, . . .

if(ndflg .ne. -1) go to 5
call modify_concat(iout,nrec,item,idim,iwide,kflg,ichar,ifirst,ndfl

\cg)
c
c this routine reads throught records which follow item = 87 until

the next item = 87 is encountered. it modifies iout only in
those records which it finds in file 30 between these two items 87
and then writes the resulting vector and proceeds to modify until
it senses a new "if".

continue
kount=kount+l
if (25*(kount/25) .It.
write(6,9110)kount

9110 format(" you wrote the
10 if(ndflg .eq. l)return

go to 1
c

end

kount) go to 10

",i5,"th vector to the strg file")

SUBROUTINE NAME: ALTER_CONCAT
Author: Harold Johnson
Purpose of the program: alter_concat modifies the out­

put vector when more than one item occurs associated
with the same name classification. Those data have
been written to file77, and alter_concat processes
them.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call alter_concat (iout,nrec,item,idim,-

kolumn, mstop, ichar, ifirst)
Arguments:

iout, nrec, item, idim, ichar, ifirst-See main_con-
cat.

kolumn-An assigned column of item, which is to
determine what data will be used to modify iout

Subroutines called: locate__concat
Common data referenced: None
Input files: None
Output files: None
Arrays used: iout(nrec), ichar(idim), ifirst(idim),

ifile(60)
Called by: wryte_concat
Error checking and reporting: None
Constants: None
Program logic:
1. mstop is set to 0.
2. file77 is read, and id is compared with those in col­

umn number kolumn in item.
If a match is found, mstop is set to 1, iout is modified

according to the data in this record of file77, and
the reading is repeated.

3. If no match is found, the next record in file77 is read.

c ******* SUBKOUTINE ALTER_CONCAT *******
subrout ine a lter_concat(iout/nrec/i tern/i dim*kolumn*mstop/

i cha r* \ f i rs t)
c SUBROUTINE USED IN MAIN PROGRAM "CONCAT"
c UPDATED AS OF DEC. 17, 1976 H. JOHNSON
c Converted to Multics FEBRUARY 18* 1977 H. Johnson

88 GEOINDEX

1

900
c

c
10

20

c
100

dimension iout(nrec)/item(idim/10)/ifil.e(6U)/i ff(3)
dimension ichar(idim)/ifirst(idim)
ms t op = 0
read(77,900,end=100)istate/(iff(j)/j=1/3)/itro,

(i fi le(k),k=1,60)
format(i2/3a1/i2/6Ua1)

cal I locate_concat(i tm/idim/i tern* Ii ne/kolumn)
i f(I i ne .9 t. 0) go to 10
go to 1

ms top=1
no= ichar(line)
do 20 j = 1/no
iout(ifirst<line)+j-1)=ifile(j)
con t i nue
go to 1

rewind 77
return

end
C ******* END ALTER_CONCAT *******

SUBROUTINE NAME: LOCATE_CONCAT

Author: Harold Johnson
Purpose of the program: locate_concat searches the

rows of item under an assigned column to match a
given item number.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call locate_concat (itm,idim,item,-

line,kolumn)
Arguments:

idim, item-See main concat.
itm -A given item number that is to be found in item
kolumn-A given column number whose column in

item is to be searched

I ine-The line number in item where itm is found in
the kolumnth column

Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: item (idim,10)
Called by: vector_concat, alter concat, modify_-

concat
Error checking and reporting: None
Constants: None
Program logic:
1. line is set at 0.
2. The column number kolumn in array item is searched

for a match with itm.
3. If found, that column is equated to line.

******* SUBROUTINE LOCATE.CONCAT *******
subroutine locate_concat(i tm*idim*item*line/kolumn)

SUBROUTINE USED IN MAIN PROGRAM "CONCAT"
UPDATED AS OF DtC. 27, 1976 H. JOHNSON
converted to Multics February 21, 1977 H. Johnson

dimension item(idim/10)
line=0
do 10 j =1 * i a i m
if(itm .eq. item(j * KOIumn)) go to 20

APPENDIX C 89

10

20

cont i nue
return
I i ne= j
return
end

EiMD LOCATE. CON CAT *******

SUBROUTINE NAME: MODIFY_CONCAT

Author: Harold Johnson
Purpose of the program: modify_concat reads through

the records in a reference file that lie between two suc­
cessive ITEM 87s or between 87 and the next
reference number and then modifies the previous iout
vector according to those intermediate records.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call modify_concat (iout, nrec, item, -

idim ,iwide ,kflg, ichar, ifir st, ndflg)
Arguments:

iout, nrec, item, idim, iwide, ichar, ifirst-See
main concat.

kflg, ndflg, iout-See vector concat.
Subroutines called: wryte_concat, locate concat
Common data referenced: None

Input files: None
Output files: None
Arrays used: newout(1211), ifirst(idim), iout(nrec)
Called by: main_concat
Error checking and reporting: None
Constants: None
Program logic:
1. A vector newout is made identical to the input vector

iout.
2. A record from the reference file is read.

If this represents a new reference file as indicated by
a new if number, the input reference file is
backspaced, the newout vector is written, and pro­
gram control returns.

If the record is a new ITEM 87, newout is written
and step 1 is repeated.

If the record is neither of these, the record data is
entered into newout, and the next record is read
and step 2 is repeated.

c
nd
c
5

7
c
10
91

******* SUBROUTINE MOD IFY_CONCAT *******
suorout i ne modi fy.concat(iout/nrec/i tem/idim/i w i de/kflg/ichar/

i f i rs t /ndfIg)

Subroutine used in the new version of concat/ updated to allow
extra items flagged by item no. 87.
H Johnson* March 3/ 1977.

This subroutine read through records which follow item = 87 until
the next item 87 is noted. It modifies iout only in those records
which it finds between items 87. It then writes the resulting
vector and continues. If it senses a new "if" it returns.

dimension iout(nrec)/ifirst(idim)/ichar(idim)/ifi I e(60)
dimension item(idim/10)/newout(1211)

fig = 0
first/ make newout the same as iout/ the original vector..

do 7 j = 1/n rec
newout(j) = iout(j)

continue

read(3J/910/end=10G1)istate/(newout(j)/j=2/4)/itm/(ifile(k)/k=1/60)
U format(i2/3a1/i2/oUa1)

90 GEOINDEX

c check to see if a new "if" has been encountered; if it has* backspace
c and ret urn.
c

do 20 j=2,4
if(newoutCj) .ne. iout(j)) go to 1000

20 cont i nue
c
c Check to see if a new item 87 has been encountered. If it has*
c write the newout vector and repeat the process,
c

i f(i tm .ne. 87) go to 100
Kflg = 0
calI wryte_concat(newout/nrec/item/idim/iwide/kflg/i cha r/i fi rst)

go to 5
c
100 cont i nue
c Now locate the line in matrix which this last-read item occurs in.
c

do 110 kolumn = 1/10
calI locate^concat(i tm/i d i m/i tem/line/kolumn)
i f(line .ne. 0) go to 120

110 cont i nue
c
120 cont i nue
c Modify newout according to ifile in the positions indicated by
c ichar(line) and ifirst(Iine) .
c

no = icnar(line)
Jo 130 j = 1/no

130 newout(ifirst(I ine) + j - 1) = ifile(j)
c

jo to 10
c
1000 backspace 3D
do 1020 j = 2,4
1020 newout(j) = iout(j)

caI I wryte.concatCnewout/nrec/i tem/idim/iwide/kflg/i char/i fi rst)
ret urn

c
1001 ndflg=1
return
end
C ******* END MODIFY_CONCAT *******

SUBROUTINE NAME: VECTOR_CONCAT
Author: Harold Johnson
Purpose of the program: vector_concat sets up the out­

put vector for one reference file. When ITEM 87 is
found, it writes the remaining records for the
reference to a temporary holding file77.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)

Operating system: Multics
Calling sequence: call vector_concat (nrec,idim,iout,-

ndflg,iwide,ichar,ifirst,item,kflg)
Arguments:

nrec, idim, iout, iwide, ichar, ifirst, item-See
main__concat.

ndflag- Indicates by 1 that the end of the input
reference has been reached

APPENDIX C 91

k fig -The number of records from the reference file
that vector__concat temporarily stored in file??

Subroutines called: locate__concat
Common data referenced: None
Input files: refNM
Output files: None
Arrays used: iout(nrec), ifile(60), ichar(idim),

ifirst(idim)
Called by: main_concat
Error checking and reporting: None
Constants: None
Program logic:
1. The output vector lout is first blanked out.
2. The first reference record for the current reference

file is read to set up the reference id and the State
FIPS code in lout.

3. The rest of the records are read and the row and col­
umn of the matrix file is determined where the cor­
responding item is located. This is done by calling
locate_concat.

4. Data in each record is inserted into iout using the
information determined in 3.

5. When ITEM 87 has been read, control is returned to
main_concat.

6. Whenever items are found that occur in columns of
item other than the first, those records are written
to a temporary holding file??. wryte_concat pro­
cesses file?? to update iout.

c ******* SUBROUTINE VECTOR.CONCAT *******
subroutine vector.concat(nrec/idim/iout/ndflag/iwide/ichar/

i f i rst f i tem/ k f lg)
c SUBROUTINE USED IN MAIN PROGRAM "CONCAT"
c UPDATED AS OF DEC. 27/ 1976 H. JOHNSON
c Converted to Multics February 21/ 1977 H Johnson,
c

dimension iout(nrec)/ifile(60),i f i rst(idim)/ichar(idim)
dimension item(idim/10)/iff(3)

c
data iblank/" "/
ndf lag = 0
kflg=U

c
c FIRST/ MAKE IOUT ALL BLANK

do 10 j = 1/nrec
i out(j) = iblank

10 continue
c
c READ THE FIRST RECORD TO SET UP THE "ID" NUMBER
c AND THE STATE IN IOUT
C

read(3U/90U/end=10U1)istate/(iout(j)/j=2/4)/itm/
(i file(k),k = 1,60)

900 format(i2/3a1/i2/60a1)
do 20 j=1*20
iout(4 + j) = i tile(j)
continue20

c
30 read(30*90u,end=1001)istate,<iff(j),j=1/3>,itm,(ifile<k>,

k=1,60)
C CHECK TO SEE IF THIS IS A NEW IF; IN WHICH CASE/ STOP,
c

do 35 j=1/3
if(iff(j) .ne. iout(1+j)) go to 1000

35 conti nue
c

i f(i tm .ne. 87) go to 37
ndf I ag = -1

92 GEOINDEX

gt . 0) rewind 77i f (kf tg
return %
37 cont i nue
c
c When itm = 87 is encountered/ it indicates that the last output
c vector is to be modified by the next records which follow
c until the next item = 87 is encountered. Any further records
c with the same "if" will modify the last output vector obtained from
c the original file.
c NOW LOCATE THE LINE AND KOLUMN IN WHICH ITM OCCURS.
c IF IT OCCURS IN KOLUMN 1 , WRITE TO IOUT; OTHERWISE WRITE
c TO FILE 77.

40

c
50
c

koIumn=1
ca I I locate_concat(i tm/idim/i tern* Iine/kolumn)

WHEN LINE = 0* NO MATCH HAS BEEN FOUND IN KOLUM.M 1.
IT IS NECESSARY TO CHECK THE OTHER COLUMNS.

if(line .eq. 0) go to 50
no= ichar(line)
do 40 j=1*no
iout(ifirst(line)+j-1)=ifi le(j)
con t i nue
go to 30

kflg=kf lg+1

c
1000

c
1001

write(77,900)istate,(iff(j),j=1,3),itm,(ifile(k),k=1,60)
go to 30

back space 30
i f (kf Ig .gt. 0)rewind 77
ret urn

ndf lag=1
if(kf Ig .gt. 0)rewind 77
return
end

END VECTOR.CONCAT *******

SUBROUTINE NAME: WRYTE_CONCAT

Author: Harold Johnson
Purpose of the program: wryte_concat is used to write

the vector iout to the output file strgNM. It also
modifies iout when multiple item numbers occur that
have been written to file??.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call wryte_concat (iout,nrec,item,-

idim,iwide,kflg,ichar,ifirst)

Arguments:
iout, nrec, item, idim, iwide, ichar, ifirst-See

main_concat.
kfig -See vector_concat.

Subroutines called: alter__concat
Common data referenced: None
Input files: None
Output files: None
Arrays used: iout(nrec), leftov(80)
Called by: main_concat, modify_concat
Error checking and reporting: None
Constants: None

APPENDIX C 93

Program logic:
1. An 80-character vector named leftov is blanked out.
2. Each successive 80-character segment of iout is writ­

ten to strgNM until a segment of less than 80
characters remains.

3. This last segment, with blanks from leftov added to
its right-hand side to make up 80 characters, is
written to strgNM.

4. If kflg indicates that data exists in file?? for this
reference, alter_concat is called to modify iout.
Then step 2 is repeated, kolumn begins at 1 and is
incremented by 1 until no match is found by
alter_concat. In this way, repeated data are in­
troduced into iout one column at a time according
to matrix.

******* SUBROUTINE WRYTE.CONCAT *******
subroutine wryte_concat(iout*nrec*item*idim/iwide*k

i cha r, i f i rs t)
SUBROUTINE USED IN MAIN PROGRAM "CONCAT"
EARNING: THERE IS A SUBROUTINE CALLED WRYTE IN THE PROGRAM "
UPDATED DEC. 2.1* 1976 H. JOHNSON
converted to Multics February 18/ 1977 H. Johnson

tlg

dimension iout(nrec)*item(idim*10)*v(3)
dimension ichar(idim)/ifirst(idim)/leftov(8J)
data iblank/" " /

do 1000 j=1,80
lef tov(j)= i blank

1000 continue
kol umn=1

900
10

no=nrec/80
do 10 j = 1 *no
write<4G*900)<iout(<JO*(j-1)+k),k
format(SOal)
con t i nue
mo=(no+1)*80 - nrec
no=80*no+1

if(kflj .eq. 0)return

kol urn n= kol umn + 1
ifCkolumn ,gt. iwide)return

cat I alter_concat (iout^
ichar^ifirst)

c THIS RUMS THROUGH FILE 77 AND COMPARES ITM WITH ITEM
c (J, KOLUMN) *J=1 /IOIM. WHEN A MATCH IS FOUND, IOUT IS
c MSTOP = 0 WHEN NO MATCH HAS BEEN FOUND.

if(mstop .eq. 0) return
if(kolumn .eq. iwiae)return
go to 1

CHANGED

c *******
end

END *RYTE_CONCAT *******

94 GEOINDEX

SUBROUTINE NAME: CONTRL_CONCAT

Author: Harold Johnson
Purpose of the program: contrLconcat sets up the con­

trol vectors ifirst and ichar and the matrix item that
are used to process the records.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call contrLconcat (idim, ifirst, ichar, -

item)
Arguments: See main__concat.
Subroutines called: None

Common data referenced: None
Input files: matrix used on unit 22 (file22)
Output files: None
Arrays used: None
Called by: main_concat
Error checking and reporting: None
Constants: None
Program logic:
1. By means of a do loop, the file matrix is read to deter­

mine for each row the locations of the first
character, the number of admissible characters,
and the associated item numbers for each kind of
data.

c ******* SUBROUTINE CONTRL_CONCAT *******
subroutine contrl_concat(idim*ifirst*ichar*item)

c SUBROUTINE USED IN MAIN PROGRAM "CONCAT"
c UPDATED AS OF DEC. 27, 1976 H. JOHNSON
c Converted to Multics February 21 r 1977 H Johnson
c

dimension itirst(idim)*ichar(idim)*item(idim*lU)
do 10 j =1 * i d im

900
10

(i tem(j,k),k=1,10)
format(2a4,a2,i 5,i9,i 9,1Qi3)
con t i nue
return
end

c ******* END CONTRL_CO!MCAT ******

FILE NAME: MATRIX
Purpose of the file: matrix assigns to the item numbers

that occur in the reference files the following data:
acronyms, type numbers, intitial character positions,
maximum character lengths, and terminal character
positions in the strgNM and redyNM files that are
used as input to the GRASP routines.

Format: Each record contains iacron, itype, ifirst,
ichar, Hast, and from 1 to 10 items, located as follows:
a9 (left-justified), il, i5, i9, i6, 3X, and from 1 to 10 as
i3.

Arguments:
iacron-An acronym associated with the items

/type-A code for the GRASP program to indicate
what type of data occurs in the record (1 means in­
teger; 2 means floating point number; 3 means dic­
tionary character; 6 means character string)

if irst-The initial position in the records of strgNM
and redyNM files where this information is to be
stored

ichar- Maximum allowable length of this information
Has t- Last position in the records of strgNM and

redyNM where this information is allowed
item -From 1 to 10 item numbers that are associated

with this acronym
Referenced by: chkref, concat, GRASP

mat rix

ID
STATE
AUTHOR 1
AUTHOR2
AUTHORS
YEAR

1
3
6
6
6
1

1
5

25
85

145
205

4
20
60
60
60
4

4
24
84

144
204
208

APPENDIX C 95

TITLE1
TITLE2
TITLES
TITLE4
COUNTY1
COUNTY2
COUNTY3
PUBLISH
SERIES
SERIES2
EMPHASI
AREA
AUNIT
NLAT
SLAT
WLONG
ELONG
CLAT
CLONG
OMAPS
AVAIL
BASE
GEOLOGY
PLATE
IDSTAT
SCALE
IDSUB
IBOUND
ISPAN
ALSOMAP
DUMO
DUM1
DUM2
DUM3
DUMA
DUM5
DUM6
DUM7
DUMB
DUM9

6
6
6
6
6
6
6
6
6
6
6
2
6
1
1
1
1
1
1
6
6
3
3
6
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1

209
269
329
389
449
509
569
629
689
749
809
869
877
884
896
908
920
932
944
956

1016
1076
1106
1118
1148
1150
1158
1160
1166
1172
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

60
60
60
60
60
60
60
60
60
60
60
8
7

12
12
12
12
12
12
60
60
30
12
30
2
8
2
6
6

30
1
1
1
1
1
1
1
1
1
1

268
328
388
448
508
568
628
688
748
808
868
876
883
895
907
919
931
943
955

1015
1075
1105
1117
1147
1149
1157
1159
1165
1171
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

9
10
11
37
12
13
14
17
23
60
24
25
26
27
28
29
30
31
32
34
35
36
38
39 40 41 42 43 66
44
18 19 20 21 22 61
45 46 47 48 49 71
50 51 52 53 54 76
55 56 57 58 59 81
86
87
88
89
90
91
92
93
94
95
96

67 68 69 70

62 63 64 65
72 73 74 75
77 78 79 80
82 83 84 85

PROGRAM NAME: TAPEDWG

Author: Richard Thoensen
Purpose of the program: tapedwg reads a group of card

images from a tape created on a 32 bit machine and
creates a System 101 drawing file. The header card is
followed by data cards that contain 6 points per card
in (12F6.3) format.

Data base: Geoindex
Computer: Data General Nova 1220
Operating system: System 101
Calling sequence: tapedwg
Arguments: None

Subroutines called: save, msgot, numin, yesno,
modlc, fckbk, rdtape, ckcrd, hex8, rdhdr, asflc,
erase, rdcrd, rwcon, rewin, bell, ovrly, exit2, skip

Common data referenced: Iblkl, Ipntr/, Imenull, /exec/,
/dskbf/, /ident/, /tape/, /tpdwl/, /tpdw2/, /font/

Input files: Tape that contains mapNM
Output files: coorNMdw, bordNMdw, gridNMdw,

statNMdw, counNMdw
Arrays used: None
Called by: None
Error checking and reporting: A message will be printed

out if a data error or tape error occurs.

96 GEOINDEX

Constants: None
Program logic:

1. Initialize data fields.
2. Send message to terminal:

TAPEDWG OVERLAY
PAUSE MOUNT TAPE ON UNIT 0

3. Send message to terminal:
CHARACTER HEIGHT =

and store the response in texth.
4. Send message to terminal:

SYMBOL # =
5. Send message to terminal:

#OFPENS = ,1,2, or 3
and store response in ipen.

6. Send message to terminal:
TEXT WANTED?? l=yes, 0 = no

and store in iftext
7. Multiply the character height texth by 1.5 and store

in sfact.
8. Send message to terminal:

SKIP FILES?
Call yesno.
If yes, call skip.
Otherwise, go to next step.

9. Call rdtape to read the tape.
Ifjstat = 4, go to step 24.
Ifjstat not = 0, go to step 25.

10. Call hex8.
11. Call rhhdr.
12. Call asflc to find the number temp in ibuff(1).

isubf - temp + 0.5.
Write the value of isubf using (16) format.
If isubf = 9999, then go to step 29.
If isubf is greater than 1000, then subtract 1000

from isubf.
If isubf equals 1000, load isubf with 998.

13. Call erase to clear the screen.
14. Call asflc to find the number temp in ibuff(6), isf

= temp + 0.5.
If the error code istat = 1, set isf = 1.

15. Call asflc to find number temp in ibuff(11).
If the error code is 1, then set not = 0; otherwise,

set not = temp + 0.5.
16. Call asflc to find the number temp in ibuff(16).

If the error code is 1, then set ispan = 0; otherwise,
set ispan = temp + 0.5.

17. If /sfr?o is greater than 6, then set ie = 6; other­
wise, set ie = isf no.

18. Call rdtape to read the tape.
19. Callckcrd.

If ibad = 1 (error code) go to 18.
20. CallhexS.
21. Call rdcrd to read the data card.

If kstat = 1 go to 26.
22. If iftext is not equal to 1, call rwcon to format sym­

bols only, iftext will be = 1 if text was wanted,
otherwise it will be a 0.

23. Call rwcon to format the drawing file.
Continue steps 18 through 23 until jstat - 4.

24. Call msgot to print on the terminal:
END OF FILE REACHED?

Go to step 27.
25. Message:

TAPE ERROR # (NM and the error code.)
Go to step 27.

26. Message:
DATA ERROR

27. Call msgot to send message to the terminal:
REWIND TAPE?

28. Call yesno.
If ians = 1 call rewin to rewind the tape.

29. Call msgot to send message to the terminal:
PROGRAM FINISHED!!

TAPEDWG

10THOENSEN76

SOURCE=<TAPEDWG:F>
OBJECT=<TAPEDWG:R>

PURPOSE:
TO READ A GROUP OF CARD IMAGES FROM A
TAPE CREATED ON A 32 BIT MACHINE
AND CREATE A SYST 101 DWG FILE.
HEADER CARD FOLLOWED BY DATA CARDS
W/ 6 PTS PER CARD 12F6.3 FORMAT

APPENDIX C 97

C.
C.
C
C
C
C
C
C
C
C
C
C
C
C

REMARKS:
THIS PROGRAM HAS KNOWLEDGE OF FILE STRUCTURE.

WHEN RWCON READS A RECORD IT TRANSFERS
THE DATA TO COMMON /LINBF/ LTYPE,LWIDE
AND TO COMMON /SYMBF/ MIRSY,SKLSY

WHEN RWCON WRITES A RECORD IT TRANSFERS THE DATA
FROM COMMON /MENU1/ KODE,MRFLG,SFACT,LNMOD,LNWID

THE CURRENT SYST 100 VALUES FOR LINE WIDTH
AND TYPE ARE STORED IN COMMON /MENU1/

COMMON /BLK/X(30),Y(30),A(10),K(30),KP,ID(80)
COMMON /PNTR/KPT(3,2)
COMMON /MENU1/ KODE,MRFLG,SFACT,LNMOD,LNWID
COMMON /EXEC/ IEXEC(64),REXEC(64)
COMMON /DSKBF/ IDUM(3),LENG
COMMON /IDENT/ IDA(3)
COMMON /TAPE/ IBUF(40),ICRD(80)
COMMON /TPDW1/ XX(6),YY(6),IBLANK,ISF,ISF2,IBUFF(20)
COMMON /TPDW2/ LS(5) ,LSF(5),ISFNO,LSF2(5),LSPAN(5)
COMMON /FONT/ IFONT

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(K(2),K2)
(K(4),KF)
(K(11),KEY)

2) ,ISUBF)
3) ,NSYMB)

(K(15),NCHAR)
(IEXEC(31) , JUSTH)
(IEXEC(32) , JUSTV)

(A(l) , ANGLE)
(A(2) ,TEXTH)
(IEXEC (19) ,LNMSV)
(IDA(1),IFNO)
(IDA(2) ,NOR)
(IDA(3),NIF)

(IEXEC (20) , LNWSV)

DATA IBLANK /2H /

CALL SAVE(l)
KNT = 0
IBAD=0
ISTAT=0
JSTAT=0
KSTAT=0

98 GEOINDEX

LSTAT=0
MSTAT=0
MRFLG=0
SFACT=1
LNMOD=1
LNWID=0
IFONT=0
ANGLE=0
JUSTH=1
JUSTV=1
IDA(1)=0
IDA(2)=0
IDA(3)=0

CALL MSGOT("ITAPEDWG OVERLAY")
CALL NUMIN("j ITAPE DRIVE NO. (0 OR i)
MTUNIT=TEMP
PAUSE MOUNT TAPE PLEASE

",TEMP)

200 CALL NUMIN("|CHARACTER
IF (TEXTH) 200,210,210

210 CALL NUMIN("|SYMBOL # <
NSYMB-TEMP
IF (NSYMB) 210,210,220

220 IF (NSYMB-200) 230,230
230 CALL NUMIN("|# OF PENS=

IPEN=TEMP
IF (IPEN .LT. 1) GO TO
IF (IPEN .GT. 3) GO TO

HEIGHT=",TEXTH)

'",TEMP)

210
,1,2

230
230

OR 3",TEMP)

CALL NUMIN("|TEXT WANTED?? 1 =YES,0=NO",TEMP)
IFTEXT=TEMP

SFACT=1.5*TEXTH

CALL MSGOT("|SKIP FILES?")
CALL YESNO(IANS)
IF(IANS .EQ. 1)CALL SKIP (MTUNIT , JSTAT)
IF(JSTAT .NE. 0)GO TO 6000

300 LNWID=LNWID+1
IF (LNWID.GT.IPEN) LNWID=1

READ HEADER CARD

IFNO=0
ISFNO=0
NOR = 0

CHECK FOR FULL DRAWING FILE

CALL MODLC(KPT(1,2),-3000,MSTAT)
GO TO (800,7300,7300) ,MSTAT

APPENDIX C 99

800

1000

320

330

335

340

0,80,JSTAT)

CONTINUE
CALL FCKBK(LSTAT)
IF(LSTAT .NE. 0)GO TO 7000
DO 1000 1=1,40
IBUF(I)=IBLANK
CONTINUE
CALL RDTAPE(MTUNIT,IBUF,40,
IF(JSTAT .EQ. 4)GO TO 5000
IF(JSTAT .NE. 0)GO TO 6000

CALL CKCRD(IBAD)
IF(IBAD .EQ. 1)GO TO 800

CALL HEX8

CALL RDHDR

NCHR1=5
NCHR2=5
NCHR3=5
NCHR4=5

DO 320 1-1,5
IF (LS(I) .EQ. IBLANK) NCHR1=NCHR1-1
IF (LSF(I) .EQ. IBLANK) NCHR2=NCHR2-1
IF (LSF2(I).EQ. IBLANK) NCHR3=NCHR3-1
IF(LSPAN(I) .EQ. IBLANK)NCHR4=NCHR4-1
CONTINUE

J=5-NCHR1
DO 330 I=1,NCHR1
LS(I)=LS(I+J)/400K
IBUFF(I)=LS(I)
CONTINUE

WRITE(10,335)
FORMAT(50I6)

(LS (I),I=1,NCHR1)

350

J=5-NCHR2
DO 340 I=1,NCHR2
LSF(I)=LSF(I+J)/400K
IBUFF(I+5)=LSF(I)
CONTINUE

IF (NCHR3.EQ.O) GO TO 352
J=5-NCHR3
DO 350 I=1,NCHR3
LSF2(I)=LSF2(I+J)/400K
IBUFF(I+10)=LSF2(I)
CONTINUE

100 GEOINDEX

C
352 IF (NCHR4 .EQ. 0) GO TO 354

J=5-NCHR4
DO 353 I=1,NCHR4
LSPAN(I)=LSPAN(I+J)/400K
IBUFF(I+15)=LSPAN(I)

353 CONTINUE
C
C

354 CALL ASFLC (IBUFF(1),NCHR1,TEMP,ISTAT)
ISUBF=TEMP+.5

C
WRITE(10,20) ISUBF

20 FORMAT(I6)
IF (ISUBF .EQ. 9999) GO TO 500

C
C CLEAR SCREEN
C

KNT=KNT+1
IF(KNT .NE. 26)GO TO 1100
KNT = 0
CALL ERASE

1100 CONTINUE
C

CALL ASFLC(IBUFF(6),NCHR2,TEMP,ISTAT)
ISF=TEMP+.5
IF(ISTAT .EQ. 1)ISF=1
CALL ASFLC (IBUFF(11),NCHR3,TEMP,ISTAT)
NOT-TEMP+.5
IF (ISTAT.EQ.l) NOT=0
CALL ASFLC(IBUFF(16),NCHR4,TEMP,ISTAT)
ISPAN=TEMP+.5
IF(ISTAT .EQ. 1)ISPAN=0
IE=ISFNO
IF(ISFNO .GE. 6)IE=6

C
C READ FIRST DATA CARD
C
1200 CONTINUE

CALL FCKBK(LSTAT)
IF(LSTAT .NE. 0)GO TO 7000
DO 1500 1=1,40
IBUF(I)=IBLANK

1500 CONTINUE
CALL RDTAPE(MTUNIT,IBUF,40,0,80,JSTAT)
IF(JSTAT .EQ. 4)GO TO 5000
IF(JSTAT .NE. 0)GO TO 6000

C
CALL CKCRD(IBAD)
IF(IBAD .EQ. 1)GO TO 1200

C
CALL HEX8

C
CALL RDCRD(KSTAT)
IF(KSTAT .EQ. 1)GO TO 6500

APPENDIX C 101

C
C
C

IF (IFTEXT .NE. 1) GO TO 400
C

X1=XX(1)
Y1=YY(1)
NCHAR=NCHR1
DO 360 I=1,NCHR1
ID (I)=LS (I)

360 CONTINUE
KEY=8
KP=1
CALL RWCON(KF,2)
KEY=16
CALL RWCON(KF,2)

C
C

IF (ISF.EQ. 1 .AND.IFNO.EQ. 1) GO TO 375
NCHAR=NCHR2
DO 370 I=1,NCHR2

370 CONTINUE
KEY=16
CALL RWCON(KF,2)

C
C
375 IF(ISPAN .EQ. 0)GO TO 380

NCHAR=NCHR4
DO 377 I=1,NCHR4
ID(I)=LSPAN(I)

377 CONTINUE
KEY=16
CALL RWCON(KF,2)

C
C

380 IF (NOT.EQ.O) GO TO 400
NCHAR=NCHR3
DO 390 I=1,NCHR3
ID(I)=LSF2(I)

390 CONTINUE
KEY=16
CALL RWCON(KF,2)

C
C

400 X1=XX(2)
Y1=YY(2)

C
C SYMBOL NEEDED IF THIS IS SINGLE PT
C

IF (ISFNO.GT.2) GO TO 410
KEY=7
KP = 1
CALL RWCON(KF,2)
GO TO 300

102 GEOINDEX

C
C WRITE PEN UP
C

410 KEY=1
KP=1
CALL RWCON(KF,2)
JJ = 3
GO TO 430

C
420 CONTINUE

CALL FCKBK(LSTAT)
IF(LSTAT .NE. 0)GO TO 7000
DO 2000 1=1,40
IBUF(I)=IBLANK

2000 CONTINUE
CALL RDTAPE(MTUNIT,IBUF,40,0,80,JSTAT)
IF(JSTAT .EQ. 4)GO TO 5000
IF(JSTAT .NE. OJGO TO 6000

C
CALL CKCRD(IBAD)
IF(IBAD .EQ. 1)GO TO 420

C
CALL HEX8

C
CALL RDCRD(KSTAT)
IF(KSTAT .EQ. 1)GO TO 6500

C
C
C
C WRITE PEN DOWN
C

430 KEY=6
KP=1
DO 440 I=JJ,IE
X1=XX(I)
Y1=YY(I)
CALL RWCON(KF,2)

440 CONTINUE
JJ=1
IF (ISFNO-6) 300,300,450

450 ISFNO=ISFNO-6
IE=ISFNO
IF (ISFNO.GE.6) IE=6
GO TO 420

C
C EOF FOUND
C
5000 CONTINUE

CALL MSGOT("|END OF FILE REACHED?")
GO TO 7000

C
C TAPE ERROR
C
6000 CONTINUE

WRITE(10,1001)JSTAT

APPENDIX C 103

1001 FORMAT(IX,'TAPE ERROR #',!!)
GO TO 7000

C
C DATA ERROR
C
6500 CONTINUE

WRITE(10,1002)
1002 FORMAT(IX,'DATA ERROR')
C
C REWIND UNIT 0
C
7000 CONTINUE

CALL MSGOTC (REWIND TAPE?')
CALL YESNO(IANS)
IF(IANS .NE. 1)GO TO 7500
CALL REWIN(MTUNIT)
GO TO 7500

7300 CONTINUE
CALL BELL
WRITE(10,1003)

1003 FORMAT(IX,'DRAWING FILE FULL|',2(/IX,'DO NOT REWIND TAPE||'),/1X
\c,'

*SAVE DRAWING FILE,GET NEW DRAWING FILE AND RECALL TAPEDWG OVERLA
\cY'

*)
7500 CONTINUE
C
C DONE
C

500 ISUBF=999
CALL MSGOT ("(PROGRAM FINISHED(|")
KEY=31
CALL RWCON(KF,2)
KP = 0
CALL OVRLY(1,IER)
CALL EXIT2
END

PROGRAM NAME: DWGDISK
Author: Lawrence Balcerak
Purpose of the program: dwgdisk reads a System 101

drawing file and writes an ASCII disk file containing
the header card and data cards for each feature
outline.

Data base: Geoindex
Computer: Data General Nova 1220
Operating system: System 101
Calling sequence: dwgdisk
Arguments: None
Subroutines called: fclfl, fopfl, save, numin, msgot,

yesno, rwcon, asflc, fcnot, ovrly, exit2, flnam, fdffl,
xdmsg

Common data referenced: /PUNCHI Most Bendix
subroutines read from or write to common blocks.

Read "System 100 Programmers manual" (S100PM)
for further information.

Input files: bordNMdw, gridNMdw, statNMdw, coun-
NMdw, redNM, blueNM, greenNM

Output files: bordNM, gridNM, statNM, counNM,
redNM, blueNM, greenNM

Arrays used: None
Error checking and reporting: None
Constants: None
Program logic:

1. Pause. Stops execution of program until a return is
sent. Prints message:

PAUSE FOR OPERATOR
2. Call fclfl (clears a file and releases slot 0).
3. Send message to terminal:

NAME OF DISK OUTPUT FILE = ??

104 GEOINDEX

4. Call f Inam to receive a file name from the keyboard
and store in name,
igood is the returned status code.

5. If igood = 1, go to step 6 (acceptable file name).
If igood = 2, go to step 3 (file name too long).
If igood = 3, go to step 78. Control d or cr on first

character was entered.
6. Call fopfl. This opens the file name for writing and

assigns it to file slot 0. istat is the monitor error
code.

7. If istat is not equal to 0, go to step 9. At this point a
nonzero value is an error.

8. Send message to terminal:
OLD FILE-OK???.

Call yesno. If yes, go to step 15. If no, go to step 2.
9. If istat is not equal to octal 204, go to step 14. This

is the status code for a new file.
10. Send message to terminal:

NEW FILE-OK??
Call yesno. If yes, go to step 11. If no, go to step

2.
11. Call fdffi, which defines a file name name, istat is

the monitor error code.
12. If istat is not equal to 0, go to step 14.
13. Call fopfl. This opens the file name for writing and

assigns it to file slot 0. If there are no errors then
istat = 0; go to step 15.

14. Call xdmsg(/sfaf). This prints a disk operating
system error message based on istat. Go to step 2.

15. Send message to terminal:
!DO YOU WISH TO WRITE AN EOF FLAG

ON THIS FILE??.
If you must run this program several times, you
will later concatenate the several files and will
need an EOF flag only in the last file.

16. Call save(1). This saves critical constants from the
systems common blocks that are parameters
describing the drawing file. These constants will
be needed at the end of the program to restore the
operation to the table with the same parameters.

17. Set nif = 0. This variable on the header card in­
dicates grid, county, and so forth.

18. Send message to terminal:
TYPE 2 DIGIT STATE NUMBER

Call numin to receive number.
Set nor = to returned number.

19. Send message to terminal:
IS THIS THE GRID BEING WRITTEN??

20. Call yesno. If yes, go to step 21. If no, go to step 22.
21. Set nif = 991 (indicates the grid).

Go to step 25.
22. Send message to terminal:

IS THIS THE COUNTIES BEING
WRITTEN??

23. Call yesno. If yes, got to step 24. If no, go to step
25.

24. Set nif = 992 (indicates the counties).
25. Set lifno(i) = 0 for / = 1,2000.
26. Set kpt(kf,1) = 1. Set the read pointer for the draw­

ing file to the first record. Steps 27-30 will read
the drawing file until the first text position that
occurs in the drawing file is read.

27. Set kp = 1. When reading a drawing file, rwcon
uses x(kp) and y(kp).

28. Call rwcon (kf,l). kf (equivalent to /r(4)) is the active
file. The 1 indicates a read.

29. If key = 31 (EOF), go to step 77.
Note: Several assumptions are made concerning the

drawing file. Each outline begins with a text string
identifying the feature number, subfeature number,
span and second subfeature number, with a default of
0 for any absent text. There can be any number of line
segments that make up an outline.

30. If key is not equal to 8 (text position), go to step 27.
Steps 31-39 read through the drawing file coun­
ting the number of points for each outline and
counting the number of outlines that have the
same feature number. This must be done before
punching starts because the information is on the
header card.

31. Set kount = 1. This is a count of the number of
points in an outline. The text position is the first
point.

Set inum = 1. This is a count of the number of
outlines.

Set numtext = 0. This is the count of how many
lines of text are in the outline being read.

32. Set kp = 1.
Call rwcon to read a record.

33. If key = 31 (EOF), go to step 37.
If key = 8 (text position), go to step 37.
If key = 16 (text string), go to step 34.
If key = I (pen up), or if key = 6 (pen down), or if

key = 7 (symbol position), add 1 to kount.
Go to step 32.

34. Add 1 to numtext (one more text string found).
If numtext is greater than 1, go to step 37. We are

interested in only the first text string at this time.
Set ibuf(i) = /</(/). This contains the character string

just read.
35. Call asf Ic to find the number, temp, represented by

the text in ibuf(i).
If istat = I, go to step 32. An error code of 1 is

returned for any abnormality.
36. Add 1 to the count of number of outlines that have

same feature number as the new outline just
started. Go to step 32.

APPENDIX C 105

37. Set iburp(inum) = kount. This is a count of the
number of points for each outline.

Set kount = 1. Start count over.
Add 1 to inum (sequence number of next outline).

38. If key = 31 (EOF), go to step 40. There are two
ways to reach this step: key - 31 or key = 8.

39. The only way to reach this step was if key = 8 (text
position), which starts a new outline. Go to step
32. Steps 40-44 will read the drawing file until the
first text position that occurs in the drawing file is
read. These statements start reading the drawing
file from the first record.

40. Set kpt(kf,1) = 1. This sets the read pointer for the
drawing file to the first record.

41. Set inum = 1 (outline count).
42. Set kp = 1. Call rwcon to read a record.
43. If key = 31 (EOF), go to step 79. Then the program

is almost finished.
44. If key is not equal to 8 (text position), go to step 42.
45. Set kount = 0. This is a counter for the number of

text strings found for an outline. None is found
yet.

Set knum = 2. This is a counter for the number of
the point to be processed. One is already proc­
essed.

Set isfno = iburp(inum) (the number of points).
Add 1 to inum (sequence number of next outline).
Set iup = 1. This is the counter for the number of

pen ups or symbol positions found in one outline.
The first is treated differently from the rest.

Set isf = 1. This will be 1 unless changed in a text
string.

Set not = 0.
Set /spa/? = 0 (default values).
Setxp(7) = x1.
Set yp(1) = y1. This is the text position.

46. For / = knum, 6:
Set xp(/) = 0.
Set yp(i) = 0.

47. If knum = 1, set knum = 0. This will be equal to 1
when a card has just been punched and more
points are needed to complete the outline. It then
branches to the previous step, where it must be 1,
but logic further along demands that it be 0.

48. Set kp = 1.
Call rwcon to read a record.

49. If key = 31 (EOF), go to step 72.
50. If key = 8 (text position), go to step 72. This is true

for all outlines except the first outline.
51. If key = 16 (text string), go to step 55.
52. If key = 1 (pen up) or 7 (symbol position), go to step

67.
53. If key = 6 (pen down), go to step 70.
54. Go to step 48.

55. Add 1 to kount. Another text string found for this
outline.

56. If kount is greater than 4, go to step 48. kount
should never be greater than 4, because there are
only four possible pieces of information.

57. For / = 1, 5, set ibuf(i) = id(i). id(i) contains the text
string from the record read in statement 48.

58. Call asf Ic to find the number, temp, represented by
the text in ibuf(i).

59. If istat = 1, go to step 48. An error code of 1 is
returned for any abnormality.

60. If kount = 1, go to step 66 (the first text string).
If nil = 992, go to step 64. If this is the county file,

isf represents a bordering county or other boun­
dary.

61. If there is only one outline and temp is greater than
0, set kount = 4.
This must be a second subfeature number, but
there should not be four text strings.

If there is only one outline and temp is less than 0,
set kount = 3. This must be a span, but there
should not be three text strings.

62. Set/ = kount -I.
If / = 1, go to step 64.
If / = 2, go to step 65.
If / = 3, go to step 66.

63. Set isf - temp. To get to this step, one of three con­
ditions existed:
this must have been the second text string with if-
no greater than 1, or this is the counties, or temp
= 0. Go to step 48.

64. Set /span = temp. This was the third text string, or
second text string with temp less than 0. Go to
step 48.

65. not = temp. This was the fourth text string, or
temp greater than 0 and only one outline. Go to
step 48.

66. iff = temp. This is the feature number, ifno
= iifno(iif). This is the count of outlines with same
feature number. Go to step 48.

67. If key = 1 (pen up) and iup is greater than 1, go to
step 70. This is another line segment that must be
concatenated to previous segments.

68. Add 1 to iup, which is a flag to show what position
the next pen up has in the outline (used in previous
step).

69. Setxp(2) = x1
Setyp(2) = y1.

Program writes the header card to the disk file.
Go to step 48.

70. Add 1 to knum, which is counter for next position.
Setxp(knum) = x1.
Set yp (knum) = y1.

106 GEOINDEX

71. If knum is less than 6, go to step 48.
Otherwise, go to next step. The card should have

six points to be written.
72. If knum = 0, go to step 74. The last card written

had six points on it and finished an outline.
73. Program writes xp(/) and yp(/) to the disk file.
74. If key = 31 (EOF), go to step 78. Then, the program

is almost finished.
75. If key = 8 (text position), go to step 45. A new

outline is to be processed; default values must be
reset.

76. Set knum = 1.
Go to step 46. There are more points in this outline.

77. Program writes message to terminal:
NO TEXT IN FILE!

Go to step 79.
78. Program writes message to terminal:

IDONE!

79. If ieof = 1, go to step 80.
If ieof - 2, go to step 81. This is an indicator for

whether or not an EOF flag is to be written. This
was done in step 15.

80. Set Hf = 9999 (the EOF flag). Program writes a
header card to the disk file.

81. Close file slot 0.
Call fcnot (" 7 ") several times to ring the bell. This

produces an audible signal to the operator. Pro­
gram writes message to terminal:

PROGRAM FINISHED
Set kp = 0.
Call save(2) (restores critical constants).
Call overly, a routine that overlays user memory

with selected main program (returns control to
the table).

Call exit2 (overlays signoff for the system).

C DWGDISK

WRITTEN 2MAR78 BALCERAK

SOURCE=<DWGDISK:F>
OBJECT=<DWGDISK:R>

PURPOSE:
TO READ A SYSTEM 101 DRAWING FILE LOADED ON
THE DRAWING TABLE-GET THE X,Y COORDINATES
OF THE TEXT REFERENCES AND OF THE LINES
AND WRITE TO DISK IN 12F6.3 FORMAT.

THE HEADER CARD FOR EACH OUTLINE WILL ALSO
BE WRITTEN WITH ALL RELAVENT INFORMATION.

COMMON /BLK/ X(30),Y(30),A(10),K(30),KP,ID(80)
COMMON /PNTR/ KPT(3,2)
COMMON /LINBF/ LTYPE,LWIDE
COMMON /MENU1/ KODE,MRFLG,SFACT,LNMOD,LNWID
COMMON /EXEC/ IEXEC(64),REXEC(64)
COMMON /DSKBF/ IDUM(3),LENG
COMMON /IDENT/ IDA(3)
COMMON /PUNCH/ XP(6),YP(6),IBUF(5),IBURP(2000),NAME(10),

$ IIFNO(2000)

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(K(2),K2)
(K(4),KF)
(K(ll),KEY)
(K(15),NCHAR)

APPENDIX C 107

C
C
C
C

1000
1010

1020

1030

C
1040

1050

C
1

\c)

C

10

PAUSE FOR OPERATOR
CALL FCLFL (0,IER)
CALL MSGOT ("|NAME OF DISK OUTPUT FILE=?? ")
CALL FLNAM (NAME,IGOOD)
GO TO (1020, 1010,500) ,IGOOD
CALL FOPFL (NAME , 0, 1 , ISTAT)
IF (ISTAT .NE. 0) GO TO 1030
CALL MSGOT ("|OLD-FILE. OK?? ")
CALL YESNO (IANS)
GO TO (1, 1000) ,IANS
IF (ISTAT .NE. 204K) GO TO 1050
CALL MSGOT (" | NEW-FILE. OK?? ")
CALL YESNO (IANS)
GO TO (1040, 1000) , IANS

CALL FDFFL (NAME, ISTAT)
IF (ISTAT .NE. 0) GO TO 1050
CALL FOPFL (NAME , 0 , 1 , IS TAT)
IF (ISTAT .EQ. 0) GO TO 1
CALL XDMSG (ISTAT)
GO TO 1000

CALL MSGOT ("|DO YOU WISH TO WRITE AN EOF FLAG ON THIS FILE?? "

CALL YESNO (IEOF)

CALL SAVE(l)
NIF = 0
CALL NUMIN ("|TYPE 2 DIGIT STATE NUMBER ",TEMP)
NOR=TEMP
CALL MSGOT ("|IS THIS THE GRID BEING WRITTEN?? ")
CALL YESNO (ISTAT)
GO TO (2, 3), ISTAT
NIF=991
GO TO 5
CALL MSGOT ("|IS THIS THE COUNTIES BEING WRITTEN?? ")
CALL YESNO (ISTAT)
GO TO (4, 5), ISTAT
NIF=992
DO 6 1=1,2000
IIFNO(I)=0
CONTINUE
KPT(KF, 1)=1

START READING RECORDS AND WRITTING TO DISK

KP=1
CALL RWCON (KF, 1)
IF (KEY .EQ. 31) GO
IF (KEY .NE. 8) GO
KOUNT-1

TO
TO

350
10

108 GEOINDEX

INUM=1
NUMTEXT=0

20 KP=1
CALL RWCON (KF,1)
IF (KEY .EQ. 31) GO TO 30
IF (KEY .EQ. 16) GO TO 25
IF (KEY .EQ. 8) GO TO 30
IF ((KEY .EQ. 1) .OR. (KEY .EQ. 6) .OR. (KEY .EQ. 7))

* KOUNT=KOUNT+1
GO TO 20

C
25 NUMTEXT=NUMTEXT+1

IF (NUMTEXT .GT. 1) GO TO 20
DO 27 1=1,5

27 IBUF(I)=ID(I)
CALL ASFLC (IBUF,NCHAR,TEMP,ISTAT)
IF (ISTAT .EQ. 1) GO TO 10
IIF=TEMP+0.5

C
30 IBURP(INUM)=KOUNT

KOUNT=1
INUM=INUM+1
IF (KEY .EQ. 31) GO TO 40
IIFNO(IIF)=IIFNO(IIF)+1
NUMTEXT=0
GO TO 20

C
C

40

C
C

50

KPT (KF,
INUM=1

KP=1

1)

CALL RWCON (KF,1)
IF (KEY .EQ. 31) GO TO 500
IF (KEY .NE. 8) GO TO 50

55 KOUNT=0
KNUM=2
ISFNO=IBURP(INUM)
INUM=INUM+1
ISF=1
IUP=1
NOT = 0
ISPAN=0
XP(1)»X1
YP(1)=Y1

60 DO 65 I=KNUM,6
XP(I)=0
YP(I)=0

65 CONTINUE
IF (KNUM .EQ. 1) KNUM=0

C
C

70 KP=1
CALL RWCON (KF,1)

APPENDIX C 109

IF (KEY .EQ. 31) GO TO 140
IF (KEY .EQ. 8) GO TO 140
IF (KEY .EQ. 16) GO TO 80
IF ((KEY .EQ. 1) .OR. (KEY .EQ. 7)) GO TO 110
IF (KEY .EQ. 6) GO TO 130
GO TO 70

C
C

80 KOUNT=KOUNT+1
IF (KOUNT .GT. 4) GO TO 70
DO 85 1=1,5

85 IBUF(I)=ID(I)
CALL ASFLC (IBUF,NCHAR,TEMP,ISTAT)
IF (ISTAT .EQ. 1) GO TO 70
IF (KOUNT .EQ. 1) GO TO 105
IF (NIF .EQ. 992) GO TO 90
IF((IFNO .EQ. 1) .AND. (TEMP .GT. 0.0)) KOUNT=4
IF ((IFNO .EQ. 1) .AND. (TEMP .LT. 0.0)) KOUNT=3
I=KOUNT-1
GO TO (90,95,100),1

90 ISF=TEMP
GO TO 70

95 ISPAN=TEMP
GO TO 70

100 NOT=TEMP
GO TO 70

105 IIF=TEMP+0.5
IFNO=IIFNO(IIF)
GO TO 70

C
C
110 IF ((KEY .EQ. 1) .AND. (IUP .GT. 1)) GO TO 130

IUP=IUP+1
XP(2)=X1
YP(2)=Y1
WRITE (0,120) IIF,IFNO,ISF,ISFNO,NOT,NOR,NIF,ISPAN

120 FORMAT (IX,815)
GO TO 70

C
C
130 KNUM=KNUM+1

XP(KNUM)=X1
YP(KNUM)=Y1
IF (KNUM .LT. 6) GO TO 70

140 IF (KNUM .EQ. 0) GO TO 160
WRITE (0,150) (XP(I),YP(I),1=1,6)

150 FORMAT (1X.12F6.3)
160 IF (KEY .EQ. 31) GO TO 500

IF (KEY .EQ. 8) GO TO 55
KNUM=1
GO TO 60

C
C DONE
C
350 CALL FCNOT ("|NO TEXT IN FILE|")

110 GEOINDEX

500 CALL FCNOT (fl |DONE|")
GO TO (510,520),IEOF

510 IIF=9999
WRITE (0,120) IIF,IFNO,ISF

520 CALL FCLFL (0,IER)
CALL FCNOT (
CALL FCNOT (
CALL FCNOT (
KP = 0
CALL SAVE(2)
CALL OVRLY (1,IER)
CALL EXIT2
END

ISFNO,NOT,NOR,NIF,ISPAN

PROGRAM NAME: SELDISK
Author: Lawrence Balcerak
Purpose of the program: seldisk reads through an

ASCII disk file containing coordinate outlines and
places selected outlines into a drawing file.

Data base: Geoindex
Computer: Data General Nova 1220
Operating system: System 101
Calling sequence: seldisk
Arguments: None
Subroutines called: fclfl, fcnot, flnam, fopfl, msgot,

numin, ovrly, rwcon, save, xdmsg, asflc
Common data referenced: /Punch/ Most Bendix

subroutines read from or write to common blocks.
Read "System 100 Programmers Manual" (SIOOPM)
for further information.

Input files: None
Output files: None
Arrays used: None
Error checking and reporting: None
Constants: None
Program logic:

1. Call save(1) (saves critical constants from the
systems common blocks that are parameters
describing the drawing file). These will be needed
at the end of the program to restore operation to
the table with the same parameters.

2. Set mrflg = 0. mrflg is the mirror flag. 0 indicates
no mirroring.

Set sfact = 1. sfact is scale factor.
Set Inmod = 1. Inmod is line type. 1 indicates a

solid line.
Set In win = 0. In win is pen number (initial value,

which will be changed at a later time).
Set ifont = 0 (system requirement).
Set angle = 0 (angle of rotation for text).
Set justh = 1. justh is horizontal text justification.

1 indicates that the text will be left justified start­
ing at the text location.

Set justv = 1. justv is vertical text justification. 1
indicates that the text will be above the text loca­
tion.

3. Send message to terminal:
SELDISK OVERLAY
PAUSE TURN ON CARD READER

and wait for the return to be pushed. This gives a
chance to make sure that the card reader has been
prepared correctly.

Steps 4-6 open the card reader for use.
4. Call fclfl (clears a file and releases slot 0).
5. Call fopfl (opens the card reader for reading and

assigns it to slot 0).
If ier is equal to 0, go to step 7. Otherwise, go to

step 6. ier is the monitor error code (See SIOOPM,
p. 236).

6. Write message to terminal:
FOPFL ERROR

and then go to step 72.
7. Call numin. This sends the message:

.'CHARACTER HEIGHT =
to the terminal and waits for an answer, which it
places in the real variable texth. This is usually
0.14 inches.

8. If texth is less than 0, go back to step 7. The system
will accept a zero height but not a negative height.

9. Call numin. Sends message:
ISYMBOL # =

and receives answer into temp.
Set nsymb = temp. Change to an integer.

10. If nsymb is greater than 0, go to step 11.
Otherwise, go back to step 9. This must be a positive

integer.
11. If nsymb is greater than 200, go back to step 9. The

range of possible symbol numbers is 1-200.

APPENDIX C 111

12. Set sfact = 1.5 times texth. This is the symbol scale
factor. Our standard symbol for single points (a
small triangle) is constructed 1 inch high. We
usually plot it at 0.21 inches.

13. Set icount = 1. Index counter for the array if He,
which will contain the feature and subfeature
numbers read from the T-file.

14. Read a feature and subfeature number with a for­
mat of (18,12) and place into ifile(icount,l) and
ifile(icount,2).

15. If the feature number = -1, go to step 17. This is a
flag for the end of the T-file.

16. Add 1 to icount (to read another card).
Go to step 14.

17. Subtract 1 from icount. We don't want to count the
flag.

Steps 18-26 open the coordinate outline file for reading.
18. Call fclfl (clears a file and releases slot 0).
19. Send message to terminal:

NAME OF COORDINATE OUTLINE FILE =
??

and wait for an answer.
20. Call flnam to receive the file name, and place it in

the array name,
igood is the returned status code.

21. If igood = 1, go to step 22. An acceptable file name
has been read in.

If igood = 2, go back to step 19 (file name too long).
If igood = 3, go to step 72. Control d or cr on first

character was entered.
22. Call fopfl. This opens the file name for reading and

assigns it to slot 0. is tat is the monitor error code.
23. If istat is not equal to octal 204, go to step 25. This

is the code for a new file. This will be the most
common error.

24. Send message to terminal:
!NEW FILE TRY AGAIN!!

Go to step 18.
25. If istat is equal to 0, go to step 27. This indicates an

old file that has no problems in opening.
26. Call xdmsg(/sfaf). This prints a disk operating

system error message based on istat. Go to step
18 to try again.

27. Add 1 to Inwid. This is the pen number, which
changes whenever a new outline starts.

If Inwid is greater than 3, then set Inwid equal to 1.
Only three pens are on this plotter.

28. Read a header card. The feature, subfeature, second
subfeature, and span are read in as characters.
The rest are read as integers.

29. Set nchrl = 5.
Set nchr2 = 5.
Set nchr3 = 5.

Set nchr4 = 5. These are the character counts for
each of the four strings read from the header
cards.

30. Check each of the four character strings for blanks.
Subtract 1 from the character count for each
blank found.

31. Set J = 5 -nchrl. This is the number of blank
characters.

32. In the character string, Is (feature number) divides
each nonblank character by octal 400. This moves
the bit pattern from the left half of the word to the
right half.

Set the array ibuf starting at element 1 equal to the
right justified nonblank characters.

33. Repeat steps 31 and 32 for the subfeature number,
Isf, and store in ibuf starting at element 6.

34. Repeat steps 31 and 32 for the second subfeature
number, Isf2, and store in ibuf starting at ele­
ment 11.

35. Repeat steps 31 and 32 for the span, /span, and
store in ibuf starting at element 16. In the last
three steps, there is a possibility that the number
of characters is 0 (a blank field on the card). This
will be accounted for when the subroutine asflc is
called for each number.

36. Call asflc to change the nchrl characters starting
at ibuf(1) to the real number temp.

Set isubf = temp + 0.5. Change to an integer, but
add 0.5 first to make sure the number is truncated
correctly. This is the feature number as well as the
subfile number.

37. If isubf is equal to 9999, go to step 72. This is the
end-of-file flag, EOF, so the job is finished. The
system does not recognize an end = option in a
read statement, hence the need for the end-of-file
flag.

If isubf is greater than 1,000, subtract 1,000 from
isubf.

If isubf is equal to 1,000, set isubf = 998. More
than 1,000 outlines are possible, but only 999 sub­
files are.

38. Call asflc using the nchr2 characters starting at
ibuf(6) to find isf the subfeature number, istat is
the returned error code that is 0 for no errors and
equal to 1 for an error. The possible errors are as
follows: no characters, a nonnumeric character,
more than one plus or minus sign or decimal point,
a plus or a minus sign somewhere other than posi­
tion number one.

39. If istat is equal to 1, set isf = 1. This will be the
default value.

40. Call asflc using nchrS characters starting at
ibuf(11) to find not, the second subfeature
number.

112 GEOINDEX

41. If istat is equal to 1, set not = 0 (the default value).
42. Call asflc using nchr4 characters starting at

ibuf(16) to find is pan, the span (should be
negative or zero).

43. If istat is equal to 1, set ispan = 0 (the default
value).

44. Go through the if He array to see if an entry matches
the feature number, isubf, and the subfeature
number, isf.

If a match is found, go to step 47.
45. Read a data point record. Skip this outline.
46. Subtract 6 from isf no. Six data points are on each

record.
If there are more data point records for this outline,

isf no is greater than 0, go to step 44. Otherwise,
go to step 28 to read the next header card.

47. Set ie equal to the minimum of (6,isf no). There are
a maximum of six points per record.

48. Read ie data points from the next record into xx and
yy.

49. Set x1 = xx(1}.
Set y1 = yy(1). This is the data point written to the

drawing file when rwcon is called.
50. Set nchar = nchrl. This is the number of

characters to be written as a text string when
rwcon is called.

For /' = 1, nchrl, set id(i) = ls(i) (feature number).
id is the array from which rwcon gets the text
string.

51. Set key = 8 (the indicator that is a text position).
52. Set kp = 1. When writing a drawing file record,

rwcon uses x(kp) and y(kp).
Call rwcon(/r/,2). kf (equivalent to k(4)) is the active

file. The 2 indicates a write.
53. Set key = 16 (text string indicator).

Call rwcon to write a record. This writes the text
string record containing the feature number.

54. Write the feature number to the terminal. This
leaves a record of what has been done to date,
which may be needed if there is some sort of
system failure.

55. If the subfeature number is not to be placed as text,
go to step 57.

56. Set nchar = nchr2.
Set id(i) = lsf(i), for / = 1, nchr2.
Set key = 16.
Call rwcon to write a text string record.

57. If the span is not to be placed as text, go to step 59.
58. Set nchar = nchr4.

Set id(i) = lspan(i), for /' = 1, nchr4.

Set key = 16.
Call rwcon to write a text string record.

59. If the second subfeature number is not to be placed
as text, go to 61.

60. Set nchar = nchr3.
Set id(i) = Isf2(i), for / = 1, nchrt.
Set key = 16.
Call rwcon to write a text string record.

61. Set x1 = xx(2).
Set y1 = yy(2). Process the second point.

62. If isfno is greater than 2, go to step 64. Greater
than 2 indicates a line segment. If equal to 2, it
would indicate a single point.

63. Set key = 7 (the indicator for a symbol).
Set kp = 1.
Call rwcon to write a symbol record.
Go to step 27 to start on the next outline.

64. Set key = I (the indicator for a pen up).
Set kp = I.
Call rwcon to write a pen-up record.
Set //' = 3. We have already processed the first 2

points.
Go to step 66.

65. Read ie data points from the next record into xx and
yy.

66. Set key = 6 (the indicator for pen down).
Set kp = I.

67. Do for / = //, ie.
Setxl = yy(i).
Set y1 = yy(i).
Call rwcon to write a pen-down record.

68. Set //' = 1 (will start with first data point next time).
69. If there are no more data points for this outline, go

to step 27 to start on the next.
70. Subtract 6 from isfno. This computes how many

more points are left to complete the outline.
71. Set ie = minumum of (6,isfno).

Go to step 64.
72. Set isubf = 999. Subfile 999 indicates that the

whole drawing file is being referred to.
73. Set key = 31 (the indicator for an EOF).

Call rwcon to write an EOF record.
Call fclfl to clear the disk file and release slot 0.

74. Call fcnot (" 7 ") several times to ring the bell. This
produces an audible signal to the operator.

Write to the terminal:
IPROGRAM FINISHED!!

Set kp = 1.
Call ovrly. This overlays user memory with selected

main program; it returns control to the table.
Call exit2 (overlays signoff for the system).

APPENDIX C 113

SELDISK

WRITTEN 2MAR78 BALCERAK

SOURCE=<SELDISK:F>
OBJECT=<SELDISK:R>

PURPOSE
TO READ A GROUP OF PTS FROM A DISK FILE
AND CREATE A SYST 101 DWG FILE. THERE WILL
BE A HEADER CARD FOLLOWED BY DATA CARDS
WITH 6 PTS PER CARD IN 12F6.3 FORMAT.
THE PROGRAM SELECTS ONLY CERTAIN FILES .

REMARKS:
THIS PROGRAM HAS KNOWLEDGE OF FILE STRUCTURE.

WHEN RWCON READS A RECORD IT TRANSFERS
THE DATA TO COMMON /LINBF/ LTYPE,LWIDE
AND TO COMMON /SYMBF/ MIRSY,SKLSY

WHEN RWCON WRITES A RECORD IT TRANSFERS THE DATA
FROM COMMON /MENU1/ KODE,MRFLG,SFACT,LNMOD,LNWID

THE CURRENT SYST 100 VALUES FOR LINE WIDTH
AND TYPE ARE STORED IN COMMON /MENU1/

COMMON /BLK/X(30),Y(30),A(10),K(30),KP,ID(80)
COMMON /PNTR/KPT(3,2)
COMMON /MENU1/ KODE,MRFLG,SFACT,LNMOD,LNWID
COMMON /EXEC/ IEXEC(64),REXEC(64)
COMMON /DSKBF/ IDUM(3),LENG
COMMON /PUNCH/ XX(6),YY(6)
COMMON /CRDWG/ LS(5), LSF(5) ,ISFNO,LSF2(5) ,LSPAN(5) ,NAME(10)
COMMON /CRDWG/ ISF,ISF2,IBLANK,IBUF(20),IFILE(1000,2)
COMMON /FONT/ IFONT

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(K(2),K2)
(K(4),KF)
(K(11),KEY)
(K(12) ,ISUBF)
(K(13) ,NSYMB)
(K(15) ,NCHAR)
(IEXEC(31) , JUSTH)
(IEXEC(32) , JUSTV)

(A(l) , ANGLE)
(A(2) ,TEXTH)

114 GEOINDEX

C
DATA IBLANK /2H /

C
C
C
C
C

CALL SAVE(l)
MRFLG=0
SFACT=1
LNMOD=1
LNWID=0
IFONT=0
ANGLE=0.
JUSTH=1
JUSTV=1

C
CALL MSGOT("ISELDISK OVERLAY")
PAUSE TURN ON CARD READER
CALL FCLFL(0,IER)
CALL FOPFL("/CDR",0,0,IER)
IF (IER) 150,200,150

150 CALL MSGOT("(FOPFL ERROR|")
GO TO 500

C
200 CALL NUMIN("|CHARACTER HEIGHT=",TEXTH)

IF (TEXTH) 200,210,210
210 CALL NUMIN("[SYMBOL # =",TEMP)

NSYMB=TEMP
IF (NSYMB) 210,210,220

220 IF (NSYMB-200) 230,230,210
230 SFACT=1.5*TEXTH

C
ICOUNT=1

240 READ (0,250) IFILE(ICOUNT,1),IFILE(ICOUNT,2)
250 FORMAT (18,12,)

IF (IFILE(ICOUNT,1) .EQ. -1) GO TO 260
ICOUNT=ICOUNT+1
GO TO 240

260 ICOUNT=ICOUNT-1
C
270 CALL FCLFL (0,IER)
280 CALL MSGOT ("|NAME OF COORDINATE OUTLINE FILE=?? ")

CALL FLNAM (NAME,IGOOD)
GO TO (290,280,500),IGOOD

290 CALL FOPFL (NAME,0,0,IS TAT)
IF (ISTAT .NE. 204K) GO TO 295
CALL MSGOT ("[NEW FILE TRY AGAIN|| ")
GO TO 270

295 IF (ISTAT .EQ. 0) GO TO 300
CALL XDMSG (ISTAT)
GO TO 270

C
300 LNWID=LNWID+1

IF (LNWID.GT.3) LNWID=1

APPENDIX C 115

c
C READ HEADER CARD
C
305 READ (0,310) (LS(I),1=1,5),IFNO,(LSF(J),J = l,5),

* ISFNO,(LSF2(M),M=1,5),NOR,NIF,(LSPAN(L),L=l,5)
310 FORMAT (5A 1,1 5,5A1,I 5,5A1,215,5A1)

NCHR1=5
NCHR2=5
NCHR3=5
NCHR4=5

C
C

DO 320 1=1,5
IF (LS(I) .EQ. IBLANK) NCHR1=NCHR1-1
IF (LSF(I) .EQ. IBLANK) NCHR2=NCHR2-1
IF (LSF2(I).EQ. IBLANK) NCHR3=NCHR3-1
IF (LSPAN(I) .EQ. IBLANK) NCHR4=NCHR4-1

320 CONTINUE
C
C

J=5-NCHR1
DO 330 I-1.NCHR1
LS(I)=LS(I+J)/400K
IBUF(I)=LS(I)

330 CONTINUE
C

J=5-NCHR2
DO 340 I=1,NCHR2
LSF(I)=LSF(H-J)/400K
IBUF(H-5)=LSF(I)

340 CONTINUE
IF (NCHR3.EQ.O) GO TO 352

C
C

J=5-NCHR3
DO 350 I=1,NCHR3
LSF2(I)=LSF2(H-J)/400K
IBUF(H-10)=LSF2(I)

350 CONTINUE
C
C
352 J=5-NCHR4

DO 353 I=1,NCHR4
LSPAN(I)=LSPAN(H-J)/400K
IBUF(H-15)=LSPAN(I)

353 CONTINUE

CALL ASFLC (IBUF(1),NCHR 1,TEMP,ISTAT)
ISUBF=TEMP+.5

IF (ISUBF .EQ. 9999) GO TO 500
IF (ISUBF .GT. 1000) ISUBF=ISUBF-1000
IF (ISUBF .EQ. 1000) ISUBF=998

116 GEOINDEX

C
CALL ASFLC(IBUF(6),NCHR2,TEMP,ISTAT)
ISF=TEMP+.5
IF (ISTAT .EQ. 1) ISF=1
CALL ASFLC (IBUF(1 1),NCHR3,TEMP,ISTAT)
NOT=TEMP+.5
IF (ISTAT .EQ. 1) NOT=0
CALL ASFLC (IBUF(1 6),NCHR4,TEMP,ISTAT)
ISPAN=TEMP+.5
IF (ISTAT .EQ. 1) ISPAN=0

C
DO 1000 I-l.ICOUNT
IF (IFILE(I,1) .NE. ISUBF) GO TO 1000
IF (IFILE(I,2) .EQ. ISF) GO TO 1050

1000 CONTINUE
1010 READ (0,355) XX(1)

ISFNO=ISFNO-6
IF (ISFNO) 305,305,1010

C
1050 IE=ISFNO

IF(ISFNO .GE. 6)IE=6
C
C READ FIRST DATA CARD
C

READ (0,355) (XX(I),YY(I),I=1,IE)
355 FORMAT(12F6.3)

X1=XX(1)
Y1=YY(1)
NCHAR=NCHR1
DO 360 I=1,NCHR1
ID (I)=LS (I)

360 CONTINUE
KEY = 8
KP=1
CALL RWCON(KF,2)
KEY=16
CALL RWCON(KF,2)

C
WRITE (10,365) ISUBF

365 FORMAT (16)
C

IF ((ISF .EQ. 1) .AND. (IFNO .EQ. 1)) GO TO 375
NCHAR=NCHR2
DO 370 I=1,NCHR2
ID (I)-LSF(I)

370 CONTINUE
KEY=16
CALL RWCON(KF,2)

C
C
375 IF (ISPAN .EQ. 0) GO TO 380

NCHAR=NCHR4
DO 377 I=1,NCHR4
ID(I)=LSPAN(I)

APPENDIX C

377 CONTINUE
KEY=16
CALL RWCON(KF,2)

C
C

380 IF (NOT .EQ.O) GO TO 400
NCHAR=NCHR3
DO 390 I=1,NCHR3
ID(I)=LSF2(I)

390 CONTINUE
KEY=16
CALL RWCON(KF,2)

C
C

400 X1=XX(2)
Y1=YY(2)

C
C SYMBOL NEEDED IF THIS IS SINGLE PT
C

IF (ISFNO.GT.2) GO TO 410
KEY = 7
KP = 1
CALL RWCON(KF,2)
GO TO 300

C
C WRITE PEN UP
C

410 KEY=1
KP=1
CALL RWCON(KF,2)
JJ = 3
GO TO 430

C
420 READ(0,355) (XX(I),YY(I),1=1,IE)

C
C WRITE PEN DOWN
C

430 KEY=6
KP = 1
DO 440 I=JJ,IE
X1=XX(I)
Y1=YY(I)
CALL RWCON(KF,2)

440 CONTINUE

IF (ISFNO-6) 300,300,450
450 ISFNO=ISFNO-6

IE=ISFNO
IF (ISFNO.GE.6) IE=6
GO TO 420

C
C DONE
C

118 GEOINDEX

500 ISUBF=999
KEY=31
CALL RWCON(KF,2)
CALL FCLFL(0,IER)
CALL FCNOT ("<7>")
CALL FCNOT ("<7>")
CALL FCNOT ("<7>")
CALL MSGOT ("IPROGRAM FINISHED!!")
KP = 0
CALL SAVE (2)
CALL OVRLY(1,IER)
CALL EXIT2
END

PROGRAM NAME: DWGTAPE
Author: Lawrence Balcerak
Purpose of the program: dwgtape reads a System 101

drawing file, writes to tape the binary representation
of the header card and data cards for each feature
outline. Options are to write all or only one of the
feature numbers. Also either all or only the first data
card for each outline can be written.

Data base: Geoindex
Computer: Data General Nova 1220
Operating system: System 101
Calling sequence: dwgtape
Arguments: None
Subroutines called: save, numin, msgot, yesno,

rwcon, asflc, fcnot, ovrly, exit2, rdtape, wrtape,
wreof

Common data referenced: /Punch/ Most Bendix
subroutines read from or write to common blocks.
Read "SYSTEM 100/101 Programmers Manual"
(SC100PM) for further information.

Input files: None
Output files: None
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic: This program is designed to write the ex­

act bit pattern of integers and real numbers used on
an IBM/370. The tape will be read using a 20A4 for­
mat that preserves the bit pattern. The Bendix
minicomputer has a four-byte real number, which is
exactly the same as the IBM real number. However,
the integer is only two bytes versus four for the IBM.

Using a 12-element integer array, which is made
equivalent to a 6-element real array, the program
writes the integers in binary to the tape. When
writing the header card, expand each integer to four
bytes by writing alternate zeros.

1. Pause. Stops execution of program until a return is
sent. Prints message:

TAPE UNIT NO. (0 OR 1)
2. Call save(1) (saves critical constant).
3. Call numin (sends message to terminal asking what

feature number you want punched). This real
number is then placed in temp. Use 9999 if you
want all features.

4. Set ifnum = temp. Change to an integer.
5. Send message to terminal:

DO YOU WISH THE FIRST DATA CARD
ONLY??

6. Call yesno to receive a yes or no, which then sets
the variable /answer = l(yes) or 2(no). It will not
accept any other answer.

7. Set nif = 0. This variable on the header card in­
dicates grid, county, and so forth.

8. Send message to terminal:
TYPE 2 DIGIT STATE NUMBER

Call numin to receive number.
9. Set nor = State number, which user types in.

10. Send message to terminal:
IS THIS THE GRID BEING PUNCHED??

11. Call yesno.
If yes, go to step 12. If no, go to step 13.

12. Set nif = 991 (indicates the grid).
Go to step 16.

13. Send message to terminal:
IS THIS THE COUNTIES BEING
PUNCHED??

14. Call yesno.
If yes, go to step 15. If no, go to step 16.

15. Set nif = 992 (indicates counties).
16. Set iifno(l) = 0 for / = 1,1500.
17. Send message to terminal:

SKIP FILES??
Call yesno to receive answer.

If yes, go to step 18. If no, go to step 23.

APPENDIX C 119

18. Call numin. Send message:
HOW MANY FILES ??

Receive answer and store in temp.
19. Set iskip = temp.

If iskip is less than 0, go to step 18.
If iskip = 0, go to step 23.
If iskip is greater than 0, go to step 20.

20. Do steps 21-22 for / = 1, iskip
21. Call rdtape to read the tape, jstat is the status

return code.
22. If jstat = 4 (EOF), go to step 20 to read next file.

If jstat does not = 0, go to step 84.
Otherwise, go to step 21.

23. Set kpt(kf,1) = 1. Sets the read pointer for the
drawing file to the first record. Steps 24-28 will
read the drawing file until the first text position is
read for the appropriate feature number.

24. Set kp = I. When reading a drawing file, rwcon
uses x(kp) and y(kp).

25. Call rwcon(kf, 1). kf, equivalent to k(4), is the active
file. The 1 indicates a read.

26. If key = 31 (EOF), go to step 83.
Note: Several assumptions are made about the drawing

file. The subfile number is the same as the feature
number. Each outline begins with a text string identi­
fying the feature number, subfeature number, span
and second subfeature number, with a default of 0 for
any absent text. Any number of line segments can
make up an outline.

27. If isubf, subfile number, is not equal to ifnum, and
if ifnum is not equal to 9999, go to step 24. This
searches for the appropriate feature number.

28. Set kount = I. This is a count of the number of
points in an outline. The text position is the first
point.

Set inum = 1 (a count of the number of outlines).
29. Set iifno(isubf) = 1. This is the count of how many

outlines that have the same feature number.
30. Set ftp =1.

Call rwcon to read a record.
31. If key = 31 (EOF), go to step 36.
32. If this is not an appropriate outline (check isubf), go

to step 30.
33. If key = 8 (text position), go to step 36.
34. If key = I (pen up), or

If key = 6 (pen down), or
If key = 7 (symbol position), add 1 to kount.

35. Go step 30.
36. Set iburp(inum) = kount. This is a count of the

number of points for each outline.
Set kount = I. Start count over.
Add 1 to inum (sequence number of next outline).

37. If key = 31 (EOF), go to step 39. There are two
ways to reach this step: key = 31 or key = 8.

38. Add 1 to the count of number of outlines that have
same feature number as the new outline just
started. This step can be reached only if key = 8
(text position), which starts a new outline. Go to
step 30.

Steps 39-43 will read the drawing file until the first text
position is read for the appropriate feature number.

39. Set kpt(kf,l) = 1. Sets the read pointer for the
drawing file to the first record.

40. Set inum = I (outline count).
41. Set kp = 1.

Call rwcon to read a record.
42. If key = 31 (EOF), go to step 85. (Program is fin­

ished.)
43. If this is not an appropriate outline (check isubf),

go to step 41.
44. Set kount = 0. This is a counter for the number of

text string found for an outline. None is found yet.
Set knum = 2. This is a counter for the number of

the points to be processed. One is already process­
ed.

Set Hf = isubf (feature number).
Set ifno = iifno(isubf). This is the number of

outlines with same feature number.
Set isfno = iburp(inum) (the number of points).
Add 1 to inum. This is a sequence number of the

next outline.
Set isf = 1. This will be 1 less changed in a text

string.
Set iup = 1. This is a counter for the number of pen

ups or symbol positions in one outline. The first is
treated differently from the rest.

Set not = 0; set /span = 0 (default values).
Set xp(7) = x7; set yp(7) = y1. This is the text posi­

tion.
45. For / = knum, 6, set xp(/) = 0; set yp(i) =0.
46. If knum = 1, set knum - 0. This will be equal to 1

when a card image has just been written and more
points are needed to complete the outline. It then
branches to the previous step where it must be a
1, but logic further along demands that it be 0.

47. Set kp = 1; call rwcon to read a record.
48. If key = 31 (EOF), go to step 76.
49. If this is not an appropriate outline (check isubf), go

to step 47. More than one outline may have the
same feature number.

50. If key = 8 (text position), go to step 76. This would
be true when an outline other than the first comes
up.

51. If key = 16 (text string), go to step 55.

120 GEOINDEX

52. If key = 1 (pen up) or 7 (symbol position), go to step
68.

53. If key = 6 (pen down), go to step 74.
54. Go to step 47.
55. Add 1 to kount. Another text is string found for this

outline.
56. If kount = 1, or kount is greater than 4, go to step

47. If equal to 1, it is the feature number, which is
the same as the subfile number. It should never be
greater than 4.

57. For / = 1, 5, set ibuf(i) = id(i) (the text string).
58. Call asf Ic to find the number, temp, represented by

the text in ibuf(i).
59. If istat = 1, go to step 47. An error code of 1 is

returned for any abnormality.
60. If nif = 992, go to step 64. If this is the counties, isf

represents a bordering county or other boundary.
61. If there is only one outline and temp is greater than

0, set kount = 4. This must be a second sub-
feature number, but there may not be four text
strings.

62. If there is only one outline and temp is less than 0,
set kount = 3. This must be a span, but there may
not be three text strings.

63. Set / = kount - 1. If / = 1, go to step 64. If / = 2, go
to step 65. If / = 3, go to step 66.

64. Set isf = temp. This must have been the second
text string with if no greater than 1, or this is the
counties, or temp = 0. Go to step 47.

65. Set /spa/7 = temp. This was the third text string, or
second text string with temp less than 0. Go to
step 47.

66. Set not = temp. This was the fourth text string, or
temp greater than 0 and only one outline. Go to
step 47.

67. If key = 1 (pen up) and iup is greater than 1, go to
step 74. If these two conditions are met, then this
is another line segment that must be concatenated
to previous segments.

68. Add 1 to iup. This is a flag to show what position the
next pen up has in the outline; used in previous
step.

69. Setxp(2) = x1; setyp(2) = y1.
70. Set iout(i) = /zero, for / = 1, 24.
71. Set iout(2) = iif (feature number).

Set iout(4) = if no (the number of outlines).
Set iout(6) = isf (subfeature number).

Set iout(8) = isf no (number of points).
Set iout(10) = not (second subfeature number).
Set iout(12) = nor (State number).
Set iout(14) = nif (graticule identifier).
Set iout(16) = /spa/7 (span).

72. If /spa/7 is less than 0, set iout(15) = ineg (makes
the whole word negative.

73. Call wrtape to write the header card to the tape.
If istat (error code) not = 0, go to step 84.
Otherwise, go to step 47.

74. Add 1 to knum (counter for next position).
Set xp(knum) = x1; set yp(knum) = y1.

75. If knum is less than 6, go to step 47.
Otherwise, go to the next step. The card should

have six points to be punched.
76. If knum = 0, go to step 80. Then, the last card

punched had six points on it and finished an
outline.

77. Set/7? = -l;set/= - 3 (to start counters used later
at the proper place in the arrays).

Do steps 78-79 for / = 1, 12, 2.
78. Add 4 to /.

Set iout(l) = itemp(i).
Set iout(l + 1) = itemp(i + 1).
Add 4 to m.
Set iout(m) = jtemp(i).
Set iout(m + 1) = jtemp(i + 7).

79. Call wrtape to write a data card to the tape.
If jstat (error code) not = 0, go to step 84.

80. If key = 31 (EOF), go to step 85. Program is almost
finished.

81. If key = 8 (text position), go to step 44. A new
outline is to be processed; default values must be
reset.

82. Set knum = 1.
Go to step 45. More points are in this outline.

83. Write message to terminal:
NO TEXT IN FILE!!

Go to step 85.
84. Write jstat (error code) to the terminal.
85. Write message to terminal:

!DONE!
Call wreof to write EOF on tape.
Set kp = 0.
Call save(2) (restores critical constants).
Call ovrly (overlays user memory with selected main

program). Here it returns control to table.
Call exit2 (overlays signoff for the system).

DWGTAPE

WRITTEN 23NOV76 BALCERAK

SOURCE=<DWGTAPE:F>
OBJECT=<DWGTAPE:R>

APPENDIX C 121

PURPOSE:
TO READ A SYSTEM 101 DRAWING FILE LOADED ON
THE DRAWING TABLE-GET THE X,Y COORDINATES
OF THE TEXT REFERENCES AND OF THE LINES
AND WRITE TO TAPE IN 12F6.3 FORMAT.
OPTIONS INCLUDE WRITING ALL OR ONLY ONE OF
THE SUBFILES. ALSO, ONLY THE FIRST DATA
CARD CAN BE WRITTEN OUT INSTEAD OF ALL.

THE HEADER CARD FOR EACH OUTLINE WILL ALSO
BE WRITTEN WITH ALL RELAVENT INFORMATION.

COMMON /BLK/ X(30),Y(30),A(10),K(30),KP,ID(80)
COMMON /PNTR/ KPT(3,2)
COMMON /LINBF/ LTYPE,LWIDE
COMMON /MENU1/ KODE,MRFLG,SFACT,LNMOD,LNWID
COMMON /EXEC/ IEXEC(64),REXEC(64)
COMMON /DSKBF/ IDUM(3),LENG
COMMON /IDENT/ IDA(3)
COMMON /PUNCH/ XP(6),YP(6),IBUF(5),IBURP(1000),IFNUM,IANSWER,

$ IIFNO(1500),INEG,IZERO
COMMON /UNIT/ MTUNIT

DIMENSION ITEMP(12),JTEMP(12)

EXTERNAL MT80
EQUIVALENCE (K(1),K1)
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(K(2),K2)
(K(4),KF)
(K(11),KEY)
(K(12),ISUBF)
(K(15),NCHAR)

(IEXEC(19),LNMSV)
(IEXEC(20),LNWSV)
(XP(1),ITEMP(1))
(YP(1),JTEMP(l))

DATA INEG /177777K/
DATA IZERO /OOOOOOK/

CALL XIOIT(MTSO)
CALL SAVE(l)
CALL NUMIN("[TAPE UNIT NO
MTUNIT=TEMP
PAUSE MOUNT TAPE PLEASE
CALL NUMIN ("(SUBFILE # =

(0 OR 1)",TEMP)

TYPE 9999 FOR ALL",TEMP)

122 GEOINDEX

YOU
(IANSWER)

IFNUM=IFIX(TEMP)
CALL MSGOT ("|DO
CALL YESNO
NIF = 0
CALL NUMIN
NOR=TEMP
CALL MSGOT
CALL YESNO
GO

WISH THE FIRST DATA CARD ONLY??")

("|TY E 2 DIGET STATE NUMBER ",TEMP)

THE GRID BEING PUNCHED?? ")

THE COUNTIES BEING PUNCHED?? ")

("|IS THIS
(ISTAT)

TO (2,3),ISTAT
2 NIF=991

GO TO 5
3 CALL MSGOT ("|IS THIS

CALL YESNO (ISTAT)
GO TO (4,5),ISTAT

4 NIF=992
5 DO 6 1=1,1500

IIFNO(I)=0
6 CONTINUE

CALL MSGOT (" SKIP FILES?? ")
CALL YESNO (IT)
GO TO (7, 12),IT

7 CALL NUMIN(" HOW MANY FILES?? ",TEMP)
ISKIP=TEMP
IF (ISKIP) 7,12,8

8 DO 11 1=1,ISKIP
9 CALL RDTAPE (MTUNIT,IBURP,1000,0,JACNT,JSTAT)

IF (JSTAT .EQ. 4) GO TO 11
IF (JSTAT .NE. 0) GO TO 12
GO TO 9

11 CONTINUE

12 CONTINUE

KPT(KF,1)=1

START READING RECORDS AND PUNCHING OUT CARDS

GO TO 350
IFNUM) .AND
GO TO 10

10 KP=1
CALL RWCON (KF, 1)
IF (KEY .EQ. 31)
IF ((ISUBF .NE.
IF (KEY .NE. 8)
KOUNT=1
INUM=1
IIFNO(ISUBF)-!

20 KP=1
CALL RWCON (KF, 1)
IF (KEY .EQ. 31) GO TO 30
IF ((ISUBF .NE. IFNUM) .AND
IF (KEY .EQ. 8) GO TO 30
IF ((KEY .EQ. 1) .OR. (KEY

(IFNUM .NE. 9999)) GO TO 10

(IFNUM .NE. 9999)) GO TO 20

EQ. 6) .OR. (KEY .EQ. 7))

APPENDIX C 123

* KOUNT=KOUNT+1
GO TO 20

C
C

30 IBURP(INUM)=KOUNT
KOUNT=1
INUM=INUM+1
IF (KEY .EQ. 31) GO TO 40
IIFNO(ISUBF)=IIFNO(ISUBF)+1
GO TO 20

C
C

40

C
C

50

KPT(KF,
INUM=1

KP = 1

1)

CALL RWCON (KF,1)
IF (KEY .EQ. 31) GO TO 500
IF ((ISUBF .NE. IFNUM) .AND. (IFNUM .NE. 9999)) GO TO 50
IF (KEY .NE. 8) GO TO 50

55 KOUNT=0
KNUM=2
IIF=ISUBF
IFNO=IIFNO(ISUBF)
ISFNO=IBURP(INUM)
INUM=INUM+1
ISF=1
IUP«1
NOT = 0
ISPAN=0
XP(1)=X1
YP(1)=Y1

60 DO 65 I=KNUM,6
XP(I)=0.
YP(I)=0.

65 CONTINUE
IF (KNUM .EQ. 1) KNUM=0

C
C

70 KP=1
CALL RWCON (KF,1)
IF (KEY .EQ. 31) GO TO 140
IF ((ISUBF .NE. IFNUM) .AND. (IFNUM .NE. 9999)) GO TO 70
IF (KEY .EQ. 8) GO TO 140
IF (KEY .EQ. 16) GO TO 80
IF ((KEY .EQ. 1) .OR. (KEY .EQ. 7)) GO TO 110
IF (KEY .EQ. 6) GO TO 130
GO TO 70

C
C

80 KOUNT=KOUNT+1
IF ((KOUNT .EQ. 1) .OR. (KOUNT .GT. 4)) GO TO 70
DO 85 1=1,5

124 GEOINDEX

85

90

95

100

110

120

130

140

150
160

IBUF(I)=ID(I)
CALL ASFLC (IBUF,NCHAR,TEMP,ISTAT)

GO TO 70
GO TO 90
AND. (TEMP
.AND. (TEMP

IF (ISTAT .EQ. 1)
IF (NIF .EQ. 992)
IF((IFNO .EQ. 1) .AND. (TEMP .GT. 0.0)) KOUNT=4
IF ((IFNO .EQ. 1) .AND. (TEMP .LT. 0.0)) KOUNT=3
I=KOUNT-1
GO TO (90,95,100),
ISF=TEMP
GO TO 70
ISPAN=TEMP
GO TO 70
NOT=TEMP
GO TO 70

IF ((KEY .EQ. 1) .AND. (IUP .GT. 1)) GO TO 130
IUP=IUP+1
XP(2)=X1
YP(2)=Y1
WRITE(22, 120)IIF,IFNO,ISF,ISFNO,NOT,NOR,NIF,ISPAN
FORMAT(1X,8I5)
GO TO 70

KNUM=KNUM+1
XP(KNUM)=X1
YP(KNUM)=Y1
IF (KNUM .LT
IF (KNUM .EQ

6) GO TO 70
0) GO TO 160

WRITE(22,150) (XP(I),YP(I),1=1,6)
FORMAT(1X,12F6.3)
IF (KEY .EQ
IF (KEY .EQ
IF (IANSWER
KNUM=1
GO TO 60

DONE

31) GO TO 500
8) GO TO 55

EQ. 1) GO TO 50

350 CALL FCNOT ("|NO TEXT IN FILE|")

500 CALL FCNOT ("|DONE|")
CALL WREOF (MTUNIT,JSTAT)
KP = 0
CALL SAVE(2)
CALL OVRLY (1,IER)
CALL EXIT2
END

APPENDIX C 125

EXEC_COM NAME: VERSATEC.EC

Author: James Fisher
Purpose of the program: versatec.ec, written in Multics

command language, reads the tape that was created
on the Data General minicomputer and creates the
Versatec border, grid, State, county, and coordinate
files. If there is more than one coordinate file, the files
must be combined on Multics by means of an editor,
and then sort.vers.coor.ee must be run.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec versatec nnnnnn nof filel . . .

filen
Arguments:

nnnnnn- Volume number of the tape
nof-Number of files to be copied to disk
filel . . . filen-Name of the files when copied to disk

Subroutines called: None
Common data referenced: None
Input files: User's tape
Output files: Files copied to disk
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None

Program logic:
1. To execute this exec_com, the operator must type:

ec versatec.ec, tape number, number of files, segl
seg2. . . segN where segl, seg2, . . ., segN are the
file names that are to be created, segl, seg2, . . .,
segN must not exceed a total of 32 characters
because of the value command used extensively in
this exec_com. The value command returns a
character string associated with a named item in a
user symbol table segment. This enables ad­
ministrative exec_com segments to reference
variables.

2. The exec_com uses the tape_ibm command with
density 800, record size 80, and ASCII character
mode.

3. The first file is read from tape and written to disk
under the name given by segl.

4. The number of file parameters is then checked
against the number of files that have been written.
When they are not equal, the next file is attached
by the I/O command.

5. After the segment is attached, copy_file is used to
write the segment to disk.

6. This process continues until the number of file
parameters is equal to the number of files that have
been written.

7. When the parameters are equal, the tape is renamed
and the execution of the exec_com is ended.

use ec versatec.ec tape no no of files segl seg2.

where segl seg2....segn must not exceed a total

& **
&
&
& versatec.ec
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&command_line off
&input_line off
&
value$set_seg value_seg
value$set file names [string

. .segn

of 32 char

funct ion:
This ec reads the tape that was created on the Bendix
minicomputer and creates the Versatec border, grid, state
county, and coordinate files. If there is
coordinate file, they must be combined on
sort.vers.coor.ee must be run.

more than one
Multics and then

&f 3]

126 GEOINDEX

value$set this_file_name &3
value$set increment 0
value$set tape_file_no 1
&if [equal &2 1] &then value$set all_or_none none
&else value$set all_or_none all
&
&label copy
io attach input tape_ibm_ &1 -nib -nb [value tape_file_no] -den 800 -f
\crnt fb -rec 80 -bk 80 -mode ascii -retain [value all_or_none]
io attach output record_stream_ -target vfile_ [value this_file_name]
copy_file -isw input -osw output
io detach (input output)
&
&if [equal [value tape_f ile_no] &2] &then &goto quit
value$set tape_file_no [plus [value tape_file_no] 1]
&if [equal [value tape_file_no] &2] &then value$set all_or_none none
value$set start_of_next_file_name [plus [length [value this__f ile_name]
\c] [value increment] 2]
value$set remnant [string [substr [string [value f ile__names]] [value s
\ctart_of__next_file_name]]]
value*set nxtblnk [search [string [value remnant]] " "]
&if [equal [value nxtblnk] 0] &then value$set next_file_length [length
\c [value remnant]]
&else value$set next_file_length [minus [value nxtblnk] 1]
value$set next_file_name [substr [string [value remnant]] 1 [value ne
\cxt_file_length]]
value$set increment [plus [value increment] [length [value this_file__n
\came]] 1]
value$set this_file_name [value next_file_name]
&goto copy
&
&label quit
truncate value_seg
&quit

PROGRAM NAME: INDEX^VERSATEC
Author: Lawrence Balcerak
Purpose of the program: index_versatec plots index

maps using the Versatec plotter.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: index_versatec
Arguments: None
Subroutines called: io_call, ioa_$nnl, setup_ver-

saplot (Multics software), plots, plot, newpen, let­
ter, factor (Versaplot software), openf, rotate,
legend, pattern, rdftur, srtdup, pltsel, closet

Common data referenced: size, end, istate, scale,
Iparaml, in1, ipen, kpen, I word!

Input files: bordNM (fileW), gridNM (file11), statNM
(file12), counNM (file13\ coorNM (file14), pverNM
(file15)

Output files: Versatec plot
Arrays used: input 4(6) (used to read the six input files)
Called by: None
Error checking and reporting: None
Constants: in = 15, rsiz = 0.14, ipen = 4, rrsiz = 0.04,

kpen = 1
Program logic:

1. Set fmt2 = (6h(a4,2h,i2,lh)). This is used to put the
State number into fmtl. The format is those
characters between the outermost parentheses.

2. Attach to the file init_vals. This file contains those
changes to the default parameters to the Ver­
saplot software needed for this plot. The file con­
tains xmas - 50.0, which should be adequate for
most of our plotting.

3. Send message to terminal:
TYPE IN TWO DIGIT STATE NUMBER

and read istate.

APPENDIX C 127

4. If istate is less than 10, then fmt2
= (6h(a4,2h,lhO,il,lh)).

Do step 5 for / = 10, 15.
5. Concatenate the State number to input(i) and place

into name. Call openf with lunlt - i, name =
name, mode = "si".

6. Call setup__versaplot. This activates the Versaplot
software.

7. Call plots (0,0,0). This initializes the default
parameters. If initials is attached, it reads this
file and makes those changes.

8. Set in 1 = 10. This is the reference number for bord-
NM.

Set size = 17.99, which is the width of the plotting
paper.

Call rotate.
Print value of scale.
Call legend.
Call pattern.

9. If deltay is less than 0.001, go to step 10. A value
greater than 0.001 indicates that the plot is to be
rotated and translated.

Transform xsym, ysym, xlet, and ylet.
10. Call factor. Reset the scale to the value of scale.
11. Read inum(5) and iwords(5) from pverNM.

Set iangle = 0.
Find the starting aj-values (xsym and xlet) for the

text string iword(5). The values for the use of both
text plotting subroutines (symbol and letter) are
given. The visible difference in determining which
one to use is in the fonts for their letters.

12. If deltay is less than 0.001, go to step 13.
Transform xsym, ysym, and xlet, ylet.
Set iangle = 270.
Call plot (2.0,0.005,-3). This changes the software

origin. Trying to plot y = 0 or x = 0 when the
hardware origin is in effect has presented prob­
lems in the past. Also, at times the upper left x
value is negative.

Go to step 14.
13. Call plot (2.0, 1.18, -3). Changes the origin to allow

negative y values, which are needed to plot the
legends at the bottom.

14. Plot the five text strings in iwords(i). The letter
subroutine is the one presently used. The dot
width for letters is set at 4 except for the date,
where it is 3.

15. Read the parameter plotting values into inparm.
16. If inparm(1) is not equal to 1, go to next step. A

value of 1 indicates that the neat outline is to be
plotted. A value of 0 indicates do not plot.

Set in1 = 10, which is the reference number for the
neat outline.

Call rdftur.
Rewind in1.

17. Repeat step 16 with inparm(23) and in1 = 11 (grid).
Go to step 18 if no plot.

18. Repeat step 16 with inparm(45) and in 1 = 12
(State).

Go to step 19 if no plot.
19. Repeat step 16 with inparm(67) and in1 = 13 (coun­

ties).
Go to step 20 if no plot.

20. Repeat step 16 with inparm(111) and in 1 = 14
(coordinates outlines).

Go to step 21 if no plot.
Otherwise, go to step 22 after this is plotted.

21. If inparm(89) is not equal 1, go to next step.
Set in1 = 14.
Call srtdup(/m.
Read in cards with the selected outlines, sort them

in ascending order, and remove duplications.
Call \se\(inparm(89)).
Plot the selected outlines.
Rewind in1.

22. Call plot(0.,0.,999) (end of plot).
Send message to terminal:

FINISH PLOT
23. If inparm(133) is equal to 1, go to step 10.

Otherwise go to step 24.
24. Call plot(0.,0.,-999).

End all plotting.
25. Call setup_versaplot("-resef") (removes links to

Versatec software).
Call closef(i) for /' = 10, 15 (closes and detaches all

files).

PROGRAM - INOEX.VERSATEC
PLOT LAND USE ID'S

L.L. BALCERAK
U. S. GEOLOGICAL SURVEY

common /rot/ size/end*xmax » ymax*ist a te
common /param/ sea le*de 11ay t rsiz *rrsiz
common /dex/ if t \ ino* isf/isfno^not*nor*nif t ispan*in1 t ipen/kpen

128 GEOINDEX

common /word/ xsym(5) t ysym(5)/inum(5)/numsta(72) /
&xlet(5)/ylet(5),iscale(5)/height(5)

character input*4(6)/fmt1*10/fmt2*21/name*6/i*ords*53(5)
dimension inparm(133)
external io_call (descriptors)/ioa_$nnl (descriptors)/

Ssetup.versaplot (descriptors) / letter (descriptors)
data input / "bord" ,"g r id"/" s t a t ","coun" ,"c oo r" , "pve r ff /
in=15
i pen = 4
kpen=1
rsi z=0.14
rrsi z=0.04
fmt2="(6h(a4,2h,i2,1h))"

c
call io_cal I ("a11ach"/"init_vaIs","vfi le_","init_va I s")
call ioa_$nnl (""/TYPE IN TWO-DIGIT STATE NUMBER: " >
read 10/ istate

10 format (i2)
if (istate .It. 10) fmt2 = "(6h(a4/2h/1hO,i1/1h)) "
do 20 i=10/15
encode (fmt1/fmt2) istate
encode (name/fmtl) input(i-9)
call openf (i/name/"si ")

20 continue
call setup_versaplot

c
c SET ORIGIN ON PLOTTER
c

call plots (U/0/0)
in1=10
size=17.99
call rotate
print /"scale="/scale
call legend (iwords)
call pattern
if (deltay .It. .001) go to 50
do 40 i=1/4
t emp = x sym(i)
xsym(i) = ysym(i)
ysym(i)=deltay-temp
t emp = x let(i)
x let (i)=y let (i)
ylet (i) = deltay-temp

40 cont i nue
50 call factor (scale)
c
c BORDER INFORMATION
c

read (in/60/end=180) inum(5)/iwords(5)
60 format (i2/a53)

i ang le = 0
xsym(5)=(xmax-inum(5)*(height(5)+0.019))/2.
xlet (5)=(xmdx-inum(5)*(iscale(5)*(0.0625-0.0029))) 12.
if (deltay .It. .001) go to 70
i ang I e = 2 70

APPENDIX C 129

ysym(5) = del tdy-xsym(i>)
yLet (5)=deltay-xlet(5)
xsym(5)=-0.61
xlet(5)=-0.61
caLL plot (2.0,0.005,-3)
go to 80

70 call plot (2.0,1.18,-3)
80 do 90 i=1/5

j=4
if (i .eq. 4) j=3
call newpen (j)
call letter (inum(i),iscale(i),iangle,xlet(i),ylet(i),iwords(i))

90 con t i nue
c
c READ INPUT INFORMATION
c

read (i n , 1 00,end=1 71)) inparm
100 format (66i1/67i1)
c
c CHECK FOR PLOT OR NO PLOT
c ON EACH ITEM
c
c NEAT OUTLINE
c

if (inparm(1) .ne. 1) go to 110
in1=10
call rdftur (inparm(1))
rewind i n1

c
c GRID
c
110 if (inparm(23) .ne. 1) go to 120

in1=11
call rdftur (inparm(23))
rewind i n1

c
c STATE
c
120 if (inparm(45) .ne. 1) go to 130

in1=12
call rdftur (inparm(45))
rewind i n1

c
c COUNTIES
c
130 if (inparm(67) .ne. 1) go to 140

in1=13
call rdftur (inparm(67))
rewind i n1

c
c ALL FEATURES
c
140 if (inparm(111) .ne. 1) go to 150

in1=14
call rdftur (inparm(111))

130 GEOINDEX

C
C
C
150

160

c
c
c
170

180

190

rewind i n1
go to 170

SELECTED FEATURES

if (inparm(89) .ne. 1) go to 170
in1=1A
Cdl I srt dup (in)
call pltsel (inparm(89))
rewind i n1

CHECK IF SOMETHING ELSE IS TO BE PLOTTED

call plot (O.,0.,999)
print *"finish plot"
if (inparm(133) .eq. 1) go to 50
call plot (J. ,0.,-999)
call setup.versaplot ("-reset")
do 190 i=10/15
call c losef(i)
c ont i nue
stop
end

SUBROUTINE NAME: LEGEND

Author: Lawrence Balcerak
Purpose of the program: legend initializes text strings

and beginning text positions for the index maps.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call legend (iwords)
Arguments: iwords-Five text strings containing the

legends to be placed on the index maps
Subroutines called: None
Common data referenced: xmax, ymax, istate, xsym,

ysym, inum, numsta, xlet, ylet, iscale, height
Input files: None
Output files: None
Arrays used:

iwords53(5)
nstate20(72)- Array in which to read the States

Called by: index versa tec, index ca I com p
Error checking and reporting: None
Constants: None

Program logic:
1. Set numsta(i) = the number of letters in the State

name, where / represents the FIPS code.
Set iwords(1) and iwords(2)
Set nstate(i) = State names
Set iwords(3) = nstate(istate)

2. Find year date.
Set iwords(4) = year date.

3. Set other variables: inum is the count of letters for
each iword; height is the height of letters if using
symbol to plot the legends; iscale is the height of
letters if using subroutine letter to plot the
legends; xsym, ysym are the starting x, y coor­
dinates if using symbol; xlet, ylet are the starting
x, y coordinates if using letter.

Note: There are factors of 0.019 and -0.0029 for
computing xsym and xlet. The factor for using
symbol is to take into account the slight widening
of the letter where line width is greater than 1.
Where letter is used, the supposed width of a letter
is slightly reduced, but no explanation is given in
the manual.

subroutine legend (iwords)
common /rot/ size*end*xmax^ymax*istate
common /word/ xsym(5)*ysym(5)*inum(5)*numsta(72) *

6 xlet(5),ylet(5),iscale(5),height(5)
character iwords*53(5)*nstate*20(72)*idt*6*year*4

iwordsd>="UNITED STATES GEOLOGICAL SURVEY"
iwords(2)="OEPARTMENT OF THE INTERIOR"

APPENDIX C 131

nstated) ="ALABAMA"
n s t a t e(2 > = "ALASKA"

nstateU) ="ARIZONA"
nstate(S) ="ARKANSAS"
nstate(6) ="CALIFORNI A"
nstate(7) ="CANAL ZONE"
nstate(8) ="COLORADO"
nstate(9) ="CONNECTI CUT"
nstate(10)="DELAWARE"
nstated1)="DISTRICT OF COLUMBIA
nstdted 2) = "FLORIOA"
nstated3) = "G£ORGI A"

nstated 5) = "HAWAII"
nstate(16)="IDAHO"
nstate(17)="ILLINOIS"
nstated8> = " INDIAN A"
nstate(19)="IOWA"
nstate(20)="KANSAS"
nstate(21>="KENTUCKY"
nstate(22)="LOUISIANA"
nstate(23)="MAINE"
nstate(24)="MARYLAND"
nstate(25)="MASSACHUSETTS"
nstate(26)="MICHIGAN"
nstate(27)="MINNESOTA"
nstate(28)="MISSISSIPPI"
nstate(29)="MISSOURI"
nstate(30)="MONTANA"
nstate(31)="NEBRASKA"
nstate(32)="NEVADA"
nstate(33)="NEW HAMPSHIRE"
nstate(3A)="NEW JERSEY"
nstate(35)="NEW MEXICO"
nstate(36)="NEW YORK"
nstate(37)="NORTH CAROLINA"
nstate(33)="NORTH DAKOTA"
nstate(39)="OHIO"
nstate(40)="OKLAHOMA"
nstate(41)="OREGON"
nstate(42)="PENNSYLVANIA"

nstate(44)="RHODE ISLAND"
nstate(45)="SOUTH CAROLINA"
nstate(4o)="SOUTH DAKOTA"
nstate(47)="TENNESSEE"
nstate(46)="TEXAS"
nstate(49)="UTAH"
nstate(50)="VERMONT"
nstate(51)="VIRGINIA"
nstate(52)="VIRGIN ISLANDS"
nstate(53)="WASHINGTON"
nstate(54)="WEST VIRGINIA"
nstate(55)="WISCONSIN"
nstate(56)="WYOMING"

132 GEOINDEX

C
nstate(60)="AMERICAN SAMOA"
nstate(66)="GUAM"
nstate(72)="PUERTO RICO"

c
iwords(3)=nstate(i state)
call pU .da te_ (i d t)
decode (idt*10) year

10 format (a2)
encode (iwords(4) , 20) year

20 format (2h19,a2)
c

i num(1)=31
i num(2) = 26
inum(3) = numsta(i state)
i num(A) = 4

c
neightd)=0.18
height(2)=0.18
height(3)=0.18
height(4)=0.14
height(5)=0.28

c
iscale(1)=3
iscale(2)=3
iscale(3)=3
iscale(4)=3
iscale(5)=5

c
xsymd) = 0.25
ysym (1) = yma x + 0.35
xsym(2)=0.2b
ysym(2)=ymax+0.68
xsym(3)=xmax-inum(3)*(height(3)+0.019)-0,25
ysym(3)=ymax+0.68
xsym(4) = (xmax-inum(4)*(height(4)-«-0.019))/2.
ysym(4)=-1.17
ysym (5) = -0.61

c
do 30 i=1,5
y I et (i) = ysym(i)

30 cont i nue
x let (1) = xsym(1)
x let (2) = xsym(2)
xlet (3) = xmax-inum(3)*(iscale(3)*(0.0625-0.0029))-0.25
xlet(4)=(xmax-inurn(4)*(iscale(4)*(0.0625-0.0029)))/2.
re tu rn
end

c
c

block data
common /word/ xsym(5)*ysym(5) » inum<5)*numsta(72) *

& xlet(5),ylet(5),iscale(5),height(5)

APPENDIX C 133

data

end

nums t a
&

&
&

/ 7/
20/
8/
8/
6/1
8/
O/

6/
7/
9/
6/1
2/
0/1
O/

o/
7/
5/
3/
O/
U/
O/

7/ 8/1
O/ 6/
8/13/
10/10/
12/14/1
13/ 9/
O/ O/

0/1
5/
8/
8/1
2/
7/
4/

O/
8/
9/1
4/1
9/
O/
O/

8/1
7/

2/
5/
O/
O/

4,
8/
4/
4/
0/1
O/

8/
6/
7/
8/
7/
4/
O/ 0/1 1/

SUBROUTINE NAME: ROTATE
Author: Lawrence Balcerak
Purpose of the program: rotate checks bordNM to see if

it will fit on plotting paper at full scale. If not, it com­
putes a scale that produces the largest possible plot on
the paper. The finished plot can be upright or rotated
on its side.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call rotate
Arguments: None
Subroutines called: None
Common data referenced: size, end, xmax, ymax,

scale, deltay, in1
Input files: bordNM
Output files: None
Arrays used:

x(6)-x coordinate
y(6)-y coordinate

Called by: index versatec, index calcomp
Error checking and reporting: None
Constants: None
Program logic:

1. Reads the header card (does not use).
2. Reads data points (always six points).

3. Finds maximum x value and y value and stores in
xmax and ymax.

4. Set parameters (assume upright at full scale): end =
xmax + 8.0. In Calcomp plotting, this is the
amount to move in x to start a new plot; scale =
1.0; deltay = 0.0. If plot is rotated, deltay is the
amount of translation needed to bring plot back to
plotting frame.

5. If ymax plus amount needed for legends at top and
bottom is less than size (width of paper), go to
step 10 (plot fits on paper).

6. If xmax is greater than size, go to step 8 (rotated
plot too big to fit).

7. Rotated plot will fit at full scale.
Set deltay = xmax
Set end = ymax + 8.0
Go to step 10.

8. Plot must be scaled. If plot would be larger rotated
on side, go to step 9. Otherwise, compute scale in
upright position.

Go to step 10.
9. Compute scale in rotated position.

Set deltay = xmax
Set end = ymax + 8.0

10. Rewind data file.
Return to calling program.

10

20

30

subroutine rotate
common /rot/ size/end/xmax/ymax/istate
common /param/ sca le/de 11ay/rsiz/rrsiz
common /dex/ if/ifno/isf/isfno/not/nor/nif/ispan^in1/ipen/kpen
dimension x(6)/y(6)
read (in1/10) if
format (i5)
read (in1/20) (x(i) /y(i)/i = 1/6)
format (12fb.3)
xma x=x(2)
ymax=y(2)
do 30 i=3/6
if (x(i) .gt. xmax) xmax=x(i)
if (y(i) .gt. ymax) ymax=y(i)
c on t i nue

134 GEOINDEX

40

50

60

end= xma x + 8« 0
scale=1.0
del tay=0.0
if ((ymax + 2
if (xmax .gt.
de I t ay=xmdx
end=ymax+8. 0
go to 60
if (xmax .It.
seal e=size/(ymax
go to 60
scale=size/xmax-0.01
de 1 1 ay=xmax
end=ymax+8. 0
r ew i nd i n1
return
end

05) . I e . size)
size) go to 40

go to 00

(yma x + 2 . 05))
. 05) -0.01

go to 50

SUBROUTINE NAME: RDFTUR
Author: Lawrence Balcerak
Purpose of the program: rdftur reads a header card from

the file being plotted and branches to the designated
plotting subroutine.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call rdftur (infom)
Arguments: infom-Array of 22 elements with plotting

parameters for the file being read
Subroutines called: plotch, plotli, pllich
Common data referenced: if, ifno, isf, isfno, not, nor,

nif, in1
Input files: gridNM, statNM, counNM, coorNM

Output files: None
Arrays used: infom-Elements with plotting param­

eters for the file being read
Called by: index_versatec, index_calcomp
Error checking and reporting: None
Constants: None
Program logic:
1. infom(2) can have values of 0, 1, or 2 (see plotting

parameter cards).
Add 1 and store in item.

2. Read a header card from file in1.
If EOF, return to calling program.

3. Call subroutine, which will plot according to the
parameter stored in infom(2).

4. After return from plotting subroutine, go to step 2.

c
c
c
5
10

c
c
c
20

subroutine rdftur (infom)

DETERMINE WHAT IS TO BE PLOTTED FOR
THE SPECIFIED FEATURE

common /dex/ if * ifno*isf * isfno*not/nor*nif * ispan/in1/ipen^kpen
dimension infom(22)
i t em = i nfom(2)+1

READ A FEATURE CARD

read (in1*1 U/>end = 80) if*ifno*isf f isfno^not*nor*nif f ispan
format (8i 5)
go to (40*30*20)*item

CHARACTERS PLOTTED ONLY

call plotch (in fom)
go to 5

APPENDIX C 135

C

C

C

30

C

C

C

40

30

LINES PLOTTED ONLY

call plotli (i nfom)
go to 5

BOTH PLOTTED

call pi Ii ch (i nfom)
go to 5
return
encJ

SUBROUTINE NAME: PENCHG
Author: Lawrence Balcerak
Purpose of the program: penchg changes pen numbers

(Calcomp) or line widths (Versatec) in a sequence
predetermined by the plotting parameters.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call penchg (infom,ipen)
Arguments:

infom- Array of 22 elements with plotting
parameters for the file being read

ipen- Counter for member of infom to examine
Subroutines called: newpen (Versaplot and Calcomp

software)

Common data referenced: None
Input files: None
Output files: None
Arrays used: infom(22)- Elements with plotting

parameters for the file being read
Called by: plotch, plotli, pllich
Error checking and reporting: None
Constants: None
Program logic:
1. Set k = infom(ipen). k equals pen number (Calcomp)

or line width (Versatec).
2. Call newpen(k)
3. Add 1 to ipen.

If ipen is equal to 13, set ipen = 4.
Or, if infom(ipen) = 0, set ipen = 4.

4. Return.

subroutine penchg (infom/ipen)

change pens

dimension infom(22)
k = i n f om (i pe n)
call newpen(k)
i pen= i pen + 1
if Cipen .eq. 13) ipen=4
if (infom(ipen) .eq. 0) ipen=4
return
end

SUBROUTINE NAME: PLOTLI
Author: Lawrence Balcerak
Purpose of the program: plotli plots a coordinate outline

without accompanying text.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call plotli (infom)
Arguments: infom-Array of 22 elements with plotting

parameters for the file being read

Subroutines called: plot, symbol (Versaplot), penchg
Common data referenced: deltay, rs/z, Isfno, in1, ipen
Input files: gridNM, statNM, counNM, coorNM
Output files: None
Arrays used:

xx(6)-x coordinate,
yy(6)-y coordinate
infom(22)- Elements with plotting parameters for

the file being read
Called by: rdftur, pltsel

136 GEOINDEX

Error checking and reporting: None
Constants: None
Program logic:

1. Call penchg.
2. Set ie = minimum of (QJsfno).
3. Read the first coordinate data card into xx(/), yy(/).

Set ang = 0.
4. If deltay is less then 0.001, go to step 4. A value

greater than 0.001 indicates that the plot is to be
rotated.
Rotate and translate the data points.
Set ang = 270.0.

5. If isfno is greater than 2, go to step 6.
Otherwise, plot a centered symbol (#2) scaled to 1.5

times the character height rsiz.

9.

10.

11.

Return.
Go to the first data point of outline with pen up.
Set k = 2. This is the position in xx, yy at which to

start plotting. The first point is the text position.
Plot points k to ie with pen down.
Subtract 6 from isfno.
If isfno is greater then 0 (there are more points to

plot), go to step 9.
Otherwise return.
Set ie = minimum of (6,/sfrio).
Read another data card into xx, yy.
If deltay is less then 0.001, go to step 11.
Otherwise, rotate and translate xx, yy.
Set k = 1.
Go to step 7.

20

30

c
c
c
40

c
c
c
50

subroutine plotli (infom)

PLOT LINES ONLY

common /param/ sca Ie*de I1ay*rsiz*rrsiz
common /dex/ if f \ fno/isf/isfno^not*nor/nif/ispan^in1*ipen*kpen
dimension infom(22)*xx(6)*yy(6)

CHANGE PENS

call penchg (infom^ipen)

READ THE FIRST COORDINATE CARD

i e= i s fno
if (is fno .gt . 6) i e = 6
read (in1*20/end=130) (xx (i) *yy (i) *i=1 , ie)
format (12f6.3)
ang=0.0
if (deltay .It. .001) go to 40
do 30 i=1,ie
temp = x x(i)
x x(i)=yy(i)
yy(i)=deltay-temp
cont i nue
ang=270.0

CHECK FOR A SINGLE POINT

if (isfno .ge. 3) go to 50
call symool (xx(2)*yy(2)*1.5*rsiz*2
jo to 13U

PLOT LINES

call plot (xx(2),yy(2),3)

APPENDIX C 137

60

70
c
C
c

80
90
100

110
120

13J

do 70 i=k,ie
calt plot (xx(i),yy(i),2)
cont inue

CHECK FOR MORE COORDINATES

i sfno=i sfno-6
if (isfno) 130,130,80
if (isfno -6) 90,90,100
i e= i s fno
read (in1,20,end=130)
if (dettay .It. .001)
do 110 i=1 ,ie
t emp = x x(i)
x x(i)=yy (i)
yy(i)=de t ta y-temp
cont inue
k = 1
go to 60
return
end

(xx (i) ,yy (i) ,
go to 120

i e)

SUBROUTINE NAME: PLLICH

Author: Lawrence Balcerak
Purpose of the program: pllich plots both the feature

number and outline from a coordinate file.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call pllich (infom).
Arguments: infom- Array of 22 elements with plotting

parameters for the file being read
Subroutines called: number, symbol, plot (Versaplot),

penchg, shade
Common data referenced: deltay, rsiz, rrsiz, Idexl
Input files: gridNM, statNM, counNM, coorNM
Output files: None
Arrays used:

xx(6) - x coordinate
yy(6)-y coordinate
infom(22)- Elements with plotting parameters for

the file being used
Called by: rdfftur, pltsel
Error checking and reporting: None
Constants: None
Program logic:

1. Call penchg.
2. Set /e = minimum of (6,/sfr?o).
3. Read the first data card.

Set ang = 0.
4. If deltay is less than 0.001, go to step 5. A value of

deltay greater than 0.001 indicates that the plot is
to be rotated.

Rotate and translate xx, yy.
Set ang = 270.0.

5. If kpen is greater then 0, call newpen(3). kpen
serves a dual function. For Calcomp plots, it has a
value of-1. For Versatec plots, it has a value
greater than 0. Also, in Versatec plots it serves as
a counter for the number of the pattern last used.

6. Set ff = if.
Call number to plot the feature number.

7. If the subfeature number is not to be plotted, go to
next step.

The subfeature numbers are not to be plotted on the
Versatec plots, so if kpen is greater then 0, go to
the next step.

Set ff = isf. The starting coordinate for the
subfeature number must be offset to place it
directly under the feature number.

If the plot is not rotated, subtract the letter size
rsiz and a small amount for a gap between lines
rrsiz from yy.

If the plot is rotated, subtract rsiz and rrsiz from xx.
Call number.

8. Repeat previous step for the span.
9. Repeat previous step for the second subfeature

number.
10. If isfno is greater then 2, go to step 11.

Otherwise, plot a centered symbol (#2) scaled to 1.5
times the character height rsiz.

Return.
11. If this is the coordinate outline file being read (in 1 =

14) and this is a Versatec plot (kpen greater than
0), go to step 12.

138 GEOINDEX

Otherwise, go to step 13.
12. Call shade.

Return.
13. Go to the first data point of outline with pen up.

Set k = 2. This is the position in xx, yy at which to
start plotting. The first point is the text position.

14. Plot points k to ie with pen down.
15. Subtract 6 from isfno.

If /S/A7O is greater than 0 (there are more points to
plot) go to step 16.

Otherwise, return.
16. Set ie = minimum of (6,isfno).

Read another data card into xx, yy.
17. If deltay is less than 0.001, go to step 18.

Otherwise, rotate and translate xx, yy.
18. Set k = 1.

Go to step 14.

10

20

c
c
c
30

subroutine pllich (infom)

PLOT BOTH LINES AND CHARECTERS

common /param/ sca Ie/de11ay/rsiz/rrsiz
common /dex/ if*ifno » isf * \ sfno/not*nor/nif*ispan*in1/ipen/kpen
dimension infom(22) f xx(6) fyy (6)

CHANGE PENS

call penchg (infom/ipen)

READ THE FIRST COORDINATE CARD

i e= i s f no
ifCisfno .gt. 6) i e = 6
read (in1/1U*end=230) (xx(i) *yy (i)*i=1 *ie)
format (12f6.3)
ang=O.G
if (deltay .It. .001) go to 30
do 20 i=1,ie
temp = x x(i)
x x(i)=yy(i)
yy(i)=deltay-temp
cont i nue
ang=270.G

PLOT FEATURE NUMBER

if (kpen .gt. 0) call newpen(3)
f f=i f
call number (xx(1)*yy(1)*rsiz*ff*ang*-1>

CHECK FOR SUBFEATURE NUMBER
c
c
c

if (ifno .eq. 1) go to 70
C ******THE FOLLOWING LINE IS INCLUDED TO ELIMINATE THE SUBFEATURE
c ****** NUMBER IN VERSATEC PLOTS

i f (kpen .gt. 0) go to 70
if (deltay .gt. .001) go to 50
yy(1)=yy(1)-rsiz-rrsiz
go to 60

50 xx(1)=xx(1)-rsiz-rrsiz
60 ff=isf

call number (xx(1)*yy(1)*rsiz*ffsang*-1)

APPENDIX C 139

C
C CHECK FOR SPAN
C
70 if(ispan.eq. 0) go to 100

if (deltay .yt. .001) go to 80
yy(1)=yy(1)-rsiz-rrsiz
go to 90

80 xx(1)=xx(1)-rsiz-rrsiz
90 ff=ispan

call number (xx(1)/yy(1)/rsiz/ff/ang/-1)
c
C CHECK FOR SECOND SUBFEATURE NUMBER
c
100 if (not .eq. 0) go to 130

if (kpen .gt. 0) go to 130
if (deltay .gt. .001) go to 110
yy(1)=yy(1)-rsiz-rrsiz
go to 120

110 xx(1)=xx(1)-rsiz-rrsiz
120 ff=not

call number (xx(1) ,yy (1)/rsiz/ff/any/-1)
c
C CHECK FOR A SINGLE POINT
c
13U if (isfno .ye. 3) go to 140

call symool (xx(2) /yy(2) f 1.5*rsiz/2/ang/-1)
return

140 if ((in1 .eq. 14) .and. (kpen .gt. 0)) go to 220
c
C RESET PEN
C

i pen = i pen-1
call penchg (infom/ipen)

c
c PLOT LINES
c

call plot (xx(2)/yy(2)/3)
k = 2

150 Jo 160 i=k/ie
call plot (xx (i)/yy (i) /2)

160 cont i nue
c
C CHECK FOR MORE COORDINATES
c

i s f no= i s fno-6
if (isfno) 230/230/170

170 if (isfno-6) 180/180/190
180 i e= i s fno
19U read (in1/1O/end = 230) (xx(i)/yy(i)/i=1/ie)

if (deltay .It. .001) go to 21U
do 200 i=1/ie
temp = x x(i)
xx(i)=yy(i)
yy(i)=deIta y-temp

20U con t i nue
210 k=1

140 GEOINDEX

220
230

go to 150
call shade
return
end

SUBROUTINE NAME: PLTSEL

Author: Lawrence Balcerak
Purpose of the program: pitsel reads through a file of

coordinates, identifies those that are to be plotted, and
branches to the appropriate plotting subroutine.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call pitsel (infom)
Arguments: infom-Array of 22 elements with plotting

parameters for the file being read
Subroutines called: plotch, plotli, pllich
Common data referenced: ik, num, numsel, numsub, if,

isf, fsfno, in1
Input files: coorNM
Output files: None
Arrays used: infom(22)- Elements with plotting

parameters for the file being read
Called by: index_versatec, index__calcomp
Error checking and reporting: If some features cannot

be located, a message appears on the screen:
SOMETHING IS WRONG WITH THIS NUMBER

along with the number.
Constants: io = 0 sets the program for terminal output
Program logic:
1. Set io = 0 (terminal output).

Set item = infom(2) + 1. infom(2) has possible
values of 0, 1, or 2.

Set Ik = 0. This is a counter for number of the outline
being plotted.

Set kount = 0. This is a counter for number of times
file has been read.

2. Add 1 to ik.
3. If ik is less than or equal to num go to step 4.

Otherwise, return, num is the total number of
outlines to be plotted.

4. Read a header card. If EOF, go to step 8.
5. If the feature and subfeature numbers of the header

card just read match with the selected feature, go
to step 7. Otherwise, go to step 6.

6. Read through to data points to reach the next header
card.

Go to step 4.
7. Call the appropriate plotting subroutine as identified

by item.
Go to step 4.

8. Add 1 to kount. Rewind data file:
If kount is less than 2, go to step 4. Otherwise go to

step 9.
9. Write to terminal giving error message about

unbeatable features.
Set kount = 0
Go to step 2.

10

20
30

50

wro

subroutine pitsel (infom)

PLOT ONLY SELECTED FEATURES

/sortu/ i k num/ num se I (1 50U) /numsub (1 500) f numgo (1 500)
i s f no / no t / no r /n i f * i span / i n 1 / i pen /kpen

if

common
common /dex/ i f f i f no / i s f
dimension infom(22)
io = 0
i t em= infom(2)+1
i k = 0
koun t = 0
i k= i k + 1
= 0
if (ik-num) 20/20/160
read (i n 1 ,3 0 / end = 1 40)
format (8i5)
if ((numsel(iK) .eq. if) .and. (numsub(ik) .eq.

((numsel(ik) .eq. if) .and. (iwro .eq. 1)) go to
read (i n 1 /oU / end = 1 40) x

i f , i f no / i s f / i s f no *not / no r /ni f * i span

isf))
1 U 0

yo to 100

APPENDIX C 141

o) go to 20

(i nf om)

(i n fom)

130,150,160

60 format (f6 . 3)
if (isfno .le.
isfno=isfno"6
jo to 50

100 jo to (130,120,110),itern
110 call plotch (infom)

jo to 10
120 call plot li

jo to 1J
130 cal I pI Ii ch

jo to 10
140 if (ik-nurr.)
150 Kount=kount+1

rewind i n1
if ((iwro . e q . 1) .and.
if (iwro .eq. 1) 90 to 20

i f (kount .It. 2) go to 20
write (io/155) numse I (ik)/numsuo(ik)

155 format (1x/ "SOMETHING IS WRONG WITH
iwro = 1
isec = 1

K oun t = 0
go to 20

15 f kount = 0
isec = 0
iwro = 0
jo to 10

160 return
end

(isec .eq. 1)) go to 157

THIS NUMBER.",2(3x,i5))

SUBROUTINE NAME: PLOTCH

Author: Lawrence Balcerak
Purpose of the program: plotch plots the feature

number of an outline and then reads through the data
points for that outline.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call plotch (infom)
Arguments: infom-Array of 22 elements with plotting

parameters for the file being read
Subroutines called: number (Versaplot), penchg
Common data referenced: deltay, rsiz, rrsiz, if, if no, isf,

isfno, not, ispan, in1, ipen
Input files: gridNM, statNM, counNM, coorNM
Output files: None
Arrays used: infom(22)- Elements with plotting

parameters for the file being read
Called by: rdftur, pltsel
Error checking and reporting: None
Constants: None
Program logic:
1. Call penchg.

2. Read text position from first data card into xx and
yy-

3. Set // = // (the number to be plotted).
Set ang = 0.0 (the angle at which to plot).

4. If deltay is less then 0.001, go to step 5.
Otherwise, the plot is to be transformed.
Set ang = 270.0. Rotate and translate xx, yy.

5. Call number to plot the feature number.
6. If subfeature number is not to be plotted, go to next

step.
Set // = isf.
The starting coordinate for the subfeature number

must be offset to place it directly under the feature
number:

If the plot is not rotated, subtract the letter size (rsiz)
and a small amount for a gap between lines (rrsiz)
from yy.

If the plot is rotated, subtract rsiz and rrsiz from xx.
Call number.

7. Repeat previous step for the span.
8. Repeat previous step for the second subfeature

number.
9. If there are more data points, read through them to

position the file at next header card.
Return

142 GEOINDEX

subroutine plotch (infom)
c
c PLOT CHARACTERS ONLY
c

common /param/ s ca I e *de I 1 ay * r s i 2 * r r s i 2
common /dex/ i f , i f no * i s f * i s f no^not / no r ,n i f r i span* i n 1 , i pen * kpen
dimension infom(22)

c
c C H A ,M G E P E N S
c

call penchy (infom/ipen)
c
c READ THE FIRST COORDINATE CARD
c

read (i n 1 ,1 U,end=1 20) xx^yy
10 format (12f6.3)
c
c PLOT THE FEATURE NUMBER
c

f f = i f
ang=0. U
if (deltay .It. . 0 U 1) go to 2U

t emp = x x
x x = y y
yy = del tay-t emp

20 call number (x x f yy * r s i 2 f f f * a ng*- 1)
c
c CHECK FOR SUQFEATURE NUMdbR
c

if (i f no . eq . 1) go to 5U
if (deltay .gt. ,001)go to 30
yy=y y-rs i z~ r r s i 2
jo to 40

30 x x= x x- r s i 2- r r s i z
AO f f = i sf

call numoer (xx*yy*rsiz*ff*ang*-1)
c
C CHECK FOR SPAN
c
50 if (ispan .eq. 0) 90 to 80

if (deltay .yt. .001) yo to 60
y y=y y- PS i Z- r r S i 2

yo to 70
60 x x= x x- r s i 2- r r s i 2
70 f f = i span

call number (x x f y y * r s i 2 f f f f ang ,- 1)
c
c CHECK FOR SECOND SUBFEATURE NUMBER
c
80 if (not .eq. 0) go to 110

if (deltay .yt. .001) go to 90
yy = yy~" r siz-rrsi2
yo to 100

APPENDIX C 143

90
103

c
c
c
11J

1 20

x x = x x-rs i z-r r s i z
f f = not
call number (xx/yy/rsiz/ff/ang/-1)

MUST PROCESS OTHER COORDINATE CARDS

if (isfno .Le.6) go to 120
i s f no=i s fno-6
read (in1/1O/end=120) xx/yy
go to 110
return
end

SUBROUTINE NAME: SHADE

Author: Lawrence Balcerak
Purpose of the program: shade draws coordinate

outlines and shades them either as a sequential variety
of patterns or as a predetermined pattern. There are
presently 10 patterns.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call shade (xx,yy)
Arguments: xx, yy— Pairs of coordinates from first card

image read in calling subroutine
Subroutines called: newpen, plot, tone (Versaplot)
Common data referenced: ik, numgo, deltay, kpen, in1,

isfno, ip1-ip10
Input files: coorNM
Output files: None
Arrays used:

xx(6)- x coordinate
y/(6)- y coordinate
x(2000)~ Buffer area for as, coordinates
y(2000)— Buffer area for y coordinates

Called by: pllich

Error checking and reporting: None
Constants: None
Program logic:
1. Add 1 to kpen. kpen is the counter by which the pat­

terns rotate.
2. Set first five elements of x, y = to elements 2 through

6 of xx, yy. The first coordinate pair of xx, yy is the
text position.

3. Read rest of coordinates into x, y.
4. If deltay is less than 0.001, go to step 5. deltay has a

positive value if the plot is to be rotated and
translated. The first five elements of x, y have
already been transformed in the calling program.

Rotate and translate the remaining elements of x, y.
5. Set the line width to two dots. Thick outlines are

more conspicuous.
6. Plot the outline. Go to the first point with pen up. Go

to succeeding points with pen down.
7. Set line width to one dot for the shading to follow.
8. If numgo(ik) is greater than 0, then change the

shading pattern to that number. Otherwise, set the
pattern to kpen.

9. Shade the outline.
Return.

10

subroutine shade (xx/yy)
common /sortd/ ik/num/numseI(1500)/numsub(1500)/numgo(1500)
common /param/ scaLe/deItay/rsiz/rrsiz
common /dex/ if/ifno/isf/isfno/not/nor/nif/ispan/in1/ipen/Kpen
common /pat/ i p1 (1 6) / i p2 (1 6) / i p3 (A) / i p4 (A) / i p5 (1 6) / i pt> (1 6) /

i ip7(16),ip8(16)/ip9(16)/ip10(16)
dimension xx(6)/yy(6)/x(2JOO)/y(2000)
K pen = k pen+1
if (kpen .jt. 10) kpen=1
do 10 i=1/5
x (i) = x x (i +1)
y(i)=yy(i +1)
cont i nue
number = i s fno-1
if (number-5) 50/50/20

144 GEOINDEX

30

40
50

60

70

read (in1/30) (x (i) / / (i) / i =6/numbe r)
format (1 2f 6 . 3)
if (deltay .It. .001) go to 50
Jo 40 i=6/number
t emp = x (i)
x(i)=y (i)
y(i) = del t ay -t emp
c on t i nue
call newpen (2)
cal I plot (x(1)/y(1) /3)
do 60 i=1 /number
cal I plot (x (i)/y (i) /2)
con t i nue
call newpen (1)
if (numgo(iK) .le. 0) 90
jo to
go to

to 7(J
(30/90/100/1 10/120/130/140/150/160/170) /numgoCi k)
(80/9G/100/1 10/1 20/130/140/150/160/170) /kpen

80

90

1

1

1

1

1

1

1

1
1

OJ

10

2J

3J

40

50

60

70
80

ca
go
c a
90
c a
go
c a
90
c a
JO
c a
yo
ca
go
ca
go
c a
go
ca
C d
re

I

I

I

I

I

I

I

I

I

I
I
t

I
t
I
t
I
t
I
t
I
t
I
t
I
t
I
t
I
t
I
I
u

t
o

t
0

t
o

t
0

t
0

t
o

t
o

t
o

t
o

t
t

rn

one
160
one
1bJ
one
180
one
180
one
160
one
180
one
180
one
18J
one
180
one
one

(0.

(0.

(u.

(0.

(U.

(0.

(J.

(0.

(u.

(0.
(x/

/O

/o
/o
/o
/o
/o
/o
/u

/o

/o
y

./i p i

./ip2

./ip3

.,ip4

./ip5

./ip6

./ip7

./ip8

./ip9

./ip1
numbe

/-16)

/-16)

,-4)

/-4)

/-16)

/-16)

/-16)

/-16)

/-16)

0/-16)
r/1)

end

SUBROUTINE NAME: SRTDUP

Author: Lawrence Balcerak
Purpose of the program: srtdup reads the selected

feature numbers to be plotted, sorts them into ascen­
ding order, and removes all duplications.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call srtdup (in)
Arguments: in-File number of parameter file pverNM
Subroutines called: None
Common data referenced: num, numsel, numsub,

numgo

Input files: pverNM
Output files: None
Arrays used:

numsel(1500) -Reference numbers
numsub(1500)- Reference subfeature numbers
numgo(1500) -Optional shading pattern numbers

Called by: index_versatec, index__calcomp
Error checking and reporting: None
Constants: None
Program logic:
1. Set num = 1. num counts the reference numbers as

they are read in.
2. Read first:

numsel(1) (selected reference number).

APPENDIX C 145

numsub(1) (reference subfeature number).
numgo(1) (optional shading pattern number).

lfnumsel(1) = -1, return.
3. Read next line into /temp 7, itemp2, itemp3.

If/temp 7 = -1, return.
4. If the number is a duplicate of some existing member,

go to step 3.
If the number should be inserted between two ex­

isting members at position k, go to step 6.
Otherwise:

5. Add 1 to num.

Set:
numsel(num) = /temp 7
numsub(num) = itemp2
numgo(num) = itemp3

Go to step 3.
6. Shift all members of the arrays from position k

through num up one element.
Set:

numsel(k) = /temp 7
numsub(k) = itemp2
numgo(k) = itemp3

Add 1 to num.
Go to step 3.

c
C
c
30

50

60

subroutine srtdup (in)

READ I .M THE SELECTED FEATURE NUMBERS TO BE PLOTTED.
SORT THEM IN AS C ENDE D I NG ORDER AND REMOVE
ALL DUPLICATIONS

common /sortd/ i k t num* num se I (1 500) *nums ub (1 500) *numy o (1 500)
num= 1
reau (in*20) nums e I (1) *n urns ub (1) *n umgo (1)
format (i 8 * i 2 * i <?)
if (numsel(1) .eg. -1) go to 9J

SORT AND REMOVE DUPLICATE CARDS AS EACH IS READ IN

read (i n * <? 0) itemp1*itemp2*itemp3
if (itempl .eq. -1) 30 to 90
do 70 k = 1 , n u m
if ((i tempi .eg. numsel(k)) .and. (i temp 2 .eq. numsub(k)))
jo to 30

if (itempl . g t . numsel(k)) go to 70
it (itemp1.lt. numsel(k)) go to 50
if ((iternp2 .It. numsuo(k)) .or. (i temp! .It. numsel(k)))
go to 50

k = k + 1
if (k .gt. num) go to 80
go to 40
I =num+ 1
Jo 6u j=k*num
1 = 1-1
numsel(l*1)=numsel (L)
numsub(L •»• 1) =numsub (I)
numgo(L •*• 1) = numgo(l)
c on t i nue
numseL (n)=i tempi
numsub(k)=i

70
80

num=num+ 1
go to 30
con t i nue
num = num* 1

146 GEOINDEX

90

numsel (num)= i tempi
numsub(num)=i t emp2
nuingoCnum) 3 i t e m p 3
yo to 30
return
end

SUBROUTINE NAME: PATTERN

Author: Lawrence Balcerak
Purpose of the program: pattern sets the shading pat­

tern variables to user-defined values.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call pattern
Arguments: None
Subroutines called: None
Common data referenced: pat

Input files: None
Output files: None
Arrays used: ip1(16), ip2(16) ip3(4), ip4(4), ip5(16),

ip6(16), ip7(16), ipd(16), ip9(16), ip10(16) (shading
pattern arrays)

Called by: index_versatec, verplot
Error checking and reporting: None
Constants: None
Program logic:
1. Set all elements of the shading pattern arrays to

those interger values that will give the bit patterns
desired.

10

20
c

subroutine pattern
common /pat/ i p1 (1 6) , i p2 (1 6) , i p3 (4) , i p4 (4) , i p5 (1 6) * i p6 (1 6)

& ip7(l6),ip8(16),ip9(16),ip10C16)
do 10 1=1,4
ip3(i)=0
ip4 (i)=0
cont i nue
do 20 i=1,1o
ip1 (i)=0
ip2(i)=0
ip5(i)=0
ip6(i)=0
ip7(i)=0
ip8(i)=0
ip9(i)=0
ip10(i)=0
con t i nue

ip1 (5) = l6*ip1 (1)
ip1(9)=8*16**6+2*l6**2
ip1 (13) = 16* i1 (9)

i p 2 (8) = i p 1 (9)
ip2(12)=ip1 (5)
ip2(1o)=ip1 C 1)

ip3(1)=4*16**4+1

ip4(3)=4*l6**8+2*16**6+16**A+8*16

ip5 (1)=4*16**7
ip5 (2)=1b**8+16**7

APPENDIX C 147

ip5(4)=2*1b**8+8*16**6
ip5(6)=ip5(2)
ip5(7)=ip5(1)
ip5(9)=16**3
ip5(10)=4*1&**3+4*16**2
ip5(12)=8*16**3+2*16**2
ip5(14)=ip5 (10)
ip5(15)=ip5 (9)

ip6(1)=8M6**7+8*l6**6+4*16**5+4*16**4+2*16**3+2*16**2+16+1

ip7 (4)=1o**4+8*16

ip7(12)=4*l6**8+2*1b**6
ip7(16)=ip7(8)

ip8(1)=ip6(1)
ip8(9)=ip6(1)

ip9(2)=ip5(2)
ip9(4)=ip5(1)
ip9(b)=ip5(2)
ip9(8)=4*l6**8+2*16**6+l6**4+8*16
ip9(10)=ip5 (10)
ip9(12)=ip5 (9)
ip9(14)=ip9 (10)
ip9(16)=ip9(8)

ip10(2)=ip5(9)
ip10(4)=16**4+5*l6**3+4*16**2+8*16
ip10(6)=ip10(2)
ip10(8) = 4*1b**7-H6**3
ip10(10)=ip5(7)
ip10(12)=5*16**8-«-5*16**7-»-2*16**6
ip10(14)=ip10(10)
ip10(l6)=ip10(8)

return
end

EXEC_COM: SORT.VERS.COOR.EC
Author: Donald Hanson
Purpose of the program: sort.vers.coor.ee executes the

three programs written in the Multics command
language and system_sort that produces the sorted
coordinate file.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec sort.vers.coor NM
Arguments: JVM-FIPS code
Subroutines called: pgml.vers.exthdr, pgm2.vers.

sequent, pgmS.vers.merge
Common data referenced: None

Input files: coorNM.unsort used on unit 10 (fileW)
Output files:

coorNM.unsort.hdr used on unit 12 (file12)
coorNM.sequent used on unit 14 (file14)
coorNM.sort.hdr used on unit 10 (1ile10]
coorNM

Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:

1. To execute this exec com, the operator must type:
ec sort.vers.coor NM

where NM is the State code.

148 GEOINDEX

2. A message will print that the first program has
started executing. This program extracts the
header records from the unsorted coordinate file.

3. The unsorted coordinate file (coorNM.unsort) is at­
tached to fileW, and the unsorted header file is at­
tached to file12.

4. The next step is the system sort, which sorts the
header file by feature number and subfeature
number. These are the first 10 characters of the
header record.

5. A message will next appear that program 2 has been
started. This program takes the unsorted coord­
inate file and converts it from a stream to a se­
quential file.

6. The stream coordinate file is attached to file13 and
the sequential coordinate file is attached to file14.

7. When program 2 is completed, program 3 starts.
8. The third program merges the sorted header file

and the unsorted coordinate file in to the sorted
coordinate file.

9. The sorted header file is attached to fileW. The se­
quential coordinate file is attached to file13.

10. filel3 is opened with a mode of sequential update in
order to allow records to be deleted after they
have been written to filel2.

11. The sorted coordinate output file is attached to
filel2.

12. At completion, all files are closed and a message
appears:

JOB FINISHED

sort.vers.coor.ee

jse: ec sort.vers.coor.ee nm
where nm is state code

function:
this ec takes the unsorted coordinate file and produces
a sorted coordinate file. The first program extracts the
header records from the unsorted coordinate file. The header
records are then sorted in sort_seg. The second program takes
tne unsorted coordinate file and converts it from a stream
to a sequential file. The third program merges the sorted
header file and the unsorted coordinate file into the sorted
coordinate file.

Sprint program 1 started

10 at
i o at
pgml .
i o de
i o de
£
£p r i n
£
so r t _
£
£p r i n
£
10 at
i o at
pgm2.
i o de

tdch filelU vfile_ coor£1.unsort
tach f i I e 1 <? vfile_ coor £1 . unso r t . hdr
vers.exthdr
tach fi le1G
tach fi Ie12

t sort started

seg coor£ 1.unsort.hdr -sm coor£1.sort . hdr -fl 1 1U

t program 2 started

tach file13 vfile. coor£1.unsort
tach fiIe 14 vfile_ coor£1 . sequent
vers.sequent
tach f iIe13

APPENDIX C 149

io detach f i I e 1 4
&
i p r i n t program3 started
&
io attach filelO v f i I e _ coorii1.sort.hdr
io attach file13 vfile_ coor&1.sequent
i o open f i I e13 squ
io attach file12 vfiIe_ coor£1
pgm3.vers.merge
io detach filelO
io close fiIe1 3
io detach file13
io detach f i I e 1 2
iprint coorainate file merge is complete
&print JOD finished

SUBROUTINE NAME: PGM1.VERS.EXTHDR

Author: Donald Hanson
Purpose of the program: pgml.vers.exthdr extracts the

header records from the files that were created on the
Data General minicomputer. The input is the unsorted
coordinate file created in versatec.ec and merged
together in editor qedx. This program is the first pro­
gram executed in sort.vers.coor.ee.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: pgml.vers.exthdr
Arguments: None
Subroutines called: close_files
Common data referenced: None
Input files: coorNM. unsort
Output files: coorNM.unsort.hdr

Arrays used:
da ta(12)- Coordinates
/(#)- Header records

Called by: sort.vers.coor.ee
Error checking and reporting: None
Constants: None
Program logic:
1. The input file is attached by the I/O switch to filelO.
2. The output file is attached by the I/O switch to file 12.
3. The input file consists of header and coordinate

records not in order by feature number. The input
file is read and the header records only are ex­
tracted and written to the output file. The output
file consists of header records not in order by
feature number.

4. The input file is read until the end of file is reached,
at which time the STOP message appears.

c this is a program to extract the header records
c from the files that were created on the Bendix minicomputer
c written OHanson A/5/78

external cf(descriptors)
dimension i (8)
d i men si on dat a(12)
print/"exthdr started"

75 readCI 0/100/enj=300) i
100 format(8i5)

write(12/150) i
150 format(8i5,40x)
170 read(10,200,end=300) data
200 format (12f6.3)

i (4) = i(4) - 6
i f(i (A) .gt.0) go to 1 70
go to 75

300 call cf("-all")
s t op
end

150 GEOINDEX

SUBROUTINE NAME: PGM2.VERS.SEQUENT
Author: Donald Hanson
Purpose of the program: pgm2.vers.sequent changes

the unsorted coordinate records from stream to se­
quential, which is necessary because the position
parameter in pgmS.vers.merge must operate on a se­
quential file. The input is the stream format unsorted
coordinate file, and the output is the sequential format
unsorted coordinate file. This program is the second
program executed in sort.vers.coor.ee.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Arguments: None
Operating system: Multics
Calling sequence: pgm2.vers.sequent
Subroutines called: close_files
Common data referenced: None
Input files: coorNM.unsort
Output files: coorNM. sequent
Arrays used:

ihead(8)- Header records

data(l2)- Coordinate records
Called by: sort.vers.coor.ee
Error checking and reporting: None
Constants: None
Program logic:
1. The input file coorNM.unsort is attached by the I/O

switch to file13.
2. The output file is attached by the I/O switch to file14.
3. The input file is read in a formatted stream mode,

and the output file is written in an unformatted se­
quential mode.

4. The number of coordinate data points that follow
each header card is contained in the fourth field of
the header card.

5. As each data card is read, six is subtracted from the
number of points because each record contains six
pairs of coordinates.

6. When this number is no longer greater than zero, the
next record is a header record.

7. This process is continued until the end of file is
reached.

a program to change the unsorted coordinate
from stream to sequential

c t h i s i s
c records
c
external cf(descriptors)
dimension ihe ad(fa) f ddta (1 2)
75 read(13,100,end=300) ihead

wr i t e (14) i head
240 read(13,250,end=300) data

wr i te (14) data
i head(4) = i headC 4) - 6
if(ihead(4).gt.0) goto 240
goto 75

10J format(8i5)
250 format(12f6.3)
300 call cf("-all">

stop
en J

SUBROUTINE NAME: PGMS.VERS.MERGE

Author: Donald Hanson
Purpose of the program: pgmS.vers.merge merges the

unsorted coordinate file and the sorted header file to
form the sorted coordinate file. This file is then used
for input to the index versatec programs. This pro­
gram is the third program executed in sort.vers.-
coor.ec.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics

Calling sequence: pgmS.vers.merge
Arguments: None
Subroutines called: io_call, close_files
Common data referenced: None
Catted by: sort.vers.coor.ee
Input files: coorNM.sort.hdr, coorNM.sequent
Output files: coorNM
Arrays used:

x(6)-x coordinate
y(6)-y coordinate

Error checking and reporting: None
Constants: None

APPENDIX C 151

Program logic:
1. There are two input files. The first input file,

coorNM.sort.hdr, is attached by the I/O switch to
fileW.

2. The second input file, coorNM.sequent, is attached
by the I/O switch to file13.

3. The output file is identified by the name coorNM
and is attached by the I/O switch to file12.

4. The records from fileW and file13 are read. If
feature number and subfeature number of fileW
match those of file13, the records are written to
file12.

5. The records in file13 that have been matched are
then deleted from file13 by the delete—record

feature of io_call. By deleting these records that
are no longer needed from the input file, total pro­
cessing time is drastically reduced.

6. When the feature and subfeature numbers do not
match between fileW and file13, file13 is ad­
vanced until a match is found.

7. When feature numbers cannot be matched file13 is
positioned to the next header records by the
char_skip feature of io_call.

8. After a match has been found and the records written
to file12, file13 is positioned at the beginning of
file, (EOF), by this feature of io_call. The cycle is
then repeated until the end of file is reached.

the unsorted coordinate
file for versatec

c this is a program to merge
c file and the sorted header
external i o (desc r i pto r s)
external c f (de sc r i pto r s)
integer skip
character*3 char_skip

dimension x(6)/y(6)
75 read (1 O/ 1 00/end=3uG) i i f/ i f no/ i s f/ i s f no/not /nor / ni f / i span
120 read(13*end=300) iif1/ifno1/isf1/isfno1/not1/nor1/nif1/ispan1
i f (i i f 1 . eq. i i f . and . i s f . eq. i s f 1) goto 220
if (mod (i sf no1 /6) . eq. U) goto 200
skip = i fix (float (i sfnol)/6.0 + 1.U)
goto 400
200 sk ip = isf no1/6
409 en code (cha r.sk i p/ 5UO) skip
call ioC'posi t ion" /"f i Ie1 3" ,"fwd"/ char.sk ip)

goto 1 20
220 w r ite(12/230) i i f/ i fno/isf/ isfnol /not/nor/ni f/i span

call io ("delete_record","f i Ie13")
240 read(13/end = 300) (x (i) /y (i) / i = 1 ,6)

call io ("delete_record"/"f i Ie13")
write(12/250) (x(i)/y(i)/i=1,6)
isfnol = isfnol - 6
i f (i sfnol .gt .0) goto 240
call io ("posi tion"/"f i Ie13","bof")
goto 75

10J format(8i5)
230 f o rmat (3i 5/40x)
250 format(12f 6.3)
500 format(i3)
300 call cf("-all")

stop
end

152 GEOINDEX

PROGRAM NAME: MASTER

Author: Harold Johnson
Purpose of the program: master uses the numerical

coordinate files for maps of the State and the
reference outlines to calculate the areas in square
kilometers, to calculate reasonable center-point coor­
dinates for each area, to test the reasonableness of
these center points, and to output a file of center
points that may not be suitably located.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: master
Arguments: None
Subroutines called: arcntr_master, adjust—master,

closer, ftnumber
Common data referenced: true, sk, ia
Input files:

areano used on unit 37 (file37)
List of variables: it = true State area in square

miles.
Formats: (16)
Layout description: See areano.

statNM used on unit 31 (file31)
coorNM used on unit 32 (file32)

Output files:
areaNM used on unit 33 (file33)

Format: (215, F8.1)
File created by: adjust—master
Layout description: Area is the summed areas of all

outlines having the same if.
measNM used on unit 40 (file40)

List of variables: if, isf, area
Formats: (215, F8.1)
File created by: master
Layout description: Area is the area of the outline

with the corresponding if, isf.
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:
1. Input files are identified with Fortran numbers:

statNM, coorNM, are coordinate files for plotting
the State outlines; areano is a file of State areas.
The user is prompted for only the FIPS code
number ia and for the scale used in the maps from
which statNM, and coorNM were derived. Scale is
1 to sk.

2. areano is searched for the true area of this State.
3. arcntr_master is called to compute the areas of the

outlines for this coorNM file, and areas are ad­
justed using the State areas.

4 . adjust—master is called to sum areas belonging to
the same reference.

C ******* ,/| ASTER ****
c **********
c ________
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

* * *
MASTER ***************

THIS PROGRAM D
1. USING "ARC
" S T A T N \A " /
2. READS THE
RATION OF THES
MULTIPLIES EVE
3. EACH MAP 0
POINT IS CONST
THE FILES "CNT
4. USING "CNT
THEIR NEARNESS
OF THE OUTLINE
SIDE OF THE 80
A FILE CALLED
5. FINALLY TH
SArtE "IF" NUMB

THE F 0 L L 0 WI
FILE 5 = TO IN
FILE 37 = LIST
FILE 31 = "STA
FILE 3^ = "COO

OES THE FOLLOWING:
NTR"/ MASTER CALCULATES THE STATE

TRUE STATE AREA FROM FILE "AREANO
E TO GIVE A CORRECTION FACTOR "FA
KY SUCCESSIVE AREA CALCULATION
UTLINE IN "COORNM" IS THEN EXAMIN
RUCTED ALONG WITH AN AREA. THESE
RNM" AND "MEASnm", RESPECTIVELY
EST" SUBROUTINE/ THESE CENTERS AR
TO THE BOUNDARY OF THE OUTLINE W
IS LARGE/ AND FOR THEIR POSITION

JNDARY. CENTERS WHICH FAIL THE T
"DOUBT" AND TO FILE 6.
E SUBROUTINE "ADJUST" SUMS ALL AR
tR. THE OUTPUT FILE IS "AREANM".

AREA FROM FILE

" AND FORMS THE
CFOR" WHICH IS

ED AND A CENTER
ARE WRITTEN TO

E CHECKED FOR
HEN THE DIAMETER
INSIDE OR OUT-

EST ARE WRITTEN

EAS HAVING THE

NG INPUT FILES ARE REQUIRED:
PUT AREA CODE AND MAP SCALE.
OF STATE CODES AND TRUE STATE

TNM"
RNM"

AREAS/ =ARfcANO"

APPENDIX C 153

c
c
c
c
c
c
c
c
c
c

FI
FI
F I
FI
F I

US

c
c UPDATED
c conv er t
c
c
c PROGRAM
c CENTERS
c IT ALSO
c

TH
LE
LE
LE
LE
LE

JO
E.

AS
ed

TO
AR

E
33
3A
15
AO
6

TE

0
to

C
E

SUMS

F 0 L L 0 W I
= "ARE

.\IG OUTPUT FILE
ANM" (SUMMED A

= "CNTRNM"
= "DOU
= "ME A

= MESSA

: vJHEN

F DtC.
mu I t i c

ALCULAT
INSIDE
AREAS

dT it
Snm"
GE

F

27
s

E
TH
Mil

S

IN

,

(C

s ARE REQUIRED:
REAS)

ENTER POIN
(DOUb
(A

TO

ISH

197

LL
TE

ED

6
May 7 /

AR
E
TH

EAS
OUT
TH

TFUL
AREA

RMINA

TS)
CENTER POINTS)
s e
L

/ CHANGE

H. J
1977

AND Ct
LI
E

OHM
by

MTE
f J E S AND
SAME IF.

Y SEPARATE IF/ ISF)

"ME A Snm" TO "ME A SNM" FOR FUTURE

SON
H J ohnson .

RS FOR OUTLINES/ DETERMINE WHEN
WHEN PROPERLY CENTERED.

common true/Sk/ia
character f i I e * A / state*2/ outfile*6/ m o d e * A

write(o/880)
<J 8 J formatC' THIS PRO
" PRODUCE JEW FILES a
"QTHERE WILL bE ERROR
" PREVIOUS RUNS."/
" IF a r e a N M / m e a s N il
" DELETE THESE FILES
c
wr i t e (0/900)
900 f o r ,-n d t (" 0 E iJ T E R
r ead(b/91J) state
91 J f o r m a t (a 2)
decode(state/913)

913 format(i2)
write(6/91 A)
91 A forrnat(" YOUR
read(5 ,916) sk
91 o for.iiat(f8.U>
outfile = "areano"
mooe = "si"

call ftnumber(37/ou
fi Le = "coor"
er>code(outtile/92U) s
92U format("coor"/a2)

call io ("attach"/"
cal L io("open","fi

en code (outfiIe /922) s
92^ format("stat"/d^>

call ftnumoer(31/ou
mode = "so"
encode(outfi Ie/92A) s
92A f ormat("area"/-a2)

call ftnumber(33/ou

GHAM USES THE FILES coorNM AND statNM TO"/
reaNM/ cntrNM^ measNM AND douDt."/
S IF THESE FILES ALREADY EXIST FROM "/

ALREADY EXIST/ HIT BREAK. "/
AND RUN MASTER AGAIN.")

IN THE 2-DIGIT CODE FOR THE STATE dEING STUDIED")

MAP HAS SCALE 1 TO WHAT - Fd.J -?")

tfi le/mode)

tate

fiIe32"/"vfile."/outfiIe/"-append","-ssf")
Ie32","si")
tate

tfi le/mode)

tate

tfi le/mode)

154 GEOINDEX

mode =
encode
927 fo

cal I
out f i I
mode =

cal I
do 7 j
read(3
7 con t
93U fo
true =

c
rewind

c
cal I
cal I
cal
cal
cal
c a I

c
c ix i
c
encode
952 fo

c a I
c
stop
end

"sio "
(outfile/927) state
rmat("n»eas"/a2)
ftnumoer(40/outfile/mode)

e = "doubt"
"so "
ftnumber(15*outfi le/moae)

j=1,ia
?,93J)i t
i nue
rma t(i 6)

f loat(it)
all arcntr master
40

all ad j u st_ma st e r
closer(37)
cIose r(32)

I close r(31)
I closer(33)
I closer(40)
I closer (15)

SORT THE MEASNM FILE

(outfile,952) state
rmat("meas%a2)
I sort_se9(outfile,"-fl","1","1U")

SUBROUTINE NAME: ARCNTR_MASTER
Author: Harold Johnson
Purpose of the program: arcntr_master calculates the

areas, corrected, of the outlines whose coordinates are
contained in coorNM

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call arcntr_master
Arguments: None
Subroutines called: weighLmaster
Common data referenced: true, sk, ia
Input files:

statNM used on unit 31 (file31)
coorNM used on unit 32 (file32)

Output files: measNM used on unit 40 (file40)
Arrays used: xx(6), yy(6)
Called by: master
Error checking and reporting: True State area is

reported to the user, along with the area calculated for
each part of the possibly multiconnected State boun­
dary. An estimate is given for each of these closed

segments. The ratio of calculated to true State area is
also given to the user. Where this differs markedly
from 1, an error may have occurred.

Constants: None
Program logic:
1. The first file processed is areaNM, the coordinate file

for the State boundary. A header card is read,
noting the total number of data points, isfno. The
successive data cards are read, and a calculation is
made. Area is incremented by the amount

((o?0 - #1X2/0 + 2/i))/2
for each segment in the coordinate file running
from (o?0 , i/0) to (xn, yn).

2. While the State coordinates are being processed, all
areas are summed and used to give a factor, the
ratio of the true State area to the State area
calculated for this map projection; this ratio will be
used in all successive calculations as a factor to
modify those calculations.

3. The second file, coorNM, is now processed as in 1,
and the calculated centers and areas are written to
file measNM.

APPENDIX C 155

c ******* SUBROUTINE ARCNTR_MASTER *******
subroutine arentr_master

c ********** WEIGHTED AVERAGE CENTER AND AREA PROGRAM ***********
c SUBROUTINE OF THE MAIN PROGRAM "MASTER",
c UPDATED AS OF DEC. 27,1976 H. JOHNSON
c converted to Multics May If 1977 D y H Johnson
c

common true/sk/ia
dimension xx(6)/yy(6)

c
c EQUATE 30 TO THE SOURCE FILE TAREA/ CONTAINING THE TRUE AREA IN
c SQUARE MILES

wr i te(6/9799)true
9799 formatC' true area = M /f10.3)
c EQUATE 31 TO THE STATE BOUNDARY FILE/ STAT--
c EQUATE 33 TO THE COORDINATE FILE/ COOR--
c EQUATE 40 TO THE TEMPORARY AREA FILE ARTEMP
c EQUATE 34 TO THE NEW CENTER FILE/ CNTR—
c

factor = 1.0
i tem=25
sea Le = 645.16

901 formatd 2f 6.3)
900 format(3i5)
c
c FIRST/ COMPUTE THE STATE MAP AREA IN SQUARE KILOMETRES,
c

in = 31
i oa rea = 6
i oc nt r = 6
n run=1
totdr=0.0

100 read(in/900/end=99) if/ifno/isf/isfno/not/nor/nif/ispan
c
c WHEN ISFNO IS LESS THAN 4 WE DON'T HAVE A REGION AT ALL
c

if(isfno.gt.3)go to 102
redd(in/901/end=99)(xx(i)/yy(i)/i=1/6>

c
c IN THE CASE OF A SINGLE POINT/ CALL THAT POINT CNTR.
c

i xc = xx(2)*1000. +.5
iyc=yy(2)*1000. +.5
i sfno=2
go to 100

102 continue
c
c CALCULATE NCARDS/ THE NUMBER OF DATA CARDS ON THIS MAP
c

nc a rds= i sf no/6
if(6*ncards .It. isfno) ncards=ncards+1

c
c

area=0.
xc = 0.

156 GEOINDEX

yc = 0.
dt = 0.

c
c XC IS GOING TO BE THE X-COORDINATE OF THE CENTER
c YC IS GOING TO 3E THE Y/COOROINATE OF THE CENTER
c OT IS THE ACCUMULATED NORMED DISTANCE dETWEEN POINTS
c
C READ IN THE FIRST DATA CARD
C

read(in/901/end=99)(xx(i),yy(i)/i=1,6)
xstart=xx(2)
ys t ar t = yy(2)
ie = 6
i f (ncards .eq. 1) ie=isfno
do 20U j =3* i e
J1=j-1
area = area + (xx(j)-xx(j1))*(yy(j)+yy(j1))*0. 5
cat I weiyht_master(xx(j1)*yy (j1)*x x (j)/yy(j)*xc/yc*dt)

20 J con t i nue
ifCncards .eq. 1) go to 500
xlast=xx(6)
y I a st=yy(6)

c
c

ifCncards .eq. 2) go to 400
c
c READ IN THE MIDDLE CARDS, BETWEEN THE FIRST AND LAST,
c

kI = nca rds-1
do 300 k=2,kl
read(in,901)(xx(i)/yy(i),i=1,6)
area=area+(xx(1)-xlast)*(yy(1)+ylast)*0.5
cat I weight_master(xlast*ylast*xx(1> *yy (1)*xc*yc*dt)
do 301 j=2,6
j1=j-1
area = area + (xx(j)-xx(j1))*(yy(j)+yy(j1))*0.5
cat I weight_master(xx(j1)*yy(j1)*xx(j)/yy(j)^xc^yc^dt)

301 con t i nue
xlast=xx(6)
ylast=yy(6)

300 con t i nue
AOO continue
c
c NOW READ IN THE LAST CARD
c

read(in,901)(xx(i),yy(i),i=1,6)
ie=isfno-6*(ncards-1)
i f(i e .eq. 0) i e = 6
area=area+(xx(1)-xlast)*(yy(1)+ylast>*0.5
call weight_master(xlast*ylast*xx(1)*yy(1)*xc*yc*dt>
i f (i e .eq. 1) go to 500
do A01 j=2,ie
J1=j-1
area = area + (xx(j)-xx(j1))*(yy(j)+yy(j1))*0.5
cat I weight_master(xx(j1)*yy(j1)*xx(j)*yy(j)*xc*yc*dt>

401 continue

APPENDIX C 157

500
c
C WHEN
C

501

90:5

503

905

906

continue

THE REGION IS NOT CLOSED/ WE MUST ADD THE LAST DATA POINT

test=(xx(ie)-xstart)**2 + (yy(ie) -ys tart)**2
i f(test . It..01) go to 501
cat I weigh t_master(xx(ie)/yy(ie)/xstart/ystart/xc/yc/dt)
area=area+(xstart-xx(ie))*(ystart+yy(ie))*0.5
continue
if(nrun.gt.1)go to 503
f i s fno= i sf no-1
error=dt*.G01+.UOOOJ1*(fisfno>
error=error*scdle*((sk/1000000.)**2>
write(6/903)if/isf/error
formatC" THE AREA CALCULATION FOR IF =",i5/" ISF =",i5,

" HAS ERROR BOUNDED 3Y",f10.3)
continue
area=dds(drea*scale*fdctor*((sk/10UOOGO.)**2))

x c = x c /dt
yc=yc/dt

i sf no=2
fo rmat(3 i 5)
i x c = xc*1000.
i yc = yc*1000.
fo rmat(12x *2 i 6)

wr i t e (ioared*9U7) i f/i sf/area
if(if .eq. 995)go to 550
totar=totar * area

907 format (2i 5/f 6.1)
550 0)go to 100i f (i span . eq

i span = - i span
i f 1 = i f -»• 1

i one = 1
do 600 j=if1*ispan

write(iodrea*9G7)j*ione*area
600 con t i nue
c ON THE STATE AREA RUN/ WE WANT
c WHICH IS THE RATIO OF THE TRUE
c

go to 100
99 ifCnrun .gt. 1)return
c CHANGE TRUE TO SQUARE KILOMETRES

t rue = t rue*2 . 59
wr i te(6/9898) true

9898 format (f10.3)
factor=true/totar

c NOW SET INPUTS TO READ THE COORDINATE
wri te(6/9899)f actor
formatC" FACTOR =",f10.3)

TO COMPUTE FACTOR/
TO CALCULATED AREAS.

AND COMPUTE RATIO.

FILES

9899
c

nrun=2
totar=0.0
in=32
i oa rea = 4G
go to 100
end

END ARCNTR.flASTER *******

158 GEOINDEX

SUBROUTINE NAME: WEIGHT_JVIASTER
Author: Harold Johnson
Purpose of the program: weight_master is used to

modify the previously calculated center point by
means of a weighted average of the midpoint of a new
edge of the outline.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call weight__master (xl,yl,x2,y2,xc,-

yc,td)
Arguments:

x1, y1—Coordinates of one end of the new segment of
the outline

x2, y2—Coordinates of the other end
xc, yc—Coordinates of the center point
td—Sum of the squares of the lengths of the outline

segments

Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: arcntr_master
Error checking and reporting: None
Constants: None
Program logic:
1. The square of the length of the segment is calculated,

z.
2. The average of the x coordinates of the segment is

multiplied by z and added to xc.
3. The average of the y coordinates of the segment is

multiplied by z and added to yc.
4. z is added to td. (In the calling program, after all

calculations on an outline are completed, xc and yc
are divided by td.)

c ******* SUBROUTINE WEIGHT_MASTER *******
subroutine weight_master(x1,y1,x2,y2,xc,yc/td)

c SUBROUTINE USED IN MAIN PROGRAM "MASTER"
c UPDATED AS OF DEC. 27, 1976 H. JOHNSON
c
c converted to multics May 6/ 1977 H. Jonnson
c

z=abs(x2-x1) + abs(y2-y1)
xc=xc + 0.5*(x2+x1)*z
yc = yc + G.5*(y2+y1)*z
td = td + z
return

end
c ******* END WEIGHT_MASTER *******

SUBROUTINE NAME: ADJUST_JVIASTER

Author: Harold Johnson
Purpose of the program: adjust_master is used to sum

the areas of all outlines having the same reference
number, if.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call adjust_master
Arguments: None
Subroutines called: None
Common data referenced: None
Input files:

measNM used on unit 40 (file40)
List of variables: if, isf, area
Formats: See master.

Layout description: See master.
Output files:

areaNM used on unit 33 (file33)
List of variables: if1, isfl, area 7
Formats: See master.
File located by: adjust—master
Layout description: See master.

Arrays used: None
Called by: master
Error checking and reporting: None
Constants: inarea = 40; ioarea = 33
Program logic:
1. The area file measNM is rewound.
2. Areas are successively read, and if two are from the

same if, their areas are summed.
3. Each time a new if is found, the old area is written to

areaNM.

APPENDIX C 159

SUBROUTINE AUJUST_MASTER *******
subroutine adjust_master

C SUBROUTINE USED IN MAIN PROGRAM "FASTER".
C UPDATED AS OF DEC. 27, 1976 H. JjHNSON
c
c converted to multics May 6* 1977 H. Jonnson
C ***ADJUST AREA FILES
C
C I,\l CASE OF SEVERAL OUTLINES WITH THE SAME IF* THIS PROGRAM
C SUMS UP THESE AREAS
C

i na red = 4U
i oa rea = 33

c EQUATE 40 TO THE AREA SOURCE FILE ARTEMP
c EQUATE 33 TO THE OUTPUT AREA FILE AREA--
c

90J

2

format (2i5, f 8.1)

read(inarea*900*end=99)if1*isf1*area1
if(if1 .eq. if) go to 3
write(ioarea*9UU) if/isf*area
i f =i f 1
area=area1
go to 2

a r ea = a r ea + a rea 1
go to 2

c
99 w r i t e (i o«jrea *90U) i f t i sf / a rea

return
end

c ******* END ADJUST_ rt ASTER *******

SUBROUTINE NAME: WORK.JMASTER

Author: Harold Johnson
Purpose of the program: work_master calls two func­

tions that are used in computing the distance from the
center point to the boundary and in counting how
many times the horizontal ray to the right of the
center crosses the boundary.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call work—master (xl,yl,x2,y2,xcen,-

nx,dst)
Arguments:

x7, y1- Coordinates of one end of a segment of the
boundary

x2, y2- Coordinates of the other end of the segment

xce/7, yce/7-Coordinates of the center
nx-The number of times the boundary crosses the

horizontal ray from the center point
c/sf-The minimum distance from the center point to

the boundary
Subroutines called: dist_master, ncross_master
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: cntest_master
Error checking and reporting: None
Constants: None
Program logic:
1. The two functions dist and ncross are called to

possibly modify the values of nx and c/sf.

160 GEOINDEX

c ******* SUBROUTINE w/ORK_ MASTER *******
subroutine work_master (x1/y1/x2/y 2 /xcen/ycen / nx/dst)

c
C SUBROUTINE USED IN .MAIN PROGRAM "MASTER"
c UPDATED AS OF DEC. 27, 1976 H. JOHNSON
c
c converted to multics May 6/ 1977 by H Johnson,
c

dst=dist_mdster(x1/y1*x2/y<?/xcen/ycen/dst)
nx=ncross_master(x1/y1/x2/y2/xcen/ycen/nx)
return

end
c ******* E,MD WGRK_MASTER *******

FUNCTION NAME: DIST_JVIASTER

Author: Harold Johnson
Purpose of the program: dist_master computes the

distance from the center to a segment whose end-
points are given. This distance is compared with a
previously calculated minimum distance, and the
minimum of the two is returned as the value of dist.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: dst = dist_jnaster (xl,yl,x2,y2,xO,yO,-

dold)
Arguments:

x1, y1- Coordinates of one end of the segment
x2, y2- Coordinates of the other end of the segment
xO, yO- Coordinates of the center point
c/o/c/-Previously calculated minimum distance

Subroutines called: None

Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: work__master
Error checking and reporting: None
Constants: None
Program logic:
1. The segment is tested to determine whether its

length is zero; if it is zero, dst = c/o/c/.
2. The point is found on this one line through x1, y1 and

x2, y2 that is closest to xO, yO.
3. When this point is outside the line segment, the

nearest endpoint is used as the nearest point.
4. Distance from the center to the nearest point is com­

puted and compared with c/o/c/. The smaller value
is returned as the value.

******* SUBROUTIN
funct ion

subroutine used i
converted to mult

DOLD IS THE OLD M
BOUNDARY. DST =
HHICH RUNS FROM (

i test= ((x
i f(i test

i f(i test
t=(x1-xO

test = (x2-
t=t/test
x t= t*x2 +
yt=t*y2+
d i s t.ma s
i f (t .It
i f (t .cjt

E DIST.MASTER *******
di st_master (x1 / y1 /x2/y2/x(J/yU/dold)

n main program master,
ics May 6 f 1977 by H Johnson.

INIMAL DISTANCE FROM (XU/YU) TO THE
DOLD OR THE DISTANCE FROM (XG/YU) TO THE SEGMENT
X1/Y1) TO (X2/Y2) - WHICHEVER IS SMALLER.
2-x1)**2+(y2-y1)**2>*1GOO.
.eg. 0) dist_master=doId
,eq. 0) go to 73

)*(x1-x2) -Ky1-yO)*(y1-y2)
x1)**2+(y2-y1)**2

(1.-t)*x1
(1.-t)*y1
ter = sqrt((xt-x(J)**2+(yt-yO)**2)
. 0.)dist_master=sqrt((x1-xO)**2+(y1-yU)**2)
. 1.)dist.masterssqrt((x2-xO)**2+(y2-yO)**2)

APPENDIX C 161

73
C

ifCdold .It. dist_master) dist.master=dold
con t i nue

return
end

C ******* END DIST_MASTER *******

FUNCTION NAME: NCROSS_JMASTER

Author: Harold Johnson
Purpose of the program: ncross_master determines

whether or not the right horizontal ray from the
center point crosses the line segment that has the
given end points. If it does cross, nold is increased by
1.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: nx = ncross_master (xl,yl,x2,y2,xO,-

yO,nold)
Arguments:

x1, y1- Coordinates of one end of the segment
y2, y2- Coordinates of the other end of the segment
xO, yO- Coordinates of the center point
nold- The number of crossings before this program

/?x-The number of crossings after calling this pro­
gram (increases nold by 1 if a crossing occurs in this
routine)

Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: work_master
Error checking and reporting: None
Constants: None
Program logic:
1. If the segment is nearly horizontal, nx - nold.
2. The horizontal coordinate where the horizontal

crosses the line through the points of the segment
is calculated.

3. When this coordinate is less than xO, nx = nold.
4. Otherwise, nx = nold + 1.

******* NCRO$S_r1ASTtR *******
function ncross_master(x1/y1/x2/y2/xO/yU/nold)

function used in main program master
conv/erted to multics May 6* 1977 M Johnson.

N C R 0 S S
SROSSES

i o = c»
INCREASES NOLD BY 1 IF THE SEGMENT FROM (X1,Y1)
THE RIGHT HORIZONTAL RAY FROM (XO,YO) .
ncross_master=nold
ifCabs(y1-y2) .It. .001) go to 7
t=(yO-y1)/Cy2-y1)
ifCt.lt.O. .or. t.gt.1.) go to 7

x = t *x2 + (1 .-t)*x1
i f(x .It. xO) go to 7
ncross_master=ncross_master+1
continue
return

end
END NCROSS.MASTER

TO (X2,Y2)

SUBROUTINE NAME: CNTEST_JMASTER

Author: Harold Johnson
Purpose of the program: cntest_master tests whether

the center points are actually within the map outlines.
It measures their distance to the boundary of the
outline and computes the diameter of the outline.

When the point lies outside the outline or is too close
to the boundary of a region whose diameter is not
small, error messages to this effect are sent to the
operator, and the center is written to a file named
doubt.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)

162 GEOINDEX

Operating system: Multics
Calling sequence: call cntest__master
Arguments: None
Subroutines called: work_master, dm_master
Common data referenced: None
Input files: None
Output files: None
Arrays used: xx(6), yy(6)
Called by: master
Error checking and reporting: When the boundary

crosses the right horizontal ray from the center an
even number of times, a message that the center does
not lie inside the outline is sent to the operator. When
the center is too close to the edge of a region, a
message about this is sent to the operator. In each
case, the center coordinates are placed in doubt.

Constants: None
Program logic:
1. Center header card and coordinates are read. The

center is shifted by 0.0001 in., so that it cannot lie
exactly on a line.

2. Coordinate file is searched for the corresponding
header card.

3. Coordinates are read and work_master and
dm__master are called to compute successive
minimal distances, maximal distance from the ini­
tial coordinate point of the outline (used as an
approximation to the diameter), and number of
crossings that the outline makes over the right-
hand ray from the center.

4. Indicated problems are reported to the user and writ­
ten to doubt.

subroutine cnte st _mas ter
c SUBROUTINE USED IN PROGR AM~"M A ST E R"
c UPDATED AS OF DEC. 11, 1976 H. JOHNSON
c
c converted to muttics May 6* 1977 by H Johnson
C$$$$S$$S$$$$$$$$CENTER TEST$$$$$$ $$$$$$$$$$$$$$$$$$$$$
c
c THIS PROGRAM TESTS WHETHER POINTS CALLED "CENTER POINTS"
c ARE ACTUALLY INSIDE THEIR MAP OUTLINES.
c
c IT ALSO COMPUTES THEIR DISTANCE TO THEIR MAP BOUNDARIES.
c

dimension xx(6)*yy(6)
c

io1=15

i 0=6
in1=34
wri te(6*VOu)
formatC" THE FOLLOWING CENTERS ARE IN DOUBT")900

c
c EQUATE 52 TO THE FILE OF MAP OUTLINES* COOR —
c EQUATE 15 TO THE FILE DOUBT .
c EQUATE 34 TO THt FILE OF CENTERS* CNTR--
c

rewind 3<!
c IT IS ASSUMED THAT THE CENTER DATA AND MAP OUTLINE DATA
c ARE IN THE SAME ORDER* AND THAT EACH CENTER BELONGS TO SOME
c MAP OUTLINE* BUT IT SKIPS OVER MAP OUTLINES WHICH HAVE NO DENTER.
c
1 read(in1*9Ui!*end=99)ifc*ifnoc*isfc*isfnoc*notc*norc*nifc
9902 format (1x* 7i i>)

read(in1*9U1)inut l*jnutt*xcen*ycen
901 format(2i6*2f6.3)
c
c ADD .OJ01 TO XCEN AND YCEN TO MAKE THEM DIFFERENT FROM
C ANY DATA POINT.

APPENDIX C 163

C
xcen=xcen+.0001
ycen=ycen+.0001

c
c READ THE DATA HEADER CARD
2 read(in*902*end=99)if*ifno/isf*isfno/not*nor*nif
902 format(7i5)

nc a rds = i sf no/6
if(6*ncards .It. isfno) neards=ncards+1

c
c COMPARE NOMBERS. IF DIFFERE NT , SKIP THIS DATA

if((itc.eq.if).and.(isfc.eq.isf).and.(notc.eq.not)) go to 200
do 50 k = 1 » nc ards
read(in,903)(xx(i),yy(i),i=1,6)

903 format(12f6.3>
50 continue

go to 2
20J continue
c
c
c IGNORE CENTER FILES FOR SINGLE POINT PLOTS,
c

ifCisfno . a t . 2) go to 210
read(in,903)(xx(i),yy(i),i=1,6)
go to 1

c
C NOW HEAD THE FIRST DATA CARD AMD BEGIN THE CALCOLATI ONS .
C WE SKIP THE FIRST DATA POINT. IT LOCATES PRINTING FOR
C THE ID ,JJM8tRS.
C
210 dst=1UO.

Ji am = 0.0
nx =0
read(in ,903) (xx(i),yy(i),i=1,6)
ie = 6
ifCisfno .It. 6) ie=isfno
xfi rst = xx(2)
yfirst=yy(2)
do 300 k = 3* i e
call work_master(xx(k-1)*yy(k-1)*xx(k)*yy(k)*xcen*ycen*nx*dst)
diam=dm_master(xx(k-1)*yy(k-1)*xfirst*yfirst*aidm)

99J3 format(f6.3)
300 continue

xlast=xx(6)
yldSt=yy(6)
if(ncards .eq. 1) go to 500
ifCncards .eq. 2) go to 400

c
C NOW READ IN THE DATA CARDS BETWEEN THE FIRST AND LAST.
C

n1=ncards-1
do 380 I=2*n1
read(in,903)(xx(i),yy(i),i=1,6)
edit worx^masterCxLast^ylast^xxC^^yyCI)/xcen^ycen/nx^dst)
diam=dm_master(xlast/ylast*xfirst*yfirst/diam)

164 GEOINDEX

350

380
c
C NOW
c
400

xx(k-1),yy(k-1),xx(k),yy(k),xcen,ycen,nx,dst)
(k-1),yy(k-1),xfi rst,yf i rs t,d i am)

401
c
50J
c
C WHE
C

c
c
c
50
c
60
c
c
c
c
c
c
c
c

NOW

1

*/H E
INS

WH
TH

do 350 k=2,6
caLL work_ma s ter(
di am = dm_master(xx
continue
xLast=xx(6)
yLast=yy(6)
con t i nue

READ IN THE LAST CARD

read(in,903) (xx(i
i e= i s fno-6*(ncard
caLL work_master(
diam=dm_master(xL
i f(i e .eq. 1) go
do 401 k=2,ie
caLL wor k_ma ster(
di am=dm_master(xx
con t i nue

continue

•M THE REGION IS NOT CLO

test=(xx(ie)-xfirs
if(test .L t . .01)

CdLL work_master(x
diam=dm_master(xx

REPORT THE RESULTS

c ont i nue

nx=(-1)**nx

N NX = -1 THERE ARE AN ODD NUMBER OF CROSSINGS/ SO THE CENTER IS
IDE THE REGION

),yy(i),i = 1,6)
s-1)
xLast,yLast,xx(1),yy(1),xcen,ycen,nx,dst)
ast,yLast,xfirst,yfirst,diam)
to 500

xx(k-1),yy(k-1),xx(k),yy(k),xcen,ycen,nx,dst)
(k-1)/yy(k-1)/xfi rst/yfi rst/diam)

SED wt ADD THE LAST POINT TO CLOSE IT.

t)**2+(yy(ie)-yfirst) **2
go to 501
x(ie)/yy(ie)/xfirst/yfirst/xcen/ycen/nx/dst)
(ie)/yy(ie)/xfirst/yfirst/diam)

EN NX=1 THERE ARE AN EV
t CENTER IS OUTSIDE THE

EN NUMBER OF CROSSINGS,SO
REGION

9991

write
99S1
i f (nx
w r i't e
9933
70 i f
write
9935
" is

and. (dst .gt. .09)) jo to 1
) jo to 1

center is in doubt because :")

format(f6.3)
if((nx .eq. -1) .

i f(diam .It. .3333
(0,9981)
format (*'0the fol Lowing
.eq. -1) go to 70

(6,9983)
formatC* it does not Lie inside the ooundary.'*)
(dst .gt. .09) go to 80
(6,9985) di am,ds t
formatC" the region has
",f6.3," incnes from th

diameter If ,f6.3," ana the center "/
e bounda ry.")

APPENDIX C 165

80 write(io/905)i f/ifno/isf/isfno/not/nor/nif
905 format(1x/7i5)

vj r i te(io/90b)xcen/ycen
906 format(1x/2f6.3)

i oa red = 40
i yc en = yc en*1000.
i x c en=x cen*1000.
i s fno=1
write(io1/902)if/ifno/isf/isfno/not/nor/nif

write(io1/9u7)ixcen/iycen
907 format(12x,2i6)

go t o 1
99 return

end

SUBROUTINE NAME: DM_MASTER
Author: Harold Johnson
Purpose of the program: dm_master is used to com­

pute the diameter of an outline. It calculates the
length on one segment and compares it with the
previously calculated diameter.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: diam = dm_master (xl,yl,x2,y2,dold)
Arguments:

x1, y7-Coordinates for one endpoint of a segment
x2, y2- Coordinates for the other endpoint
do Id- Previously calculated maximum diameter

Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: cntest_master
Error checking and reporting: None
Constants: None
Program logic:
1. diam is set to dold.
2. The distance between the endpoints is calculated and

compared with dold.
3. If this distance is more than dold, diam is set to this

distance.

******* SUBROUTINE DM.MASTER *******
function dm_mdster(x1/y1/x2/y2/dold)

function used in main program master,
converted to multics May 6 / 1977 H. Johnson

dm_mas t er = aold
test=aos(x1-x2)+abs(y1-y2)
ifCtest .gt. do Id)dm_master = test
return
end

******* END DM RASTER *******

FILE NAME: AREANO

Purpose of the file: areano is a list of true State areas.
master calculates a State area and then reads areano
to find the true area. The ratio of these is used as a
correcting factor in the area calculations for the
outlines of the State.

Format: The fcth record of areano contains the true
area, format 16 (integer part), for the State with FIPS
code number k. If no State has State code k, the
record contains a zero.

Arguments: One integer occurs on each record, 16, and
is the integral part of the true State area in square
miles.

Referenced by: master

166 GEOINDEX

areano

51609
586412
0
113909
53104

158693
0
104247

5009
2057

67
58560
58876

0
6450

83557
56400
36291
56290
82264
40395
48523
33215
10577
8257

58216
84068
47716
69686
147138
77227

110540
9304
7836

121666
49576
52586
70665
41222
69919
96981
45333

0
1214

31055
77047
42244

267339
84916
9609

40817
0
68192

APPENDIX C 167

24181
56154
97914

3435

PROGRAM NAME: STATE_OPTIMA

Author: Harold Johnson
Purpose of the program: state_optima reads through

a strdNM file, finds the highest and lowest latitudes,
leftmost and rightmost longitudes, and prints out this
information.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: state_optima
Arguments: None
Subroutines called: open si.ec, optima, close.ec
Common data referenced: None
Input files: strdNM used on unit 60 (filedO)
Output files: Information is printed on the terminal.

Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:
1. Prompt:

TYPE THE FEDERAL STATE CODE
NUMBER:

2. The user's response is read into state.
3. The word strd and the value of state are con­

catenated.
4. Call open_si.ec, which opens and attaches strdNM

to file60 for stream input.
5. Call subroutine optima.
6. Call close.ec, which detaches and closes filedO.
7. End.

st a t e_opt i ma

Purpose: To read through a strdNM
and lowest latitudes/ hleft and
most loingitudes* and print out

Programmer; H Jonnso
Jate: July 20* 1976

input file: strdNM
output file: terminal

external ec(descriptors) *
character file*6

dm s

wri te(6*91U)
910 formatC" Type the

read(3*920) state

file* find the highest
ri gh t-
t h i s info rma t i on.

Federal State Code number:")

168 GEOINDEX

920 format(a2)
encode(fi le/930) state

9.50 format("strd%a2)
c

cjll ec ("open_si"/"60"/file)
c
c

call optima
call ec ("c lose"/"60")

c
c
end

SUBROUTINE NAME: OPTIMA
Author: Harold Johnson
Purpose of the program: optima reads through the ra­

dian coordinate files and determines the uppermost,
lowermost, leftmost, and rightmost coordinates for
each map boundary.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call optima
Arguments: None
Subroutines called: dms
Common data referenced: None
Input files: strdNM
Output files: Information is printed on the terminal.
Arrays used: x(3), y(3), x1(4), y1(4) 1x1(4), iy1(4), z(4),

ideg(4), imin(4\ isec(4)
Called by: state__optima
Error checking and reporting: None
Constants: None
Program logic:

1. The header record of the strdNM file is read.

2. Set ncards equal to isfno divided by 3.
3. Read the first record.
4. Ignore the first point because it is the location of the

written // numbers.
5. Compare the points to find the rightmost, leftmost,

topmost, and lowermost points.
6. Put the coordinates into integer format for packed

writing.
7. Call function dms.
8. The following will be output on the screen:

STATE = nor, OUTLINE = //, SUB = Isf
DEGREES, MINUTES, SECONDS

NORTH
MAXIMUM idegfl) iminfl) isecfl)

SOUTH ideg(2) imin(2) isec(2) ,
WEST idegfS) iminfS) isec(3)
EAST ideg(4) imin(4) isec(4)

9. This organization is as in the comxNM files: upper
latitude, lower latitude, left longitude, and right
longitude.

10. Return control to calling module.

determine the upper/ lower/ left/ and right most
coordinates for each map boundary.

subroutine optima
c
c purpose: to redd through the radian coordinate files and
c
c
c
c
c input file number 60 is the standrd coordinate file.
c outpue file number 30 is a file of max/ mins.
c
double precision x/y/x1/y1/z
dimension x(3)/ y(3)/ x1U)/ y1(4)/ ix1U)/ iy1(A)
dimension z(4)/ idegCA)/ iminCA)/ isec(A)
c
10 read(60/910/end=10uO) if/ ifno/ isf* isfno/not/nor/nif
91J format(7i5)

APPENDIX C 169

C
C
ncards = isfno/3
if(3*ncards .It. isfno) ncards = ncards + 1
c

read(60,920)(x(j),y(j),j=1,3)
920 format(6f12.9)
c
do 15 j = 1 , A
x1Cj) = x(2)
15 y1(j) = y(2)
c we d o n,' t start with the first point/ because it is
c the Location of the written if numbers.
JO = 2
17 do 80 j = jU, 3
if(x(j) ,eq. 0. .or. y(j) .eq. U.) go to 90
c
c x1(1)/ y1(1) is the right-most point,
i f(x1 (1) .ge. x(j)) go to 20
x1(1) = x(j)
y1(1) = y(j)
20 con t i nue
c
c x 1 (2) / y1(2) is the left-most point,
i f(x1(2) .le. x(j)) go to 30
x1(2) = x(j)
y1 (2) = y (j)
30 con t i nue
c
c x1(3)/ y1(3) is the top-most point,
i f(y1(3) .ge. y(j)) go to 40
y1(3) = y (j >
x1(3) = x(j)
AO cont i nue
c
c x1(A)/ y1(A) is the Lowest point,
i f(y1 (A) .Le. y (3)) go to 80
y1(A) = y (j)
x1(A) = x(j)
80 cont i nue
c
ncards = ncards - 1
i f(ncards . 11. 1) go to 90
re ad(60/920)(x(j),y(j),j=1,3>
JO = 1
go to 17
c
90 isfno = 2
c
c put the coordinates into integer format for packed
c writing,
c
do 200 j = 1/A

ix1(j) = idintCxKj)*(10.0**9) + .5)

170 GEOINDEX

200 iy1(j) = idint (y1(j)*(10.0**9) + .5)
c
z(1) = y1(3)
z(2) = y1 (4)
z(3) = x1(1)
z(4) = x1(2)
do 106 k = 1 / A
z(k) = z(k)*180./3.1A1592653

call dms(z(k)/ijeg(k)/imin(k)/isec(k))
106 continue

write(6/9*»0) nor/ it/ isf
9AO formatC' state = "/i5/"/ outline = "/

wr i te(6/950)
950 format(1Ax/"degrees minutes seconds")

write(6/960) ideg(1)/itnin(1)/isec(1)
960 formatC' north maximum M /i3/i8/i8)

write(6/970) ideg(2)/itnin(2)/isec(2)
970 formatC' south M /i3/i8/i8)

write(6/980) ideg(3)/imin(3)/isec(3>
980 formatC' west M /i3/i8/i8)

write(6/990) ideg(A)/imin(4)/isec(A)
990 formatC1 east M /i3/i8/i8>

i5 sub =

c this organization is as in the comx
c upper latitude/ lower latitude/ Ift
c longitude.
c
930 format(Ad20.9)
c
yo to 10
c
1000 c ont i nue
return

files:
long i tude/ right

EXEC-COM NAME: OPEN_SI.EC

Author: Harold Johnson
Purpose of the program: open_si.ec attaches and opens

a file for stream input.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ec ("open_si","60",file)
Arguments:

60—Unit number
file—Name strdNM

Subroutines catted: io_attach, io_open
Common data referenced: None
Input files: strdNM
Output files: None
Arrays used: None
Called by: state_optima
Error checking and reporting: None
Constants: None
Program logic:
1. Call io to attach file60 via vfile_ to strdNM.
2. Call io to open fileBO for stream input.
3. Return control to the calling module.

A c omman J_ I i ne off
io attach file&»1 vfile_
i o open f i I e£ 1 si

-append -ssf

APPENDIX C 171

EXEC_COM NAME: CLOSE.EC

Author: Harold Johnson
Purpose of the program: close.ec detaches and closes

the file.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ec ("close","60")
Arguments: 60—Unit number
Subroutines called: io_detach, io_close

Common data referenced: None
Input files: strdNM
Output files: None
Arrays used: None
Called by: state_optima
Error checking and reporting: None
Constants: None
Program logic:
1. Call io to detach fileBO.
2. Call io to close fileBO.
3. Return control to calling module.

Acorn mandoline
io close f i I e
io Je t dc h f i I

off

PROGRAM NAME: ADDRAD

Author: Harold Johnson
Purpose of the program: addrad inserts the correct

values for the areas, the latitude and longitude coor­
dinates for the centers and for the north, south, east,
and west boundaries of the outlines for each map
reference contained in strgNM files.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call addrad
Arguments: None
Subroutines called: ibound_addrad, srch20_addrad,

srch30_addrad, srch40_addrad, closer, ftnumber,
center__addrad, optima_addrad

Common data referenced: None
Input files:

strgNM used on unit 10 (fileW)
Created by: concat

measNM used on unit 20 (file20)
Created by: master

cordNM used on unit 60 (file60)
Output files:

comxNM used on unit 30 (file3G)
Created by: optima_addrad

ctrdNM used on unit 40 (file40)
Created by: center_addrad

redyNM used on unit 50 (fileSO)
Created by: addrad

Arrays used: iarea(8), iaunit(7), inlat(12), islat(12),
iwlong(12), ielong(12), iclat(12), iclong(12),

Called by: None
Error checking and reporting: In subroutines
Constants: None
Program logic:
1. The user is prompted for the 2-digit FIPS code of the

State being processed.
2. Using this assoc will attach strgNM to Fortran

fileW, measNM to file20, comxNM to file30,
ctrdNM to file40, cordNM to file60, and redyNM
to fileSO. comxNM is the north, south, east, and
west latitude and longitude file; ctrdNM is the
latitude and longitude file of center points; redyNM
is the output file ready for final input to the
GRASP system.

3. Center_addrad is called to compute a center point
for each outline in cordNM and store these in
ctrdNM.

4. Optima_addrad is called to determine the extreme
north and south latitudes and east and west
longitudes for each outline in cordNM.

5. A record from strgNM is read.
6. Subroutine ibound_addrad is called to determine

the if and isf for the map outline of this reference
data.

7. srch20_addrad is called to search file20 for the area
of the corresponding outline. This is inserted in the
record from strgNM.

8. srch30_addrad and srch40_addrad are called to
locate data in comxNM and ctrdNM belonging to
this outline. This is inserted in the same record.

9. The record is written to redyNM. Control returns to
step 2.

172 GEOINDEX

C ******* ADDRAD *******
character f i I e * 4 , mode***/ state*2, outfile*6

C PROGRAM ADDRAD
C UPDATED AS OF DEC. 17, 1976 H. JOHNSON
C THIS PROGRAM OPERATES ON THE FILES STRGNM CONTAINING THE OUTPUT
C VECTORS OF THE CONCAT PROGRAM, BEFORE THEY ARE USED AS INPUT TO
C THE CREATE PROGRAM.
C
C $$$$$$iit$J$$$i$S$$i$$i$i$$$:l>$$$$j;$$$$$i$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$
c
C
C WHAT THIS PROGRAM DOES IS TO INSERT CORRECT AREAS, LATITUDE AND
C LONGITUDE COORDINATES FOR THE CENTERS ,N,S,LAT ITUDES AND E,W,
c LONGITUDES OF THE BOUNDARIES.
C (IN REFNM ONLY ONE AREA,CENTER AND 30UNDARY IS GIVEN PER "IF")
C
C THE FOLLOWING FILES ARE REQUIRED FOR INPUT:
C FILE 10 = INPUT STRGNM WHICH WAS PRODUCED BY CONCAT.
c FILE 20 = AREA FILE PRODUCED BY "MASTER" PROGRAM, CALLED MEASNM.
C FILt 30 = N,S LATITUDE ;E,W LONGITUDE FILE CALLED COMXNM.
C FILE 40 = CENTER LONGITUDE-LONGITUDE FILE CTRDNM.
c THE OUTPUT FILE PRODUCED 8Y THIS PROGRAM FOR CREATE:
C FILE 50 = THE OUTPUT FILE REDYNM.
C
C
c THE FOLLOWING VALUES ARE THE STARTING POSITIONS FOR THE VALUES OF
c IdOU.MD, AREA, AUNIT, N LA T , SL A T , wLONG , EL ONG, C L AT , CLONG AS
c DETERMINED BY THE FILE CALLED "MATRIX".
c
c $$$$i$$ss$s$$$ii$$$$$$$s$$$i$$$$$$$$$$$$$$$$$$$*$$$$$$$$$$$$i$$$$$$$$$

dimension iarea(8),iaunit(7),inlat(12),islat(12),iwlong(12)
dimension ielong(12)
dimension iclat(12),iclong(12),ifile(1211>

data nbound/1160/,narea/869/,naunit/S77/,nnlat/S#4/,nslat/d96/
data nwlong/90S/,nelong/920/,nclat/932/,nclong/944/,nrec/1211/

c
c NOTICE THE DIMENSION OF IFILE IS THE SAME AS NREC, WHICH MUST BE
c CHANGED IF NREC IS CHANGED.
c

data iaunit/"s","q","."," ","k","m","."/

c
write(6,910)
910 formatC' ENTER THE 2-DIGIT CODE FOR THE STATE BEING PROCESSED")
read (5,920) state
920 format(a2)
encodeCoutfile,925)state
925 f ormatC'st rg",a2)
mode = "si "

call ftnumber(1J,outfile,mode)
encodeCoutfile,926)state
926 format("cord",a2)

call ftnumoer(oO,outfiIe,mode)
encode(outfile,927)state
927 format(".neds",a2)

cat I ftnumber(2J,outfile,mode)

APPENDIX C 173

encode(outfi Ie /930) state
930 f o r .n a t (" c o m x " / a 2)
mode = "sio "

call ec ("open_sio"/"30"/outfile)
encode(outfile/932)state
932 format("ctrd"/a2)

cill ftnumber(40/outfile/mode)
encode(outfile/93/)state
937 formatC1 redy"/a2)
mode = "so "

call ftnumber(50/outfile/mode)
c

call center_addrad
c this routine computes a center point in radians for each
c ou tIi ne.
c

call op t i ma_add r<j a
c this routine computes the extreme north and south latitude for
c each outline/ and the extreme east and west longitude,
c
10 read(1U/940/end=100G)(ifile(j)/j=1/nrec)
940 format(30a1)
c
c vJE H.*WE READ ONE RECORD OF LENGTH NREC FROM STRGNM.

call ioound_addrad(ifi le/nbound/if/isf/nrec)
c THIS ROUTINE "IbOUND" READS IFILE FROM NBOUND TO NbOUND+6 TO
c DETERMINE THE "IF" AND "ISF" OF THE MAP OUTLINE WHICH IS THE OUTLI
c E
c MAP FOR THIS REFERENCE/ IF ONE EXISTS. IF = 0 WHEN NONE EXISTS,
c

if(if ,gt. u) go to 20
go to 100

c
20 call srch20_addrad(if/isf/iarea/ifIag2Q)

if(iflag20 ,eq. 1) go to 50
C THIS ROUTlNt SEARCHES FILE 20 TO LOCATE THE AREA OF THE OUTLINE
c I
c HAVING THIS IF AND ISF. IAREA IS THE LEFT-JUSTIFIED/ DECODED AREA
C FORMAT 6A1 .
C

do 3U k=1/8
30 ifi I e(narea + k-1) = iarea(k)
c
C NEXT/ INSERT "S^.KM." IN IFiLE.

do 40 k=1/7
40 ifi I e(naunit + k-1) = iaunit(K)
c
50 call srch30_addrad(if/isf/inlat/islat/iwlong/ielong/iflag30)

if(iflaj30 ,eq. 1) go to 70
c THIS SEARCHES THROUGH FILE 30 FOR THE LAT I TUDE-LONG I TU0ES/ DECODES
C THEM INTO A1 FORMAT,
c

do 60 k=1 /12
ifi le(nnlat+k-1) = inlat(k)
ifi le(nslat+k-1) = islat(k)

174 GEOINDEX

60
c
70

c
c
c

80
c
100

ifi le(nwlong+k-1)=iwlong(K)
i f i le(nelony+k-1) = i e I ony (k)

call srch4U_addrad(if*isf*iclat*iclong*iflag40)
i f (i f I a 3 4 0 .eg. 1) go to 100

THIS ROUTINE SEARCHES FILE 40 FOR THE LATITUDE-LONGITUDE
CENTER.

6 U K = 1 * 1

OF THE

O 6 U K = *
ifi le(nclat+k-1)=icldt(k)
i fi le(nc Ion g + k-1) = ic lony(k)

write(50,94u)(ifile(j),j=1/nrec)
jo to 10

1000 call closer(lu)
call c lose r (20)
call c loser (3u)
call c loser (40)
end f i I e 50

c this is supposed to put
c otherwise be lost.
c

cal I
ca I I

c
S t Op

c lose r (50)
c lose r (60)

a final blank record which might

end

SUBROUTINE NAME: OPTIMA_J^DDRAD

Author: Harold Johnson
Purpose of the program: optima_addrad reads through

the radian coordinate files and determines the upper­
most, lowermost, leftmost, and rightmost coordinates
for each map boundary.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call optima_addrad
Arguments: None
Subroutines called: None
Common data referenced: None
Input files: cordNMused on unit 60 (filedO)
Output files: file30- a file of maximums and minimums
Arrays used: x(3), y(3), x1(4), y1(4) 1x1(4), iy1(4)

Called by: addrad
Error checking and reporting: None
Constants: None
Program logic:
1. The header record of the coordinate file is read.
2. Set ncards equal to isfno divided by 3.
3. Read the first record.
4. Ignore the first point, because it is the location of the

written if numbers.
5. Compare the points to find the rightmost, leftmost,

uppermost, and lowermost points.
6. Put the coordinates into integer format for packed

writing.
7. Write the upper latitude, lower latitude, left

longitude, and right longitude to file30.
8. Continue steps 1 through 7 until the end of file is

reached.

subroutine optima_addrao
c
c purpose: to read through the radian coordinate files and

determine the upper* lower* left* and right most
coordinates for each map boundary.

APPENDIX C 175

c input file number 60 is the standrd coordinate file.
c outpue file number 30 is a file of max/ mins.
c
double precision x*y*x1*y1
dimension x(3)* y(3)* x1(4)* y1(4)s ix1(4)s iy1(4)
rewind 60
c
rewi nd 30
10 read(60*910*end=1000) if* ifno* isf* isfno*not*nor*nif
910 format(7i5)
c
c
ncards = i sfno/3
if(3*ncards .It. isfno) ncards = ncards + 1
c

read(60,92Q)(x(j),y(j),j=1,3)
920 format(6f12.9)
c
do 15 j = 1, 4
x1 (j) = x(2)
15 yK j) = y(2)
c we don't start with the first point* because it is
c the location of the written if numbers.
JO = 2
17 do 80 j = jO* 3
if(x(j) .eq. 0. .or. y(j> .eq. 0.) go to 90
c
c x1(1)* y1(1) is the right-most point,
i f (x1 (1) .ge. x(j)) go to 20
x1(1) = x(j)
yK1) = y(j)
20 cont i nue
c
c x1(2)* y1(2) is the left-most point,
if (x1(2) .le. x(j)) go to 30
x1 (2) = x(j)
y1 (2) = y(j)
30 continue
c
c x1(3)* y1(3) is the top-most point,
if (y1(3) .ge. y(j)) go to 40
y1(3) = y(j)
x1(3) = x(j)
40 cont i nue
c
c x1(4)* y1(4) is the lowest point,
if (y1(4) .le. y(j)) go to 80
y1 (4) = y(j)
x1 (4) = x(j)
80 cont i nue
c
ncards = ncards - 1
ifCncards .It. 1) go to 90
read(60,920)(x(j),y(j),j=1,3)
JO = 1

176 GEOINDEX

go to 17
c
90 isfno = 2

write(30/910) if/ifno/isf/isfno/not/nor/nif
c
c put the coordinates into integer format for packed
c writing,
c
do 200 j = 1/4

ix1(j) = idint<x1<j)*(10.0**9) + .5)
200 iy1(j) = idint (y1<j>*<10.0**9) + .5)
c

write (30/9 30) y1(3)/y1(4)/x1(1)/x1<2)
c this organization is as in the comx files:
c upper latitude/ lower latitude/ Ift longitude/ right
c long i t ude.
c
930 format(Ad20.9)
c
go to 10
c
1000 endfile 30
rewind 30
return
end

SUBROUTINE NAME: IBOUND_ADDRAD

Author: Harold Johnson
Purpose of the program: ibound_addrad reads the

characters in the vector ifile to interpret the
associated // and isf as integers.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ibouncL_addrad (ifile,nbound,if,-

isf,nrec)
Arguments:

if He-A vector of characters from one record of
strgNM

nbound-The number of the element of ifile that
preceeds the data containing if and isf characters

//-The identification number for the current
reference outline

isf-The subidentification number for the current
reference outline

nrec-The length of ifile
Subroutines called: decoder_addrad
Common data referenced: None
Input files: None
Output files: None
Arrays used: ifile(nrec), num(6)
Called by: addrad
Error checking and reporting: None
Constants: None
Program logic:
1. The pertinent characters are read from ifile, and

decoder_addrad is called to interpret them as in­
tegers. These are summed with suitable powers of
10 to output the corresponding // and isf.

******* SUBROUTINE IdOUND_ADDRAD *******
subroutine ibound_dddrdd(ifile/noound/if/isf/nrec)

SUBROUTINE USED IN MAIN PROGRAM "ADDRAD"
UPDATED AS OF DEC. 27, 1*76 H. JOHNSON

converted to Multics May 21, 1977 by H Johnson

APPENDIX C 177

10
c
20
c

c
c
25

30
c
c

dimension ifile(nrec)/num(6)
data iblank/" "/

THE PURPOSE OF THIS ROUTINE IS TO READ CHARACTERS IN IFILE
TO DETERMINE THE IF/.ISF OF THE BOUNDARY FOR THIS MAP
THE CHARACTERS CONSIST OF 1-3 NUMERALS FOR "IF" FOLLOWED BY 2
FOR "ISF".

WE FIRST READ THESE NUMBERS INTO A VECTOR NUM(K), STOPPING *HEN
A BLANK IS ENCOUNTERED.

Jo 10 k=1/6
i blah = i f i le(nbound + k-1)
i f (i f i le (nbound+k-1) .eq. iblank)go to 20
call decoder_addrad(ifile(nbound + k-1)/nurr»1)
num(k)=num1

i f (k .yt . 1)go to 25
WHEN THE RECORD IS ENTIRELY BLANK WE RETURN 0 FOR IF AND ISF.

i f = 0
i sf = 0
return

READ THE LAST T*0 NUMBERS INTO ISF:
Kla s t = k-1
i sf = 0
jo 30 j = 1 ,2
isf=isf+num(klast-j+1)*10**(j-1)
con t i nue

READ THE FIRST NUMBERS INTO IF:
kI as t = kIast-2
i f = 0
do 50 j=1/klast

50 if=if+num(klast-j+1)*10**(j-1)
return
end

c ******* END IBOLKJD.ADDRAD *******

SUBROUTINE NAME: DECODER_J^DDRAD

Author: Harold Johnson
Purpose of the program: decoder_addrad is used to in­

terpret integer characters and output them as in­
tegers.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call decoder_addrad (iblah,iy)
Arguments:

iblah- Integer character
iy- Integer number

Subroutines called: None
Common data referenced: None

Input files: None
Output files: None
Arrays used: ino(10)
Called by: ibound_addrad
Error checking and reporting: When iblah is not the

character for any single integer, a message to that ef­
fect is written to the user.

Constants: None
Program logic:
1. iblah is compared with each of the integer characters

0 through 9 until a match is found.
2. If no match is found, a message is sent to the user

along with the character in question.
3. If a match is found on the nth test, iy is equated to n

-1.

178 GEOINDEX

subroutine decoder_addrad(iblah*iy)
c
c subroutine used in dddrad
c written by H Johnson August 22* 1977
c
di men s i on i no(10)
data i n o/"0" ," 1"/"2"," 3" ," 4" ," 5" , "6"/"7" ," 8" ," 9"/
c
do 10 n = 1*10
if(iolah .eg. ino(n)) 90 to 20
10 cont i nue
write(6*910)i blah
910 formatC" there is no way to decode iblah = "*a1)
return
c
20 iy = n-1
return
end

SUBROUTINE NAME: SRCH20_J^DDRAD
Author: Harold Johnson
Purpose of the program: srch20_addrad searches

through the file number 20, measNM, to find that
record with an assigned if and isf. It returns the area
written there in character form.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call srch20__addrad (if,isf,iarea,iflag20)
Arguments:

if-The reference number for an outline
/s/-The subreference number for an outline
/area-An 8-character vector giving the area for an

outline
iflag20-A flag that indicates by the value 1 that no

area was found in measNM for this outline
Subroutines called: icoder_addrad
Common data referenced: None
Input files: measNM used on unit 20 (file20)

Output files: None
Arrays used: iarea(8)
Called by: addrad
Error checking and reporting: When no record in

measNM can be located that has assigned if and isf, a
message to that effect is sent to the operator.

Constants: None
Program logic:
1. A record from measNM is read, giving its value for

if, isf, area.
2. When this record indicates that it is beyond the

record we seek, file20 is rewound and control
begins at step 1.

3. Reading begins again, and this time if a record is
read that should be beyond the assigned if and isf,
the error message is written and the subroutine
returns.

4. When a match is found, the area value is decoded into
character format, along with the decimal point, and
left-justified into /area. iflag20 is set at 0.

c ******* SUBROUTINE SRCH 2 U_ADDRAD *******
subroutine srch2G_addrad(if*isf*iarea*ifla,j2U)

c
c SUBROUTINE USED IN MAIN PROGRAM "ADDRAD"
c UPDATED AS OF DtC. 27, 1976 H. JOHNSON
c
c converted to Multics May 21* 1977 H Johnson
c
C THIS ROUTINE SEARCHES THROUGH THE AREA FILE 20 TO LOCATE AN IF* IS
c
C TO MATCH THE NUrtdERS GIVEN IN THE CALL,
c

APPENDIX C 179

dimension iarea(8)
data idot/"."/,izero/"0"/,iblank/" "/

if Idg20 = 0
10 reao(20,VOO,end=45)if1,isf1,ared
900 format(2i5,f6.1)

if(if1 .eq. if .and. isfl .eq. isf) go to
if(if1 . g t. if .or. (if1 .eq. if .and. isfl
oa c k spac e 20

40 read(20,900,end=45)if1,isf1,ared
if(if .eq. if1 .and. isf . eq . isf1)go to 100
if(if1 .It. if .or. Cif1 .eq. if .and. isfl

45 wri te(6,910) i f ,i sf
910 formatC" THERE IS NO AREA WITH IF = ",i5,"

rewind 20
i f I ag20 = 1
return

100 a rea = a rea + .1
do 105 k=0,6
f = d rea/10. **k
ifx=ifix((f-float(ifix(f)))*10.)
call icoder_addrad(ibI ah,ifx)

105 i area(7-k)=iblah
iarea(&)=iarea(7)
iarea(7)=idot

100
• gt isf))rewind 20

.It. i sf))go to 40

AND ISF = " , i 5)

c NOW, LEFT-JUSTIFY
do 135 k=1,6
if(iarea(1) .rie. izero)go to
-JO 130 1 = 1,7

130 iarea(I) = iarea(1 + 1)
i area(8) = i DIank

135 continue
140 continue

i f Iag20 = 0
return
end

c ******* t M D SRCH20 ADDKAD *******

140

SUBROUTINE NAME: ICODER_ADDRAD

Author: Harold Johnson
Purpose of the program: icoder_addrad determines

what character corresponds to a given input integer.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call icoder_addrad (iblah,iy)
Arguments:

//?/a/7-The output character that symbolizes the in­
teger iy

/y-The input integer
Subroutines called: None

Common data referenced: None
Input files: None
Output files: None
Arrays used: ino(10)
Called by: ibound_addrad, rconv_addrad, srch20_

addrad
Error checking and reporting: When iy is not an integer

between 0 and 9, an error message is sent to the
operator.

Constants: None
Program logic:
1. In a do loop, iy is compared with each integer from 0

to 9. When a match is made, the correct character
is placed in iblah.

180 GEOINDEX

subroutine icouer_addrdd(iblah,iy)
c
c subroutine used in aadrad
c written by n. Johnson May 21 * 1977
c
d i mens ion i no(10)
data ino/"0%"1", M ^%"3","4","5","b%"7",''8","9"/
c
do 10 n = 1 , 10
if(iy .eq. n-1) go to 10
10 con t i nue
c
wri te(6*910)i y
910 formatC' THtRE IS NO WAY TO ENCODE IY = ",i3)
return
c
20 iblah = ino(n)
return
end

SUBROUTINE NAME: SRCH30_ADDRAD

Author: Harold Johnson
Purpose of the program: srch30__addrad searches

through file30 for a record that matches an assigned if
and isf. It returns values in character format.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call srch30_addrad (if,isf,inlat,islat,-

iwlong,ielong,iflag30)
Arguments:

if- Reference identification number
/sf-Subidentification number
in fat -Vector containing the characters of the latitude

of the most northerly point of the outline
islat— Vector containing the characters of the latitude

of the most southerly point of outline
iwlong- Vector containing the characters of the

longitude of the most westerly point of the outline
ielong- Vector containing the characters of the

longitude of the most easterly point of the outline
/7/agr30-Flag indicating whether or not the search

was successful
Subroutines called: rconv_addrad, read2_addrad
Common data referenced: None

Input files: comxNM used on unit 30 (file30)
Output files: None
Arrays used: inlat(12), islat(12), iwlong(12), ielong(12)
Called by: addrad
Error checking and reporting: When no match is found,

this is reported to the operator.
Constants: None
Program logic:
1. A record in file30 is read to determine an if1 and

isfl.
2. If a match with the assigned if and isf is found,

rconv_addrad is called to convert the data into
degrees, minutes, and seconds in character form.
Then control returns to the calling program.

3. If the read record in file30 seems to be farther along
than the assigned if, isf indicated, file30 is re­
wound and step 1 is initiated, with a flag indicating
that this has occurred. If that flag was already set,
the error message is written to the operator that no
record exists in file30 with the if, isf, and the
routine ends.

4. A second record is read and compared with the
assigned //, isf, and this is repeated until the ex­
pected position of that record is passed. Then the
error message is written.

5. When no record is found, iflagSO is set to 1. Other­
wise, it is set to 0.

******* SUBROUTINE SRCH30_ADDRAD *******
subroutine srch30 addrad(if/>isf/>inI at/>isI at/iwIong,ieIong,if
Idg30)

SUBROUTINE USED IN THE MAIN PROGRAM "ADDRAD"
UPDATED AS OF DEC. 27, 1976 H. JOHNSON

APPENDIX C 181

C

C
10

C

C

C

converted to Multics May 21/ 1977 H Johnson

THIS ROUTINE SEARCHES THE LATITUDE LONGITUDE FILE 30 FOR THE RECOR

HAVING IF AND ISF THE SAME AS THE ONES SUPPLIES 3Y THE CALLING
PROGRAM. WHEN IT FINDS THEM IT READS THE NLAT/SLAT/WLONG/ELONG
VALUES ON THE NEXT CARD/ ENCODES THEM TO INLAT/ISLAT/IWLONG/IELONG
AND RETURNS.

dimension inlat(12)/i slat(12)/iwlong(12)/ielong(12)
double precision uLat/sLat/w I ong/eLong

FIRST/ SEARCH FOR THE ASSIGNED IF AND ISF.
call read2_aadrad(if1/isf1/ulat/slat/wlong/elong/kflag)
ifCkflag .eq. 1) go to 45

THIS READS 2 CAKDS/ A HEADER CARD FOLLOWED BY COORDINATES. IT
RETURNS THE IF AND ISF FROM THE HEADER CARD.

40

45
910

100
c
c
c

i f
i f
c a
i f
i f
i f
wr
fo

Cif1 .eq. if .and.
(if1 .gt. if .or. (
U read2_addrad(if 1
(kflag .eq. 1) go t
(if .eq. if1 .and.
(i f 1 .It. if .or . (
i te(6/910) i f /i sf
rmat(" THERE IS NO

isf 1
i f 1
/isf
o 45
i sf
i f 1

COMX

.e
.eq
1/u

• eq
.eq

RE

Q
•

I

.

.

. i
if

at/

i s
if

CORD

sf
•

si

f 1
•

W

) go
and .
a t / w

) go
and .

ITH

to 100
isf 1

I ong/ e

to 100
isf 1

IF = "

.gt . i
I ong/k

.It . i

/i5/"

sf)) rew
f lag)

sf))go

ISF = "

ind 30

to 40

/i5>

* * * *

rew i nd 30
i fIdg30 =
return
cont i nue

AT
0
DEGREES/

cal I
cal I
cal I
cal I
i fIag30 =
return
end

*** END SRCH30.ADDRAD

1

THIS POINT THE NUMBERS ULAT/SLAT/WLONG/ELONG MUST BE CONVERTED

MINUTES AND SECONDS AND ENCODED.
rconv_dddrad(ulat/inlat)
rconv_dddrad(slat/i slat)
rconv_addrad(wlong/iwlong)
rconv_addrad(elong/ielong)

0

SUBROUTINE NAME: RCONV_J^DDRAD
Author: Harold Johnson
Purpose of the program: rconv_addrad decodes a

12-digit floating point number into characters and
writes them to a vector, one character put in each ele­
ment of the vector.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics

Calling sequence: call rconv_addrad (radian,ifile)
Arguments:

radian-A floating point number to be decoded
if He-A 12-element vector, which is to contain the

decoded digits of radian as characters
Subroutines called: dms, icoder_addrad
Common data referenced: None
Input files: None
Output files: None

182 GEOINDEX

Arrays used: ifile(12)
Called by: srch30_addrad, srch40_addrad
Error checking and reporting: In subroutines
Constants: None
Program logic:
1. radian is converted to degrees.

2. dms is called to convert these degrees to degrees,
minutes, and seconds, I format.

3. These integers are written into if lie one at a time,
with blanks in place of leading zeros. icoder_ad-
drad is used to convert single integers to
characters.

c ******* SUBROUTINE RCONV.AOORAO *******
subroutine rconv_addrad(radian/i f ile)

C SUBROUTINE USED IN MAIN PROGRAM "ADDRAD"
C UPDATED AS OF DEC. 27, 1976 H. JOHNSON
c converted to Multics May 21 / 1977 h. Johnson
c

double precision radian/x/pi
dimension i f ile(12)
data pi/3.141592653569793238A26A3383279/
data iblank/" "/
data izero/"0"/

c
C THIS ROUTINE CONVERTS THE RADIAN ANGLE "RADIAN" INTO DEGREES,
C MINUTElS AND SECONDS/ PACKING THEM INTO THE ARRAY IFILE.
C
C

x=dabs(radian*18U./pi)
call dms(x/ideg/imin/isec)

991 format(1x,3i7)
do 10 j = 1/3
iy = i deg/(10**(3-j))

call icoder_addrad(ib lah/iy)
i f ile(j) = iblah
i y = i y*(10**(3-j))
10 i deg = i deg - i y
if(ifile(1) .ne. izero) go to 15
i f i le(1) = iblank
if(ifile(2) .ne. izero) go to 15
i fi le(2) = iblank
if(ifile(3) .ne. izero) go to 15
ifi le(3) = iblank
15 continue
c
do 20 j = 1, 2
i y = i min/(10**(2-j))

call icoder_addrad(iblah/iy)
i fi le(3 + j) = i blah
iy = i y*(10**(2-j))
20 imin = imin -iy
ifCifile(A) .ne. izero) go to 25
if(ifile(5) .ne. izero) go to 25
25 c ont i nue
c
-do 30 j = 1/ 3
i y = i sec/(10**(3-j))

call icoder_addrad(ibI ah/iy)
i f i le(5 + j) = iblah

APPENDIX C 183

iy = iy*(10**(3-j))
30 isec - isec - iy
if(ifile(6) «ne. izero) go
if(ifite(7) .ne. izero) go
if(ifile(8) .ne. izero) go
35 con t i nue
c
do 40 j = 9,12
40 i fi le(j) = iblank
995 format(1x,12a1)
return
end
c ******* END RCONV.ADDRAD

to
to
to

35
35
35

SUBROUTINE NAME: DMS

Author: Harold Johnson
Purpose of the program: dms converts a double-

precision degree number to three integers represen­
ting degrees (between 0 and 360), minutes, and
seconds.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call dms (x,ideg,imin,isec)
Arguments:

x- A double-precision floating point value for degrees
ideg- An integer representing the degrees in x
imin— An integer representing the minutes in x

isec— An integer representing the seconds in x
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: rconv_addrad, optima
Error checking and reporting: None
Program logic:
1. x is reduced modulo 360.
2. The integer part of x is taken for Ideg.
3. Ideg is subtracted from x, the result multiplied by 60,

and its integer part is Imin.
4. imin is subtracted, the result is multiplied by 60, and

its integer part becomes isec.

c ******* QMS FUNCTlOiJ *******
subroutine dms(x/ideg/imin,isec)
double precision x/y
y = 360.
x - dmod(x/y)
ideg = ifix(sngl(x))
x = x - dfloat(iaevj)
imin = ifix(sngI(60.*x))
x = x*60. -dfI oat(imin)
isec = ifix(sng I (oO.*x))
return
end
c ******* END DMS FUNCTION *******

SUBROUTINE NAME: READ2_ADDRAD

Author: Harold Johnson
Purpose of the program: read2_addrad is used to read

from the file comxNM the values for the latitudes and
longitudes and the values for if and isf.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)

Operating system: Multics
Calling sequence: call read2_addrad (ifl,isfl,ulat,slat,-

wlong, elong,kflag)
Arguments:

if1—The if of the record from comxNM
isfl—The isf of the record
ulat—The northernmost latitude
slat—The southernmost latitude
wlong—The westernmost longitude

184 GEOINDEX

elong—The easternmost longitude
kflag—A flag to indicate that the end of comxNMhas

been sensed
Subroutines called: None
Common data referenced: None
Input files: comxNM used on unit 30 (file30)
Output files: None

Arrays used: None
Called by: srch30_addrad
Error checking and reporting: None
Constants: None
Program logic:
1. file30 is read according to its preassigned format.

When the end of the file is sensed, kflag is set to 1.

******* SUBROUTINE RhAD2.ADD9 AD *******
subroutine read2_addr3d(if1/isf1/ulat*slat/wlong^elon9/kflag)

SUBROUTINE CALLED BY SRCH3J IN MAIN PROGRAM "ADDRAD"
UPDATED AS OF DEC. 27, 1976 H. JOH.MSON

converted to multics May 21 , 1977 H Johnson

90J

910

100

double precision ulat/sldt/wlong/elong
read(3U,9GO,end=10u)if1,ifno,isf1
for mat(3 i 5)
read(30*910/end=100)ulat/slat/wlong/elong
format(4d2U.9)
k f I a g = J
return
kf tag = 1
return
end
END READ2.ADDRAD *******

SUBROUTINE NAME: SRCH40_jU)DRAD

Author: Harold Johnson
Purpose of the program: srch40_addrad searches

through file40 for a record having an assigned /'/ and
Isf.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call srch40_addrad (if,isf,iclat,iclong,-

jflag)
Arguments:

if—The assigned reference identification number
isf—The assigned reference subidentification number
id at—A 12-character vector containing characters

that represent the latitude of the center point in
degrees, minutes, and seconds

iclong—The 12-character vector of characters for the
longitude of the center

jflag—A flag that, when set to 1, indicates that no

record in file40 was found to correspond to the
given //, isf

Subroutines called: read40_addrad, dble, rconv_
addrad

Common data referenced: None
Input files: ctrdNMused on unit 40 (file40)
Output files: None
Arrays used: iclat(12), iclong(12)
Called by: addrad
Error checking and reporting: When no record is found

with the prescribed // and isf, a message is sent to the
operator.

Constants: None
Program logic:
1. Following the same logic stream as in srch20_

addrad, search the file for the record with the
desired /'/ and isf values.

2. When found, the latitude and longitudes are made
double precision, and rconv__addrad is called to
convert them to vectors of characters.

******* SUBROUTINE SRCHAO.ADDRAD *******
subroutine srch40_addrad(if/isf/icldt/iclong/jflag)

SUBROUTINE USED IN MAIN PROGRAM "ADDRAD"
UPDATED AS OF DEC. 27, 1976
H. JOHNSON

APPENDIX C 185

THIS ROUTINE SEARCHES FILE 4U FOR THE RECORD HAVING THE GIVEN IF, I
F
THE NEXT RECORD WILL CONTAIN THE LATITUDE/ LONGITUDE OF THE CENTER
POINT

dimension i c I at < 1 2) * i c long (1 2)
douole precision radian

c
c
j f lag = 0
c FIRST/ SEARCH FOR THE IF/ ISF IN THE CALLING PROGRAM.
10 call rea d40_addrad (i f 1 / i sf1 / c lat/ c long/ i f lag 1)
i f (i f I ag1 .eq. 1) go to 45
c THIS READ 2 CARDS. THE FIRST IS A HEADER CARD AND GIVES THE IF1/I
c F1
c THE SECOND IS A LATITUDE LONGITUDE CARD.

if(it1 .eq. if .and. isfl .eq. isf)go to 100
if(if1 .gt. if .or. (if1 .eq. if .and. isfl .gt. isf))rewind 40

40 call read40_addr ad (i f 1 f i sf 1 /c lat / c I ong/ i f I ag1)
i f (i f I dg! . eq . 1) go to 45

ifCif .eq. if1 .and. i s f . eq . i s f 1) go to 100
if(if1 .It. if .or. (if1 .eq. if .and. isfl .It. isf))go to 40

45 wri te(6/?10) i f /i sf
910

rewind 40
J f lag = 1
return
c
103 radian = dble(clat)

call r conv_ addr ad (rad i an/ i c I a t)
radi an = dble (c long)
call r conv.addr ad (rad i an/ i c long)

KCOMV CONVERTS "RADIAN" TO DEGREES/ MINUTES AND SECONDS AND ENCODE

C THE;1 AS CHARACTERS INTO ICLAT AND ICLONG.
return
end

c ******* END SRCH40_ ADDRAD *******

SUBROUTINE NAME: READ40_ADDRAD

Author: Harold Johnson
Purpose of the program: read40_addrad is used to read

from file40, ctrdNM.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call read40_addrad (ifl,isfl,clat,-

clong,iflagl)
Arguments:

if 1-The if number of this outline
isfl -The isf number of this outline
c I at-The latitude of the center point of this outline

clong-The longitude of the center point
iflagl -A flag to indicate the end of file40 has been

sensed
Subroutines called: None
Common data referenced: None
Input files: CtrdNM used on unit 40 (file40)
Output files: None
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:
1. file40 is read, two cards at a time, to determine the

arguments, iflagl is set to 1 when the end of file is
sensed.

186 GEOINDEX

c ******* rtEAD4U_ADDRAD *******
suoroutine read4u_addrdd(if1,isf1,clat,clong,iflag1)

c SUBROUTINE CALLED BY SRCHAG IN MAIN PROGRAM "ADDRAD"
c UPDATED AS OF DEC. 27, 1976 H. JOHNSON
c
c converted to multics May 20, 1977 by H Johnson
c

read(40,910,end=100)if1,ifno,isf1
91U format(3i5)

read(40*92u,end=100)xu,y0,clong,clat
923 format (4f12.9)

i f L ag = 0
return

10J if lag = 1
return

end
c ******* HMD READ40_ADDRAD *******

SUBROUTINE NAME: WEIGHT_ADDRAD

Author: Harold Johnson
Purpose of the program: weighL addrad calculates a

weighted center for each edge of a polygon and adds
to the cumulated weighted center and total length.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call weight_addrad (xl,yl,x2,y2,xc,-

yc,td)
Arguments:

x1 -Longitude in radians of the first point
y 1 -Latitude in radians of the first point
x2- Longitude in radians of the second point
y2- Latitude in radians of the second point
xc- Longitude of weighted center

yc- Latitude of weighted center
td -Total length of curve

Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: center addrad
Error checking and reporting: None
Constants: None
Program logic:
1. The value z = \x2 - x1 \ + \ y2 - y1 1 is

calculated.
2. The value 0.5(x2 + x7)z is calculated and added to xc.

The value 0.5(y2 + y1)z is calculated and added to
yc.

3. z is added to td.

suurout ine weight_addrad(x1,y1,x2,y2/xc,yc,td)
c
c ******* SUBROUTINE wEIGHT_ADDRAD *******
c
c Purpose: To calculate a weighted center for an added edge,
c by adding to each coordinate the average coordinate
c multiplied by the length of the segment,
c
c Programmer: H Johnson
c
c Date: July 18, 1978
c
c converted to multics May 6, 1977 H. Johnson
c
implicit double precision (a-z)
c

z=abs(x2-x1) + abs(y2-y1)
xc=xc + 0.5*(x2+x1)*z

APPENDIX C 187

yc = yc + U. 5*(y2+y 1) *z
td = td + z
return

end
c ******* END WEIGHT.MASTER *******

SUBROUTINE NAME: CENTER_ADDRAD
Author: Harold Johnson
Purpose of the program: center addrad computes a

central point for each outline in cordNM and stores it
in a file named ctrdNM.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call center_addrad
Arguments: None
Subroutines called: weight_addrad
Common data referenced: None
Input files: cordNM used on unit 60 (fileBO)
Output files:

ctrdNM used on unit 40 (file40)
Created by: center_addrad

Arrays used: None
Called by: addrad
Error checking and reporting: None
Constants: None

Program logic:
1. A header card is read from cordNM, and isfno, the

number of coordinate pairs that follow, is used to
compute the number of coordinate cards.

2. The first coordinate card is read. If only one point is
in the outline, that is assigned the center point.
Otherwise, beginning with the second and third
points, a weighted center is computed according to
the formulas described for weight_addrad.

3. The middle cards are read, and these computations
are continued with each pair of coordinate points.

4. The last card is read, and the final calculations are
xc = xcldt
yc = ycldt

5. A header card is written to ctrdNM with isfno = 2.
6. A latitude-and-longitude card is written to ctrdNM

with xc, yc.
7. Control goes to step 1 until the cordNM file is finish­

ed.
8. Endfile and rewind are executed on ctrdNM.

subroutine center_addrad
c
c********** WEIGHTED AVERAGE CENTER ***********
c Purpose: To compute a center for each outline in the
c radian coordinate file cordNM ana put it in" the
c file ctrdNM .
c
c Programmer: H Jonnson
c Date: July 1 &/ 1978
c
c input file60: cordNM/ a file of radian coordinates* giving the
c latitudes and longitudes/ format 3(2f12.9>)
c
double precision xx/ yy/ xstart/ ystart/ xc/ yc/ dt/ xlast/ ylast
c

common true/sk/ia
dimension xx(3)/yy(3)

c
c
c FIRST/ COMPUTE THE STATE MAP AREA IN SQUARE KILOMETRES,
c

i n = 60
i ocnt r = 4u

100 read(in/9GU/end=100J) if/ifno/isf/isfno/not/nor/nif/ispan
900 format(3i5)
c

188 GEOINDEX

C WHEN ISFMO IS LESS THAN 4 WE DON'T HAVE A REGION AT ALL
C

if(isfno.gt.3)go to 102
read(in,901*end=1000)(xx(i),yy(i),i=1/3)

901 format(of 12.9)
c
c
C IN THE CASE OF A SINGLE POINT/ CALL THAT POINT CNTR.
C

i xc = xx(2)*(10.**9) + .5
i yc=yy(2)*(10.**9) + . 5
i s fno = 2
wri te(iocntr,905)i f * i f no* i sf/i sfno,not*nor*ni f * i span
write(iocntr*908)ixc*iyc
go to 100

102 cont i nue
c
C CALCULATE NCARDS, Trib NUMBER OF DATA CARDS ON THIS MAP
C

ncards=i sfno/3
if(3*ncards .It, isfno) nc a rds = nc a ras + 1

c
c

x c = 0.
yc=0.
a t = 0 .

c
C XC IS GOING TO BE THE X-COORDINATE OF THE CENTER
c YC IS GOING TO BE THE Y/COORDINATE OF THE CENTER
c DT IS THE ACCUMULATED NORMED DISTANCE BETWEEN POINTS
c
C READ IN THE FIRST DATA CARD
C

reaa(in,901*end=10uO)(xx(i),yy(i),i=1,3)
xstart=xx(2)
ystart=yy(2)
i e = 3
ifCncards .eq. 1) ie=isfno
do 200 j=3,ie
j1=j-1
call wei(jht_addrad(xxCj1)/yy(j1)/xxCj)/yy(j)/xc/yc/dt)

20J cont i nue
if(ncards .eq. 1) go to 500
xlast=xx(3)
ylast=yy(3)

c
c

if(ncards .eq. 2) go to 400
c
C READ IN THE MIDDLE CARDS/ BETWEEN THE FIRST AND LAST.
C

Kl=ncards-1
ao 300 k=2,kl
read(in,901)(xx(i),yy(i),i = 1,3)

APPENDIX C 189

301

call weight_addrad(xlast/ylast/xx(1)/yy(1)/xc/yc/dt)
do 301 j = 2,3

j1=j-1
cal I weight_addrad(xx(j1) / y y (j1) / x x (j)/yy(j)/xc/yc/dt)
con t i nue
xlast=xx(3)
y I as t = yy(3)
continue
continue

300
400
c
C NOW READ IN THE LAST CARD
c

read(in,901)(xx(i)/yy(i),i=1,3)
ie=isfno-3*(ncards-1)
ifCie .eq. 0) ie=3
call weight_addrad(xlast/ylast/xx(1)/yy(1)/xc*yc/dt)
i f(ie .eq. 1) go to 500
do 401 j=2/ie

call weight_addrad(xx(j1)/yy(j1)/xx(j)/yy(j)/xc/yc/at)
continue
continue

401
500
c
C WHEN THE REGION IS NOT CLOSED/ WE MUST ADD THE LAST DATA POINT
c

t es t = (x x (i e) -xs t a r t) **2 * (y y (i e) -y s t a r t) * * 2
i f (test . It . .01) go to 501
cal I weight_addrad(xx(ie)/yy(ie)/xstart/ystart/xc/yc/dt)

501 continue
503 continue

xc=xc/dt
yc = yc/<?t

i s f no = 2
wri te(iocntr/9G5) if/i f no/ i sf/i sfno/not/nor/ni f/ispan

905 f o rma t (6i 5)
ixc= idint (x c * 1 000000000 . -»-0 . 5)
iyc= idint (y c * 1 000000000 . + 0.5)
write(iocntr/908> ixc/iyc

905 format (<?4x,2i 12)
go to 100
1000 endfile 40
rewind 40
return
end

SUBROUTINE NAME: FTNUMBER
Author: Harold Johnson
Purpose of the program: ftnumber is used to attach and

open a file on the Multics system. It allows for any file
mode.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics

Calling sequence: call ftnumber (iunit,name,mode)
Arguments:

iunit- The Fortran number of a file being attached
name- The name of the segment being attached (This

can have as many as six characters.)
mode- Type of file access method

Subroutines called: The Fortran routine encode and the
system routine I/O

190 GEOINDEX

Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: concat, master, addrad, out1_bigsta, out-

2_ bigsta
Error checking and reporting: None
Constants: None

Program logic:
1. The assigned Fortran number iunit is inserted into

the character string fname in the form fileNM,
where NM is the number Iunit.

2. If the mode is not so, attachment is made using
arguments -append and -ssf.

3. If the mode is so attachment is made.

c ******* SUBROUTINE F7NUMBER *******
subroutine ftnumber(i un i t/name/mode)
c
c PURPOSE: To automatically attach and open files in Fortran
c
c PROGRAMMED: H Johnson
c DATE: Sept 30* 1977
c
c iunit = fortran i/o number
c name = up to 6-character c name of a file.
c mode = "si","so"/ etc.
c
c modified from the program assoc of >udd>Grasp>RBowen>assoc
c by HJohnson May 20/ 1977.
c

character name*e>/fname*6/mode*4*fmt*1 2
f m t = " (4 h f i I e / i 2) "
if (iunit .le. 9) fait = "(5hfi IeO/i1)"
encode(fname/fmt) iunit
if (mode . eq. "so") yo to 20

call io (" attach %fname/"vf iIe_"/name/"-append"/"-ssf")
call io ("open"/fname/mode)

return
c
20 call io ("attach"/fname/"vfile_"/name)

call io ("open"/fname/mode)
return
c
end

EXEC-COM NAME: COVERT.EC

Author: P. A. Fulton
Purpose of the program: covert.ec, written in Multics

command language, reads the redyNM file and
creates a GRASP file for the State.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec covert NM state
Arguments:

NM- FIPs code for the State
sfate-Name of the State

Subroutines called: setmas, convert
Common data referenced: None

Input files: dicn, mask, crfile, indxNM, redyNM, defn
Output files: indexO
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:

1. Turn off the COMMAND LINE.
2. Attach the exec_com to setmas.
3. Execute setmas.
4. Upon completion of setmas, detach the files.
5. Attach the exec_com to convert.
6. The exec_com will pass the names of six

files-dicn, mask, crfile, indxNM, redyNM, and
defn to be read by convert.

APPENDIX C 191

7. Detach the files.
8. Attach the exec_com to ted, which is a text editor.
9. Read indexO and then read file15, which will

append file 15 to indexO.
10. Write indexO.

11. Quit and exit from the text editor.
12. Detach the files.
13. Delete file15.
14. Quit the exec_com.

5 c omrnand_ I i ne off
&a tt ac h
se tmas
1 18
ye s
£det ach
Sattac h
corw er t
d i en
mask
c r f i I e
i ndx i 1
n
redy&1
n
de f n
reference map file for
& d e t a c h
£a 11 ac h
ted
r i nde xO
r fi Ie1 5
w i n a e x u
q
&det ach
dl file15
£qui t

FILE NAME: CRFILE
Purpose of the file: crfile is a control file for the GRASP

programs. It enables GRASP to read the redyNM files
correctly.

Format: The first record contains nacr and nrec, for­
mat 13, 15. The remaining records contain acronm,
itype, and ifirst, format A9, II, 15.

Arguments:
nacr— The number of acronyms to follow = remaining

number of records in crfile
nrec- The total length of the strgNM and redyNM

records
acronm-The acronymns used in matrix
itype- The type code used by GRASP
///fSf-The position in the records of strgNM and

redyNM where this type of data begins
Referenced by: The GRASP programs, which set up

GRASP files.

crfile

38 1211
id
s ta te
author
year
title

1
3
6
1
6

1
5

25
205
209

192 GEOINDEX

county
publish
s er ies
emphasi
area
aunit
nlat
slat
wlong
elong
clat
clong
omaps
avail
base
geology
plate
idstat
scale
idsub
ibound
ispan
alsomap
dumO
duml
dum2
dum3
dum4
dum5
dum6
dum7
dum8
dum9

6
6
6
6
2
6
1
1
1
1
1
1
6
6
3
3
6
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1

449
629
689
809
869
877
884
896
908
920
932
944
956
1016
1076
1106
1118
1 148
1 150
1158
1 160
1 166
1172
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

PROGRAM NAME: SETMAS
Author: P. A. Fulton
Purpose of the program: setmas creates the index file

required by GRASP. This GRASP file is limited to 10
entries. This program accepts a list of State FIPS
codes and creates files containing a GRASP entry for
each State.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: setmas
Arguments: None
Subroutines called: None
Common data referenced: None
Input files: indexO used on unit 11 (f/7e77XState codes

entered interactively)
Output files: index, a subset of indexO, used on unit 12

(file 12)
Arrays used: ir(9,2), ir1(80)
Called by: covert.ec, gr.ec, usmerg.ec

Error checking and reporting: System only
Constants: None
Program logic:
1. This program executes interactively. It begins by re­

questing the State codes:
ENTER ONE DIGIT FOR NUMBER OF
STATES TO QUERY AND FOLLOW BY LIST
OF TWO DIGIT STATE CODES WITH
BLANKS BETWEEN

Reply: 3 02 16 39
This reply indicates 3 State entries are to be put into

the output file index. These States are coded 02
(Alaska), 16 (Idaho), and 39 (Ohio).

2. All I/O operations are handled internally by the pro­
gram.

3. The program compares the codes input via the term­
inal to the codes in file indexO. When the codes
match, a State entry in proper GRASP format is
placed in the output file index, index is then used
by GRASP.

/"indexO")

'/"index")

APPENDIX C 193

setmas
character ir*1/ir1*1

dimension ir(9/2)/ i r 1 (o 0)
call io ("attach","fiIe11"/"vfi le_
call io ("open"/"f He1 1"/"si")
call io ("attach","fiIe12"/"vfi le_
call io ("open"/"fiIe12"/"s io")

print/"enter one digit for numoer of states to query and follow"
print/"oy list of two aigit state codes with blanks between"
read (3/101) n/(ir(i/1)/ir(i/2)/i=1/n)
101 format (i1/x/9(2a1 / x))
221 read (11/102/end=90) ir1
102 format (80a1)
do 220 i = 1/n
if (i r (i /1) .ne. i r 1 (t>))
if (ir(i/2) .ne. ir1(6))
write (12/ 102) i r 1
220 continue
go to 221

90 continue
end file 12
call io ("close"/"fiIe11")
call io ("close"/"fiIe12")

call io ("detach"/"fi Ie11")
calI io ("detach","fi Ie12")

stop
en d

go to 22U
go to 22U

EXEC_COM NAME: GR.EC
Author: P. A. Fulton
Purpose of the program: gr.ec, written in Multics com­

mand language, sorts the State index file by scale and
creates three files: tip for scales LE (less than)
1:24,000, t2p for scales GT (greater than) 1:63,360,
and t3p for scales BE (between) 1:24,001 and 1:63,360.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec gr NM
Arguments: NM- FIPS code for the State
Subroutines called: setmas, GRASP
Common data referenced: None
Input files: indexO
Output files: tip, t2p, t3p, t1, t2, t3, and output—file
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None

gr.ec
&command_ I ine off
iat t ac h
fo
setmas
1 £1

Program logic:
1. Turn off the command line.
2. Attach the exec_com to the program setmas.
3. Designate the user output to a segment by the FO

command.
4. Execute subroutine setmas.
5. The exec com supplies answers to queries in set­

mas.
6. The file is detached.
7. input—line is turned off.
8. Attach the exec_com to the program GRASP.
9. The exec_com contains responses to prompts in the

GRASP program.
10. At the end of GRASP, the file is detached.
11. User output is directed to the console by the RO

command.
12. The file called output^file is deleted.
13. The three files tip, t2p, and t3p are automatically

dprinted.
14. Quit the exec_com.

194 GEOINDEX

ye s
& d e t a c h
& inpu t_ I i ne off
iatt ac h
gr asp
cond
scale le 24000
scale gt 63360
scale be 24001,63360

logi c
a
search

t1
li st
t1
50
c
y
tip
i bound
id
i dsub

logic
b
search

t2
list
t2
50
c
y
t2p
n
logic
c
search

t3
list
t3
50
c
y
t3p
n
qui t
no
aide t a c h
CO

APPENDIX C 195

dl out pjt_f i I e
dp tip
dp t <?p
dp t3p
&qui t

EXEC-COM NAME: INPLOT.EC

Author: P. A. Fulton
Purpose of the program: inplot.ec, written in Multics

command language, plots the three files created by
gr.ec-that is, tip, t2p, and t3p. It provides a visual
check of the integrity of the plot files.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec inplot NM state
Arguments:

NM-FIPS code for the State
state- State name

Subroutines called: pn16
Common data referenced: None
Input files: bordNM, coorNM, statNM, counNM,

gridNM

i np Lot .ec
^command. I i ne off
stty -modes pLO
& i nput _ I i nes off
&a tt ach
pn 1 o
n

Output files: Plots on the Tektronix screen
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:
1. command—line is turned off.
2. page_length is set to 0 to disable end-of-page check­

ing.
3. &input_lines off disables the computer from accept­

ing input from the terminal.
4. &attach attaches the arguments in the exec_com

directly to pn16.
5. Response to prompts in pn16 are fulfilled within the

exec_com.
6. &detach detaches the exec_com from pn16.
7. page^length is set to 114.
8. Quit.

tip
y
scale
1
0
1
0
c
n
y
y
t2p
y
scale
1
0
1
U
c

1 :24GUU

I t 1 :63360

196 GEOINDEX

n
y
y
t3 P
y
scale between 1:24000/1:63360 4,2
1
0
1
0
c
n
y
n
count i es for &2
0
1
0
0
c
n
n
ye s
£det a c h
s11y -modes p111 A
Squi t

PROGRAM NAME: PN16
Author: P. A. Fulton
Purpose of the program: pn16 plots a State index map

interactively on a Tektronix CRT screen. This is a
two-step process. First, a GRASP retrieval is ex­
ecuted wherein a disk file is created that contains the
links to the coordinate Geoindex files. This GRASP
file is identifed as unit 13. However, the program is
constructed so that the user has the option of plotting
any combination of the input files.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: pn!6
Arguments: None
Subroutines catted: initt, anmode, erase, movabs,

dwindo, swindo, movea, drawa, ancho, bell,
hdcopy, vcursr, finitt (Tektronix routines), plod,
pos, plo, ploc6, assoc

Common data referenced: x1, y1, x2, y2
Input files:

Input from terminal used on unit 5 (fileS)
coorNM used on unit 10 (fileW)
bordNM used on unit 11 (file11)
GRASP file used on unit 13 (file13)
statNM used on unit 14 (file14)

counNM used on unit 15 (file15)
gridNM used on unit 16 (fileW)
skod used on unit 17 (filelT)
Superimposed file used on unit 20 (file20)

Output files: Output to terminal used on unit 6 (filed)
Arrays used: lead(20), xx(6), yy(6), mort(300), ista(6)
Called by: Can be executed by inplot.ec
Error checking and reporting: When the array size of

300 entries for the input plot file (file13) is exceeded,
the program returns the error message:

BUFFER EXCEEDED
When the number of x, y coordinates does not match
the number given on the header card (isfno), the pro­
gram returns the error message:

REC COUNT ERR
All error messages concerned with I/O handling are
identified by system messages and system returns.

Constants: ingd = 10 and ing - 13 are file numbers; rsiz
= 0.3 size in inches for numbers shown on plot; ichar
= 43 character (+) for points plots.

Program logic:
1. The program prompts the user for all the specific in­

put and output desired. The first phase requires
the user to identify the single, specific State.

2. The program does all the file handling internally to
relieve the user of all systems duties. However, all

APPENDIX C 197

the files listed above must be available because
they are attached and opened here at the beginn­
ing of the program.

3. The program requests the input file (file13), which
is to be plotted. If necessary, the program sorts
the data into ascending order by keying on the id
number.

4. The plot window is computed from the coordinates
of the border files, bordNM.

5. The annotation and exact data files that are to be
plotted are elicited from the user.

6. The actual plotting is initiated in the following
order: border, State, county, grid, and the input
file, which was created by GRASP (file13) and
which is to be plotted. The program reads the
value of ibound from this input file and assigns to
it the variable name /map.

7. The program reads through the coorNM file. From
the header cards, it obtains the identification and
subidentification numbers, which it combines into
the variable if and compares to /map.

8. When these numbers from the two different files
match, the outline is plotted. First the identifica­
tion number is plotted, its position determined by
the first pair of x, y coordinates. Then the rest of
the x, y coordinates are plotted to form the
outline. The program uses the number of points
(isfno) read from the header card to compute the
end of a feature outline.

9. For very small areas, there is only one x, y coor­

dinate pair for the outline, and the symbol (+) is
plotted at that point.

10. After the entire input file (file13) has been plotted,
the program tests to see whether another file
should be superimposed. If so, it is plotted by
subroutine ploc6. ploc6 plots this superimposed
file similar to the way pn16 plots the coorNM file.
The exception is that ploc6 plots the entire file
that is to be superimposed but does not compare it
to any other input file from GRASP.

11. After the plot is completed, the bell rings to alert
the user to make hard copies of the plot and (or) to
continue the execution of the program.

12. The next phase of the program permits the user to
enlarge any part of the plot. The new plot window
is defined by use of the crosshair cursor.

13. The program then loops back so that the appro­
priate annotation and files are used for the enlarg­
ed part of the plot. This enlargement cycle can be
continued until the user is satisfied and decides to
go on to the next part of the program.

14. The next part of the program enables the user to
designate another input file from GRASP or simp­
ly to loop back through the program and plot any
of the base sheet files. However, to plot another
State, the program must be exited and reinitiated.

15. The final phase of the program closes the files. It
then writes the message

GOOD
to the screen to indicate that the program ter­
minated successfully.

pn16
program to plot map indices on tektronix

u. s. geological survey

June 1977

5 i nput
6 output

coor d
bord
f i le
st at

1 5 coun
16 grid

skod
f i le

1 J
1 1
13
14

17

i nput/output files
from terminal
to terminal

inate files

from grasp contains three items : ibound/id/idsub

- file with state names* numeric and alphabetic fips codes
to superimposed same format as coor file

198 GEOINDEX

C
c

common x1/y1/x2/y2
character skud*6/fname*8/fmt*12/ifi I e*8
dimension lead(20)/xx(6)/yy(6)/mort(300)/ista(6)
data jes/"y"//kop/"c"//ibnk/" "/
data skud/"skod "/

c
call ini tt(960)

c
c

ingd=10
rs i 2 = 0. 5
i c har = 4 3
i ng = 13

c
c assign files

call anmode
print/"need state codes (enter y for yes)"
read (5/130) i rep
if (irep .ne. jes) go to 383
fmt="(a8)"
encode (fname/fmt) skud
call assoc (17/fname/"si ")
do 381 i=U54
read (17/141) ista/ile/nmb
write (6/142) ista/ile/nmb

142 format (1x/6a4/a2/5x/i2)
141 format (6a4/a2/i2)
381 continue

print/"type 1 ana hit return key when ready"
read/ready
cat I closer (17)

383 call erase
call movabs (30/725)
call anmode
print/"enter state id number"
read(5/140) i st ate

140 format (a4)
c

fmt="(4hcoor/a4)"
encode (fname/fmt) istate
call assoc (10/fname/"si ")
fmt="(4hbord/a4)"
encode (fname/fmt) istate
call assoc (11/fname/"si ")
fmt="(4hstat/a4)"
encode (fname/fmt) istate
call assoc (14/fname/"si ")
fmt="(4hcoun/a4)"
encode (fname/fmt) istate
call assoc (15/fname/"si ")
f mt = " (4hgrid/a4)"
encode (fname/fmt) istate
call assoc (l6/fname/"si ")

APPENDIX C 199

c
C

c request input file for plotting
c
380 con t i nue

call movabs (30/715)
call anmode
print/"if a coordinate file is to be plotted/ enter y"
read (5/130) icor
if (icor .ne. jes) go to 343
print/ "enter name of file to be plotted"
read (5/131) if i le

131 forrnat(a8)
call assoc (1 3/ i f i le /" s i ")

c
c eliminate duplicate id numbers
c and sort id numbers into ascending order
c

print/ "if input should be sorted reply with a y for yes
read (5/1 30) i r ep

1 30 format (a1)
if (irep .ne. jes) go to 343

c
rewind ing
i m= 0

c
i m 1 = 0

339 read (ing/124/end=340) imap
124 for-nat (i10)

i rn = i m + 1
mort(im)=imap
if (im .It. 300) go to 339
print/ "buffer exceeded"

340 continue
call c loser (13)

do 338 i =1 / i m
I e s = mo r t (i)
do 364 j = i / i m
if (les .le. mort(j)) go to 364
I e ss = mo r t (j)
mor t (j) = le s
les = l es s

364 continue
mort(i)=les

338 continue
c

rewind ing
cal I assoc (13/i f i le/"sio ")
i mapl =mor t (1)
write (ing/124) imapl

200 GEOINDEX

do 363 i = 2 / i rn
i map=mo r t(i)
if (imap ,eq. imapl) go to 3o3
write (i ng/124) i map
i mapl = i map

363 continue
end file ing
rewind ing

343 continue
c
c set origin on plotter
c

call pos(11/xx/yy)
x1=amin1(xx(2)/xx(3)/xx(4)/xx(5)/xx(6))
x2=amax1(xx(2)/xx(3)/xx(4)/xx(5)/xx(6))
y1=amin1(yy(2)/yy(3)/yy(4)/yy(5)/yy(6))
y2=amax1(yy(2)/yy(3)/yy(4)/yy(5)/yy(6))
dx= x2-x1
dy=y2-y1

c
c use the bord file to compute the plot window
c

call dwinao (0./dx/0./dy)
553 x=(dx*780.)/dy

i x = x
ix1=1023-ix
if (dx .gt. dy) go to 550
call swindo (ix1/ix/O/780)
go to 551

550 y=(dy*1023.)/dx
iy = y
if (iy .gt. 780) go to 552
call swindo (O/1023/O/iy)
^o to 551

552 ix1=iy-780
i x=1023-i x1
call swindo (ix1/ix/O/780)

551 continue
c
c
c border information
c
303 continue

call movabs(30/650)
call anmode

302 print/"enter title for map"
read (5/122) lead

122 format (20a4)
print/"to plot state enter 1"
read (5/160) i s t at

160 format(i1)
print/"county plot-enter 1 for solid line/ 2 for dotted/ else 0"
read (5/160) i c oun
print/"to plot grid enter 1"

APPENDIX C 201

read (5/ 160) ig ri d
print/"to superimpose another file/enter 0 for no* "
print*"1 for lines only/ 2 for lines and characters"
read (5/160) i sup
if (isup .eq. 0) go to 304
print/"enter tile name"
read (5/131) if ile
call assoc (20/ifile/"si ")

304 continue
call erase
call movabs (30/750)
call a n m o d e
write (6/123) lead

123 format (1x/2Ja4)
c
c drawneatline
c

if (kk .e^. 0) go to 419
call movea(x1/y1)
call drawa (x2/y 1)
call drawa (x 2 / y <?)
call drawa (x1/y2)
call drawa (x1/y1)

c
c p I o t base map
c
419 cont i nue
c

call plo(11)
if (istat .ne. 1) go to 470
cal I plo(14)

47J if (icoun .ne. 1) go to 476
call plo (15)

476 if (icoun .ne. 2) go to 471
call plod (15)

471 if (ijrid .ne. 1) go to 472
call plocod 6)

c
472 if (icor .ne. jes) go to 89

c
c plot coor file
c

rewind i ng
rewind ingd

c
c
319 cont i nue

read (ing/124/end=89) imap
320 read (ingd/111/end=89) if/ifno/isf/isfno/if 1 /jstat/jgrat/jspan

i f = (i f*100)+isf
111 format (8it>)

if (if-imap) 335/337/360
c
360 read (ing/124/end=89) imap

if (if-imap) 335/337/360

202 GEOINDEX

C
335 do 336 j=1/isfno/6

read (ingd/126) (xx (i)/yy(i) / i=1/6)
336 continue

go to 320
c
337 continue
c
c

i e= i s fno
if (isfno .ge. 6) i e = 6
read (ingd/126) (x x (i) / y y (i) / i = 1 / i e)

126 format (12f6.3)
c

if (isfno .ge.3) go to 321
c

if ((xx(1) .Le. x1) .or. (yy(1) .Le. y1)) go to 320
if ((xx(1) .-je. x2) .or. (yy(1) .ge. y2>) go to 320
call movea (xx(1)/yy(1))
c a I L anmode
write (6/137) if

137 format (1 x/ i 5)
if (jspan .eq. U) go to 520
ry = yy(1)-r s i z
call movea (xx(1)/ry)
call anmode
write (0/137) jspan

520 call movea (xx(2) / yy(2))
call ancho(ichar)
if (i f1 .eq. 0) go to 320
r y= r y-r s i z
call movea (xx(1)/ry)
call anmode
write (6/137) i f1
go to 320

c
321 continue

if ((xx(1) .le. x1) .or. (yy(1) .le. y1)) go to 449
if ((xx(1) .ge. x2) .or. (yy(1) .ge. y2)) go to 449
call movea (xx(1) / yy (1))
call anmode
write (6/137) if
if (jspan ,et|. 0) go to 521
ry = yy(1)-rsi z
call movea (xx(1)/ry)
call anmode
write (6/137) jspan

c
521 i f (i f1 .eq. 0) go to 449

ry= ry-r siz
call movea (xx(1)/ry)
call anmode
write (6/137) if1

APPENDIX C 203

C
go to 449

c
c
447 continue

call movea (xx(1)/yy(1))
call anmode
write (6/137) if

c
449 cont i nue

call movea (xx(2)/yy (2))
c

do 341 k = 2/ i e
call drawa (xx(k) / yy(k))

341 cont i nue
c
c
537 is fno= i s fno-6

if (isfno) 320/320/345
345 if (isfno-6) 322/322/333
322 ie=isfno
333 read (ingd/126/end = 88) (xx(i)/yy(i)/i=1/ie)
c

do 342 k=1/ie
call drawa (xx(k)/yy(k))

342 cont i nue
c

if (isfno-o) 32U/320/537
c
88 write (6/128) if / ifno/isf/isfno
128 format (1x/i 3/2 i2/i5)

write (6/129)
129 format (1x/"rec count err")

go to 99
c
c superimpose another file
c
89 cont i nue

if (isup-1) 305/505/506
505 call plo (20)

call closer (20)
go to 305

506 call ploc6 (20)
call closer (20)

c
c
c copy and/or exit
c

305 continue
call belI
call anmode
read (5/1 3D) i copy

204 GEOINDEX

452
c
c
c

c
c
c
c
477

306

c
99

307
106

if (icopy .ne
call hdcopy
cont i nue

kop) go to 452

selected portion of plot can be enlarged

call movabs(30*730)
call anmode
print*"for an enlargement of a part of this plot* type y"
read (5*130) i rep
kk=kk+1
if (irep .ne. jes) go to 477
call movabs (30*720)
call anmode
print*"position cursor at lower left of desired area* type c"
call vcursr(ichar*x 1 *y 1)
call movabs (30*710)
call anmode
print*"position cursor at upper right of desired area* type c
call vcursr(ichar*x2*y2)
call dwindo (x1 *x2*y1 *y2)
call erase
go to 303

more data or exit

call movabs (30*710)
call anmode
print*"to plot another
read (5*13D) i rep
if (irep .ne. jes)
if (icor .ne. jes)
call closer (13)
cont i nue
call erase
go to 380

file enter y for yes

go to 99
go to 306

cont i nue
call closer

closer
c loser
closer
closer

cal I
cal I
cal I
cal I

(10)
(11)
(14)
(15)
(16)

if (icor .ne. jes)
cal I closer (13)
write (o*106)
format (7h good)
call finitt (0*0)

go to 307

stop

end

APPENDIX C 205
SUBROUTINE NAME: POS

Author: P. A. Fulton
Purpose of the program: pos reads the bordNM data

file, which consists of a header card and a card with six
x, y coordinate pairs. bordNM is the neat line around
the map plot, and it serves to define the plot window.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call pos (ingd,xx,yy)
Arguments:

ingd- The unit number assigned to the bordNM file
(This is an input value to the subroutine.)

xx-An array containing six elements (The x coor­
dinates are stored in it and passed as output from
the subroutine.)

yy-An array dimensioned 6 (The y coordinates are

stored in it and passed as output from the
subroutine.)

Subroutines called: None
Common data referenced: None
Input files: bordNM
Output files: None
Arrays used: xx(6), yy(6)
Called by: pn16
Error checking and reporting: None
Constants: None
Program logic:
1. The program picks up the device number via the

argument and reads the header and data images;
then, it passes the x, y coordinates to the calling
routine via the arguments and returns. This
subroutine only accesses the file. The file opening,
closing, and all other manipulations are done in the
calling routine.

SUBROUTINE POS(Ii\GD,XX,YY)
DIMENSION X X (0) / Y Y (6)
iE = o
REWIND INGD

320 READ (1NGD,111,END=89) IF,IFNO,ISF,ISFNO,IF1
111 FORMAT (5Ib)

READ (I N G D , 1 2 6 > <XX(I),YY(I),I = 1,IE>
126 FOR.4AT (12F6.3)

69 RETURN
END

SUBROUTINE NAME: PLO

Author: P. A. Fulton
Purpose of the program: plo plots solid outlines and

points for spatial data files that are structured the
same as the coorNM files. These are bordNM,
gridNM, statNM, and counNM.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call plo (in)
Arguments: in-The unit number assigned to the file to

be plotted

Subroutines called: Tektronix plot routines- movea, an-
cho, drawa

Common data referenced: None
Input files: bordNM, statNM, counNM, gridNM
Output files: None
Arrays used: xx(6), yy(6)
Called by: pn16
Error checking and reporting: None
Constants: ichar = 43, rsiz = 0.3
Program logic:
1. This subroutine only reads the file and plots the data.

The file opening and closing procedures are done in
the calling routine.

SUBROUTINE PLO(IN)

DIMENSION X X (0) / Y Y (6 >
ICHAR=43
RSIZ=J.3
KEWliylD IN
IPEM=U

206 GEOINDEX

C PLOT DATA FROM FIRST SOURCE
419 CONTINUE

420 READ (IN/1 11/END=319) I F / I FNO / I S F / I S FIMO / I F 1
111 F 0 R W A T (513)
132 FORMAT (1X/5I5)

IPEN=IPEN+1
IF (I PEN .GT. 4) IPEN=1
NL=NL+1

IE=ISFNO
IF (ISF.MO .tit. 0) IE = o
READ (IN/ 12o) (XX(I)/YY(I)/I=1/IE)

126 FORMAT (12F6.3)
127 FORMAT (1X/12F6.3)

IF (ISFNO .GE. 3) GO TO 448
CALL M 0 tf E A (XX(2)/YY(2))
CALL ANCHO(ICHAR)
GO TO 420

443

441
437

445
422

433
C

CONTINUE
CALL MCVEA (XX(2)/YY(2))
DO 441 K=2/IE
CALL DRAWA (XX(K) /YY (K))
CONTINUE
ISFNO=I bFNO-6
IF (1SFNO) 419/419/445
IF (ISFNO-o) <*2 2/422/4 33
IE=1SFNC
READ (IN/ 126/END = 8o) (XX(I)/YY(I)/ 1=1/ I E)

DO 442 K=1/IE
CALL DRAWA (XX(K) /YY (K))

442 CONTINUE

IF (ISFNO-6) 419/419/437

88 CONTINUE
319 CONTINUE

R t TURN
t ,M D

SUBROUTINE NAME: PLOD

Author: P. A. Fulton
Purpose of the program: plod plots points and dotted

outlines for spatial data files that are structured the
same as the coorNM files.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call plod (in)
Arguments: in-The unit number assigned to the file to

be plotted

Subroutines called: Tektronix plot routines- move a, an-
cho, dasha

Common data referenced: None
Input files: counNM
Output files: None
Arrays used: xx(6), yy(6)
Called by: pn16
Error checking and reporting: None
Constants: ichar = 43, rsiz = 0.3
Program logic:
1. This subroutine only reads the file and plots the data.

The file opening and closing procedures are done in
the calling routine.

APPENDIX C 207

419
420
111
132

SU3ROUTINE P L 0 D(IN)

bl PENSION X X(6)/Y Y(6)
RSIZ=0.3
I C H A R = 4 3
REWIND IN
IPEN=0
PLOT DATA FROM FIRST SOURCE
CONTINUE
READ (IN/1 11*END=319) I F* I FNO* I SF / ISFNO/ I F1
FORMAT (515)
FORMAT (1X*5I5)
IPEN=1PEN+1
IF (IPEN .GT. 4) IPEM=1
•ML = iML-H

IE=1SFNO
IF (ISFNO .iiE. 0) IE=6
REAJ (IN* 126) (XX(I)*YY(I)*I=1*IE)

126 FORMAT (12F6.3)
127 FORMAT (1X*12F6.3)

IF (ISFNO .GE. 3) GO TO 448
CALL ilOVEA (XX(2)*YY(2))
CALL ANCHO(ICHAR)
GO TO 420

440 CONTINUE
CALL MOVE A (XX(2)*YY(2))
DO <*41 K = 2,IE
CALL DAS HA (XX(O*YY(K)*1)

441 CONTINUE
437 ISFNO=ISFNO-t»

IF (ISFNO) 419*419*445
445 IF (ISFNO-6) 422*422*433
422 IE=ISFNO
433 READ (IN* 126*END = 88) (XX (I)*YY (I)* I = 1 * I E)

DO 442 K=1 /IE
CALL DASHA (XX(K) *YY (K) * 1)

442 CONTINUE

IF (ISFNO-6) 419*419*437

88 CONTINUE
319 CONTINUE

RETURN
END

SUBROUTINE NAME: PLOC6

Author: P. A. Fulton
Purpose of the program: plocG plots solid outlines,

points, and identification numbers for spatial data
files that are structured the same as the coorNM files.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ploc6 (in)
Arguments: in- The unit number assigned to the file to

be plotted

208 GEOINDEX

Subroutines called: Tektronix plot routines- movea, an-
mode, ancho, drawa

Common data referenced: x1, y1, x2, y2
Input files: gridNM used on unit 16 (file16)
Output files: None
Arrays used: xx(6), yy(6)

Called by: pn16
Error checking and reporting: None
Constants: ichar - 43, rsiz = 0.3, ipen = 0
Program logic:
1. This subroutine only reads and plots the data. The

file opening and closing procedures are done in the
calling routine.

419
420
111
132

SUBROUTINE PLOC6 (IN)
DIMENSION XX(6),YY(6)
COMMON X1,Y1,X2,Y2
ICHAR=43
RSIZ=0.3
IPE.M = 0
REWIND IN
CONTINUE
HEAD (IN,111,END=319) IF,IFNO,ISF,ISFNO, I F1
FORMAT (515)
FORMAT (1X,5I5)
IPEN=IPEN+1
IF (IPEN ,GT. 4) IPEN=1

126
127

137

450

421

IE=ISFNO
IF (ISFNO .GE. 6) IE=6
READ (IN, 126) (XX(I),YY(I),I=1,IE)
FORMAT (12F6.3)
FORMAT (1X,12F6.3)
IF (ISFNO .GE. 3) GO TO 421

IF ((XX(1)
IF ((IFNO
CALL MOVEA
CALL ANMODE
WRITE (6*137) IF
FORMAT (1X,I5)
RY=YY (1)-RSIZ
CALL MOVEA (XX(1) ,RY)
CALL ANMODE
WRITE (6*137) ISF
CALL MOVEA (X X (2)
CALL ANCHO(ICHAR)
GO TO 420

.GE. X2) .OR. (YY(1)
EQ. 1) .AND. (ISF .EQ
(XX(1),YY(1))

GE. Y2))
1)) GO

GO TO
TO 450

420

Y Y (2))

CONTINUE
CALL MOVEA (XX(1),YY(1))
CALL ANMODE
WRITE (6*137) IF
CALL MOVEA (XX(2),YY(2))
CALL ANCHO(ICHAR)
GO TO 420

CONTINUE
IF ((XX (1) .LE. X1) .OR. (YY(1) .LE. Y1)) GO TO 448

APPENDIX C

IF «XX(1) .GE. X2) .OR. (YY(1) .GE. Y2)) GO TO 448
IF ((IFNO .EQ. 1) .AND. (ISF .EQ. 1)> GO TO 446
CALL MOVEA (XX(1)*YY(1))
CALL ANMODE
WRITE (6*137) IF
RY=YY(1)-RSIZ
CALL MOVEA (XX(1)*RY)
CALL ANMODE
WRITE (6*137) ISF
IF (IF1 .EQ. 0) GO TO 448
RY=RY-RSIZ
CALL MOVEA (XX(1)*RY)
CALL ANMODE
WRITE (6*137) IF1

GO TO 448

446 CONTINUE
CALL MOVEA (XX(1)*YY(1))
CALL ANMODE
WRITE (6*137) IF

CONTINUE
CALL MOVEA (XX(2)*YY(2))
DO 441 K=2*IE
CALL DRAWA (XX(K) * YY (K))
CONTINUE

ISFNO=lSFNO-6
IF (ISFNO) 419*419*445
IF (ISFNO-6) 422*422*433
IE=ISFNO
READ (IN* 126*END=86) (XX(I)*YY(I)* 1 = 1 * IE)
DO 442 K=1*IE
CALL DRAWA (XX(K) *YY(K))

442 CONTINUE

IF (ISFNO-6) 419*419*437

83 CONTINUE
319 CONTINUE

RETURN
EiJD

209

448

441
C
437

445
422

433

SUBROUTINE NAME: ASSOC

Author: R. W. Bowen
Purpose of the program: assoc performs the I/O func­

tions necessary to access a file. These functions are at­
tach, open, close, and detach.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call assoc (iunit,name,mode)

Arguments:
iunit- Fortran I/O unit
name- Name of disk file data set (may be passed as a

character string literal with 8 characters, or as a
double precision variable, or as a character string
variable)

mode-"si" for formatted input, "so" for formatted
output, "sqi" for unformatted input, "sqo" for unfor­
matted output, "di" for keyed input, "do" for keyed
output

210 GEOINDEX

Subroutines called: io_call
Common data referenced: None
Input files: Any file needed by user
Output files: None
Arrays used: None
Called by: pn16
Error checking and reporting: None

Constants: None
Program logic:
1. This subroutine performs the I/O functions of attach

and open on the file passed to it as the name
parameter when called by the entry assoc. When
called via the entry point, closer, the subroutine
closes and detaches the name file.

subroutine assoc (iunit/name/mode)

i un i t= for t ran
name = name of

i / o numbe r
disk file data set. May be passed as a character

string literal with 8 characters or as a double precision
variable or as a character string variable

mode= "si " for formatted input
"so " for formatted output
"sqi " for unformatted input
"sqo " for unformatted output
"di " for keyed input
"do " for keyed output

character name*8/fname*6/mode*4/fmt*12
fmt = "(4hfi le,i2) "
if (iunit .le. 9) fmt="(5hfiIeO,i1)"
encode (fname/fmt) iunit

call i o
call i o
return

("attach",fname,"vfile_
("open",fname/mode)

/name/"-append")

entry c loser(iunit)
endf ile i un i t
fmt="(4hfiIe,i2) "
if (iunit .le. 9) fmt = "(5hfiIeO,i1)
encode (fname/fmt) iunit
call io ("close"/fname)
call io ("detach"/fname)
return
end

PROGRAM NAME: BIGSTA

Author: Harold Johnson
Purpose of the program: bigsta compiles statistics on

the reference and coordinate files.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: bigsta
Arguments: None
Subroutines called: ftnumber, out1_bigsta,

out2_bigsta, bigcal__bigsta
Common data referenced: ncd

Input files: coorNM, cordNM, statNM, strdNM,
counNM, curdNM, cntrNM, ctrdNM, gridNM,
refNM, areaNM, redyNM, measNM, bordNM

Output files: Listing
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:

1. The user is asked for the FIPS for the State whose
files are being processed.

2. This number is concatenated with coorNM and
cordNM that are then passed to out_bigsta,

APPENDIX C 211

which calculates the number of records in these
files, the number of header cards, the number of
data points, and the sum of the perimeters for
these outlines. These data are written to the user.

3. The number of header cards is used by bigsta to
compute the number of cards in comxNM. This is
written to the user.

4. The State code is concatenated with statNM and
strdNM and passed to out1__bigsta, which makes
the same calculations for these files, writing the
results to the user.

5. The same steps are used to process counNM and
curdNM.

6. The same steps are used to process cntrNM and
ctrdNM.

7. bigcal_bigsta is called directly to process
gridNM.

8. The State code is concatenated with refNM and
passed to out2__bigsta, which counts the cards in
the reference file.

9. The user is asked whether there are more files to
be processed. If she names one, ou1t2__bigsta is
called to count its cards.

10. When no more files are to be processed, the pro­
gram gives a grand total of the number of cards in
all these files.

c ******* BIGSTA *******
c
external f tnutnber (descr ip tor s) , closer
c

common ncd
character state*2, iblank*!, filename*6, mode*4, outfile*

\c6, no*6
c PROGRAM UPDATED AS OF DEC. 27, 1976 H. JOHNSON
c
c converted to Multics May 23, 1977 by h Johnson

data no/"no "/
data iblank/" "/

c THIS PROGRAM COMPILES STATISTICS ON THE FOLLOWING FILES:
c COOR,CORD,COMX,STAT,STRD,COUN,CURD,CNTR,CTRD,GRID,PARA,REF,
c FOR A USER-DESIGNATED STATE. IT ALSO ALLOWS
c THE USER TO SPECIFY OTHER DESIRED FILES.
c
c NCD WILL BE THE TOTAL NUMBER OF CARDS IN ANY OF THESE FILES.
c

write(6,900)
900 format(" TYPE THE 2-D1GIT STATE CODE FOR THE STATE",

&" BEING STUDIED. HIT RETURN.")
read(5,910)state
format(a2)910

c
ncd = 0

c THIS ENABLES THE OPERATOR TO SELECT THE STATE.
c
c THE FIRST FILE IS COOR, FROM WHICH CORD AND COMX
c CAN BE EVALUATED.
c

encode(outfile,912)state
912 format (If coor",a2)

encode(filename,913)state
913 format("cord",a2)

mode = "si "
c

nfile - 10
call outl_bigst a(outfile,filename,mode,nheadr,nfile)

212 GEOINDEX

c OUT1 USES OUTFILE FILE TO WRITE THE OUTPUT FOR THE
c COORDINATE FILE AND ITS RADIAN ANALOGUE. NHEADR
c IS THE NUMBER OF HEADER CARDS IN THE FILE,
c NHEADR IS USED NEXT TO FIND THE SIZE OF COMX
c

ncd=ncd+nheadr
c

write(6,920)state,nheadr
920 format("OTHE FILE comx",a2," IS ON ",15," CARDS.")
c
c NOW DO STAT AND STRD.
10 nfile = nfile + 2

encode(outfile,923)state
923 format("stat",a2)

encode(filename,924)state
924 format("strd",a2)

call outl_bigsta(outfile,filename,mode,nheadr,nfile)
c
c NOW DO COUN AND CURD.
20 nfile=nfile+2

encode(outfile,925)state
925 format("coun",a2)

encode(filename,926)state
926 format("curd",a2)

call out l__bi gsta(outfile,filename,mode, nheadr,nfile)
c
c NOW DO CNTR AND CTRD.
30 nfile=nfile+2

encode(outfile,927)state
927 format(M cntr",a2)

encode(filename,928)state
928 format("ctrd",a2)

call out l__bi gsta(outfile,filename,mode,nheadr,nfile)
c
c NOW DO GRID.

encode(outfile,929)state
929 format(M grid",a2)
40 nfile=nfile+2

call f tnumb er(nfile,outfile,mode)
call bigcal_bigst a(nfile,perim,ncards,nrads,npoint,nheadr,outfile)

write(6,930)outfile,ncards,npoint,nheadr,perim
930 format("OTHE FILE ",a6," IS ON ",i5," CARDS AND INVOLVES
\c",

&i6," DATA POINTS"/" FOR ",i4,"MAP OUTLINES OF TOTAL ",
&"LENGTH ,",f!0.3," INCHES.")

c
ncd = ncd+n cards

c
c NOW COUNT THE CARDS IN THE REMAINING FILES,
c

encode(outfile,932)state,iblank

APPENDIX C 213

932 format("ref",a2,a 1)
43 nfile-nfile+2

call out 2_bigst a(outfile,nfile,mode)
c THIS SUBROUTINE RUNS THROUGH THE FILE OUTFILE
c AND COUNTS THE CARDS. IT THEN WRITES THE TOTAL.
c
encode(outfile,939)state
939 format("area",a2)
nfile = nfile + 2

call out 2_bi gsta(outfile,nfile,mode)
c
encode(outfile,933)state
933 format("redy",a2)
nfile = nfile + 2

call out 2_bi gsta(outfile,nfile,mode)
c
encode(outfile,934)state
934 format("meas",a2)
nfile = nfile + 2

call out 2_bigst a(outfile,nfile,mode)
c
encode(outfile,935)state
935 format("bord",a2)
nfile - nfile + 2

call out 2_bigst a(outfile,nfile,mode)
c
c
c
c NOW ASK THE USER IF THERE ARE ANY OTHER CARD FILES
c WHICH HE WOULD LIKE COUNTED.
c
50 write(6,940)
940 format("GIF THERE ARE MORE CARD FILES TO BE COUNTED",/

&",TYPE THE NAME OF ONE. OTHERWISE, TYPE ""no"" AND",
&" HIT RETURN")
read(5,950)outfile

950 format(a6)
if(outfile .eq. no) go to 100

60 nflle-nfile+2
call out2_bigsta(outfile,nfile,mode)
go to 50

c
100 write(6,960)ncd
960 format("0****** THE TOTAL NUMBER OF CARDS IN THESE FILES
\cIS",ilO)
c
do 120 k - 10, nfile, 2

call clos er(k)
120 cont inue
c

end
c ******* END BIGSTA *******

214 GEOINDEX

SUBROUTINE NAME: OUTUIGSTA

Author: Harold Johnson
Purpose of the program: out1__bigsta associates For­

tran numbers with two file names. It also calls
bigcal_bigsta to perform calculations on these files.
It reports the results by writing a message to the user.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call outl_bigsta (outfile,filename,-

mode,nheadr,nfile)
Arguments:

outfile-The name of a coordinate file, such as
coorNM, statNM, counNM, or cntrNM

filename-The name of the radian file that cor­
responds to the coordinate file outfile

nheadr-The number of header cards in outfile
nfile -A Fortran file number

Subroutines called: ftnumber, bigcal_bigsta
Common data referenced: ncd
Input files: None
Output files: None
Arrays used: None
Called by: bigsta
Error checking and reporting: None
Constants: None
Program logic:
1. Assoc is called to associate nfile to outfile.
2. bigcal_bigsta is called to compute the total

perimeter of the outlines in outfile, the number of
cards in outfile, the number of cards in filename,
and the number of header cards in outfile.

3. The results are reported to the user.

******* SUBROUTINE OUT1.BIGSTA *******
subroutine ou 11_bi gstaCoutfi le, f ilename,mode,nheadr,nfi Le)
character outfile*6, filename*6, mode*4
common ncd

c SUBROUTINE USED IN dIGSTA PROGRAM
c Converted to Multics May 24, 1977 by H Johnson
c

call ftnumberCnfi Le,outfile,mode)
cal I bi gcal.bigstaCnfi le,perim,ncarcis,nrads,npoint,nheadr,outfi le)

wri te(6,9GO)outfi le,ncdrds,npoint,nheadr,perim
900

930

format("UTHE FILE ",a6," IS ON
16," DATA POINTS "/" FOR ",i4,"
f10.3," INCHES.")
write(6,930)filename,nrads,npoint
formatC'UTHE FILE ",a6," IS ON ",i5,

16," DATA POINTS.")

",i5," CARDS
MAP OUTLINES

AND INVOLVES ",
OF TOTAL LENGTH ",

CARDS AND INVOLVES

c
1 10

ncd=ncards+nrads+ncd

return
end
END OUT1_BIGSTA *******

SUBROUTINE NAME: OUT2_BIGSTA
Author: Harold Johnson
Purpose of the program: out2_bigsta is used to count

the records in a file.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call out2__bigsta (outfile,nfile,mode)

Arguments:
outfile- The name of a file
nfile- A fortran number that is to be associated with

outfile mode— Specifies input or output
Subroutines called: ftnumber
Common data referenced: ncd
Input files: None
Output files: None

APPENDIX C 215

Arrays used: None
Called by: bigsta
Error checking and reporting: Any read error is

reported and control is returned to the calling pro­
gram.

Constants: None
Program logic:
1. Outfile is associated with the fortran number nfile.
2. Cards are successively read into (Al) format, one

character per card, and counted.

c ******* SUBROUTINE OUT2_BIGSTA *******
SUD rout ine out2_bigsta(outfi le^nfi le^mode)

1
900

c
100

910
c

return
c
110 wr
920 fo
return
c

character outfile*6/
common ncd

mode *A

cat I ftnumberCnfi le^outfi le^mode)
kount = 0
read(nfile*900*end=100,err=110)a
fo rmat(a 1)
kount=kount+1
go to 1

cont i nue
write(6*91G)outfi le/kount
formatC'OTHE FILE ",a6," IS

nc d = ncd + ko un t

ON ",i5," CARDS.")

ite(6*920> outfile
rmatC'OTHERE SEEMS TO BE

end

AN ERROR IN THE FILE a6>

SUBROUTINE NAME: BIGCAL_BIGSTA
Author: Harold Johnson
Purpose of the program: bigcal_bigsta compiles

statistics on the coordinate files and on their radian
counterparts.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call bigcaLJngsta (nfile,perim,ncards,-

nrads,npoint,nheadr,outfile)
Arguments:

nfile- A fortran file number
perim- The total length in inches of the outlines in the

coordinate file with number nfile
ncards- The total number of cards in nfile
nrads-The total number of cards in the radian file

that corresponds to this coordinate file
npoint-The total number of data points in the coor­

dinate file or radian file
nheadr- The total number of header cards found in

these files (which is used to tell the number of
outlines)

Subroutines called: prim_bigsta, icards_bigsta,
irads_bigsta

Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: out1_bigsta, bigsta
Error checking and reporting: On a read error, control

returns to the calling program.
Constants: None
Program logic:
1. A record is read as a header card from nfile.
2. icards_bigsta is called to calculate the number of

data cards that should follow for this header card.
3. irads_bigsta is called to calculate the number of

data cards that should follow this header in the ra­
dian file.

4. ncards, nheadr, nrads, and npoint are updated.
5. prim_bigsta is called to calculate the length of the

outline whose coordinate points follow, perim is up­
dated.

216 GEOINDEX

c ******* SUBROUTINE dIGCAL.BIGSTA *******
subroutine bigcat_biysta(nfile,perim,ncards,nrads,npoint,nheadr,outfite)
character outfile*6
SUBROUTINE USED IN MAIN PROGRAM "BIGSTA"
UPDATED AS OF DEC. 27, 1976 H. JOHNSON

THIS SUBROUTINE COMPILES
THE CORRESPONDING RADIAN

INITIATE

subroutine used in program bigsta.
converted to multics May 23, 1977, H

pe r i m = U.
nc ards = U
nrads=0
npo i nt = 0
nh eadr = U

Johnson

c
1
900

read(nfile,900,end=10UO,err=1100)if,ifno,i s f , i sfno,not,nor,nif
fo rma t(7 i 5)
ic=icards_bigsta(isfno)
ncards=ncards+1+i c
ir = irads_bigsta(i sfno)
n rads = n rads + 1+i r
npoint=npoint+i sfno
nh eadr=nheadr+1
cat I prim_bigsta(nfi t e,i sfno,dist)
peri m = peri m + di st
d o to 1

100U return
c
1100 write(6,910)outf i te
910 formatC'UTHERE SEEMS TO BE AN ERROR IN FILE :",a6)
return
c
c

end

FUNCTION NAME: IRADS_BIGSTA
Author: Harold Johnson
Purpose of the program: irads_bigsta calculates the

number of cards in a radian file that must be used to
contain isfno data points.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ir = irads_bigsta (isfno)
Arguments:

irads- The number of cards needed to hold isfno data
points in a radian file

isfno—A certain number of data points
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: bigcal_bigsta
Error checking and reporting: None
Constants: None
Program logic:
1. Similar to icards_bigsta, except that only three

data points can occur on radian coordinate files.

APPENDIX C

FUNCTION IRADS_6IGSTA *******
function irads.oigsta(isfno)
i rads_bigsta=isfno/3
if(3*irads_bigsta .Lt. isfno)irads_bigsta=irads_bigsta+1
return

217

end
END IRADS.BIGSTA *******

SUBROUTINE NAME: PRIM_BIGSTA
Author: Harold Johnson
Purpose of the program: prim_bigsta calculates the

length in inches of an outline in one of the coordinate
files (coorNM, statNM, counNM, gridNM).

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call prim_bigsta (in,isfno,finch)
Arguments:

in—A fortran file number
isfno— The number of data points on the next and

following cards that describes an outline
finch—The length in inches of the outline described by

the data points
Subroutines called: None
Common data referenced: None

Input files: None
Output files: None
Arrays used: xx(6), yy(6)
Called by: bigcaL_bigsta
Error checking and reporting: None
Constants: None
Program logic:
1. First, the number of data cards that contain isfno

points is calculated.
2. The first data card is read. If isfno is 2, control

returns because the first data point is used to posi­
tion characters that name the outline.

3. The length of the segments described by this first
card is calculated.

4. If more cards remain in this outline file, they are read
one by one, and their outlines are calculated and
added to the running total.

910

******* SUBROUTINE PRIM_BIGSTA *******
subroutine prim_bigsta(in*isfno*finch)

subroutine used in main statistics program "bigsta 1
converted to multics May 23* 1977 H Johnson.

dimension xx(6)*yy(6)
finch = 0.
ncard1 = i sfno/6
if(6*ncard1 .It. isfno) ncardl = ncardl
read(in/91U)(xx(i),yy(i),i =1*6)
format(12f6.3)

return

10

i I ast = is fno

if(isfno .eq. 2)
i last = 6
i f (isfno .11. 6)
do 10 k = 3/> ilast
finch=finch+sqrt((xx(k)-xx(k-1))**2+(yy(k)-yy(k-1))**2>
c ont i nue

xI a s t = x x (6)
ylast = yy(t>)
if(ncard1 .eq. 1) return
if (ncardl .eq. 2) go to 25
n I =ncard1 - 1
do 20 j=2/nl
read(in,910)(xx(i),yy(i),i=1,6)

218 GEOINDEX

15

20
25

30

finch=finch+sqrt((xx(1)-xtast)**2+(yy(1)-ytast)**2)
do 15 k = 2,6
finch = finch + sqrt((xx(k)-xx(k-1)>**2-Kyy(k)-yy(k-1>)**2>
cont i nue
x I ast = x x (6)
y t ast=yy (6)
con t i nue
read(in,91l»<xx(i>,yy(i>,i = 1,6>
ilast = isfno - (ncard1-1)*6
finch = finch + sqrt((xx(1)-xlast)**2«-(yy(1)-ytast>**2>
ifCilast .eq. 1) return
do 30 k = 2/ilast
finch=finch+sqrt((xx(k)-xx(k-1))**2+<yy(k)-yy<k-1>>**2)
cont i nue
return
end
END PRIH61GSTA ******

FUNCTION NAME: ICARDS_BIGSTA
Author: Harold Johnson
Purpose of the program: icards_bigsta is used to com­

pute from the isfno number in a coordinate file the
number of data cards that should follow in order to
contain the indicated number of points.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ic = icards_bigsta(isfno)
Arguments:

ic— The number of cards that are required to hold
isfno data points

isfno-A certain number of data points
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: bigcal_bigsta
Error checking and reporting: None
Constants: None
Program logic:
1. A maximum of six data points are on each card, so

icards_bigsta is isfno/Q unless 6 does not divide
isfno, in which case one more card must be used.

******* FUNCTION ICARDS.BIGSTA *******
function i c ards.b i g s t a (i sf no)
i cards_bigsta=i sfno/6
i f (6* i c a rd s_bi gs t a .It. i sf no) i car
re turn

_b i gs t a = i c ards_bi gst a+1

end
END ICARDS.BIGSTA *******

EXEC_COM NAME: USMERG.EC

Author: P. A. Fulton
Purpose of the program: usmerg.ec, written in the

Multics command language, takes as input a newly
created indxNM file and appends it to the existing in-
dxus. indxus is the GRASP file that contains all the
States. The output file is named usall. At the end of
the run it is dprinted for checking.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec usmerg NM
Arguments: NM-FIPS code for the State
Subroutines called: setmas, GRASP
Common data referenced: None
Input files: indxus, indxNM
Output files: usall
Arrays used: None
Called by: None

APPENDIX C 219

Error checking and reporting: None
Constants: None
Program logic:
1. command^line is turned off.
2. Attach the exec_com to the program setmas.
3. The exec_com contains two responses to prompts in

the program setmas.

4. When setmas is terminated, the program is detached
from the exec_com.

5. The exec__com is attached to the program GRASP.
6. GRASP is executed. The exec_com contains responses

to prompts made in GRASP.
7. Detach the files.
8. Quit.

&command_Iine off
& a tt a c h
se tmas
2 us o 1
yes
&det ach
&at tac h
grasp
i ndxus
append
us a I I
i ndx us
i ndxil
y
qui t
y
1/2
lidetach
iqui t

PROGRAM NAME: STATE_TO_TAPE

Author: Harold Johnson
Purpose of the program: state_to_tape enables a

user to copy all the State files for one State onto a
backup tape, using IBM tape characteristics.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: state_to_tape
Arguments: None
Subroutines called: sts begin, heading_state_to_

tape, up_file_number, disk_to_tape_fb_-
retain.ec, disk_to_tape__vbs_retain.ec, list_-
statetape.ee, date_time

Common data referenced: None
Input files: bginNM, coorNM, cordNM, statNM,

strdNM, counNM, curdNM, gridNM, bordNM,
cntrNM, paraNM, redyNM

Output files: None
Arrays used: flle_name(12)
Called by: None

Error checking and reporting: If the user has not sent a
message to the operator to locate his tape, the program
will abort.

Constants: None
Program logic:

1. The user is asked to type 1 if he sent a message to
the operator to find his tape; otherwise, 0. The
user's response is read into ians.

2. If ians does not equal 1, the program stops.
3. Prompt:

TYPE YOUR TAPE ID.
The response is read into tape—number.

4. Prompt:
TYPE THE 2-DIGIT FEDERAL STATE
NUMBER CODE FOR THIS STATE, USING
FORMAT A2

Response is read into state_number.
5. Prompt:

TYPE THE NAME OF THIS STATE.
Response is read into state_name.

6. The user is asked which file number to use. The
response is read into file—number.

220 GEOINDEX

7. Subroutine sts_begin is called to set up a temp­
orary disk file that will contain a description of the
records to be read into the bginNM file.

8. Subroutine heading_state_to_tape is called to
set up file81 containing a description of the files
being copied.

9. Call subroutine up_file_number.
10. Call disk_to_tape_fb_retain.ec.

11. Subroutines up_file_number and disk_to_-
tape_vbs_retain.ec are called for the last three
input files as they are recorded with the VBS tape
option.

12. Call list_state_tape.ec, which prints out the tape
label and the file name and numbers.

13. Call date_time.
14. End.

c PROGRAM state.to.tape
c
c PURPOSE: To enable a user to copy all the state files for one
c state onto a backup tape/ using IBM tape characteristics.
c
c PROGRAMMER: H Johnson
c DATE: Jan 13, 1978
c

character tape.nurober*6/ fi I e_name*4(12)/ fi I e_number*2
character state_number*2/ state_name*36* file*6

c
data file_name/"bgin"/"coor"/"cord"/"stat"/"strd"/"coun"/"curd"/
"grid"/"bord"/"cntr"/" P ara"/"redy"/
c
c

wri te(6/910)
91J forrnatC'OlF YOU HAVE SENT A MESSAGE TO SYS OP TO FIND YOUR"/
" TAPE/ TYPE 1; OTHERWISE/ TYPE 0")

read(5/915) ians
915 format(i1)

ifCians .ne. 1) stop
c

wri te(6/920)
920 formatC'OTYPE YOUR TAPE 10:")

read(5/925) tape_number
925 format(a6)
c

wri te(6/927)
927 format("OTYPE THE 2-OIGIT FEDERAL STATE NUM8ER CODE"/
" FOR THIS STATE/ USING FORMAT A2">

read(5/928) state_number
928 format(a2)
c

wri te(6/930)
930 formatC'OTYPE THE NAME OF THIS STATE:")

read(5/935) state_name
935 format(a36)
c

write(6/940)
940 formatC'OTYPE THE FILE-NUMBER OF THE TAPE FILE JUST"/
" dEFORE THE PLACE WHERE YOU WANT TO BEGIN WRITING THIS STATE."/
"OIF YOU ArtE WRITING THE FIRST STATE ON THIS TAPE/ TYPE OO;"/
" IF ADDING TO A PREVIOUS STATE/ TYPE THE LAST FILE NUMBER;"/

APPENDIX C 221

" IF WRITING OVER A PREVIOUSLY WRITTEN VERSION/ TYPE THE FILE"/
" NUMBER JUST AHEAD OF THE PLACE WHERE YOU WANT TO BEGIN."/
"OPLEASE TYPE THIS NUMBER FORMAT A2:")
C

read(5/945) file_number
945 format(a2)
c
C NOW SET UP A TEMPORARY DISK FILE WHICH WILL CONTAIN A
c DESCRIPTION OF THESE RECORDS/ TO 3E READ INTO THE BGIN FILE,
c

cal I sts_begin(state_number/state_name/file_number)
C THIS SETS UP A FILE 81 CONTAINING A DESCRIPTION OF
C THE FILES BEING COPIED,
c

cat I heading_state_to_tape(state_number/tape_number)
c

do 50 i=1/ 9
encode (fi le/950) fi le.name(i)/ state_numoer
950 format(a4/a2)
c

call up_fiLe.number(fiIe_number)
c

cal L ec ("disk_to_tape_fb_retain"/tape_number/fi le/fi le_number)
c
50 con ti nue
c

do 60 i=1O/ 12
c
encode(fiLe/950) fi le_name(i)/ state_number

call up_fiLe_number(fiLe_number)
c

call ec (" disk .. to_ tape. vbs_ retain "/tape_number/fi le/fi L e_ number)
c
60 cont i nue
c
c THE LAST 3 FILES ARE RECORDED WITH THE VBS TAPE OPTION,
c

call ec ("List_state_tape"/tape_number)
c

call dat e_ t i me
c
c
end

SUBROUTINE NAME:
HEADING_STATE_TO_TAPE

Author: Harold Johnson
Purpose of the program: heading_state_to_tape

writes headings for the output of the state_to_tape
program.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call heading_state_to_tape

(state,tape_number)
Arguments:

state- Two-digit FIPS State code
tape_number- Six-position volume number

Subroutines called: None

222 GEOINDEX

Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: state_to_tape
Error checking and reporting: None
Constants: None

Program logic:
1. Write to the terminal:

THE FOLLOWING DISK FILES FROM THE
STATE WITH FEDERAL CODE NM HAVE
BEEN STORED ON TAPE XXXXXX FOR
BACK-UP:

2. Return control to state_to_tape.

c
c
c
c
c
c

c
wr
91
c
w r
92
"W
«i

c
c
re
en

the name of this file is: heading_state_to_tape.fortran
subroutine heading_state_to_tape(state*tape_number)

PURPOSE: TO WRITE HEADINGS FOR THE OUTPUT OF THE
STATE-TO-TAPE PROGRAM.

programmer: H Johnson
date: August 27, 1977

character state*2* tape_numoer*6

i te(6/-910)
0 formatC"0***")

i te(6*920)state,tape_number
0 forrnat("0"/.5X/."THE FOLLOWING DISK FILES FROM THE STATE "/-
ITH FEDERAL CODE "/.a2/-/" HAVE BEEN STORED ON TAPE M /-a6/-
FOR bACK-UP: M)

turn
d

SUBROUTINE NAME: UP_FILE_NUMBER

Author: Harold Johnson
Purpose of the program: up_file_number increments

file^_number, given in character format, by 1 and
returns the new value in character format.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call up_file__number (file_number)
Arguments: file—number- Numerical sequence on tape
Subroutines called: None
Common data referenced: None

Input files: None
Output files: None
Arrays used: None
Called by: state__to_tape, pull off
Error checking and reporting: None
Constants: None
Program logic:
1. Using the decode statement, the program reads if He

from file—number and stores it into a format of
(12).

2. Add 1 to if He.
3. Using the encode statement, the program transmits

the value of if He to file^number.
4 . Control is returned to the calling module.

c FILE NAME: up_fiIe_number.fortran
c
c PURPOSE: to increment a numoer* file.number* given in character format*
c by 1 and return the new value in character format.
c
c PROGRAMMERS Johnson
c DATE: August 27* 1977
c

subroutine up.file.number(fiIe_number)

APPENDIX C 223

character state*2/ tape_numDer*6/ fi le.numbe r*2
9990 format("file.number = ",a4)
c
decode(fi le_number/91 0)i file
910 formatCi2)
c
ifile = ifile + 1
c
encode(file_number/91 0) ifile
c
return
end

SUBROUTINE NAME: STS_BEGIN

Author: Harold Johnson
Purpose of the program: sts_begin sets up a tem­

porary disk file that will contain a description of the in­
put records and will give the user the file number of
each file written to tape.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call sts_begin (state, state_name,-

file_number)
Arguments:

state -Two-digit FTPS code
sfate_name-Name of the State
file_number-Number of the tape file

Subroutines called: ftnumber, up_file__number
Common data referenced: None
Input files: None
Output files: File number: file81
Arrays used: None
Called by: state_to__tape
Error checking and reporting: None

Constants: None
Program logic:

1. The file name bgin and the State code are con­
catenated by the encode statement to form
bginNM.

2. Call ftnumber to open and attach file81 to bginNM
for sequential input and output.

3. n = file^number + 1.
4. Prompt to file81:

THIS IS THE FIRST FILE FOR STATE
NUMBER NM NAME STATE-NAME.

5. Prompt to file81:
BEGINNING IN TAPE FILE NUMBER n
THE FOLLOWING STATE FILES ARE
WRITTEN ON THIS TAPE!

6. Prompt to filed 1:
coorNM IS IN FILE NUMBER n.

1. Add 1 to n.
8. Subroutine writes a message for the next file cord-

NM and repeats steps 7 and 8 until a message has
been written for each input file.

9. Rewind 81.
10. Return control to state_to_tape.

suoroutine sts_begin(state/state_name/file.number)
c

character state*2/ state_name*36/ file_name*6/ mode*4
character n*2/ fi le_number *2

c
encode(fi le_name/910) state

910 f orfnat("bgin"/d2)
c
mode="so "

call ftnumber (6 1/fiIe_name/mode)
c
n = f i le_numbe r

call up_file_number(n)
call up_fiIe_numDer(n)

c
write (31/91 2) state/ state_name

224 GEOINDEX

912 format("This is the first file for state number "/a2/
" name "/a36)
c

wri te(81/92Q) n
920 formate"Beginning in tape file number "/a2/" the following state "/
"files are written on this tape:")

wri te(81/925) state/ n
925 format("coor"/a2/" is in file number M /a2)

call up_fiIe_number(n)
c

wr ite(81/935) state/ n
935 format("cord"/a2/" is in file number M /a2)

call up_fi I e_number(n)
c

write(81/940) state/ n
940 format("stat"/a2/" is in file number "/a2)

call up_fiIe_number(n)
c

write(81/9A5) state/ n
945 f ormatC'st rd"/a2/" is' in file number M /a2)

call up_fiIe_number(n)
c

write(81/950) sta te/ n
950 formatC* coun"/a2/" is in file number M /a2)

call up_f i I e_nurnbe r (n)
c

write(81/955) state/ n
955 format("curd"/a2/" is in file number "/a2)

call up_fiIe_numoer(n)
c

wr i te(81/960) state/ n
960 formatC'yr id"/a2/" is in file number "/a2)

call up_fiIe_number(n)
c

wr i te(81/965) state/ n
965 format("bord"/a2/" is in file number "/a2)

call up_fiIe_number(n)
c

write(81/970) state/ n
970 f ormatC'cnt r",a2/" is in file number If /a2)

call up_fiIe.number(n)
c
c

wri te(81/975) state/ n
975 formatC* para "/a2/" is in file number M /a2)

call up.file_number(n)
c

wri te(31/9oO) state/ n
980 format("redy"/a2/" is in file number "/a2)
c
endf i le 81

call c loser(81)
c
return
end

APPENDIX C 225

Subroutines called: None
Common data referenced: None
Input files: bginNM, coorNM, cordNM, statNM,

strdNM, counNM, curdNM, gridNM, bordNM
Output files: Input files are put on tape.
Arrays used: None
Called by: state_to_tape
Error checking and reporting: None
Constants: None
Program logic:
1. Using the COPY_FILE command and the I/O

module, tape_ibm, the program writes the file to
tape with a fixed block format, record length of 80.
It is written in the file number designated by
file—number with the name designated by file.

2. Control is returned to the calling module.

disk-to-tape-fb-retain.ec
cpf -ids "record_stredm_ -target vfiIe_ £<?" -ods "tape_ibm_ £1 -nb £3
-nm £2 -fmt fb -rec 80 -btc 8000 -den 800 -cr -ret all -rg"

EXEC_COM NAME:
DISR_TO_TAPE_FB_RETAIN.EC

Author: Harold Johnson
Purpose of the program: disk_to_tape_fb_retain.ec

writes files to tape using fixed block format.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ec ("disk to tape fh retain",-

tape_number,file,file_number)
Arguments:

tape_number- Six-position volume number
file-Name of input file

—number- Number of the file on tape

EXEC_COM NAME:
DISK_TO_TAPE_VBS_RETAIN.EC

Author: Harold Johnson
Purpose of the program: disk_to_tape_vbs_retain.ec

writes files to tape using spanned record format
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ec ("disk_to_tape_vbs_retain",

tape number,file,file__number)
Arguments:

tape_number- Six-position volume number
file- Name of the input file
file_number- Number of the file on tape

disk-to-tape-vbs-retain.ec
cpf -ids "record_stream_ -Length
&1 -nb i.3 -nm £2 -fmt fb -rec
all -ry"

Subroutines called: None
Common data referenced: None
Input files: cntrNM, paraNM, redyNM
Output files: The input files are written to tape.
Arrays used: None
Called by: state_to_tape
Error checking and reporting: None
Constants: None
Program logic:
1. Using the COPY_FILE command and the I/O

module, tape_ibm, the program writes cntrNM,
paraNM and redyNM to tape using the spanned
record format. The input description specifies a
record length of 100.

2. Control is returned to the calling module.

100 -taryet vfile. £2" -ods "tape_ibm_
100 -bk 8UOO -den 800 -cr -ret

EXEC_COM NAME: LIST_STATE_TAPE.EC
Author: Harold Johnson
Purpose of the program: list_state_tape.ec lists the

contents of the tape.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ec ("list_state_tape",

tape_number)
Arguments: tape_number- Six-position volume

number

Subroutines called: None
Common data referenced: None
Input files: Tape used in state_to_tape module
Output files: None
Arrays used: None
Catted by: state_to_tape, pull off
Error checking and reporting: None
Constants: None
Program logic:
1. The command is LIST_TAPE_CONTENTS &1

-LONG -IOM TAPE_IBM. The information

226 GEOINDEX

printed by this command is extracted from the tape
labels.

2. The -long argument prints the file identifier (id), the
file sequence number (number), the record format
(format), the physical block size (blksize), the
logical record length (Irecl), the encoding mode
(mode), the file creation data (created), the file ex­
piration date (expires), the file-set section number

(section), the file version number (version), the
file generation number (generation), and the
operating system that recorded the tape (system).

3. The -lorn argument invokes a system I/O module to
attach and read the specified tape volume. The
tape_ibm_ subroutine is specified in order to list
OS standard labeled tapes.

4. Control is returned to the calling program.

I ist_tape_contents &1 -long -iom tape_ibm_

PROGRAM NAME: PULL_OFF

Author: Harold Johnson
Purpose of the program: pull_off enables the user to

pull off files from the Geoindex State files, and writes
the selected files to disk.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: pull_off
Arguments: None
Subroutines called: state_pull_off, separate_pull_-

off
Common data referenced: None
Input files: User tape containing State files
Output files: Files retrieved from the input tape
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None

Program logic:
1. The user is informed that she must know the tape

number, State number code, and file names, or she
has the option of pulling off all the files for one
State. If only selected files are to be pulled off, the
user must know their file numbers on the tape, and
the names and file numbers must be entered in
ascending order according to the order on the tape.

2. Prompt:
NOW TYPE THE TAPE ID:

3. The user's response is read into tape_number.
4. Prompt:

IF YOU WANT THE ENTIRE SET OF FILES
FOR A STATE, TYPE A 1; OTHERWISE,
TYPE 0.

5. The users response is read into ians.
6. If ians is not equal to 1, go to step 8.
7. Call subroutine state__pull_off. Upon return, go to

step 9.
8. Call subroutine separate—pull—off.
9. Stop.

c PROGRAM: pull. off
c
c PROGRAMMER: H Johnson
c DATE: Feoruary 14, 1978
c
c INPUT FILES: A user tape, containing state files.
c OUTPUT FILES: Whatever files were retrieved from the tape.
c

character t ape_number *32

wr i te(6,910)
910 formatC" THIS
11 BACK TO DISK."/
" *** WARNING: be

PROGRAM ENABLES YOU TO PULL OFF FILES FROM A TAPE"/

sure these files do not already exist"/
in your directory or in links to another directory!!!"/
"/

IT IS ASSUMED THAT THESE ARE FILES FROM OUR STATE FILES."/
YOU MUST KNOW THE TAPE NUMBER, STATE NUMBER CODE, AND FILE
OR, YOU CAN PULL OFF ALL THE FILES FOR ONE STATE."/

NAMES"/

APPENDIX C 227
IF YOU WANT ONLY SOhE STATE FILES/ YOU MUST KNOW THEIR FILE NUMdER"/

11 ON THE TAPE. THEN YOU MUST ENTER THE NAMES AND NUMBERS IN "/
" INCREASING ORDER ACCORDING TO THE ORDER ON THE TAPE."/
»» ti /

" NOW TYPE THE TAPE ID :")
c

read(5/920) tape.number
920 format(a32)
c
c NOW DETERMINE WHETHER OR NOT THE USER WANTS A WHOLE STATE.
c

wri te(6/930)
930 format(M IF YOU WANT THE ENTIRE SET OF FILES FOR A STATE/"/
" TYPE A 1; OTHERWISE/ TYPE 0")

read(5/940) i ans
9AO formatC i1)

if (ians .ne. 1) go to 20
c

call state.pull_off(tape_number)
go to 30
c
20 call separate_pu I l_off(tape_number)
c
30 cont i nue
end

SUBROUTINE NAME: STATE_PULL_OFF
Author: Harold Johnson
Purpose of the program: state_pull_off determines

which States are to be retrieved from the tape and
then writes them to disk.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call state_pull_off (tape_number)
Arguments: tape_number-The six-position volume

number
Subroutines called: tape__to_disk_fb_retain.ec,

tape_to_disk_vbs_retain.ec, up_file_number,
list state_tape.ec

Common data referenced: None
Input files: A user tape containing State files
Output files: bginNM, coorNM, cordNM, statNM,

strdNM, counNM, curdNM, gridNM, bordNM,
cntrNM, paraNM, redyNM

Arrays used: None
Called by: pull_off
Error checking and reporting: None
Constants: None
Program logic:

1. Prompt:
TO RETRIEVE ALL THE FILES FOR ONE
STATE, YOU MUST KNOW THE STATE

NUMBER CODE AND THE FILE NUMBER
OF THE FIRST FILE FOR THE STATE AS
IT OCCURS ON THE TAPE.

2. Prompt:
WHAT IS THE STATE NUMBER CODE?
TYPE IT FORMAT 12.

3. Read the response into state.
4. Prompt:

NOW TYPE THE FIRST FILE NUMBER OF
THE BGIN FILE FOR THIS STATE, FOR­
MAT A2.

5. Read the response into file_number.
6. Using the encode statement, concatenate the name

of the output file and the State code.
7. Call tape_to_disk_fb_retain.ec.
8. Call up_file_number subroutine.
9. Repeat steps 6-8 for the first nine output files.

10. Using the encode statement, concatenate the name
of the file and the State number.

11. Call tape_to_disk_vbs_retain.ec.
12. Call subroutine up_file_number.
13. Repeat steps 10-12 for the last three output files.
14. Call lisLstate tape.ec to list the contents of the

tape.
15. Return control to the calling program.

228 GEOINDEX

suuroutine state_pull_off(tape_number)
c
c SUBROUTINE USED IN pull.off
c PURPOSE: To determine what state's files are to be retrieved
c from a tape/ and then retrieve them.
c

character tape_numoer*32 r fiIe_number*2/ name*4(12) f fi I e*6/state*2
data name/"bgin'^"coor"/"cord"/"stat"/"strd"/"coun"/"curd"/"grid"/
"bord"/"cntr"/"para"/"redy"/
c

wri te(6/910)
910 format(" TO RETRIEVE ALL THE FILES FOR ONE STATE/ YOU MUST"/
" KNOW THE STATE NUMBER CODE AND THE FILE NUMBER"/
" OF THE FIRST FILE FOR THE STATE AS IT OCCURS ON THE TAPE."/
"OWHAT IS THE STATE NUMBER CODE? TYPE IT FORMAT i2")
c

read(5/920) state
920 format(a2)

write(6/924)
924 formatC" NOW TYPE THE FIRST FILE NUMBER OF THE 8GIN FILE FOR"/
" THIS STATE/ FORMAT A2")

read(5/927) file_number
927 format(a2)
c

do 20 k = 1/ 9
encode(file/930) name(k)/ state
930 format(a4/a2)
c

cat I ec("tape_to_disk_fb_retain*'/tape_number/fi le/ f i le.number)
call up_fiIe_number(file_number)

c
20 c ont i nue
c

do 50 k = 10/12
c
encode(file/930) name(k)/ state
c
c

ca I I ec ("tape_to_di sk_vbs_retain"/tape_number/file/file_number)
c

call up_fiIe_number(file_number)
50 con t i nue
c

call ec ("Iist_state_tape"/tape_numoer)
c

call dat e_ t i me
c
return
end

SUBROUTINE NAME: SEPARATE_PULL_OFF Data base: Geoindex
Author: Harold Johnson Computer: Honeywell Series 60 (level 68)
Purpose of the program: separate_pull_of f determines Operating system: Multics

which State files are to be retrieved from tape and Calling sequence: call_separate_pull_off (tape-
then writes them to the disk. number)

APPENDIX C 229

Arguments: tape^number- Six-position volume
number

Subroutines called: tape_to_disk_fb_retain.ec,
tape_to_disk_vbs_retain.ec, list_state_tape.ec

Common data referenced: None
Input files: A user tape containing State files
Output files: Any one or more of the following: bginNM,

coorNM, cordNM, statNM, strdNM, counNM, curd-
NM, gridNM, bordNM, cntrNM, paraNM, redyNM.

Arrays used: file_name 6(25), file_number 2(25)
Colled by: pulLoff
Error checking and reporting: None
Constants: None
Program logic:

1. Initialize k equal to 0.
2. k = k + 1.
3. Prompt:

TYPE THE NAME OF THE NEXT FILE YOU
WANT:

4. Read the response into file_name(k).
5. Prompt:

TYPE THE FILE NUMBER OF THIS FILE,
FORMAT A2

6. Read the user's response into file_number(k).
7. Prompt:

TO CONTINUE WITH MORE FILES, TYPE
1, TO STOP, TYPE 0

8. Read user's response into ians.
9. If ians is equal to 1 go to step 2.

10. Using the decode statement, separate the file
name from the State number.

11. If the file name is cntrNM, paraNM, or redyNM, go
to step 14.

12. Call tape_to_disk_fb_retain.ec, which will write
the files to disk using fixed block format.

13. Go to step 15.
14. Call tape_to_disk_vbs_retain.ec, which will

write the files to disk using spanned record for­
mat.

15. Repeat steps 10-14 until all files have been written
to disk.

16. Call list_state_tape.ec to list the contents of the
tape.

17. Return control to the calling program.

subroutine separate_pull_o f f(tape_number)
c
c PURPOSE: TO DETERMINE WHAT STATE FILES ARE TO BE RETRIEVED.
C THEN RETRIEVE THEM,
c
c

character tape.numoer*32/ fi I e_name*6(2 5)/ fi I e.number*2(25)
c

character name*4/ number*2
character i pa r a*4/i cntr*4/iredy*4

data icntr/"cntr"// ipara/"para"// iredy/"redy"/
c

k = u
10 k = k + 1
c

wri te(6/910)
910 formatC1 TYPE THE NAME OF THE NEXT FILE YOU WANT:")

read(5,92U) fiIe.name(k)
920 format(a6)

wri te(6,930)
930 fonnatC" TYPt THE FILE NUM3ER OF THIS FILE/ FORMAT A2")

read(5,940) fiLe_number(k)
940 f o rma t(a2)
c

wr i te(6/95u)
950 formatC' TO CONTINUE WITH MORE FILES/ TYPE 1/"/
" TO STOP/ TYPE U")

r ead(5/960) i an s
960 formatCi1)

if (ians .eq. 1) go to 10

230

c

GEOINDEX

do 50 j = 1 t k
C

decode(fiLe_name(j) t970) name* number
970 format(a4,a2)

if (name .eq. icntr) go to 40
if (name .eq. ipara) go to 40
if (name .eq. iredy) go to 40

c
cat I ec ("tape_to_disk_fb_retain"*tape_number,file_name(j) * f i Le.
number(j))

go to 50
c
40 call ec ("tape_to_disk_vbs_retain"/tape.number f fiIe_name(j) f fiIe_

number(j))
50 cont i nue
c

call ec(" list _state_tape"*tape_ number)
return
end

EXEC_COM NAME:
TAPE_TO_DISK_FB_RETAIN.EC

Author: Harold Johnson
Purpose of the program: tape_to_disk_fb_retain.ec

writes files to disk using fixed block format.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call ec ("tape_to_disk_fb__-

retain",tape number,file,file number)
Arguments:

tape_number- Six-position volume number
///e-Name of the file
file_number- Number of the file on tape

Subroutines called: None

Common data referenced: None
Input files: User's tape of the State files
Output files: Any one or all of the following: bginNM,

coorNM, cordNM, statNM, strdNM, counNM, curd-
NM, gridNM, and bordNM

Arrays used: None
Called by: state_pull_off, separate_pull_off
Error checking and reporting: None
Constants: None
Program logic:
1. Using the COPY_JFILE command and the I/O

module, tape_ibm_, the program writes the
selected file to disk, as determined by file and
file—number.

2. Control is returned to the calling module.

tape-to-disk-fb-retain.ec
cpf -ods "record_stream_ -target vfile_ W* -ids "tape_ibm_ & 1 -nb S3
-nm &2 -fmt fb -rec 60 -ok 8JOO -den SOO -ret all "

EXEC_COM NAME:
TAPE_TO_DISK_VBS_RETAIN.EC

Author: Harold Johnson
Purpose of the program: tape_to_disk_vbs_retain.ec

writes files to disk using spanned record format.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)

Operating system: Multics
Calling sequence: call ec ("tape_to_disk_vbs_

retain",tape_number,file,file_number)
Arguments:

tape_number- Six-position volume number
file- Name of the input file
file_number- Number of the file on tape

Subroutines called: None

APPENDIX C 231

Common data referenced: None
Input files: User^s tape of State files
Output files: cntrNM, paraNM, redyNM
Arrays used: None
Called by: state_pull_off, separate_pull_off
Error checking and reporting: None
Constants: None

Program logic:
1. Using the COPY_FILE command and the I/O

module, tape_ibm_, program writes cntrNM,
paraNM, and redyNM to disk if specified by file
and file__number. The output description specifies,
no new line.

2. Control is returned to the calling module.
tape-to-disk-vbs-retain.ec
copy.file -ids "tape.ibm_ il -nb S3 -nm &2 -fmt fb -rec 100 -bk 8000
-den 800 -ret all" -ods "record.stream, -nnl -taryet vfile_ fc>2"

PROGRAM NAME: BACKUP
Author: Harold Johnson
Purpose of the program: backup enables the user to

dump various segments and (or) whole directories to a
tape. They can have any file characteristic such as
ASCII, binary, or whatever happens to be in the direc­
tory to be dumped.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: backup

Arguments: None
Subroutines called: backup.ec
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: None
Error checking and reporting: None
Constants: None
Program logic:
1. The program calls backup.ec.

c PROGRAM Dackup
c
c PURPOSE: TO ENAdLE A USER TO DUMP VARIOUS SEGMENTS AND WHOLE
c DIRECTORIES TO A TAPE
c
c PROGRAMMER: H Johnson
c DATE: Dec 29, 1977
c

call ec ("backup")
c
c THIS IS THE EXEC COMMAND:
c
c ba c k up1
c io close f i le 1 U
c io detach filelu
c back up2
c
c
end

EXEC_COM NAME: BACKUP.EC
Author: Harold Johnson
Purpose of the program: backup.ec calls two

routines and then closes and detaches the file.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)

sub-

Operating system: Multics
Calling sequence: call ec ("backup")
Arguments: None
Subroutines called: backup"!, backup2
Common data referenced: None
Input files: None

232 GEOINDEX

Output files: None
Arrays used: None
Called by: backup
Error checking and reporting: None
Constants: None

backup.ec
ba c kupl
io close f i I e 1 U
io detach filelO
backup?

Program logic:
1. This exec_com executes backup"!.
2. Control is then returned to the exec_com and fileW

is closed and detached.
3. It then executes backup2.

EXEC_COM NAME: DUMP.EC

Author: Harold Johnson
Purpose of the program: dump.ec places segments or

directories, specified in backup*! , on tape.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics -
Calling sequence: call ec ("dump","control.dump","hhj",-

tape)
Arguments:

control.dump—Dump control file
hhj—Operator
tape—Tape number

Subroutines called: None
Common data referenced: None
Input files: control.dump
Output files:

*.dump.map
possibly an error file ending with .ef

Arrays used: None

dump.ec
^attach
comp I e t e_dump
S3
&qu i t

Called by: backup2
Error checking and reporting: None
Constants: None
Program logic:
1. &ATTACH allows the arguments of the exec_com to

be passed directly to complete_dump.
2. complete_dump requires a minimum of three

arguments as in the command: complete_dump:
control.dump, hhj-debug, where control.dump
is the name of a control segment, hh] represents
the author's initials, and -debug disables calls to
highly privileged system subroutines normally
used when complete—dump is used by the
operators during the weeky system backup ses­
sion. The argument tape is the volume identifier of
the desired dump tape. One 2,400 ft. tape at 1,600
bpi can hold approximatley 7,500 disk pages
(records).

3. The segments or directories stored in control.dump
are written to tape.

4. Quit.

-debug

SUBROUTINE NAME: BACKUP1
Author: Harold Johnson
Purpose of the program: backup"! allows a user to dump

various files and directories to a tape.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call backupl
Arguments: None
Subroutines called: None
Common data referenced: None
Input files: None
Output files: control.dump used on unit 10 (fileW)
Arrays used: None

Called by: backup.ec
Error checking and reporting: The user will be asked

whether he has sent a message to the operator to
locate his tape. If the user answers with other than 1,
the program will abort.

Constants: None
Program logic:

1. The user is asked whether a message was sent to
locate his tape. If the user responds with 1, pro­
cessing continues. Otherwise the program halts.

2. The program prints a message describing its pur­
pose.

3. fileW is attached to control dump and opened for
stream output.

APPENDIX C 233

4. The user is informed that segments or directories to
be dumped must be absolute path names and in
alphabetical order.

5. Prompt:
NOW TYPE IN THE ABSOLUTE PATH
NAME OF THE NEXT SEGMENT OR
DIRECTORY YOU WANT TO BACKUP.

Type its absolute path name.

6. The user's response is read from the terminal and
written to fileW.

7. Prompt:
IF YOU WANT TO DUMP MORE PATHS,
TYPE 1; OTHERWISE, 0

8. The user's response is read into ians.
9. If ians is equal to 1, go to 5.

10. Stop.

c PROGRAM oackupl
c
c PURPOSE: TO ALLOW A USER TO DUMP VARIOUS FILES AND DIRECTORIES TO
c A TAPE.
c
c PROGRAMMER: H Johnson
c DATE: Dec. 29, 1977
c

character pat h*60
c
write(6,900)
900 formatC" DID YOU SEND A MESSAGE TO THE OPERATOR TO "
"FIND YOUR TAPE?"/" IF YOU DID/ TYPE A 1 ")

read(5/920) ians
i f(i ans .ne. 1) stop
c

write(6/910)
910 format("OTHIS PRObRAM ENABLES YOU TO DUMP ONE OR MORE SEGMENTS"/
" TO YOUR TAPE. YOU CAN EVEN DUMP WHOLE DIRECTORIES. "/
" THE PROGRAM CREATES A FILE NAMEU 'CONTROL.DUMP 1 ")
c
920 f o rma t < i 1 >
c

call io ("attach","fiIe10"/"vfiIe_"*"contro I.aump")
call io ("open","fi Ie10"/"so")

c
c

wr i te(6/945)
945 formatC'OYOU MUST TYPE IN ALL THE ABSOLUTE PATH NAMES OF"/
" THE SEGMENTS OR DIRECTORIES YOU WANT TO DUMP TO TAPE."/
"0*** THESE MUST BE ENTERED IN ALPHABETICAL ORDER !******")
10 wri te(6/950)
950 formatC'O iMOW TYPE IN THE ABSOLUTE PATH NAME OF"/
" THE NEXT SEGMENT OR DIRECTORY YOU WANT TO BACKUP."/
"OTYPE ITS ABSOLUTE PATH NAME :")

read(5/960) path
960 format(a60)
c

wri te(6/970)
970 formatC'OlF YOU WANT TO DUMP MORE PATHS/ TYPE 1; OTHERWISE/ 0")

read(5/920) i ans
wr i te(10/960) pat h

i f(i ans .e^. 1) 90 to 10
c
c
end

234 GEOINDEX

SUBROUTINE NAME: BACKUP2

Author: Harold Johnson
Purpose of the program: backup2 allows the user to

dump various files and directories to a tape.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call backup2
Arguments: None
Subroutines called: dump.ec
Common data referenced: None
Input files: None
Output files: None

Arrays used: None
Called by: backup.ec
Error checking and reporting: None
Constants: None
Program logic:
1. Prompt:

TYPE YOUR TAPE NUMBER, FORMAT A6
2. The user's response is read into tape.
3. The program calls dump.ec.
4. The user receives a message that 1 or 2 message files

have been added to her directory and will auto­
matically be dprinted. These should be picked up
and saved; any old dump.maps for this tape should
be discarded because they are obsolete.

5. Stop.

PROGRAM backup^

PURPOSE: TO ALLOW A USER TO DUMP v/ARIOUS FILES AND DIRECTORIES TO
A TAPE.

PROGRAMMER: H Johnson
c b A T E : Dec. 29, 1977
c

character t ape*6
c
c

wr i te(6/910)
910 format("OTYPE
c
c

940
c

YOUR TAPE NUMBER/ FORMAT A6")

read(5/940)tape
format(a6)

call ec ("dump"

THIS IS THE EXEC
ia11 ac h

/"control.dump","hhj"/tape)

COM BEING CALLED:

c comp I ete_dump &1 £2 -debug
c S3
c &qui t
c
50 write(6,980)
980 formatC* OTHIS ROUTINE ADDS 1 OR 2 MESSAGE FILES TO "/
" YOUR DIRECTORY WHICH ARE AUTOMATICALLY DPRINTED."/
" THEY ARE VERY IMPORTANT AND SHOULD BE PICKED UP AND SAVED'
" IN A SAFE PLACE. "/
" THEY ARE THE DUMP.MAP AND POSSIBLE ERROR MESSAGE."/
"OSAVE THEM IN A SAFE PLACE. THROW AWAY ANY OLD DUMP.MAPS"/
" FOR THIS TAPE, SINCE THEY ARE COMPLETELY OBSOLETE.")
c
C
end

APPENDIX C 235

PROGRAM NAME: RESTORE

Author: Harold Johnson
Purpose of the program: restore allows the user to

restore files that she has previously dumped to tape
using complete^ dump or backup.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: restore
Arguments: None
Subroutines called: retrieve.ec
Common data referenced: None
Input files: User's backup tape
Output files: control.retrieve used on unit 10 (fileW)
Arrays used: None
Called by: None
Error checking and reporting: The user is asked whether

she sent a message to the operator asking her to locate
the tape. If the user responds with other than 1, the
program aborts.

Constants: None
Program logic:

1. fileW is attached and opened for sequential output.
2. Prompt:

DID YOU SEND A MESSAGE TO THE
OPERATOR TO FIND YOUR BACKUP
TAPE? IF YOU DID, TYPE A 1.

3. The program prints a message describing its pur­
pose.

4. Prompt:
NOW TYPE THE ABSOLUTE PATH NAME
OF THE NEXT SEGMENT OR DIRECTORY
YOU WANT TO RESTORE WHICH IS ON
YOUR BACKUP TAPE. USE ITS AB­
SOLUTE PATH NAME.

5. The response is read from the terminal and then
written to fileW. You can request as many as 50
absolute path names.

6. Prompt:
IF YOU WANT TO RESTORE MORE PATHS,
TYPE 1; OTHERWISE 0

7. If ians is equal to 1, go to step 4.
8. Close and detach fileW.
9. Prompt:

TYPE THE NUMBER OF YOUR BACKUP
TAPE, FORMAT A6

Read the response into tape.
10. Call ec ("retrieve","control.retrieve",tape).
11. Message to the user:

THIS ROUTINE AUTOMATICALLY
DPRINTS A 'RETRIEVE' MAP WHICH YOU
SHOULD OBTAIN. CHECK THAT THE RE­
QUESTED FILES ARE IN YOUR DIREC­
TORY.

12. Stop.

restore proy ram

PURPOSE: To allow a user to restore files which he has
previously dumped to a tape using compete_dump or backup

PROGRAMMER: H Johnson
DATE: Jan 6/ 1978

character tape*6/ path*6U

cal I
cal I

t o
i o

("attach
("open"/

/"f ilelO'
fi lelO'V

/"vfile "/
so")

cont rol.retrieve")

MESSAGE
YOU DID/

wri te(6/910)
910 formatC'ODID YOU SEND A
" FIND YOUR BACKUP TAPE? IF

read(5/920) ians
920 f o r m a t (i 1)
c

wri te(6/930)
930 format("OTHIS PROGRAM ENABLES
" FILES FROM A BACKUP TAPE/ WHICH
" OR backup. "/
"OYOU MUST KNOW THE COMPLETE PATH NAMES
" TO RESTORE. *** THESE MUST BE TYPED

TO THE OPERATOR
TYPE A 1")

TO"/

YOU TO RETRIEVE ONE OR MORE"/
WAS PROCESSED USING comp lete.dump"/

OF SEGMENTS YOU WANT"/
IN IN ALPHABETICAL ORDER ***'

236 GEOINDEX

10 wri te(6/940)
940 formatC'ONOW TYPE THE ABSOLUTE PATH NAME OF THE NEXT"/
" SEGMENT OR DIRECTORY YOU WANT TO RESTORE WHICH IS ON"/
" YOUR BACKUP TAPE."/
" USE ITS ABSOLUTE PATH NAME :")

read(5/950) path
950 format(a6U)
c

write (10/950) path
c

wri teC6/970)
970 formatC'OlF YOU WANT TO RESTORE MORE PATHS/ TYPE i; OTHERWISE/ 0")

read(5/920) ians
i f C i ans . eq. 1) go to 10
c

endfi Le 10
c THIS IS A MICKEY MOUSE STATEMENT TO GET A NL CHARACTER ON
c THE END OF THE LAST RECORD,
c

call io ("close"/"fiIe10")
call io ("detach","fiLe10")

c
wri te(6/980)

980 formatC'OTYPE THE NUMBER OF YOUR BACKUP TAPE/ FORMAT A6")
c

read(5/990) tape
990 formdt(d6)
c

call ec ("retrieve"/"controt.retrieve"/tape)
c
c THIS IS THE FOLLOWING EXEC COMMAND:
c
c Sattach
c retrieve &1 -debuy
c &2
c no
c dprint -dI &1.retrieve . map
c igu i t
c

wri te(6/991G)
9910 format("UTHIS ROUTINE AUTOMATICALLY DPRINTS A "RETRIEVE"/
" MAP 1 WHICH YOU SHOULD OBTAIN. CHECK THAT THE REQUESTED FILES"/
" ARE IN YOUR DIRECTORY.")
c
stop
end

EXEC_COM NAME: RETRIEVE.EC
Author: Harold Johnson
Purpose of the program: retrieve.ec consists of a Multics

command that retrieves the path names given by the
user from the tape specified by the user.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: ec ("retrieve","control.retrieve",tape)
Arguments:

control.retrieve-File of path names
tape— Tape number

APPENDIX C 237

Subroutines called: None
Common data referenced: None
Input files: control. retrieve
Output files: con trol. retrieve.map
Arrays used: None
Called by: restore
Error checking and reporting: None
Constants: None
Program logic:
1. The file is attached.

ret ri eve . ec
Sattach
retrieve &1 -debug

no
dprint -dl

t
i1 . r e t r i ev e . map

2. The Multics command, retrieve, is executed.
3. The path names listed on the file control.retrieve are

restored to the user's directory from the tape.
4. The retrieve command asks whether more tapes are

to be reloaded, and the exec_com gives an
automatic NO response.

5. The control.retrieve.map is automatically dprinted
and deleted.

6. Quit.

PROGRAM NAME: VERPLOT

Author: Lawrence Balcerak
Purpose of the program: verplot generates the System

Status Map for the Geoindex system. This program
reads a file of commands and creates a Versatec plot
file using the instructions from that file.

Data base: Geoindex
Computer: Honeywell series 60 (level 68)
Operating system: Multics
Calling sequence: verplot
Arguments: None
Subroutines called: change_origin, change—Symbol,

change_width, closef, newpattern, openf, pattern,
pattern_verplot, plotfile, plotlegend, plotoutline,
scaleplot, cf, dprint, io_call, ioa_$nnl, plot, plots,
setup_versaplot

Common data referenced: icom(80), in1
Input files: initials used on unit 15 (file15) (initial

value file for the command file)
Output files: tempW used on unit 10 (fileW) (for

messages)
Arrays used: iwhat(16,7)
Called by: None
Error checking and reporting: The program checks for

invalid commands. Any invalid command causes an
error message to be written along with the erroneous
command line.

Constants:
in1 = 15 (input reference number for the command

file)
in2 = 16 (input reference number for any plotting file

used)
Program logic:

1. Set initial values:
iwhat(16,7) (contains the names of the eight dif­

ferent kinds of commands in both uppercase and
lowercase)

isym = 2 (the number of the default symbol to be
used for plotting single points)

name = " " (blank space)
2. The program sends a message to the terminal:

WHAT IS THE NAME OF YOUR COMMAND
FILE??
USE NO MORE THAN SIX CHARACTERS!

Read the character string sent back into the
variable name.

3. Call openf to attach and open the command file for
input. Use in 1 as the reference number.

Call openf to attach and open tempW for output.
Use reference number 10.

Call io_call to attach the initial values file to the
name m/f_va/s.

4. Call setup_versatec. This links to the Versatec
software.

5. Call pattern.
Call pattern_verplot.

These subroutines initialize the arrays for the
13 shading patterns used.

6. Call plots to initialize the Versatec routines.
Call plot to position the software origin.

7. Place blanks into the input line icom(80).
Read a command line into icom(80).

If EOF, go to step 27.
8. Find the semicolon in the input line and set // equal

to this position.
If one is found, go to step 10. All commands must
have a semicolon in the first eight positions.

9. The program prints the error message:
THIS LINE CANNOT BE IDENTIFIED AS A
COMMAND.

238 GEOINDEX

along with the erroneous line.
Go back to step 7 to read another command.

10. If // is equal to 1, 2, 3, or 4, go to step 9, because
there are no commands with a semicolon in these
positions.

Depending on the value of //, go to step 11 (// = 15),
step 13 (// = 6), step 17 (// = 7), or step 23 (// - 8).

11. If the command is not PLOT or plot, go to step 9.
This is the only four-letter command.

12. Call plotfile.
Go to step 7 to read another command line.

13. If the command is not SCALE or scale, go to step
15.

14. Call scaleplot.
Go to step 7 to read another command line.

15. If the command is not REORG or reorg, go to step
9.

16. Call change_origin.
Go to step 7 to read another command line.

17. If the command is not LEGEND or legend, go to
step 19.

18. Call plot legend.
Go to step 7 to read another command line.

19. If the command is not SYMBOL or symbol, go to
step 21.

20. Call change_symbol.
Go to step 7 to read another command line.

21. If the command is not LINWID or linwid, go to
step 9.

22. Call change—width.
Go to step 7 to read another command line.

23. If the command is not OUTLINE or outline, go to
step 25.

24. Call plotoutline.
Go to step 7 to read another command line.

25. If the command is not PATTERN or pattern, go to
step 9.

26. Call newpattern.
Go to step 7 to read another command line.

27. The program sends a message to the terminal:
PLOT FINISHED

28. Call plot (O.,0.,999) (frame finished).
Call plot (0.,0.,-999) (all plotting finished).

29. Call setup versaplot ("-reset") (unlinks from the
Versatec software).

30. Call closef to close and detach from files in1 and
fileW.
Call io_call to detach the initial values file.

31. Dprint the message file with the delete option.
32. Call cf to close all files.

PROGRAM VERPLOT

common /
cnaracte
ex t erna L

data ((i
&/
^
&
&
4
&
£
&
&
&
£
S
&
&
&
&

coma nd/
r

i
&
&
wh
"S
"L
"0
"P
"S
"L
up
"R
"s
"L
"o

P"s
"L

P

name*
o_c
cf
dp r
at (
ii ii
ii ii
ii ii
ii ii
ii ii/
ii iif
it it
ii n/
ii ii/
ii it
ii ii

/
ii ii
ii ii/
'
t

al
(d
i n
i /
C"
E"
U"
A"
Y"
I"
L"
E"
c"
e"
u"
ay"
i "
L"

e

o
I
e
t
J
/
,
f
t
t
,
t
t
t
t
'
/
/
'
'
/

i com
/ fmt

(de
s c r i

(de
)/j =
"A"/
II r- It

II T It

II T II

" M " /
"N"/
"O"/
"O"/
"a"/
"g"/
" t "/

"m"/
"n"/
"o"/

o" /

(80)
*16/
sc r i
pt or
sc r i
1/7)
"L"/
"E"/
n i n
II -r It

"8"/
ii 1 1 nw /
II -r II

"R"/
"I "/
"e"/
"L"/

"b"/
"w"/

r " /

/ i
i c
Pt
s)
Pt
/ i
"E
"N
"I
"E
"0
"I
ii
"G
"e
"n
"i

e
"o
"i

"g

d(1 5)/ i sym/in1 /in2
om*1/iwhat*1 (16/7)/ini t*1
or s) / i oa_$nn I (descriptor
/set up_ver sap lot (descrip
or s)
=1/16)
" f " "/" ",
"/"O"/" "/
It II .1 II II f- It/ N / t /
It tl n It It »| It

/ L / /
II II r\ It II It

II II II II tl

It II II II It

tt II II II tt

"/"d"/" "/

"/"r"/"n"/
ii ii i n it ii
ii ii .j ii it ii

t f t
"/" "/" "/

s)/
tors) /

in1=15
in2=16

APPENDIX C 239

caLL ioa.SnnL ("~/WHAT IS THE NAME OF YOUR COMMAND
caLL ioa_$nnL (""/USE NO MORE THEN SIX CHARACTERS!
read 10, name

10 format (a6)
caLL openf (in1,name,"si ")
caLL openf (10,"temp10","so ")
caLL io_caLL (" attach"," initials ","vfile_
caLl setup_versapLot
caLL pattern
caLL pattern.verpLot
caLL pLots(0,0,0)
caLL pLot (2.0,0.005,-3)

FILE??")
)

V'init.vaLs")

25 do 30 i=1,80
30 icom(i)=" "

read (in1,40,end=260) icom
40 format (80a1)

do 50 L1=1,3
if (icom(LL) .eq. ";") go to 70

50 continue
55 write (10,60) icorn
oO format (" THIS LINE CANNOT BE IDENTIFIED AS A COMMA NO.",/,1x,80a1)

go to 25
70 go to (55,55,55,55,80,100,140,220),LI

80 do 90 i=1,4
90 if ((icom(i) ,ne. iwhat(7,i)) .and.

6 (icom(i) .ne. iwhat(15,i))) go to 55
caLL pLotfiLe
go to 25

100 do 110 i=1,5
110 if ((icom(i) .ne.

& (icom(i) .ne.
caLL scaLepLot
go to 25

120 do 130 i=1,5
130 if ((icom(i) .ne.

& (icom(i) .ne.
caLl change_origin
go to 25

iwhat(1,i))
iwhat(9,i)))

. and.
go to 120

i wha t(3,i))
iwhat(16,i)))

and.
go to 55

140 do 150 i=1,6
150 if ((icom(i) .ne.

& (i c om(i) ,n e.
caLL p Lot Legend
go to 25

160 do 170 i=1,6
170 if ((i c om(i) .n e .

& (i c om(i) .ne .
caLL change.symooL
go to 25

200 do 210 1=1,6

iwhat(2,i)) .and.
iwhat(10,i))) go to 160

iwhat(5,i)) .and.
iwhat(13,i))) go to 200

240 GEOINDEX

210 if ((icom(i) .ne. iwhat(6/i)) .and.
& (icom(i) .ne. iwhat(1 4 / i))) go to 55
call change.width
yo to 25

220
230

240
250

260

do 230 i=1/7
if ((i com(i) .ne.

(i c om (i) .n e .
call plot out Line
yo to 25
do 250 i=1,7
if ((i com(i) .ne.

(icom(i) .ne.
call newpa 1 t e rn
go to 25

i wha t(3/i)) .and.
iwhat (11,i))) go to 240

i wha t(4/i)) .and.
iwhat(12/i))) go to 55

call ioa_$nnl (""/PLOT FINISHED")
call plot (0./0./999)
call plot (0./0./-999)
call setup_versaplot ("-reset")
call closef (i n 1)
cal I c losef (10)
call io.call ("detach"/"init_vaIs")
call dprint ("-d I "/"templ0")
call cf ("-all")
stop
end

SUBROUTINE NAME: CHANGE_ORIGIN
Author: Lawrence Balcerak
Purpose of the program: change_origin identifies and

evaluates the x and y distances for a change in the
origin and moves the origin that distance.

Data base: Geoindex
Computer: Honeywell series 60 (level 68)
Operating system: Multics
Calling sequence: call change_origin
Arguments: None
Subroutines called: fincLnumber, plot
Common data referenced: icom(80), id(15)
Input files: None
Output files: tempW used on unit 10 (fileW) (for

messages)
Arrays used: icom(80), id(15)
Called by: verplot
Error checking and reporting: The subroutine checks for

a blank keyword field, an error in a keyword, and an
error in a data value. If any are found, an appropriate
message is written to a file, which is dprinted at the
end of the run.

Constants: None
Program logic:

1. Set initial values. The keywords for x and y are not
necessarily both present. The default values for

both are 0. The first position to look for a keyword
(ipi ace) is 7, because the command takes up 6
spaces. The last nonblank character of the record
is in position Hast, which is initialized to 81 to
start.

2. Starting at the last position of the record (80), check
in descending order for a nonblank character. If
there is one, go to step 4.

3. The subroutine prints the error message:
THE FIELD CONTAINS ALL BLANKS

and returns to the calling program.
4. Find the first nonblank character in this field and

set i place equal to this position.
5. If ic = iplace to Hast, then find the end of the next

keyword by looking for a comma.
Set ic equal to one less than the position of the com­

ma or to Hast if none exists. This is the position of
the last character in this field.

6. If the keyword is x= or X= go to step 11.
7. If the keyword is y= or Y= go to step 12.
8. The subroutine prints the error message:

THIS FIELD IS NOT RECOGNIZED AS A
KEYWORD!!

and the string involved.
9. Set iplace = ic + 2, which is the first possible posi­

tion for the next keyword.

APPENDIX C 241

10. If there are more characters to check (compare the
present position, iplace, with the last possible
position, Hast), go to step 4.

Otherwise, go to step 20.
11. Set the switch key equal to 1.

Go to step 13.
12. Set the switch key equal to 2.
13. Add 2 to iplace. This is the first possible position for

the data string.
14. Check for a nonexistent data string. If data string is

nonexistent, go back to step 9.
15. Find the first nonblank character in this data string,

and if found go to step 16.
If the whole string is blank, set mum = 0, and go to

step 19.
16. Set num equal to the number of characters in the

string.
If num is greater than 15, go to step 18.

17. Place the character string in the array id.
Call find_number to translate the string into the

real number mum.
If the error return code, istat, equals 0, go to step

19.
18. The subroutine prints the error message:

THIS STRING HAS AN UNRECOGNIZABLE
CHARACTER

and the string involved. Then it returns to the call­
ing program.

19. Depending upon the value of key, set xx (key = 1) or
yy (key = 2) equal to mum.

Go back to step 10 to check for more data.
20. Call plot to change the origin.
21. The subroutine prints the message:

THE ORIGIN HAS BEEN MOVED BY X = nnn
Y = nnn

Return

10

20

30
40

50

60

30

90
100

subroutine c han je_or i g i n

common /comand/ i com (80)
character icom*1/id*1

xx = 0.
yy = o.
i p I ace = 7
i last=81

i d (1 5) * i sym/ i n1 / i n2

FIND THE LAST NON-BLANK
do 10 i = i place/80
iIast = iI ast-1
i f (icom(ilast) .ne. " ")
write (10*20) i com
format (" THE FIELD CONTAINS
go to 240

FIND THE FIRST NON-BLANK CHARACTER
do 40 m=iplace/i I ast
if (icom(m) .ne. " ") go to 50
m=i last
i pIace = m

FIND THE LAST POSITION
do 60 ic = ipi ace /ilast
if (icom(ic) .eq. "/")
i c = iI as t
go to 80
i c = i c-1

IDENTIFY THE KEYWORD
if (icom(ipiace + 1) .ne.
if ((i com (i p lac e) .eq,

& (icom(iplace) .eq
if (Cicom(ip I ace) .eq

& (icom(iplace) .eq

CHARACTER OF THE RECORD

go to 30

ALL BLANKS"///1x/8Ga1)

IN THIS FIELD

FOR THIS FIELD

90 to 70

90"="> go to
"X") .or.
"x"» go to 1 10
"Y") .or.
"/">> go to 120

write (10/100)
format (" THIS

(i com(i)/i=iplace/ic)
FIELD IS NOT RECOGNIZED AS A KEYWORD! !"///1x/74a1)

242 GEOINDEX

105

110

120
130

140

150

160

165
170

190
200

210

220

230
240

FIND THE FIRST POSTION IN THE NEXT FIELD
i pIace= i c + 2
if (ilast-iplace) 220,220,30
key = 1
go to 130
key = 2
i place= i place + 2
if (ic-iplace) 105,135,135

FIND THE FIRST NON-BLANK CHARACTER FOR THIS DATA FIELD
do 140 num=ipi ace,ic

") go to 150if (i com(num) .ne.
rnum=0.
go to 190
iplace=num
num = i c-iplace + 1
if (num .gt. 15) go to 165
1 = 0
do 160 i = i p I ac e,i c

i d(I) = i com(i)
call find_number (id,num,rnum,istat)
if (i stat .eq. 0) go to 190
write (10,170) (icom(i),i=ipiace,ic)
format (" THIS STRING HAS AN UNRECOGNIZABLE
go to 240

go to (200,210),key
x x = rnum
go to 105
yy = rnum
go to 105

CHARACTER",/,1x,74a1)

call plot (xx,yy,-3)
write (10,230) x x,yy
format (" THE ORIGIN
return
end

HAS BEEN MOVED BY X=",f10.3,/,30x,"Y=",f10.3)

SUBROUTINE NAME: CHANGE_WIDTH

Author: Lawrence Balcerak
Purpose of the program: change—Width evaluates the

data string given and changes the line dot width to
that value.

Data base: Geoindex
Computer: Honeywell series 60 (level 68)
Operating system: Multics
Calling sequence: call change_width
Arguments: None
Subroutines called: find—number, newpen
Common data referenced: icom(80), id(15)
Input files: None
Output files: tempi0 used on unit 10 (fileW) (for

messages)

Arrays used: icom(80), id(15)
Called by: verplot
Error checking and reporting: The subroutine checks for

a blank data field and an error in a data value. If either
are found, an appropriate message is written to a file,
which is dprinted at the end of the run.

Constants: None
Program logic:

1. Starting at the last position of the record (80), check
in descending order for a nonblank character. If
there is one, go to step 3.

2. Subroutine prints the error message:
THE FIELD CONTAINS ALL BLANKS!

and goes to step 7.
3. Find m, the first nonblank character in the field.
4. Set inum equal to the number of characters in the

string. If inum is greater than 15, go to step 6.

APPENDIX C 243

5. Place the character string in the array id.
Call find_number to translate the string into the

real number mum.
If the error return code, istat, equals 0, go to step 8.

6. Subroutine prints the error message:
THIS STRING HAS AN UNRECOGNIZABLE
CHARACTER!!

7. Subroutine prints the message:
THE DEFAULT VALUE WILL BE USED!!

Set rnum - 1, which is the default line width.
8. Change the real number rnum to the integer Ms.
9. Call newpen to change the line width to Ms.

10. Subroutine prints the message:
THE LINE WIDTH HAS BEEN CHANGED
TO nn DOTS WIDE

Return

subroutine chanye.width

common /comand/ icom(80)/id(15)/isym/in1/in2
character icom*1/id*1

FIND THE LAST NON-BLANK CHARACTER ON THE RECORD
do 10 j=ti/60
num=83-j

10 if (icom(num) .ne. " ") go to 30
write (10/20) icom

20 format (" THE FIELD CONTAINS ALL BLANKS! "///1x/80aD
jo to 75

FIND THE FIRST NON-BLANK CHARACTER IN THE DATA FIELD
30 do 40 m=8/num
40 if (icom(m) .ne. " ") go to 50

m = nurn
30 i num=num-m+1

if (inum .gt. 15) go to 75
1=0
do 60 i = m/num
1=01

60 id(L) = i com(i)
call find.number (id/inum/rnum/istat)
if (istat .eq. 0) goto 90
write (10/70) (icom(i)/i=8/num)

70 format (" THIS STRING HAS AN UNRECOGNIZABLE CHARACTER* !" * I /1x/73a1)
75 write (10/80)
80 formdtC" THE DEFAULT VALUE WILL BE USED!!")

rnum=1 .
90 i v i s=rnum+0.5

call newpen (i v i s)
write (10/100) i vi s

100 format (" THE LINE WIDTH HAS CHANGED TO "/i2/" dots wide")
return
end

SUBROUTINE NAME: CHANGE_SYMBOL

Author: Lawrence Balcerak
Purpose of the program: change—Symbol evaluates the

data string given and changes the number of the sym­
bol (used in plotting all single points) to that value.

Data base: Geoindex
Computer: Honeywell series 60 (level 68)

Operating system: Multics
Calling sequence: call change_symbol
Arguments: None
Subroutines called: find_number
Common data referenced: icom(80), ld(15), isym
Input files: None
Output files: tempi'0 used on unit 10 (fileW) (for

messages)

244 GEOINDEX

Arrays used: icom(80), id(15)
Called by: verplot
Error checking and reporting: The subroutine checks for

a blank data field and an error in the data value. If
either are found, an appropriate message is written to
a file, which is dprinted at the end of the run.

Constants: None
Program logic:
1. Starting at the last position of the record (80), check

in descending order for a nonblank character. If
there is one, go to step 3.

2. Subroutine prints the error message:
THE FIELD CONTAINS ALL BLANKS!

and goes to step 7.
3. Find ra, the first nonblank character in this field.
4. Set inum equal to the number of characters in the

string. If inum is greater than 15, go to step 18.

5. Place the character string in the array Id.
Call find—number to translate the string into a real

number mum.
If the error return code, istat, equals 0, go to step 8.

6. Subroutine prints the error message:
THIS STRING HAS AN UNRECOGNIZABLE
CHARACTER!!

7. Subroutine prints the message:
THE DEFAULT VALUE WILL BE USED!!

Set mum = 2, which is the number of the default
symbol.

8. Change the real number mum to the integer isym.
9. Subroutine prints the message:

THE SYMBOL NUMBER HAS BEEN
CHANGED TO nn

Return

subroutine chanye_symboI

common /comand/ icom(80)/id(15)/isyrn/in1/in2
character icom*1/id*1

FIND THE LAST NO ,M -BLANK CHARACTER OF THE RECORD
do 10 j =o/<SU
num=38-j

10 if (icom(num) .ne. " ") go to 30
write (10/20) icom

20 format (" THE FIELD CONTAINS ALL BLANKS! " / / / 1 x /SO a1)
90 to 75

FIND THE FIRST NON-BLANK CHARACTER IN THE DATA FIELD
30 do 40 m=8/num
40 if (icom(m) .ne. " ") go to 50

m = n u m
50 inum=num-m+1

if (inum .gt. 15) go to 75
1 = 0
do oO i =m/num
1=1+1

00 i d(I)=i c om(i)
call find.number (id/inum/rnum/istat)
if (istat ,eq. 0) go to 90
write (10/70) (icom(i) /i=8/num)

70 format (" THIS STRING HAS AN UNRECOGNIZABLE CHARACTER!!"///1x/73d1)
75 write (10/80)
80 formatC' THE DEFAOLT VALUE WILL BE OSEDM")

rnum=2.
90 i s ym=rnum + 0.5

if ((isym .It. J) .or. (isym .gt. 127)) isym=2.
write (10/100) i sym

100 format (" THE SYMBOL NUMBER HAS BEEN CHANGED TO M /i4)
re t jrn
end

APPENDIX C 245

SUBROUTINE NAME: SCALEPLOT

Author: Lawrence Balcerak
Purpose of the program: scaleplot evaluates the data

string given and changes the scale to that value.
Data base: Geoindex
Computer: Honeywell series 60 (level 68)
Operating system: Multics
Calling sequence: call scaleplot
Arguments: None
Subroutines called: find_number, factor
Common data referenced: icom(80), id(15)
Input files: None
Output files: tempW used on unit 10 (fileW) (for

messages)
Arrays used: icom(80), id(15)
Called by: verplot
Error checking and reporting: The subroutine checks for

a blank data field and an error in the data value. If
either are found, an appropriate message is written to
a file, which is dprinted at the end of the run.

Constants: None

Program logic:
1. Starting at the last position of the record (80), check

in descending order for a nonblank character. If
there is one, go to step 3.

2. Subroutine prints the error message:
THE FIELD CONTAINS ALL BLANKS!

and goes to step 7.
3. Find m, the first nonblank character in the field.
4. Set inum equal to the number of characters in the

string. If inum is greater than 15, go to step 6.
5. Place the character string in the array id.

Call find—number to translate the string into the
real number scale.

If the error return code, istat, equals 0, go to step 8.
6. Subroutine prints the error message:

THIS STRING HAS AN UNRECOGNIZABLE
CHARACTER!!

7. Subroutine prints the message:
THE DEFAULT VALUE WILL BE USED!!

Set scale = 1.
8. Call factor to change the scale to the new value.
9. Subroutine prints the message:

SCALE CHANGED TO nnn
Return

subroutine sccileplot

common /comand/ icom(80)/id(15)/isym/in1/in2
chardcter icom*1 *id*1

c FIND THE LAST NON-BLANK CHARACTER OF THE RECORD
do 10 j=7/80
num=d7-j

10 if (icom(num) .ne. " ") go to 30
write (10/20) icom

20 format (" THE FIELD CONTAINS ALL BLANKS! "///1x/80aD
go to 75

c FIND THE FIRST NON-BLANK CHARACTER IN THE DATA FIELD
30 do 40 m=7/num
40 if (icom(m) .ne. " ") go to 50

m = num
50 inurn = num-m+1

if (inum .gt. 15) go to 75
1=0
do 60 i =m/n urn
1 = 1 + 1

60 i d(I) = i com(i)
call find_nurnber (id/inum/scale/istat)
if (istat .eq. 0) go to 90
write (10/70) (icom(i)/i=7/num)

70 format (" THIS STRING HAS AN UNRECOGNIZABLE CHARACTER! !"/// 1 x/74a 1)
75 write (10/80)
80 formatC' THE DEFAULT VALUE WILL BE USED!!")

sea Le = 1 .

246 GEOINDEX

91) call factor (scale)
write (10/100) scale

100 format (" SCALE CHANGED
return
end

TO ",f1G.3)

SUBROUTINE NAME: PATTERN_VERPLOT

Author: Lawrence Balcerak
Purpose of the program: pattern_verplot initializes

some of the shading pattern arrays used in verplot.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: pattern_verplot
Arguments: None
Subroutines called: None

Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: verplot
Error checking and reporting: None
Constants: None
Program logic:
1. The first three arrays are set to values whose bit pat­

terns form the patterns needed. All other arrays
are set to 0. These are used for the extra patterns
that are defined by the user.

subroutine patter n_ verplot

common /userpat/

do 10 i=1,4
ip13(i)=0

1 0 cont i nue

do 20 i=1,16
ip14(i)=0
ip15(i)=0
ip16(i)=0
ip17(i)=0
ip15(i)=0
ip19(i)=0
ip20(i)=0

20 c ont i nue

ip11 ,ip12 ,ip13(4) * i p1 4 (1 6) si p1 5 (1 6)
ip16(16),ip17(16),ip18(16),ip19(16),ip2G(16)

ip12 =

+2*16**6 +16**4 + 8*16

716

ip13(1)= 7*1b**d +11*16**6 -H3*16**4 +14
& 1b*(l6**7 -H6**5 -H6**3 +1 6 +1)

ip13(2)=ip12
ip13(3)=ip13(2)
ip13(4)=ip13(2)

return
end

APPENDIX C 247

SUBROUTINE NAME: INTERPRET_DATA

Author: Lawrence Balcerak
Purpose of the program: interpret—data interprets

numeric data strings on a record and returns the total
number of data values on the record and the numeric
value of each.

Data base: Geoindex
Computer: Honeywell series 60 (level 68)
Operating system: Multics
Calling sequence: call interpret—data (kind,

numback, realval)
Arguments:

kind- Indicates type of data to be read on the cards
numback- Number passed back to the calling pro­

gram
realval- The real value of the number

Subroutines called: find_number, find_octal_number
Common data referenced: icom(80), id(15)
Input files: None
Output files: None
Arrays used: realval(20)
Called by: newpattern
Error checking and reporting: The subroutine checks for

blank data fields, empty data fields, data fields too
long, and errors in a data field. If such data fields are
found, the number for that field is set to 0 and the pro­
gram continues.

Constants: None
Program logic:

1. Set initial values.
key = 1 (branching flag to show type of data); 1

indicates a real or integer value that is the
default.

numback = 0 (the number of values returned to
calling program).

iplace = 1 (position to start processing).
Hast = 81 (the last nonblank position of the

record).
2. If the data is in octal, kind = "0", set key = 2.

3. Starting at the last position of the record (80), check
in descending order for a nonblank character. If
there is one, go to step 5.

4. Set realval(1) = 0.
Return to calling program.

5. Find the first nonblank character in this field.
Set iplace equal to this position.

6. Find the last position for this field. It will be just
before the next comma or, if no commas are left,
just before the last character, Hast.

7. Check for the possibility of two commas in succes­
sion, and if not found, go to step 8. Otherwise, go
to step 15.

8. Set num equal to the number of characters in this
field.

9. If num is greater than 15, go to step 15. This is an
error and the default value will be used.

10. Place the character string in the array id.
11. If this is a real or integer number (key = 1), go to

step 12.
If this is an octal number (key = 2), go to step 13.

12. Call find_number to translate the character string
into the real number rnum.

Go to step 14.
13. Call f ind_octal_number to translate the character

string into the integer knum.
Change the integer knum into the real number

mum.
14. If the error return code, istat, is equal to 0, go to

step 16. A nonzero value indicates some kind of
error in translation.

15. Set rnum = 0, which is the default value when an
error occurs.

16. Add 1 to numback, the number of data fields
translated and also the index for the array
realval. Store the number rnum in realval.

17. Set iplace = ic + 2, which is the next place past the
comma (if there was one). If there is another data
field, go to step 5 to continue.

Return.

subroutine i nte rp re t_cl at a (k i nd/ numbac k / rea I va I)

common /comand/ icom(80) f id(15)/isym/in1/in2
character icom*1,id*1 *kind*1
dimension realval(20)

KIND INDICATES THE TYPE OF DATA TO 6E READ ON THE CARDS
DEFAULT VALUE=1 -EITHER INTEGER OR REAL

key = 1
numba c k = G
i p I ace=1

248 GEOINDEX

c
c F

10

20
30

50

60
70

90

100

1 10

120

130
140
1 50

160

i last=81
if (kino .eq. "o") key=2

IND THE LAST NON-BLANK CHARACTER OF THE RECORD
do 10 i = i p Lace/3C
ilast = i last-1
if (icom(ilast) .ne. " ") go to 20
reaIval(1)=0.
return

FIND THE FIRST NON-BLANK CHARACTER IN THIS FIELD
do 30 m=iplace/ilast
if (icom(m) .ne. " ") go to 40
m= i last
i p I a c e = in

FIND THE LAST POSITION FOR THIS FIELD
do 50 ic = ipLace/i I ast
if (icom(ic) .eq. "/") go to 60
i c = i Las t
go to 70
i c = i c-1
if (ic-iplace) 140/90/90

njm = i c-i pIac e + 1
if (num .gt. 15) go to 140
1 = 0
do 100 i = i p I a ce / i c

i d(L) = i com(i)
go to (110/120)/key
call find_number (i d/n urn/mum/i s t a t)
go to 130
call find_octal_number (id/num/knum/istat)
rnum= knum
if C i stat .eq. 0) go to 150
r n u iti = 0 .
numoack=numback+1
realval(numback)=rnum
i pIac e= i c + 2
if (ilast-iplace) 16U/160/20
return
end

SUBROUTINE NAME: NEWPATTERN

Author: Lawrence Balcerak
Purpose of the program: newpattern reads and inter­

prets data values representing some shading pattern,
which is then stored in an array and which can be ac­
cessed by the program at a later time.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics

Calling sequence: call newpattern
Arguments: None
Subroutines called: find_number, interpret—data
Common data referenced: icom(80), id(15), in1] some en­

tries in I pat/ and luserpatl, depending on the shading
patterns used

Input files: Command statements used on unit 15
(file15)

Output files: tempi0 used on unit 10 (fileW) (for
messages)

APPENDIX C 249

Arrays used: keyword(10,7), new(112), newval(16),
realval(20)

Called by: verplot
Error checking and reporting: The subroutine checks for

a blank data field, an invalid keyword, data value
error, invalid reference number, wrong number of
words, missing keyword, too many data values, and
not enough data values. If any such errors are found,
an appropriate error message is printed with,
sometimes, the character string involved.

Constants: None
Program logic:

1. Set new(1) equivalent to ip14(1). This causes the
array new to overlay some entries of the common
block luserpatl and thereby enables the program
to access these entries by just changing the index
for the array.

2. Set initial values. keyword(10,7) contains the dif­
ferent keywords possible. There are five
keywords, and each is in both uppercase and
lowercase.

Set ir = 0. This is the flag for processing of the
reference number keyword.

Set in = 0. This is the flag for processing of the
number of data points keyword.

Set it = 0. This is the flag for processing of the type
of data keyword.

Set key = 0. This is the branching switch.
Set iplace = 9. This is the first position that a

keyword can start.
Set Hast = 81. This is the position of the last

nonblank character of the record.
3. Starting at the last position of the record (80), check

in descending order for a nonblank character. If
there is one, go to step 5.

4. Subroutine prints the error message:
THE FIELD CONTAINS ALL BLANKS

and returns to the calling program.
5. Find the first nonblank character in this field and

set iplace equal to this position.
6. For Ic = iplace to Hast, find the end of the next

keyword by looking for a comma.
Set ic equal to one less than the position of the com­

ma or to Hast if no comma is found. This is the
position of the last character in this field.

7. Search the field for the character " = ". If one is
found, go to step 10.
Any keyword must have this character.

8. Subroutine prints the error message:
PATTERN: THIS FIELD IS NOT RECOG­
NIZED AS A KEYWORD

along with the erroneous field.
9. Set iplace = ic + 2, which is one position past the

comma.

If there are more characters to examine, go to step
5. Otherwise, go to step 33.

10. Set // equal to the count of characters including the
= of the keyword.

If // is greater than 8, go to step 8. No keyword
has more than 8 characters.

11. If // is equal to 1, 2, 3, 4, or 6, go to step 8. There is
no such keyword.

If // is equal to 5, go to step 12.
If // is equal to 7, go to step 19.
If // is equal to 8, go to step 21.

12. To reach this step, the keyword contains 5
characters including the =.
If the characters are not TYPE or type, there is an
error, so go to step 8.

13. Add 5 to iplace, one character past the =.
Check for a comma immediately following the = or

for no more characters in the string.
If either condition is found, go to step 9 to examine

the next field.
14. Check for a blank data field. If found, go to step 9 to

look at the next field. Otherwise, set iplace equal
to the first nonblank character and to go to next
step.

15. If the characters are not INTEGER or integer, go to
step 17.

16. Set it = 1 (flag for type keyword processed).
Set kind = "i". This indicates integer data when

calling interpret_data later.
Go to step 9 to examine the next data field.

17. If the characters are not OCTAL or octal, go to
step 8. This is an error message of some sort.

18. Set it = 1. This is the flag for type keyword process­
ed.

Set kind = "0" (indicates octal data).
Go to step 9 to examine the next field.

19. If the characters are not REFNUM or refnum, go to
step 8. This is an error of some kind.

20. Set key = 1. This is the branching switch used later
to indicate the reference number.

Add 7 to iplace (one postion past the =).
Go to step 23 to interpret the number.

21. If the characters are not NUMWORD or numword,
go to step 8. This is an error of some sort.

22. Set key = 2, which is the branching switch used
later to indicate the number of data points.

Add 8 to iplace, which is one position past the =.
23. Check for a comma immediately following the =

character or for no more characters in the string.
If either condition is true, go to step 9 to examine
the next field.

24. Check for a blank data field. If found, go to step 9 to
examine the next data field. Otherwise, set iplace
equal to the first nonblank character and go to
next step.

250 GEOINDEX

25. Set num equal to the number of characters in the
field. If num is greater than 15, go to step 27. The
field is too large.

26. Place the characters in the array id.
Call find__numbers to evaluate the data. The

returned value is in mum.
If the error return code, istat, equals 0, go to step

28. A nonzero value indicates an error of some
type when interpreting.

27. Subroutine prints the error message:
PATTERN: THIS STRING HAS AN UNREC­
OGNIZABLE CHARACTER

along with the erroneous field.
Go to step 9 to examine the next field.

28. Depending on the value of key, go to step 29, key =
I, or step 31, key = 2.

29. Set numref = mum.
Set ir = 1. The flag indicates that the reference

number has been processed. If the reference
number, numref, is equal to 14 through 20, go to
step 9 to examine the next field.

30. The reference number is invalid. The subroutine
prints the error message:

PATTERN: THE REFERENCE NUMBER
MUST BE FROM 14 to 20

and returns to the calling program.
31. Set num word = mum.

Set in = 1. The flag indicates the number of data
words that have been processed.

If numword is equal to 1, 2, 4, 8, or 16, go to step 9
to examine the next field. These values are all
even divisors of 16.

32. The subroutine prints the error message:
PATTERN: THE NUMBER OF WORDS
MUST BE 1,2,4,8 or 16

and returns to the calling program. Note: At this
point all keywords have been evaluated.

33. If all keywords have been processed, go to step 35.
34. Subroutine prints the error message:

THIS PATTERN WILL NOT BE PROC­

ESSED THERE IS SOME KEYWORD MISS­
ING!!

and returns to the calling program.
35. Set iplace = I, which is the index for newval

(always indicates the next value).
36. Read a data record into /com. If EOF, go to step 41.

Call interpret—data to evaluate all data fields on
the new record.

37. If the number of values already processed plus the
number just received from interpret—data is less
than or equal to the total number of data values
required, numword, go to to step 39.

38. The subroutine prints the error message:
PATTERN: THERE ARE TOO MANY DATA
VALUES!!

and returns to the calling program.
39. Place the returned values into the array newval us­

ing iplace as an index counter. Add numback to
iplace. It is now equal to the total number of data
values interpreted.

40. If there are more data values to be interpreted, go
to step 36 to read another record. If there are too
many data values, go to step 38. If the number of
values interpreted equals numword, to to step 42.

41. Subroutine prints the error message:
PATTERN: EOF REACHED WHEN TRYING
TO READ ANOTHER RECORD!!

42. Place the new data values stored in newval into the
common block by placing them into new(iplace),
where iplace now takes on values based on the
reference number, numref. There must be 16
values placed into new.

If numword is less than 16, repeat the sequence of
values until 16 values have been exchanged.

43. Subroutine prints the message:
NEW PATTERN ASSIGNED TO
REFERENCE NUMBER nn

44. Return.

subroutine newpattern

common /comand/ icom(ttO)/id(15)*isym * in1 * in2
common /pat/ ip1 (16)*ip2 (16)*ip3(4) /ip4(4) * ip5(l6)*

4 ip6(16),ip7(l6),ip8(16),ip9(16),ip1G(16)
common /userpat/ ip11 *ip12 *ip13(4) * ip14(16)*ip15(16)

& ip16(l6),ip17(16),ip18(16),ip19(16),ip2G(16)
character icom*1,id*1/keyword*1(10/7)^kind*1
dimension newd12)*newvaL(16)*realval(20)

equivalence (new(1)*ip14(1))

data ((keyword(i*j)*j=1*7)/i=1*10)
<S,/"R M ^"E"^"F M x"N"^"U"^"M"^" f%

V 'u' 'M'

APPENDIX C 251

fir
&
&
Of

Of

6
&
&

11 1"
,, 0 ,i

"n"
11 1"
u ^ u
"o"

/"Y"/
/"N"/
/"C"/
/"e"/
/ "u" /
/"y"/
/"n" /
/"c "/

11 T " ,
"T",

" m " ^

P -

r"E"

r"A"
p"n"
p"w"
r "e "
r "e"
p"a "

/ /
/"G".
/"L",
/ "u"^
/ " o " t
' '/"g"^

p
, " E "
r

' "m"
p " r "
P
P " e "
>

1* o "
/ r\ /

/"d"/

/ r /
/ /

in = 0
i t = 0
k e y = 0
i p I dc e = 9
i Iast=tf1

c
c FIND THE LAST NON-BLANK CHARACTER OF THE RECORD

do 10 i = i pi ace/80
ilast = i Last-1

1U if (icom(Uast) .ne. " ") go to 30
write (1 U * 2 0) i c o m

20 format (" THE FIELD CONTAINS ALL BLANKS"///1x/80a 1)
return

c
c FIND THt FIRST NON-BLANK CHARACTER IN THIS FIELD

30 ao 40 m=ip lace/i last
40 if (icom(m) .ne. " ") 90 to 50

m= i last
50 i pIac e = m

c
c FIND THE LAST POSITION FOR THIS FIELD

do 60 ic = ipIace/i I ast
oO if (icom(ic) .eq. " / ") go to 70

i c = iI a s t
go to 80

70 ic=ic-1
c
c IDENTIFY THE KEYWORD

80 do 90 I l=iplace/ic
90 if (icom(ll) .eq. "=") go to 120
95 write (10/100) (icom(i> * i= ipIace/ ic)

100 format (" PATTERN: THIS FIELD IS NOT RECOGNIZED AS A KEYWORD"/
& //1x/73a1)

1 10 iplace=i c + 2
if (i last-iplace) 340/340/30

c
120 I 1 = 1 l-iplace + 1

if (II .gt. 8) go to 95
go to (95/95/95/95/130/95/200/220)/lI

c
c FIND THE TYPE OF DATA
130 do 140 i=1/4
140 if ((icom(ipIace+i-1) .ne. keyword(3/i)) .and.

6 (icom(ipIace+i-1) .ne. keyword (6 /i))) go to 95
i pIac e= i plac e + 5
if (i c-iplace) 110/145/145

252 GEOINDEX

145
150

160

1 70

1 SO
190

200
210

220
230

do 150 k = i p I ac e/i c
if (icom(k) . ne . "
go to 110
i pIace= k
do 170 i=1,7
if ((icom(ipIace+i-1)

& (i com(i pIac e+ i-1)
i t = 1
kind="i"
go to 110

190 i=1,5
((ic

) go to 160

.ne. keyword(4 / i)) .and.

.ne. keyword(9/i))) go to 180

do 190 i=1/5
if ((icom(ipIace+i-1) .ne. keyword(5/i)) .and.

& (icom(ipIace+i-1) .ne. keyword(1O/i))) go t
i t = 1
kind="o"

go to 110

FIMD THE REFERENCE NUMBER FOR THE NEW PATTERN
do 210 i=1/6
if ((icom(ipIace+i-1) .ne.

i (icom(ipIace+i-1) .ne.
key = 1
i p L ace= i p I ace + 7
go to 240

o 95

keywo rd(1/i))
keyword(6/ i)))

.and.
go to 95

FIND THE NUMBER OF DATA POINTS
do 230 i = 1/7
if ((icom(iplace + i-1) .ne.

& (icom(ipIace+i-1) .ne.
key = 2
iplace=iplac e + 8

keyword(2 / i)) .and.
keyword(7/i))) go to

240
250
260

270

2dO

290
300

310
320

i f
do
if
go
ipl
num
i f
1=0
do
1 = 1

cat
i f
wr i
for

go

(ic-iplace) 110/250/250
260 k= i pIac e/ i c
(icom(k) .ne. " ") go to 270
to 1 10
ace = k
= i c-i p I ace + 1
(num .gt. 15) go to 290

280 i=iplace/ic
+ 1
I) = i com(i)
I find_number (id/num/rnum/istat)
(i stat .eq. 0) go to 310
te (10/300) (icom(i)/i=iplace/ic)
mat (" PATTERN: THIS STRING HAS AN

* //1x/73a1)
to 1 10

UNRECOGNIZABLE CHARACTER"/

go to (320/330)/key
numref=rnum+0.5
i r=1
if ((num re f .ge. 14)
wri te (10/325)

.and. (numref ,le. 20)) go to 110

325

330

335

340

350

APPENDIX C 253

format (" PATTERN: THE REFERENCE NUMBER MUST BE FROM 14 TO 20")
return
numword=rnum+G.5
in = 1
if ((numword .eq. 1) .or. (numword .eq
.or. (numword .eq. 8) .or. (numword .eq

write (10/335)
format (" PATTERN: THE NUMBER OF WORDS MUST BE 1/2/4*8 OH 16")
return

2) .or. (numword
16)) go to 110

eq. 4)

if ((ir .eq. 1) .and. (in .eg. 1) .and. (it .eq.
write (10/350)
format (" THIS PATTERN WILL NOT BE PROCESSED"///

&" THERE IS SOME KEYWORD MISSING!!")
return

1)) go to 360

3oO i p I ace = 1
370 read (in1 / 380/end = 420) icom
380 format (80a1)

call interpret_data (kind/numback/reatvat)
if ((ipIace+numback-1) ,Le. numword) go to 400

385 write (10/390)
39J format (" PATTERN: THERE ARE TOO MANY DATA VALUES!!")

return

400 do 410 i=1/numDack
410 newval(iplace+i-1)=reatval(i)+0.5

iplace=iplace+numback
i f (i p I a ce-1-nurn word) 370/440/385

420 write (10/43u)
430 format (" PATTERN: EOF REACHED WHEN TRYING TO READ ANOTHER

RECORD! ! ")
stop

440 k=16/numword
iplace=(numref-14)*16+1
do 460 i =1/K
do 450 j=1/numword
new(iplace) = newv/al(j)

45J ipLace=ipIace+1
4 oU continue

write (10/470) numref
470 format (" NEW PATTERN ASSIGNED TO REFERENCE NUM6ER"/i3)

return
enu

SUBROUTINE NAME: PLOTOUTLINE

Author: Lawrence Balcerak
Purpose of the program: plotoutline reads and evaluates

keywords describing how a list of data points im­
mediately following should be plotted. It will then read
and interpret the data points and plot them.

Data base: Geoindex

Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call plotoutline
Arguments: None
Subroutines called: find_number, interpret—data,

plot, set_shade, tone
Common data referenced: icom(80), id(15), in1

254 GEOINDEX

Input files: Command statements used on unit 15
(file15)

Output files: tempW used on unit 10 (fileW) (for
messages)

Arrays used: keyword(6,6), jshade(16), xx(20), yy(20)
Called by: verplot
Error checking and reporting: The subroutine checks for

a blank data field, an invalid keyword, data value er­
ror, too many data values, end of file, and missing
keyword. If any such errors are found, an appropriate
error message is printed with, sometimes, the
character string involved.

Constants: None
Program logic:

1. Set initial values. keyword(6,6) contains the dif­
ferent keywords possible. There are three
keywords, each in both uppercase and lowercase.

Set noline = 0, which is the flag for the noline
option.

Set numpoint = 0, which is the number of points
in the outline being plotted. It will be evaluated
later.

Set numref = 0, which is the reference number of
the pattern for the shading option.

Set key = 0, which is the branching switch.
Set kind = "r", which indicates real number. It is

used when calling interpret data.
Set iplace = 9, which is the first position of record

that keywords can start.
Set Hast = 81, which is the position of the last

nonblank character of the record.
Set the arrays xx and yy = 0.

2. Starting at the last position of the record (80),
check in descending order for a nonblank
character. If there is one, go to step 4.

3. Subroutine prints the error message:
THE FIELD CONTAINS ALL BLANKS

and returns to the calling program.
4. Find the first nonblank position in this field and set

iplace equal to this position.
5. For ic = iplace to Hast, find the end of the next

keyword by searching for a comma.
Set ic equal to one less than the position of the

comma or to Hast if no comma is found. This is the
position of the last character in this field.

6. If the characters are not NPOINT or npoint, go to
step 8.

7. Add 7 to iplace, the character position past the =.
Set key = 1. This is the branching switch used

later to indicate the number of points in the
outline. Go to step 14 to interpret the data value.

8. If the characters are not SHADE or shade, go to
step 10.

9. Add 6 to iplace, which is the character position
past the =.

Set key = 2. This is the branching switch used
later to indicate the reference number of shading.
Go to step 14 to interpret the data value.

10. If the characters are not NOLINE or noline, go to
step 12.

11. Set noline = 1. This is the flag to indicate that the
outline is not to be plotted. Go to step 13.

12. Subroutine prints the error message:
OUTLINE: THIS FIELD IS NOT RECOG­
NIZED AS A KEYWORD!

and prints the erroneous field.
13. Add 2 to iplace. This is the position where the next

keyword could start. If there are more characters
to check, go to step 4.

14. If the comma immediately follows the =, go to step
13.

15. Find the first nonblank character in this data field.
If there is one, set num equal to this position and

go to step 16.
If only blanks are in the data field, then set mum

= 0, and go to step 20.
16. Set iplace = num, which is the position of the first

nonblank character in this data field.
Find num, which is the number of characters in the

data field. If num is greater than 15, go to step 19.
The field is too long.

17. Place the character string in the array id.
Call find number to find mum, which is the

numerical equivalent of the string.
18. If the error return code, is tat, is equal to 0, go to

step 20. A nonzero value indicates an error of
some kind in translation.

19. Subroutine prints the error message:
OUTLINE: THIS STRING HAS AN UNREC­
OGNIZABLE CHARACTER

along with the erroneous data field.
Go to step 13 to examine the next data field, if any.

20. On the basis of the value of key, go to step 21 (key =
1) or go to step 22 (key = 2).

21. Set numpoint = mum. This is the number of data
points.

Go to step 13 to examine the next data field (if any).
22. Set numref = mum. This is the reference number

for the new pattern.
Go to step 13 to examine the next data field (if any).

23. If numpoint is greater than 0, go to step 25. A zero
value indicates that the npoint keyword was not
present.

24. Subroutine prints the error message:
OUTLINE: THE NUMBER OF POINTS WAS
NOT GIVEN! THE OUTLINE WILL NOT BE
PLOTTED

and returns to the calling program.
25. Set iplace = 1, which is index for realval. It always

indicates the next value to use.

APPENDIX C 255
26. Read a data record into /com. If EOF, go to step 31.

Call interpret—data to evaluate all data fields on
the new record.

27. If the number of values already processed plus the
number just received from interpret—data is less
than or equal to the total number of data values
required, numpoint, go to step 29.

28. Subroutine prints the error message:
OUTLINE: THERE ARE TOO MANY DATA
VALUES!!

and returns to the calling program.
29. Place the returned values into the arrays xx and yy

using iplace as an index counter.
30. If there are more data values to be interpreted, go

to step 26 to read another record. If there are too
many data values to be interpreted, go to step 28.
If the number of values interpreted equals num­
point, go to step 32.

31. Subroutine prints the error message:
OUTLINE: EOF REACHED WHEN TRYING
TO READ ANOTHER DATA RECORD!!

along with a list of the arrays xx and yy.
Return to the calling program.

32. If noline is equal to 1, go to step 35. The outline is
not to be plotted.

33. Call plot to move with pen up to the first coordi­
nate.

Call plot to move with pen down from point to point
through the coordinate arrays.

34. Subroutine prints the message:
OUTLINE PLOTTED

35. If numref is equal to 0, go to step 38. A zero value
signifies no shading is to be done.

36. Call set_shade to place the 16 words that corres­
pond to the shading pattern identified by the
reference number, numref, into the array jshade.

37. Call tone to set the shading pattern to that con­
tained in jshade.

Call tone to shade the outline.
Subroutine prints the message:

OUTLINE SHADED
38. Return

10

20

30

subroutine p lot out I i ne
common /com and/ icom(80)/id(15)/isym/in1/in2
character icom*1 /id*1/keyword*1 (6/6)/kind*1
dimension jshade(16)/xx(20)/yy(20)/realval(20)
data ((keyword(i/j)/j=1/6)/i=1/6)

V / *• tki •• " D •• "A " " T •• " M " " T "6f / N/r/U/1/N/ I /
II " '* AH/A

& " n "/ " p" r " o" / " i " / "n " / " t " /
& " s "/ "h "/ "a" /"d" / "e "/ " '*/
& II _ II II _ II II I It M • II II _ II I* A II /

n/o*l/i/n/e/

no I i ne = 0
numpo i n t = 0
numref =0
key = 0
kind="r"
i p I ace = 9
i last=81
do 5 i=1/20
xx (i) =0.
yy(i)=0.

CHARACTER ON THE RECORDFIND THE LAST NON-BLANK
do 10 i = i place/ 3U
i last = i last-1
i f (icom(i last) .ne. " M)
write (1 0/20) i com
format (" THE FIELD CONTAINS
return

go to 30

ALL BLANKS"///1x/80a1)

FIND THE FIRST NON-BLANK
do 40 m = iplace/i I ast

CHARACTER IN THIS FIELD

256 GEOINDEX

40

50

60

70

30
90

100
110

120

140
150

160

170
180
190

195

if (icom(m)
m = iLast
i pIac e = m

.ne .) go to 50

CHARACTER IN THIS FIELD

go to 70

FIND THE LAST NON-BLANK
do 60 ic = ipI ace ,iLast
if (icom(ic) .eq. ",")
i c = i t as t
go to 80
i c= i c-1

IDENTIFY THE KEYWORD
do 90 i=1,6
if ((icom(ipIace + i-1) .ne. keyword(1 * i))

«i (i com (i p I ac e + i -1) .ne. key word (4 * i)))
i p L ac e= i p L ace+7
key = 1
go to 170

. and.
go to 100

do 110 i=1,5
if ((i com(i plac e + i-1)

(i com(i pIac e + i-1)
i plac e= i pIac e+6
key = 2
go to 170

do 130 i=1,6
if ((i com(ip L ac e + i-1)

(icom(iplace+i-1)
no L ine=1
go to 160

.ne . keyword(2,i))

.ne. key word(5,i)))
. and.
jo to 120

.ne . keyword(3,i))

.ne. keyword(6,i)))
.and.
go to 140

write (10,150) (icom(i),i = ipiace, ic)
format (" OUTLINE: THIS FIELD IS NOT
& /,1x,73a1>

i pIace= i c + 2
if (i last-iptace) 260,260/30

FIND THE FIRST POSITION FOR THIS DATA FIELD
if (ic-iptace) 160,180,180
do 190 num=ipi ace,ic
if (icom(num) .ne. " ") go to 195
rnum=0.
go to 230

i p L ace = num
num = i c-i p I ac e + 1
if (nutn .gt. 15) go to 210
1=0
do 200 i=iptace,ic

200 id(l) = i com(i)
call find_number (id,num,rnum,istat)
if (istat .eq. 0) go to 230

210 write (10,220) (icom(i),i=ipi ace,ic)

RECOGNIZED AS A KEYWORD!",

APPENDIX C 257

220 format (" OUTLINE: THIS STRING HAS AN UNRECOGNIZABLE CHARACTER"/
& //1x/73a1)

go to 160
c
230 go to (240/250)/key
240 numpoint=rnum+0.5

go to 160
250 numref=rnum+0.5

go to 160
c
260 if (numpoint .gt. 0) go to 280

write (10/270)
270 format (" OUTLINE: THE NUMBER OF POINTS IS NOT GIVEN!"///

&" THE OUTLINE WILL NOT BE PLOTTED.")
return

c
280 iplace=1
285 read (in1/290/end=340) icom
290 format (80a1)

call interpret_data (kind/numback/reaLvaL)
if ((numback + ipLace-1) .Le. (2*numpoint)) go to 320

330 write (10/310)
310 format (" OUTLINE: THERE ARE TOO MANY DATA VALUES!!")

return
c
320 do 330 i=1/numback/2

xx(iplace)=realvaL(i)
yy(iplace)=realvaL(i+1)

330 ip I ace=ipi ace + 1
if (iplace-1-numpoint) 285/360/300

340 write (10/350) (xx(i)/yy(i)/i=1/20)
350 format (" OUTLINE: EOF REACHED WHEN TRYING TO READ"///

&" ANOTHER DATA RECORD!!"///20(2f10.3))
return

c
360 if (noline .eq. 1) go to 380

call plot (xx(1)/yy(1)/3)
do 370 i=1/numpoint

370 call plot (xx(i)/yy(i)/2)
write (10/375)

375 format (" OUTLINE PLOTTED")
380 if (numref .eq. U) go to 390

call set.shade (numref/jshade)
call tone (0 . /O./jshade/-16)
call tone (xx/yy/numpoint/1)
write (10/385)

385 format (" OUTLINE SHADED")
390 return

end

258 GEOINDEX

SUBROUTINE NAME: FIND_OCTAL_NUMBER
Author: Larry Balcerak
Purpose of the program: find_octal_number finds the

numeric value of a string of ASCII characters that
represent an octal number.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call fincL_octal_number (id,num,-

knum,istat)
Arguments:

id -The array of characters to be changed to a number
num-The number of characters to be changed
knum-The integer number that is returned
1st at-The error return code (0 = no error; 1 = some

kind of error in translation.)
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used:

id(15) -Contains the characters to be used
karacterfd)- Contains all possible legitimate octal

characters
Called by: interpret—data
Error checking and reporting: Checks for too many

characters and invalid characters. Any error causes
the error return code to be set to 1 and a return to the
calling program.

Constants: None
Program logic:

1. Set inital values:
islgn = 0 (flag for negation).
istat = 0 (the error return code).
knum = 0 (the returned integer number).

2. If num is greater than 12, go to step 3. If num is
equal to 12, go to step 4. If num is less than 12, go
to step 6.

3. There is an error-either an invalid character or too
many characters.

Set istat = 1 (indicates an error). Return to the call­
ing program.

4. If the octal character is not equal to 4, 5, 6, or 7, go
to step 6.

5. Set Islgn = 1. An octal character value of 4 or more
indicates a negative value because it has a 1 in the
leftmost bit.

Do steps 6 through 10 for each character in turn (j =
l,num).

6. Set k = num -j (the exponent for the octal number
that represents the number times 8 raised to the
kth power).

7. Search the array karacter for a match. No match in­
dicates an error; go to step 3. If there is a match, i
is one more than the value of the character being
examined.

8. If islgn is greater than 0, go to step 10.
9. Add the numeric value represented to knum.

Go back to step 6 to examine the next character (if
any).

10. This is a negative number and is stored in two's
complement. The two's complement of an octal
number n is (7 -n). Add the complementary value
to knum. Go back to step 6 to examine the next
character (if any).

11. If islgn is equal to 0, go to step 13.
12. This must be a negative number. Add 1 to knum

(two's complement).
Change the sign of knum.

13. Return

subroutine f i nd_oc t a l_number (i a,num,knum, i s t at)

character i d * 1 (1 5) ,k ar ac t e r*1 (8)

data (k a rac t er (i) , i =1 t 8)
/ " 0 " / " 1 " , " 2 " " " " " " " " " " "3 " , " 4 7 " /

i stat = 0
knum=0

if (num-12) 30,20,10

TOO MANY CHARACTERS FOR AN OCTAL NUMBER
1U istat=1

return

20

APPENDIX C

TWELVE CHARACTERS, CHECK FOR NEGITIVE NUMBER
if ((id(1) .ne. "4") .and. (id(1) .ne. "5") .and.

«. .and. (id(1) .ne. "7")) go to 30
i s i gn = 1

30 do 70 j=1*num
K = n u nu - j
do 40 i=1*8

40 if (id(j) .eq. kdracter(i)) yo to 50

UNKNOWN CHARACTER
go to 10

50 if (i s i j n .yt. 0) go to 60
knum=knum-Ki-1) *8**k
go to 7u

60 knum=knum+(8-i) *8**k
?Q cont i nue

if (isign .eq. J) go to 80
knum= knum + 1
knurt»=-knum

80 return
end

259

(id(1) .ne. "6")

SUBROUTINE NAME: FIND_NUMBER

Author: Lawrence Balcerak
Purpose of the program: find_number finds the

numeric value of a string of ASCII characters
representing either a real or integer value.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call find_number (id,num,rnum,istat)
Arguments:

/c/-The array of characters to be changed to a
number, each element containing one character

num-The number of characters to be changed; max­
imum number of characters, 15

mum-The real number that is returned
is tat-The error return code: 0 = no error; 1 = some

kind of error in translation
Subroutines called: None
Common data referenced: None
Input files: None
Output files: None
Arrays used: None
Called by: change origin, change symbol,

change width, interpret—data, newpattern, plot-
file, plotlegend, plotoutline, scale

Error checking and reporting: The subroutine checks for
invalid characters, too many signs (+ or -), and too
many decimal points. Any error causes the error

return code to be set to 1 and a return to the calling
program.

Constants: None
Program logic:

1. Set intital values:
mum = 0 (the returned real number).
nsign = 0 (the number of sign characters).
isign = 0 (flag for negation).
idot = 0 (the number of decimal points).
is tat = 0 (the error return code).
if actor = 0 (the number of decimal places in the

final value).
Do steps 2 through 9 for i = 1, num. These steps

identify the character and set appropriate flags,
counters, and values.

2. Search through jascii for a character match. If
there is a match, set key equal to the index
number and go to step 3. Otherwise, this is an in­
valid character; go to step 15.

3. If key is greater than 10, go to step 5. This
separates the numeric characters from the others.

4. Subtract 1 from key. key now has the value of the
character.
Multiply mum by 10 and add key. This gives the
value of one more digit to mum).
Go to step 2 to examine the next character (if any).

5. Subtract 10 from key.
Go to step 4, 6, 7, or 8, depending on the value of
key.

260 GEOINDEX

6. Set isign = 1, which is the flag for negative value.
7. Add 1 to nsign, the number of signs found. If nsign

is greater than 1, go to step 15. Otherwise, go
back to step 2 to examine the next character, if
any.

8. Add 1 to idot, the number of decimal points found.
If idot is greater than 1, go to step 15.

9. Set ifactor = num - /, which is the place for the
decimal point in the final value. Go back to step 2
to look at the next character, if any.

10. If ifactor equals 0, go to step 12. The decimal point
does not have to be moved.

11. Move the decimal point in mum to the left by ifac­
tor places.

12. If isign equals 0, go to step 14. Check for negation.
13. Change the sign of rnum.
14. Return to the calling program.
15. Set istat = 1, which indicates some kind of error in

translating the data string.
16. Return.

subroutine find.number(id/num/rnum/i stat)

character id*1(15) f jascii*1(14)

data (jascii(i),i=1,14) /"O", "1" /" 2" ,"3" /" 4","5" ,"6",
on-711 "R" "o" " " "—" •• 4.•• ** "y

rnum=0.
ns i gn = 0
i s i gn = 0
idot=0
i stat = 0
ifactor=0

IDENTIFY THE CHARACTER
ao 100 i =1/num
do 30 key=1/14

30 if (id(i) .eq. jascii(key)) go to 40
go to 130

40 if (key .gt. 10) go to 50
45 key=key-1

rnum=rnum*10.+key
go to 100

50 key=key-10
go to (45,60,70/fcO),key

60 i s i gn = 1
70 nsign=nsign+1

if (nsign .ge. 2) go to 130
go to 100

30 idot=idot+1
if (idot .ge. 2) go to 130
i fa ct or=num-i

100 cont i nue

if (ifactor .eq. 0) go to 110
rnum=rnum/(10.**i factor)

110 if (isign .eq. 0) go to 120
rnum=-rnum

120 return
ERROR FLAG

130 i stat = 1
return
end

APPENDIX C 261

SUBROUTINE NAME: SET_SHADE
Author: Lawrence Balcerak
Purpose of the program: Given the reference number of

a shading pattern, set_shade will return an array
that will produce that pattern.

Data base: Geoindex
Computer: Honeywell series 60 (level 68)
Operating system: Multics
Calling sequence: call set_shade (numref,j shade)
Arguments:

numref-The reference number being processed
/s/7ac/e(76)-The 16-word array containing values

whose bit arrangement forms some pattern.
Subroutines called: None
Common data referenced: Some entry in I pat I or I user-

pat/ depending on the value of numref
Input files: None
Output files: None
Arrays used: new(118), kold(136)
Called by: set shade
Error checking and reporting: A check is made for

numref to range from 1 to 20. Any value outside this
range gives the default value of 1 for numref.

Constants: None
Program logic:

1. new(1) is set equivalent to ip11, and kold(1) is set
equivalent to ipl(1).
This causes one array to overlay each entry in a
common block and thereby enables the program to
access the whole block by just changing the index
for the array.

2. If numref is outside the range 1-20, set numref = 1,
which is the default value.

3. If numref is greater than 10, go to step 8. If numref

has a value from 5 to 10, go to step 6. If numref
has a value of 3 or 4, go to step 5.

4. To get here, numref must be equal to 1 or 2.
Compute the index for iplace. Set numword =
16, which is the number of words in the sequence
that completes one pattern. Go to step 7.

5. The reference number must be 3 or 4 to reach this
step.

Compute iplace. Set numword = 4. Go to step 7.
6. The reference number must be 5 through 10 to reach

this step.
Compute iplace. Set numword = 16.

7. Fill jshade with the pattern. If the pattern does not
take 16 words, repeat the pattern until all 16
words are given a value. The correct pattern is
found in kold by using the index iplace as a star­
ting point and reading numword words. Return to
calling program.

8. If numref has a value from 14 to 20, go to step 11. If
numref equals 13, go to step 10.

9. The reference number must be 11 or 12 to reach this
step.

Compute iplace. Set numword = 1. Go to step 12.
10. The reference number must be 13 to reach this step.

Set iplace = 3. Set numword = 4. Go to step 12.
11. The reference number must be 14 through 20 to

reach this step.
Compute iplace. Set numword = 16.

12. Fill jshade with the pattern. If the pattern does not
take 16 words, repeat the pattern until all 16
words are given a value. The correct pattern is
found in new by using the index iplace as a start­
ing point and reading numword words.

Return to the calling program.

suuroutine set_shade (numref/jshade)
common /pat/ ip1(16)/ip2(16)/ip3(4) * i p 4(4) / i p 5 (1 6) /

S ip6(16),ip?(16),ip8(16),ip9(16),ip10(16)
common /userpat/ ip11 /ip12 /ip13(4) *ip14(16)sip15(16)

& ip16(16),ip17(16),ip18(16),ip19(16),ip2U(16)
dimension jshade(16)/new(118)/kold(136)
equivalence (new(1)/ip11)/(kold(1)/ip1(1))

if ((numref .It. 1)
i f (numref .jt. 10)
if (numref . g e. 5)
if (numref . g e. 3)

THE REFERENCE NUMBER

.or. (numref
go to 60
go to 20
go to 10

IS 1 OR 2.

gt. 20)) numref=1

10

iplace=(numref-1) * 1 6 +1
numwo rd = 10
go to 30

THE REFERENCE NUMBER IS
iplace=(numref-3)

3 OR 4

262 GEOINDEX

numword=4
90 to 30

THE REFERENCE NUMBER IS 5
<>0 iplace= (numref-5) *16+41

numword=16

3D k = 16/num wo rd
1 = 0
00 50 i =1*k
do 40 j =1^numword
1 = 1 + 1
j shade(l) = koLd(i place)
i pIace= i pIace + 1
iplace=i place-numword
continue
return

THRU 10.

40

50

60 if (numref .ge. 14) go to SO
if (numref .eq. 13) go to 70

THE REFERENCE NUMBER IS 11 OR 12
iplace=(numref-11) + 1
numword =1
go to 90

THE REFERENCE NUMBER IS 13.
i pi ace = 3
numwo rd = 4
go to 90

THE REFERENCE NUMBER IS 14 THRU 20

1 00

110

i pi ace= (numref- 1 4) *1 6+7
numword= 1 6

K = 1 e>/ num wo rd
1 = 0
ao 110 i=1, k
do 100 j=1*numword
1=1 + 1
jshade(l)=new(iplace)
i p I ace= i pi ace + 1
iplace=iplace-numword
cont i nue
return
end

SUBROUTINE NAME: PLOTLEGEND

Author: Lawrence Balcerak
Purpose of the program: plotlegend reads a character

string and plots the string using parameters given by
the keywords of the command.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call plotlegend

Arguments: None
Subroutines called: find_number, letter, newpen
Common data referenced: icom(80), id(15), in1
Input files: Command statements used on unit 15

(filelS)
Output files: tempW used on unit 10 (file 10) (for

messages)
Arrays used: keyword(8,6), itext(60)
Called by: verplot

APPENDIX C 263

Error checking and reporting: The subroutine checks for
a blank data field, invalid keywords, data field too
long, data-value error, and missing keyword. If any
such errors are found, an appropriate error message is
printed with, in certain circumstances, the character
string involved.

Constants: None
Program logic:

1. Set initial values. keyword(8,6) contains the four
possible keywords.
Each of the four is in both uppercase and lower­
case.

Set iangle = 0. This is the default angle for plotting
the legend.

Set I width = 1. This is the default line width in dots.
Set ix = 0. This is the flag to indicate that the

oj-coordinate has been processed.
Set iy = 0. This is the flag to indicate that the

^/-coordinate has been processed.
Set ih = 0. This is the flag to indicate that the

height has been processed.
Set in = 0. This is the flag to indicate that the

number of characters has been processed.
Set key = 0. This is the branching switch.
Set iplace - 8. This is the first position that a

keyword can start.
Set Hast = 81. This is the position of the last

nonblank character of the record.
2. Starting at the last position of the record, 80, check

in descending order for a nonblank character. If
there is one, go to step 4.

3. The subroutine prints the error message:
THE FIELD CONTAINS ALL BLANKS

and returns to the calling program.
4. Find the first nonblank character in this field, and

set iplace equal to this position.
5. For ic = iplace to Hast, find the end of the next

keyword by searching for a comma.
Set ic equal to one less than the position of the

comma or to Hast if no comma is found. This is the
position of the last character in this field.

6. Search the field for the character =.
If one is found, go to step 9. Any keyword must

have this character.
7. Subroutine prints the error message:

LEGEND: THIS FIELD IS NOT RECOG­
NIZED AS A KEYWORD

along with the erroneous field.
8. Set iplace = ic + 2, one position past the comma.

If there are more characters to examine, go to step
4. Otherwise, go to step 35.

9. Set // equal to the count of characters including the
= of the keyword.

If // is greater than 7, go to step 7. No keyword is
greater than 8 characters.

10. If // is equal to 1, 3, 4, or 5, go to step 7. If // is equal
to 2, go to step 11. If // is equal to 6, go to step 15.
If // is equal to 7, go to step 19.

11. If the characters are X or x, go to step 12.
If the characters are Y or y, go to step 13. Other­

wise, go to step 7.
12. Set key = 1. This is the branching switch for the x

coordinate.
Set ix = 1. This is the flag to indicate processing of

the x coordinate.
Go to step 14.

13. Set key = 2. This is the branching switch for the y
coordinate.

Set iy = 1. This is the flag to indicate processing of
the y coordinate.

14. Add 2 to iplace, first position past the = character.
Go to step 23 to find the data value.

15. If the characters are not equal to NCHAR or nchar,
go to step 17.

16. Set in = 1. This is the flag to indicate processing of
the number of characters.

Set key - 3. This is the branching switch for
number of characters.

Add 6 to iplace, first position past the = character.
Go to step 23 to find the data value.

17. If the characters are not equal to ANGLE or angle,
go to step 7.

18. Set key = 4. This is the branching switch for the
angle.

Add 6 to iplace, first position past the = character.
Go to step 21 to find the data value.

19. If the characters are not equal to HEIGHT or
height, go to step 21.

20. Set h = 1. This is the the flag to indicate processing
of the height.

Set key = 5. This is the branching switch for the
height.

Add 7 to iplace, first position past the = character.
Go to step 23 to find the data value.

21. If the characters are not equal to LWIDTH or
Iwidth, go to step 7.

22. Set key = 6. This is the branching switch for the
line width.

Add 7 to iplace, first position past the = character.
23. Check for a comma immediately following the =

character.
If there is one, go to step 8 to check for the next

keyword.
24. Find the position of the first nonblank character in

the data field.

264 GEOINDEX

If the field is all blank, go to step 8. Otherwise, set
iplace equal to this position.

25. Compute num. This is the the number of characters
in this data field.

If num is greater than 15, go to step 27. The field is
too long.

26. Place the characters in the array id.
Call find number to evaluate the data. The re­

turned value is in rnumZ.
If the error return code, istat, is equal to 0, go to

step 28. A nonzero value indicates an error of
some type when interpreting.

27. Subroutine prints the error message:
LEGEND: THIS STRING HAS AN UNREC­
OGNIZABLE CHARACTER

Go to step 8 to examine the next keyword, if any.
28. Depending on the value of key, go to:

step 29 (key = 1); step 30 (key = 2); step 31 (key
= 3); step 32 (key = 4); step 33 (key = 5); step
34 (key = 6).

29. Set xx = mum (the x coordinate).
Go to step 8.

30. Set yy = mum (the y coordinate).
Go to step 8.

31. Set nchar = mum (the number of characters in the
legend).

Go to step 8.
32. Set iangle = mum (the angle of the legend).

Go to step 8.
33. Set height = mum (the height of a character).

Go to step 8.
34. Set I width = mum (the width of a line in dots).

Go to step 8.
35. Read the next record, which contains the text to be

plotted.
36. If the four keywords (x coordinate, y coordinate,

height, and number of characters) were proc­
essed, go to step 38.

37. Subroutine prints the error message:
THIS LEGEND CANNOT BE PLOTTED!
THERE IS SOME KEYWORD MISSING!!

It prints the line of text involved and returns to
the calling program.

38. Call newpen to set the line width (dots) to the new
value.

39. Set /scale equal to the number of sixteenths in the
height.

Call letter to plot the character string.
40. Subroutine prints the message:

LEGEND PLOTTED
41. Return.

suoroutine pLotlegend

common /comand/ icom(8G)/id(15)/isyin*in1*in2
character icom*1/id*1/keyword*1(8*6)
dimension itext(2(j)

data ((
&/
&
i
&

&
&
&

k
ii
if
ii
ii

ii
ii

ey wo
N"
A"
H"
L"

n
a
h"
I"

if

tf
/

ii
/
'"

'

/
ii

ii

ra(
C"/
N"/
E"/
w",
c"/
n"/
e"/
w"/

i /
"H
"G
"I
"I

9"i
"i

j > <
it i
ii i
if i
ii i

'
/

fi i
fi i

,j = 1
•A"/
•L"/
'G",
'D"/
*a"/

'g".
•d",

,6
"R
"E
"H
"T

e
"h
"t

)/i=1/8
fi if »i
if ii ii
"/"T"/
ii ii ii ii

' '
f f

II If 4. II

ii " h " /

)

i angIe = 0
I w i d t h = 1 .
i x = U
i y = J
ih = 0
i n = G
key = 0
i p I ace = 8
iIast=81

FIND THE LAST NON-BLANK CHARACTER OF THE RECORD

APPENDIX C 265

do 10 i = i pL a ce/60
i Last = i Last-1

10 if (icom(Uast) .ne. " ") go to 30
write (10/20) i c om

20 format (" THE FIELD CONTAINS ALL BLANKS"///1x/SOa 1)
return

c
C FIND THE FIRST NON-BLANK IN THIS FIELD

30 do 40 m=ipLace/i last
40 if (icom(m) .ne. " "> go to 50

m= i Last
50 i p Lace = m

C FIND THE LAST POSITION FOR THIS FIELD
do 6J ic=ipLace/iLast

60 if (icom(ic) .eq. "/"> go to 70
i c= i L as t
yo to 80

70 ic=ic-1
C IDENTIFY THE KEYWORD

60 do 90 LL=ipLace/ic
90 if (icom(LL) .eq. "=") go to 120
95 write (1U/1JO) (icom(i)/i=ipLace/ic)

100 format (" LEGEND: THIS FIELD is NOT RECOGNIZED AS A KEYWORD"/
& //1x/73a1)

110 ipLace=i c+2
k e y = 0
if (iLast-ipLace) 390/390/30

c
120 L L = lL-ipLace-H

i f (I I .gt . 7) go to 95
go to (95/130/95/95/95/170/210)/ll

C FIND THE X-VALUE OR THE Y-VALUE
130 if ((icom(iplace) .eq. "X") .or.

a, (icom(iplace) .eq. "x")) go to 140
if ((icom(ipLace) .eq. "Y") .or.

« (icom(ipLace) .eq. "y")) go to 150
90 to 95

140 key=1
ix = 1
go to 160

150 key = 2
iy = 1

1oO ipi ace = ipiace + 2
go to 250

c FIND THE ANGLE OR THE NUMBER OF CHARACTERS
170 do 180 i=1/5
180 if ((icom(ipLace + i-1) .ne. keyword(1/i)) .and.

ir (i com (i p L ac e + i -1) .ne. key word (5/i))) go to 190
in=1
key = 3
i p L ace= i p L ac e+6
go to 250

190 do 200 i=1/5
200 if ((icom(ipLace+i-1) .ne. keyword(2/i)) .and.

266 GEOINDEX

6 (icom(ipIace+i-1) .ne. keyword(6*1))) go to 95
key = 4
i pIace= i p I ac e+6
go to ,250

c FIND THE HEIGHT OR THE LINE WIDTH
210 do 220 i=1*6
220 if ((icom(ipIace+i-1) .ne. keyword(3*i)) .and.

& (icom(ipLace + i-1) .ne. keyword(7 *i))) go to 230
ih = 1
key-=5
ip I ace=ipIace + 7
yo to 250

230 do 240 i=1*6
240 if ((icom(ipIace+i-1) .ne. keyword(4 *i)) .and.

i (icom(ipLace+i-1) .ne. keyword(8*1))) go to 95
key = 6
i p L a c e = i p L a c e + 7

250 if (ic-iplace) 110*260*260
c FINi) THE FIRST NON-BLANK CHARACTER FOR THIS DATA FIELD
260 do 270 num=ipLace*ic
270 if (icom(num) .ne. " "> go to 280

yo to 110
280 i p L ace = num

num= i c-i pIac e + 1
ifCnum ,gt. 15) go to 300
1 = 0
do 290 i = i p I ac e* i c
1=1+1

290 id(L)=i com(i)
call find_numoer (i d*num* mum* i s t at)
if (istat .eq. 0) go to 320

300 write (10*310) (icom(i)*i=ipLace*ic)
310 format (" LEGEND: THIS STRING HAS AN UNRECOGNIZA3LE CHARACTER"*

& /*5x*73a1)
go to 110

c
320 go to (330*340*350*360*370*380)*key
330 x x = rnum

go to 110
340 yy= rnum

go to 110
350 nchar=rnum+0.5

go to 110
360 iangle=rnum+0.5

,go to 110
370 heicjht = rnum

go to 110
380 lwidth=rnum+0.5

go to 110
c
c
390 read (in 1 *395*end = 450) itext
395 format (20a4)

APPENDIX C 267

if ((ix .eq. 1) .and. (iy .eq.
& (in .eq. 1)) yo to 430

write (10/400)
400 format (" THIS LEGEND CANNOT BE

& " THERE IS SOME KEYWORD
write (10/420) itext

420 format (1x/20a4)
return

1) .and. (ih .eq. 1) .and

PLOTTED!"///
MISSING! !")

430 call newpen (Iwidth)
iscale=height*1o+0.5
call letter (nchar/isca I e/iang le/xx/yy/itext)
write (10/440)

440 format (" LEGEND PLOTTED")
450 ret urn

end

SUBROUTINE NAME: PLOTFILE
Author: Lawrence Balcerak
Purpose of the program: plotfile reads the name of a file,

opens that file, and plots it.
Data base: Geoindex
Computer: Honeywell 60 (series 68)
Operating system: Multics
Calling sequence: call plotfile
Arguments: None
Subroutines called: closef, fincLnumber, io_call, let­

ter, plot, set_shade, symbol, tone
Common data referenced: icom(80), id(15), isym, in1,

in2
Input files:

Command statements used on unit 15 (file15)
File to be plotted used on unit 16 (file16)

Output files: tempW used on unit 10 (file10) (for
messages)

Arrays used: keyword(18,9), ipat(20), ne(2),
jwhat(200), xx(2000), yy(2000), kplotfield(8),
jshade(16), kfield(8), char(S,5), text(5), iwhat (200,2)

Called by: verplot
Error checking and reporting: The subroutine checks for

a blank data field, blank file name, file name too long,
data field too long, invalid data character, invalid
keyword, missing keyword, and end of file reached. If
any such error is found, an appropriate error message
is printed with, in certain circumstances, the
character string involved.

Constants: None
Program logic:

1. Set initial values. keyword(18,9) contains the nine
keywords possible. Each is in both uppercase and
lowercase.

Set name equal to blanks. This will be the name of
the file to be opened for plotting.

Set height = 0.14, which is the default height of
each plotted character.

Set space = height divided by 5, which is the
space between lines of character.

Set numpat = 0, which is the number of the pat­
tern to use for shading.

Set noline = 0, which is the flag for the noline
option.

Set noname = 0, which is the flag for the process­
ing of the name keyword.

Set no select = 0, which is the flag for the select
option.

Set noclear = 0, which is the flag for clearing the
space around characters.

Set noshade = 0, which is the flag for the shade
option.

Set nochar = 0, which is the flag for character
plotting.

Set noselshade = 0, which is the flag for selecting
shades.

Set item = 0, which is the index counter used to
rotate through the different patterns.

Set i pi ace = 6, which is the first position that a
keyword can be found.

Set Hast = 81, which is the position of the last
nonblank character (initialized to one past the
end of the record).

Set ipat(i) = i for / = 1,10, which is the default se­
quence of patterns to rotate through.

Set ipat(i) = 0 for / = 11, 20, which indicates that
these patterns are not used in the rotation.

Set kplotfield(i) = 0 for / = 1,8, to indicate which

268 GEOINDEX

of the eight character fields from the header card
are to be plotted and in what order.

2. Starting at the last position of the record (80),
check in descending order for a nonblank
character.

If there is one, go to step 4.
3. Subroutine prints the error message:

THE FIELD CONTAINS ALL BLANKS
and returns to the calling program.

4. Find the first nonblank character in this field and
set iplace equal to this position.

5. For ic = iplace to Hast, find the end of the next
keyword field by searching for a comma.

Set ic equal to one less than the position of the
comma or to Hast if no comma is found. This is
the position of the last character in this field.

6. If the characters in the keyword are not NAME or
name, go to step 22.

7. Add 5 to iplace, the first position past the =
character.

8. Set iplace equal to the first nonblank character in
the data field.

If the field is all blank, set iplace equal to ic, which
is the last character in the field.

9. Compute m, the number of characters in the data
field.

Compute k, the number of characters in the record
that lie before this data field.

If m is greater than 0, go to step 11. A zero value
would occur with an all blank field or when a
comma immediately follows the = character.

10. Subroutine prints the error message:
NAME HAS NO CHARACTERS!!

Go to step 18 to examine the next keyword, if any.
11. If m is less than or equal to 20, go to step 13.
12. Subroutine prints the error message:

NAME IS MORE THAN 20 CHARACTERS
LONG!!

along with the erroneous field.
Go to step 18 to examine the next keyword, if any.

13. Backspace the command file.
14. Compute fmtl, the format to be used in reading

the name of the file. This format must skip
spaces and read m characters from the record in­
to name(k).

15. Read the file name from the record.
16. Call io call to attach and open the file for input.

Use the value of in2 as the file number.
17. Set noname = 1. This is the flag to indicate that

the file name has been processed.
18. Set iplace equal to ic + 2, the first position past

the comma. This would be the first possible posi­
tion for the next keyword.

19. If there are more characters in the record to check,
go to step 4 to examine the next keyword.

20. If there is not another record containing
keywords, go to step 80 to read the select record,
if any.

21. Read the next record into icom(80).
If EOF, go to step 128. Set Hast = 81. Set iplace

= 1. Go to step 2 to interpret this record.
22. If the characters in the keyword are not HEIGHT

or height, go to step 31.
23. Add 7 to iplace, the first position past the =

character.
24. If there are not any characters in this data field, go

to step 18 to examine the next keyword, if any.
25. Find the first nonblank character in this data field

and set iplace equal to this position. If the field
is all blank, go to step 18 to examine the next
keyword, if any.

26. Compute num, which is the number of characters
in the data field.

If num is less than or equal to 15, go to step 28 to
interpret the data.

27. Subroutine prints the error message:
PLOT-HEIGHT: THIS FIELD HAS TOO
MANY CHARACTERS

along with the erroneous field.
Go to step 18 to examine the next keyword, if any.

28. Place the string of characters into the array id.
Call find_number to evaluate the data. The

returned value is in mum.
29. If the return error code, istat, is not equal to 0, go

to step 18 to examine the next keyword, if any. A
nonzero value indicates an error of some type
when translating.

30. Set height = mum.
Set space = height divided by 5. Go to step 18 to

examine the next keyword, if any.
31. If the characters of the keyword are not PA TTERN

or pattern, go to step 51.
32. Add 8 to iplace, which is the first position past the

= character.
Set kount = 0, the counter for the number of pat­

tern reference number being interpreted.
33. If the data field has no length, a comma follows the

=, go to next step. Otherwise, go to step 35.
34. The subroutine prints the error message:

PLOT-PATTERN: THE PATTERN COUNT
HAS AN ERROR!!

along with the erroneous field.
Go to step 18 to examine the next keyword, if any.

35. Find num, the position of the first nonblank
character in this field.

If there is a nonblank character, go to step 38.

APPENDIX C 269

36. If kount = 0, go to step 34. This indicates an all-
blank field for the count of numbers following.

37. The subroutine prints the error message:
PLOT-PATTERN: THE FIELD CONTAINS
AN ERROR AND WILL BE SET TO THE
DEFAULT VALUE

along with the erroneous field.
Go to step 46.

38. Set iplace = num, which is the first nonblank posi­
tion of the data field.

39. Compute the number of characters in the data field
and store in num.

If num is less than or equal to 15, go to step 41.
40. If kount is equal to 0, go to step 34. This should be

the pattern count.
Go to step 37. There is an error in a pattern

reference number.
41. Place the character string into the array id.

Call find number to evaluate the data. The
returned value is in mum.

If the return error code, istat, = 0, go to step 43. A
nonzero value indicates an error of some sort
during the interpretation.

42. If kount = 0, go to step 34. This is the pattern
count that has an error. Otherwise, go to step 37.

43. If kount is greater than 0, go to step 45.
44. Set num pat = mum. This is the count of the pat­

tern reference numbers that follow.
Go to step 46.

45. Set ipat(kount) = mum. Store the pattern
reference number just translated.

46. Add 1 to kount.
If kount is less than or equal to numpat, go to step

48.
47. Zero out the rest of the ipat array.

Go to step 18 to examine the next keyword, if any.
48. There are more numbers to translate.

Set iplace = ic + 2, the first position past the
comma (if there was one).

If /7asf is less than or equal to iplace, go to step 47
because there are no more characters to inter­
pret on this record.

If Hast is greater than iplace, there is an error in
the command file because the plot option and
value must be on the same record.

49. Set iplace equal to the first nonblank character of
this data field. There must be at least one.

50. For ic = iplace to /7asf, find the end of this
keyword by searching for a comma.

Set Ic equal to one less than the position of the
comma or to Hast, if no comma is found. This is
the position of the last character in this field.

Go to step 35 to interpret the next data field.

51. If the characters of the keyword are not TEXT-
FIELD or textfield, go to step 69.

52. Add 10 to iplace, first position past the =
character.

Set kount = 0, which is the counter for the number
of text fields being interpreted.

53. If the data field has no length (a comma follows the
=), go to the next step. Otherwise, go to step 55.

54. Subroutine prints the error message:
PLOT-TEXTFIELD: THE FIELD COUNT
HAS AN ERROR!!

along with the erroneous field.
Go to step 18 to examine the next keyword, if any.

55. Search for the first nonblank character in this data
field, and set num equal to this position. If such a
character is found, go to step 58.

56. If kount equals 0, go to step 54. This would be an
all-blank data field for the number of text fields
count.

57. Subroutine prints the error message:
PLOT-TEXTFIELD: THIS FIELD CON­
TAINS AN ERROR AND WILL NOT BE
PLOTTED!!

along with the erroneous field.
Go to step 65 to examine the next number, if any.

58. Set iplace = num, the first nonblank character in
this field.

Compute num, which is the number of characters
in the data field.

If num is less than or equal to 15, go to step 60.
59. If kount = 0, go to step 54. Otherwise, go to step

57.
60. Place the characters in the array id.

Call find_number to evaluate the data. The
returned value is in rnum.

If the error return code, istat = 0, go to step 62. A
nonzero value indicates an error of some type.

61. If kount = 0, go to step 54. Otherwise, go to step
57.

62. If kount is greater than 0, go to step 64.
63. Set num field = rnum, which is the count of text-

field numbers that follow.
Go to step 65.

64. Set num = rnum.
Set kplotfield(num) = kount. The array kplot-

field contains numbers indicating the order in
which the character fields from the header card
will be plotted. If kplotfield(num) is blank or
zero, there will be no plotting. If value is other
than blank or zero, the text field will be plotted.

65. Add 1 to kount, which is the next sequence
number.

If kount is less than or equal to numfield, go to

270 GEOINDEX

step 67. There are more numbers in this se­
quence to interpret.

66. Set nchar = 1, which is a flag indicating that the
textfield option is to be used. In other words,
there are character fields to be plotted.

Go to step 18 to examine the next keyword, if any.
67. Set iplace = ic + 2, the first position past the

comma.
If there are no more characters left in this record,

go to step 66.
68. Search the remainder of the string for a comma.

Set ic equal to one less than the position of the
comma or to Hast if no comma is found.

Go to step 55 to interpret this data field.
69. If the characters are not NOLINE or noline, go to

step 71.
70. Set noline = 1. This is a flag to turn on the noline

option.
Go to step 18 to examine the next keyword, if any.

71. If the characters are not SELECT or select, go to
step 73.

72. Set noselect = 1. This is a flag to turn on the
select option.

Go to step 18 to examine the next keyword, if any.
73. If the characters are not REFCLEAR or refclear,

go to step 75.
74. Set noclear = 1. This is a flag to indicate the clear­

ing of the area around reference number is to be
done.

Go to step 18 to examine the next keyword, if any.
75. If the characters are not SHADEALL or shadeall,

go to step 77.
76. Set noshade = 1. This is a flag to turn on the

shading options for all outlines.
Go to step 18 to examine the next keyword, if any.

77. If the characters are not SELSHADE or selshade,
go to step 79.

78. Set noshade = 1.
Set noselshade = 1. These two flags will tell the

program to shade only those outlines that have
pattern reference numbers listed in the selected
outlines.

Go to step 18 to examine the next keyword, if any.
79. The variable did not match any valid keyword.

The subroutine prints the error message:
PLOT: THIS KEYWORD IS NOT VALID!!

along with the erroneous field.
Go to step 18 to examine the next keyword, if any.

At this point in the program, all keywords have been
read and evaluated. Next, the file of selected outlines
is read and then plotted.

80. Set kount - 1. This is the counter for the number
of feature numbers read in.

81. Read the next record from the command file as
characters.

If EOF, go to step 128.
82. If these characters are END PLOT or end plot,

this signifies the end of the information for plot­
ting this file.

Go to step 84.
83. Add 1 to kount.

Go to step 81 to read another record.
84. Subtract 1 from kount. The END FILE record is

not to be used.
85. If noname = 1, go to step 87. A zero value in­

dicates that the name keyword was not present
or had an error in it.

86. The subroutine prints the error message:
PLOT: NO PLOT FILE???

and returns to the calling program.
87. Read a header card from the plot file. The eight

fields are read here as a character string. This is
needed for comparison with the select outline
file.

If the EOF reached, go to step 128.
88. Backspace the plot file.
89. Read the header card as separate characters. This

is needed later in the program when plotting the
characters.

90. Backspace the plot file.
91. Read isfno, the number of pairs of coordinate

points.
92. Subtract 1 from isfno. The first position is a text

position.
93. Read the x text position, the y text position, and

the outline points.
94. Set isel = 0, which is a flag to indicate if outline is

in select file.
Set key = 0. If the outline is in the select file, key

will take on the value of the pattern reference
number given for that outline.

95. If kount equals 0, go to step 98. No outlines were
listed in the select outline file.

96. If this outline is in the file of selected outlines go to
step 97.

Otherwise, go to step 98.
97. Set isel = 1. This is a selected outline.

Set key = jwhat(i), which takes on the value of the
pattern reference number listed.

98. If noselect = 1 and isel = 0, go to step 87 to read
the points for another outline. This outline will
not be plotted.

99. If isfno is greater than 1, go to step 101.
100. This is a single point that has some character plot­

ted at that point.

APPENDIX C 271

Call symbol to plot the character.
Go to step 118 to plot the text, if any.

101. If noline equals 1, go to step 103. This indicates
that the outline will not be plotted.

102. Use the subroutine plot to plot the outline.
103. If noshade is not equal to 1, go to step 118. A

value of 1 indicates that the outline is to be
shaded.

104. If noselshade equals 1, and isel equals 0 or key
equals 0, go to step 118. A value of 1 for
noselshade indicates that the selective shading
option is in effect, and the shading pattern used
will be in the selective outline file. A value of 0
for isel indicates that this outline is not in the
selective file. A value of 0 for key indicates that a
0 value was in the pattern location for this
outline.

105. Set ne(1) = isfno; set ne(2) = 0.
This array contains the number of points in an
outline(s) when using the subroutine tone for
shading. If there is more than one outline, the
subroutine will alternate the shading with blank
areas, depending on the overlapping of the
outlines. This will be used to clear areas around
the text if needed.

Set numarea = 1, one area to start with.
106. If noclear equals 0 or nochar equals 0, go to step

114. Either the clearing option was not used or
no characters are wanted.

107. Set numvert = 0; set numhorz = 0. These are
counters for the number of characters that will
be plotted both vertically and horizontally. Do
steps 108-111 for / = 1, 8.

108. If kplotfield(i) equals 0, the tth field of the header
card will not be plotted; skip to the next value of
/.

109. Add 1 to numvert. There is one more line of text.
110. Set icheck = 5. A maximum of five characters is

in a field.
Check each character in this field. For each leading

blank or zero, subtract 1 from icheck. All
characters following nonzero characters are to
be considered significant, even a blank.

111. Set numhorz equal to the maximum of icheck and
numhorz. After checking all eight text fields,
numhorz will hold the maximum number of
characters in any line.

112. If numhorz equals 0, go to step 114. There are no
lines of text to plot.

113. Set k = isfno + 1. This is the first index position
used to store the outline to be cleared.

Compute the coordinates of the four corners of the
rectangle to be cleared and store in xx and yy im-

mediately after the main outline.
Set ne(2) = 4. Four points are in the cleared rec­

tangle.
Set numarea = 2, two outlines.

114. Add 1 to item, item is used as an index counter to
rotate through all the different patterns used.

If item is greater than numpat, set item = 1. The
total number of patterns used is numpat.

115. If ipat(item) is less than or equal to 0 or if
ipat(item) is greater than 20, go back to step
114. These would be invalid reference numbers.

116. Set num = ipat(item). This is the reference
number that comes from the sequence of pat­
terns.

If key has a value that represents a valid reference
number, set num = key. This reference number
takes the place of the default value.

117. Call seLshade to get the pattern values for this
reference number.

Call tone to set the pattern. Call tone to shade the
outline. It will also clear the text area if wanted.

118. If nochar equals 0, go back to step 87 to read the
next header card.

Do steps 119-125 for / = 1, 8.
119. Search kplotfield(f) for a value equal to /. This will

give the next text field to plot.
If there is a match, go to the next step. Otherwise,

search for the next value of /.
120. Count the number of leading blanks in the

character string, and set equal to num.
121. If there are all blanks or the numeric value of the

field is 0, go back to step 119 to search for the
next value of /.

122. Set n = 5 - num. This is the number of
characters to be plotted. Store the characters to
be plotted in itext.

123. Set posx = xpos. This is the x coordinate of the
first line of text.

Set iscale equal to the number of sixteens in the
height.

124. For each character in turn, call letter to plot the
character.

Add the height of a letter and an interletter space
to the x coordinate to locate the next character.

125. Subtract enough room from the y coordinate to
correctly position the next line of text.

126. Go to step 87 to read the next header card.
127. Subroutine prints the error message:

PLOT: END OF FILE REACHED WHEN
TRYING TO READ A DATA RECORD

Go to step 129.
128. Subroutine prints the message:

FINISHED PLOTTING
129. Call closet to close and detach the plot file. Return.

272 GEOINDEX

subroutine plotfile
common /comand/ i c om (80) / i d (1 5) / i sy m / i n 1 / i n2
character icom*1,id*1,keyword*1 (18/9)/ndme*20/fmt1*21/fmt2*21 /

& kfield*5(8)/name1*o/char*1 (6/5)/itext*1 (5)/iwhat*5(200/2)
external io_call (descriptors)
dimension ipat(20)/ne(2)/jwhat(200)/xx(2000)/yy(2000)/

6 kplotf i eld(8) ,j shaded 6)
Kt

fir)

i
6r

&

8*
i
6r

C,

&

&

&

&

*

&

Of

&

?y wo

"H"
" p "
II T II

"M"

S
"R"
"S"
"S"
"n"

Pti f. ii

ii ii

r
/
/
/
/
/
/
/
/
/
f
/
/
/
/

/

a v.
A

"E
"A
"E
"0

b
"E
"H
"E

a
e
a

"e

"e

> /
/

n
ii
ii /
ii /
/

ii
ii /
ii

/
/
/

ii /
'

ii

J t
1*1

"I

"T
"X
"L

L
"F
"A
"L

m
i

"x

"f

'J
/

ii
ii /
ii /
ii /
/

ii /
ii /
ii /

/
/
/

ii /
'

ii

= i /

"G"
ii j ii
II -r II

II r II

E '
ii /- ii
II pv II

"S"
•» e "

y
ii <. u
u .j u

•I _ n

y
/
/
/
/
/
/
/
/
/
/
/
/
f
'

/

) f

"H
"E
"F
"N

"L
"e
"H

e
"f

n

"L

i -
/

"/
ii
ii
"/

/
ii
ii
ii /

/
/
/

u

/

ii /

i /

"T
"R
"I
"E

1
"E
"A
"A

r
"i

e

"e

1 0

/
ii /
ii /
ii /
ii

f
ii /
ii
ii

/
/
t

ii

/

ii

>

ii
"N
"E
ii

"A
"L
ii p.

1 n
"e

"a

/
ii
ii
ii /
/
/

ii /
ii /
ii /

/
/
/

ii /
/

ii /

/
ii ii
ii ii
"L"/
„ „,

"R"/
"L"/
"E"/

/
/
/

" L " /

/

"r"/

/
ii ii /
ii ii
"D"/
„ » f

/
ii ii
ii ii /
ii ii

/
/
/

" ̂ i "d /
/

ii ii /

hei yht = 0.1 4
space = he i ght / 5.
numpa t = 10
no L i ne = 0
noname=Q
no se L ec t = i)
noc Lea r = 0
noshade=U
nocha r = 0
no set shade = U
i t em = 0
i p L ace = 6
i Last = 81
do 10 i = 1 /10

10 i pat (i) = i
do 20 i = 1 1 ,20

20 ipat (i) =0
do 30 i=1/8

30 kp.Lot f ie Ld(i) =0
c
c FIND rt-ib' LAST NON-BLANK CHARACTER ON THE RECORD

35 do 40 i = i p Lace/60
i Last = i Last-1

40 if (icom(ilast) .ne. " "> go to 60
write (10/50) icom

50 format (" THE FIELD CONTAINS ALL BL ANKS" / / / 1 x /80a 1)
return

APPENDIX C 273

C
C FIND THE FIRST NON-BLANK CHARACTER IN THIS FIELD

60 do 70 m=ipIace,ilast
70 if (icom(m) .ne. " ") go to 80

m= i last
60 iplace=m

C FIND THE LAST NON-BLANK CHARACTER IN THIS FIELD
do 90 ic=iplace,ilast

90 if (icom(ic) .eq. ",") go to 100
i c = i L as t

100
c
c
c
c

1 10
120

130

135

go to 110
i c = i c-1

IDENTIFY TH

NAME OF PLO
do 120 i=
if ((i c om (
& (i c om (
i p I ace= i p I
do 130 m=
if (i com (m
m=i c
ip 1 ace = m

E KEYWORD

T FILE
1,4
i p lac e + i -1
i pi ac e + i -1
ace + 5
i p I ac e, i c
) .ne. " "

)
)

)

.ne

.ne

30

keyword(1,i)) .and.
keywordC10,i))) go to 200

to 135

k= i piace-1
m= i c-k
i f (m .gt. 0) go to 145
write (10*140)

140 format ("NAME HAS NO CHARACTERS!!")
go to 170

145 if (,« . le. 20) go to 160
write (10*150) (icom(i)»i s K*m)

150 format (" NAME IS MOKE THEN 20 CHARACTERS LONG!!",/,1x,80a1)
go to 170

160 backspace in1
fmt2="(1h(,i2,3hx,a,i2,1h))"
if (m .It. 10) fmt2 = "(1h(,i2,3hx,a,i1*1h))"
encode (fmt1,fmt2) k*m
read (in1*fmt1) name
fmt1="(4hfiIe,i2)"
if (in2 .le. 9) fmt1="(5hfiIeO,i1)"
encode (name1*f:nt1> in2
call io.call ("attach"*name1*"vfile_ "*name)
call io.call ("open'^name 1 ^"s i ")
noname=1

c
c LOOK AT THE NEXT KEYWORD
170 i pIace= i c + 2

if (i last-iplace) 180,180,60
180 if (icom(ilast) .ne. ",") go to 790

read (in1,19u) icom
190 format (80a1)

i last = 81

274 GEOINDEX

i p I ace=1
90 to 35

c
c HEIGHT OF THE CHARACTERS
200 do 210 i=1/6
210 if ((icom(ip I ace + i-1) .ne. key word(2/i)) .and.

S (i come iplace+i-1) .ne. keyword(11/i))) go to 260
i pIace= i p I ace + 7

c
C CHECK FOR A VALID DATA WORD

if (ic-iplace) 170/220/220
22U do 230 num=ipI ace/ic
230 if (icom(num) .ne. " ") go to 240

go to 170
240 i p I ac e = num

num= i c-i p I ac e + 1
if (num ,le. 15) go to 260
write (10/250) (icom(i)/i = ipIace/ic)

250 format (" PLOT-HEIGHT: THIS FIELD HAS TOO MANY CHARACTERS"/
& //1x/70a1)

go to 170
260 1=0

do 270 i = i pIac e/i c
1 = 1 + 1

270 id(l) = i com(i)
call find_number (id/num/rnum/istat)
if (istat .ne. U) go to 170
height 3 rnum
space=height/5.
go to 170

c
C PATTERN SEQUENCE FOR SHADING
230 do 290 i=1/7
290 if ((icom(ip I ace + i-1) .ne. keyword(3/i)) .and.

& (icomCiplcice-H-1) .ne. keyword(12/i))> go to 470
iplace=iplac e + 8
kount =0
if (ic-iplace) 300/320/320

3JO write (10/310) (icom(i)/i = ipIace/ic)
310 formatC* PLOT-PATTERN: THE PATTERN COUNT HAS AN ERROR!!"/

& //1x/70a1)
go to 170

c
320 do 330 num=ipiace/ic
330 if (icom(num) .ne. " ") go to 350

if (kount .eq. 0) go to 300
335 write (10/340) (icom(i)/i = ip I ace/ic)
340 format (" PLOT-PATTERN: THE FIELD CONTAINS AN ERROR AND WILL

& dE SET TO THE DEFAOLT VALOE"///1x/7Oa1)
go to 400

35u i pIac e = num
num = i c-iplace + 1
if (num .le. 15) go to 360

APPENDIX C 275

if (kount .eq. 0) go to 300
90 to 335

c
360 1=0

do 370 i = i pLac e r \ c
1 = 1+1

370 id(L)=i com(i)
call find.number (i d/num/mum / i s t at)
if (istat .eq. 0) go to 360
if (kount .eg. 0) go to 300
go to 335

380 if (kount .gt. 0) go to 390
numpa t = rnum+0.5
go to AGO

390 ipat(kount)=rnum+0.5
400 kount=kount+1

if (kount .Le. numpat) go to 420
405 do 410 i = kount/2'J
410 ipat(i)=0

go to 170
c
420 ip Lace=i c + 2

if (ilast .Le. iplace) go to 405
do 430 m=ipLace/iLast

430 if (icom(m) .ne. " ") go to 440
m = i Last

440 i pL ac e = m
do 450 ic = ipLace / iLast

450 if (icom(ic) .eg. "/") go to 460
i c = i L as t
9o to 320

460 i c = i c-1
go to 320

c
C TbXT FIELDS TO Bt PLOTTED
470 do 480 i=1/9
4<iO if ((i com (i p L ac e + i -1) .ne. ke y wo rd (4 / i)) .and.

$ (icom(ipLace+i-1) .ne. Keyword(13/i))> go to 670
ipLace=ipLac e + 1U
kount=0
if (ic-ipLace) 490/510/510

490 write (10/500) (icom(i)/i=ipLace/ic)
500 format (" PLOT-TEXTFIELD : THE FIELD COUNT HAS AN ERROR!!")

go to 170
c
510 do 520 num=ipLace/ic
520 if (icom(num) .ne. " ") go to 550

if (kount .eq. 0) go to 490
530 write (10/540) (icom(i)/£=ipLace/ic)
540 format (" PLOT-TEXTFIELD:" THIS FIELD CONTAINS AN ERKOR AND

& WILL NOT BE PLOTTED!!")
go to 600

550 ipLace=num
num = i c-ip L ac e + 1

276 GEOINDEX

if Cnum .Le. 15) go to 560
if (Kount .eq. U) go to 490
go to 530

c
560 1=0

do 570 i=ipLace/ic
1 = 1 + 1

570 id(L)=icom(i)
call find.number (id/nurn/rnum/istat)
if Cistat .eq. J) go to 580
if (kount .eq. 0) go to 490
go to 530

530 if Ckount .gt. 0) go to 590
numfield=rnum+0.5
yo to 600

590 num=rnum+Q.5
kplot fi e IdCnum)=kount

600 kount=kount+1
if (kount .Le. numfield) go to 620

610 noc ha r = 1
go to 170

c
620 i p I ace= i c + 2

if (ilast .le. iplace) jo to 610
do 630 m = ipi ace/i last

630 if (icom(m) .ne. " ") go to 640
m= i Last

640 i p L ac e = m
do 650 ic = ipLace / iLast

650 if (icom(ic) .eq. "/") go to 660
i c= i L as t
go to 510

6oO i c = i c-1
go to 510

c
C MOLINE OPTION
67u do 680 i = 1/o
630 if (Cicom(ipLace+i-1) .ne. keyword(5/i)) .and.

i (icom(ipLace+i-1) .ne. keyword(14/i))) go to 690
no L i ne=1
go to 170

c
C SELECT OPTION
690 do 700 i=1,6
700 if ((icom(ipLace + i-1) .ne. key wora(6/i)) .and.

<i (i com C ip L ac e+ i-1) .ne. keyword(15,i))) go to 710
noseLect=1
go to 170

c
C CLEArt REFERENCE NUMBER
710 oo 720 1=1/6
720 if ((icom(ipLace+i-1) .ne. keyword(It i)) .and.

^ (icom(ipLace +i-1) .ne. key word(1o/i))) go to 730

APPENDIX C 277

noc tear=1
go to 170

c
c SHADE ALL OPTION
730 ao 740 i=1/8
741) if ((icom(ipIace + i-1) .ne. key wo rd (S/ i)) .and.

& (icom(ipIace+i-1) .ne. keyword(17/i))) go to 750
noshade=1
y o t o 1 7 0

c
c SHADE SELECTIVELY OPTION
750 do 760 i = 1/&
760 if ((icom(ipIace + i-1) .ne. keyword (9/i)) .and.

& (i com(ip I ac e-H-1) .ne. keyword (1 8/i))) yo to 770
noshade=1
nose Ishaoe = 1
13 o to WO

c
C NO MATCH FOR A KEYWORD
7?0 write (10/760) (icom(i)/i=ipiace/ic)
780 format (" PLOT: THIS KEYWORD IS NOT VALID!!")

^o to 170
c
c READ SELECT RECORDS AND END PLOT KEYWORD
790 kount=1
800 read (in1/&10) (iwhat(kount/i)/i=1/ 2)/jwhat(kount)
810 format (2a5/i5)

if (((iwhat(kount/I) .eg. "END P") .and. (iwhat(kount/2) ,eq.
"LOT; ")) , 0 r.((iwhat(kount/1) .eq. "end p") .and. (iwhat(kount/ 2)
,eq. "Lot; ")) 90 to 820
k o u n t = k o u n t + 1
go to 800

c
c START TO PLOT THE FILE
820 kount=kount-1

if (noname .eq. 1) go to 840
write (10/830)

830 format (" PLOT: NO PLOT FILE???")
ret jrn

c
c READ IN DATA y/ALOES FOR AN OUTLINE
840 read (in2/850/end = 1050) (kfie I d(i)/i = 1/8)
850 format (8a5)

oackspace in2
read (in2/855) ((char(i/j) /j = 1/5)/i = 1/8)

855 format (8(5a1))
backspace in2
read (in^/860) isfno

860 forfeit (15x/i5)
i s f no= i s f no-1
read (in2/870/end = 1030) xpos / ypos/(xx(i)/yy(i)/i=1/isfno)

870 format (12f6.3)
c

278 GEOINDEX

C CHECK FOR A MATCH WITH THE SELECTED FEATURES
i sel = 0
key =G
if (kount .eq. 0) go to 900
ao 830 i =1/kount

880 if ((kfieldd) .eq. iwhatCi/1)) .and. (kfield(3) .eq. iwhat(i/2)))
is, jo to 390
jo to 9UO

890 isel=1
key=jwhat(i)

c
c CHtCK IF THIS OOTLINE IS TO dt PLOTTED
900 if ((noselect .eq. 1) .and. (isel .eq. 0)) go to 840

c
c CHECK FOR SINGLE POINT

if (i sfno .gt . 1) goto 9o5
call symbol (xx(1)/yy(1)/height/isym/0./-1)
90 to 9o0

c
c CHECK FOR THE NOLINE OPTION
905 if (noline .eq. 1) go to 920

call plot (xx(1) /yy(1) ,3)
do 910 i =1/i s fno

910 call plot CxxCi)/yy(i) ,2)
c
C CHECK FOR SHADING
920 if (noshade ,ne. 1) go to 960

if ((noselshade .eq. 1) .and.
i ((isel .eq. 0) .or. (key .eq. 0))) go to 960

c
c CHECK FOR CLEARING THE REFERENCE AREA AROUND THE CHARACTERS

ne(1)=isfno
ne(2)=0
numarea=1
if ((noclear .eq. 0) .or. (nochar .eq. 0)) go to 950
numvert=0
numho r z = u
ao 940 1 = 1/8
if CkplotfieldCi) .eg. 0) go to 940
numv/ert=numvert + 1
i c hec k = 5
do 930 j=1,5
if ((cnar(i,j) .ne. " ") .and. (chard,j) ,ne. "0")) go to 935

930 icheck=icheck-1
935 if (icheck .gt. numhorz) numhorz=icheck
940 continue

if (numhorz .eq. 0) go to 950
k= i s fno*1
x x(k)=x po s-0.04
xx(k+1)=xx(K)
xx(k-*-2)=xpos-*-numhorz*heiyht-*-0.02-*-space
xx (K + 3) = xx (k-*-2)
yy (k)=ypos-0.04

APPENDIX C 279

yy (k + 2) =yy (k +1)
yy(k+3)=y/(k)
ne(2)=4
nurnarea = 2

c
C SHADE THE OUTLINE
950 it em= i t em-*- 1

if (item . g t . numpat) item=1
if ((ipat(item) .le. 0) .or. (ipat(item) .gt. 20)) go to 950
nu(n = ipat(item)
if ((key .gt. 0) .and. (key .Le. 20)) num=key
call set_shdde (num,jshade)
call t one (0 . ,0. t j shade ,-1 6)
call tone (x x ,y y ,ne,numa r ea)

c
C CHECK FOR CHARACTER PLOTTINb
9&0 if (nochar .eq. 0) go to 840

do 1025 i=1,8
do 970 j = 1,8

970 if (kplotf ield(j > .eq. i) go to 980
go to 1025

980 num=0
do 990 k = 1,5
if (char(j,k) .ne. " ") go to 1000

990 num=num+1
1000 if (Cnum .eq. 0) .or. (kfield(j) .eq. " 0")) go to 1U25

n= b-num
i f (n .eq. 5) go to 1 01 5
do 1010 m = 1,n

1010 i t e x t (m) =cha r (j ,m+num)
1015 posx=xpos

iscale=height*16+0.5
do 1020 k = 1,n
call letter (1 / i s ca I e/ 0, posx t y pos* i t e x t (k))

1020 posx = pos x + he i gh t •*• space
ypos=ypos-height -space

1025 cont i nue
go to 8AO

c
c END OF FILE REACHED
1030 write (10,1040)
1040 format ("PLOT: END OF FILE REACHED

& WHEN TRYING TO READ A DATA RECORD")
go to 1070

c
c ALL FINISHED
1050 write (10,1060) name
1060 format ("FINISHED PLOTTING ",a20)
1070 call closef (in2)

return
end

280 GEOINDEX

SUBROUTINE NAME: PATTERN

Author: Lawrence Balcerak
Purpose of the program: pattern sets the shading pat­

tern variables to user-defined values.
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call pattern
Arguments: None
Subroutines called: None
Common data referenced: I pat I

Input files: None
Output files: None
Arrays used: /p7(76), ip2(16), ip3(4), ip4(4), ip5(16)t

ip6(16), ip7(16), ip8(16), ip9(16), ip10(16) (shading
pattern arrays)

Called by: index_versatec, verplot
Error checking and reporting: None
Constants: None
Program logic:
1. Set all elements of the shading pattern arrays to

those integer values that will give the bit patterns
desired.

10

20
c

subroutine pattern
common /pat/ ip1(16)/ip2(16)/ip3(4)/ip4(4)/ip5(l6)/ipo(l6)/

4 ip7(16)/ip3(16)/ip9<16)/ip10<16>
do 10 1=1/4
ip3< i >=0
ip4(i)=0
continue
do 20 1=1/16
ip1 (i)=0
ip2(i)=J
ip5(i)=0
ip6(i)=0
ip7(i)=0
ip8(i)=0
ip9(i)=0
ip10(i)=0
cont i nue

ip1 (1)=4*16**4+1
ip1 (b) = 16*ip1 (1)
ip1 (9)=d*16**6+2*16**2
ip1 (13)=16*ip1 (9)

ip2(4)=ip1(1 3)
ip2(8)=ip1 (9)
ip2(12)=ip1 (5)
ip2(16)=ip1 (1)

ip3(1)=4*16*

ip5(1)=4*16**7
ip5(2)=16**8+16**7
ip5(4)=2*16**8-«-8*16**6
ip5(6)=ip5(2)
ip5(/)=ip5(1)
ip5(9)=l6**3

ip5(12)=8*16**3+2*l6**2
ip5(14)=ip5(10)
ip5(15)=ip5 (9)

APPENDIX C 281

ip7(4)=16**4+8*16
ip7(8)=4*16**8+4*16**7+2*16**6+16**4+l6**3+8*16
ip7(12)=4*16**8+2*16**6
ip7(1b)=ip7(8)

ip3(1)=ip6(1)
ip8(9)=ipb(1)

ip9(2)=ip5(2)
ip9(4)=ip5(1)
ip9(6)=ip5(2)
ip9(8)=4*l6**8+2*16**6+16**4+8*l6
ip9(10)=ip5(10)
ip9(12)=ip5(9)
ip9(14)=ip9(10)
ip9(16)=ip9(8)

ip10(2)=ip5(9)
ip10(4)=16**4+5*16**5+4*16**2+8*16
ip10(6)=ip10(2)
ip10(8)=4*1b**7-H6**3
ip10(10)=ip5(7)
ip10(12)=5*16**8+5*l6**7+2*16**b
ip10(14)=ip10(10)
ip10(16)=ip10(8)

return
end

PROGRAM NAME: PIN90

Author: Pearl Porter
Purpose of the program: pin90 plots map indices interac­

tively on the Tektronix terminal. The user has several
options: plotting the entire United States, plotting as
many as 10 individual States, plotting the grid file,
plotting input files from GRASP, and getting an
enlargement of a specific area.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: pin90
Arguments: None
Subroutines called: initt, anmode, erase, movabs,

dwindo, swindo, movea, drawa, hdcopy, finitt (all
Tektronix routines), io (Multics), grid, plocv, enlrg,
indiv

Common data referenced: x1, y1 , x2, y2
Input files:

stat90 used on unit 14 (file14), file of x, y coordinates
Files from GRASP used on unit 15 (file15), which plot

numbers, symbols, and outlines
Grid file used on unit 16 (fileW), which is used to plot

the grid on the map

Output files: None
Arrays used: None
Called by: None
Error checking and reporting: If program requests a

digit (1 or 2) from the user, it will loop until a number
(1 or 2) is typed in by the user.

Constants: None
Program logic:

1. Prompt:
NEED SYMBOL CODES? (ENTER Y FOR
YES)

If no symbol codes are needed, program goes to
step 4.

2. The symbols and their corresponding numbers will
be printed on the screen.

3. Prompt:
TAP 1 AND RETURN KEY WHEN READY

4. The screen will be erased.
5. Prompt:

ENTER SYMBOL NUMBER AND FILE TO
BE PLOTTED:

This refers to the input files from GRASP. As
many as five files and symbols may be entered.
They will be read into file15. Eight is the max­
imum number of characters for a file name.

282 GEOINDEX

6. In reference to the files just read, the user has three
options.

Prompt:
FOR SYMBOL AND NUMBERS (WITH
PLOTTING), TYPE 1
FOR SYMBOL AND/OR OUTLINE (NO
NUMBERS), TYPE 2
FOR NUMBERS ONLY (NO SYMBOLS OR
PLOTTING), TYPE 3

7. Screen is erased.
8. Define screen and virtual window.
9. The user is prompted by a series of questions at this

time because no communication can take place
between computer and user after the plotting
starts without destroying the screen. See steps
10-14.

10. Prompt:
ENTER TITLE FOR MAP:

11. Prompt:
TO PLOT INDIVIDUAL STATES, ENTER
1-FOR ENTIRE U.S. ENTER 2

12. Prompt:
TO PLOT COUNTIES ENTER 1 FOR SOLID
LINE, 2 FOR DOTTED LINE, ELSE ZERO

13. Prompt:
TO PLOT GRID, ENTER 1

14. Prompt:
IF YOU WANT A HARD COPY UPON COM­
PLETION, TYPE C

15. If the user entered 1 in response to step 11, the pro­
gram calls subroutine indiv. The program then
goes to step 19.

16. If the user did not enter 1 or 2 for step 11, a
message is printed on the screen:

AT THE PRESENT TIME, THE FILE YOU

WISH DOES NOT EXIST PLEASE ENTER 1
OR 2 FOR SECOND STATEMENT

Program returns to step 10. If 2 was entered, pro­
gram goes to next step.

17. The program writes the title for the map, draws the
borders, and uses Stat90, file14, to plot the
States.

18. If 1 was entered in response to step 13, program
calls grid subroutine and returns to next step.

19. If ///' = 0, program goes to 20 (///' = number of files
entered in step 5)

If ///' is not equal to 0, read first file name into file 15
and call subroutine plocv.

Continue this step until the number of files entered
in step 5 /// = number of files read into filel 5 ///'.

20. If C was entered in step 14 or 23, a hard copy will be
made automatically.

If nl = 1, go to step 26. If nl does = 1, this indicates
an enlargement or individual plotting has already
been completed or the option to do so has already
occurred.

22. Prompt:
FOR AN ENLARGEMENT OF PART OF
THIS PLOT, TYPE Y

23. Prompt:
FOR A HARD COPY AFTER ENLARGE­
MENT, TYPE C

24. nl = 1 indicates that an enlargement option has
been found.

25. If Y was entered for step 22, call subroutine enlrg
and upon return, go to step 19.

26. Detach and close files.

21

PIN90 *****

cPLOT MAP INDICES ON TETCTRONIX****
c U.S. Geological Survey
c Program name - pin90
c INPUT:
c stat90.pat = filelA

dimension lead(20),xx(6),yy(6)
dimension jsym(9),isymb(5)
external io (descriptors)
character filename*8(5)
common xl,yl,x2,y2

c
data jes/"y"/,kop/"c"/,iblk/" "/
data jsym/35,36,37,38,42,43,45,79, 111/
data izero/00/

APPENDIX C 283

c
call initt(960)

c
c

ichar=43
c
c ASSIGN AND OPEN FILES

call io ("attach","file14","vfile_ ","stat 90.pat","-append")
call io ("open","filel4","si")

c
call anmode
print ,"Need symbol codes? (enter y for yes) "
read (0,100)irep

100 format (al)
if (irep .ne. jes)go to 250
do 200 i-1,9
istb = jsym(i)
ile - jsym(i)*2**27

c The above computation was made to shift the symbol to the leftmo
\cst posit ion.

call anmode
write (0,150) istb,ile

150 format (2x,i3,3x , a 1)
200 continue
c Pause in execution so user can look at symbols and corresponding
\c numbers•

print ,"Tap 1 and return key when ready"
read (0,600)iredy

250 call erase
c call movabs(30,725)
c call anmode
c print ,"Enter state id number"
c read(0,300) istate
c300 format(aA)
c
c
c REQUEST INPUT FILE FOR PLOTTING
c
350 continue

kk = 0
iJJ-0
1J1-0
call anmode
call movabs(30,725)

400 print ,"Enter symbol number and file to be plotted: "
c iji will equal 1 more than the number of files read.

iji =* iji+1
read(0,450)isym,filename(iji)

450 format (12,a8)
if (isym .eq. izero) go to 500
isymb(iji)=isym
go to 400

c
500 continue

284 GEOINDEX

C
call movabs(30,625)
call anmode

c User is given an option as to what he wants on the map.
print ,"For symbol and numbers (with plotting), type I/

& For symbol and/or outline (no numbers), type 2/
& For numbers only (no symbols or plotting), type 3"

read (0,600) idee
call erase

c
c SET ORGIN ON PLOTTER
c

xl = .5
x2=23.
yl = l.
y2=16.

c Define virtual window
call dwindo(xl,x2,y1,y2)

c
c Define Screen window

call swindo(0,1023,0,780)
c
550 nl=0

call movabs(30,750)
call anmode

560 print ,"Enter title for map: "
read(0,570)lead

570 format (20a4)
print ,"To plot individual states enter l--for entire U.S. en

\cter 2"
read(0,600)istat

c print ,"To plot counties enter 1 for solid line,/
c 2 for dotted line, else zero "
c read (0,600) icoun
c print ,"To plot grid enter 1 "
c read (0,600)igrid
600 format (il)

print ,"lf you want a hard copy upon completion, type c "
read (0,100) icopy
call erase

c If istat=l, user will choose up to 10 states to be plotted.
if (istat .eq. 1) go to 1300
call movabs(30,760)
call anmode

c Lead contains title for map.
write (0,610)lead

610 format (Ix,20a4)
c

if (istat .ne. 2) go to 1400
c If istat=2, the entire U.S. will be plotted,
c
c
c DRAW BORDER FOR MAP

call movea(xl,yl)

APPENDIX C 285

call drawa(x2,yl)
call drawa(x2,y2)
call drawa(xl,y2)
call drawa(xl,yl)

c
c PLOT DATA FROM FIRST SOURCE,
c
c Read header information.
700 read (14,750,end-1100)if,ifno,isf,isfno,if 1
750 format (5i5)
c ISFNO is the number of x-y coordinates.

ie=isfno
if (isfno .ge. 6) ie=6
call anmode

c Read x-y coordinates.
read (14,800) (xx(i),yy(i),i= 1,ie)

800 format (12f6.3)
c
825 call movea (xx(1),yy (1))

do 850 k=l,ie
call drawa(xx(k),yy(k))

850 cont inue
is fno=i sfno-6
if (isfno)700,700,900

900 if (isfno-6)950,950,1000
950 ie = isfno
1000 read (14,800,end=1100) (xx(i),yy(i),i=1,ie)

do 1050 k-1, ie
call drawa(xx(k),yy(k))

c Draw until isfno(no. of coordinates) has been exhausted.
1050 continue

if (isfno-6)700,700,850
c
c
c ATTENTION: When we get grid file, change end=1100 to end=1075
c!075 if (igrid .ne. 1) go to 1100
c call io ("attach","f ile 16", "vfile_ ll ,"grid90", "-append")
c call io (Il o P en","filel6","si 11)
c
c
c iji = number of files to be plotted.
1100 if (iji .eq. 0) go to 1200
c
c PLOT MAIN FILE
1150 ijj = iJJ+1

if (ijj .eq. iji) go to 1200
isym = isymb(ijj)
call io ("attach","filel5", M vfile_",filename(ijj) /'-append")
call io ("open","filel5","si")
c.ill plocv(isym,nl,idec)
go to 1150

c
c

286 GEOINDEX

1200 if (icopy .ne. kop) go to 1250
call hdcopy

c If nl=l, the enlargement or individual plotting has already been
\c completed.
1250 if (nl .eq. 1) go to 1500

call movabs(30,730)
call anmode
print ,"For an enlargement of part of this plot, type y "
read (0,100)irep
print ,"For a hard copy after enlargement, type c "
read (0,100) icopy
nl = 1

c Set ijj=0 as it has been incremented previously.
ijj = 0
if (irep .ne. jes) go to 1500
call enlrg(14)
go to 1100

c
1300

c
c
c
1400
\c"

1500

c
c

nl
0

call indiv(lead)
go to 1100

print ,"At the present time, the file you wish does not exist

print ,"Please enter 1 or 2 for the second statement"
go to 560
call io ("close","file!4")
call io ("detach","filelA")
call io ("close","file!6")
call io ("detach","filel6")
call finitt(O.O)
end

SUBROUTINE NAME: ENLRG

Author: Pearl Porter
Purpose of the program: enlrg enlarges a part of the

plotting on the screen that the user defines by means
of the crosshair cursor.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Catting sequence: call enlrg
Arguments: None
Subroutines called: movabs, anmode, vcursr, dwindo,

swindo, erase, movea, drawa, ancho (all Tektronix
routines)

Common data referenced: x1, y1, x2, y2
Input files: stat90 used on unit 14 (file14)
Output files: None

Arrays used: xx(6), yy(6), ist(10)
Called by: pin90
Error checking and reporting: Located in program

pin90
Constants: None
Program logic:
1. The virtual screen is redefined by means of a

Tektronix plotting routine called vcursr. The user
positions the cursor at the lower left of the desired
area, and its screen coordinates are transmitted to
the computer by typing C. Then the user positions
the cursor at the upper right of the desired area
and again types C.

2. The screen is automatically erased.
3. A border is drawn for the map.
4. file14 is again read, and the States within the limits

of the specified virtual screen are plotted.

APPENDIX C 287
c * * *

c Thi
c
c
c

30

* SJdROUTI.ME ENLRG.FORTRAN ****
suo rou tine entry

s routine enlarges a portion of the
jefined by the cross-hair cursors.

screen as

"//kop/"c"/

10

c Re

20

dimension xx(6)/yy(6)/ista(10)
common x1/y1/x2/y2
data jes/"y"//iolk/"
ichar = A3
rewind 1 A
call movabs(30/oVO)
call an mode

define grapnic area by
write (0/20)
format("Position cursor at lower left
call vcursr(ichar/x1/y1)
call movabs(30/680)
call a nmode
write (0/30)
format("Position cursor at upper right of desired area/type c
call vcursr(ichar/x2/y2)
call dwindo(x1/x2/y1/y2)
call swindo(0/1023/0/780)

using vcursr routine.

of desired area/ type c

call erase
c
c DRAW BORDER FOR MAP

call rnovea(x1/y1)
call d rawa(x2/y1)
call drawa(x2/y2)
call or awa(x1/y 2)
call drawa(x1/y1)

c
call anmode

c Read header information.
70 rear! (1 A/80/end = 1 60) i f / i f no/i sf / i sf no/i f 1
80 format (5i5)
c
90 i e = i s fno

if (isfno . ge. 6) ie=6
call anmoae

c Read x-y coordinates.
read (14,103) (xx(i)/yy(i)/i=1/ie)

100 format (12f6.3)
if (isfno . g e. 3) go to 105
call movea(xx(2)/yy(2))
call ancho(ichar)
go to 70

105 call movea(xx(1)/yy(1))
do 110 k=1/ie
call drawa(xx(k)/yy(k))

110 cont i nue

288 GEOINDEX

120
130
c
140

150
c

160
c
18U

i s fno= i s fno-6
if (isfno)70,70,120
i f (isfno-6)130,130,140
i e = i s fno

Read x-y coordinates.
read (14,100,end=160) (xx(i),yy(i),i=1,ie)
do 150 k = 1,ie
call drawa(xx(k),yy(k))
continue

Continue drawing until isfno(no. of coordinates) has been exhausted
if (isfno-6)70,70,110
cont i nue

return
end

SUBROUTINE NAME: INDIV

Author: Pearl Porter
Purpose of the program: indiv is called when 1-10 States

are to be plotted. This routine negates plotting the en­
tire United States. If will enlarge the maps of in­
dividual States as an option.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call indiv (lead)
Arguments: lead- Contains the title of the map
Subroutines called: movabs, anmode, erase, movea,

drawa (all Tektronix routines), min_max
Common data referenced: None
Input files: statQO used on unit 14 (file14)
Output files: None
Arrays used: xx(6), yy(6), ista(10), lead(20)
Called by: pin90

Error checking and reporting: Located in pin90
Constants: None
Program logic:
1. An array ista is loaded with blanks.
2. The user is asked to type the corresponding 2-digit

number for the States to be plotted (limit of 10 in
ascending order).

3. The numbers are stored in Ista.
4. Call min_max subroutine to find the minimum and

maximum range for the x and y coordinates.
5. The screen is erased.
6. The title of the map is written on the screen and the

border is drawn.
7. file14 is read until ista(J) equals if no (found in header

record). The coordinates are then plotted until
isfno (number of x, y coordinates) has been ex­
hausted. The program continues to read through
the file until the end of file is reached or /sfa(/)
equals blanks.

****SUBROUTIIME INDItf.FORTRAN****
subroutine indiv(lead)

This routine is used when only 1-10 states are to oe plotted.
The user requests up to 10 states by number and these are
stored in an array called ista. In order to use the entire
screen, min_max routine is called to redefine the virtual
screen thus giving an enlargement of the states requested.

dimension xx(6),yy(6),ista(10),lead(20)
data iblk/" "/,kop/"c"/
data izero/00/

nn3 = 993

Load ista with blanks

APPENDIX C 289

10 do 20 j=1*1U
ista(j) = iblk

20 cont i nue
c

CdLL movabs(30,690)
call anmode
wr i te (0,30)

30 format ("Give code number of each state to be plotted
Limit of 10 codes in ASCENDING order
Must be a d digit number, 01-51")

read (0,40) (ista(j),j=1,10)
AO format (10i2)
c The min_max routine will find the minimum and maximum coordinates
c for the states requested and redefine the virtual window.

call min_max(ista,x1,x2,y1,y2)
call erase
call movabs(500,750)
call anmode

c Lead is the title of the map to be plotted.
write (0,45) lead

A5 format (1x,20aA)
c
c DRAW BORDER FOR MAP

call movea(x 1 ,y 1)
call d rawa(x2,y 1)
call d rawa(x2,y2)
call drawa(x1,y2)
call drawa(x1,y1)

c
50 do 160 j=1,10
c Read header information.
60 read (1 A,70,end = 1 SO)if,ifno,isf,isfno,if1
70 format (5i5)
c

if (ista(j) .eq. izero) go to 180
if (ista(j) .ne. ifno) go to 60
if (if .ne. nn3) go to 60

c Check if=993 to insure information from header record is
c being compared rather than erronously matching the
c state number against the coordinates.
80 i e = i s f no

if (isfno .ge. 6) ie=6
c Read x-y coordinates.

read (1A,90) (xx (i),yy(i) ,i = 1,ie)
90 format (12f6.3)

if (isfno .ge. 3) go to 100
call movea(xx(2),yy(2))
go to 6U

100 call movea(xx(1),yy(1))
do 110 k=1,ie
call drawa(xx(K) ,yy(k))

110 continue
i s fno = i s fno-6
if (isfno)160,160,120

290 GEOINDEX

120 if (isfno-6)13U,130,140
130 i e = i s fno
140 read (14/90/end=160) (xx (i),yy(i)/i=1/ie)

do 150 k=1,ie
call d ra wa (x x (k)/yy (k))

150 cont i nue
c Continue drawing ntil isfnoCno. of coordinates) has been exhausted,

if (isfno-o)160/160/110
160 cont i nue
c
180 return

end

SUBROUTINE NAME: MIN_MAX
Author: Pearl Porter
Purpose of the program: min_max routine reads

through the individual States requested for plotting
and compares each x and y coordinate to find the
minimum and the maximum x and y coordinates. The
program then redefines the virtual window.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call min_max (ista,xl,x2,yl,y2)
Arguments:

ista -Array containing the numbers of the States to
be plotted

x7-TJsed to return the minimum x coordinate
x2 - Used to return the maximum x coordinate
y/ -Used to return the minimum y coordinate
y2-Used to return the maximum y coordinate

Subroutines called: dwindo (Tektronix routine)
Common data referenced: None
Input files: None
Output files: None
Arrays used: None

Called by: indiv
Error checking and reporting: Located in pin90
Constants: nn3
Program logic:
1. Load x7 with the maximum x coordinate and x2 with

the minimum x coordinate.
Load y1 with the maximum y coordinate and y2 with

the minimum y coordinate.
2. Read through file14 until /sfa(/) equals if no.
3. Compare each x coordinate to x7 and x2.

If it is less than x1, load x7 with the value of the x
coordinate.

If the x coordinate is greater than x2, load x2 with
the value of the x coordinate.

The same logic applies to the y coordinate.
4. Compare each x and y coordinate until the number in

/S/A7O (header record) has been exhausted.
5. If ista(J) is blank, go to next step. Otherwise, go to

step 3.
6. Call dwindo (Tektronix routine) using new values

from step 3 for x7, x2, y7, y2 to define the virtual
window.

7. Return

****SUt3ROUTINE MIN.rtAX.FORTRAN****
subroutine min_max(ista/x1/x2/y1/y2)

This routine reads through the coordinates for the individual
states requested for plotting and compares each xx coordinate
against x1 and x2 to find the minimum and maximum coor.
It does the same to the yy coordinates,
the maximum and x2 and y2 are set to the
compares are made.

dimension xx(6)/yy(6)/ista(10)
data izero/00/

x1 and y1 are set to
minimum before the

APPENDIX C 291

10
20
c

50
c

60
70

c
110
c
120

nn3 = 993
x1 = 23.
x2 = .5
y1 = 16.
y2 = 1.
do 110 3=1/10
reaa (1 A/20/end=120) if / ifno/isf/isfno/if1
forma t(5i 5)

If ista = O/ all the requested data has been read.
if (ista(j) ,eq. izero) go to 120
if (ista(j) .ne. ifno) go to 10
if (if .ne. nn3) go to 10

Check if=993 to insure this record is a header record.

c
30
AO
c
c
c

ie = 6
Read x-y c

read (1
format

Read
y 1
do
if
i f
i f
i f

each
-2 to
50 i
C x x (
(x x (
(yy (
(yy (

oord i na
A/ AU/ en
(12fo.3

XX

f
= 1
i)
i)
i)
i)

and
ind t
/ i e
.It.
• g t.
.It.
.gt.

tes
d = 1

yy
he

x1
x2
y 1
y2

20 >

coor
mi

)
)
)
)

ni

x
x
y
y

(xx(

di na
mum

1 =
2 =
1 =
2 =

i)/

te
and

x x (
x x (
yy(
yy(

yy (i) / i =1 / i e)

and compare
ma x i mum.

i)
i)
i)
i)

x1-2 and

cont i nue

i sfno = i sfno-6
if (isfno)110/110/60
if (i sfno-6)70/70/30
i e = is fno
go to 30

cont i nue
Define virtual window from coordinates stored during min_max routine

call dwindo(x1/x2/y1/y2)
rewind 14
return
end

SUBROUTINE NAME: GRID

Author: Pearl Porter
Purpose of the program: grid will plot the grid file,

file16, on the map drawn by pin90
Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call grid
Arguments: None
Subroutines called: movea, anmode, ancho, drawa (all

Tektronix routines)

Common data referenced: x1, y1, x2, y2
Input files: Grid file used on unit 16 (file16)
Output files: None
Arrays used: xx(6), yy(6)
Called by: pin90
Error checking and reporing: Located in program pin90
Constants: None
Program logic:
1. iskp is set to 9, and a count is kept so that only every

10th record is plotted.
2. The header record and first set of coordinates are

read.

292 GEOINDEX

3. If the first xx and yy coordinates are less than x7 or
y1 or greater than x2 or y2, respectively, read the
next set of coordinates (step 2)

4. If number of sets of coordinates is less than 3, write
if, isf, and ichar.

Go to step 2.
5. Plot the coordinates until isfno (number of coord­

inates) has been exhausted.
6. Read the next header record, add 1 to j and continue

until j equals iskp, which equals 9. Go to step 2.

c ****SUBROUTINE GRID****
c THIS ROUTINE WILL PLOT THE GRID FILE
c It has been determined to plot only every 10th set
c of grid records since the Tektronix plot is so small*

subroutine grid
c

dimension xx(6),yy(6)
common xl,yl,x2,y2

c
iskp = 9

c Set iskp=9 so as to plot only every tenth record
c of the grid file.

j = 0
ichar = 43
rsiz = 0.3
rewind 16

c
c Read header information.
10 read(16,20,end = 270) if,ifno , isf,isfno,if 1
20 format (5i5)
c

ie = isfno
if (isfno »ge. 6) ie=6

c Read x-y coordinates.
read(16,30) (xx(i),yy(i),i=l,ie)

30 format (12f6.3)
if (isfno .ge. 3) go to 80

c
c If coordinates are out of range, read next set of coordinat
\ces .

if ((xx(l) .Ie. xl) .or. (yy(l) .Ie. yl)) go to 10
if ((xx(l) .ge. x2) .or. (yy(l) .ge. y2)) go to 10
if ((ifno .eq. 1) .and. (isf .eq. 1)) go to 60
call movea(xx(1),yy(1))
call anmode

c If there's less than 3 sets of coordinates, write if, isf a
\cnd ichar.

write (0,40) if
40 format (Ix,i5)

ry=yy(1)-rs iz
call movea(xx(1),ry)
call anmode
write (0,40) isf
call movea(xx(2),yy (2))
call ancho(ichar)
go to 10

APPENDIX C 293

60 call movea(xx(1),yy(1))
call anmode
write (0,40) if
call movea(xx(2),yy(2))
call ancho(ichar)
go to 10

c
80 continue

if ((xx(l) .le. xl) .or. (yy(l) .le. yl)) go to 120
if ((xx(l) .ge. x2) .or. (yy(l) .ge. y2)) go to 120
if ((ifno .eq. 1) .and. (isf .eq. 1)) go to 100
call movea(xx(l),yy(1))
call anmode
write (0,40) if
ry m yy(l)-rsiz
call movea(xx(1),ry)
call anmode
write (0,40) isf
if (ifl .eq. 0) go to 120
ry » ry-rsiz
call movea(xx(1),ry)
call anmode
write (0,40) ifl
go to 120

c
100 continue

call movea(xx(l),yy(1))
call anmode
write (0,40) if

c
120 continue

call movea(xx(2),yy(2))
do 130 k-2,ie
call drawa(xx(k),yy(k))

130 continue
c
140 isfno«isfno-6

if (isfno)200,200,150
150 if (isfno-6)160,160,170
160 ie « isfno
170 read (16,30,end»270) (xx(i),yy(i),1-1,ie)

do 180 k=l,ie
call drawa(xx(k),yy(k))

c Draw until isfno(no. of coordinates) has been exhausted.
180 continue
c

if (isfno-6)200,200,140
c
200 j - j+1
c J is the count of header records read.

read(16,20,end-270) if,ifno , isf,isfno,if 1
210 ie - isfno

if (isfno .ge. 6) ie=6
220 read(16,30) (xx(i),yy(i),i-1,ie)

294

c
\c.

230
c
250
c

GEOINDEX

Read through x-y coordinates until isfno has been exhausted

isfno = isfno-6
if (isfno)250,250,230
if (isfno-6)2 10,210,220

if (j .eq. iskp) go to 10
The above compare is made to determine when the 10th record

\c is reached.
go to 200

c
270 continue

return
end

SUBROUTINE NAME: PLOCV

Author: Pearl Porter
Purpose of the program: plocv will plot the symbols,

numbers, and outline from the GRASP input files
(file15) depending on the value of idee, which was
supplied by the user.

Data base: Geoindex
Computer: Honeywell Series 60 (level 68)
Operating system: Multics
Calling sequence: call plocv (ichar,nl,idec)
Arguments:

ichar- Symbol designated by the user to be used with
a specific GRASP input file

nl-Code specifying that this routine was called owing
to an enlargement option

idee -Code used to determine which of three options
will be used:
If idee = 1, symbol, number, and outline plotted
If idee = 2, symbol or outline (with no numbers)
If idee = 3, numbers only (no plotting or symbols)

Subroutines called: movea, anmode, ancho, drawa (all
Tektronix routines), io (Multics)

Common data referenced: x1, y1, x2, y2
Input files: GRASP file
Output files: None
Arrays used: xx(6), yy(6)
Called by: pin90
Error checking and reporting: Located in pin90
Constants: None
Program logic:
The subroutine does the following:

1. rsiz is loaded with 0.3. Later in the program, rsiz
will be subtracted from the y coordinate in order
to print the isf below the if.

2. If nl is equal to 1, loads rsiz with 0.05. If this is an

enlargement of a section of the screen, the
number to be subtracted has to be decreased to
compensate for the change in the size of the
screen.

3. Reads the header record.
4. Reads first x, y coordinate record.
5. If sets of coordinates are more than three, goes to

18.
6. If the first #, y coordinates are not within the range

of x1, y1, x2, and y2, goes to 3.
7. If if no = 1 and isf = 1, goes to 13.
8. If idee = 2, goes to 12.
9. Writes the //.

10. Subtracts rsiz from the y coordinate and uses this
computed coordinate to write isf.

11. If idee = 3, goes to 3.
12. Plots the symbol. Goes to 3.
13. If idee = 2, goes to 17.
14. If nl does not equal 1, goes to 15.

Subtracts rsiz (either 0.3 or 0.05) from the first y
coordinate.

Moves the cursor to the x and computed y coor­
dinates. Goes to 16.

15. Moves cursor to position designated by x and y
coordinates.

16. If idee = 3, write if. Goes to 3.
17. Plots symbol. Goes to 3.
18. If the first x, y coordinates are not within the range

of x1, y1, x2, and y2, goes to 20.
If if no = 1 and isf = 1, goes to 19.
Writes //, isf, and If1 on map. Goes to 20.

19. Writes if.
20. If idee = 3, there will be no plotting.

Otherwise, continues drawing until isfno (number
of coordinates) has been exhausted. Goes to 3.

21. At EOF, closes and detaches file15.

APPENDIX C 295
C ****SU3ROUTINE PLOCV ****
C

suoroutine plocv (ichar*n I* \ dec)
c

dimension xx(6)*yy(6)
common x1*y1*x2*y2

c
c If idee = 1* symbol* number and outline will be plotted,
c If idee = 2* symbol or outline (with no numbers),
c If idee = 5* numoers only (no plotting or symbols),
c

rsiz=0.3
if (nl .eg. 1) rsiz = 0.050
rewind 15

10 cont i nue
c Read header information.
20 read (15*30*end=160) if* ifno*isf * isfno*if1
30 format (5i5)
c

i e = i sfno
if (isfno .ge. 6) ie=6

c Read x-y coordinates.
read (15*4U) (xx(i)*yy(i)*i = 1 *i e)

40 format (12f6.3)
c

if (isfno .ge. 3) go to 70
c

if ((xx(1) .le. xl) .or. (yy(1) .le. yD) 90 to 20
if ((xx(1) .ye. x2) .or. (yy(1) .ge. y2)) go to 20
if ((ifno .eq. 1) .and. (isf .eq. 1)) go to 60
if (idee .eq. 2) go to 55
call movea(xx(1)*yy(1))
call anmode

c This routine writes if* isf and ichar.
write (0*50) if

50 format (1 x*i 5)
ry = yy(1)-rsiz
call movea (xx(1)*ry)
call anmode
write (0*50) i sf
if (idee .eq. 3) go to 20

55 call movea(xx(2)*yy(2))
call ancho(ichar)
go to 20

c
60 cont i nue
c This routine will write if and ichar depending on idee.

if (idee .eq. 2) go to 67
if (nl .ne. 1) go to 62
ry = yy(1) -r si z
call movea(xx(1)*ry)
go to 65

62 call movea(xx(1)*yy(1))
65 c d 11 a nmode

296 GEOINDEX

wri te(0/50) if
if (idee .eq. 3) go to 20

67 call movea(xx(2) /yy(2))
call ancho(ichar)
go to 20

c
70 continue

if C(xx(1) .le. x1> .or. (yyd) .le. y1)) go to 90
if ((xx(1) .ge. x2) .or. (yyd) .ge. y2)) go to 90
if ((ifno .eq. 1) .and. (isf .eq. 1)) go to 80
if (idee .eq. 2) go to 90
call movea (xx(1)/yyd))
call anmode

c This routine will print out if/ isf and if1.
write (0/50) if
ry = yy(1)-rsiz
call movea(xx(1)/ry)
call anmode
write (0/30) isf
if (i f1 .eq. 0) go to 90
ry = ry-rsiz
call movea(xx(1) t ry)
call a nmode
write (0/50) i f1
go to 90

c
80 cont i nue

if (idee .eq. 2) go to 90
call movea(xx(1)*yy(1))
call anmode
wri te (0/50) i f

c
90 continue

call movea(xx(2)*yy(2))
do 100 k=2/ie
if (idee .eq. 3) go to 100

c If iaec = 3* Dypass any plotting.
call drawa(xx(k)/yy(k))

100 cont i nue
c
110 i sf no = i sfno-6

if (isfno) 10/10/120
120 if (isfno-6) 130/130/140
130 i e = i s fno
c
140 readd 5/40,end = 1 60) (xx (i) ,y y (i) / i = 1 , i e)

do 150 k = 1 ,ie
if (idee .eq. 3) go to 150
call drawa(xx(k)*yy(k))

150 continue
c

if (isfno-6) 10/10/110

APPENDIX D 297

160 continue
call io ("close","f Ue15">
call io ("detach","fi Ie15")
return
end

APPENDIX D. FORMATS AND NOTES
FORMAT OF REFNM FILES

Item
No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

' Item name

Id _
State
Author 1 _
Author 2
Author 3

Year
Title 1
Title 2
Title 3
County 1 or region 1 _ .
County 2 or region 2
County 3 or region 3 _ _ .
County 4 or region 4
County 5 or region 5
Publisher
Scale 1
Scale 2
Scale 3
Scale 4
Scale 5
Series 1 _
Emphasis
Area of coverage
Unit for area of coverage

Extreme west longitude
Extreme east longitude
Center-point latitude _
Center-point longitude _
Boundary id _
Other map not included
Depositories _ _
Base _
Title 4 _
Geology or geochemistry
Plate 1 map plate name
Plate 2 map plate name _
Plate 3 map plate name

Plate 5 map plate name _
Idstat --State code
Idsubl
Id sub 2 _
Id sub 3
Id sub 4
Id sub 5
Bound 1
Bound 2 _
Bound 3 _ .
Bound 4 _ .
Bound 5 _ .
Spanl_
Sran2_ _

Character type

Integer-in automatic

do
do _

Integer
Embedded character string

do
do
do _ _
do
do _

Embedded character string
Integer

do _
do
do _ _
do _ —

Embedded character string
do

Real
Embedded character string
Integer DDDMMSS S1

do — —
do
do _ —
do _
do

Integer not used.
Embedded character string

do _ _ _

Embedded character string
do
do _
do
do
do _
do

Integer —
do _ _
do
do
do _
do _

do _ _
do _
do _
do _
do _
do _

Maximum
field length

4
20
60
60
60

4
60
60
60
60
60
60

60
8
8
8
8
8

60
60

8
7

12
12
12
12
12
12

60
60
30
60
12
30
30
30
30
30

2
2
2
2
2
2
6
6
6
6
6
6
6

298 GEOINDEX

Item
No.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96

Item name

Span 3
Span 4
Span 5
Series 2
Scale 6
Scale 7
Scale 8
Scale 9
Scale 10
Plate 6
Plate 7
Plate 8
Plate 9
Plate 10
Id sub 6
Id sub 7 _
Id sub 8
Id sub 9 _
Id sub 10
Bound 6
Bound 7
Bound 8
Bound 9
Bound 10
Span 6
Span 7
Span 8
Span 9
Span 10

DumO
Flag for expansion.
1 prototype.
2 additional maps.
Duml
Dum2
Dum3
Dum 4
Dum 5
Dum 6
Dum 7
Dum 8
Dum 9

Character type

do
do
do _

Embedded character string

do
do _
do
do

_ do
do
do
do
do
do
do
do
do
do
do

_ do _ .
'do
do
do
do
do
do
do

Integer

Integer
do
do
do
do
do
do
do
do

Maximum
field length

6
6
6

60
8
8
8
8
8

30
30
30
30
30

2
I 2

2
2
2
6
6
6
6
6
6
6
6
6
6

30
1

1

1
1
1
1
1
1
1

1 A space and S indicate a decimal point followed by one digit.

FORMAT FOR REFERENCE FILE
Columns 1,2 Columns 3,4,5 Columns 6,7 Columns 8 to 67
State Reference Item No. Data

No.
12 13 12 60 characters

maximum

NOTES FOR ENTERING CARD DATA

1. Do not put a comma after the year.
2. Item 12: All counties or regions [for Item 12] are typed in small let­

ters.
3. Item 12: All counties or regions are typed on the same line and a

comma and a space separates each. Counties or regions cannot
exceed 60 characters. Continue on the next line, creating Item
13.

4. Item 24 (emphasis) is always typed in lowercase. If there is more
than one emphasis, add a comma and a space between each one.

5. Items 18-22, 61-65: Omit the period or semicolon after scale.
6. Omit the one digit and colon before the scale.
7. Omit commas between scales.
8. Title can be not more than 60 characters of data; together with the

numeric data (State, ref, item number), 67 characters is max­
imum number for any one line.

9. Item 38 (geology) is always in lowercase.
10. Items 3-5: Omit spaces between authors initials.
11. Item 17: Omit space between U. and S. in U.S. Geol. Survey.
12. Item 2 (the State name) always has first letter capitalized and the

rest in lower case, as in Missouri.
13. Item 18-22, 62-65: Omit the (a), (b), (c), and so on, between scales.
14. Item 39-43, 66-70: The first letter in the name of the first plate is

always capitalized, names of all other plates begin with small let­
ters.

15. If there is no series (Item 23), place a period after name of
publisher.

16. Do not underscore entered data.
17. Item 35: Type as shown in "Abbreviations for depositories." Use

no more than 60 characters.

Abbreviations for depositories

USBM = U.S. Bureau of Mines
BM&G = Bureau of Mines and Geology
GS = Geological Survey
WYGS = Wyoming Geological Survey

