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STORM-INDUCED DEBRIS AVALANCHING AND RELATED
PHENOMENA IN THE JOHNSTOWN AREA, PENNSYLVANIA,
WITH REFERENCES TO OTHER STUDIES IN THE APPALACHIANS

By JOoHN S. POMEROY

ABSTRACT

Several hundred debris avalanches, debris slides, slumps,
earthflows, and combinations of the various types took place as a result
of 30 cm of rain that fell during a 9-hour period, July 19-20, 1977, in an
area of about 60 to 70 km? that lies north, northeast, and east of down-
town Johnstown, Pa. Before this rainstorm, the soil had been well
saturated by above-normal rainfall earlier in the month.

The most conspicuous mass-movement type was the debris
avalanches, which reached a maximum of 300 m in length and 25 m in
width and had head scarps in colluvium as high as 4 m. They were
formed along mostly planar to gently concave upward colluvial 20° (35-
percent) to 40° (85-percent) slopes. The less conspicuous slump-
earthflows began on more moderate slopes.

Because of their greater clay content, colluvial soils derived from the
Allegheny and Conemaugh Groups of Pennsylvanian age were more
susceptible to the rapid mass movement than were those formed from
the older rocks of Mississippian and Pennsylvanian age. A relatively
dense pattern of mainly debris avalanches along the steep northwest-
facing slope above the Little Conemaugh River northeast of Franklin
appeared at least in part to be controlled by lithologic factors coupled
with an overdip slope conducive to the formation of seeps.

The actual movement of regolith in the debris avalanching took
place in two phases: first, limited planar or rotational sliding extending
downhill a short distance away from the head scarp, and second,
flowage caused by spontaneous liquefaction.

INTRODUCTION
THE STORM OF JULY 1977

On the night of July 19-20, 1977, torrential rains fell
upon southern Cambria County and adjacent counties.
The intensity of the nine-hour rainfall (nearly 23 cm in
Johnstown and as much as 30 cm 16 km to the north and
northeast) exceeded the infiltration capacity of the sail,
causing heavy surface runoff which resulted in property
damage of more than $300 million over a seven-county
area. Rainfall of this magnitude should occur an average
of only one time in 5,000-10,000 years (Jenkins and
Baker, 1977, p. 7), but could not have been predicted,
despite the presence of synoptic features favoring
thunderstorm activity—well-above-normal moisture,
unstable airmass, and low-level convergence (U.S.
National Oceanographic and Atmospheric Administra-
tion, 1977a, p. 27).

Flooding was not restricted to the Conemaugh River
and adjacent tributaries, but also caused tremendous
damage in upland areas drained by ephemeral creeks,
particularly from Johnstown, eastward to the higher
parts of the Allegheny escarpment. The failure of six
earthen dams, one of which (Laurel Run dam) held 100
million gallons, further contributed to the flooding. A
hydrologic report of the flood was prepared by Brua
(1978).

In the local and Pittsburgh newspapers, I saw no men-
tion of any slope movement in the Johnstown area, nor
was any mass movement documented in a popular report
by Jenkins and Baker (1977). Obviously, attention was
turned to the much more serious widespread flooding
and its effect on property and human lives. Apparently
no one was killed or injured because of any form of mass
movement. The heaviest rainfall took place in a less
densely populated area of the region.

A reported 253 km of road and 22 bridges were closed,
and the spans of 15 of the bridges were destroyed. The
State highway department (Penn DOT) estimated that
the damage to the roads amounted to $35 million. An es-
timated 50,000 people in the seven-county area were left
homeless, and 76 persons were killed by the flash
flooding.

PRESENT INVESTIGATION

The Johnstown area was studied during a 3-day period
in late April 1977 as part of an inventory of mass move-
ments in western Pennsylvania (Pomeroy and Davies,
1975; Briggs and others, 1975; Pomeroy, 1978) and, more
specifically, in the Pittsburgh 2° quadrangle. Field in-
spection was preceded by an analysis of high-altitude
aerial photographs and by a review of previous geologic
and soils investigations. Few recent mass movements
were found.

The Johnstown region was visited very briefly several
days after the July 19-20, 1977, storm and again in the
fall of 1977.

During early 1978, I examined large-scale (1:6,000 to
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2 DEBRIS AVALANCHING, JOHNSTOWN AREA, PENNSYLVANIA

1:10,000) post-storm aerial photographs, and in late
April 1978 I made a 10-day field study north and
northeast of Johnstown. Later, post-storm (July 22,
1977) 1:12,000-scale black-and-white aerial photographs,
which cover most of the area within the 30-cm isohyet,
were obtained from a consulting firm and were field
checked in late 1978.
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GEOLOGIC SETTING

Johnstown lies within the Appalachian Plateaus just
26 km west of the Allegheny Front (fig. 1). Maximum
relief (approximately 300 m) in the study area (fig. 2) is
east of the Little Conemaugh River gorge between Johns-
town and Mineral Point.

Phalen (1910) and Phalen and Martin (1911) prepared
geologic reports of the Johnstown 15-minute quadrangle
including 1:62,500-scale maps, which are the only
sources of geologic data, as no recent geologic maps exist
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FIGURE 1.—Index map of Pennsylvania showing locations of
Johnstown, the Allegheny Front, and county boundaries.

of the Johnstown area. Bedrock units within the area of
study include, from oldest to youngest—the Pocono
Sandstone and Mauch Chunk Shale of Mississippian
age, and the Pottsville, Allegheny, and Conemaugh
Groups of Pennsylvanian age. The bedrock is almost
horizontal to very gently dipping. Two major northeast-
trending folds include the Johnstown syncline, whose
axis is just slightly west of Hinckston Run, and the
Ebensburg anticline, whose axis is 1.5 km east of
Mineral Point (fig. 3). Cyclic repetition of shale, silt-
stone, sandstone, coal, mudstone, limestone, and
claystone is found in outcrops of the Allegheny and
Conemaugh Groups between the ridge west of Hinckston
Run eastward to the first conspicuous bend in the Little
Conemaugh River northeast of Franklin. The
Conemaugh Group generally occupies all but the lowest
parts of the slopes. To the east, the Conemaugh Group
underlies only the uppermost parts of the hills, and the
exposed stratigraphic section extends downward to the
Pocono Sandstone. The Allegheny Group contains
several minable beds of coal.

TERMINOLOGY

As defined by Sharpe (1938, p. 74), debris slides
“include all cases of rapid downward movement of
predominantly unconsolidated and incoherent earth and
debris in which the mass does not show backward rota-
tion but slides or rolls forward, forming an irregular
hummocky deposit which may resemble morainal
topography.” A debris avalanche has a larger water con-
tent, “has a long and relatively narrow track, occurs on a
steep mountain slope or hillside in a humid climate, and
is almost invariably preceded by heavy rains” (Sharpe,
1938, p. 61). A later classification of these two mass-
movement types by Varnes (1958) resembles that of
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lower slopes are underlain by thickly bedded nearly
monolithologic units of mostly sandstone (Pottsville
Group), red and green shale (Mauch Chunk Shale), and
arenaceous limestone (top of Pocono Sandstone). Small
debris slides and slumps in colluvium above the railroad
tracks and on an access road between Mineral Point and
South Fork are controlled mainly by the steepness of the
cut slopes. The head of the only conspicuous debris
avalanche in the Mineral Point-South Fork area is ap-
proximately 12 to 15 m below the inferred position of an
economically important flint clay and associated plastic
clay within a thin shale sequence in the Pottsville Group
(Phalen, 1910, p. 12).

One of the major reasons for the relatively dense pat-
tern of debris avalanches along the southeast side of the
Little Conemaugh River northeast of Franklin (fig. 94,
B) might be related to geologic factors. That part of the
stratigraphic section that has abundant coal beds and
accompanying underclays as well as shales, siltstones,
and sandstones (Allegheny Group) underlies the
midslope section. Head scars of debris avalanches occur
at, or slightly downslope from, the plastic clays at
various levels throughout the section. Coupled with this
lithologic control is an overdip slope where the dip of the
strata is inclined approximately 4° to the northwest and
where springs are particularly abundant at the contact of
impermeable and more permeable beds. However, not
only are slopes slightly steeper here than are those along
most slopes above the Little Conemaugh River, but the
configuration of the slope within two 1-km-wide hollows
north of Clapboard Run (fig. 4) are conducive to max-
imum water accumulation. A possibility exists that the
intensity of the rainfall might have been greater in this
area because the opposite more planar to convex side of
the ridge above the Clapboard Run road (fig. 4) had
many debris slides. Therefore, although geologic factors
such as lithology and structure are important, the rain-
fall intensity and slope factors cannot be ignored.

The western part of the study area (west of Franklin)
is dotted with debris avalanches and debris slides at
various levels, mostly within the Conemaugh Group.

Hack and Goodlett (1960, p. 44) noted that debris
avalanches in a Virginia area were generally confined to
a stratigraphic unit of alternating shale and sandstone in
preference to a massive sandstone unit. The slope move-
ment distribution in other areas (Bogucki, 1970, p. 118;
1977, p. 320; Flaccus, 1958, p. 186; Williams and Guy,
1971, p. 35) suggests that lithologic types in crystalline
rock terrains had little effect.

Terrain underlain by shale and clay is inherently weak
in resistance to weathering and mass movement.
However, considerable thickness of shale alone does not
appear to promote instability. In fact, the more diverse
the lithology is within any group or formation, the more
varied is the permeability, resulting in a higher suscep-

tibility of the weathered slope material to slide or flow.
The textural heterogeneity of the upper part of the
stratigraphic section in the Johnstown area is conducive
to mass movement. Although catastrophic rains can in-
duce slope movement on any moderately steep terrain
regardless of underlying rock type, those colluvial slopes
consisting of admixtures of sand, silt, and clay are most
vulnerable. Generally, Allegheny- and Conemaugh-
derived colluvial soils are more susceptible to mass
movement than are those derived from the older
stratigraphic units because the younger rocks contain
more clay.

VEGETATION

Both debris avalanches and debris slides occur along
forested and brushy to grassy slopes. Along the Little
Conemaugh River and Hinckston Run (and excluding
the slag-dump section), forested slopes predominate,
and the density of mass movement forms per square
kilometer is slightly less than that along the nonforested
slopes. In the highland area west of Hinckston Run (fig.
11) more than 90 percent of the debris slides are in the
conspicuous nonforested terrain. More specifically, in
the area just north of Pleasant Hill, only a small section
of the slope has been cleared, but all the debris slides
took place in this brushy to grassy area (fig. 11, 154).

The head scars of many mass-movement types are
found in brushy areas beneath utility lines throughout
the study area; commonly, the width of the head scar is
controlled by the width of the cleared area (figs. 8D,
15B).

Schneider (1973, p. 92) found that forest cover reduces
frequency of slope movement, and Scott (1972, p. 157)
determined that a healthy forest decreases the suscep-
tibility of slopes to debris avalanching. In eastern Africa,
Temple and Rapp, (1972, p. 175) observed that less than
1 percent of the slope movement took place along the
forested and steeper slopes. In New Zealand, Pain (1971,
p. 83) noted that rapid mass movement is more frequent
(ratio 5 to 1) under grass than under forest; Selby (1967,
p. 155; 1976, p. 132) made a similar observation. In the
U.S. Pacific Northwest, the destruction of forest cover
by timber-harvesting operations has accelerated debris
avalanching (Swanston and Swanson, 1976).

Flaccus (1958, p. 188), however, stated that maturing
forests tend to increase susceptibility to mass move-
ment, in part owing to the weight of the forest itself, but
he admitted that these theories were not adequately
tested.

Flaccus (1958) is not alone in his beliefs. So (1971)
wrote that the distribution of the disastrous mass move-
ments associated with a 1966 rainstorm in Hong Kong
suggested that vegetation played only a limited part in
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stabilizing slopes. So (1971, p. 62) determined that the
greatest number of slope movements took place in
woodlands, the next greatest number were on bare
surfaces and scrubland, and by far the fewest were on
grasslands.

However, the author believes that the stabilizing ef-
fect of tree roots in the soil-binding process cannot be
overlooked. Much of the tiny grove of trees adjacent to
the debris avalanche labeled as 1 in figure 14B resisted
the regolith movement. Furthermore, a few dense laurel
thickets along slopes bordering Laurel Run Reservoir,
where 30 cm of precipitation was recorded (fig. 11),
evidently reduced the impact of the deluge and con-
tributed to sparse mass movement in that area. Locally,
high concentrations of sliding and flowage in forested
areas might be due to higher concentrations of rainfall.

VIBRATIONS

The vibrations of heavy thunder might be a con-
tributing agent in initiating some slides and flows. Resi-
dents of Johnstown and environs remarked about the
seemingly continuous lightning and thunder during the
night of the July 1977 storm. Flaccus (1958, p. 188-189)
cited evidence of a large debris avalanche in the White
Mountains immediately after thunder. Then, too, any
slope movement at one location could conceivably
generate enough noise and vibration to trigger slides and
flows along the same slope; these forces might account
for the group clustering of debris avalanches in some
areas. Because all the mass movement in the Johnstown
area occurred during darkness and intense rain, there
was little chance for an eyewitness account.

MECHANISM OF DEBRIS AVALANCHING

- The actual movement of regolith involved in the

debris avalanching generally consisted of limited planar
or rotational sliding extending downhill a short distance
from the head scarp, followed by flowage caused by
spontaneous liquefaction.

The change from sliding to flowage is believed to be
caused primarily by the intrusion of water into col-
luvium; this intrusion increases the pore-water pressure
and decreases the shearing resistance of the colluvium
(Terzaghi, 1950, p. 91). Other changes include the ad-
ditional weight of the regolith itself imposed by the
water and the role of water in eliminating the surface
tension and cohesion in silty to clayey soils.

As the pore-water pressure increases, soil particles lose
their coherency, and the colluvial soil becomes a thick
viscous liquid in a transformation process called spon-
taneous liquefaction (Terzaghi, 1950, p. 110). This
change accounts for the transition from the initial sliding
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movement to the more profound consequent flowing ac-
tion. With regard to the Johnstown phenomena, the
author concurs with Scott’s ideas about the debris
avalanches in the Blue Ridge. Scott (1972, p. 163-165)
concluded that debris-avalanche initiation is best ex-
plained by the application of Terzaghi’s (1950) theories.

Computations of regolith removal from selected major
slides indicate that 1,500-4,000 tons of material was
removed for each of the slides.

SUMMARY

Most of the mass movement took place within the area
of the 25-cm and 30-cm isohyets, the greatest amount
being on slopes above the Little Conemaugh River and
Hinckston Run, northeast and north of Johnstown.

Rainfall, slope characteristics (including gradient,
form, and orientation), geologic and derived soil factors,
vegetation, and vibrations play a role in the origin of the
mass-movement features; however, precipitation inten-
sity is the most important factor.

Slope steepness alone is not necessarily a critical fac-
tor nor did most slides and flows induced by the John-
stown storm occur along previously existing depressions
or hollows along hillsides as they did in other parts of Ap-
palachia. Overall, I saw a slight tendency for most mass
movement to be preferentially oriented along slopes fac-
ing northwest, north, northeast, and east. The exact role
of lithology and structure is difficult to assess, but, at
least locally, these factors might be significant. The den-
sity of slides and flows is slightly greater along non-
forested slopes than along forested slopes. Thunder
vibrations might have triggered some slides and flows.
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