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DIGITAL CLASSIFICATION OF LANDSAT DATA FOR
VEGETATION AND LAND-COVER MAPPING IN THE
BLACKFOOT RIVER WATERSHED, SOUTHEASTERN IDAHO

By LAWRENGE R. PETTINGER

ABSTRACT

This paper documents the procedures, results, and final products of a
digital analysis of Landsat data used to produce a vegetation and land-
cover map of the Blackfoot River watershed in southeastern Idaho.
Resource classes were identified at two levels of detail: generalized
Level I classes (for example, forest land and wetland) and detailed
Levels II and III classes (for example, conifer forest, aspen, wet
meadow, and riparian hardwoods). Training set statistics were derived
using a modified clustering approach. Environmental stratification
that separated uplands from lowlands improved discrimination be-
tween resource classes having similar spectral signatures. Digital
classification was performed using a maximum likelihood algorithm.

Classification accuracy was determined on a single-pixel basis from a
random sample of 25-pixel blocks. These blocks were transferred to
small-scale color-infrared aerial photographs, and the image area cor-
responding to each pixel was interpreted. Classification accuracy, ex-
pressed as percent agreement of digital classification and photo-
interpretation results, was 83.0% 2.1 percent (0.95 probability level)
for generalized (Level I) classes and 52.2+ 2.8 percent (0.95 probabili-
ty level) for detailed (Levels II and III) classes.

After the classified images were geometrically corrected, two types
of maps were produced of Level I and Levels II and III resource
classes: color-coded maps at a 1:250,000 scale, and flatbed-plotter
overlays at a 1:24,000 scale. The overlays are more useful because of
their larger scale, familiar format to users, and compatibility with
other types of topographic and thematic maps of the same scale.

INTRODUCTION

The objective of this study was to produce vegetation
and land-cover maps using computer-assisted classifica-
tion of Landsat digital data for the Blackfoot River
watershed in southeastern Idaho. This report docu-
ments the analysis steps and presents examples of the
final output products. The major steps involved in pro-
ducing these maps were
1. Selection and preprocessing of Landsat computer-
compatible-tape (CCT) data.

2. Compilation of a list of vegetation and land-cover
types to be classified and mapped.

3. Selection of training areas and derivation of training
statistics.

4. Testing of training statistics on test areas and com-
paring them with an independent interpretation of
high-altitude color-infrared aerial photographs.

5. Classification of the watershed areas using a max-
imum likelihood classification algorithm.

6. Assessment of classification accuracy.

7. Geometric correction of classified images.

8. Generation of output products (an overlay to a TVe-
minute topographic map and color-coded classi-
fied images at selected scales) and evaluation
of their utility.
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BACKGROUND

PREVIOUS-STUDY RESULTS

In a previous study of the Blackfoot River watershed
(Carneggie and Holm, 1977), manual analysis of high-
altitude color-infrared aerial photographs and a Landsat
color-composite image was performed to demonstrate
how remote-sensing techniques might yield information
for preparing resource inventories and for monitoring
land-cover changes. In 1976, the U.S. Geological Survey
completed an environmental-impact statement (EIS)
that documented impacts that could result from pro-
posals to increase the rate of phosphate strip mining
(U.S. Geological Survey, 1976). The objectives of the
study by Carneggie and Holm were to demonstrate and
identify practical remote-sensing approaches for (1)
gathering information to be included in EIS preparation

1



2 DIGITAL CLASSIFICATION OF LANDSAT DATA, BLACKFOOT RIVER WATERSHED, IDAHO

and (2) monitoring subsequent environmental impacts
resulting from phosphate strip mining.

DESCRIPTION OF THE STUDY AREA

The study area is the Blackfoot River watershed,
Caribou County, southeastern Idaho (fig. 1). The area,
as classified by the Soil Conservation Service (Austin,
1965), is part of the Northern Rocky Mountain Land
Resource Area of the Rocky Mountain Range and
Forest Region. The area is identified by the U.S. Forest
Service (Bailey, 1976) as belonging to the Douglas-fir
Forest Section of the Rocky Mountain Forest Province.
Average annual precipitation in the area is 20-25 in.
(5610-640 mm), of which 50-60 percent falls as snow.

The topography of the watershéd is varied and con-
sists of a series of northwest- and southeast-trending
ridges and valleys. Upland ridges average 7,700 ft
(2,350 m) in altitude and contain phosphate-bearing
rock. The ridges support conifer (lodgepole pine,
Douglas-fir, and subalpine fir) and hardwood (aspen)
forest species. Most of the upland areas are ad-
ministered by the U.S. Forest Service, U.S. Bureau of
Land Management, and State of Idaho Lands Depart-
ment. Lowland areas average 6,250 ft (1,900 m) in
altitude. A large part of the lowlands is privately owned
and has been converted from shrubland to grassland in
order to improve forage production. A list of common
and Latin plant species names is given in the following
table (Little, 1953; Munz and Keck, 1963):

Common name

Latin name

Aspen Populus tremuloides Michx.

Bigsagebrush _______________ Artemisia tridentata Nutt.

Bitterbrush Purshia tridentata (Pursh) DC.

Chokecherry ________________  Prunus virginiona L.

Douglas-fir Pseudotsuga Menziesii (Mirb.)
Franco

Engelmann spruce ___________
Lodgepole pine ______________

Picea, Engelmannii Parry
Pinus contorta Dougl.

Mountain-mahogany __________ Cercocarpus HBK.
Mountainmaple ______________ Acer glabrum Torr.

Rush Juncus L.

Sedge Carex L.

Serviceberry o ________ . Amelanchier Medic.
Snowberry Symphoricarpos Duhamel.
Subalpine fir ________________ Abies lasiocarpa (Hook.) Nutt.
Willow Saliz L.

The watershed is very sparsely settled; only a few
ranches and five phosphate strip mines are permanent.
However, hunting, fishing, camping, and other types of
outdoor recreation bring numerous seasonal visitors to
the area.

Wildlife values are considerable in the study area. Elk,
moose, and deer occupy the upland slopes. The upper
tributaries of the Blackfoot River are recognized as
critical spawning grounds for cutthroat trout. Beaver
reside in riparian areas. Greater sandhill cranes and

other waterfowl nest in the bottomland meadows; sage,
blue, and ruffed grouse live in the lowlands and forests.

The peregrine falcon, an endangered species, nests in
the watershed. The whooping crane, another en-
dangered species, has been introduced via the foster-
parent program near the study area at Grays Lake Na-
tional Wildlife Refuge. It is anticipated that these birds
will follow their greater sandhill crane foster parents
and eventually set up nesting territories in and around
the refuge. Greater sandhill crane habitats in the valley
bottoms of the watershed therefore are potential whoop-
ing crane habitats.

IDENTIFICATION OF RESOURCE CLASSES

The first step in the production of a vegetation and
land-cover map is to define the cover classes to be
mapped. The draft EIS vegetation classification (U.S.
Geological Survey, 1976) served as the starting point for
the construction of a classification scheme for the digital
analysis. A previous manual and digital analysis of
Landsat data for the study area (Carneggie and Holm,
1977, p. 253-256) used a more detailed vegetation-
classification framework than did the draft EIS. Based
on the draft EIS and this previous study, resource
classes listed in table 1 were defined.

The vegetation and land-cover -categories are
presented in a hierarchical framework similar to the one
proposed by Anderson and others (1976) and adopted by
the U.S. Geological Survey. Where appropriate, the
same Levels I and II land-cover class names are used so
that direct comparison can be made with other studies
that use the U.S. Geological Survey system of classifica-
tion. Note that more than one half of the proposed
categories are defined as Level III in the hierarchy.
Brief descriptions of the categories appear in table 2.

SELECTION OF REMOTELY SENSED DATA

During a previous manual analysis of a Landsat image
of the study area, Carneggie and Holm (1977) concluded
that a Landsat image acquired in the late-summer
season (August-September) was best for distinguishing
the major vegetation-cover types (conifer and hardwood
forest, sagebrush-perennial grassland, and meadow).
At the time images were selected for this study, the
most recent high-quality, cloud-free, late-summer Land-
sat image had been acquired on August 15, 1974 (fig. 2).
Data from the multispectral scanner (MSS) of Landsat 1
were chosen for this analysis.

In addition to Landsat data, aerial photographs were
required for training-set evaluation and accuracy assess-
ment. High-altitude color-infrared aerial photographs
had been acquired by the National Aeronautics and
Space Administration (NASA) on August 26, 1975.
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input image to the training and classification steps,
which are described in subsequent sections.

DERIVATION OF TRAINING STATISTICS

OVERVIEW OF TRAINING APPROACHES

There are five steps in the Landsat digital classifica-
tion process:

1. Define groups of Landsat pixels (training sets) that
correspond to each of the resource classes in the
classification scheme.

2. Calculate statistical parameters (training statistics)
for each training set using a statistical computer
algorithm.

3. Use the training statistics to “train” a digital
classification algorithm.

4. Classify each Landsat pixel in the data set (in this
case, the Blackfoot River watershed) into a com-
puter class that represents a resource class.

5. Produce a color-coded resource map or other type of
output product.

The accuracy of classification depends upon the degree
to which spectral variability in the Landsat data is
sampled during training-set selection. In the ideal situa-
tion, each resource class should be represented by one or
more training sets that uniquely describe it; that is,
there should be no confusion with other resource
classes. Furthermore, the training sets should include
examples of the range of spectral variability that can be
expected throughout the study area.

There are two basic approaches to training-set selec-
tion: supervised and unsupervised training. The super-
vised approach to deriving training statistics was most
commonly used in the early development of digital
analysis techniques. This approach presumed that the
analyst could select discrete image areas (training sets)
that would correspond to each of the defined resource
classes. The z-y image coordinates of these training sets
would be specified to the computer, and training
statistics would be generated for each resource class.
This approach is called “supervised” training because the
analyst selects specific areas that he knows contain a
particular resource class.

Experience with this approach demonstrated that it
was not satisfactory for environments where vegetation
or land-cover types were complex or where there was
great spectral variability within resource classes due to
rugged terrain having great variation in slope and
aspect. Because of such environmental variation, the
analyst often had difficulty in selecting sufficient ap-
propriate training areas to represent fully the range of
variation in the data.

The alternative approach is termed “unsupervised”
training. This approach presumes that spectral group-

ings within the Landsat data can best be determined by
computer analysis. Using this approach, a random sam-
ple of training areas is selected without concern for the
resource classes contained in each area. (Sample size is
made large enough so that each resource class is ade-
quately represented in the total sample.) All training-
area pixels are combined, and a computer algorithm is
used that separates the data into a prescribed number of
groups of spectrally distinet pixels. This technique is
often termed “clustering” to describe the way in which
the computer algorithm forms these groupings or
clusters of Landsat pixels.

After spectral clusters have been defined, the training
process requires intensive man-machine interaction to
correlate the clusters with the resource classes they
represent. The approach is called “unsupervised” train-
ing because the analyst does not specify which Landsat
pixels to use as training sets for each resource class. The
random sample of pixels is assumed to contain a more
representative sample of the spectral variability of the
data than would a subjective supervised selection.

Variations of these two basic approaches to training
have been devised. Using a “modified-supervised” ap-
proach, the analyst selects training sets for each of the
known resource classes—the supervised method—but
then he combines all the training sets and uses a cluster-
ing algorithm to separate the data into spectrally
distinet classes. Resource-class names are then assigned
by the analyst to each spectral cluster.

Another variation is called “modified unsupervised,”
“modified clustering,” or “controlled clustering.” The
analyst selects several blocks of pixels (commonly 30-60
pixels square) that he believes contain representative
examples of the range of spectral variability of the
resource classes in the study area. Spectral clusters are
defined by applying a clustering algorithm to the train-
ing data (either to the individual blocks or to an aggrega-
tion of blocks).

Fleming and others (1975) performed a test in which
three of these four methods were compared. The results,
expressed as percentage of correct classification of test
fields in a wildland environment, were as follows:

Percentage of
Training method correct

classification
Modified clustering 84.7
Unsupervised or clustering 78.5
Modified supervised 70.0

The modified (controlled) clustering approach was
judged best because it resulted in savings of man-hours
and computer time, as well as in the highest classifica-
tion accuracy. The investigators concluded that the
modified-clustering approach was especially well suited
to spectrally complex areas having a variety of cover
types and variable terrain.
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TRAINING-AREA SELECTION

The modified-clustering approach was chosen for use
in the present study because of its demonstrated utility
in wildland environments (Fleming and others, 1975;
Rohde and others, 1977, 1978). The Landsat-image
characteristics of the resource types in the Blackfoot
River watershed area were known from previous studies
to be variable and to depend on steepness of slope and
aspect; hence, it would be difficult to select completely
representative training areas using a supervised-
training approach.

Training areas were selected to include representative
examples of the various resource classes in the water-
shed (fig. 3). Training areas were square or rectangular
and were located so that several resource classes were
included in each area. A total of seven areas were
selected, which constituted a sample of 10 percent of the
total watershed area.

CLUSTERING OF TRAINING-AREA DATA

The IDIMS clustering algorithm (ISOCLS) groups
Landsat pixel values from the four MSS bands into
relatively homogeneous clusters of pixels. The training
areas can be clustered individually or grouped together
and clustered as a whole. The latter approach was taken;
the seven training areas were mosaicked to create a
single 150- by 130-pixel training-area image (fig. 4). A
considerable savings in time was achieved by evaluating
one set of spectral clusters rather than seven.

The clustering algorithm operates by first assuming
that all training pixels belong to one spectral cluster.
This cluster is subdivided until the number, size, and
separation distance of the clusters meet specified
values. The specification of these parameters depends in
part upon the spectral characteristics of the particular
Landsat training set. The analyst must use his ex-
perience and knowledge of the area to select the cluster-
ing parameters. The parameters specified for this study
are listed in table 4.

Each cluster is defined by a mean vector and a
covariance matrix. The mean vector is the mean of the
digital values of all pixels in the cluster in four-
dimensional space, corresponding to the four Landsat
MSS bands. The covariance matrix describes the spec-
tral variability of the pixels about the mean and the
covariance of the signature between spectral bands.

The output from the clustering algorithm consists of a
statistics file (containing the mean and covariance for
each cluster) and a new output image, called a clustered
image. This image is a gray-level image in which each
pixel of the mosaicked training areas is given the
number corresponding to the spectral-cluster number to
which the pixel is assigned.

TABLE 4.—Algorithm parameters specified for IDIMS clustering of
training-set data

ISOCLS
nomen-
clature

Usual
range

Specified

Parameter value

Maximum number of iterations; that is, number
of split or combine operations ______________
Minimum number of pixels (clusters with fewer
than NMIN pixels will be deleted and their
pixels assigned to other clusters) ___________
Combining distance, Landsat relative radiance
values (during a combining iteration, two
clusters with mean < DLMINgwill be combined)
Maximum standard deviation (S.D.), Landsat
relative radiance values (during a separatin,
iteration, two clusters with S.D. > STDMA
and whose number of points is > 2(NMIN +1)
will be split)
Maximum number of clusters

ISTOP 15 -30 25
NMIN 15 -30 30

DLMIN 2.5- 4.0 3.2

STDMAX 1.0- 3.0 2.5
MAXCLS 30 -60 50

TECHNIQUES FOR EVALUATING SPECTRAL CLUSTERS

The next analysis step is to assign a resource-class
name to each of the spectral clusters and (if judged ap-
propriate) to combine clusters that have very similar
spectral characteristics and represent the same resource
class. The desired result of cluster evaluation is a final
set of spectral clusters and corresponding training
statistics that will be the basis for classifying the entire
image.

The steps for evaluating spectral clusters are as
follows:

1. Display the clustered image of the training-area
mosaic on a video display screen. Shades of gray
represent the cluster assignments of each pixel.

2. Color-code single or multiple clusters to reveal their
location and distribution.

3. Compare the color-coded cluster display with an-
notated aerial photographs or resource-class maps.
Identify the resource class(es) that correspond to
the display colors.

4. Reassign colors to clusters as necessary to effect the
best possible match of spectral clusters with
resource classes.

A color paper print of the Landsat color-composite
image of the mosaicked training areas is useful for this
comparison since the raw Landsat data cannot be
displayed in color on the same IDIMS screen as the
clustered image. The color-composite image is useful in
visually comparing the clustered image with ground
data because it is often difficult to relate the gray-scale
values of the clusters directly to the ground data.

If a video display screen is not available, the clustered
image can be produced in line printer map format. The
character symbols on the line-printer map correspond to
the spectral clusters, but they are more difficult to inter-
pret and manipulate. Spectral clusters can be regrouped
and displayed in different eolors in a matter of seconds
on the video display, whereas reassigning alphanumeric
symbols and producing a new line-printer map requires
considerably more time.
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distribution, small size, and apparent lack of per-
manence from one year to another were factors con-
sidered in the decision not to perform agricultural
stratification elsewhere in the watershed.

Figure 7 is a graphical representation of the clusters
for which spectral overlap occurred. If a cluster has only
one resource class label, that cluster represents only one
resource class. Where two or more labels are given for a
cluster, the resource class name is determined by the
stratum (upland, lowland, or agricultural) where the
cluster pixels were found.

FINAL DETERMINATION OF RESOURCE CLASSES

Table 5 contains the revised list of resource classes
that resulted from the evaluation of spectral clusters.
There are only two instances in which cluster evaluation
resulted in changes in the resource-class name. The first
instance was the deletion of the tall shrub category. Asa
result of cluster analysis, it was observed that vegeta-
tion communities composed of tall shrubs were small, ir-
regular in shape, and in many places included aspen. It
was very difficult to identify Landsat spectral clusters
that correlated well with known tall-shrub areas in the
training areas. As a result, tall shrub was deleted as a
resource class. Because tall shrub and young aspen
stands were spectrally similar, tall shrub stands in the
watershed were probably classified as aspen.

The second change in resource-class name was in the
low shrub category. This category was subdivided into
four density levels rather than upland-lowland and
disturbed-undisturbed sagebrush. These density levels
were very low, low, medium, and high. The variation in
Landsat relative-radiance levels for these classes cor-
relates with the assigned density levels; that is, as
vegetation density decreases (percentage of bare
ground surface increases), Landsat MSS bands 5 and 7
(fig. 7) relative radiance increases. Comparison of Land-
sat image signatures with color-infrared aerial
photographs of the study area revealed that patterns of
herbicide spraying (the main type of activity causing the
difference between disturbed and undisturbed sage-
brush-perennial-grass communities) were not readily
separable on the Landsat image. Hence, a category sub-
division based on density was more realistic.

The final assignment of resource-class names to spec-
tral clusters is given in table 5 and figure 7. For these
assignments, environmental stratification of the water-
shed was made, separating (1) lowland sites from upland
sites and (2) the zone of intensive agricultural land from
the rest of the watershed.

80 T T T T T T T T T T T T T T T

55

MSS BAND 5
g & 8 & 8

LANDSAT PIXEL BRIGHTNESS
)
o

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
LANDSAT PIXEL BRIGHTNESS
MSS BAND 7

FiGURE 7.-Two-dimensional IDIMS COMPARE plot of spectral
clusters obtained by clustering Landsat MSS data from training
areas. Each numbered ellipse is the graphic representation of a
spectral cluster; the mean value of the cluster lies at the center of
the ellipse, and the ellipse boundary is drawn at a distance of one
standard deviation from the mean. Heavy black lines surround a
cluster or group of clusters to which a resource name or names
have been assigned. Where a single resource-class symbol is given
(Wr, Fc, Sh, Sm, Sl), there is no spectral overlap with another
resource class. Where more than one resource-class symbol is
shown for a cluster or group of clusters, the class symbol assigned
is determined by the environmental stratum into which the pixels
from the cluster or group of clusters fall, as follows: lowland
stratum-R, Mw, Md, Svi/Bs, SI/Br/Bs; upland stratum—Fm, Fa,
Sl, Sh; agricultural stratum-—A. See table 5 for explanation of
resource-class symbols.

TABLE 5.—Final determination of resource-class symbols and names
for Level I and Levels II and III classifications

Symbol Name
Level Levels 1T
1 and III Level 1 Levels IT and 111
F Forest land
Fc Conifer
Fa Aspen
Fm Mixed conifer/aspen
S Rangeland
Sh Sagebrush-perennial grass
(high density)
Sm Sagebrush-perennial grass
{(medium density)
SI Sagebrush-perennial grass
(low density)
T Wetland
Mw Wet meadow
Md Dry meadow
R Riparian hardwoods
S/iB Rangeland/
barren land
Sl/Br/Bs Mix of sagebrush-perennial grass
(low density)/strip mines/roads and
other disturbed areas
Svl/Bs Mix of sagebrush-perennial grass
(very low density)/strip mines
A Agricultural land
Ac Cropland and pasture
w Water
Wr Reservoirs
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TESTING THE VALIDITY OF SPECTRAL-
CLUSTER AND RESOURCE-CLASS
ASSIGNMENTS PRIOR TO THE CLASSIFICATION
OF THE ENTIRE WATERSHED AREA

GENERAL APPROACHES

Most digital-classification projects attempt to verify
the validity of resource-class name assignments to spec-
tral clusters on small test areas prior to classifying the
entire project area. If there are resource classes having
low classification accuracy, then one might (1) re-
evaluate spectral clusters and reassign resource-class
names, (2) change resource-class names to describe
clusters that are spectrally distinct, (3) consider further
environmental stratification, or (4) recluster the train-
ing data.

Two common approaches to testing classification ac-
curacy are to (1) run the classification algorithm on the
same training data that were used to derive the training
statistics or (2) classify different test areas that are in-
dependent of the training areas. Although classification
of the training area is commonly used, this approach can
introduce bias that results in unrealistically high
classification accuracy that cannot be attained for the
entire area or even for other subareas.

TEST-AREA CLASSIFICATION

The training statistics were tested by classification of
two test areas (fig. 3). These areas were representative
of the study area and were independent of the training
areas. Each test area measured 60 by 70 pixels, and con-
tained 4,695 acres (1,900 ha). Together, the two test
areas represent 4.2 percent of the entire watershed.

By means of the training statistics (mean, standard
deviation, covariance) for the final cluster groupings
that are graphically displayed in figure 7, test areas A
and B were classified using the CLASFY routine on
IDIMS. A color-coded display of the results for test area
B appears in figure 8. A visual comparison of the false-
color image (84), the classification results (8B), and the
corresponding high-altitude color-infrared aerial
photograph (8C) shows good general agreement be-
tween the resource classes and classification results,
both in terms of boundary location between classes and
in class designations.

MANUAL PHOTO INTERPRETATION OF TEST AREAS

The visual comparison presented above is the same
technique used earlier to qualitatively evaluate the train-
ing areas. To make a quantitative comparison, the
following steps were taken:

1. Manual photo interpretation was performed for the
part of the aerial photographs corresponding to
test areas A and B.

2. The area occupied by each resource class was deter-
mined.

3. Area estimates from the photo interpretation and
digital classification were compared for all
resource classes.

The image analyst was familiar with the field
characteristics of the resource classes and their color-
infrared image signatures, but he was not involved in
the digital classification. Prior to the photo interpreta-
tion, the author and the interpreter discussed the
resource classes and their photographic signatures. The
interpreter then proceeded with a stereoscopic analysis
of the test areas using paper print enlargements of the
aerial photographs at an approximate scale of 1:24,000.
The minimum mapping unit was about 1.1 acre (0.44 ha),
corresponding to the approximate size of one Landsat
pixel. A copy of the photo-interpretation results at
reduced scale appears in figure 8D.

EVALUATION OF TEST-AREA CLASSIFICATION RESULTS

Area determinations were made for each resource
class using a dot grid. One dot-grid conversion factor

F1cure 8.—Comparison of Landsat image (4) and digital classification p
image (B) (both from IDIMS video displays, not aspect-corrected) of
test area B with corresponding high-altitude color-infrared aerial
photograph (C) and vegetation map prepared from aerial photograph
by manual interpretation (D). Dashed lines on C trace fences that
separate areas of different grazing intensities. Note that the image
signatures on A do not correspond exactly to the patterns on C, sug-
gesting a change in grazing patterns between the time the Landsat
image was acquired (August 15, 1974) and the time the high-altitude
aerial photograph was taken (August 26, 1975).

EXPLANATION
Type of
Resource class classification
Digital Manual
Forest land:
Conifer Purple Fc
Aspen Violet Fa!
Mixed conifer/aspen ___________ Gray Fm
Rangeland:
Sagebrush-perennial grass
(high density) . _____________ Dark green H
Sagebrush—perennial grass
(medium density) ____________ Light green
Sagebrush-perennial grass
(low density) ._____________ Yellow L
Sagebrush-perennial grass
(very low density) ___________ None VL

Rangeland/barren land:
Sagebrush-perennial grass
(very low density)/strip mines __ Light blue
Sagebrush—perennial grass B
(low density)/strip mines/

other disturbed areas _________ Medium blue
Wetland:
Wet Meadow Red Mw?
Dry Meadow Brown Md
Riparian hardwoods ___________ Black R

‘Shading added to map for emphasis.
*Barren areas only.
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imately 200 acres (80 ha) was revealed. Seasonal dif-
ferences between 1974 and 1975 might explain this dif-
ference.

Differences in area estimates for the sage-
brush-perennial-grass classes were also acknowledged.
Close study of the image of this test area (fig. 84, C)
reveals change in grazing intensity between the 1974
and 1975 image dates. For example, grazing appears to
have been heavier at a (lighter pink color) than at b in
the 1974 Landsat image; in the 1975 aerial photograph,
this difference is not so clear. Other examples are
highlighted by the dashed lines on the two images.

Having evaluated these differences in seasonal state
and grazing (in the wetland and sagebrush-perennial-
grass communities) and complex interspersion of aspen
and sagebrush-perennial grass (in the uplands) in test
area B, similar differences can be noted in test area A
(table 6) in both the Level I and Levels II and III
resource classes. Again, seasonal and grazing dif-
ferences and the complex interspersion of sage-
brush-perennial grass and aspen seem to be the major
factors in explaining the differences.

It was concluded that the spectral classes derived
from the training areas were satisfactory for purposes
of the classification. It should be pointed out that even
though the aerial photographs were of greater resolu-
tion than the Landsat image, photo interpretation could
not be accepted as the equivalent of complete field
verification because of the 1-year interval between the
two sets of images. Although manual photo interpreta-
tion of sagebrush-perennial-grass/aspen boundaries is
probably more accurate than the digital classification,
the relative accuracy of the sagebrush-perennial-grass
density and wet/dry meadow classes cannot be assessed
on a class-by-class basis because of the different
livestock grazing patterns that have been imposed on
the watershed in the 2 years.

Based on the relatively close agreement in Level 1
acreage estimates from manual and digital analysis of
the test areas, it was concluded that the training data
were satisfactory and that alteration in spectral-cluster
assignments would not improve classification accuracy.

DIGITAL CLASSIFICATION OF WATERSHED
AREA

The IDIMS CLASFY algorithm uses the training-
statistics file and applies a maximum-likelihood decision
rule to the Landsat data being classified. Using this rule,
each pixel in the image is assigned to the spectral class
to which it has the greatest statistical probability or
likelihood of belonging. Thus, a new one-band image,
called the “classified” image, is created. The Landsat im-
age of the watershed was classified into 85 spectral

classes representing 13 Levels II and III resource
classes.

To produce the final classification in which the proper
resource class is assigned to each classified pixel, the
classified image is recoded. Each of the 35 spectral-class
pixel values is replaced by a number corresponding to
one of the 13 resource classes (fig. 9). Stratification of
lowland and agricultural areas is applied in this step by
assigning resource-class names to pixels according to
their stratum designation. For example, the riparian-
hardwoods class (resource class 10) is represented by
spectral classes 3, 5, 9, 12, and 18 in the lowland
stratum. The relationship between the raw Landsat
multispectral data, the classified image (35 spectral
classes), and the corresponding 13 Levels II and III
resource classes is also graphically displayed in figure 9.

When the recoded output image from CLASFY is
displayed on the video screen, the resource classes ap-
pear in 13 shades of gray. Each resource class can be
color-coded for ease of viewing and evaluation. Figure
13D (p. 26) contains an example of the color-coded,
classified image showing the 13 Levels II and III classes.
Note that, at this reduced scale, it is difficult to
distinguish between some of the resource classes owing
to their small size and irregular pattern.

For presentation at a relatively small scale (1:250,000
or smaller), it is sometimes desirable to present only the
more generalized resource classes. Figure 134 shows a
color-coded classified image in which the resource
classes have been grouped into six Level I classes: forest
land, rangeland, rangeland/barren land, wetland,
agricultural land, and water.

The results of the classification are presented in table
7, which shows the total area occupied by each of six
Level I resource classes, and table 8, which shows the
total area occupied by each of 13 Levels II and III
resource classes.

ACCURACY OF CLASSIFICATION

Recent publications on Landsat digital classification
generally include verification of the accuracy of
classification, although the methods used vary greatly.
A thoughtful statement of the need for carefully selec-
ting a method for accuracy assessment that fits the

TABLE 7.—Area summary of digital classification (Level I resource
classes) of the Blackfoot River watershed

Number Area Percent
Resource class of —_— of

pixels Acres Hectares total

Forest land 87,055 97,327 39,388 434
R land 84,470 94,438 38,219 42.1
Rangeland/barren land _____________ 4,280 4,785 1,937 2.1
Wetland 21,581 24,128 9,764 10.8
Agrieultural land __________________ 2,930 3,276 1,326 15
Water 259 290 117 0.1
Total 200,575 224,244 90,751 100.0




18

TABLE 8.-Area summary of digital classification (Levels IT and III
resource classes) of the Blackfoot River watershed

Number Area Percent
Resource class of _—_— of
pixels Acres Hectares total
Forest land:
Conifer 24,483 27,372 11,077 12.2
Aspen 37,825 42,288 17,114 18.9
Mixed conifer/aspen ______________ 24,747 27,667 11,197 12.3
Rangeland:
Sagebrush-perennial grass
thigh density) __________________ 29,541 33,027 13,366 14.7
Sagebrush-perennial grass
(medium density) _______________ 38,116 42,614 17,246 19.0
Sagebrush-perennial grass
(lowdensity) ___________________ 16,813 18,797 7,607 84
Rangeland/barren land:
Sagebrush-perennial grass
(very low density)/strip mines _____ 1,503 1,680 680 N
Sagebrush-perennial grass
(low density)/ strip mines/other
disturbed areas ________________ 2,777 3,105 1,257 14
Wetland:
Wet meadow _________ _— 6,607 7,387 2,989 3.3
Dry meadow _________ _— 12,341 13,797 5,584 6.2
Riparian hardwoods ______________ 2,633 2,944 1,191 13
Agricultural land:
Cropland and pasture _____________ 2,930 3,276 1,326 1.5
Water:
Reservoirs ______________________ 259 290 117 1
Total 200,575 224,244 90,751 100.0

needs of the potential user was recently made by Heller
(1976, p. 20). He comments (emphasis added):

A more thorough analysis of the accuracy of classification maps is
needed as are sound statistical sampling procedures to achieve
estimates around which a confidence statement can be placed. It is in-

PIXEL BRIGHTNESS

(Range, 0-127) Spectral class

Resource class

DIGITAL CLASSIFICATION OF LANDSAT DATA, BLACKFOOT RIVER WATERSHED, IDAHO

teresting to note that there exists a heavy reliance on statistical deci-
sion theory in classifying multispectral data but an apporent reluc-
tance to use statistical sampling theory to evaluate the results and pro-
vide estimates in a format required by the user community * * * . I¢
1s incumbent on the remote sensing community to make an intensive ef-
fort to develop sound sampling procedures to evaluate the accuracy of
resource parameters with specific confidence statements based on user
objectives. Map products and tabular data presented in such a manner
will gain wider user acceptance and be in a format that allows a
resource manager to make a decision on the value of the data and in-
corporate such data into his management decisions.

Similar sentiments have been echoed recently by Sayn-
Wittgenstein and Wightman (1975, p. 1214).
Verification of classification results requires a stand-
ard of comparison. Ground data (or “ground truth,” as it
is often called) may be collected at sample points or over
broad areas, thus producing a map of the resource
classes that can be compared with the digital classifica-
tion. However, one can find wide-ranging opinions on
whether the map from ground data should be considered
completely accurate. Smedes (1975, p. 821) has made
some observations that are relevant to this discussion:

Generally, for those classes that can be distinguished from one
another by spectral signature or other remote-sensing attributes, the
remote-sensing map is more accurate than the ground-truth map. It is
a matter of practice that the ground-truth map is upgraded by the
remote-sensing map data.

Key to spectral Classes and Resource Classes

Resource class symbol

21 22 23 23 28 number number and name
20 23 20 24 29 W 16 6 Sm-sage-perennial grass (medium density)
4 24 24 23 23 24 4 7 Sh-sage-perennial grass (high density)
23 26 26 23 23 8,23 8 Mw-wet meadow
23 25 25 23 23 21,2427 9 Md-dry meadow
5,12,18 10 R-riparian hardwoods

14 16 16 17 26
» 16 16 16 21 28 RESOURCE CLASS RESOURCE CLASS
S s 17 17 16 17 22 CLASSIFIED IMAGE NUMBERS SYMBOLS
s 20 20 20 16 16 12 18 18 8 21 10 10 10 8 9 R R R Mw Md
) 21 19 19 21 17 MAXIMUM
g LIKELIHOOD 12 12 12 24 16 10 10 10 9 6 R R R Md Sm
= 1 cLAssIFI- [T| 5 18 23 8 4 _1 1010 8 8 7 R R Mw Mw Sh
§ 40 46 46 46 44 CATION 24 8 27 12 12 9 8 9 10 10 Md Mw Md R
Z 39 39 39 41 44 24 8 8 24 12 9 8 8 9 10 Md Mw Mw Md
S 6 42 45 49 47 42

40 45 48 40 38 35 SPECTRAL CLASSES 13 RESOURCE CLASSES 13 RESOURCE CLASSES

43 47 45 42 38

46 56 56 54 50

46 48 46 46 48

7 48 58 60 52 42
48 52 58 48 44
49 52 52 45 43 |

FIGURE 9.-Flow diagram of the digital classification process creating a classified image for a 25-pixel block of Landsat MSS data (4 bands).
Spectral-class numbers are assigned to each pixel by the maximum-likelihood classification algorithm. Resource-class assignments (using class
numbers and class symbols) corresponding to the spectral classes are shown. The area represented by this 25-pixel block falls within the
lowland environmental stratum, and resource-class assighments are made for that stratum.
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Reasons for the difficulty of making a nearly perfect ground-truth
map of the natural terrain surface include the following * * *: (1)
spatial complexity, (2) the problem of mixed terrain classes, and (3) the
problem of boundaries * * * .

Williams and Haver (1976, p. 16) offer another poirnt of
view:

Even if complete aerial coverage of the desired film-type and resolu-
tion were available, there would still be problems because photo inter-
preter delineations should not be considered as “absolute ground
truth” * * * comparisons should be expressed in terms of the percent-
age of “agreement” and not the percent “correct.”

The author’s experience, both in this study and
elsewhere (Pettinger, 1971), leads him to concur with
Williams and Haver’s point of view. For purposes of the
discussions that follow, accuracy and statements of
percent-correct classification will be defined as agree-
ment of digital classification with photo interpretation,
on a pixel-by-pixel basis.

PIXEL-BY-PIXEL ACCURACY ASSESSMENT

SINGLE-PIXEL METHOD

Two methods for determining digital classification ac-
curacy were discussed earlier; (1) subjective comparison
of color video displays of spectral clusters in training
areas with corresponding aerial photographs, and (2)
comparison of acreage figures for resource classes from
digital classification with figures from photo interpreta-
tion. Although these methods indicate whether there is
general agreement in mapped areas by resource class,
they do not indicate how accurately individual pixels
were classified. To provide a rigorous assessment of
classification accuracy, photo interpretation of the im-
age areas corresponding to single Landsat pixels was
compared with the digital classification.2 As explained
earlier, this approach was also desirable for test-area
classification, but it was not used because of the extra
time and resources that would have been required.

For verification using photo interpretation, pixel
boundaries are visually transferred from an enlarged
digital image display to an aerial photograph that has
been enlarged to a scale at which individual pixels can be
plotted. For this purpose, the aerial-photograph scale
should be 1:30,000 or (preferably) larger. The aceuracy
of this transfer will depend on the presence of iden-
tifiable landmarks on the photograph and the Landsat
display. Photo interpretation of pixel equivalents on the
aerial photograph should be made without reference to

% An alternative method of pixel-by-pixel accuracy assessment is to use direct ground obser-
vation of pixel areas. For ground verification, one determines the longitude and latitude of a
Landsat pixel and plots its position on a topographic map. The map position is visited on the
ground and the identity of the ground features at that point is recorded. The major problem
with this method is the difficulty in precisely locating the ground equivalent of a single pixel
both on the map and in the field. This difficulty is compounded when the terrain is steep and
vegetation cover is dense.

the digital classification of the pixel, so that the inter-
preter’s decisions are not influenced by his knowledge of
the digital classification.

PIXEL-BLOCK METHOD

Plotting of single pixels onto aerial photographs is
quite difficult, especially in mountainous terrrain or
where there are few features for reference. To improve
the ease and accuracy of this transfer, blocks of pixels
were selected for assessment. The following steps were
used to plot and evaluate pixel blocks:

1. By comparing the digital display with the corre-
sponding aerial photograph of the same approx-
imate scale, the corners of each pixel block were
plotted on an acetate overlay on the photograph.

2. A network of evenly spaced lines was drawn within
the block to define the boundaries of the individual
pixels.

3. Each of the pixels was interpreted on the aerial
photograph, and the resource class that pre-
dominated in the pixel area was identified.

4. The results were compared with the digital classifica-
tion.

A 5- by 5-pixel block size was selected since it was
large enough to overcome some of the difficulties
associated with plotting and locating individual pixels
yet was small enough to permit a sample of several
blocks to be well distributed across the watershed area.

SAMPLE ALLOCATION

The formula used for determining the number of
pixels to be sampled in the 7th class (n) is

___Nipa) O

Nn; ’
2
(N;—l)%+p,0(

where
N. = number of pixels classified in the 4th class (in
the entire watershed),
P: = estimate of proportion of pixels correctly

classified in the ith class,
& = (1-5),
user-specified allowable error, and
= Student’s t-statistic for n-1 degrees of
freedom at the user-specified probability
level.

!
o

The sample size for any resource class depends on (1) the
total number of pixels classified in that resource class,
(2) an estimate of the accuracy of classification for that
class, and (3) the user-specified allowable error. The
data and results of the calculations made for each class
are summarized in table 9.
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TABLE 9.—Sample-size allocation for pixel-by-pizel accuracy

assessment
Estimate of
Number of proportion Number of Nun}ber
pixels of pixels pixels to of
Resource class classified  correctly be sampled samples
)y classified (p,) o) taken
Forest land:
Conifer 24,483 0.90 35 146
Aspen 37,825 .80 61 162
Mixed conifer/aspen ______________ 24,747 .80 61 158
Rangeland:
Sagebrush-perennial grass
(highdensity) __________________ 29,541 .85 49 140
Sagebrush-perennial grass
(medium density) _______________ 38,116 75 72 258
Sagebrush-perennial grass
(owdensity) .__________________ 16,813 .75 72 104
Rangeland/barren land:
Sagebrush-perennial grass
(very low density)/strip mines _____ 1,503 .85 47 47
Sagebrush-perennial grass
(low density)/ strip mines/other
disturbed areas ________________ 2,771 .85 47 50
Wetland:
Wetmeadow ____________________ 6,607 .90 35 58
Dry meadow ____________________ 12,341 .90 35 34
Riparian 2,633 .90 34 21
Agricultural land:
Cropland and pasture _____________ 2,930 .80 60 59
Water:
Reservoirs ______________________ 259 97 11 18
Total 200,575 — 619 1,250
! From table 8.
2 Equation (1).

As an example, consider the aspen class. The follow-
ing values were selected for the input parameters:

N, = 37,825 pixels classified into the aspen
resource class (table 8),

s = 0.80 (estimated proportion of pixels in
the aspen class correctly classified),

E = 0.10 (10 percent error allowed for sample
estimate), and

to-0s = 1.96.

From these values, n;=61. For each resource class, the
appropriate N, value was used, and p; was estimated
based on previous experience during the training and
testing phases. In all cases, E (0.10) and ¢ (1.96) were
constant.

Blocks were randomly selected from the entire image
using the IDIMS RANDSAMP algorithm that randomly
selects a specified number of blocks of pixels of a
specified size (in this case, 5 by 5 pixels). Initially, 30
blocks were chosen in order to satisfy the requirement
for a total of 619 pixels in all resource classes. The
cumulative total of pixels classified in each resource
class was determined from these 750 pixels and com-
pared with the calculated n, values. Additional random
samples were selected until the calculated sample sizes
were achieved. In all, 50 blocks were needed to achieve
the proper sample size for each class.

PHOTO INTERPRETATION OF PIXEL BLOCKS

The location of each 25-pixel block was plotted on
acetate overlays to the high-altitude color-infrared

aerial photographs that had been enlarged to an approx-
imate scale of 1:24,000. At this scale, each block
measured slightly more than 0.3 in ? (2 cm?) (fig. 10).

Conventional photo-interpretation techniques (in-
cluding magnification and stereoscopic viewing) were
used to identify the resource class corresponding to each
pixel in each block. Where there were mixtures of two or
more resource classes in a pixel, the class that occupied
the greatest area was identified. Photo-interpretation
results were compared with digital classification for
Level 1 (table 10) and Levels II and III (table 11)
resource classes. Digital classification results are ex-
pressed as a percent of photo-interpretation estimates.
Confidence intervals (95 percent probability level) are
also given for each resource class and were computed by
the following formula (Mendenhall and others, 1971, p.
43-47):

_ g (N.=m) 2)
C.I (percent)= £t 4 [ -1 N, (
where

D = percent of pixels correctly identified in ith
resource class,

' = (100-p),

N, = total number of pixels classified in the ith
class,

n = number of pixels photo-interpreted in the
1th class, and

t = Student’s t statistic (=1.96 at the 0.95

probability level).

Finally, figure 11 contains contingency tables (confu-
sion matrices) that show where disagreements in
classification have occurred. For purposes of discussion,
disagreements are described as either omission or com-
mission errors. An omission error occurs when a pixel is
omitted by digital classification from the correct photo-
interpretation class. A commission error occurs when a
pixel is incorrectly assigned by digital classification to a
wrong class. Thus, an incorrect classification results in
both an omission and commission error. A detailed ex-
ample comparing manual and digital results for a sample
25-pixel block appears in figure 10.

EVALUATION OF RESULTS

Overall agreement of digital classification with
manual analysis was relatively low in Levels II and III
resource classes (52.2 percent). In only 6 of the 13
Levels II and III resource classes did agreement of
digital classification with photo interpretation equal or
exceed 60 percent. In all Level I resource classes, agree-
ment was 83 percent. In four of the six Level I resource
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FIGURE 11.—-Contingency tables used to compare the classification of resources in the Blackfoot River watershed
by means of photo interpretation with the classification by digital methods. A, Frequency of agreement
(numbers inside heavy solid line) and disagreement (numbers outside heavy solid line) between Level I
resource classes. B, Frequency of agreement and disagreement between Levels II and III resource classes.
Heavy dashed lines enclose the Level I resource-class frequencies whose totals are shown in A.
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topographic contour in the center of each pixel, and a se-
cond line of the same length was oriented perpendicular
to the first. Ground-cover composition (plant species,
soil, or rock) was recorded at 50 sample points along
each line. Percent slope and aspect were also recorded.

Within the forest classes, composition, stem diameter,
and crown closure were measured in a circular plot, 100
ft (30 m) in diameter, established in the center of each
pixel. Trees within the plot were recorded by species and
diameter class. Crown closure was also estimated. Other
measurements included percent slope, aspect, average
height of dominant and codominant trees, stand struc-
ture, and general age-class distribution.

Figure 12 illustrates how field data were graphically
displayed. In this example, the percent vegetation cover
is shown for the 24 sagebrush-perennial-grass pixel
areas field-sampled. Cover values for these pixels were
grouped according to the density subclass to which they
were assigned during photo interpretation. Note that
there is overlap in percent foliar cover among the densi-
ty subclasses. In terms of percent foliar cover, the very-
low- and low-density subclasses overlap, as do the
medium- and high-density subclasses. The data indicate
that it may be more realistic to define two subclasses of
sagebrush-perennial-grass type—high and low density.

Although the sample size was small, these data pro-
vide added information to quantitatively describe the
resource classes. This information, along with other in-
formation such as forage production and timber volume,
would be required for a multistage.inventory of forest
and rangeland resources.

OUTPUT PRODUCTS GENERATION

Two types of output products were generated: (1)
color-coded resource maps (Level I and Levels IT and III
resource classes) for the entire watershed (scale
1:250,000) and for the area corresponding to the
1:24,000-scale Upper Valley 7%-minute Quadrangle,
produced using a film recorder, and (2) a resource map
overlay to the 1:24,000-scale topographic map,
generated by a computer-driven flatbed plotter.

A spatial-smoothing algorithm was used to improve
the appearance of the resource maps and to reduce
classification errors. This technique changes the
classification for isolated single pixels that may have
been misclassified owing to mixing and edge effects
related to neighboring resource classes. All output prod-
ucts were geometrically corrected by registering the
Landsat data to the corresponding topographic map,
either 1:250,000 or 1:24,000 scale. These two opera-
tions, spatial smoothing and geometric correction, are
described in the following sections.
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FIGURE 12.-Graphical representation of field data showing percent
vegetation cover in 24 randomly sampled pixels from the sagebrush~
perennial-grass resource class. Density subclass assignments are
from interpretation of high-altitude color-infrared aerial
photographs. Horizontal line in each column is the mean value for the
subclass.

SPATIAL SMOOTHING

Spatial smoothing, or image reclassification as it is
sometimes called, is accomplished using the IDIMS
RECLASS algorithm. With this algorithm, the value of
each pixel in the classified image is replaced by the value
that appears most commonly within a specified window
area (block of pixels surrounding the pixel being
reclassified) centered on that pixel. For example, if a
3-by 3-pixel window is used, the pixel being reclassified
is assigned the value occurring most commonly among
the 9 pixels in the window.

Spatial smoothing serves two purposes. First, it is
used to remove the “salt and pepper” effect of small in-
clusions of one or more resource classes that are imbed-
ded in more spatially extensive classes. This effect is fre-
quently caused by misclassification (for example, the
classification of a few pixels as mixed conifer/aspen
when they actually fall within a pure stand of aspen).
Smoothing might eliminate this type of error and pro-
duce a more accurate classification. However, if the
resource classes are complex and heterogeneous, the
“salt and pepper” effect may be an expression of this real
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