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DIGITAL CLASSIFICATION OF LANDSAT DATA
FOR VEGETATION AND LAND-COVER MAPPING IN

THE BLACKFOOT RIVER WATERSHED, SOUTHEASTERN IDAHO



Portion of the Preston 1:250,000 topographic map with insert of land cover information for the Blackfoot River watershed. Land cover was de­ 
rived from digital classification of Landsat data (see fig. 16 for color display and explanation of land cover classes). The Landsat data have been 
registered to fit the topographic map, as shown by comparing the map detail with the land cover patterns.
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DIGITAL CLASSIFICATION OF LANDSAT DATA FOR
VEGETATION AND LAND-COVER MAPPING IN THE

BLACKFOOT RIVER WATERSHED, SOUTHEASTERN IDAHO

By LAWRENCE R. PETTINGER

ABSTRACT

This paper documents the procedures, results, and final products of a 
digital analysis of Landsat data used to produce a vegetation and land- 
cover map of the Blackfoot River watershed in southeastern Idaho. 
Resource classes were identified at two levels of detail: generalized 
Level I classes (for example, forest land and wetland) and detailed 
Levels II and III classes (for example, conifer forest, aspen, wet 
meadow, and riparian hardwoods). Training set statistics were derived 
using a modified clustering approach. Environmental stratification 
that separated uplands from lowlands improved discrimination be­ 
tween resource classes having similar spectral signatures. Digital 
classification was performed using a maximum likelihood algorithm.

Classification accuracy was determined on a single-pixel basis from a 
random sample of 25-pixel blocks. These blocks were transferred to 
small-scale color-infrared aerial photographs, and the image area cor­ 
responding to each pixel was interpreted. Classification accuracy, ex­ 
pressed as percent agreement of digital classification and photo- 
interpretation results, was 83.0 ± 2.1 percent (0.95 probability level) 
for generalized (Level I) classes and 52.2 ± 2.8 percent (0.95 probabili­ 
ty level) for detailed (Levels II and III) classes.

After the classified images were geometrically corrected, two types 
of maps were produced of Level I and Levels II and III resource 
classes: color-coded maps at a 1:250,000 scale, and flatbed-plotter 
overlays at a 1:24,000 scale. The overlays are more useful because of 
their larger scale, familiar format to users, and compatibility with 
other types of topographic and thematic maps of the same scale.

INTRODUCTION

The objective of this study was to produce vegetation 
and land-cover maps using computer-assisted classifica­ 
tion of Landsat digital data for the Blackfoot River 
watershed in southeastern Idaho. This report docu­ 
ments the analysis steps and presents examples of the 
final output products. The major steps involved in pro­ 
ducing these maps were
1. Selection and preprocessing of Landsat computer- 

compatible-tape (CCT) data.
2. Compilation of a list of vegetation and land-cover 

types to be classified and mapped.
3. Selection of training areas and derivation of training 

statistics.
4. Testing of training statistics on test areas and com­ 

paring them with an independent interpretation of 
high-altitude color-infrared aerial photographs.

5. Classification of the watershed areas using a max­ 
imum likelihood classification algorithm.

6. Assessment of classification accuracy.
7. Geometric correction of classified images.
8. Generation of output products (an overlay to a 7V2- 

minute topographic map and color-coded classi­ 
fied images at selected scales) and evaluation 
of their utility.
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BACKGROUND

PREVIOUS-STUDY RESULTS

In a previous study of the Blackfoot River watershed 
(Carneggie and Holm, 1977), manual analysis of high- 
altitude color-infrared aerial photographs and a Landsat 
color-composite image was performed to demonstrate 
how remote-sensing techniques might yield information 
for preparing resource inventories and for monitoring 
land-cover changes. In 1976, the U.S. Geological Survey 
completed an environmental-impact statement (EIS) 
that documented impacts that could result from pro­ 
posals to increase the rate of phosphate strip mining 
(U.S. Geological Survey, 1976). The objectives of the 
study by Carneggie and Holm were to demonstrate and 
identify practical remote-sensing approaches for (1) 
gathering information to be included in EIS preparation
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and (2) monitoring subsequent environmental impacts 
resulting from phosphate strip mining.

DESCRIPTION OF THE STUDY AREA

The study area is the Blackfoot River watershed, 
Caribou County, southeastern Idaho (fig. 1). The area, 
as classified by the Soil Conservation Service (Austin, 
1965), is part of the Northern Rocky Mountain Land 
Resource Area of the Rocky Mountain Range and 
Forest Region. The area is identified by the U.S. Forest 
Service (Bailey, 1976) as belonging to the Douglas-fir 
Forest Section of the Rocky Mountain Forest Province. 
Average annual precipitation in the area is 20-25 in. 
(510-640 mm), of which 50-60 percent falls as snow.

The topography of the watershed is varied and con­ 
sists of a series of northwest- and southeast-trending 
ridges and valleys. Upland ridges average 7,700 ft 
(2,350 m) in altitude and contain phosphate-bearing 
rock. The ridges support conifer (lodgepole pine, 
Douglas-fir, and subalpine fir) and hardwood (aspen) 
forest species. Most of the upland areas are ad­ 
ministered by the U.S. Forest Service, U.S. Bureau of 
Land Management, and State of Idaho Lands Depart­ 
ment. Lowland areas average 6,250 ft (1,900 m) in 
altitude. A large part of the lowlands is privately owned 
and has been converted from shrubland to grassland in 
order to improve forage production. A list of common 
and Latin plant species names is given in the following 
table (Little, 1953; Munz and Keck, 1963):

Common name Latin name

Aspen _______
Big sagebrush 
Bitterbrush _ 
Chokecherry _ 
Douglas-fir _

Engelmann spruce _ 
Lodgepole pine ____ 
Mountain-mahogany 
Mountain maple ____
Rush _____________
Sedge ____________
Serviceberry ______
Snowberry _______
Subalpine fir ______
Willow ________

Pojwlus tremuloides Michx. 
Artemisia tridentata Nutt. 
Purshia tridentata (Pursh) DC. 
Prumis virginiana L. 
Pseudotsuga Menziesii (Mirb.) 
Franco
Picea Engelmannii Parry 
Pinus contorta Dougl. 
Cercocarpus HBK. 
Acer glabrum Torr. 
Juncus L. 
Car ex L.
Amelanchier Medic. 
Symphoricarpos Duhamel. 
Abies lasiocarpa (Hook.) Nutt. 
Salix L.

The watershed is very sparsely settled; only a few 
ranches and five phosphate strip mines are permanent. 
However, hunting, fishing, camping, and other types of 
outdoor recreation bring numerous seasonal visitors to 
the area.

Wildlife values are considerable in the study area. Elk, 
moose, and deer occupy the upland slopes. The upper 
tributaries of the Blackfoot River are recognized as 
critical spawning grounds for cutthroat trout. Beaver 
reside in riparian areas. Greater sandhill cranes and

other waterfowl nest in the bottomland meadows; sage, 
blue, and ruffed grouse live in the lowlands and forests. 

The peregrine falcon, an endangered species, nests in 
the watershed. The whooping crane, another en­ 
dangered species, has been introduced via the foster- 
parent program near the study area at Grays Lake Na­ 
tional Wildlife Refuge. It is anticipated that these birds 
will follow their greater sandhill crane foster parents 
and eventually set up nesting territories in and around 
the refuge. Greater sandhill crane habitats in the valley 
bottoms of the watershed therefore are potential whoop­ 
ing crane habitats.

IDENTIFICATION OF RESOURCE CLASSES

The first step in the production of a vegetation and 
land-cover map is to define the cover classes to be 
mapped. The draft EIS vegetation classification (U.S. 
Geological Survey, 1976) served as the starting point for 
the construction of a classification scheme for the digital 
analysis. A previous manual and digital analysis of 
Landsat data for the study area (Carneggie and Holm, 
1977, p. 253-256) used a more detailed vegetation- 
classification framework than did the draft EIS. Based 
on the draft EIS and this previous study, resource 
classes listed in table 1 were defined.

The vegetation and land-cover categories are 
presented in a hierarchical framework similar to the one 
proposed by Anderson and others (1976) and adopted by 
the U.S. Geological Survey. Where appropriate, the 
same Levels I and II land-cover class names are used so 
that direct comparison can be made with other studies 
that use the U.S. Geological Survey system of classifica­ 
tion. Note that more than one half of the proposed 
categories are defined as Level III in the hierarchy. 
Brief descriptions of the categories appear in table 2.

SELECTION OF REMOTELY SENSED DATA

During a previous manual analysis of a Landsat image 
of the study area, Carneggie and Holm (1977) concluded 
that a Landsat image acquired in the late-summer 
season (August-September) was best for distinguishing 
the major vegetation-cover types (conifer and hardwood 
forest, sagebrush-perennial grassland, and meadow). 
At the time images were selected for this study, the 
most recent high-quality, cloud-free, late-summer Land- 
sat image had been acquired on August 15,1974 (fig. 2). 
Data from the multispectral scanner (MSS) of Landsat 1 
were chosen for this analysis.

In addition to Landsat data, aerial photographs were 
required for training-set evaluation and accuracy assess­ 
ment. High-altitude color-infrared aerial photographs 
had been acquired by the National Aeronautics and 
Space Administration (NASA) on August 26, 1975.
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TABLE I.-Comparison of resource classes selected for digital analysis 
with classes used in the southeastern Idaho draft EIS

Resource classes from 
draft EIS *

Conifer and Aspen

Mountain brush and 
sagebrush- 
perennial grass.

Riparian (sedges, 
rushes, willows).

Resource classes selected for digital analysis
Level I Level II

Forest land Conifer

Hardwood

Mixed conifer and 
hardwood

Rangeland Mixed rangeland

Wetland Nonforested 
wetland

Level III

Aspen

Mixed conifer and

Tall shrub

Low shrub 
(upland, 
undisturbed)

Low shrub 
(lowland, 
undisturbed)

Low shrub 
(lowland, 
disturbed)

Wet meadow

Dry meadow

Forested wetland Riparian 
hardwoods

Marshlands 
(emergent 
and submergent 
vegetation in areas 
inundated during 
most of the grow­
ing season; 
for example, 
Grays Lake).

Agriculture 
(small grains, 
some alfalfa
hay, grass, and 
pasture).

Water

Roads

(None in 
watershed 
area.)

Agricultural 
land

Water

Barren land

None None

Cropland and 
pasture

Reservoirs

Strip mines, 
roads, other
disturbed land

Urban development (None in
watershed 
area)

None None

1 U.S. Geological Survey (1976, v. I, p. 1-174 to 1-190).

Although there was a 1-year difference between the two 
image dates, the seasonal state was the same, and the 
1-year difference could be tolerated. Some differences in 
vegetation state were anticipated (mainly due to dif­ 
ferences in grazing intensity in the valley bottoms), but 
these were not considered to be a serious deterrent to a 
successful comparison of the two image sets.

In summary, the following images were used for the 
study:

linage type

Landsat MSS 
NASA aircraft

Date acquired

August 15, 1974 
August 26, 1975

linage identification number

81753173225GO. 
5750022007ROLL, frames 

6497-6500 and 6525-6528.

DESCRIPTION OF DIGITAL IMAGE ANALYSIS 
SYSTEM

The digital analysis reported here was performed at 
the EROS Data Center using the Interactive Digital Im­

age Manipulation System (IDIMS), which is manufac­ 
tured by Electromagnetic Systems Laboratories (ESL), 
Inc. 1

Digital images are entered into the system from 
magnetic tapes. Analysts communicate with the system 
by means of typewriter terminals. Because the system 
can process more than one program at one time, multi­ 
ple terminals are used for concurrent analysis sessions. 
Processing is done by a Hewlett Packard HP3000 
minicomputer augmented by a core memory and 
moving-head disks.

Program outputs can be displayed or recorded in three 
different ways:
1. Line printer or operator terminal. Numerical results 

can be listed or tabulated on either the analyst's 
terminal or the line printer. Image data can be 
represented by character symbols, using one sym­ 
bol for each picture element (pixel) in the image.

2. Color video display monitor. Images can be displayed 
and viewed using the video monitor. Different 
types of black-and-white or color displays are possi­ 
ble. Landsat data can be displayed as false-color 
composite images (figs. 5, 8). Classification results 
can be displayed as color-coded images, in which 
each resource class appears in a distinctive color 
(figs. 5, 8).

3. Magnetic tape. Output images can be recorded on 
tape for future recall and analysis. These stored 
images can also be used as inputs to other systems 
(for example, to film recorders to produce high- 
quality film images or to flatbed plotters to produce 
scaled maps).

IDIMS analysis is facilitated by the effective manner 
in which the analyst can communicate via the terminal 
and can manipulate images on the video display. The 
analyst can use a variety of terminal commands to 
change color codings, annotate images, or recall other 
images from disk storage. With a movable cursor, he 
can outline or stratify image areas or can read the 
digital brightness values and row-column coordinates of 
individual Landsat pixels.

PREPROCESSING OF LANDSAT DATA

Radiometric anomalies in raw Landsat data are in­ 
troduced by sensor miscalibration, data losses during 
transmission or recording, sensor saturation, and at­ 
mospheric attenuation. Digital analysis usually begins 
with certain preprocessing steps that compensate or 
correct for these anomalies. By using IDIMS software to 
restore or correct the data, subsequent classification 
results are improved. The most important radiometric

1 Trade names and commercial enterprises or products are mentioned in this report solely 
for necessary information. No endorsement by the U.S. Geological Survey is implied.
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FIGURE 1.-Topographic map of part of southeastern Idaho, showing the Blackfoot River watershed.
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FIGURE 2. -Annotated Landsat color-composite image of part of southeastern Idaho and western Wyoming showing the outline of the Blackfoot
River watershed (August 15, 1974; image identification number: 81753173225GO).
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TABLE 2. -Brief description of vegetation types defined for digital analysis in the Blackfoot River watershed

Resource class Species composition General site characteristics

Conifer

Aspen ___ 
Tall shrub

Low shrub (sagebrush-perennial 
grass).

Wet/dry meadow

Riparian hardwoods __

Cropland and pasture ________

Dominant overstory consists of lodgepole pine and 
Douglas-fir; Engelmann spruce and subalpine fir 
are minor constituents at higher altitudes.

Pure stands of aspen ________________________
Dominant components include bitterbrush, 

serviceberry, snowberry, chokecherry, moun­ 
tain maple, and mountain-mahogany.

Dominated by big sagebrush and a variety of 
perennial bunchgrasses; minor amounts of bitter- 
brush, serviceberry, and snowberry.

_____ Sedges, rushes, and grasses ______

Mixed willow species

Small grain crops, some alfalfa hay, grass, and 
pasture.

Occurs most often on north- and east-facing 
upland slopes; at higher altitudes its occurrence is 
independent of aspect.

Occurs in uplands on a variety of aspects.
Occurs on all aspects at lower altitudes; at higher 

altitudes, typically occurs on south- and west- 
facing slopes and ridge tops.

Generally occurs at lower altitudes than tall 
shrubs and on less productive soils; many lowland 
communities have been removed and the sites 
seeded with grasses to increase forage potential.

Occurs on moist valley bottoms; areas of denser 
vegetation are typically associated with moister 
sites.

Along banks of streams and ponds and in poorly 
drained canyon bottoms.

Occurs mostly on the Blackfoot Lava Field near 
the Blackfoot River Reservoir; elsewhere in a few 
valley-bottom locations.

corrections are made to eliminate striping or banding 
(caused by sensor miscalibration) and to replace bad- 
data lines (caused by dropouts of data during transmis­ 
sion and by sensor saturation).

RADIOMETRIC STRIPING

The Landsat MSS system, which has six detectors for 
each of the four spectral bands, scans six lines of data 
with each oscillation of the sensor mirror. Each detector 
has a slightly different response sensitivity to the inci­ 
dent radiation falling on it. As a result, the same inten­ 
sity of incident radiation is not measured equally by each 
detector. The effect is known as striping or banding, and 
it appears on most standard-processed Landsat images. 
Striping contributes to errors in computer-aided 
classification and sometimes alters the spectral 
signatures of resource classes.

A common technique for minimizing striping - 
histogram normalization-was used in this study. In this 
method (HISTNORM algorithm), the mean brightness 
value for all pixels corresponding to each of the six 
detectors was calculated for each MSS band (a total of 
24 mean values were calculated). A normalization (cor­ 
rection) factor was calculated by dividing the mean of 
the raw pixel values obtained from each detector into 
the mean of the detector having the lowest (minimum) 
value. New brightness values were assigned by multiply­ 
ing the brightness value of each pixel by its detector's 
normalization factor. An example of the result of these 
calculations appears in table 3. Note that data from 
detector 3 of MSS band 4 data had the minimum mean. 
All normalization factors for band 4 were determined by 
dividing the mean relative radiance pixel value of detec­ 
tor 3 by each of the other detector means.

TABLE 3. -Histogram normalization factors for reducing effect of 
radiometric striping anomalies

[Data for MSS band 4 are shown; similar calculations were made for other MSS bands]

Detector

1 _______________
2
3
4
5
6

Mean of raw
pixel values

(relative
radiance)

26.8
26.5
25.4
25.9
26.2
26.2

Normalization
factor

0.948
.958

1.000
.981
.969
.969

Normalized
mean pixel

values
(relative
radiance)

25.4
25.4
25.4
25.4
25.4
25.4

BAD-DATA LINES

A second type of striping, known as intermittent strip­ 
ing or bad-data lines, is caused by dropouts of whole or 
partial lines of data or of single pixels. The most com­ 
mon causes are data losses during transmission and sen­ 
sor saturation. Bad-data lines introduce random varia­ 
tions into the Landsat data and, if uncorrected, can lead 
to classification errors.

Bad-data lines were corrected using the FIXLINE 
algorithm. This algorithm replaces pixels from bad-data 
lines with the average of pixel values in the lines above 
and below the bad line. A new image is created that con­ 
tains the corrected data lines.

DIGITAL MASK OF WATERSHED AREA

The corrected and normalized image was ready for the 
next analysis step, the selection of training areas. 
However, to reduce computer classification time, a 
digital mask corresponding to the Blackfoot River 
watershed boundary was applied to the preprocessed 
image. The mask restricted analysis to only the water­ 
shed area. The resulting masked image (fig. 3) was the
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input image to the training and classification steps, 
which are described in subsequent sections.

DERIVATION OF TRAINING STATISTICS 

OVERVIEW OF TRAINING APPROACHES

There are five steps in the Landsat digital classifica­ 
tion process:
1. Define groups of Landsat pixels (training sets) that 

correspond to each of the resource classes in the 
classification scheme.

2. Calculate statistical parameters (training statistics) 
for each training set using a statistical computer 
algorithm.

3. Use the training statistics to "train" a digital 
classification algorithm.

4. Classify each Landsat pixel in the data set (in this 
case, the Blackfoot River watershed) into a com­ 
puter class that represents a resource class.

5. Produce a color-coded resource map or other type of
output product.

The accuracy of classification depends upon the degree 
to which spectral variability in the Landsat data is 
sampled during training-set selection. In the ideal situa­ 
tion, each resource class should be represented by one or 
more training sets that uniquely describe it; that is, 
there should be no confusion with other resource 
classes. Furthermore, the training sets should include 
examples of the range of spectral variability that can be 
expected throughout the study area.

There are two basic approaches to training-set selec­ 
tion: supervised and unsupervised training. The super­ 
vised approach to deriving training statistics was most 
commonly used in the early development of digital 
analysis techniques. This approach presumed that the 
analyst could select discrete image areas (training sets) 
that would correspond to each of the defined resource 
classes. The x-y image coordinates of these training sets 
would be specified to the computer, and training 
statistics would be generated for each resource class. 
This approach is called "supervised" training because the 
analyst selects specific areas that he knows contain a 
particular resource class.

Experience with this approach demonstrated that it 
was not satisfactory for environments where vegetation 
or land-cover types were complex or where there was 
great spectral variability within resource classes due to 
rugged terrain having great variation in slope and 
aspect. Because of such environmental variation, the 
analyst often had difficulty in selecting sufficient ap­ 
propriate training areas to represent fully the range of 
variation in the data.

The alternative approach is termed "unsupervised" 
training. This approach presumes that spectral group­

ings within the Landsat data can best be determined by 
computer analysis. Using this approach, a random sam­ 
ple of training areas is selected without concern for the 
resource classes contained in each area. (Sample size is 
made large enough so that each resource class is ade­ 
quately represented in the total sample.) All training- 
area pixels are combined, and a computer algorithm is 
used that separates the data into a prescribed number of 
groups of spectrally distinct pixels. This technique is 
often termed "clustering" to describe the way in which 
the computer algorithm forms these groupings or 
clusters of Landsat pixels.

After spectral clusters have been defined, the training 
process requires intensive man-machine interaction to 
correlate the clusters with the resource classes they 
represent. The approach is called "unsupervised" train­ 
ing because the analyst does not specify which Landsat 
pixels to use as training sets for each resource class. The 
random sample of pixels is assumed to contain a more 
representative sample of the spectral variability of the 
data than would a subjective supervised selection.

Variations of these two basic approaches to training 
have been devised. Using a "modified-supervised" ap­ 
proach, the analyst selects training sets for each of the 
known resource classes-the supervised method-but 
then he combines all the training sets and uses a cluster­ 
ing algorithm to separate the data into spectrally 
distinct classes. Resource-class names are then assigned 
by the analyst to each spectral cluster.

Another variation is called "modified unsupervised," 
"modified clustering," or "controlled clustering." The 
analyst selects several blocks of pixels (commonly 30-60 
pixels square) that he believes contain representative 
examples of the range of spectral variability of the 
resource classes in the study area. Spectral clusters are 
defined by applying a clustering algorithm to the train­ 
ing data (either to the individual blocks or to an aggrega­ 
tion of blocks).

Fleming and others (1975) performed a test in which 
three of these four methods were compared. The results, 
expressed as percentage of correct classification of test 
fields in a wildland environment, were as follows:

Training method
Percentage of 

correct

Modified clustering ______
Unsupervised or clustering 
Modified supervised ______

84.7
78.5
70.0

The modified (controlled) clustering approach was 
judged best because it resulted in savings of man-hours 
and computer time, as well as in the highest classifica­ 
tion accuracy. The investigators concluded that the 
modified-clustering approach was especially well suited 
to spectrally complex areas having a variety of cover 
types and variable terrain.
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TRAINING-AREA SELECTION

The modified-clustering approach was chosen for use 
in the present study because of its demonstrated utility 
in wildland environments (Fleming and others, 1975; 
Rohde and others, 1977, 1978). The Landsat-image 
characteristics of the resource types in the Blackfoot 
River watershed area were known from previous studies 
to be variable and to depend on steepness of slope and 
aspect; hence, it would be difficult to select completely 
representative training areas using a supervised- 
training approach.

Training areas were selected to include representative 
examples of the various resource classes in the water­ 
shed (fig. 3). Training areas were square or rectangular 
and were located so that several resource classes were 
included in each area. A total of seven areas were 
selected, which constituted a sample of 10 percent of the 
total watershed area.

CLUSTERING OF TRAINING-AREA DATA

The IDIMS clustering algorithm (ISOCLS) groups 
Landsat pixel values from the four MSS bands into 
relatively homogeneous clusters of pixels. The training 
areas can be clustered individually or grouped together 
and clustered as a whole. The latter approach was taken; 
the seven training areas were mosaicked to create a 
single 150- by 130-pixel training-area image (fig. 4). A 
considerable savings in time was achieved by evaluating 
one set of spectral clusters rather than seven.

The clustering algorithm operates by first assuming 
that all training pixels belong to one spectral cluster. 
This cluster is subdivided until the number, size, and 
separation distance of the clusters meet specified 
values. The specification of these parameters depends in 
part upon the spectral characteristics of the particular 
Landsat training set. The analyst must use his ex­ 
perience and knowledge of the area to select the cluster­ 
ing parameters. The parameters specified for this study 
are listed in table 4.

Each cluster is defined by a mean vector and a 
covariance matrix. The mean vector is the mean of the 
digital values of all pixels in the cluster in four- 
dimensional space, corresponding to the four Landsat 
MSS bands. The covariance matrix describes the spec­ 
tral variability of the pixels about the mean and the 
covariance of the signature between spectral bands.

The output from the clustering algorithm consists of a 
statistics file (containing the mean and covariance for 
each cluster) and a new output image, called a clustered 
image. This image is a gray-level image in which each 
pixel of the mosaicked training areas is given the 
number corresponding to the spectral-cluster number to 
which the pixel is assigned.

TABLE 4. -Algorithm parameters specified for IDIMS clmtering of 
training-set data

Parameter
ISOCLS 
nomen­ 
clature

Usual 
range

Specified 
value

Maximum number of iterations; that is, number
of split or combine operations _________ ISTOP 15 -30 25 

Minimum number of pixels (clusters with fewer
than NMIN pixels will be deleted and their
pixels assigned to other clusters) _______ NMIN 15 -30 30 

Combining distance, Landsat relative radiance
values (during a combining iteration, two
clusters with mean <DLMIN will be combined) DLMIN 2.5-4.0 3.2 

Maximum standard deviation (S.D.), Landsat
relative radiance values (during a separating
iteration, two clusters with S.D. > STDMAX
and whose number of points is > 2(NMIN +1)
will be split) _________ ____ ____ STDMAX 1.0- 3.0 2.5 

Maximum number of clusters ___________ MAXCLS 30 -60 50

TECHNIQUES FOR EVALUATING SPECTRAL CLUSTERS

The next analysis step is to assign a resource-class 
name to each of the spectral clusters and (if judged ap­ 
propriate) to combine clusters that have very similar 
spectral characteristics and represent the same resource 
class. The desired result of cluster evaluation is a final 
set of spectral clusters and corresponding training 
statistics that will be the basis for classifying the entire 
image.

The steps for evaluating spectral clusters are as 
follows:
1. Display the clustered image of the training-area 

mosaic on a video display screen. Shades of gray 
represent the cluster assignments of each pixel.

2. Color-code single or multiple clusters to reveal their 
location and distribution.

3. Compare the color-coded cluster display with an­ 
notated aerial photographs or resource-class maps. 
Identify the resource class(es) that correspond to 
the display colors.

4. Reassign colors to clusters as necessary to effect the 
best possible match of spectral clusters with 
resource classes.

A color paper print of the Landsat color-composite 
image of the mosaicked training areas is useful for this 
comparison since the raw Landsat data cannot be 
displayed in color on the same IDIMS screen as the 
clustered image. The color-composite image is useful in 
visually comparing the clustered image with ground 
data because it is often difficult to relate the gray-scale 
values of the clusters directly to the ground data.

If a video display screen is not available, the clustered 
image can be produced in line printer map format. The 
character symbols on the line-printer map correspond to 
the spectral clusters, but they are more difficult to inter­ 
pret and manipulate. Spectral clusters can be regrouped 
and displayed in different colors in a matter of seconds 
on the video display, whereas reassigning alphanumeric 
symbols and producing a new line-printer map requires 
considerably more time.



DERIVATION OF TRAINING STATISTICS
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FIGURE 3.-IDIMS video display (not aspect corrected) of Landsat 
MSS band 5 image masked to show only the Blackfoot River water­ 
shed. Training areas are shown by letters (A, B), and test areas are 
shown by numbers (1-7).

The spatial relation of the spectral clusters also can be 
displayed as two-dimensional plots using the IDIMS 
COMPARE routine. The plots show the mean and stand­ 
ard deviation of each spectral cluster from any two MSS 
bands (fig. 7). These plots are a convenient base for 
assigning resource-class names to clusters or groups of 
clusters and for predicting which spectrally similar 
clusters might represent the same resource class.

Another aid in evaluating the similarity or differences 
between clusters is the IDIMS DIVERGE table, a 
matrix that expresses the distance in spectral space be­ 
tween each cluster and all others. This measure sug­ 
gests which clusters are spectrally similar and might be 
combined and which are spectrally distinct and should 
be kept separate. The DIVERGE matrix should be used 
as a guide to manipulating clusters. Ground data, aerial 
photographs, and COMPARE plots should be used with 
the video display of the clustered image as the basis for 
making final cluster evaluations.

SPECTRAL-CLUSTER EVALUATION USING THE IDIMS VIDEO 
DISPLAY

Spectral clusters were evaluated using the video- 
display method described in the previous section. The 
technique is illustrated in figure 5. Preliminary analysis 
suggested that certain clusters represented conifer, 
aspen, or mixed conifer/aspen forest types (fig. 5E). 
These clusters were color coded on the clustered image 
(fig. 5A) and compared with the Landsat false-color
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FIGURE 4.-IDIMS video display (not aspect corrected) of Landsat 
MSS band 5 image mosaic of training areas in the Blackfoot River 
watershed.

composite (fig. 5C) and with an annotated color-infrared 
aerial photograph of the same training area (fig. 5D). 
The selected clusters correlate well with conifer, aspen, 
and mixed conifer/aspen resource classes.

The presence of symbols for aspen (Fa) in the lowland 
(valley bottom) area where there is no aspen (red pixels 
on left side of image in fig. 5A) demonstrates that the 
spectral-reflectance values for aspen and wet meadow 
may overlap and that a potential for misclassification 
exists.

When the evaluation was completed, it was possible to 
associate a single resource class with certain clusters: 
conifer forest, water, and some sagebrush-perennial 
grass areas. However, in other clusters, the pixels cor­ 
related with more than one resource class. When spec­ 
trally similar pixels in a cluster represent two or more 
resource classes, there is spectral overlap between the 
classes. Spectral overlap was noted for the following 
groups of resource classes: 
1. a. Aspen/wet meadow

b. Aspen/dry meadow
c. Aspen/riparian hardwoods
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C APPROXIMATE SCALE 
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FIGURE 5. -Cluster evaluation process for training area 5. A, Color-coded IDIMS video display (not 
aspect corrected) of training area. Selected clusters have been color coded (green = Fc; red = Fa; 
yellow =Fc/Fa; blue = Fa/Fc). Uncolored clusters appear as various shades of gray. B, The out­ 
lined clusters in this COMPARE plot have been assigned to one of the forest resource classes 
(Fc = conifer; Fa = aspen; Fc/Fa = mixed, conifer predominates; Fa/Fc = mixed, aspen 
predominates). C, IDIMS video display (not aspect corrected) of Landsat false-color composite. 
Compare with D, Color-infrared aerial photograph of training area. Labels indicate location of 
selected conifer and aspen stands.



DERIVATION OF TRAINING STATISTICS 11

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

LANDSAT PIXEL BRIGHTNESS 
MSS BAND 7

B

D APPROXIMATE SCALE
1 

_______ I

1

2 MILES

I
3 KILOMETERS

Figure 5.-Continued



12 DIGITAL CLASSIFICATION OF LANDSAT DATA, BLACKFOOT RIVER WATERSHED, IDAHO

2. a. Sagebrush-perennial grass (low density)/dry 
meadow

3. a. Sagebrush-perennial grass (low density)/roads
and other disturbed areas/strip mines 

b. Sagebrush-perennial grass (very low density)/ 
strip mines

4. a. Agricultural land/sagebrush-perennial grass (low 
and very low density)

b. Agricultural land/roads and other disturbed areas
c. Agricultural land/strip mines

The next section describes how environmental 
stratification was used to reduce potential misclassifica- 
tion because of spectral overlap.

ENVIRONMENTAL STRATIFICATION

The individual clusters for aspen, meadow, riparian 
hardwoods, sagebrush-perennial grass, and agricultural 
land could not be regrouped to resolve spectral overlap. 
Therefore, stratification was proposed to separate the 
resource classes by acknowledging that each resource 
class is associated with a unique, separable environmen­ 
tal stratum.

For example, the wet- and dry-meadow classes and 
riparian hardwoods are restricted to lowland en­ 
vironments, whereas aspen occurs only in the uplands. 
Lowland environments containing meadow or riparian- 
hardwood vegetation were delineated (stratified) on the 
IDIMS video display of the Landsat color-composite 
image (fig. 6). NASA color-infrared aerial photographs 
were a useful aid in the stratification process.

As might be expected, there were limitations to the 
extent that all lowland habitat could be stratified. For 
example, narrow, sinuous ribbons of riparian hardwoods 
were found in the stream bottoms in some upland areas. 
Aspen stands often abutted these narrow hardwood 
stands. Even though the IDIMS visual display was 
enlarged to show individual pixels clearly, it was dif­ 
ficult to distinguish some narrow stringers of riparian 
hardwoods from neighboring aspen stands. The overall 
effect in terms of number of pixels ignored (unstratified) 
or placed in the wrong stratum is small. However, these 
stringer stands often constitute valuable wildlife 
habitat, and such errors of omission might be signifi­ 
cant.

The upland-lowland stratification helped to resolve a 
second type of spectral overlap, that between 
sagebrush-perennial grass (low density) and dry 
meadow. Most low-density sagebrush-perennial-grass 
areas occur on upland sites having shallow soils and low 
moisture availability. Dry meadows, on the other hand, 
are found in lowland environments adjacent to wet 
meadow and riparian sites. Thus, some low-density 
sagebrush-perennial-grass areas in the lowland stratum

APPROXIMATE SCALE 
1234

7 KILOMETERS
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FIGURE 6.-IDIMS video display (not aspect corrected) of Landsat 
MSS band 5 image of a part of the Blackfoot River watershed show­ 
ing upland (U)-lowland (L) environmental stratification (white lines). 
The lowland areas were stratified in segments because large areas 
having intricate shapes could not easily be stratified in a single 
operation on IDIMS.

might be incorrectly classified as dry meadow, but the 
overall effect of the stratification was judged to be 
useful in reducing spectral overlap.

A third type of spectral overlap was between 
sagebrush-perennial grass (low and very low density) 
and certain highly reflective features-strip mines, 
roads, and other disturbed areas. Examination of this 
type of spectral overlap revealed that there was no sim­ 
ple means of resolving this confusion. Therefore, it was 
decided that these clusters would be treated as a mixed 
resource class (sagebrush-perennial-grass/barren 
areas)-that is, unresolvable spectral overlap was ac­ 
cepted.

A fourth type of spectral overlap existed between 
agricultural land and sagebrush-perennial grass (low 
and very low density) and between agricultural land and 
highly reflective features. This overlap was caused by 
the similarity in reflectance of wheat stubble, low- 
density sagebrush-perennial grass, and barren areas. 
Since the only significant area of contiguous agricultural 
land occurs on the Blackfoot River Lava Field along 
Highway 34 in the northwest corner of the watershed 
it was possible to stratify this agricultural zone. Since 
there were no strip mines and few other cultural 
features (the Conda Mine and processing facility were 
carefully excluded) or low-density sagebrush-perennial- 
grass areas in this stratum, this operation was judged to 
improve the classification. Agricultural fields in other 
lowland environments were present, but their irregular



FINAL DETERMINATION OF RESOURCE CLASSES 13

distribution, small size, and apparent lack of per­ 
manence from one year to another were factors con­ 
sidered in the decision not to perform agricultural 
stratification elsewhere in the watershed.

Figure 7 is a graphical representation of the clusters 
for which spectral overlap occurred. If a cluster has only 
one resource class label, that cluster represents only one 
resource class. Where two or more labels are given for a 
cluster, the resource class name is determined by the 
stratum (upland, lowland, or agricultural) where the 
cluster pixels were found.

FINAL DETERMINATION OF RESOURCE CLASSES

Table 5 contains the revised list of resource classes 
that resulted from the evaluation of spectral clusters. 
There are only two instances in which cluster evaluation 
resulted in changes in the resource-class name. The first 
instance was the deletion of the tall shrub category. As a 
result of cluster analysis, it was observed that vegeta­ 
tion communities composed of tall shrubs were small, ir­ 
regular in shape, and in many places included aspen. It 
was very difficult to identify Landsat spectral clusters 
that correlated well with known tall-shrub areas in the 
training areas. As a result, tall shrub was deleted as a 
resource class. Because tall shrub and young aspen 
stands were spectrally similar, tall shrub stands in the 
watershed were probably classified as aspen.

The second change in resource-class name was in the 
low shrub category. This category was subdivided into 
four density levels rather than upland-lowland and 
disturbed-undisturbed sagebrush. These density levels 
were very low, low, medium, and high. The variation in 
Landsat relative-radiance levels for these classes cor­ 
relates with the assigned density levels; that is, as 
vegetation density decreases (percentage of bare 
ground surface increases), Landsat MSS bands 5 and 7 
(fig. 7) relative radiance increases. Comparison of Land- 
sat image signatures with color-infrared aerial 
photographs of the study area revealed that patterns of 
herbicide spraying (the main type of activity causing the 
difference between disturbed and undisturbed sage­ 
brush-perennial-grass communities) were not readily 
separable on the Landsat image. Hence, a category sub­ 
division based on density was more realistic.

The final assignment of resource-class names to spec­ 
tral clusters is given in table 5 and figure 7. For these 
assignments, environmental stratification of the water­ 
shed was made, separating (1) lowland sites from upland 
sites and (2) the zone of intensive agricultural land from 
the rest of the watershed.

10 - 
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FIGURE 7.-Two-dimensional IDIMS COMPARE plot of spectral 
clusters obtained by clustering Landsat MSS data from training 
areas. Each numbered ellipse is the graphic representation of a 
spectral cluster; the mean value of the cluster lies at the center of 
the ellipse, and the ellipse boundary is drawn at a distance of one 
standard deviation from the mean. Heavy black lines surround a 
cluster or group of clusters to which a resource name or names 
have been assigned. Where a single resource-class symbol is given 
(Wr, Fc, Sh, Sm, SI), there is no spectral overlap with another 
resource class. Where more than one resource-class symbol is 
shown for a cluster or group of clusters, the class symbol assigned 
is determined by the environmental stratum into which the pixels 
from the cluster or group of clusters fall, as follows: lowland 
stratum-R, Mw, Md, Svl/Bs, SI/Br/Bs; upland stratum-Fm, Fa, 
SI, Sh; agricultural stratum-A. See table 5 for explanation of 
resource-class symbols.

TABLE 5.-Final determination of resource-class symbols and names 
for Level I and Levels II and III classifications

Level 
I

F

S

T

Symbol

Levels II 
and III Level I

Forest land 
Fc 
Fa 
Fm

Rangeland 
Sh

Sm 

SI

Wetland 
Mw 
Md 
R

Name

Levels II and III

Conifer 
Aspen 
Mixed conifer/aspen

Sagebrush-perennial grass 
(high density) 

Sagebrush-perennial grass 
(medium density) 

Sagebrush-perennial grass 
(low density)

Wet meadow 
Dry meadow 
Riparian hardwoods

SIB Rangeland/ 
barren land

SI/Br/Bs 

Svl/Bs

Mix of sagebrush-perennial grass 
(low density)/strip mines/roads and 
other disturbed areas

Mix of sagebrush-perennial grass 
(very low density)/strip mines

A

W

Ac

Wr

Agricultural land
Cropland and pasture

Water
Reservoirs
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TESTING THE VALIDITY OF SPECTRAL- 
CLUSTER AND RESOURCE-CLASS 

ASSIGNMENTS PRIOR TO THE CLASSIFICATION 
OF THE ENTIRE WATERSHED AREA

GENERAL APPROACHES

Most digital-classification projects attempt to verify 
the validity of resource-class name assignments to spec­ 
tral clusters on small test areas prior to classifying the 
entire project area. If there are resource classes having 
low classification accuracy, then one might (1) re- 
evaluate spectral clusters and reassign resource-class 
names, (2) change resource-class names to describe 
clusters that are spectrally distinct, (3) consider further 
environmental stratification, or (4) recluster the train­ 
ing data.

Two common approaches to testing classification ac­ 
curacy are to (1) run the classification algorithm on the 
same training data that were used to derive the training 
statistics or (2) classify different test areas that are in­ 
dependent of the training areas. Although classification 
of the training area is commonly used, this approach can 
introduce bias that results in unrealistically high 
classification accuracy that cannot be attained for the 
entire area or even for other subareas.

TEST-AREA CLASSIFICATION

The training statistics were tested by classification of 
two test areas (fig. 3). These areas were representative 
of the study area and were independent of the training 
areas. Each test area measured 60 by 70 pixels, and con­ 
tained 4,695 acres (1,900 ha). Together, the two test 
areas represent 4.2 percent of the entire watershed.

By means of the training statistics (mean, standard 
deviation, covariance) for the final cluster groupings 
that are graphically displayed in figure 7, test areas A 
and B were classified using the CLASFY routine on 
IDIMS. A color-coded display of the results for test area 
B appears in figure 8. A visual comparison of the false- 
color image (&A), the classification results (SB), and the 
corresponding high-altitude color-infrared aerial 
photograph (8C) shows good general agreement be­ 
tween the resource classes and classification results, 
both in terms of boundary location between classes and 
in class designations.

MANUAL PHOTO INTERPRETATION OF TEST AREAS

The visual comparison presented above is the same 
technique used earlier to qualitatively evaluate the train­ 
ing areas. To make a quantitative comparison, the 
following steps were taken: 
1. Manual photo interpretation was performed for the

part of the aerial photographs corresponding to
test areas A and B.

2. The area occupied by each resource class was deter­ 
mined.

3. Area estimates from the photo interpretation and 
digital classification were compared for all 
resource classes.

The image analyst was familiar with the field 
characteristics of the resource classes and their color- 
infrared image signatures, but he was not involved in 
the digital classification. Prior to the photo interpreta­ 
tion, the author and the interpreter discussed the 
resource classes and their photographic signatures. The 
interpreter then proceeded with a stereoscopic analysis 
of the test areas using paper print enlargements of the 
aerial photographs at an approximate scale of 1:24,000. 
The minimum mapping unit was about 1.1 acre (0.44 ha), 
corresponding to the approximate size of one Landsat 
pixel. A copy of the photo-interpretation results at 
reduced scale appears in figure SD.

EVALUATION OF TEST-AREA CLASSIFICATION RESULTS

Area determinations were made for each resource 
class using a dot grid. One dot-grid conversion factor

FIGURE 8. -Comparison of Landsat image (A) and digital classification 
image (B) (both from IDIMS video displays, not aspect-corrected) of 
test area B with corresponding high-altitude color-infrared aerial 
photograph (C) and vegetation map prepared from aerial photograph 
by manual interpretation (D). Dashed lines on C trace fences that 
separate areas of different grazing intensities. Note that the image 
signatures on A do not correspond exactly to the patterns on C, sug­ 
gesting a change in grazing patterns between the time the Landsat 
image was acquired (August 15,1974) and the time the high-altitude 
aerial photograph was taken (August 26, 1975).

EXPLANATION

Resource class
Type of 

classification
Digital Manual

Forest land: 
Conifer
Aspen
Mixed conifer/aspen

Rangeland: 
Sagebrush-perennial grass 

(high density)
Sagebrush-perennial grass 

(medium density)
Sagebrush-perennial grass 

(low density) _
Sagebrush-perennial grass 

(very low density)
Rangeland/barren land: 

Sagebrush-perennial grass 
(very low density)/strip mines _ 

Sagebrush-perennial grass 
(low density)/strip mines/ 
other disturbed areas

Wetland: 
Wet Meadow
Dry Meadow
Riparian hardwoods

Violet
Gray

Dark green

Light green

Yellow

None

Light blue 1 

Medium blue /

Red
Brown
Black

Fc
Fa1
Fm

H

M

L

VL

B2

Mw 1
Md
R

'Shading added to map for emphasis. 
2Barren areas only.
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TABLE 6. -Comparison of area estimates from manual photo interpretation and digital classification for test areas A and B

Area

Resource class

T(

Digital 
classification

Acres Hectares

sst area A Test area B

Manual 
photo 

interpretation

Acres Hectares

Digital 
classification

Acres Hectares

Manual 
photo 

interpretation

Acres Hectares

Level I resource classes

Forest land
Rangeland
Rangeland/barren land
Wetland

Total

1471
2,523

166
535

4,695

596 
1,021 

67 
216

1,900

1,649 
2,453 

33
578

'4,713

668 
993 

13 
234

1908

1,362 
1,985 

31 
1,317
4,695

551 
804 

13 
533

1,901

1,641 
1,718 

33 
1,283

'4,675

664 
696 

13
520

1893

Levels II and HI resource classes

Forest land: 
Fa
Fc
Fm

Rangeland: 
Sh
Sm
SI

Rangeland/barren land: 
SI/Br/Bs
Svl/Bs

Wetland: 
Md
Mw
R

Total

574
136
761

815
1,244

464

122
44

325
160
50

4,695

233 
55 

308

330 
503 
188

49 
18

131 
65
20

1,900

810 
269 
570

790 
1,344 

319

2 1 
432

178 
346

54
'4,713

328 
109 
231

320 
544 
129

(3) 
13

72 
140 
22

1,908

591 
315 
456

643 
965 
377

28 
3

743 
481 
93

4,695

239 
127 
185

260 
391 
153

12 
1

301 
195 
37

1,901

795 
456 
390

206 
1,190 

322

22 
431

522 
674

87
'4,675

322 
184 
158

84 
482 
130

1 
12

212 
273 

35
1,893

1 Total area for test areas A and B from manual photo interpretation does not equal total area from digital classification because of (1) errors in precise transfer of test area boundaries from 
Laridsat display to enlarged aerial photographs and (2) slight distortion in the size and shape of map units due to relief displacement in upland areas on the aerial photographs. 

1 Br only.
3 Value less than 1. 
  Svl only.

was calculated for each test area, using the scale 
calculated at the average altitude of the test-area ter­ 
rain.

A simple correlation analysis (Walker and Lev, 1953, 
p. 233-255) was performed to test the correlation of 
digital classification with manual photo interpretation, 
using areas classified into the Levels II and III resource 
classes by these two approaches. Correlation coeffi­ 
cients (r) and confidence intervals (C.I., 95-percent prob­ 
ability level) were as follows:

Test area

0.97 
.94

0.89-0.99 
.77- .98

The two data sets are highly correlated.
A comparison of manual and digital resource 

classification results is presented in table 6. Although a 
pixel-by-pixel accuracy assessment was made later in 
the study to assess classification accuracy for the whole 
area, an area-by-resource class comparison was used 
because it was less time consuming and still revealed 
areas of classification agreement and disagreement.

For the Level I (most general) classes in area B, the 
total areas computed for each of the two methods were

similar. The only significant discrepancies-between 
areas for forest land and rangeland-probably resulted 
from the interspersion of small patches of rangeland 
with forest (mostly aspen) in the uplands. Digital separa­ 
tion of these two classes relied solely upon spectral dif­ 
ferences, whereas the photo interpreter used 
stereoscopic analysis, as well as subtle tonal and tex- 
tural differences, to make the distinction. Hence, some 
differences in the areas computed were anticipated for 
these classes.

When the Levels II and III classes in test area B are 
evaluated, the same conclusion regarding the complexi­ 
ty of the sagebrush-perennial-grass and forest classes 
applies. The largest discrepancies within the forest and 
sagebrush-perennial-grass classes were associated with 
aspen and high-density sagebrush-perennial grass. 
Clusters representing aspen and mixed conifer/aspen in 
upland areas (9, 3, 12, 5, 8) and high-density sage­ 
brush-perennial grass (11, 4, 24) are spectrally similar 
(fig. 7). This spectral overlap may well contribute to dif­ 
ferences in results between the two methods of analysis.

Although the total-area estimates from manual and 
digital analysis of the wetland (Level I) category are 
similar, when the wet- and dry-meadow components 
were studied at Levels II and III, a difference of approx-
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imately 200 acres (80 ha) was revealed. Seasonal dif­ 
ferences between 1974 and 1975 might explain this dif­ 
ference.

Differences in area estimates for the sage­ 
brush-perennial-grass classes were also acknowledged. 
Close study of the image of this test area (fig. 8A, C) 
reveals change in grazing intensity between the 1974 
and 1975 image dates. For example, grazing appears to 
have been heavier at a (lighter pink color) than at b in 
the 1974 Landsat image; in the 1975 aerial photograph, 
this difference is not so clear. Other examples are 
highlighted by the dashed lines on the two images.

Having evaluated these differences in seasonal state 
and grazing (in the wetland and sagebrush-perennial- 
grass communities) and complex interspersion of aspen 
and sagebrush-perennial grass (in the uplands) in test 
area B, similar differences can be noted in test area A 
(table 6) in both the Level I and Levels II and III 
resource classes. Again, seasonal and grazing dif­ 
ferences and the complex interspersion of sage­ 
brush-perennial grass and aspen seem to be the major 
factors in explaining the differences.

It was concluded that the spectral classes derived 
from the training areas were satisfactory for purposes 
of the classification. It should be pointed out that even 
though the aerial photographs were of greater resolu­ 
tion than the Landsat image, photo interpretation could 
not be accepted as the equivalent of complete field 
verification because of the 1-year interval between the 
two sets of images. Although manual photo interpreta­ 
tion of sagebrush-perennial-grass/aspen boundaries is 
probably more accurate than the digital classification, 
the relative accuracy of the sagebrush-perennial-grass 
density and wet/dry meadow classes cannot be assessed 
on a class-by-class basis because of the different 
livestock grazing patterns that have been imposed on 
the watershed in the 2 years.

Based on the relatively close agreement in Level I 
acreage estimates from manual and digital analysis of 
the test areas, it was concluded that the training data 
were satisfactory and that alteration in spectral-cluster 
assignments would not improve classification accuracy.

DIGITAL CLASSIFICATION OF WATERSHED 
AREA

The IDIMS CLASFY algorithm uses the training- 
statistics file and applies a maximum-likelihood decision 
rule to the Landsat data being classified. Using this rule, 
each pixel in the image is assigned to the spectral class 
to which it has the greatest statistical probability or 
likelihood of belonging. Thus, a new one-band image, 
called the "classified" image, is created. The Landsat im­ 
age of the watershed was classified into 35 spectral

classes representing 13 Levels II and III resource 
classes.

To produce the final classification in which the proper 
resource class is assigned to each classified pixel, the 
classified image is receded. Each of the 35 spectral-class 
pixel values is replaced by a number corresponding to 
one of the 13 resource classes (fig. 9). Stratification of 
lowland and agricultural areas is applied in this step by 
assigning resource-class names to pixels according to 
their stratum designation. For example, the riparian- 
hardwoods class (resource class 10) is represented by 
spectral classes 3, 5, 9, 12, and 18 in the lowland 
stratum. The relationship between the raw Landsat 
multispectral data, the classified image (35 spectral 
classes), and the corresponding 13 Levels II and III 
resource classes is also graphically displayed in figure 9.

When the receded output image from CLASFY is 
displayed on the video screen, the resource classes ap­ 
pear in 13 shades of gray. Each resource class can be 
color-coded for ease of viewing and evaluation. Figure 
13Z> (p. 26) contains an example of the color-coded, 
classified image showing the 13 Levels II and III classes. 
Note that, at this reduced scale, it is difficult to 
distinguish between some of the resource classes owing 
to their small size and irregular pattern.

For presentation at a relatively small scale (1:250,000 
or smaller), it is sometimes desirable to present only the 
more generalized resource classes. Figure ISA shows a 
color-coded classified image in which the resource 
classes have been grouped into six Level I classes: forest 
land, rangeland, rangeland/barren land, wetland, 
agricultural land, and water.

The results of the classification are presented in table 
7, which shows the total area occupied by each of six 
Level I resource classes, and table 8, which shows the 
total area occupied by each of 13 Levels II and III 
resource classes.

ACCURACY OF CLASSIFICATION

Recent publications on Landsat digital classification 
generally include verification of the accuracy of 
classification, although the methods used vary greatly. 
A thoughtful statement of the need for carefully selec­ 
ting a method for accuracy assessment that fits the

TABLE 7. -Area summary of digital classification (Level I resource 
classes) of the Blackfoot River watershed

Forest land
Rangeland
Rangeland/barren land _ 
Wetland
Agricultural land
Water

Number 
of

pixels

87,055
84,470

4,280 
21,581
2,930

259

Ai

Acres

97,327
94,438

4,785 
24,128
3,276

290

rea

Hectares

39,388
38,219

1,937 
9,764
1,326

117

Percent 
of

total

43.4
42.1

2.1 
10.8
1.5
0.1

Total 200,575 224,244 90,751 100.0
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TABLE 8. -Area summary of digital classification (Levels II and III 
resource classes) of the Blackfoot River watershed

Resource class

Forest land: 
Conifer
Aspen
Mixed conifer/aspen

Rangeland: 
Sagebrush-perennial grass 

(high density)
Sagebrush-perennial grass 

(medium density)
Sagebrush-perennial grass 

(low density)
Rangeland/barren land:

Number 
of

pixels

24,483
37,825
24,747

29,541

38,116

16,813

Area

Acres

27,372 
42,288 
27,667

33,027 

42,614 

18,797

Hectares

11,077 
17,114 
11,197

13,366 

17,246 

7,607

Percent 
of 

total

12.2 
18.9 
12.3

14.7 

19.0 

8.4

Sagebrush-perennial grass
(very low density)/strip mines ___ 1,503 1,680 

Sagebrush-perennial grass
(low density)/ strip mines/other
disturbed areas __________ 2,777 3,105 1,257 1.4

Wetland: 
Wet meadow
Dry meadow
Riparian hardwoods ______________ 

Agricultural land: 
Cropland and pasture 

Water: 
Reservoirs

Total

6,607
12,341
2,633 

2,930 

259
200,575

7,387
13,797
2,944 

3,276 

290
224,244

2,989
5,584
1,191 

1,326 

117
90,751

3.3
6.2
1.3 

1.5 

.1
100.0

needs of the potential user was recently made by Heller 
(1976, p. 20). He comments (emphasis added):

A more thorough analysis of the accuracy of classification maps is 
needed as are sound statistical sampling procedures to achieve 
estimates around which a confidence statement can be placed. It is in­

teresting to note that there exists a heavy reliance on statistical deci­ 
sion theory in classifying multispectral data but an apparent reluc­ 
tance to use statistical sampling theory to evaluate the results and pro­ 
vide estimates in a format required by the user community * * * .It 
is incumbent on the remote sensing community to make an intensive ef­ 
fort to develop sound sampling procedures to evaluate the accuracy of 
resource parameters with specific confidence statements based on user 
objectives. Map products and tabular data presented in such a manner 
will gain wider user acceptance and be in a format that allows a 
resource manager to make a decision on the value of the data and in­ 
corporate such data into his management decisions.

Similar sentiments have been echoed recently by Sayn- 
Wittgenstein and Wightman (1975, p. 1214).

Verification of classification results requires a stand­ 
ard of comparison. Ground data (or "ground truth," as it 
is often called) may be collected at sample points or over 
broad areas, thus producing a map of the resource 
classes that can be compared with the digital classifica­ 
tion. However, one can find wide-ranging opinions on 
whether the map from ground data should be considered 
completely accurate. Smedes (1975, p. 821) has made 
some observations that are relevant to this discussion:

Generally, for those classes that can be distinguished from one 
another by spectral signature or other remote-sensing attributes, the 
remote-sensing map is more accurate than the ground-truth map. It is 
a matter of practice that the ground-truth map is upgraded by the 
remote-sensing map data.
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Key to spectral Classes and Resource Classes

Resource class Resource class symbol
number and name

9
10

CLASSIFIED IMAGE

Sm-sage-perennial grass (medium density) 
Sh-sage-perennial grass (high density) 

Mw-wet meadow 

Md-dry meadow 

R-riparian hardwoods

RESOURCE CLASS 

NUMBERS

RESOURCE CLASS 

SYMBOLS

12 18 18 8 21 

12 12 12 24 16 

5 18 23 8 4 

24 8 27 12 12 

24 8 8 24 12

  >

10 10 10 8 9 

10 10 10 9 6 

10 10 8 8 7 

9 8 9 10 10 

9 8 8 9 10

   > 

R R R Mw Md 

R R R Md Sm 

R R Mw Mw Sh 

Md Mw Md R R 

Md Mw Mw Md R

35 SPECTRAL CLASSES 13 RESOURCE CLASSES 13 RESOURCE CLASSES

FIGURE 9.-Flow diagram of the digital classification process creating a classified image for a 25-pixel block of Landsat MSS data (4 bands). 
Spectral-class numbers are assigned to each pixel by the maximum-likelihood classification algorithm. Resource-class assignments (using class 
numbers and class symbols) corresponding to the spectral classes are shown. The area represented by this 25-pixel block falls within the 
lowland environmental stratum, and resource-class assignments are made for that stratum.
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Reasons for the difficulty of making a nearly perfect ground-truth 
map of the natural terrain surface include the following * * *: (1) 
spatial complexity, (2) the problem of mixed terrain classes, and (3) the 
problem of boundaries * * * .

Williams and Haver (1976, p. 16) offer another point of 
view:

Even if complete aerial coverage of the desired film-type and resolu­ 
tion were available, there would still be problems because photo inter­ 
preter delineations should not be considered as "absolute ground 
truth" * * * comparisons should be expressed in terms of the percent­ 
age of "agreement" and not the percent "correct."

The author's experience, both in this study and 
elsewhere (Pettinger, 1971), leads him to concur with 
Williams and Haver's point of view. For purposes of the 
discussions that follow, accuracy and statements of 
percent-correct classification will be defined as agree­ 
ment of digital classification with photo interpretation, 
on a pixel-by-pixel basis.

PIXEL-BY-PIXEL ACCURACY ASSESSMENT 

SINGLE-PIXEL METHOD

Two methods for determining digital classification ac­ 
curacy were discussed earlier: (1) subjective comparison 
of color video displays of spectral clusters in training 
areas with corresponding aerial photographs, and (2) 
comparison of acreage figures for resource classes from 
digital classification with figures from photo interpreta­ 
tion. Although these methods indicate whether there is 
general agreement in mapped areas by resource class, 
they do not indicate how accurately individual pixels 
were classified. To provide a rigorous assessment of 
classification accuracy, photo interpretation of the im­ 
age areas corresponding to single Landsat pixels was 
compared with the digital classification.2 As explained 
earlier, this approach was also desirable for test-area 
classification, but it was not used because of the extra 
time and resources that would have been required.

For verification using photo interpretation, pixel 
boundaries are visually transferred from an enlarged 
digital image display to an aerial photograph that has 
been enlarged to a scale at which individual pixels can be 
plotted. For this purpose, the aerial-photograph scale 
should be 1:30,000 or (preferably) larger. The accuracy 
of this transfer will depend on the presence of iden­ 
tifiable landmarks on the photograph and the Landsat 
display. Photo interpretation of pixel equivalents on the 
aerial photograph should be made without reference to

2 An alternative method of pixel-by-pixel accuracy assessment is to use direct ground obser­ 
vation of pixel areas. For ground verification, one determines the longitude and latitude of a 
Landsat pixel and plots its position on a topographic map. The map position is visited on the 
ground and the identity of the ground features at that point is recorded. The major problem 
with this method is the difficulty in precisely locating the ground equivalent of a single pixel 
both on the map and in the field. This difficulty is compounded when the terrain is steep and 
vegetation cover is dense.

the digital classification of the pixel, so that the inter­ 
preter's decisions are not influenced by his knowledge of 
the digital classification.

PIXEL-BLOCK METHOD

Plotting of single pixels onto aerial photographs is 
quite difficult, especially in mountainous terrrain or 
where there are few features for reference. To improve 
the ease and accuracy of this transfer, blocks of pixels 
were selected for assessment. The following steps were 
used to plot and evaluate pixel blocks:
1. By comparing the digital display with the corre­ 

sponding aerial photograph of the same approx­ 
imate scale, the corners of each pixel block were 
plotted on an acetate overlay on the photograph.

2. A network of evenly spaced lines was drawn within 
the block to define the boundaries of the individual 
pixels.

3. Each of the pixels was interpreted on the aerial 
photograph, and the resource class that pre­ 
dominated in the pixel area was identified.

4. The results were compared with the digital classifica­ 
tion.

A 5- by 5-pixel block size was selected since it was 
large enough to overcome some of the difficulties 
associated with plotting and locating individual pixels 
yet was small enough to permit a sample of several 
blocks to be well distributed across the watershed area.

SAMPLE ALLOCATION

The formula used for determining the number of 
pixels to be sampled in the ith class (w,) is

^  (M.-)

where

E
t

(1)

number of pixels classified in the ith class (in
the entire watershed), 

estimate of proportion of pixels correctly
classified in the ith class,

(1-2*),
user-specified allowable error, and
Student's ^-statistic for n-l degrees of

freedom at the user-specified probability
level.

The sample size for any resource class depends on (1) the 
total number of pixels classified in that resource class, 
(2) an estimate of the accuracy of classification for that 
class, and (3) the user-specified allowable error. The 
data and results of the calculations made for each class 
are summarized in table 9.
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TABLE 9. -Sample-size allocation for pixel-by-pixel accuracy 
assessment

Resource class

Forest land: 
Conifer
Aspen
Mixed conifer/aspen

Rangeland: 
Sagebrush-perennial grass 

(high density)
Sagebrush-perennial grass 

(medium density)
Sagebrush-perennial grass 

(low density)
Rangeland/barren land: 

Sagebrush-perennial grass 
(very low densityVstrip mines

Sagebrush-perennial grass 
(low density)/ strip mines/other 
disturbed areas _______________ 

Wetland: 
Wet meadow _ _
Dry meadow _ _
Riparian ________________________ 

Agricultural land: 
Cropland and pasture

Water: 
Reservoirs

Total

1 From table 8. 
2 Equation (1).

Number of 
pixels 

classified 
(AT,)'

24,483
37,825
24,747

29,541

38,116

16,813

1,503

2,777 

6,607
12,341
2,633 

2,930

259
200,575

Estimate of 
proportion 
of pixels 
correctly 

classified (p,)

0.90
.80
.80

.85

.75

.75

.85

.85 

.90

.90

.90 

.80

.97

Number of 
pixels to 

be sampled 
W

35
61
61

49

72

72

47

47 

35
35
34 

60

11
619

Number 
of 

samples 
taken

146
162
158

140

253

104

47

50 

58
34
21 

59

18
1,250

As an example, consider the aspen class. The follow­ 
ing values were selected for the input parameters:

NI = 37,825 pixels classified into the aspen
resource class (table 8), 

pi = 0.80 (estimated proportion of pixels in
the aspen class correctly classified), 

E = 0.10 (10 percent error allowed for sample
estimate), and 

t0 .<>s = 1.96.

From these values, n, = 61. For each resource class, the 
appropriate Nt value was used, and p, was estimated 
based on previous experience during the training and 
testing phases. In all cases, E (0.10) and t (1.96) were 
constant.

Blocks were randomly selected from the entire image 
using the IDIMS RANDSAMP algorithm that randomly 
selects a specified number of blocks of pixels of a 
specified size (in this case, 5 by 5 pixels). Initially, 30 
blocks were chosen in order to satisfy the requirement 
for a total of 619 pixels in all resource classes. The 
cumulative total of pixels classified in each resource 
class was determined from these 750 pixels and com­ 
pared with the calculated nt values. Additional random 
samples were selected until the calculated sample sizes 
were achieved. In all, 50 blocks were needed to achieve 
the proper sample size for each class.

PHOTO INTERPRETATION OF PIXEL BLOCKS

The location of each 25-pixel block was plotted on 
acetate overlays to the high-altitude color-infrared

aerial photographs that had been enlarged to an approx­ 
imate scale of 1:24,000. At this scale, each block 
measured slightly more than 0.3 in 2 (2 cm2) (fig. 10).

Conventional photo-interpretation techniques (in­ 
cluding magnification and stereoscopic viewing) were 
used to identify the resource class corresponding to each 
pixel in each block. Where there were mixtures of two or 
more resource classes in a pixel, the class that occupied 
the greatest area was identified. Photo-interpretation 
results were compared with digital classification for 
Level I (table 10) and Levels II and III (table 11) 
resource classes. Digital classification results are ex­ 
pressed as a percent of photo-interpretation estimates. 
Confidence intervals (95 percent probability level) are 
also given for each resource class and were computed by 
the following formula (Mendenhall and others, 1971, p. 
43-47):

C.I. (percent) = ±t
(w-1)

(2)

where 
Pi = percent of pixels correctly identified in ith

resource class, 
qt = (100-pi), 
Nt = total number of pixels classified in the ith

class, 
n = number of pixels photo-interpreted in the

ith class, and 
t = Student's t statistic (=1.96 at the 0.95

probability level).
Finally, figure 11 contains contingency tables (confu­ 

sion matrices) that show where disagreements in 
classification have occurred. For purposes of discussion, 
disagreements are described as either omission or com­ 
mission errors. An omission error occurs when a pixel is 
omitted by digital classification from the correct photo- 
interpretation class. A commission error occurs when a 
pixel is incorrectly assigned by digital classification to a 
wrong class. Thus, an incorrect classification results in 
both an omission and commission error. A detailed ex­ 
ample comparing manual and digital results for a sample 
25-pixel block appears in figure 10.

EVALUATION OF RESULTS

Overall agreement of digital classification with 
manual analysis was relatively low in Levels II and III 
resource classes (52.2 percent). In only 6 of the 13 
Levels II and III resource classes did agreement of 
digital classification with photo interpretation equal or 
exceed 60 percent. In all Level I resource classes, agree­ 
ment was 83 percent. In four of the six Level I resource
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FIGURE 10.-Evaluation of the accuracy of the digital classification of resource data in a 25-pixel block on a Landsat image by comparison 
with the interpretation of resource classes in a 25-pixel block on a color-infrared aerial photograph. A, Color-infrared aerial photograph, 
including 25-pixel block (reproduced in black and white). B, Levels II and III resource-class numbers assigned to each pixel in 25-pixel 
block, from photo interpretation. C, Levels II and III resource-class numbers assigned to each pixel in 25-pixel block, from digital 
classification. D, Contingency table comparing the photo interpretations and digital classification of Levels II and III resource classes in 
the 25-pixel block. Numbers inside heavy black line indicate frequency of agreement of the classes; numbers outside the heavy black line 
indicate frequency of disagreement.
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TABLE 10. -Single-pixel accuracy assessment of the digital classifica­ 
tion of Level I resource classes

[The accuracy of digital classification is expressed as percent agreement with the results of 
photo interpretation. Corresponding confidence intervals (C.I.) at the 0.95 probability level 
are also given]

Number of pixels

Resource class

Forest land
Rangeland
Rangeland/barren land
Wetland
Agricultural land
Water

Total

(1)
Digital
classifi­
cation

434
391

41
100
53
18

1,037

(2)
Photo

interpre­
tation

478
475
74

119
86
18

1,250

(1)
as a

percent
of (2)

90.8

55.4
84 0
61.6

100.0
83.0

C.I.
(percent)

±2.6
±3.4

±11.4
±6.6

±10.3
±.0

±2.1

classes, there was at least 80 percent agreement with 
the photo-interpretation results.

Commission errors (for example, classification of non- 
forest pixels as forest) were more prevalent in resource 
class Levels II and III than in resource class Level I. For 
example, there were 205 commission errors in Levels II 
and III in the conifer, aspen, and mixed conifer/aspen 
classes (fig. 1LB). That is, 205 pixels belonging to other 
resource classes were erroneously classified as either 
conifer, aspen, or mixed conifer. At this level, this in­ 
cludes misclassification within the three forest classes. 
In Level I classes, however, there were only 32 commis­ 
sion errors in the forest class (that is, 32 instances where 
other resource-class pixels were classified as forest).

Greatest spectral variability (as evidenced by frequent 
commission and omission errors) occurs within the sage­ 
brush-perennial-grass density classes. Significant 
commission-omission errors also occurred within the 
forest categories. There were fewer instances of com­ 
mission and omission for the meadow and riparian- 
hardwoods classes than in the forest and sage­ 
brush-perennial-grass classes and none in the water 
class.

At this point, one should consider two factors that af­ 
fect digital-classification accuracy. The first factor, 
which contributes to the high number of disagreements 
in classification in the sagebrush-perennial-grass 
classes in the lowland environmental stratum, is the 
1-year time interval between image dates. Differences 
in grazing intensity and phenological development of 
sagebrush-perennial-grass and meadow types from 
1974 to 1975 probably lead to real differences in the 
density-class assignment in these classes.

The second factor affecting digital-classification ac­ 
curacy is the process of accurately locating the pixels to 
be verified. Accuracy assessment was made prior to geo­ 
metric correction of the classified image. Therefore, the 
Landsat data contain system- and orbit-related errors 
that affect data geometry. Even though great care was 
taken to visually determine the location of each 25-pixel

TABLE II.-Single-pixel accuracy assessment of the digital classifica­ 
tion of Levels II and III resource classes

[The accuracy of digital classification is expressed as percent agreement with the results of 
photo interpretation. Confidence intervals (C.I.) at the 0.95 probability level are also given]

Number of pixels
Resource class

Forest land: 
Conifer

Mixed conifer/aspen
Rangeland: 

Sagebrush-perennial grass (high 
density)

Sagebrush-perennial grass

Sagebrush-perennial grass (low 
density)

Rangeland/barren land: 
Sagebrush-perennial grass (very

Sagebrush-perennial grass (low 
densityVstrip mines/other

Wetland:

Dry meadow

Agricultural land: 
Cropland and pasture _________ 

Water: 
Reservoirs

Total

(1) 
Digital 
classifi­ 
cation

104 
99 
68

25 

170 

17

16

4

42 
21 
15

53 

18
652

(2) 
Photo 

interpre­ 
tation

167 
165 
146

60 

345 

70

61

 13

51
44 
24

86 

18
1,250

(1) 
as a 

percent 
of (2)

62.3 
60.0 
46.6

41.7 

49.3 

24.3

26.2

30.8

82.4 
47.7 
62.5

61.6 

100.0
52.2

C.I.
(percent)

±7.4 
±7.5 
±8.2

±12.6 

±5.3 

±10.1

±11.1

±26.1

±10.6 
±14.9 
±19.8

±10.3 

±.0
±2.8

'Other disturbed areas only.

block and plot it onto the enlarged aerial photographs, 
errors occurred in the transfer process. Since Landsat 
pixels represent a rectangle 1.1 acre (0.44 ha) in area, it 
will always be difficult to correlate areas within this 
coarse grid exactly with comparable areas on aerial 
photographs having much higher resolution. For this 
reason, there will always be instances in which the photo 
interpreter is not always looking at the same ground 
area as did the Landsat sensors.

The following section suggests how ground data were 
acquired to provide estimates of certain vegetation 
parameters that provide additional information about 
the composition of the resource classes.

FIELD DATA COLLECTION

Field sampling was used to acquire data regarding the 
composition of the vegetation-resource classes. Three 
pixels were randomly selected from each 25-pixel block 
used in the photo-interpretation evaluation. Priorities 
were assigned to blocks so that a variety of upland and 
lowland environments would be visited. During the 5 
days available for field work, 66 pixels from 19 blocks 
were field checked. The sample size was relatively small, 
but the field data provide detailed ground characteriza­ 
tions of the resource classes.

Species composition and foliar cover were estimated 
using a line transect method for the sagebrush- 
perennial-grass, meadow, and riparian-hardwoods 
classes. Two line transects were measured per pixel. 
One line, 150 ft (46 m) in length, was laid out along the
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FIGURE 11.-Contingency tables used to compare the classification of resources in the Blackfoot River watershed 
by means of photo interpretation with the classification by digital methods. A, Frequency of agreement 
(numbers inside heavy solid line) and disagreement (numbers outside heavy solid line) between Level I 
resource classes. B, Frequency of agreement and disagreement between Levels II and III resource classes. 
Heavy dashed lines enclose the Level I resource-class frequencies whose totals are shown in A.
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topographic contour in the center of each pixel, and a se­ 
cond line of the same length was oriented perpendicular 
to the first. Ground-cover composition (plant species, 
soil, or rock) was recorded at 50 sample points along 
each line. Percent slope and aspect were also recorded.

Within the forest classes, composition, stem diameter, 
and crown closure were measured in a circular plot, 100 
ft (30 m) in diameter, established in the center of each 
pixel. Trees within the plot were recorded by species and 
diameter class. Crown closure was also estimated. Other 
measurements included percent slope, aspect, average 
height of dominant and codominant trees, stand struc­ 
ture, and general age-class distribution.

Figure 12 illustrates how field data were graphically 
displayed. In this example, the percent vegetation cover 
is shown for the 24 sagebrush-perennial-grass pixel 
areas field-sampled. Cover values for these pixels were 
grouped according to the density subclass to which they 
were assigned during photo interpretation. Note that 
there is overlap in percent foliar cover among the densi­ 
ty subclasses. In terms of percent foliar cover, the very- 
low- and low-density subclasses overlap, as do the 
medium- and high-density subclasses. The data indicate 
that it may be more realistic to define two subclasses of 
sagebrush-perennial-grass type-high and low density.

Although the sample size was small, these data pro­ 
vide added information to quantitatively describe the 
resource classes. This information, along with other in­ 
formation such as forage production and timber volume, 
would be required for a multistage,inventory of forest 
and rangeland resources.

OUTPUT PRODUCTS GENERATION

Two types of output products were generated: (1) 
color-coded resource maps (Level I and Levels II and III 
resource classes) for the entire watershed (scale 
1:250,000) and for the area corresponding to the 
l:24,000-scale Upper Valley 71/2-minute Quadrangle, 
produced using a film recorder, and (2) a resource map 
overlay to the l:24,000-scale topographic map, 
generated by a computer-driven flatbed plotter.

A spatial-smoothing algorithm was used to improve 
the appearance of the resource maps and to reduce 
classification errors. This technique changes the 
classification for isolated single pixels that may have 
been misclassified owing to mixing and edge effects 
related to neighboring resource classes. All output prod­ 
ucts were geometrically corrected by registering the 
Landsat data to the corresponding topographic map, 
either 1:250,000 or 1:24,000 scale. These two opera­ 
tions, spatial smoothing and geometric correction, are 
described in the following sections.
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FIGURE 12.-Graphical representation of field data showing percent 
vegetation cover in 24 randomly sampled pixels from the sagebrush- 
perennial-grass resource class. Density subclass assignments are 
from interpretation of high-altitude color-infrared aerial 
photographs. Horizontal line in each column is the mean value for the 
subclass.

SPATIAL SMOOTHING

Spatial smoothing, or image reclassification as it is 
sometimes called, is accomplished using the IDIMS 
RECLASS algorithm. With this algorithm, the value of 
each pixel in the classified image is replaced by the value 
that appears most commonly within a specified window 
area (block of pixels surrounding the pixel being 
reclassified) centered on that pixel. For example, if a 
3-by 3-pixel window is used, the pixel being reclassified 
is assigned the value occurring most commonly among 
the 9 pixels in the window.

Spatial smoothing serves two purposes. First, it is 
used to remove the "salt and pepper" effect of small in­ 
clusions of one or more resource classes that are imbed­ 
ded in more spatially extensive classes. This effect is fre­ 
quently caused by misclassification (for example, the 
classification of a few pixels as mixed conifer/aspen 
when they actually fall within a pure stand of aspen). 
Smoothing might eliminate this type of error and pro­ 
duce a more accurate classification. However, if the 
resource classes are complex and heterogeneous, the 
"salt and pepper" effect may be an expression of this real
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heterogeneity, and smoothing may actually introduce 
errors.

The second and most important purpose of spatial 
smoothing is to produce a final classification that has a 
larger effective minimum map unit than the 1.1-acre 
(0.44-ha) Landsat pixel. For example, smoothing with a 
3- by 3-pixel window can be thought of as imposing a 
10-acre (4-ha) minimum mapping unit on the output 
products. The size of the window used for spatial 
smoothing should be selected after consideration of the 
scale of the final map product and its intended use. For 
example, a large window might be desired for a 
l:250,000-scale map that will be used for general 
resource-planning purposes. A small window might be 
appropriate for a large-scale resource map.

Two levels of spatial smoothing were applied to data 
in the Level I and Levels II and III classes before the 
data were geometrically corrected. In figure 13, the 
original classifications (A and D, no smoothing) are to be 
compared with a 3- by 3-pixel smoothing (B and E) and 
5- by 5-pixel smoothing (C and F). Since most of the 
resource classes in the study area are contiguous and 
relatively homogeneous, a 3- by 3-pixel smoothing ap­ 
pears to improve the map. When used on data in both 
Level I and Levels II and III resource classes, the 5- by 
5-pixel window produces a final product that is so 
generalized that meaningful map units are lost.

Smoothing; alters the number of pixels assigned to 
each resource class and reduces the number of pixels 
assigned to classes that represent small, irregularly 
distributed features such as roads, streams, and very 
small ponds. The changed pixels commonly are assigned 
the value of classes that occur in contiguous blocks and 
constitute a relatively large percentage of the pixels in 
the study area. For example, the number of pixels in the 
rangeland/barren-land resource class (table 12) dropped 
from 2.1 (no smoothing) to 0.9 percent when smoothed 
with a 5- by 5-pixel window. The pixels in this class occur 
in scattered, isolated units. However, the reduction in 
area assigned to the water class (from 259 to 203 pixels) 
and agricultural-land class (from 2,930 to 2,692 pixels) is 
not as great because these classes consist of contiguous 
blocks of pixels that are not reduced significantly in 
number by the smoothing process. These same relation­ 
ships hold for the Levels II and III resource classes 
(table 13).

The decision to perform a smoothing operation, and 
the choice of the window size to use, should be determin­ 
ed by the distribution and extent of the resource types 
being classified. For example, if riparian hardwoods (a 
class of vegetation occurring in narrow bands along 
stream bottoms) are important in a study of wildlife 
habitat, then smoothing should be limited to a 3- by 
3-pixel window (the smallest-sized window usually ap­ 
plied) or possibly not used.

Smoothing of the data in a color-coded resource map 
registered to the l:24,000-scale Upper Valley 
Quadrangle was also performed (fig. 14); compare with 
figure 13 for effect of smoothing when displayed at dif­ 
ferent scales. Before the classification map could be 
displayed, the image had to be registered to the 
topographic map using control points. Therefore, 
geometric correction (see next section) was performed 
before spatial smoothing was attempted. The degree of 
smoothing was selected on the basis of information 
needs, the number of resource classes, and the desired 
map scale.

GEOMETRIC CORRECTION

Geometric correction involves two steps: (1) genera­ 
tion of transformation coefficients between the Landsat 
image data and the appropriate topographic map base 
and (2) registration of the classified image to the map, 
by a spatial mapping of the image using transformation 
equations.

To perform the transformation, control points must be 
selected that are clearly identifiable on both the map and 
the Landsat image. They should be permanent land­ 
scape features, spatially well distributed throughout the 
image area. Fifteen to 20 points are required to achieve 
acceptable mapping accuracy (±1 pixel error) on an im­ 
age 1,024 pixels square. It is wise to select a few extra 
points because points that have high residual errors 
might be eliminated during the process of calculating 
transformation coefficients.

The IDIMS TRNSFORM algorithm reads the image 
and map control-point pairs, and calculates a first-order 
transformation matrix using the least-squares method 
to fit a first-order polynomial. The transformation is ap­ 
plied to the map control points. The calculated coor­ 
dinates of the points are subtracted from the correspon­ 
ding image control-point coordinates to provide a 
measure of the residual errors (table 14). If residual er­ 
rors for individual points are too high (because of plot­ 
ting errors or poorly selected control points), these 
points may be deleted until the mean residual error is ac­ 
ceptable (±1 pixel). New points may be added if the 
number of points remaining after a series of deletions is 
less than the suggested limit (15-20), and mean residual 
errors are still too high. A second-order polynomial can 
also be used to reduce residual errors because it pro­ 
duces a closer fit to the same number of control points 
than does a first-order polynomial.

TRANSFORMATIONS FOR BLACKFOOT RIVER WATERSHED 
TOPOGRAPHIC MAPS

Transformations were performed for both the Preston 
l:250,000-scale and Upper Valley l:24,000-scale maps. 
A first-order transformation was performed using 26
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D
FIGURE 14.-Classified images of a part of the Blackfoot River watershed, geometrically corrected to fit the Upper Valley 

l:24,000-scale Quadrangle. A, No smoothing (Level I resource classes). B, Smoothing with 3- by 3-pixel window (Level I resource 
classes). C, Smoothing with 5- by 5-pixel window (Level I resource classes). D, No smoothing (Levels II and III resource classes). E, 
Smoothing with 3- by 3-pixel window (Levels II and III resource classes). F, Smoothing with 5- by 5-pixel window (Levels II and III 
resource classes). Refer to color codes in figure 13.

FIGURE 13.-Classified images of Blackfoot River watershed (IDIMS 
video displays, not aspect-corrected) showing effect of spatial 
smoothing with 3- by 3-pixel and 5- by 5-pixel windows. Color 
assignments for Level I resource classes (A, No smoothing; B, 3- by 
3-pixel window; C, 5- by 5-pixel window) are as follows:

Forest land . 
Rangeland.
Rangeland/barren land ____
Wetland ___________ 
Agricultural land ________
Water

Color
Purple 
Green 
Light blue 
Red 
Tan 
Dark blue

Color assignments for Levels II and III resource classes (D, no 
smoothing; E, 3- by 3-pixel window; F, 5- by 5-pixel window) are as 
follows:

Resource class
Forest land:

Conifer _____________________________.
Aspen _____________________________.
Mixed conifer/aspen _____________________. 

Rangeland:
Sagebrush-perennial grass (high density) _________.
Sagebrush-perennial grass (medium density) _______.
Sagebrush-perennial grass (low density) _________. 

Rangeland/barren land:
Sagebrush-perennial grass (very low density)/strip mines.
Sagebrush-perennial grass (low density)/strip mines/

other disturbed areas ___________________. 
Wetland:

Wet meadow _________________________.
Dry meadow __________________________.
Riparian hardwoods _______________________________

Agricultural land:
Cropland and pasture _____________________ 

Water:
Reservoirs ____________________________.

Color

Purple 
Violet 
Dark gray

Dark green 
Light green 
Yellow

Light blue 

Medium blue

Red
Brown
Black

Tan 

Dark blue
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TABLE 12. -Effect of spatial smoothing on Level I resource classes

Resource class

Forest land
Rangeland
Rangeland/barren land
Wetland
Agricultural land
Water

Total

No smoothing
Number of 

pixels

87055
84,470

4,280
21,581

2,930
259

200,575

Percent of 
total area

43.4 
42.1 

2.1 
10.8 

1.5 
.1

100.0

Three- by three-pixel 
window

Number of 
pixels

90,122 
84,031 

2,823 
20,496 

2,780 
228

^00,480

Percent of 
total area

44.9 
41.9 

1.5 
10.2 

1.4 
.1

100.0

Five- by five-pixel 
window

Number of 
pixels

92,434 
83,258 

1,855 
19,690 
2,692 

203
1200,132

Percent of 
total area

46.2 
41.6 

.9 
9.9 
1.3 

.1
100.0

'Does not equal total from the unsmoothed image because boundary pixels from the watershed mask are also reclassified by the smoothing algorithm.

TABLE 13. -Effect of spatial smoothing on Levels II and III resource classes

Resource class

Forest land: 
Conifer
Aspen
Mixed conifer/aspen

Rangeland: 
Sagebrush-perennial 

grass (high density)
Sagebrush-perennial 

grass (medium density)
Sagebrush-perennial 

grass (low density)
Rangeland/barren land: 

Sagebrush-perennial 
grass (very low 
density)/strip mines

Sagebrush-perennial 
grass (low density)/strip 
mines/other disturbed areas _______ 

Wetland: 
Wet meadow
Dry meadow
Riparian hardwoods

Agricultural land: 
Cropland and pasture

Water: 
Reservoirs

Total

No smoothing
Number of 

pixels

24,483 
37,825 
24,747

29,541 

38,116 

16,813

1,503

2,777

6,607 
12,341 
2,633

2,930 

259

200,575

Percent of 
total area

12.2 
18.9 
12.3

14.7 

19.0 

8.4

.7

1.4

3.3 
6.2 
1.3

1.5 

.1

100.0

Three- by three-pixel 
window

Number of 
pixels

28,605 
43,631 
21,502

24,426 

41,080 

14,665

1,578

1,284

6,710 
11,490 
2,025

2,960 

255

 200,211

Percent of 
total area

14.3 
21.8 
10.8

12.2 

20.5 

7.3

.8

.6

3.4 
5.7 
1.0

1.5 

.1

100.0

Five- by five-pixel 
window

Number of 
pixels

29,158 
45,522 
20,263

23,866 

43,460 

11,663

1,317

770

6,654 
11,390 

1,778

3,177 

253

 199,271

Percent of 
total area

14.6 
22.9 
10.2

12.0 

21.8 

5.9

.6

.4

3.3 
5.7 

.9

1.6 

.1

100.0

 Does not equal total from the unsmoothed image because watershed mask boundary pixels are also reclassified by the smoothing algorithm.

control points from the Preston map. After the first 
iteration, mean residual errors were 4.52 pixels (x) and 
2.98 pixels (y). One control point had very high residual 
errors-34.1 pixels (x) and 10.4 pixels (^-suggesting 
that an error was made during the recording of this 
point. Therefore, this point was deleted, and the 
transformation was run again. During the second 
through the seventh iterations, single control points 
having the greatest residual errors were deleted, one at 
a time. Care was taken to avoid deleting control points 
from only one part of the map. Table 14 summarizes the 
effect (in terms of reducing mean residual errors) of

deleting control points. The final result, a second-order 
polynominal transformation based on 20 control points, 
resulted in a mean residual error less than one pixel in 
magnitude.

Eighteen control points were used for the initial first- 
order transformation of the Upper Valley Quadrangle. 
Mean residual errors were 1.13 pixels (x) and 0.74 pixel 
(y). For maps of this scale, mean residual errors of less 
than one pixel were desired. Hence, the transformation 
was recomputed until five control points were deleted 
and the resulting mean residual errors were 0.53 pixel 
(x) and 0.36 pixel (y).
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TABLE 14. -Mean residual errors after each of eight iterative calcula­ 
tions of transformation coefficients using control points from the 
Preston 1:250,000-scale map

Sequence 
of 

calcu­ 
lation

1
2
3
4
5
6
7
8

Order 
of 

trans­ 
formation

First
First
First
First
First
First
First
Second

Number 
of 

control 
points

26 
25 
24 
23 
22 
21 
20 
20

Mean residual 
error (pixels)

X

4.52 
1.75 
1.33 
1.18 
.98 
.89 
.80 
.63

y
2.98 
1.44 
1.04 
1.07 
1.10 
1.06 
1.09 

.77

REGISTRATION OF IMAGE TO MAP

The transformation equations were used to perform a 
spatial mapping of the uncorrected image, producing a 
geometric correction and rotation of the image so that 
north is at the top. Output values for the registered im­ 
ages were determined by the nearest-neighbor method. 
In this resampling technique, the value of a pixel in the 
transformed (corrected) image is taken from the value of 
the nearest pixel in the input image.

Separate registrations were produced for matching to 
the Preston map (entire watershed) and the Upper 
Valley map (part of the watershed only).

FILM-PRODUCT GENERATION

High-quality film copies of the Level I and Levels II 
and III resource maps were produced using an Op- 
tronics P-1700 film recorder. This device uses digital 
brightness values to create a black-and-white (positive 
or negative) film image. Black-and-white positive paper 
prints of data from single bands were made directly 
from Optronics film negatives. Multiband positive film 
images were used to produce false-color composite im­ 
ages by standard photographic techniques. These 
techniques were used to generate the Landsat images 
appearing in this publication, including the geometrical­ 
ly corrected classified images (figs. 15,16). This method 
produced images of high quality and high color rendi­ 
tion.

Once the color-coded images of the watershed were 
geometrically corrected and photographically enlarged 
to match the Preston map, the images could be directly 
compared with the map. A transparent overlay of the 
part of the Preston map that includes the watershed can 
be placed over the classified images, permitting the user 
to relate the land-cover categories to map features. This 
is demonstrated in the frontispiece, where the 
topographic map information is superimposed on the 
Levels I and II resource classes.

FLATBED-PLOTTER OVERLAY GENERATION

Color-coded overlays to the Upper Valley 
l:24,000-scale map were produced using a Calcomp 
flatbed plotter. Through a series of computer instruc­ 
tions, this device can produce a scaled, inked, translu­ 
cent map overlay. Each resource class is displayed in a 
distinctive pattern (fig. 17).

Resource managers prefer this type of output to color- 
coded classified images (figs. 14, 15, 16) because the 
resource data can be related to features on a base map. 
Other resource maps (for example, soils, wildlife habitat, 
and land ownership) can also be used directly with the 
resource overlay.

CONCLUSIONS

This study produced vegetation and land-cover maps 
of the Blackfoot River watershed by computer-assisted 
classification of Landsat data. The overall classification 
accuracy (defined as agreement of digital classification 
with photo interpretation of color-infrared aerial 
photographs) of the map of Level I resource classes 
(table 10) was 83.0 ±2.1 percent (0.95 probability level). 
Overall classification accuracy for Levels II and III 
resource classes was 52.2 ±2.8 percent (0.95 probability 
level). The map of Levels II and III resource classes had 
more resource classes (vegetation types) and finer detail 
than the map of vegetation types required for the EIS 
on phosphate strip-mining development.

Resource-class maps at scales of 1:250,000 and 
1:24,000 were effective output products. Level I classes 
were most effectively displayed at either scale without 
spatial smoothing. Levels II and III resource classes 
were best presented after spatial smoothing with a 3- by 
3-pixel window because too much of the original scene 
detail was lost by using a 5- by 5-pixel window. These 
conclusions were based largely on the author's 
knowledge of the resource classes and their spatial 
distribution within this particular study area, and they 
did not assume a specific user-defined need. For other 
environments and particular uses, some other pixel- 
window size might be desirable.

The man-machine interactive capability of IDIMS 
facilitated several steps in the analysis process, in­ 
cluding training-set selection, environmental stratifica­ 
tion, evaluation of classified images, and accuracy 
assessment. Standard Landsat false-color composites 
and color-coded classified images were displayed at 
selected scales on the video screen. Environmental 
stratification improved discrimination between many 
upland (aspen, mixed-conifer/aspen, and sagebrush- 
perennial-grassland) and lowland (wet- and dry-meadow 
and riparian-hardwood) resource classes that possessed 
similar spectral signatures.
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SCALE 1:250,000 
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FIGURE 15.-Color-coded classified Landsat image of the Blackfoot 
River watershed showing Level I resource classes. This image has 
been geometrically corrected and scaled to match a part of the 
l:250,000-scale Preston map. Color codes are as follows:

Forest land . 
Rangeland __

Resource class Color 

Purple
Dark green

Rangeland/barren land _______ ___________________ Light blue
Wetland ________ ___________________________ Red
Agricultural land _____________________________ Tan
Water _____________________________________ Dark blue
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FIGURE 16.-(Caption on following page.)
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FIGURE 16.-Color-coded classified Landsat image of the Blackfoot 
River watershed showing Levels II and III resource classes (no 
spatial smoothing). This image has been geometrically corrected and 
scaled to match a part of the l:250,000-scale Preston map. Color 
codes are as follows:

Resource class Color

Forest land:
Conifer __________________________________ Purple 
Aspen ___________________________________ Violet 
Mixed conifer/aspen ___________________________ Dark gray

Rangeland:
Sagebrush-perennial grass (high density) _______________
Sagebrush-perennial grass (medium density) _____ __ 
Sagebrush-perennial grass (low density)   ____________

Rangeland/barren land:
Sagebrush-perennial grass (very low density)/strip mines _
Sagebrush-perennial grass (low density)/strip mines/other

disturbed areas ______________ ____________
Wetland:

Wet meadow _______________ ____________
Dry meadow ____________________________
Riparian hardwoods ___________________________

Agricultural land:
Cropland and pasture __________ ____________

Water:
Reservoirs _______________________________

Dark green 
Light green 
Yellow

Light blue 

Medium blue

Red
Brown
Black

Tan 

Dark blue

High-altitude color-infrared aerial photographs were 
useful for evaluating digital classification accuracy. 
Most resource classes were easily identified and mapped 
on the aerial photographs. When greatly enlarged video 
displays of the Landsat data were compared with the 
photographs, the location of 5- by 5-pixel blocks could be 
easily plotted onto the aerial photographs and used to 
assess classification accuracy.
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4 KILOMETERS

FIGURE 17. -Level I classification of resources in the Upper Valley Quadrangle produced in black and white as an overlay map 
by a Calcomp flatbed plotter. Although this overlay is reduced in scale here, it was originally produced in color to fit the 
Upper Valley l:24,000-scale map. Symbols correspond to the following resource classes: vertical line, forest land; solid 
black, wetland; blank, rangeland; double horizontal line, rangeland-barren land.


