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GLOSSARY OF PETROGRAPHIC TERMS

Allochem. One of several varieties of discrete and organized car-
bonate aggregates that serve as the coarser framework grains in
most mechanically deposited limestone.

Allochthonous. Formed elsewhere than in its present place, of
foreign origin.

Anhedral. A crystal that has failed to develop its own faces or that
has a rounded or indeterminate form produced by the crowding
of adjacent mineral grains during crystallization.

Aphanocrystalline. A texture of a carbonate sedimentary rock
having crystals whose diameters are extremely fine.

Authigenic. Rock constituents and minerals that have not been
transported or that crystallized locally at the spot where they are
now found.

Bioclast. A single fossil fragment.

Biogenic. Produced directly by the physiological activities of either
plants or animals.

Biomicrite. A limestone consisting of a variable proportion of
skeletal debris and carbonate mud.

Biopelite. An organic pelite.

Biopelmicrite. A limestone
biomicrite and pelmicrite.

Biopelsparite. A limestone intermediate in content between
biosparite and pelsparite.

Dedolomite. Calcite pseudomorphous after domomite.

Dolomicrite. A sedimentary rock consisting of clay-sized dolomite
crystals, a lithified dolomite mud.

Enterolithic. A sedimentary structure consisting of ribbons of intes-
tinelike folds that originate through chemical changes involving
increases or decreases in the volume of the rock.

Equigranular. (Homogramular) the texture of a rock having crystals
of the same or nearly the same size.

Euhedral. A mineral grain that is completely bounded by its own
faces, and whose growth during crystallization was not re-
strained or interfered with.

Fenestra. A shrinkage pore, or an open space in the rock.

Grainstone. A mud-free grain-supported, carbonate sedimentary

intermediate in content between

rock.
Intertidal. (Littoral) the ocean environment between high water and
low water.

Intraclast. A component of a limestone, representing a torn-up and
reworked fragment of a penecontemporaneous sediment.

Intercrystal porosity. Porosity between equant, equal-sized
crystals.

Interparticle porosity. The porosity between particles in arock.

Meso-. A prefix meaning middle.

Micrite. The semi-opaque crystalline matrix of limestones, con-
sisting of chemically precipitated carbonate mud.

Microspar. Calcite matrix in limestones, occurring as uniformly
sized crystals.

Moldic porosity. Porosity resulting from the removal by solution, of
an individual constituent of a rock.

Neomorphism. The transformations between one mineral and itself
or a polymorph, by the processes of inversion, recrystallization,
and strain recrystallization.

QOolite. A limestone, made up chiefly of ooliths cemented together.

Oolith. One of the small round accretionary bodies in a sedimentary
rock.

Oomicrite. A limestone containing ooliths in a carbonatemud
matrix (micrite).

Oosparite. A limestone containing ooliths in which the sparry-
calcity cement is more abundant that the carbonate-mud matrix
(micrite).

Packstone. A sedimentary carbonate rock whose granular material
is arranged in a self-supporting framework, yet also contains
some matrix of calcareous mud.

Pelmicrite. A limestone consisting of a variable proportion of pellets
and carbonate mud (micrite).

Peloid. An allochem composed of micrite.

Peritidal. Depositional environments in a zone from somewhat
above highest storm or spring tides to somewhat below lowest
tides.

Phi mean diameter (¢). A logarithmic mean diameter. The negative
logarithm to the base 2 of the average grain size.

Pseudomorph. A mineral whose outward crystal form is that of
another mineral species.

Pseudosparite. A limestone consisting of relatively large, clear
calcite crystals that have developed by recrystallization.

Quartzine. Chalcedony characterized by fibers having a positive
crystallographic elongation.

Sabkha. A supratidal environment under arid to semiarid conditions
on restricted coastal plains just above normal high-tide level.

Sparry calcite. Clean, coarse-grained calcite crystal.

Subhedral. A mineral grain that is bounded partly by its own faces
and partly by surfaces formed against preexisting grains.

Supratidal. Pertaining to the shore area marginal to the littoral
zone, just above high-tide level.

Syntaxy. Similar crystallographic orientation in a mineral grain and
its overgrowth.

Wackestone. A mud-supported carbonate sedimentary rock con-
taining more than 10 percent grains or particles.
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the Madison Limestone; M~3 is near the Kinderhookian
and Osagean boundary; M-7 and M-8.5 fall within the
Osagean; and M-12 is near the Osagean and Merame-
cian boundary. The top of the Madison Limestone is
designated as the Mc marker. The sections of core for
each of the Madison Limestone test wells are identified
by their respective marker beds.

Petrology and petrography of the Madison Limestone
and associated rocks were studied from cores taken in
three test wells of the U.S. Geological Survey (fig. 1),
and this information was related to the origin and
distribution of pore systems in these rocks. The main
objectives were: (1) to describe and delineate petro-
graphic microfacies; (2) to determine if variations in car-
bonate facies, which reflect differences in original depo-
sitional environments and fossil communities, control
development of primary and secondary pore systems;
(3) to determine the effects of diagenesis and dolomitiza-
tion on porosity and permeability; and (4) to ascertain
what lithologic and other characteristics now control
porosity and permeability.

METHODS

In this study, 30 cored sections of Madison Limestone
and adjacent formations of Pennsylvania and Devonian
age from U.S. Geological Survey test wells 1, 2, and 3
were examined in detail. Total thickness of the cored
sections studied is 1,062 ft, of which 913 ft is from the
Madison Limestone; 51 ft is from Pennsylvanian forma-
tions; and 98 ft is from Devonian formations. The cored
intervals studied within each well are shown on plates 1,
2, and 3. The total marker interval thicknesses, as well
as the thickness and percentage of each interval cored
are listed by well in table 2. Porosity and permeability
values were measured on 300 core plugs cut parallel to
bedding. In addition, whole-core porosity and permea-
bility were determined on 36 Madison Limestone cores.
Grain density was measured on 125 of the core plugs.

The relative abundance of various porosity types in

rock slabs and thin sections was estimated by visual in-
spection, using the porosity classification of Choquette
and Pray (1970). Where more than one porosity type
was present, the abundance of each type was noted as a
percentage of the total. Average pore size was deter-
mined by measuring the diameters of 10 randomly-
selected equant pores per thin section.
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PETROLOGY OF MAJOR ROCK TYPES

Six major rock types are recognized in the Madison
Limestone and adjacent formations within the cored in-
tervals of test wells 1, 2, and 3. The overall percentage
of major rock types in the Madison Limestone in the
three wells, and the average for all three wells is given in
table 3. Dominant rock types in the cored intervals of
the adjacent formations are dolomite and sandstone. A

TABLE 2,—Thickness and percentage of Madison Limestone marker intervals cored in U.S. Geological Survey test wells 1, 2, and 3

Test well 1

Test well 2 Test well 3

Marker intervals Core Percent of Core Percent of Core Percent of
thickness interval thickness interval thickness interval
(ft) cored (ft) cored (ft) cored
M-12 to Mc ~~-—mmmmm - - 55 100 - -
M-85 to M-12 ~=———-—— - - 130 65 - -
M-85 to M¢ —~—--——-—- 111 62 -= — 64 34
M-7 to M-8.5 ~—-—————- 64 37 37.2 13 63 26
M-3 toM-7 ————-—————— 99.5 48 54 16 30 8
M-1toM-3 ———-——————- 70 29 95.5 32 60 22
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FIGURE 14.—Idealized Madison Limestone shallowing-upward
(regressive) peritidal sequence.

and Land, Salem, and Morrow, 1975). Evidence favor-
ing such a process includes relative coarseness of the
crystalline dolomites and their replacement origin,
which, in most instances, postdates early limestone
diagenesis. Replacement dolomites containing abun-
dant anhydrite do not fit this category and probably
represent totally recrystallized sabkha dolomites.
Whether recrystallization occurred below a younger
sabkha surface by reflux, or in a subsurface shoreline
environment by a meteoric water-sea water mixing
process, is unknown. Work in progress by Ruth G.
Deike (U.S. Geological Survey) on the geochemistry of
Madison Limestone dolomites should help resolve this
problem and provide additional information on origin(s)
of these various types.

Crystalline replacement dolomites without allochem
ghosts could have been produced by dolomitization of
any type of preexisting limestone or carbonate sedi-
ment. However, the strong fabric selectivity shown by

dolomite to replace micrite matrix in associated dolo-
mitic limestones, which underwent early diagenetic
alternation prior to dolomitization, indicates that most
of the crystalline dolomites replaced micrite-rich lime-
stones rather than their unlithified equivalents. This
fabric selectivity which has been noted in a number of
areas (Murray, 1960; Lucia, 1962; and Murray and
Lucia, 1967) and results from composition of the
micrite, its initially higher microporosity and permea-
bility, and the large surface area of micrite relative to
volume (Davies, 1979).

Using this line of reasoning, most biogenic dolomites
are believed to be former biomicrites. Many of the
crystalline dolomites contain numerous molds that have
the size and shape of crinoids; these, too, are interpreted
as dolomitized biomicrites. However, not all crystalline
dolomites are replacements of mud-rich limestones, as
demonstrated by the presence of dolomitized grain-
stones, such as dolomitic biosparite and oosparite.

The origin of intercrystalline porosity (sucrose) in
dolomites has been described in detail by Murray (1960).
Dolomite occupies about 13 percent less molar volume
than calcite (Weyl, 1960). However, most dolomite
replacement is volume for volume and uses extra CO,
(carbonate) ions, as the Ca is replaced by Mg. If car-
bonate required for dolomite rhomb growth comes from
dissolution of carbonate within the system (local
source), there will be a net increase in porosity equal to
the sum of the original rock porosity plus the molar
volume difference of 13 percent (Murray, 1960). Rhomb
growth will continue, using unreplaced calcium car-
bonate until a porous framework of rhombs results. The
final result of this process will be sucrose dolomite with
well-developed intercrystalline porosity. Inter-
crystalline porosity can also be produced by partial
dolomitization of a limestone with subsequent dissolu-
tion of the relict calcite. In this instance, the carbonate
necessary for dolomite growth is derived from outside
the system (distant source). The second process in un-
likely, because no evidence exists for calcite dissolution
in the Madison Limestone.

DESCRIPTION OF CORES FROM TEST WELLS

The cored intervals of the three test wells represent
most of the typical rock types and depositional en-
vironments of the Madison Limestone. Exact locations
of the wells and detailed lithologic descriptions of the
cored intervals with each are given in Blankennagel,
Miller, Brown, and Cushing (1977) for well 1, Brown,
Blankennagel, Busby, and Lee (1977) for well 2, and
Blankennagel, Howells, Miller, and Hansen (1979) for
well 3.
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Detailed graphic logs summarizing the petrology,
porosity, permeability, and depositional environments
of the cored Madison Limestone intervals are shown for
well 1 (pl. 1), well 2 (pl. 2), and well 3 (pl. 3). Cored inter-
vals from parts of adjacent stratigraphic units are also
included. At the scale at which these are drawn, beds as
thin as 2 feet are shown on the lithologic columns. Sub-
division within this column are based on dominant litho-
logic characters; some of the subdivisions are arbitrary
because of mixing of rock types. The curves showing in-
ferred environments of deposition are based on infor-
mation from sedimentary structures, rock type, and ver-
tical sequence.

Chaotic mixing of clasts within breccia intervals
makes it impossible to decipher preexisting depositional
environments on the basis of clast type. Further,
because the amount of vertical settling of these clasts is
unknown, their original stratigraphic position cannot be
determined. Petrographic data for samples within brec-
cia intervals represent bulk compositions of these rocks.
For example, if a rock consisted of 80 percent micrite
clasts and 20 percent sparry calcite cement, its composi-
tion would be shown as 80 percent micrite and 20 per-
cent spar. Possible confusion can be avoided by relating
rock types in the lithologic column directly with the col-
umns showing compositional data.

Curves showing various porosity types are expressed
as percentages of total visible porosity, which is shown
as a separate column, labeled voids. Logarithmic scales
are used where values show extremes, such as those for
permeability, percent insoluble residue, and percent
quartz. The percentage scales for compositional data are
not necessarily the same on each plate. Curves showing
bulk X-ray data are usually in good agreement with
those derived from point.count data. Major differences
between the two arise from slight differences in sam-
pling position or sample inhomogeneity.

Examination of the curves allows ready comparison
of porosity and permeability values with rock type,
grain size, porosity type, petrographic composition, and
bulk composition. Such examination reveals that in test
wells 1, 2, and 3, high values of porosity and permeabil-
ity are typically associated with large percentages of
fine and medium crystalline dolomite, which have low
anhydrite and spar content, and large percentages of
visible voids and intercrystal and moldic pores. Percent-
ages of visible voids provide insight into pore sizes
because only larger ones can be seen with a polarizing
microscope. Thus where pores are microsize, percentage
of voids will be small, conversely, large percentages of
visible voids indicate large numbers of meso- and
megasize pores.

The percentages of major rock types in the cored
Madison Limestone intervals in each of the three wells

GEOLOGY AND HYDROLOGY OF THE MADISON LIMESTONE

is summarized in table 5. On the average, intervals in
test well 2 contain less dolomite than those in wells 1
and 3. Also, wells 2 and 3 contain considerable amounts
of anhydrite, which is lacking in well 1. The large
percentage of chert in the M-1 and M-3 interval of well
3 results from the thick layers of chert and dolomitic
chert discussed previously.

Average values of porosity and permeability of
marker units in each well are given in Table 6. Highest
values of both are attained in the M-7 to M-8.5 interval
of well 1, where the percentage of finely and medium
crystalline dolomite is highest and little or no anhydrite
is present to clog pores. Comparison of tables 5 and 6
shows that low values of porosity and permeability in
these intervals are associated with large percentages of
limestone; high values of both porosity and permeabil-
ity generally occur where dolomite percentage is large.
However, large dolomite content does not necessarily
mean high porosity and permeability, as shown by the
M-7 to M-8.5 interval in well 3. Here, anhydrite con-
tent is great enough to significantly reduce porosity and
permeability (table 5). Open fractures also affect poros-
ity and permeability, as demonstrated by the M-8.5 to
Mc interval of well 3. Relatively high permeability
values in this interval result mainly from the high
percentage of fracture porosity (pl. 3), which has not
been reduced or filled. Generally, fracture porosity is
best developed in well 3 and is related to postconsolida-
tion tectonic activity. A number of other factors greatly
influence porosty and permeability in dolomites; these
will be discussed in the following section.

POROSITY AND PERMEABILITY RELATIONS

Porosity and permeability values of all Madison
Limestone samples were plotted as cumulative curves
using normal and log-normal probability scales, respec-
tively. Porosity shows a normal distribution, although
the ends of the curve do not fit perfectly (fig. 15).
Horizontal permeability shows a log-normal distribu-
tion, with a significant break in slope at about the 10
mD value (fig. 16). Similar distributions have been
reported from a number of other carbonate units (Davis,
1969; Thayer and Textoris, 1977). Mean porosity for the
Madison Limestone is 8.4 percent, and mean (arith-
metic) permeability is 15.8 md. Both porosity and per-
meability have very large standard deviations, 7 per-
cent and 53 mD, respectively, which are common in
most carbonate units (Thayer and Textoris, 1977).
Because the Madison Limestone is relatively heter-
ogeneous, permeability shows extreme values; thus, the
geometric mean is probably more representative of
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TABLE 5.—Percentage of major rock types in cores of Madison Limestone marker intervals in U.S. Geological Survey test wells 1, 2, and 3

Rock Types
Test well marker intervals Carbonate
Anhydrite breccia Chert Dolomite Limestone'
Test well 1
M-8.5 to Mc -- - - 23 1 63 13
M-7 to M-85 - - - 5 - 95 -
M-3 t0 M~7 === - e S — - 3 1 74 22
M-1 to M-3 ---- - - - - - 1 90 9
Test well 2
M-12 0 Mg === e e o e e o - 53 - 11 36
M-85 to M-12 8 7 1 45 39
M-7 to M-8.5 -— 41 - 1 66 2
M-3 to M-7 - 10 - - 61 29
M-1 to M-3 -— 2 1 54 43
Test well 3
M-85 to Mc 2 5 - 89 4
M-7 to M-85 10 - 1 88 2
M-3 to M-7 e 1 - - 36 63
M-=1 £0 M=3 == = m o m oo e 2 - 29 69 1

Includes dolomitic limestone.

TABLE 6.—Porosity and permeability of cores in Madison Limestone marker intervals in U.S. Geological Survey test wells 1, 2, and 3
[Numbers in parentheses (n) behind numbers indicate number of samples tested]

Horizontal permeability

Average (mD)
Test well marker intervals porosity
percent Arithmetic Geometric
mean mean
Test well 1
M-85 to M¢ ~-——-——~——- 7.6 (20) 03 (21) 0.01
M-7toM-8.5--~~~——--—- 16.9 (18) 76.3 (19) 5.9
M-3 to M-T-—-——————~— 14.2 (19) 272 (22) 0.6
M-1to M-8--————————— 16.7 (9) 60.9 (9) 1.7
Test well 2
M-12 to Mc------—--——- 55 (9) 0.02 (4) 0.01
M-85toM-12———~—————- 6.2 (41) 0.6 (28) 0.03
M-7toM-8.5--——~——--—- 1.8 (14) 0.05 (5) 0.02
M-3 to M-T---====~~—-- 76 (24) 29 (17) 0.13
M-1 to M-3--—————--——- 4.0 (35) 0.03 (17) 0.02
Test well 2
M-8.5 to Me-—-~——~ =~~~ 9.1 (22) 16.2 (22) 5.0
M-7toM-8.5--~-——--——— 7.4 (23) 1.2 (23) 0.4
M-8 to M-T----———-m——~ 9.2 (8) 17.8 (8) 1.1
M-1 to M-3-—————~—-—nom 153 (12) 79 (12) 2.0

“average’’ permeability (Davis, 1969). Its value is 0.25
mD, which is nearly identical to that of the median,
which is 0.30 mD (fig. 16). The median value of porosity

is 6.3 percent, which corresponds closely with the mean.
Samples used to construct the cumulative curves

were selected randomly; thus, the curves are considered
to be representative of the Madison Limestone in the
area of greatest interest (fig. 1) and can be used as
predictive tools. For example, examination of the cum-
ulative curve for porosity (fig. 15) reveals that only
5 percent of the Madison Limestone population will

have porosity values greater than about 20 percent.
Likewise, examination of figure 16 shows that only
5 percent of the total population is likely to have
horizontal permeabilities greater than 35 mD.

Limestones of the Madison Limestone are character-
ized by low values of porosity and permeability (fig. 17),
with grainstones showing slightly higher values than
other types. As pointed out before, the main reason for
these low values is that the limestones underwent early
diagenetic cementation, which, in most instances, filled
interparticle pore spaces.
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In contrast, crystalline dolomites have the highest
porosities and permeabilities in the three Madison
Limestone test wells, even though they show con-
siderable range (figs. 18 and 19). Although not signifi-
cant at the 95 percent confidence level, there is a crude
positive correlation between porosity and horizontal
permeability as well as between porosity and vertical
permeability. Generally, medium crystalline dolomites
have highest values of porosity and permeability, close-
ly followed by finely crystalline dolomites (figs. 18 and

19). Outliers that have low porosity and moderately
high permeability values re{)resent samples with frac-
ture porosity, whereas samples that have high porosity
and low permeability either have extremely small pores
or moldic and vug porosity in which the pores are not
connected.

Plots of dolomite mean size and standard deviation
(sorting) against porosity (figs. 20 and 21) show com-
plete scatter, indicating that these parameters do not
control porosity by themselves. If all or most of the
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Madison Limestone samples. Permeability is plotted on a log-
normal probability scale.

porosity in these rocks were intercrystalline, there
would probably be a good negative correlation between
porosity and size and sorting, because pore size and con-
figuration would depend chiefly on crystal size and ar-
rangement (Wardlaw, 1979). One of the main reasons for
no correlation is that numerous other pore types, such
as moldic and fracture, exist in these rocks, and their
size, number, and distribution are totally unrelated to
the size or arrangement of the dolomite crystals.

The plot of mean dolomite crystal size versus horizon-
tal permeability in figure 22 shows a poor correlation
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FIGURE 17.—Porosity-permeability characteristics of limestones in
the Madison Limestone.

between the two, indicating a general decrease in per-
meability as size decreases. The suggested explanation
for this decrease is that permeability is mainly con-
trolled by the percent of intercrystalline pores, and the
size of those pores is dependent on dolomite crystal size.
That is, as the size of crystals decreases, so does the size
of the pores and pore throats, which leads to increased
capillary trapping and permeability reduction. To be
sure, several points on this diagram do not fit this expla-
nation. For example, some of the points in the 6¢ to 9¢
range have permeability values equivalent to those in 3¢
to 6¢ range. Careful reexamination of these samples
reveals that the “high” values result from fracturing.
Points in the 3¢ to 6¢ range that have low permeability
values result mainly from anhydrite filling pores and
pore throats. Secondary calcite within pores also has the
same effect. The marked decrease in dolomite porosity
with increasing percentage of anhydrite is clearly
demonstrated in figure 23.

Other factors also influence porosity and permeability
of dolomites. One such influence is probably compac-
tion, which is related to depth of burial. The porosity in-
crease could also be related to the opportunity for more
fresh water in the system at shallower depths. A plot of
porosity versus depth for crystalline dolomites (fig. 24)
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shows that porosity is generally larger at shallow
depths; however, below 4,000 ft in wells 1 and 2, there is
little difference in porosity values. The variation of
porosity with depth is not due to differences in dolomite
types (that is, grain size and fabric), as the proportion of
each type within the three wells is approximately equal.
Part of the variation is related to the greater anhydrite
content of dolomites in wells 2 and 3 (pl. 1, 2, and 3). Per-
centages of terrigenous insoluble residue plotted
against porosity and permeability show no correlation.
Apparently, the percentage of terrigenous residue is so

low in these dolomites that it has no influence on poros-
ity and permeability.

CONCLUSIONS

Six major rock types are recognized in the Madison
Limestone within cored intervals of the three test wells.
Dolomite forms about 67 percent of the total and lime-
stone (grainstone, packstone-wackestone, and mud-
stone) about 20 percent. The remainder consists of
anhydrite, carbonate breccia, and chert.
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Dolomite can be subdivided into two groups: those of
penecontemporaneous intertidal-supratidal syngenetic
origin and crystalline diagenetic dolomites of replace-
ment origin. Fine-grained penecontemporaneous rocks
are cyclically arranged with beds of nodular anhydrite
and both formed beneath a sabkha surface by reflux of
dense brines. Subsequent movement of the brines in a
downward, and possibly seaward, direction dolomitized
older shallow-water limestones that had previously been
cemented. Cyclic recurrence of sabkha cycles through

space and time is believed to have caused the wide-

spread dolomitization of most shallow-water Madison
Limestone carbonates.

Crystalline dolomites not associated with evaporites
may have formed by some sort of meteoric water-sea
water mixing process in the subsurface shoreline en-
vironment. These dolomites formed by recrystallization
of mud-rich limestones, chiefly biomicrites, biopelmi-
crites and micrites.

The Madison Limestone in wells 1, 2, and 3 is of shore-
line or shallow-water shelf origin. Grainstones, chiefly
oosparites, and biopelsparites formed in high-energy,
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FIGURE 22.—Plot of mean dolomite crystal size against horizontal permeability for Madison Limestone crystalline dolomites.

very shallow-water environments. Mud-rich carbonates
formed in low-energy, shallow-water shelf environments
below wave base. Early diagenetic fresh-water cementa-
tion greatly reduced porosity and permeability in all
limestone types.

Carbonate breccias occur at the top of the Madison
Limestone in all three wells; they formed by collapse
resulting from solution of underlying evaporites. The
uppermost breccias are of post-Madison, pre-Amsden
age. The lower breccia zones (M-7 to M-8.5 in test well
1, and M-8.5 to M-12 in test well 2) contain no Amsden
sediments and probably formed in pre-Amsden time.
Formation of the breccias followed lithificaton, but may
represent a period of subaerial exposure during the
individual chronstratigraphic depositional periods.

More study is needed to more closely date the period of
breccia formation.

Chert occurs as small nodules throughout the
Madison Limestone, and as beds near the base of the
Madison Limestone in test well 3. Both types replaced
preexisting limestones or dolomites; the silica probably
originated from dissolution of sponge spicules, possibly
from radiolarians, or from a ground-water source.

Crystalline dolomite is the only abundant rock type in
wells 1, 2, and 3 that has high enough porosities and
permeabilities to provide significant yields of water.
Medium and finely crystalline dolomites show the best
values of porosity and permeability, because they have
high percentages of intercrystalline and moldic pores
that are well connected. Fracture, vug, and channel are
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FIGURE 23.—Plot of percent anhydrite versus percent porosity for Madison Limestone crystalline dolomites.

minor dolomite porosity types. Clogging of pores by
secondary anhydrite and calcite can significantly reduce
porosity and permeability.
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