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GEOLOGY OF THE TANAMA AND HELECHO PORPHYRY COPPER
DEPOSITS AND VICINITY, PUERTO RICO

By DennNis P. Cox

ABSTRACT

The Tanama and Helecho copper-deposits are examples of gold-
rich porphyry systems in a low-potassium island-arc environment.
Discovered in west-central Puerto Rico in 1958, the deposits are
localized in tonalite porphyry stocks of late Eocene age that intrude
basaltic rocks of Cretaceous age and felsic volcanic rocks of early
Eocene age. The mineralized plutons are in elongate clusters of stocks
aligned perpendicular to the regional grain of the island. The tonalite
porphyry is composed of phenocrysts of calcic plagioclase, hornblende,
and quartz in an aplitic-textured groundmass of quartz and sodic
feldspar. The amphibole phenocrysts vary in composition; their deu-
teric-alteration rims and patches have a relatively higher Mg content.

The Tanama deposit (126 million t, 0.64 weight percent Cu)isin a
faulted tonalite porphyry stock. The deposit contains abundant quartz
veins and disseminated chalcopyrite and has a secondary-enrichment
blanket containing various copper sulfide minerals. Three alteration
zones are recognizable: (1) an inner, amphibole-dominated assemblage
containing abundant magnetite and of low copper grade; (2) an outer,
chlorite-dominated assemblage, locally containing traces of hydro-
thermal biotite and potassium feldspar and abundant chalcopyrite
replacing magnetite; and (3) an upper, sericite-clay-calcite-pyrite
zone. Calcic plagioclase is unaltered in the first two zones but totally
destroyed in the third. Amphiboles in the first zone approach magne-
siohornblende and actinolitic hornblende in composition. Oxygen-
isotopic compositions of quartz and magnetite in quartz veins imply
equilibrium at 680 to 685 °C. Temperatures of homogenization of vapor
bubbles and dissolution of crystalline phases in fluid inclusions within
quartz veins mainly range from 200 to 500 °C; some mineral- and
vapor-rich inclusions in the interior of the deposit homogenize at
above 500 °C. Crystalline phases in inclusions are, in order of abun-
dance: NaCl, Fe chloride, KCl, complex Na-K-Fe-Ca chlorides,
hematite, and chalcopyrite. Oxygen-deuterium analyses of amphi-
bole, chlorite, and white micas suggest equilibrium with meteoric or
ocean water.

The Helecho copper deposit is similar to the Tanama deposit and
coextensive with a tonalite porphyry stock 1 km to the south. Two
porphyry copper prospects, Laundry Creek and Copper Creek, are
also located in porphyry stocks to the west of Tanama. Study of veins
and mineralized fractures at Helecho shows a difference in orientation
between the porphyry and metavolcanic country rocks. Fractures
striking N. 18° W. and N. 2° E. in the Helecho porphyry match miner-
alized fractures in the Tanama deposit. N. 30° E.-striking fractures
predominate in the volcanic rocks but are rare in the porphyry; these
N. 30° E..-striking fractures match the trend of the elongate cluster of
stocks of which Helecho and Tanama are a part.

Factor analysis of analytical data from drill-core samples at Tan-
ama and Helecho shows three groups of elements (factors) having
strong intercorrelation: (a) Cu-Au-Ag—samples scoring high on this
factor lie within the ore zone, and their distribution is independent of
any alteration zone; (b) S-Se-Cr-Co—samples scoring high on this

factor occur in altered volcanic rocks within the pyrite halo surround-
ing the porphyry systems; and (c) Pb-Zn-Mn-Ag—samples in the
sericite-clay-pyrite zone are strongly depleted in these elements. A Pb-
Zn-Mn peripheral anomaly has also been recognized from soil geo-
chemical studies. Low concentrations of molybdenum occur
erratically in and near the Tanama deposit; at Helecho, low Mo con-
centrations are found in a discontinuous zone ranging from 200 to 300
m outward from the deposit.

I conclude that the Tanama and Helecho deposits were probably
formed by introduction of volatile materials — mainly H,O and H,S
— and metal-chloride complexes from some deep source into a fract-
ured porphyry intrusion. Potassium was also introduced from depth,
as indicated by the low initial K;O content of intrusive rocks and
wallrocks. This K;O was fixed as biotite in an early-formed potassic-
alteration zone surrounding a core zone in which hydrothermal
amphiboles were dominant. Within this potassic-alteration zone, the
copper-gold ore bodies were deposited from chloride solutions. Mete-
oric or marine water entered the system through fractures and caused
widespread nearly complete replacement of amphiboles and biotite by
chlorite. This replacement released K+ and H+ and caused extensive
plagioclase destruction and sericitization in the upper parts of the
system. Also in these upper levels, pyrite replaced magnetite as the
temperature and oxygen activity decreased. The copper-gold ore body
was not affected by these changes, but Pb, Zn, and Mn were expelled
from the upper levels of the deposits during the sericite-pyrite-altera-
tion stage.

INTRODUCTION

The Tanama and Helecho copper deposits are situ-
ated in west-central Puerto Rico, the easternmost island
of the Greater Antilles chain. The area described in this
report, which includes these deposits and two associ-
ated copper prospects, extends 13 km eastward and 7.5
km southward of the town of Lares and comprises the
south third and the north border, respectively, of the
Bayaney and Monte Guilarte 7% minute quadrangles
(fig. 1).

The map area (pl. 1) is characterized by gently rolling
uplands dissected by streams with very steep valley
slopes. The uplands rise gently from 300-m elevation in
the north to a drainage divide in the south edge of the
map area at approximately 600-m elevation. The area
has an annual rainfall of 200 to 250 cm and supports a
heavy vegetation cover. The area has been extensively
cultivated in the past, and native vegetation has been
replaced largely by coffee, banana, and orange groves
and intervening areas of pasture.
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Copper deposits in this area have been known since
1958. Their discovery by geologists of the Kennecott
Copper Corp. was followed by extensive geologic map-
ping and diamond drilling. Results of this work were
summarized in two reports by J. E. Welsh (unpublished
data, 1965) and J. C. Wilson (unpub. data, 1966), which
were made available to the writer by the Kennecott
Copper Corp. and the Puerto Rico Mining Commission.
Geologic mapping of the Bayaney quadrangle by Nelson
and Tobisch (1968) laid much of the groundwork for the
present study, as did later mapping in the Monte
Guilarte quadrangle by R. D. Krushensky and A. F.
Curet (unpub. data, 1978). Weaver (1958) and Chen
(1969) published petrologic studies of the Utuado
batholith that underlies part of the area, and Cox and
others (1973) published a brief account of porphyry cop-
per mineralization and alteration in Puerto Rico in
which the deposits of the map area (pl. 1) were described.

The present study was carried out in cooperation with
the Department of Natural Resources of the Common-
wealth of Puerto Rico. The main objective of this study
was to describe the mineralogic and geochemical
characteristics of a porphyry-type deposit in a
potassium-deficient geologic environment that differs
markedly from that of most porphyry copper deposits in
the conterminous United States.

Acknowledgments.—The data collection and analysis
and the maturation of ideas on genesis leading to this
report were, in large part, made possible by the encour-
agement and generous assistance of a great number of
people in the Kennecott Copper Corp. (KCC), the Puerto
Rico Department of Natural Resources (DNR), the U.S.
Geological Survey (USGS), and other organizations.
Gregorio Chavez (KCC) graciously provided lodging and
office space during the fieldwork and core logging. I was
assisted in the field at various times by Eduardo
Questell (DNR), M. P. Foose (USGS), and Alfonso Arias
(Government of Colombia). Most of the chemical ana-
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Ficure 1.—Sketch of Puerto Rico, showing locations of Tanama-
Helecho (a) and Rio Vivi (b) copper deposits and 7%-minute quad-
rangles mentioned in text.

lyses were performed under the direction of Ileana
Pérez Gonzalez (DNR). Isotopic and mineralogic data
were contributed by J. R. O'Neil, L. B. Wiggins, R. L.
Oscarson, and P. J. Loferski, all of the U.S. Geological
Survey. Helpful contributions and discussions of
regional geologic problems came from R. D. Krushensky
and A. E. Nelson (USGS). J. R. Atkinson (KCC) provided
the history of exploration of the deposit. Interpretation
of the data and development of a genetic model for the
deposits, though solely my responsibility, were greatly
influenced by discussions with T. G. Theodore, J. J.
Hemley, P. B. Barton, Jr, G. K. Czamanske, Ivan
Barnes, and E. W. Roedder (all USGS).

REGIONAL ENVIRONMENT

The relation of porphyry copper mineralization to the
geologic development of Puerto Rico and adjacent areas,
as described by Barabas (1971,1982) and Cox and others
(1977, p. 701-702), can be summarized as follows:

1. Early sedimentary, volcanic, and tectonic events in
southwestern Puerto Rico are recorded in rocks of
the Bermeja Complex of Mattson (1958, 1960),
which include radiolarian chert containing fossils
of Jurassic age, serpentine, and amphibolite with a
metamorphic age of 126 Ma, as determined by K-Ar
analysis of hornblende.

2. The Bermeja Complex is overlain by volcanic and
sedimentary rocks as old as Cenomanian that are
part of a thick sequence of basalt, andesite, and
breccia, conglomerate, sandstone, and shale
derived from volcanic rocks, which were deposited
from Albian time to the end of the Cretaceous
Period. Volcanism was associated with left-lateral
strike-slip displacement along major northwest-
striking faults that were active from Cenomanian
to Eocene time.

3. This pile of volcanic rocks was intruded by plutons of
tonalitic and granodioritic composition beginning
in the Aptian and culminating in the Maestrich-
tian. Two batholiths were emplaced during
Maestrichtian time: the San Lorenzo in the east-
ern part of Puerto Rico and the Utuado in the west-
central part.

4. After emplacement of these batholiths, parts of the
region were uplifted and eroded, and during the
middle to late Eocene Epoch, basaltic to dacitic
lava, tuff, and volcaniclastic sediment were deposi-
ted in west- central Puerto Rico, mainly along a
northwest-trending trough, 100 km long by 10 km
wide. This trough may have resulted from rifting.

5. During late Eocene time, small stocks of tonalite
were placed along the boundary between the
Eocene trough and the Utuado batholith as well as
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with an aplitic groundmass from 200 m north of the
Helecho ore body, gave an age of 43.2 Ma (Barabas,
1982). The La Torrecilla sample (field No. 31-1) gave ages
of 41.8 and 44.3 Ma on two splits of hornblende; these
ages fall within the middle of the range of ages of
tonalite porphyries over the island (Cox and others,
1977).

2.2

20 | 4

1.6 — B _

AVions/23 0

o [ R | T N S| L
0] 02 04 06 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

S A+AI+F3 V' 12T Yons/23 0

2.2 T T T T T T T T T

1.2 -

AlY ions/23 0

0,6_// . B _

P | | | ] | 1 1 ]
[0 0.02 0.04 0.06 008 0.10 0.12 0.14 0.16 0.18 0.20

Ti ions/23 0

0.4

Ficure 6.—Chemical variations in amphiboles in tonalite porphyry,
Tanama area. +s, weakly altered rocks (table 2); points within the
same phenocrysts are linked by solid and dashed lines. Numbers
refer to analyses in table 2. Dots, hornblende from feldspar-stable-

2.2

AV ions/23 0

10—

0.6

04 | | ! L
2.0 2.5 3.0 3.6 4.0 4.5

Mg ions/23 O

2.2

20 -

1.8 -

1.6 [~

AlY ions/23 0

N i

\ p—
\\'(_5
|

22 23

o6 ® D

oal L 1 1 1oty 4o
12 13 14 15 16 1.7 18 19 20 21

Fe2* +Fe? *ions/23 0

A \ons/23 0

0.6 |- hd
o ° °
oalol 1 111t

0.7 0.8 09 1.0 1.1 1.2 13 14 15 16 1.7 1.8 1.9 20 2.1
Ca ions/23 0

alteration assemblage (table 5); circles, fibrous amphiboles (table 6).
Aluminum in tetrahedral sites (Al'V) is plotted against sum of A-site
occupancy plus Al, Fe3+, and Ti¢+ in tetrahedral sites (4), Ti (B),
Mg (C), total Fe (D), and Ca (E) in a unit cell of 23 oxygen atoms.
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The tonalite porphyry weathers to a light-gray
cohesive soil in which plagioclase phenocrysts, replaced
by clay, are conspicuous. The close spacing of these
phenocryst traces served to distinguish the porphyry
from volcanic rocks in mapping of the saprolite zone.
Relict quartz phenocrysts are also visible in soils
derived from the porphyry; these phenocrysts com-
monly have a fine frosted surface under a hand lens.

TaBLE 3. —Compositions and mineral norms of tonalite porphyry,
Tanamad area, Puerto Rico

[Chemical analyses in weight percent by rapid rock methods (Shapiro, 1967); X-ray fluores-
cence spectrographic analyses in parts per million; mineral norms in percent. Analysts: H.
Smith and J. Fletcher (samples 1-4); L. Espos and R. Mays (samples 5, 6)]

Sample--—- 1 2 3 4 5 6
Field No—-— 17-327 17-258 17-249 17-330 71-58 31-1

Chemical analyses

810y ———- 55.4 58.6 65.3 59.1 60.42 61.39
Aly053 ——- 16.3 16.5 16.5 16.4 16.69 17.02
Fey03 —— 3.9 2.8 2.7 2.1 2.85 2.54
Fe% ----- 3.2 3.8 2.4 3.4 3.25 2.34
Mg0 -———— 3.2 3.5 1.9 3.1 3.01 2.78
CaQ —-———- 6.0 5.6 4.5 5.6 5.80 6.24
Na,0 —-—- 2.9 3.1 3.6 3.2 3.97 3.95
K20+ ----- 1.4 1.5 .65 1.1 W51 1.14
Hy0” ———- 2.7 2.2 1.3 2.6 1.68 1.25
Hy0 == .82 W91 .56 .75 W27 .26
Ti0) —=== .50 .56 .34 .50 .49 .49
Py0g —=== .16 .16 .17 .14 .30 .11
Mn0 --——- .12 .35 .07 .25 135 .139
€Oy === 2.4 42 .08 2.0 W42 .20
Total-- 99.0 100.0 100.1 100.2 99.80 99.85
Spectrographic analyses
Co ———-—- 20 19 7 13 7 7
Cr —————- 27 44 19 21 7 15
Cu —————- 368 61 102 20 200 15
Mo ———-=-- <1.5 3 <1.5 <1.5 <2 <2
Ni ——-——- 12 18 6 8 7 7
Pb —-——— 10 8 <7 <7 <7 <7
Zn ———=—- 76 210 55 204 <100 <100
Mineral norms
Q —=————= 16.5 16.7 29.6 19.1 25.3 17.5
C ————=—= - - 2.1 .1 - -
or —————- 8.9 9.2 3.9 6.8 2.8 6.9
ab —————- 26.4 27.2 31.0 28.5 31.6 34.1
an --—--- 29.4 27.7 21.6 28.3 24.7 25.8
Wo —=———- .6 .03 s = .2 2.1
en ———---- 8.6 9.0 4.8 8.1 7.1 7.1
fs ——=--- 2.2 4.6 1.8 4.4 2.9 1.7
mt —=——-- 6.1 4.2 4.0 3.2 3.9 3.8
i1l —————- 1.0 1.1 .7 1.0 .9 .9
ap ==——== o4 ob W4 .3 .7 3

1. Drill hole T146, east of Tanamd ore body.

2. Rfio Piedras.

3. Rfo Criminales

4, Drill hole T66, postmineral dike in Tanama ore body.
5. Rio Coabey, north of Helecho ore body.

6 La Torrecilla.

This surface is a result of the previously described over-
growth of phenocrysts into the quartz-rich groundmass
of the original porphyry.

MINERALIZED BRECCIA

Hydrothermally altered breccia crops out in the east
fork of the Rio Criminales, 400 to 500 m west of Highway
602. The breccia is composed of subangular to sub-
rounded clasts of tonalite porphyry and metavolcanic
rocks, ranging in size from small chips to 50 cm in
diameter (fig. 8). The matrix is composed of fine to coarse
rock fragments and abundant pyrite and white mica. No
fragments of tonalite from the Utuado batholith were
noted. The metavolcanic rock fragments contain the
large equidimensional amphibole clusters after original
pyroxene that are common to the Cretaceous basaltic
sequence.

Outcrops of tonalite porphyry near the breccia out-
crops are strongly fractured, veined, and stained by
copper carbonates. Samples from these outcrops and
from the breccia contained 1,900 to 3,400 ppm Cu, 20 to
70 ppm Mo, 2 to 5 ppm Ag, and traces of gold.

An attempt was made to trace the extent of the breccia
by careful study of saprolite. This effort was only partly
successful because of uncertainties in the analysis of
vague patterns in the soils. The conclusion of the study
was that breccia may underlie an area 600 by 1,500 m
along the south contact of a tongue of porphyry intruded
along the contact of the Utuado batholith (pl. 1).

The breccia predates or is contemporaneous with the
tonalite porphyry. The associated white mica, pyrite,
and copper mineralization suggest that the mineraliza-
tion is hydrothermal in origin and possibly contempo-
raneous with porphyry copper mineralization at
Tanama.

OTHER INSTRUSIONS OF MINOR EXTENT

Diorite porphyry dikes cut sericitized metavolcanic
rocks and tonalite porphyry at the Helecho deposit and
in the Rio Criminales near the aforementioned breccia
outcrops. The diorite porphyry contains conspicuous
plagioclase (Ang,) phenocrysts, 3 to 4 mm in diameter,
set 1 to 2 cm apart in a dark-gray to black matrix. Relict
phenocrysts of amphibole and pyroxene altered to chlo-
rite, carbonates, and epidote are common. Fresh
clinopyroxene phenocrysts were noted at outcrops near
Helecho. The groundmass is composed of lath-shaped
crystals of plagioclase and altered mafic minerals.
Although quartz is very rare in the groundmass, it may
occur locally as phenocrysts surrounded by a thin reac-
tion rim of fine-grained amphibole.
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small vapor bubble making up 5 to 20 percent of the total
volume. Vapor-rich inclusions commonly are rounded
and characteristically have the form of negative crys-
tals. The vapor bubble makes up more than 50 percent of
the total volume, and in some inclusions the liquid
phase is nearly invisible; in a few places, small opaque
and cubic transparent daughter minerals were seen in
vapor-rich inclusions. Mineral-rich inclusions contain a
vapor bubble and a liquid crowded with daughter miner-
als, of which halite predominates. Of the three types,
the vapor-rich inclusions are the most abundant in most
samples. All three inclusion types occur together in all
parts of the low-grade core and ore zone, and no signifi-
cant difference in inclusion population could be seen
under the optical microscope between the deepest levels
of the northern ore body and the upper levels of the
southern ore body.

The three types of inclusions range in size from less
than 1 to 30 pm. Size distribution of the liquid-rich
inclusions is skewed toward the smaller diameters, so
that most fall within the 5- to 10- um size range. Vapor-
and mineral-rich inclusions are fairly evenly dis-
tributed in the 5- to 15- um size range and average 12 um
in size.

The distribution of fluid inclusions in the meta-
volcanic wallrocks was not mapped in this study because
many of the drill-core samples of metavolcanic rock col-
lected did not contain quartz veinlets. In those samples
of wallrock that did contain quartz, however, the abun-
dance and size of inclusions generally correlated
positively with copper grade. Fluid inclusions that may
have been trapped in type F veinlets with sericitic-
alteration haloes were not observed because the samples
collected from these veins did not contain sufficient
quartz for fluid-inclusion study.

TaBLE 8. —880 values and equilibrium temperatures for two quartz-
magnetite veinlets, Tanamd deposit

[See figure 12 for drill hole location and figure 14 for sample localities. 5180 values of quartz in

permil relative to standard mean ocean water (SMOW). Equilibrium temperatures (T) in

degrees Celsius, calculated from the expression of Bottinga and Jaboy (1973): 103lnA@M=

5.57x 108T -2, where Ag = (1,000 + & 180 quart (1,000 + 8180 agmette)]

Field No 17-295 17-303
Drill hole and depth-——- TI136, 46 m T135, 226 m
“' }80 quartz——-—————-—-- 8.09 8.29

& ~°0 magnetite-—-—-——--- 1.99 2.11

T 685 680

MINIMUM TEMPERATURE OF
TRAPPING OF INCLUSIONS

Figure 21A plots the temperatures of homogenization
of vapor and liquid in liquid- and vapor-rich inclusions
and the temperatures of final solution of daughter salts
in mineral-rich inclusions. These temperatures repre-
sent the minimum temperature of hydrothermal fluids
at the time of their entrapment in the quartz crystal
(Roedder, 1967). Vapor bubbles homogenized at tem-
peratures below the dissolution point of daughter min-
erals in all inclusions except four in a sample (field No.
17-374) from drill hole T109 in the uppermost part of the
deposit, in which halite dissolved in the range 200-350
°C and homogenization occurred above 320 °C.

These temperature data are insufficient to describe
the thermal history of fluids in the deposit, mainly
because many inclusions could not be homogenized
within the temperature range of the microthermometry
apparatus. Note, however, that the distribution of tem-
peratures and the abundance of analyzed inclusions
with homogenization temperatures in the range
200-500 °C is remarkably uniform in all samples, even
though they were selected from a vertical range of more
than 550 m in the deposit. Note, also, that no significant
difference is discernible between inclusions in type C
veinlets and younger, type E veinlets, even though these
veinlets appear to be related to different stages of hydro-
thermal alteration. Nonetheless, a significant dif-
ference does exist between the upper and lower levels of
the deposit with respect to the abundance of inclusions
with very low or very high homogenization tem-
peratures. Veinlets from the ore zone in the upper part
of the deposit (southern ore body) contain numerous
inclusions homogenizing in the range 100-150 °C (fig.
21B), whereas veinlets in the inner, low-grade core zone
in the lower part of the deposit (northern ore body)
contain abundant inclusions having dissolution tem-
peratures above 500 °C (fig. 21C). Liquid-rich inclusions
homogenizing between 150 and 250 °C are also present
throughout the deposit, including the inner core zone.

PRESSURE CORRECTIONS

The close association of mineral-rich inclusions with
vapor-rich inclusions indicates that solutions were boil-
ing at the time of trapping. Because vapor pressure
would equal hydrostatic pressure under boiling condi-
tions, the temperature of homogenization of these inclu-
sions must equal the minimum temperature of
trapping.

Most liquid-rich inclusions homogenizing at tem-
peratures below 300 °C were probably not derived from
boiling fluids, and so a pressure correction related to
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Ore zone, south ore body
[ | I I I I
17-374 r . — ! 1 I 1 TR 1 r ’ ||| 212
-8
17-400 T T T . UL TT°T T L I L— . 216
-47-54 -36 -45 -25
17-403 —T1—T— T T T T L 172
-25
§ 17-449€ , T . ; r i = "
c -5 -5 -4 -20
®
- 17-449C 1 (| 1 11
2 T T 1 T T T
H -22 24
2
2 I | | | | | I | | | I | | | | | |
g 100 150 200 250 300 350 400 450 500 550
2 TEMPERATURE, IN DEGREES CELSIUS
g A
©
% Low -grade core, north ore body
z
2 T T T T T T 1
-
% 1 1 [ L
2 17295 - , . L T T 2712
w -23 -1.5 -24
17-168E T I I \ ¥
17-168C T 7 L T T 1 w L L T = 3
-24-24 -13 -8
11 1|
17-303 T T TT T T 2/
-7 -25
| | i | | | | | | I | | I | | |
100 150 200 250 300 350 400 500 550
TEMPERATURE, IN DEGREES CELSIUS
10 T T T T T 15 T T T T T
Dissolution of solid phase in . .
26 mineral-nch inclusions 6 inclusions with » Dissolution of solid phase in 35 mineral-nch inclusions
5 undissolved daughter —{ 3 10| —
minerals o 31 inclusions with
g 3 undissolved daugbhter|
0 d 5 minerals -
Z
w
5 12 not homogenized — 2 0
w
“E’ 5 not homogenized
10 Homogenization as liquid of 46 liquid- — % 5 Homogenization as liquid of 38 liquid-
and vapor-rich inclusions and vapor-rich inclusions
L 1 1 1 1 10 1 1 ] I I
100 200 300 400 500 >650 100 200 300 400 500 >650
B TEMPERATURE, IN DEGREES CELSIUS C TEMPERATURE, IN DEGREES CELSIUS
Elevation
Field Drill hole Footage (in) Vein type
No. meters
17-374 T109 530 430 C
17-400 T79 450 413 C
17-403 T79 800 308 Vuggy quartz-molybdenite
17-499 T95 1010 240 Cand E
17-295 T136 150 500 C
17-168 T135 650 387 Cand E
17-303 T135 740 362 C

Ficure 21.—Temperatures of final homogenization of fluid inclusions in types C and E quartz veinlets from ore zone in upper part of Tanama
deposit and from low-grade core zone in lower part. A, Temperatures of final dissolution of daughter minerals in mineral-rich inclusions
(tickmarks above line) and homogenization temperatures of liquid- and vapor-rich inclusions (tickmarks below line). Small numbers below
line indicate temperature of final melting of ice in liquid phase of inclusions. Numbers at far right indicate numbers of inclusions that had
not homogenized at 550 °C. See figure 13 for approximate locations of samples. B, Summary of data in figure 21A for samples from ore zone.
C, Summary of data in figure 21A for samples from low-grade core zone.





















CORRECTION
U.S. Geological Survey Professional Paper 1327

Table 1, on page 5, should be replaced by this new version, which includes chemical
data for SiOZ and A1203.

Table l.~~Composition of volcanic and batholithic rocks from the Tanama area,
Puerto Rico

[Chemical analyses in weight percent by rapid rock methods (Shapiro, 1967);
X-ray fluorescence spectorgraphic analyses in parts per million. Analysts:
H. Smith and J. Fletcher (samples 1, 2, 5, 6); L. Espos and R. Mays (samples

3, 8}

Sample-—--—— 1 2 3 4 5 6
Field No=——-—- 17-420 17-480Q 17-153 71-154 31-2 31-3A
Chemical analyses

51.8 48.0 58.15 63.14 61.6 54,4
14.2 15.5 17.15 16.04 16.3 18.7
Fey0q =———-=-v 2.7 6.0 3.07 2.82 5.6 4.5
FeQ -—————=- — 5.6 4.9 4,16 2.99 .08 1.6
MgQ —=—=m——— 10.9 8.7 3.12 2.33 2.6 1.4
CaQ --——————- 6.8 5.2 6.61 5.60 4.6 8.4
Nay0 ——=weoe- 2.4 1.5 3.31 3.31 4.6 4.5
K0 —=—— +54 1.8 1.12 1.60 1.2 .87
Hy0* - 2.2 4 1.50 1.17 1.6 1.2
Hy0  —emmmme .55 .73 .25 .10 1.2 .55
Ti0y =—=—=—-~ 47 .96 .72 .61 <41 .67
Py0g ===——— .07 .19 .14 .21 .15 .31
MnQ —--—--— .22 .33 .16 .12 “24 .21
€0y ————-—-— .07 1.7 46 +30 .03 1.3
Total-——-— 98.5 99.9 99.92 100.34 100.2 98.6
Spectrographic Analyses
Co =mmmmmm—— 25 35 15 10 12 12
Cr - 730 240 5 5 29 17
200 52 20 70 32 53
<1.5 <1.5 <2 <2 3 7
150 84 5 5 15 4
Pb —=-==—eee <7 10 <7 <7 8 9
Zn —--w-e——m 110 120 <100 <100 63 68

Sample 1. Hornblende hornfels in Cretaceous basalt sequence.

2. Pryoxene lapilli tuff in Cretaceous basalt sequence.

3. Tonalite, Rin') Camuy; collector, A. H. Barabas.
4, Tonalite, Ric': Angeles; collector, A. H. Barabas.

'
5. Dacite breccia of the Milagros Formation and Rio Blanco Formation

of former usage.

6. Dacite tuff of the Ri& Blanco Formation of former usage.
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Quinn (1980) recorded homogenization temperatures
higher than 400 °C for inclusions in two samples from
the Helecho deposit.

OTHER COPPER PROSPECTS

Two copper prospects, Laundry Creek and Copper
Creek, are located in the northeastern and central parts
of the map area (pl. 1) Their English names reflect their
discovery by Kennecott Copper Corp. geologists on small
unnamed tributaries of the Rios Camuy and Piedras,
respectively. Laundry Creek, the earliest discovery in
the map area, was recognized by very large stream-
sediment copper anomalies and minor copper miner-
alization in outcrops. Only a small part of the tonalite
porphyry pluton at Laundry Creek is mineralized (see
pl. 1, fig. 29), whereas at Tanama and Helecho, ore bodies
are approximately coextensive with the intrusive
stocks.

The hydrothermal-alteration mineralogy at Laundry
Creek was examined petrographically in drill holes L9,
L16, L.28, and L.143 (fig. 29). Sericitic and argillic altera-
tion was found to be interspersed with feldspar-stable
alteration in these three drill holes, but no zoning pat-
tern was established. Chlorite is the dominant mineral
in the feldspar-stable-alteration assemblage, and bio-
tite is locally abundant as a replacement product of
hornblende phenocrysts. Potassium feldspar is locally
present and appears to be stable in the assemblage
chlorite-potassium feldspar-epidote-albite (see Cox and
others, 1973, fig. 3). As at Tanama, the potassium feld-
spar may be a stable relict mineral related to an early
biotite alteration, now destroyed by propylitization.
Late-stage zeolite veins cut the feldspar-stable-altera-
tion part of the deposit.

The Copper Creek prospect comprises sporadic cop-
per mineralization along a southeast-trending tongue of
tonalite porphyry. The main outcrop of mineralized rock
is in a quarry (crossed hammers, pl. 1). Abundant
quartz-magnetite veinlets, resembling the type C
veinlets at Tanama, cut the porphyry, and chrysocolla
and malachite coat fractures over a wide area. The use of
this colorful rock as road metal in numerous localities in
the map area (pl. 1), gives the impression that copper
mineralization is more widespread than is actually the
case.

Drill hole 40 at Copper Creek was the only one to
contain ore-grade copper mineralization. A cursory
petrographic study of core from this hole and from drill
hole 133 to the southeast showed that feldspar-stable-
alteration assemblages rich in chlorite predominate in
the porphyry, and those rich in amphibole occur in asso-
ciated metavolcanic rocks. Anhydrite was noted in drill
hole 133 in clusters with chlorite and epidote after
hornblende phenocrysts.

DISTRIBUTION OF METALLIC ELEMENTS AND SULFUR

Samples of ore and wallrock from Tanama and
Helecho were analyzed to investigate the mobility of
metals in various hydrothermal environments and the
usefulness of certain elements as indicators of
undiscovered ore bodies. The data also provided a back-
ground for other geochemical exploration studies using
soils and stream sediment. At Tanama, composite chip
samples were collected from one or two intervals in each
drill hole, representing intercepts with the two horizon-
tal sections shown in figures 11B and 11C. At Helecho,
samples were analyzed from outcrops along the Rio
Coabey traverse as well as from drill core from inter-
cepts within the subhorizontal section shown in figure
26.

All samples were analyzed spectrographically for 30
elements, following the methods of Grimes and Mar-
anzino (1968), and by atomic absorption spec-
trophotometry for Au, Cu, Pb, and Zn, using the
methods of Thompson and others (1968) and Ward and
others (1969). The Tanama samples and the Helecho

110000 METERS

ol7

7/ ;
y, L16
LGO

50500 | oL10

METERS

%

7 4 ,,,,‘1:

100 METERS

EXPLANATION

Tonalite porphyry (Tertiary)

Metavolcanic rocks (Cretaceous)

Contact—Inferred

Limit of greater-than-0.4-weight-percent
Cu mineralization. (Hachures on side of
higher grade)

ol 157 vertical drill hole with number

oﬁd Inclined drill hole with number

FicUrE 29.—Geologic sketch map of Laundry Creek prospect. Coor-
dinates in meters, Puerto Rico coordinate system.
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outcrop samples were analyzed for K, Na, and S. These
analyses were carried out in the laboratory of the
Department of Public Works, Commonwealth of Puerto

GEOLOGY OF THE TANAMA AND HELECHO PORPHYRY COPPER DEPOSITS, PUERTO RICO

trographically but not found at their corresponding lim-
its of detectability are as follows:

Rico, under the direction of Ileana Perez Gonzalez. For Flement famit of detem(b;h,iy)
the Tanama samples, Te and Se were determined by ﬁ‘: 50({
atomic absorption, using NaBH, reduction and a heated Bi 10
quartz atomizer, and Tl by using a heated graphite g% 21%
atomizer. The Te, Se, and T determinations were made Sb 100
by R. Mendes of the U.S. Geological Survey, Reston, Va. a? 518

Tables 12 through 14 list most of the analytical data.
Spectrographic Au, Cu, Pb, and Zn data are omitted
because they duplicate more precise spectrophotometric
data presented for these elements; spectrographic data
for B, Ca, Fe, Mg, Sc, Sr, Ti, V, Y, and Zr are omitted

Statistical relations between elements and between
samples were analyzed by W. D. Menzie II of the U.S.
Geological Survey. Samples of postmineral porphyry
were omitted from this statistical analysis because its

because they failed to show any significant variation
between samples. Elements analyzed for spec-

purpose was to examine the dispersion of elements dur-
ing mineralization. Samples collected from outcrops at

TaBLE 13. —Analytical data for selected elements in drill core from the Helecho deposit

fAll values in parts per million; N, not detected at indicated limit. See figure 26 for sample localities.
Locations in meters in Puerto Rico coordinate system. Rock types: 1, tonalite porphyry; 2, metavolcanic
rock; 3, postmineral dike. Alteration zones: 1, amphibole-dominant feldspar-stable; 2, chlorite-dominant
feldspar-stable; 3, biotite-dominant feldspar-stable; 4, feldspar-destructive; 5, unaltered]

Location
Sample Rock Alteration Au Cu Pb Zn Mn Ag BRa Co Cr Mo Ni
N. E. type zone
H 20 45750 113937 1 2 0.18 130 14 41 1,500 IN 300 15 50 5N 10
H 23 45895 113740 1 4 .16 4,800 87 140 1,500 5 300 15 150 20 30
H 30 45714 113780 1 2 .17 2,100 4 69 700 1 200 15 50 5N 15
H 34A 45621 113490 2 3 .18 3,100 7 54 500 1 300 15 300 SN 50
H 348 45621 113490 1 2 .23 3,200 3 35 200 1 300 15 30 5N 30
H 51A 45966 113390 2 1 07 150 13 30 500 N 1,500 20 200 5N 70
H 51B 45966 113390 2 1 .10 170 23 50 300 1 700 20 200 5N 70
H 60 46150 113956 3 5 .03 54 15 52 1,500 1IN 300 15 100 5N 30
H 62 45469 113810 1 4 .55 6,400 4 26 150 1 200 15 50 5N 20
H 64 45311 114020 1 4 .09 19 10 17 150 1IN 1,000 15 150 5N 20
H 67 45131 113865 1 1 .07 99 13 31 1,000 1IN 5,000 10 150 5N 30
H 69 45862 113481 2 4 .09 4,500 13 85 1,000 2 200 10 200 5N 70
H 72 45925 114010 2 4 <.02 100 4 28 150 IN 700 10 100 15 30
H 74 45350 113576 2 4 .03 190 9 21 200 IN 200 30 700 5N 100
H75 45543 113650 1 3 .08 930 4 37 700 1IN 150 7 200 5N 5
H 77 45528 113868 1 4 .28 3,800 18 45 700 1 200 7 200 5N 10
H 80 45407 113710 2 4 14 100 36 200 1,500 1IN 200 15 100 5N 30
H 82 45596 113722 1 4 .10 840 27 350 1,500 200 10 70 5N 20
H 85 45648 113595 1 2 .29 4,200 98 140 700 200 15 50 5N 10
H 87 45890 113621 2 4 .17 670 6 33 200 1IN 150 15 70 7 20
H 94 45748 113642 1 4 A4 4,900 4 31 300 1 150 10 30 5N 15
H 99 45807 113825 1 2 .18 2,200 4 27 300 1 150 10 30 5N 10
H 100 45990 113757 1 2 .00 650 10 320 1,500 1 200 10 30 5N 15
B 105 45977 113872 1 2 .00 150 6 31 50 IN 200 15 50 50 15
H 117 45967 113530 1 4 .08 140 76 27 1,500 1 500 10 30 5N 10
H 120 45777 113436 2 4 .06 2,900 36 80 200 1IN 1,500 10 50 5N 30
H 127 45500 113925 1 4 .02 1,500 87 200 1,000 2 500 10 30 5 30
H 148 45150 113445 1 4 .09 1,100 12 56 700 1N 300 10 50 5N 15
H 150 45355 113360 2 3 <.02 160 12 26 500 1IN 300 15 300 5N 100
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Helecho were also omitted from the statistical analysis
because of unpredictable variations in the data due to
weathering and secondary copper enrichment.

R-mode factor analysis of the data reduced the vari-
ables to four factors of geologic significance: Factor 1,
positively loaded on Ag, Mn, Pb, and Zn; factor 2, on Ba,
K, and TI; factor 3 on Ag, Au, and Cu; and factor 5, on Co,
Cr, S, and Se. Mo and Te had more than 30 percent of
the values qualified (below lower limit of detectablity)
and thus could not be treated statistically; the distribu-
tion of these elements was considered qualitatively, and
only tentative conclusions were drawn.

COPPER-GOLD-SILVER

Figure 30 maps the distribution of samples in the
Tanama deposit and their scores on factor 3. Samples
with high positive scores in this factor expectedly fall
within the 0.4-weight-percent-Cu limits shown on fig-
ure 11. Samples within the barren core score negatively
on factor 3 at 430-m elevation; a similar correspondence
is shown by factor 3 scores for Helecho drill-core sam-
ples. East of the main Helecho ore body, high Cu-Au
values are associated with small porphyry dikes crop-
ping out in the Rio Coabey.

No correlation between Cu-Au-Ag values and type of
alteration was found at either Tanama or Helecho.
Although median gold values are higher in samples
containing magnetite than in pyrite-rich samples, a plot
of medians and associated confidence limits suggests
that this difference may not be significant. A plot of gold
versus total sulfur shows no correlation between these
factors. There is no evidence for outward migration of
gold to form peripheral vein deposits in these data or in
the soil geochemical data collected by R. E. Learned
(written commun., 1976).

SULFUR-SELENIUM-CHROMIUM-COBALT

At Tanama, factor 5 is strongly positive in samples of
altered basalt surrounding the mineralized porphyry
stocks (fig. 31). Factor 5 thus indicates the pyrite halo of
the Tanama deposit. The positive loading of Cr and Co in
this factor derives from the initial high content of Cr and
Co in basalt. Factor 5 is strongly negative in the porph-
yry stock affected by feldspar-stable alteration. Figure
32, which maps the S content of bedrock samples col-
lected from the Rio Coabey, suggests the presence of a
strong pyrite halo surrounding the Helecho deposit.

MOLYBDENUM

Molybdenum is sparse at Tanama and Helecho; the
highest value measured was 100 ppm (0.01 weight per-

cent), and more than 30 percent of the values were less
than 5 ppm (limit of detectability). Figure 33 maps the
distribution of Mo at Tanama. Low Mo concentrations
were measured in samples from the barren core zone,
and higher concentrations occur erratically in the ore
zone and in metabasalt 100 m outward from the bound-
ary of the ore body. At Helecho (fig. 32), low Mo con-
centrations were measured in most samples from the
ore zone; higher concentrations occur in a discontinuous
zone 200 to 300 m outward from the ore-body boundary.
The highest concentrations (100 ppm Mo) were mea-
sured in the small outlier of ore-grade porphyry
sampled on the Rio Coabey east of the main Helecho ore
body.

LEAD-ZINC-MANGANESE-SILVER

Factor 1 scores for Tanama samples (fig. 34) reveal a
strong negative correlation between Pb-Zn-Mn and per-
vasive feldspar-destructive alteration. Positive scores
occur erratically in the northern ore body in the same
samples that score high on factor 3 (Cu-Au-Ag). In the
southern ore body, especially at the 430-m elevation (fig.
34A), large negative scores on factor 1 occur within the
zone of feldspar-destructive alteration.

The strong depletion of Pb, Zn, Mn, and Ag in the zone
of pervasive sericite-clay-carbonate alteration seems to
conflict with the observation that sphalerite occurs in
type F veins (samples T124-2, T128-2, table 12) with
sericite-clay-carbonate alteration envelopes. I conclude
that the feldspar-destructive alteration was a complex
process with an early deep-seated sphalerite-stable
stage and a later stage in which sphalerite and, presum-
ably, Pb and Mn minerals were leached.

The site of deposition of the remobilized Pb, Zn, Mn,
and Ag is a peripheral zone or halo 200 to 500 m outward
from the margin of the copper ore body. This halo has
been recognized in soils in the Rio Vivi district (Learned
and others, 1973) and in bedrock at the Sapo Alegre
prospect (Cox and others, 1975). At Tanama, the Pb-Zn-
Mn halo lies beyond the outermost drill holes and has
been recognized in soil geochemistry studies (R. E.
Learned, written commun., 1976). Remobilization of
zinc apparently continued into the postmineral intru-
sive stage, as evidenced by the high Zn content of sample
T108-2 (table 12).

At Helecho, factor 1 (Pb-Zn-Mn-Ag) scores are
strongly negative in and near the ore body and strongly
positive in stream-outcrop samples northeast and
southwest of the ore body (fig. 35). These positive scores
suggest the presence of a Pb- Zn-Mn-Ag halo 100 to 600
m outward from the ore body and approximately coex-
tensive with the pyrite halo.
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Ficure 30.—Outline of greater-than-0.4-weight-percent-Cu ore body in comparison with scores on factor 3 for Cu-Au-Ag, Tanama deposit. A,
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EXPLANATION
Symbots indicate scores for factor 3 as follows:

[ +1.0tw20 [\ -3.01w-2.0
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. Drill hole samples with number

B +05t 1.0

. -05t005
—~—= = — Fault—inferred

B

-1.010-0.5

A -20t0-1.0

—1 I 1 Limit of greater-than-0.4-weight-percent Cu ore body.
Hachures on side of higher grade

430-m elevation. B, 300-m elevation. Coordinates in meters, Puerto Rico coordinate system.
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EXPLANATION

Symbols indicate scores for factor 3 as follows:
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.6 t0 1.0
[ +0.51t0 T102-2

e -05t05 o Drill hole samples with number

— — — Fault—Inf
-1.0to0 -0.5 ault—Inferred
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A 20t -1.0 —L1l 1 Limit of greater-than-0.4-weight-percent Cu ore body.
’ . Hachures on side of higher grade

Ficure 30.—Continued.
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EXPLANATION
Symbols indicate scores for factor 5 as follows
[¢] +201 =30 A -20t 10
[6] +101w +20 A 30t -20
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T65-1 o D hole samples with number

Ficure 31.—Contact of tonalite porphyry in comparison with scores on factor 5 for S-Se-Cr-Co, Tanama deposit. A, 430-m elevation. B, 300-m

. 05t +05
Contact of tonalite porphyry intrusion

A 10t 05 Fault- Inferred

elevation. Coordinates in meters, Puerto Rico coordinate system.
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Figure 31.—Continued.
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OTHER ELEMENTS

Factor 2, positively loaded for K, Ba, and Tl and nega-
tively loaded for Na, characterizes feldspar-destructive
alteration in the porphyry stock at Tanama. The miner-
alogic residence of thallium is not known. Barite was
noted in a type F vein in one sample (T91-2) from the
southern ore body (fig. 11C). Te values were too highly
censored for statistical analysis, and a map plot of Te
values did not suggest a control by any known geologic
features.

CONCLUSIONS

From the data presented here for the Tanama and
Helecho deposits and their geologic environment, the
following principal points may be extracted:

1. Tonalite porphyry intrusions and dacitic flows and
breccia formed as a terminal igneous event during
a long period of subduction-related volcanism and
plutonism.

2. At Tanama and Helecho, columnar-shaped tonalite
porphyry intrusions in a transverse alignment of
stocks contain copper mineralization

3. The mineralized porphyry intrusions are mostly
altered to propylitic mineral assemblages and con-
tain closely spaced veinlets of quartz, magnetite,
chlorite, amphibole, chalcopyrite, and other miner-
als. At Tanama, throughout the lower part of the
column, the K,O content is low, but traces of biotite
and potassium feldspar are locally present. Biotite
forms unreplaced cores in chlorite in the Tanama
and Helecho deposits.

. Metabasaltic country rocks, with low initial K,O con-
tents, locally are altered to biotite hornfels near
the porphyry contact, presumably by introduction
of potassium-bearing fluids. Quartz veinlets are
rare in the country rock in comparison with the
porphyry intrusions. Chalcopyrite is only locally
abundant in the country rock, near the porphyry
contacts.

. Sericite-clay-pyrite blankets cover the tops of the
porphyry columns and extend locally downward
into the porphyry and outward over the meta-
basalt. The blanket at Tanama contains about 4
times the K,O content of unaltered tonalite por-
phyry and has about 4 times the sulfide-S content
in comparison with the lower parts of the ore body.

6. At Tanama, a shell of copper ore shaped like an
inverted tumbler is localized along the contact
zones of the porphyry in the lower part of the col-
umn and, in the upper part, occurs throughout the
porphyry column without regard to alteration
type. In both deposits, the copper ore contains gold
and silver and less than 100 ppm Mo; at Helecho,
however, the highest Mo concentrations occur out-

1N

(o4

side the copper ore body. Copper and gold distribu-
tion is unrelated to silicate-alteration zones, but
lead, zinc, and manganese are depleted in the
sericite-clay-pyrite blankets and appear to have
moved outward to form peripheral anomalies.

7. Quartz and magnetite in early-stage veinlets have
isotopic-equilibrium temperatures of 680 to 685 °C

8. Fluids trapped as inclusions in veinlets contain
abundant chlorides of Na, Fe, and K, as well as
unknown amounts of Ca, Mg, and traces of Cu.
They were trapped, under boiling conditions, at
temperatures mainly above 350 °C. Other, more
dilute fluids are abundant in inclusions
throughout the deposit; these fluids were trapped
mainly at temperatures between 150 and 350 °C.

9. Water in amphibole, chlorite, and sericite in the Tan-
ama ore body has isotopic ratios typical of meteoric
or marine water.

The distribution of silicate minerals, sulfur, copper,
and other metals can be explained by assuming upward
flow of fluids through a magma column at a depth of
about 3 km. As the column cooled from magmatic tem-
peratures of about 800 °C, and in response to sharp
decreases in confining pressure related to volcanic
activity at the top of the column, crystallization took
place. Crystallization was followed, at temperatures
below 700 °C, by fracturing in response to tectonic
activity and high fluid pressures in the rapidly crys-
tallizing rocks. Fracturing allowed a gradually increas-
ing inflow of meteoric or marine water that effectively
removed all evidence of the presumed magmatic stage
by isotopic exchange. Cooling of the system took place
from the top downward.

Within this framework, the relation between altera-
tion silicates, chlorite, biotite, amphiboles, and white
mica can be discussed. Hemley and others (1980)
stressed the importance of seawater and seawater-mete-
oric water mixtures in alteration. Fixation of Mg2*+ from
these fluids occurs strongly with increasing tem-
perature, so that chlorite and magnesian amphiboles
are produced and basic cations, alkalis, and H*
released, as illustrated by the reaction

pargasitic amphibole

2NaCa,Mg,Al;Sic0,,(0H), +12H,0 + TMg2* =
chlorite

3Mg;ALSi,0,,(OH),+2Na+ +4Ca2+ +35i0, +4H* (1)

The resulting H* contributes to destruction of feldspars
higher in the system. At Tanama, the low K,0 content of
amphiboles in intrusive and country rocks makes it
unlikely that this reaction could have provided the
potassium now present in the upper, feldspar-destruc-
tive-alteration part of the deposit. The existence of a
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deep-seated source of potassium would explain the K, 0-
rich upper zone, the widespread traces of biotite in the
lower, feldspar-stable-alteration part of the porphyry,
and the biotite hornfels formed from basaltic rocks near
the porphyry contact. Cores of unreplaced biotite in
chlorite grains indicate that some of the chlorite was
formed at the expense of biotite, as in the reaction

GEOLOGY OF THE TANAMA AND HELECHO PORPHYRY COPPER DEPOSITS, PUERTO RICO

biotite
2KMg,AlSi;0,,(0OH), +4H* =
chlorite
Mg:Al,Si;0,,(OH)g + 2K+ +Mg2+ +38i0, 2)

Therefore, I propose that at Tanama and, probably,
also at Helecho and Laundry Creek, extensive biotite
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FicURE 33.—Outline of greater-than-0.4-weight-percent-Cu ore body in comparison with Mo values in drill cores, Tanama deposit. A, 430-m
elevation. B, 300-m elevation. Coordinates in meters, Puerto Rico coordinate system.
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shown in figures 364 and 36C. Inflow of meteoric water
and (or) seawater at temperatures between 200 and 300
°C produced a propylitic overprinting on the potassic-
alteration zone and on part of the amphibole
assemblage and released H+ and K+, as proposed by

alteration typical of the potassic-alteration zone took
place at temperatures between 300 and 600 °C. This
zone of potassic alteration surrounded the internal
amphibole-dominant assemblage at Tanama and was
probably coextensive with the copper-gold ore body, as
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[
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mineralization. Hachured on side of higher grade

@ 5-10 ppm
—— —— ~—— Inferred fault

Ficure 33.—Continued.
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Hemley and others (1980) (fig. 36B). The upward flow of
H+* and K+ resulted in alteration of plagioclase in the
overlying feldspar-destructive-alteration cap, as in the
reaction

anorthite

3CaAl,Si,05+4H* + 2K+ =
muscovite

2KAL,Si;0,,(OH), + 3Ca2+ (3)

The calcium released in reactions 1 and 3 was then fixed
as calcite in the feldspar-destructive-alteration
assemblage. Because both reactions 1 and 2 have SiO, as
a product, any fractures would tend to be sealed by
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Actinolite
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percent Cu
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7
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Volcanic rocks
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Pb-Zn-Mn-Ag

FiGURE 36.—Schematic cross sections showing deposition and
redistribution of silicates (4, B) and metals (C, D) in a Tanama-type
porphyry Cu-Au deposit. Sections A and C illustrate the early
hydrothermal deposition stage; B and D the late hydrothermal
redistribution stage.

quartz deposition. Tectonic fracturing and continued
reopening of the system must have occurred to permit
the pervasive chloritization and feldspar-destructive
alteration observed in these deposits.

The relation between magnetite, pyrite, chalcopyrite,
and gold depends on oxygen and sulfur activities in the
cooling porphyry system. Sulfur activity presumably
was controlled by the flow of H,S through the porphyry
column from a deep-seated source and remained high
throughout the lifetime of the system. Oxygen activity
(ap,) was internally controlled by reactions between
mafic silicates and H,O and by dissociation of H,O to Hy
and O, in the hot interior of the intrusion. The greater
upward diffusion of H, relative to O, would cause a
higher (ag,)deep in the system and a steadily decreas-
ing (ap,)in the upper part. As the system cooled and the
(ao,) activity fell, pyrite stability was attained, and the
reaction

magnetite pyrite

Fe,0,+6H,S = 3FeS,+4H,0+2H, 4)

occurred along an irregular descending front coexten-
sive with feldspar destruction and growth of sericite (fig.
36B).

The absence of correspondence between copper-gold
grade and alteration type is evidence that chalcopyrite
and gold were deposited early, during the postulated
biotite-alteration stage. Subsequent chloritization, feld-
spar-destructive alteration, and sulfidation did not
result in redistribution of the copper and gold. Copper
and gold were introduced as chloride complexes, as indi-
cated by the high chloride content of fluids trapped in
quartz veinlets. Crerar and Barnes (1976) showed that
the solubility of copper in chloride solutions decreases
rapidly between 350 and 250 °C, and Henley (1973)
showed a rapid decrease in the solubility of gold as a
chloride complex with decreasing temperature from 500
to 400 °C. Falling (a,,) and dilution of chloride solutions
would also cause precipitation of chalcopyrite, according
to Crerar and Barnes. Formation of gold thiocomplexes
was not favored owing to the high (a,) (Henley, 1973)
that prevailed during the period of chalcopyrite-magne-
tite stability and ore-body formation. By the time pyrite
stability was attained, gold may have been armored by
inclusion in chalcopyrite, so that its remobilization and
outward migration as gold bisulfide ion could not take
place.

There is clear evidence at Tanama and Helecho for
depletion of Pb, Zn, and Mn in the zone of feldspar-
destructive alteration and pyritization relative to the
feldspar-stable-alteration zones of the ore body (fig.
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36D). This depletion and outward dispersal were appar-
ently facilitated by low-pH fluids and high sulfide
activity. Evidence is less clear for outward migration of
molybdenum from the ore body at Helecho.

The Tanama and Helecho deposits provide two impor-
tant observations that must be included in a general
porphyry-copper-deposit model. First, the presence of
propylitic mineral assemblages and the absence of
hydrothermal biotite should not necessarily be consid-
ered negative attributes of a prospect or cause for
assignment of the prospect to a peripheral propylitic
zone. If abundant quartz veining, abundant mineral-
rich fluid inclusions, or copper and gold anomalies are
present, the prospect is probably in a potassic-alteration
zone, overprinted by late propylitic alteration. Second,
the Pb-Zn-Mn peripheral halo that is typical of most
porphyry deposits is, at Tanama, the product of disper-
sal from a feldspar-destructive-alteration/pyrite-rich
zone. Where such a zone is absent owing to erosion or
faulting, this peripheral halo may also be absent, and
the Pb, Zn, and Mn concentrations may occur within the
copper ore body.
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