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FOREWORD

The great New Madrid, Missouri, earthquakes of 1811-12 and the extended series
of aftershocks that followed have focused considerable U.S. attention on the geologic
stability of the interior of the North American crustal plate. These and subsequent
earthquakes have shown clearly that the mid-continent is capable of generating
devastating earthquake ground motions and that study of these earthquakes is
essential to reducing their associated hazards. This Professional Paper presents
significant new contributions to fundamental knowledge about the seismicity, tectonic
framework, and earthquake hazards of the New Madrid seismic zone. Some of the
chapters refine the conclusions of earlier work, further clarifying the understanding of
the seismotectonics of the region.

As early as 1846, the eminent English geologist Sir Charles Lyell studied the effects
of the earthquakes of 1811-12 and recognized the effects of recurrent earthquakes on
the physiography and structure of the Mississippi Valley. The first comprehensive
geologic investigation of the New Madrid earthquakes was made by Myron Fuller of
the U.S. Geological Survey (USGS), who published his findings in 1912. Fuller
described the distribution and character of surface deformation and liquefaction
features and compiled a detailed list of aftershocks and their effects.

In 1974, the USGS began multidisciplinary studies to investigate the cause of the
New Madrid earthquakes and to determine the hazards and risk associated with the
continuing seismicity in the region. In the same year, the Department of Earth and
Atmospheric Sciences of St. Louis University began installation of a 16-station
microearthquake-detection network in the Mississippi embayment (later expanded to
32 stations plus 8 additional stations in the Wabash Valley of Illinois and Indiana).
The studies and seismograph network were designed to determine the temporal and
spatial distribution of seismicity in the New Madrid seismic zone, to delineate the
structural framework of the earthquake source zone, and to determine the recurrence
rate of damaging earthquakes in the New Madrid region by investigations of surficial
sediments and structures.

In 1977, the U.S. Nuclear Regulatory Commission initiated a multi-institutional
seismotectonic study of the area within a 200-mile radius of New Madrid. The study
was conducted by scientists from midwestern universities and State geological surveys,
in coordination with Federal agencies conducting investigations in the area. The
purpose of the study was to define the structural and tectonic setting of the New
Madrid seismic zone in order to evaluate earthquake risks in the siting of nuclear
facilities. Geological, engineering, and seismological studies for assessing earthquake
hazards and risk associated with the Mississippi River and related waterways and
manmade structures have been conducted independently by scientists and engineers
of the U.S. Army Corps of Engineers.

Results of many of the investigations completed in the first 8 years of study
(1974-82) in the northern Mississippi embayment were presented in USGS Profes-
sional Paper 1236. These studies revealed that earthquakes in the New Madrid area
occur in linear zones that are spatially associated with structures in a buried
continental rift that formed in the Precambrian. Reactivation of faults along the axis
and flanks of the rift in a compressive stress field has produced uplift and many of the
region’s earthquakes. The buried Paleozoic surface has only minor structural relief,
however, indicating that Cenozoic fault activity has been only modest or that most of
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the fault offset has been strike-slip. Earthquakes large enough to cause tectonic
surface deformation and liquefaction features occur on the average of every 600-700
years in the New Madrid seismic zone.

Geophysical, geological, and seismological investigations by scientists of the USGS,
State geological surveys, academia, and the US. Army Corps of Engineers have
continued in the New Madrid seismic zone since the publication of USGS Profes-
sional Paper 1236. Of particular importance have been seismic-refraction and
seismic-reflection surveys; geomorphic analyses of river terraces and stream profiles
in Tennessee, Kentucky, and Arkansas; and studies of earthquake-induced hazards
such as liquefaction, landslides, and ground motion. Some of the new data and
conclusions from these investigations are given in chapters published at irregular
intervals as part of this Professional Paper 1336. These chapters provide a more
complete understanding of the seismicity and tectonic evolution of the New Madrid
region and the effects of hazards that the earthquakes produce; consequently, they will
enhance the effort to implement loss-reduction measures in an economical and
effective manner.

Fud . Conn

David P.Russ

Anthony J. Crone
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THE NEW MADRID, MISSOURI, EARTHQUAKE REGION—
GEOLOGICAL, SEISMOLOGICAL, AND GEOTECHNICAL STUDIES

LANDSLIDES TRIGGERED BY EARTHQUAKES IN THE
CENTRAL MISSISSIPPI VALLEY, TENNESSEE AND KENTUCKY

By RANDALL W. JIBSON and DAVID K. KEEFER

ABSTRACT

We mapped 221 large (more than 200 ft across) landslides of three
morphologically distinct types on the bluffs bordering the Mississippi
alluvial plain in western Tennessee and Kentucky. Old coherent slides (146
landslides, or 66 percent of the total) include translational block slides and
single- and multiple-block rotational slumps, all of which are covered by
mature vegetation and have eroded features; no active analogs exist in the
area. Earth flows (51 landslides, or 23 percent of the total) are also largely
revegetated and eroded, though a few active earth flows are present on
bluffs that have been cleared of vegetation. Young rotational slumps (24
landslides, or 11 percent of the total) form solely along actively eroding
near-river bluffs and are the only active or recently active landslides in the
area.

Two investigations conducted around 1900 indicate that the old coher-
ent slides, in at least part of the area, formed during the 1811-12
earthquakes. The present investigation uses dendrochronology, geomor-
phology, historic topographic maps, local historical accounts, and compar-
isons with landslides triggered by other earthquakes to show that most or
all of the old coherent slides and earth flows formed during the 1811-12
New Madrid carthquakes. Evidence clearly indicates that the only large,
aseismic landslide activity in the area results from fluvial undercutting of
near-river bluffs. This erosion of the base of the bluffs triggers slumps that
are morphologically distinct from the old slumps on bluffs away from the
river.

Our conclusions are consistent with the findings of other recent
investigations of the same landslides that indicate extensive seismic
triggering of coherent slides and earth flows during the 1811-12 New
Madrid earthquakes.

INTRODUCTION

One of the most dramatic effects of the New Madrid
carthquakes of 1811-12 was the formation of numerous
landslides along the bluffs bordering the Mississippi alluvial

plain in western Tennessee and Kentucky. In his report of a
field investigation of the New Madrid earthquakes con-
ducted in 1904, Fuller (1912, p. 59) stated,

Probably no feature of the earthquake is more striking than the landslides
developed in certain of the steeper bluffs * * *. From the vicinity of
Hickman in southwestern Kentucky at least to the mouth of the Obion
River, about halfway across the State of Tennessee * * * the landslides are
a striking feature. Skirting the edge of the bluffs, in the vicinity of Reelfoot
Lake, a characteristic landslide topography is almost constantly in sight

* ¥ %

Although‘a few historical descriptions of the landslides
from the 1811-12 earthquakes exist, no studies, either
historical or contemporary, have adequately described the
types and distribution of landslides present, the mechanisms
of that landsliding, or the current landslide processes occur-
ring in the central Mississippi Valley. The present paper (1)
describes and catalogs on an inventory map the landslides
along the bluffs in the central Mississippi Valley and (2)
presents field and historical evidence to establish the prob-
able ages and origins of the landslides in the area. Informa-
tion in this paper enhances our understanding of landslide
processes in the central Mississippi Valley and hence
improves our ability to assess landslide hazards there.

DESCRIPTION OF STUDY AREA

The study area lies in the central Mississippi Valley,
primarily in Kentucky and Tennessee, and includes 192 mi
of bluffs that form the eastern edge of the Mississippi
alluvial plain from Barlow, Ky., 7 mi east of Cairo, Ill, to
Walls, Miss., 12 mi south of Memphis, Tenn. (fig. 1). The

C1
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Ficure 1.—Study area (shaded) and estimated epicenters (diamonds),
dates, and surface-wave magnitudes (M) of the three largest earth-
quakes in the 1811-12 sequence (Nuttli, 1973a; Nuttli and Herrmann,
1984).

bluff-line is subparallel to a line connecting the estimated
epicenters of the 1811-12 earthquakes; the two lines are
between 12 and 30 mi apart except at the extremities of the
study area where the bluffs extend beyond the line connect-
ing the epicenters. The proximity of the bluffs to epicenters
of earthquakes that had estimated surface-wave magnitudes
(M) between 8.4 and 8.8 (Nuttli and Herrmann, 1984)
means that these bluffs were subjected to very strong
ground shaking. Keefer (1984) related earthquake magni-
tude to maximum epicentral distance at which landslides
caused by an earthquake are likely to occur; the study area
lies well within his boundary for the types of landslides in the
study area (fig. 2).

The average height of the bluffs in the study area is 120 ft,
though at some localities they are as high as 225 ft. The
slope angle of the bluff face ranges from only a few degrees
to vertical in areas where the Mississippi River has undercut
the bluffs. The slope angle throughout most of the area is
15-25°. The bluffs trend north-northeast and roughly par-
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Ficure 2.—Maximum distance at which landslides could be expected to
have occurred during the 1811-12 earthquakes (Keefer, 1984). Study
area (shaded) and earthquake epicenters (diamonds) are shown.

allel the Mississippi River. Locally, however, the bluff-line is
sinuous where the meandering river channel has eroded
arcuate scars. Also, the bluff-line is interrupted where
tributary rivers and streams enter the Mississippi Valley
from the uplands to the east. Where major tributary streams
cut the bluffs, the bluff-line turns and follows the tributary
river course and gradually diminishes in height toward the
uplands. In some areas the bluffs are deeply incised by
stream channels and gullies and have a very irregular
surface; in other areas the drainage of small streams is
eastward, away from the bluff face, so the surface of the face
is smooth and regular.

The area has a humid climate and receives an average of
50 inches of precipitation annually, mostly during the winter
and spring. The mean annual temperature in the region is
about 60° Fahrenheit (Cushing and others, 1970). Most of
the bluff-line is covered by a dense deciduous forest and a
thick undergrowth of smaller brush and trees. Parts of the
bluffs in some areas have been cleared for pasture; scattered
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Fieure 3.—Structure contour map showing the elevation (in feet) of the
Paleozoic-Cretaceous unconformity, which reflects the overall shape of
the Mississippi embayment (adapted from Stearns and Marcher, 1962).
Study area is shaded.

homes and farm buildings are also present in some cleared
areas. At the time of the earthquakes, however, the bluffs
were probably uninhabited and forested.

The study area lies in the northern Mississippi embay-
ment, a broad, south-southwest-plunging syncline whose
axis roughly coincides with the Mississippi River (fig. 3).
Beneath the embayment is an intracratonic rift that formed
in Late Proterozoic time and that has been intermittently
active since then (Braile and others, 1984). Since Late
Cretaceous time the embayment has been subsiding and
accumulating shallow marine and fluvial sediments. During
Pleistocene time the gently rolling upland surface east of the
Mississippi alluvial plain was blanketed with loess, which
formed a wedge-shaped deposit that is more than 100 ft
thick in places near the edge of the bluffs and that thins and
pinches out 70-120 mi to the east (Krinitzsky and Turnbull,
1969).

The Eocene Jackson Formation (Conrad, 1856) forms
the base of the bluffs throughout most of the study area (fig.
4). Exposures are as thick as 150 ft. Its composition is highly
variable; it generally consists of discontinuous layers of
shallow-marine embayment deposits of clay and silt, which
range in thickness from a few inches to tens of feet. In some
areas the Jackson Formation contains clean, uncemented
sands as much as tens of feet thick interbedded with soft

Lafayette Formation
{McGee, 1891)

Jackson
Formation

Ficure 4.—Generalized structure and stratigraphy of bluffs in the study
area.

clays. Some clay layers are saturated, others are desiccated
and fissured. The clays are also subject to seasonal fluctu-
ation in ground-water level near the bluffs. The Jackson
Formation is highly erodible, and few well-exposed outcrops
are present. In the northern part of the area from Wickliffe
to Barlow, Ky., the Eocene Claiborne Formation (Conrad,
1848) forms the base of the bluffs. It is similar to the
Jackson Formation and consists of clays and silts in the
study area. The Eocene beds generally dip a few degrees
westward, out of the bluff face, but the amount and direc-
tion of the dip vary locally; the amount of dip rarely exceeds
20°. The unconformity on top of the Eocene section is highly
irregular. In those areas where it has been mapped, this
surface roughly parallels the present ground surface, which
indicates that the present river channels in the area are in
much the same locations as when that surface was formed
(Schreurs and Marcher, 1959; Olive, 1967, 1974; Finch,
1971a,b; Lee, 1974).

Lying unconformably on the Jackson is as much as 65 ft of
Pliocene terrace gravels and sands of the Lafayette Forma-
tion (McGee, 1891; Potter, 1955). The lenses of gravel and
sand are uncemented in many areas but at a few localities
contain concretionary beds as much as 6 ft thick. This unit is
locally saturated where water tables are perched and is
subject to large seasonal fluctuations in ground-water con-
ditions. The unit pinches out in some areas.

The bluffs are capped by 10-150 ft of Pleistocene loess,
which lies unconformably on the Jackson and Lafayette
Formations. The average thickness of the loess in the area is
about 50 ft. Loess is a glacially derived, eolian silt that
commonly forms vertical faces owing to the presence of
vertical fractures. Vertical slopes can be supported because
the loess in the study area has cohesion imparted by a clay
binder or calcareous cementation or both (Krinitzsky and
Turnbull, 1969).

The northern Mississippi embayment lies in the New
Madrid seismic zone and is the most seismically active area
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in North America east of the Rocky Mountains. Continuing
fault movement in the intracratonic rift is the most likely
cause of the ongoing seismicity in the area (Braile and
others, 1984). Shallower seismic activity may also result
from sediment loading in the embayment or from shallow
emplacement of igneous plutons (Mosaic, 1976).

The largest historical earthquakes in the New Madrid
seismic zone were those that occurred during 1811-12. The
three principal shocks (see fig. 1) had estimated body-wave
magnitudes (m,) between 7.1 and 7.4; corresponding
surface-wave magnitudes (M,) are between 8.4 and 8.8
(Nuttli and Herrmann, 1984). In addition to these shocks,
almost 2,000 earthquakes of lesser intensity were docu-
mented at Louisville, Ky., 235 mi from the epicentral area,
between 16 December 1811 and 15 March 1812 (Penick,
1981). Since 1812 there have been at least 20 damaging
earthquakes in the region having estimated body-wave
magnitudes between 3.8 and 6.2 (Nuttli, 1982).

Ongoing studies of seismicity in the New Madrid seismic
zone indicate no clear consensus on the return period for
great (m, = 7.0) earthquakes in the area. Estimates range
from 200 years (McClain and Myers, 1970) to almost 2,000
years (Johnston and Nava, 1984). Most estimates, however,
are between 500 and 700 years (Hopper and others, 1983).
Moderate earthquakes have occurred regularly and have
much smaller return periods. Table 1 (from Johnston and
Nava, 1984) shows estimated return periods for earth-
quakes of different magnitudes in the New Madrid seismic
zone. Because of the low attenuation of seismic waves in the
Central United States, the effects of an earthquake of any
given magnitude will be felt over a much larger area there
than would the effects of an earthquake of similar magni-
tude in the Western United States (Nuttli, 1973b; Nuttli and
Zoliweg, 1974).

Figure 5 shows locations of subsurface faults in the study
area inferred from seismological data and seismic reflection
profiling. Several of these faults are adjacent to the bluffs in
the study area. The foregoing information indicates that the
bluffs being studied are in a seismically active area. The
close proximity of earthquake sources means that damaging

earthquakes in the area can affect slope stability along the
bluffs.

LANDSLIDE INVENTORY

METHOD OF COMPILATION

A landslide inventory map of the bluffs in the study area
was compiled on 1:24,000-scale topographic base maps
using black-and-white 1:20,000-scale aerial photographs
taken in 1970-71 by the U.S. Department of Agriculture,
and, in some areas, color infrared photographs taken by

TasLE 1.—Retum periods for earthquakes in the New Madrid seismic zone
(Johnston and Nava, 1984)

Body-wave magnitude (my)

Mean recurrence time (years)

3.0 0.3
4.0 23
5.0 18
6.0 137

Westvaco Corporation. Landslides having minimum dimen-
sions of 200 ft were the smallest mappable features. Land-
slides were identified by the presence of arcuate scarps,
disrupted or hummocky topography, and ponded drainage.

Landslides were classified according to their morphology
and the level of confidence in identification. Three morpho-
logical classes were used (Varnes, 1978): (1) translational
block slides and rotational slumps that have been revegeta-
ted and eroded, together classified as old coherent slides
(OC), (2) young rotational slumps (YS), which have fresh
features, and (3) earth flows (EF), most of which are inactive
but some of which have active portions. Three levels of
confidence were used for all classes to indicate whether the
identification is definite (D), probable (P), or questionable
(Q). This procedure is similar to that recommended by
Wieczorek (1984) for the compilation of landslide inventory
maps. Each landslide feature was identified by a three-letter
designation followed by an ordinal number. For example,
EFP-14 signifies a probable landslide that is the 14th of the
earth-flow type as counted from the north end of the study
area.

After completion of the initial mapping from aerial
photographs, reconnaissance of the entire study area by
fixed-wing aircraft was conducted on two occasions. Also,
more than 75 percent of the originally mapped landslide
sites were examined on the ground. As a result of the aerial
observation and ground investigations, approximately 20
percent of the landslides were upgraded in level of confi-
dence, and only 4 percent were downgraded or deleted.

The field reconnaissance allowed calibration of the accu-
racy of the mapping from aerial photographs. Taking the
field observations into account, we reexamined the photo-
graphs, and the sites that were not visited were reviewed and
reclassified where appropriate.

RESULTS OF MAPPING

Plate 1 is a strip map of the bluffs at scale 1:62,500 that
shows the locations and letter designations of the 221
landslides mapped. The bluffs are divided into 2,500-ft-long
segments for this study; every tenth segment is numbered on
the map (pl. 1) for reference. The number and characteris-
tics of the landslides according to the present classification
are recorded in table 2.
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TABLE 2.—Characteristics of landslides in the study area
[Length denotes distance, in the direction of landslide movement, from
the head to the toe of the landslide; width denotes distance, perpendic-
ular to the direction of landslide movement, between lateral margins of
the landslide. Length, width, and slope height given in feet; slope angle
given in degrees]

Old coherent  Young rotational Earth
slides slumps flows
Number:
Definite 74 16 26
Probable 43 5 11
Questionable 29 3 14
Total 146 24 51
Length:
Minimum 200 200 300
Median 600 500 600
Maximum 13,700 800 1,500
Width:
Minimum 250 550 250
Median 1,300 1,650 1,200
Maximum 7,700 8,050 11,600
Slope height:
Minimum 30 30 50
Median 115 130 100
Maximum 250 195 250
Slope angle:
Minimum 6 13 6
Median 18 23 15
Maximum 31 34 28

OLD COHERENT SLIDES

Old coherent slides constitute 65 percent of the land-
slides. Idealized drawings of this type of landslide are shown
in figure 6, and aerial photographs of typical examples are
shown in figures 7 and 8. Old translational and rotational
landslides were grouped together because heavy tree cover
and eroded features generally made it impossible to distin-
guish between them. In areas where a distinction could be
made, nearly equal numbers of translational and rotational
slides were present. Both types of landslides in this class are
deep-seated (generally greater than 75 ft deep, as judged
from landslide geometries and subsurface investigations)
and have failure surfaces in the clayey Eocene materials that
form the base of the bluffs. None of them have fresh
features. Old coherent slides are present throughout the
area except in localities where earth flows are concentrated,
probably because local geologic conditions influence the
type of landsliding.

The translational block slides are characterized by horst-
and-graben topography consisting either of one or a few
large horst blocks with broad intervening grabens or of
several smaller horst-and-graben blocks arranged in stair-
step fashion. The toe areas commonly have pressure ridges
where soil at the base of the slope presumably was com-
pressed and deformed as the landslide blocks moved down
and out from the parent slope. These landslides have basal
shear surfaces inclined 4-25° and have moved as much as
300 ft. The horst-and-graben topography is the subject of
most of the historical descriptions of the landslides, the most
complete being given by Fuller (1912, p. 60) as follows:

On climbing up the bluff the traveler sees increased confusion; sharp
ridges of earth alternate with deep gashes, the whole surface locally being
broken into a jumble of irregular ridges, mounds, and hummocks,
interspersed with trench or basinlike hollows and other more irregular
depressions, continuing with increased frequency to the top of the bluff,
along the edge of which fault scarps and fissures are of frequent
occurrence. Some of the depressions, those between parallel fissures, have
[a] canal-like aspect * * *, one reported by Safford [1869] being as much
as 100 feet wide. Speaking of Obion County, Tenn., Shaler [1869] says
“depressions are even now visible 100 feet deep and varying from a few
feet to 100 feet wide.” * * *

Although landslides are most strongly developed on spurs, the general
slopes of the bluffs are far from being free from them, and some of the
resultant mounds and troughs are of considerable magnitude. * * * Water
has collected in some of [the troughs], forming small ponds. The individual
troughs are generally of considerable length, often several hundred feet.
They begin as very slight depressions in the surface of the bluff, which,
however, rapidly widen and deepen until strong trenches are produced.
The troughs are usually not exactly parallel to the slope; the bottom
descends slightly as the trough widens, and it usually has free drainage at
the low end or that farthest from its point of beginning. The individual
troughs and ridges are more or less curved or irregular. Many of them
begin and end abruptly; others divide and subdivide, only to reunite again,
forming a network of trenches.

Although the present features are not as fresh as Fuller
described them, his description of these landslides corre-
sponds to what can be seen at present on many translational
block slides in the old coherent class. The horst-and-graben
topography on a few landslides is very steep (fig. 9); on
others it is subdued and gentle (fig. 10), and a continuous
variation between these two extremes is present on land-
slides in the area.

Rotational slumps in the old coherent class are charac-

terized by either single or multiple rotational blocks. The
blocks in most cases appear to have rotated a large amount.
Again we quote Fuller (1912, p. 60):
The movement in many cases has been such as to cause a tilting of the
disturbed masses, the inclination being usually toward the bluff. The steep
alluvial and debris fans at the mouths of the gullies extending back into the
bluffs also seem to have afforded very favorable conditions for slumping,
and many of them, even at the present time [1904-05], exhibit corruga-
tions and low fault scarps due to the flowage and slumping of the material
toward the lowlands.

Erosion and revegetation have subdued the features of
both block slides and slumps in the old coherent class;
locating the rare exposures that show the attitude of the
bedding is generally the only means of distinguishing
between them. A large majority of the translational block
slides and old rotational slumps appear to be of similar age,
on the basis of criteria that will be discussed in detail later
(in the section on ages of the landslides). The degree of
erosion of landslide ridges is similar for the two types, as is
the apparent age and density of vegetation on scarps and
disrupted areas. Scarp retreat and incision also appear
similar,

EARTH FLOWS

Earth flows, schematically depicted in figure 11, consti-
tute 24 percent of the landslides. Earth flows in the study
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area having fresh features are rotational slumps that occur
solely along near-river portions of the bluffs. These land-
slides are distinguished from the other, older landslides by
their smaller amounts of rotation, fresher features, and
recently tilted and disturbed vegetation.

Field and historical evidence indicates that the only large,
deep-seated landslides forming along the bluffs in aseismic
conditions are rotational slumps that occur where the
Mississippi River erodes the base of the bluffs. Approxi-
mately 11 percent of the area is thus affected. Evidence
presented concerning the old coherent slides and the for-
ested earth flows indicates that (1) most of these slides are
about the same age, which suggests a single triggering event;
(2) probable ages of these landslides are consistent with
triggering by the 1811-12 earthquakes, on the basis of
results of previous investigations and evidence presented
from this study; and (3) morphologies and stratigraphies of
these landslides are consistent with seismic triggering, on
the basis of slope-stability analyses of representative land-
slides in the area, model tests, and reports of analogous
landslides in other large earthquakes where bluffs com-
posed of similar materials were present.
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