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FOREWORD

THE REGIONAL AQUIFER-SYSTEM ANALYSIS PROGRAM

The Regional Aquifer-System Analysis (RASA) Program was started in 
1978 following a congressional mandate to develop quantitative appraisals of 
the major ground-water systems of the United States. The RASA Program 
represents a systematic effort to study a number of the Nation's most 
important aquifer systems, which in aggregate underlie much of the country 
and which represent an important component of the Nation's total water 
supply. In general, the boundaries of these studies are identified by the 
hydrologic extent of each system and accordingly transcend the political 
subdivisions to which investigations have often arbitrarily been limited in the 
past. The broad objective for each study is to assemble geologic, hydrologic, 
and geochemical information, to analyze and develop an understanding of the 
system, and to develop predictive capabilities that will contribute to the 
effective management of the system. The use of computer simulation is an 
important element of the RASA studies, both to develop an understanding of 
the natural, undisturbed hydrologic system and the changes brought about in 
it by human activities, and to provide a means of predicting the regional 
effects of future pumping or other stresses.

The final interpretive results of the RASA Program are presented in a series 
of U.S. Geological Survey Professional Papers that describe the geology, 
hydrology, and geochemistry of each regional aquifer system. Each study 
within the RASA Program is assigned a single Professional Paper number, 
and where the volume of interpretive material warrants, separate topical 
chapters that consider the principal elements of the investigation may be 
published. The series of RASA interpretive reports begins with Professional 
Paper 1400 and thereafter will continue in numerical sequence as the interpre­ 
tive products of subsequent studies become available. ^i

Dallas L. Peck 
Director
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REGIONAL AQUIFER-SYSTEM ANALYSIS

THE REGIONAL AQUIFER SYSTEM UNDERLYING THE NORTHERN
GREAT PLAINS IN PARTS OF MONTANA, NORTH DAKOTA,

SOUTH DAKOTA, AND WYOMING SUMMARY

By JOE S. DOWNEY and GEORGE A. DlNWIDDIE

ABSTRACT

The Northern Great Plains Regional Aquifer-System Analysis is 
the first of a series of planned nationwide regional geohydrologic 
studies. This summary is principally a graphic presentation of the ma­ 
jor results of four basic facets of investigation designed to provide 
the best possible understanding of a large (about 300,000 square miles) 
and extremely complex ground-water flow system. The reader is en­ 
couraged to refer to subsequent volumes in this series for the details 
of treatment of components and of results of the study.

The geologic framework within which the ground-water flow system 
operates has been defined. The study area basically consists of high­ 
land areas of sediment sources and basin areas of sediment deposi­ 
tion. The geologic investigation principally involved definition of the 
types of sediment (any rocks), the areal extent and thickness of sedi­ 
ment (any rocks), and the mechanisms that controlled deposition of 
the sediments.

The spatial distribution of hydraulic pressure has been portrayed 
as potentiometric surfaces mapped for several aquifers. The implied 
ground-water flow system is one of recharge in and near the highland 
areas in the western and southwestern part of the study area and one 
of generally eastward and northeastward flow of ground water toward 
areas of discharge in Canada, North Dakota, and South Dakota.

The distribution of chemical quality of the ground water has been 
defined with available data, and the mechanisms controlling changes 
in chemical quality have been interpreted. The chemistry of water from 
aquifers of Paleozoic through Mesozoic age is controlled by a variety 
of geochemical mechanisms, with dissolution of evaporites and mix­ 
ing of water being dominant. Dedolomitization is a significant mech­ 
anism, and sulfate reduction and cation exchange are probably active 
mechanisms as well.

The entire system of ground-water flow with all of its controlling 
factors has been defined as a conceptual model and has been simulated 
with a mathematical model. Five major aquifers have been defined 
and simulated, and the digital model has been used to interpret areas 
and rates of recharge, areas and rates of discharge, areas and rates 
of leakage, and rates and directions of flow. The model has been fur­ 
ther used to simulate several hypothetical pumping alternatives to 
determine the cause-and-effect relationship between pumping, draw­ 
down, and assumed conditions.

INTRODUCTION

The northern Great Plains region of North America 
is, except for the Black Hills, a fairly flat, gently roll­ 
ing surface underlain mostly by sandstone and shale

(pis. 1, 2). The land surface is interrupted at places by 
several hundred feet of topographic relief where streams 
have dissected relatively soft rock. The northern Great 
Plains study area, shown in figure 1, covers about 
300,000 mi2 in the Great Plains and Central Lowland 
physiographic provinces. The study area is bounded on 
the west by the central and northern Rocky Mountains, 
on the east by the Red River of the North, on the south 
by the central High Plains, and on the north by the 
United States-Canadian border. The rocks consist of 
sediments that were eroded from present and ancestral 
mountains to the west, and from the Black Hills, and 
were deposited in the subsiding Williston and Powder 
River basins and surrounding areas to thicknesses of 
more than 15,000 ft. Subsequently, several hundred feet 
of these sedimentary rocks were eroded, leaving rem­ 
nants of resistant rock. The principal aquifers, which 
generally are areally extensive, crop out along the flanks 
of two major basins (Powder River and Williston basins) 
and along other major structural features. Significant 
aquifers also occur in unconsolidated glacial drift in 
North Dakota and South Dakota.

Developing energy resources, generating power, 
developing industry, increasing irrigation, and satisfy­ 
ing the greater requirements for domestic and municipal 
water in the northern Great Plains area will depend in 
large part on the development of supplies of ground 
water. Streamflow historically has satisfied many of the 
water needs; however, surface water is fully appropri­ 
ated in much of the area and is not always a dependable 
supply because flows are extremely variable. Long-term, 
large-scale water needs will require development of pro­ 
ductive aquifers, some of which have been little used 
heretofore. Large, sustained yields of ground water can­ 
not be produced efficiently, and sound management 
plans cannot be formulated without a knowledge of the 
physical and hydrologic characteristics of the ground- 
water system and its response to withdrawals. Ground 
water needs to be developed in a logical manner and

Al
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FIGURE 1. Location of study area, Fort Union coal region, and sites of principal subsurface control.

needs to be used with regard for the consequences of 
extraction and consumption.

Comprehensive study of the geology and hydrology 
of the northern Great Plains area by the U.S. Geological 
Survey (USGS) began in 1975 with the Madison Lime­ 
stone study. The Madison study was conceived and 
begun in response to a generally recognized need for 
knowledge about potential supplemental sources of 
large quantities of water to support possible large-scale 
development of coal reserves. A major part of the 
United States' coal reserves is in the Fort Union coal 
region of the northern Great Plains (fig. 1). Major 
development of the coal, which can include onsite steam 
power generation, gasification, liquefaction, and slurry 
pipeline transport of coal, would place a major demand 
on the area's limited water resources. Large quantities 
of water would be needed; estimates exceed 200,000 
acre-ft per year. Preliminary studies by the USGS and 
State agencies in Montana, South Dakota, and Wyo­ 
ming have indicated that the Madison Limestone and

associated rock units might provide a significant 
percentage of the total water requirements for the coal 
development.

The Northern Great Plains Regional Aquifer-System 
Analysis (RASA) is the first study in the USGS RASA 
Program, the general purpose of which is to fully 
understand the Nation's ground-water resources. 
Studies of ground-water resources have been on a local 
scale, responsive to local, immediate needs. These 
studies usually have been restricted within political 
boundaries. However, for defining total ground-water 
resources and for planning the most effective develop­ 
ment and use of these resources, hydrologic studies are 
needed on a regional scale. Thus, the concept of regional 
aquifer-system analyses as described in the Foreword 
was developed.

The northern Great Plains regional aquifer-system 
study was a logical extension and culmination of the 
Madison Limestone study. The study was designed to 
complete the definition of the total ground-water flow
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system above the rocks of Precambrian age and was 
conducted with a four-component approach to the 
problem:
1. Geology The geologic framework within which 

ground water flows and the mechanisms that con­ 
trolled sediment deposition were defined.

2. Hydrology The spatial distribution of hydraulic 
pressure, which is the ultimate driving force of 
ground-water movement, was defined.

3. Geochemistry Chemical quality of the ground 
water and the mechanisms controlling changes in 
chemical quality were interpreted.

4. Geohydrology The entire system of ground-water 
flow with all of its controlling factors was defined 
as a conceptual model; then a mathematical simu­ 
lation model was developed with which unknown 
areas and unknown values could be defined in the 
terms and within the limits of the model. 

This report presents summary results from both the 
Madison Limestone project and the northern Great 
Plains regional aquifer-system study. Because of the 
nature of topics, some discussions may be in greater 
detail than others. However, for comprehensive infor­ 
mation on a specific subject, the reader should refer to 
the subsequent reports in this professional paper series 
listed in the front of this report. For further informa­ 
tion, the reader also can consult the selected references 
for this report.

GEOLOGIC UNITS COMPOSING THE 
REGIONAL AQUIFERS

The present-day geologic structure of the northern 
Great Plains (fig. 2) is related directly to the geologic 
history of the Cordilleran platform, which is a part of 
the stable interior of the North American continent. 
During geologic time, many structural features 
developed that affected the deposition of the various 
sedimentary units. Most of these structural features are 
present today and are important in determining the 
present hydrologic regime existing in all the aquifer 
systems underlying the northern Great Plains (Weimer 
and others, 1982).

During Paleozoic time, the study area (fig. 1) was part 
of the Cordilleran platform, a broad flat area that was 
bordered on the west by Cordilleran miogeosyncline. 
Most of the detrital sediments in the synclinal trough 
came from the Antler erogenic belt, which probably was 
an island-arc system to the west that underwent inter­ 
mittent tectonism during Paleozoic time. The Transcon­ 
tinental arch, southwest of the study area, was low lying 
and contributed minor quantities of sediment that were 
spread thinly across the platform. In general, the

Cordilleran platform was a shallow-water depositional 
shelf that received predominantly carbonate and 
evaporite sediments during most of Paleozoic time.

The Black Hills uplift (fig. 2) was not a regionally 
significant tectonic element until Late Cretaceous time 
(Agnew and Tychsen, 1965) and had little influence on 
Paleozoic sedimentation. During Mississippian time, 
the study area generally was covered by a shallow warm 
sea probably less than a few feet deep (Sando, 1976b). 
Shoals and reefs were common but continually changed 
and shifted because of the effects of geologic forces in 
time and space. Many of these shallow areas had small 
reefs and associated oolite-and crinoid-bank shoals and 
lagoons. The lagoons were evaporating basins in which 
evaporites precipitated and became incorporated into 
the lime-rich bottom sediments. Gypsum often could 
precipitate in a lagoonal environment that frequently 
received influxes of sea water, whereas evaporation 
seldom would proceed to the point of halite precipita­ 
tion. Areas in the Williston basin and the Central Mon­ 
tana trough with restricted sea-water circulation or 
higher evaporation rates are evidenced by accumula­ 
tions of bedded evaporites.

During Cretaceous time, the study area was covered 
by a north-trending sea that extended from the Gulf of 
Mexico to the Arctic Ocean. Source areas to the west 
provided clastic sediments that were deposited in the 
Cretaceous sea. The Precambrian shield area, northeast 
of the study area, was a positive Cretaceous feature and 
provided sediments that were deposited in the eastern 
part of the Cretaceous sea. The Sioux uplift in eastern 
South Dakota provided sediment for two major delta 
systems that prograde into southeastern Montana.

PRECAMBRIAN ROCKS

Crystalline rocks of Precambrian age form the base­ 
ment in the northern Great Plains region. Depth to the 
Precambrian basement varies greatly; basement crops 
out in the eastern and western parts of the study area 
(fig. 3) but lies greater than 15,000 ft below land sur­ 
face at the center of the Williston basin. Precambrian 
rocks also are found in the central cores of the many 
mountain ranges located in the western part of the 
study area.

On a regional basis, little is known about the water- 
yielding properties of the Precambrian rocks. Available 
data indicate that they contain only small quantities 
of water in joints and fractures. These rocks therefore 
are generally not considered to be water yielding; 
however, along major fractures, Precambrian rocks can 
produce water that is available from leakage from the 
overlying sedimentary sequence. Precambrian rocks in
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FIGURE 2. Present-day structural and physiographic features of the northern Great Plains and vicinity (includes lines of sections A-A',
B-B', and C-C').

the study area represent the lower boundary of the 
hydrologic system. In the eastern part of the study area 
where Precambrian rocks crop out, the rocks act as no- 
flow boundaries to the hydrologic system.

CAMBRIAN AND ORDOVICIAN ROCKS

Rocks of Cambrian and Ordovician age (pi. 1; fig. 3) 
in the northern Great Plains consist of marine sand­ 
stone, shale, limestone, and dolomite that represent the 
shoreward f acies of a transgressive sea which occupied 
the area during Cambrian and Ordovician time (Peter- 
son, 1981). Several formations of Cambrian and Ordovi­ 
cian age, such as the Deadwood, the Winnipeg, and the 
Red River Formations, are aquifers (fig. 4); however, 
their great depth has prevented their use as a major

source of water, and few hydrologic data concerning 
these aquifers are available on a regional scale. Most 
of the data are from tests performed in connection with 
the development of oil and gas wells.

Ordovician rocks are major petroleum reservoirs in 
the Williston basin, and many exploratory wells 
penetrate these rocks. Ordovician rocks are not present 
in southeastern Wyoming, western Montana, and a 
small portion of southwestern South Dakota because 
of nondeposition, or erosion, during Devonian and Early 
Mississippian time. Thickness increases eastward and 
northward from central Montana and northeastern 
Wyoming to more than 1,000 ft in the central part of 
the Williston basin.

The Winnipeg Formation is stratigraphically equiva­ 
lent to the St. Peter Sandstone of the midwestern 
United States. In the western part of the study area
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FIGURE 3. Approximate thickness of rocks of Cambrian and Ordovician age.

where it is not deeply buried, the Winnipeg Formation 
consists of a clean, well-sorted, medium-grained, porous 
sandstone (Peterson, 1978). Where it is deeply buried, 
the unit has little porosity and permeability because 
of silica cementation and related compaction. In 
the eastern discharge area of the hydrologic system 
(pi. 3), the Winnipeg Formation consists of a sequence 
of shale, sandstone, and shaly limestone ranging in 
thickness from 20 to about 140 ft (Armstrong, 1980). 
The sandstone units consist of very fine to fine 
rounded quartz grains with interbedded siltstone and 
shale.

The Red River Formation (pi. 1), a carbonate sequence 
that overlies the Winnipeg Formation, extends out­ 
ward past the borders of the Williston basin. The Red 
River Formation is more than 700 ft thick in the 
central part of the Williston basin and was truncated 
by Devonian erosion in the western part of the study 
area along a line extending between the central Black 
Hills and the southern Bighorn Mountains (Peterson, 
1981).

The Stony Mountain Formation, which conformably 
overlies the Red River, is composed of carbonate, shaly 
carbonate, and anhydrite beds and lithologically is 
similar to the overlying Interlake Formation of latest 
Ordovician and Silurian age. Both the Red River and 
Stony Mountain Formations were truncated by Devo­ 
nian erosion around the periphery of the Williston basin. 
The Stony Mountain erosional edge is closer to the 
basin center than that of the underlying Red River 
Formation.

SILURIAN AND DEVONIAN ROCKS

Rocks of Silurian and Devonian age (pi. 1; fig. 5) over­ 
lie the formations of Ordovician age in most of the study 
area. Silurian and Devonian units consist mainly of 
shaly carbonate rocks, shale, and evaporite deposits, in­ 
cluding Devonian halite (fig. 5), near the center of the 
Williston basin where the units have a total thickness 
greater than 3,000 ft. The halite units of Devonian age
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extend northward into Canada for about 1,200 mi, 
underlying the Provinces of Alberta, Saskatchewan, 
and Manitoba and reaching into the Northwest Ter­ 
ritories. The Prairie salt (informal subsurface usage), one 
of the principal halite units of Devonian age in the study 
area, contains many structural lows along its margin 
and locally within it. These structural lows have been 
attributed to postdepositional solution of halite, allow­ 
ing collapse of the overlying formations into the void 
created by dissolution (DeMille and others, 1964; 
Grossman, 1968). Because of the fine-grained lithology 
and the presence of evaporite deposits in the Silurian 
and Devonian units, these formations act as confining 
beds for the underlying Cambrian-Ordovician aquifer 
(fig. 4).

MISSISSIPPIAN ROCKS

Rocks of Mississippian age (pi. 1; fig. 6) overlie the 
Devonian formations. The Mississippian rocks have 
been subdivided into several formations and one 
stratigraphic group.

The lowermost Mississippian unit is the upper part 
of the Bakken Formation, which overlies the Devonian 
Three Forks Formation. The Bakken Formation con­ 
sists of more than 100 ft of black, organic shale and 
siltstone and appears to be an excellent hydrologic con­ 
fining bed where it is present in the study area. This 
confining bed was delineated into the Devonian-Silurian 
confining unit shown in figure 4. The Bakken Forma­ 
tion is considered to be a source bed for much of the
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FIGURE 5. Approximate thickness of rocks of Silurian and Devonian age.

petroleum found in overlying formations. Overlying the 
Bakken Formation is a sequence of Mississippian rocks, 
mainly limestone and dolomite, that are termed the 
Madison Group (where divided) or Madison Limestone, 
a major aquifer system in the study area (fig. 4).

The Madison Limestone in the study area consists of 
a sequence of marine carbonate rocks and evaporite 
deposits distributed mainly in a warm shallow-water en­ 
vironment similar to that which exists today near the 
coast of southern Florida and the Yucatan Peninsula 
in Mexico. Depositional environments grade both 
laterally and vertically from shallow-marine carbonate 
and evaporite facies to deep-water clay and siltstone 
facies. The Madison Group, from oldest to youngest, 
consists of the Lodgepole Limestone, the Mission Can­ 
yon Limestone, the Charles Formation, or their 
stratigraphic equivalents in other parts of the study 
area (pi. 1).

The Lodgepole Limestone is predominantly a cyclic 
carbonate sequence largely consisting of fossiliferous 
to micritic dolomite and limestone units that are

argillaceous and thin bedded in most of the study area 
(Smith, 1972). The unit ranges from 0 to more than 
900 ft in thickness, with an average thickness of about 
300 ft in the study area. The Lodgepole Limestone 
overlies the Bakken Formation in the Williston basin.

The Mission Canyon Limestone consists of coarsely 
crystalline limestone at its base, grading upward to 
finer crystalline limestone and evaporite deposits near 
the top (Peterson, 1981). The formation contains one 
evaporite cycle and shares a second evaporite cycle with 
the lower part of the Charles Formation. Bedded 
evaporite units are absent in most of Wyoming and 
South Dakota, but evaporite deposits occur in south­ 
eastern Montana and northwestern North Dakota and 
gradually thicken from central Montana toward their 
maximum thicknesses in the Williston basin. The Mis­ 
sion Canyon Limestone ranges from 0 to more than 
650 ft in thickness, with an average thickness of about 
300 ft in the study area.

The Charles Formation, the uppermost unit of 
the Madison Group, is a marine evaporite sequence
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consisting of anhydrite and halite with interbedded 
dolomite, limestone, and argillaceous units. The Charles 
Formation ranges from 0 to more than 300 ft in thick­ 
ness, with an average thickness of about 250 ft in the 
study area. Pre-Jurassic erosion has removed most of 
the Charles Formation in the western and southern 
parts of the study area.

Overlying the Charles Formation in parts of Montana, 
North Dakota, and South Dakota are rocks of Late Mis­ 
sissippian age belonging to the Big Snowy Group. The 
Big Snowy Group consists mainly of shale and sand­ 
stone with minor limestone. Where present, the Charles 
Formation and rocks of the Big Snowy Group act as 
a hydrologic confining bed for the underlying aquifers 
(fig. 4).

PENNSYLVANIAN AND PERMIAN ROCKS

Rocks of Pennsylvanian age (pi. 1; fig. 7) overlie 
the Mississippian units in most of the study area and

consist of marine sandstone, shale, siltstone, and car­ 
bonate rocks. The Pennsylvanian rocks are divided by 
many formational names; however, most are equivalent 
units.

The Tyler Formation generally is restricted to the 
Central Montana trough and the central Williston basin, 
but the formation grades southward and appears to be 
equivalent to the lower part of the Amsden Formation 
in south-central Montana. The Tyler Formation also ap­ 
pears to be equivalent to the lower part of the Minnelusa 
Formation in northwestern South Dakota and western 
North Dakota.

Middle Pennsylvanian rocks are represented by the 
Tensleep Sandstone in southern Montana and north- 
central Wyoming and by part of the Minnelusa Forma­ 
tion in the Williston basin in northeastern Wyoming 
and western South Dakota. Porous sandstone units of 
Pennsylvanian age are present in the Tensleep Sand­ 
stone in central to north-central Wyoming and south- 
central Montana, and in the middle part of the 
Minnelusa Formation in western South Dakota and
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along the east side of the Williston basin. These rocks 
have been truncated progressively northward across 
central Montana by pre-Jurassic erosion.

The upper part of the Minnelusa Formation in the 
Powder River and Williston basins and in the western 
part of South Dakota consists of sandstone, shale, and 
carbonate rocks with interbedded anhydrite of Permian 
age. The sandstone facies extends northward to include 
the southeastern part of the Williston basin. The source 
of the sands in the upper part of the Minnelusa Forma­ 
tion is interpreted to be the reworking of earlier 
deposited Pennsylvanian sands from paleostructures to 
the west. Additional source areas were the Sioux uplift 
and the Canadian Shield on the eastern and northeast­ 
ern borders of the Williston basin.

Overlying the upper part of the Minnelusa Formation 
are the Permian Opeche Formation, the Minnekahta 
Limestone, and the lower part of the Spearfish Forma­ 
tion. The Opeche Formation is interbedded in the cen­ 
tral part of the Williston basin with halite beds 
informally termed the Opeche salt. The Minnekahta

Limestone overlies the Opeche Formation and halite 
units. Above the Minnekahta Limestone, the Pine salt 
(informal usage) of the Spearfish Formation contains 
more than 300 ft of bedded halite, which limits the ver­ 
tical flow of water through this formation (fig. 4).

TRIASSIC AND JURASSIC ROCKS

Rocks of Permian age in the study area are overlain 
by a sequence of red shale, siltstone, and evaporite 
deposits belonging to the upper part of the Goose Egg 
and Spearfish Formations of Triassic age (pis. 1, 2; fig. 
8). These formations are about 200 to 400 ft thick in 
the central Williston basin and thicken southwesterly 
to more than 900 ft. in the Powder River basin.

Although shale and siltstone are the principal lithol- 
ogies of the Triassic units in the study area, sandstone 
occurs to a limited extent in the eastern part of the 
Williston basin as elongate northeast-trending sandy 
belts probably deposited by streams flowing off the
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adjacent Sioux uplift and Canadian Shield source areas 
to the east. Triassic beds have been truncated by pre- 
Middle Jurassic erosion along the southern and eastern 
margins of the Alberta shelf and on the east side of 
the Williston basin. Rocks of Triassic age, along with 
those of Permian age, are considered to be a confining 
bed for the flow of ground water from the underlying 
aquifers to the overlying aquifers of Cretaceous age 
(fig. 4).

Rocks of Jurassic age overlie formations of Triassic 
age with a pronounced disconformity. These rocks, 
consisting of the Nesson, Piper, Rierdon, Swift, and 
Morrison Formations and their equivalents, are predom­ 
inantly carbonate rocks, shale, and calcareous shale. 
The Nesson Formation is subdivided into three infor­ 
mal members: a lower anhydrite, which includes the 
Dunham salt, occurring in parts of the Williston basin; 
a middle shale; and an upper carbonate-rock sequence. 
The Piper Formation also is subdivided into three 
members: a lower shale and sandstone unit, a middle 
sandstone, and an upper shale. In north-central

Montana, the Piper Formation thins appreciably and 
consists chiefly of sandstone. The Rierdon Formation 
mainly consists of shale, siltstone, and calcareous shale, 
with small amounts of sandstone along the eastern 
fringes of the Williston basin.

The Swift Formation was deposited under marine con­ 
ditions, and in the western part of the study area it 
consists of sandstone deposited as offshore bars in a 
shallow sea. In the eastern part, the formation consists 
mostly of silty shale with coarser sediments occurring 
in the upper part of the formation. The formation is 
about 600 ft thick along the northern axis of the 
Williston basin and thins to near nonexistence in west­ 
ern Montana and in eastern North Dakota and South 
Dakota. Generally, cementation of the Swift Formation 
is less than that of adjacent formations, possibly due 
to a lower primary porosity and to less active diagenetic 
processes. The Swift Formation is less porous than the 
sandstones occurring in units of Early Cretaceous age, 
although in several localities more than 50 ft of sand 
occurs with greater than 20 percent porosity.
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The Morrison Formation was deposited as a contin­ 
ental deposit of sand, silt, and clay on a plain that 
emerged after the regression of the sea which existed 
during deposition of the Swift Formation. The Morrison 
Formation is about 250 ft thick in south-central Mon­ 
tana and thins eastward to near nonexistence in western 
North Dakota and South Dakota. A regional uncon­ 
formity at the base of the Lower Cretaceous units local­ 
ly truncates both the Morrison Formation and the 
upper part of the Swift Formation. Total thicknesses 
of the Jurassic units in the study area range from less 
than 50 ft along the periphery of the Williston and 
Powder River basins to more than 1,000 ft north of the 
deepest part of the Williston basin.

CRETACEOUS ROCKS

Rocks of Cretaceous age (pi. 2; fig. 9) consist of marine 
and nonmarine clastic sediments that range in thick­ 
nesses from 0 ft in eastern North Dakota and South

Dakota to more than 6,000 ft in northeastern Wyoming. 
The stratigraphic sequence consists of interbedded 
shale, siltstone, and sandstone layers with a few beds 
of limestone or marl. A number of formational names 
have been applied to the various Cretaceous units in the 
northern Great Plains region; however, in several in­ 
stances, these formational names are used only in one 
State or subregion, as shown on the geologic correla­ 
tion chart (pi. 2). The Lakota and Fuson Formations of 
Early Cretaceous age are composed of fluvial sandstone, 
siltstone, and shale. The Lakota Formation consists 
mainly of sandstone and occasional conglomerate 
overlying an erosional surface cut into the underlying 
Morrison Formation of Jurassic age. Generally, the 
Lakota Formation is a channel- and valley-fill deposit; 
however, in the subsurface, it is difficult to distinguish 
between the valley fill of the Lakota Formation and the 
valley fill of the overlying Fuson Formation.

The Fuson Formation consists mostly of valley-fill 
and channel margin deposits of silty shale with 
occasional sandstone units. Thickness of the Fuson
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FIGURE 9. Approximate thickness of rocks of Cretaceous age.
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Formation decreases from about 400 ft in central Mon­ 
tana to nearly nonexistence in eastern North Dakota 
and South Dakota.

The Fall River Formation of Early Cretaceous age 
represents the initial advance of the Early Cretaceous 
sea, which deposited fine sand, silt, and clay under 
shallow-marine, tidal-flat, coastal-swamp, and deltaic 
conditions. Silt and shale deposits in central Montana 
and Wyoming indicate a deeper water environment in 
this part of the study area.

In the Williston basin, analysis of cementation data 
indicates that these Lower Cretaceous formations have 
a greater degree of silica cementation than calcite 
cementation (Anna, 1986). The analysis also indicates 
that (1) areas of less cementation tend to overlie linea­ 
ments, or fracture zones, and (2) areas of more cemen­ 
tation overlie interlineament zones.

The Lakota, Fuson, and Fall River Formations thin 
eastward, with thickness of the three formations 
decreasing from about 700 ft in central Montana to near 
0 in eastern North Dakota and South Dakota.

The Skull Creek Shale of Early Cretaceous age con­ 
sists of two marine facies: a lower, glauconitic siltstone, 
commonly termed basal silt, and an upper shale. The 
silt facies extends regionally but has increasing sand 
content in central and south-central Montana. The up­ 
per shale facies was deposited under extreme reducing 
conditions and consists mainly of black organic shale 
with associated pyrite. The formation ranges in 
thickness from 0 in eastern South Dakota to more than 
250 ft in parts of Montana, Wyoming, and western 
South Dakota and North Dakota.

Withdrawal of the sea ended deposition of the Skull 
Creek Shale and resulted in an unconformity separating 
the Skull Creek Shale from the Newcastle Sandstone 
in eastern Wyoming and from the Muddy Sandstone 
in southeastern Montana. Later, the sea transgressed 
from west to east across the area, with development of 
extensive delta systems in eastern Montana, northeast­ 
ern Wyoming, and southeastern South Dakota. Sedi­ 
ment supply to the deltas originated in eastern South 
Dakota, whereas the deltas supplied sediment to shelf 
areas in east-central Montana and Wyoming.

Thickness of the Newcastle Sandstone or its equiva­ 
lent is quite variable, ranging from 0 in large areas of 
North Dakota to tens of feet in central Montana and 
Wyoming to an abrupt increase of several hundred feet 
in southeastern North Dakota and eastern and south- 
central South Dakota. Porosity of sandstone beds in the 
Newcastle Sandstone appears to be greater in areas 
where Newcastle sand accumulation is thicker. Calcite 
is a more dominant cementing agent than silica in the 
Newcastle Sandstone (Anna, 1986).

As the sea transgressed eastward during late

Newcastle time, the dark siliceous shale of the Mowry 
Shale was being deposited in a large part of the study 
area. In most of the area, a bentonitic clay marks the 
top of the Mowry Shale and is used as a regional time 
marker dividing the Lower and Upper Cretaceous rocks. 
The Mowry Shale ranges in thickness from 0 in eastern 
North Dakota and South Dakota to more than 700 ft 
in central Montana.

The environment at deposition of formations of Late 
Cretaceous age in the northern Great Plains is associ­ 
ated with four main transgressions and regressions of 
a shallow sea. The shale and siltstone of the Belle 
Fourche Shale, Frontier Formation, and Greenhorn For­ 
mation were deposited as a continuation of the trans­ 
gression of the sea during the Late Cretaceous. The 
Belle Fourche Shale (or equivalent rocks) consists of 
gray to black marine shale with numerous bentonite 
beds. The Greenhorn Formation (or equivalent rocks) 
consists of a thick sandstone sequence with interbedded 
shale and chalky shale. The Carlile Shale consists of 
gray marine shale with interbeds of thin sandstone.

The Niobrara Formation ranges in thickness from 
nearly 0 to about 160 ft; it consists of gray marine shale 
with lenticular chalky beds and is characterized by small 
white calcareous lenses. Lithologic variations range 
from a chalk facies in the east to mostly shale facies 
in the west.

The Pierre Shale directly overlies the Niobrara For­ 
mation in the study area. The Pierre consists of more 
than 3,000 ft of dark, montmorillonitic shale and inter- 
bedded sandstone that were deposited under marine 
conditions. Many of the sandstone units have been given 
formational status in western and central Montana and 
in the Powder River basin of Wyoming. Although the 
Pierre Shale contains a number of sandstone units that 
act as aquifers in restricted areas, the Pierre acts as a 
regional confining unit to the underlying Lower 
Cretaceous aquifer throughout most of the area.

The final regression of the Late Cretaceous sea 
deposited the Fox Hills Sandstone and the Hell Creek 
Formation, or Lance Formation, or their equivalent 
rocks (pi. 2). These formations are areally extensive, 
with the Fox Hills Sandstone and the Hell Creek For­ 
mation cropping out throughout sizable areas in 
southern and central North Dakota, and the Lance For­ 
mation being extensive in Wyoming.

The Fox Hills Sandstone (or equivalent rocks) con­ 
sists of about 300 ft of deltaic and interdeltaic sand­ 
stone, siltstone, and shale. The Hell Creek or Lance 
ranges from about 350 to 1,500 ft thick and consists 
of fluvial sandstone, siltstone, and carbonaceous 
claystone, with occasional thin lenticular coal beds. The 
Hell Creek or Lance is the meander-belt and delta-plain 
facies of the Fox Hills delta system.
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On the basis of permeability contrast among forma­ 
tions and the areal extent of the formations, most of 
the Lower Cretaceous rocks, except Neocomian, were 
delineated as an aquifer system (fig. 4; pi. 2), and most 
of the Upper Cretaceous rocks were delineated as a con­ 
fining unit (fig. 4). However, several formations of the 
Upper Cretaceous rocks, such as Fox Hills Sandstone 
and Hell Creek and Lance Formations, were delineated 
together with Tertiary rocks as an aquifer system (fig. 
4; pi. 2).

TERTIARY ROCKS

Tertiary formations (pi. 2) in the northern Great 
Plains contain important ground-water aquifers for 
development of domestic and agricultural water sup­ 
plies; they have a relatively shallow drilling depth, and 
their water is less mineralized than that in the deeper 
aquifers. These formations generally were deposited in 
a continental environment. Exceptions are the Cannon- 
ball Member of the Fort Union Formation in western 
North Dakota, deposited in a marine environment, and 
the upper part of the Ludlow Member, deposited in a 
shallow-marine environment. Most of the sediments 
that make up the Tertiary deposits were derived from 
highlands to the west and northwest during and after 
the Laramide orogeny.

The Fort Union Formation of Paleocene age consists 
of alternating gray to buff sandstone, siltstone, and 
claiystone with thin-to-thick lignite and subbituminous 
coal beds. Contact with the underlying Cretaceous Hell 
Creek or Lance is at the base of the lowest persistent 
coal bed.

Thickness of the Fort Union Formation decreases 
from more than 3,000 ft in the Powder River basin to 
less than 300 ft in the Williston basin in central North 
Dakota and northeast Montana. The sandstone units 
in the Powder River basin generally are coarser grained 
and better sorted than in eastern Montana, North 
Dakota, and South Dakota, and generally are more 
permeable.

The Wasatch Formation of Eocene age is present only 
in the Powder River basin and consists of about 1,000 
ft of alternating beds of valley- and channel-fill sand­ 
stone, siltstone, and claystone; this formation is similar 
to the Tongue River Member of the Fort Union Forma­ 
tion, although mineralogical differences have been 
noted. The contact between the Wasatch Formation and 
the underlying Fort Union Formation is unconformable 
and is placed at the top of the Roland-Anderson coal 
bed (Anna, 1986). This bed is about 50-100 ft thick and 
is areally extensive throughout most of the southern 
Powder River basin.

The Golden Valley Formation of Eocene age consists 
of about 150 ft of kaolinitic claystone, mudstone, lignite, 
and micaceous sandstone. The formation is present only 
in western North Dakota and usually as remnants 
underlying younger rocks. The formation has been sub­ 
divided into upper and lower units, the lowermost of 
Paleocene age and the uppermost of Eocene age.

The White River Formation, or Group where divided, 
of Oligocene age unconformably overlies the Eocene for­ 
mations and is about 150 ft thick. The formation is ex­ 
posed only as erosional remnants, capping buttes in 
several localities in the Williston basin, and as areally 
extensive deposits in the Badlands of south-central 
South Dakota. The White River Group is subdivided 
into the lower Chadron Formation, consisting of a basal 
conglomerate with overlying tuffaceous sandstone, 
siltstone, and shale, and the upper Brule Formation, 
consisting of claystone, siltstone, and sandstone.

The Arikaree Formation of Miocene age is exposed 
as remnants resulting from Pliocene and Pleistocene 
erosion of higher buttes in North Dakota and South 
Dakota. The formation rests unconformably on the 
White River Formation and consists of about 250 ft of 
massive tuffaceous sandstone and siltstone and a few 
thin beds of quartzite, dolomite, and volcanic ash.

The Ogallala Formation of Miocene age is present 
only in southwestern South Dakota but is an extensive 
veneer of interbedded sandstone and claystone through­ 
out most of the central Great Plains region. The Flax- 
ville Formation of Miocene and Pliocene age is a thin 
widespread pediment capping numerous plateaus and 
consists of poorly cemented sandstone and conglom­ 
erate. The formation is recognized only in northeast 
Montana but may be correlative to local pediments 
along flanks of major buttes.

QUATERNARY DEPOSITS

Deposits of Quaternary age (fig. 10) in the study area 
consist of alluvium and glacial materials. Alluvial 
deposits, varying in thickness, fill major drainage of the 
area. Glacial-till and glacial-outwash deposits occur only 
in eastern North Dakota, northeastern South Dakota, 
and northernmost Montana. The outwash deposits can 
range in thickness from a few feet to several hundred 
feet and consist of silt, sand, and gravel. Widths of 
Quaternary deposits generally range from less than 1 
to several miles, and they commonly are tens of miles 
in length. Glacial-outwash deposits are a major source 
of water in a large part of the study area.

During this study, the Upper Cretaceous and Tertiary 
rocks and the Quaternary deposits were delineated as 
a single aquifer system (fig. 4; pi. 2) overlying the
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low-permeability Cretaceous rocks. No effort was made 
to delineate aquifers and confining layers among the 
Upper Cretaceous rocks, the Tertiary rocks, and the 
Quaternary deposits.

During the Pleistocene Epoch, the hydrologic system 
in the aquifers of the northern Great Plains was sub­ 
ject to major changes in the recharge-discharge relation­ 
ships associated with the four glaciations and three 
interglaciations shown in figure 10.

At the time of maximum glacial advance, the 
discharge areas of all the aquifers were covered by thick 
masses of ice, blocking discharge and causing flow in 
the aquifers to be southeastward, as shown diagram- 
matically in figure 11. During interglaciation, glacial ice 
was absent from the aquifer discharge areas, and the 
inferred flow direction was northeastward, similar to the 
flow pattern of the present day, as shown on plate 3.

Except for local mountain glaciation, the highland 
areas in the western part of the northern Great Plains

were not affected by continental glaciation and con­ 
tinued to be recharge areas for the bedrock aquifers.

GEOLOGIC STRUCTURE

The structural history of the northern Great Plains 
is reflected in the sediments. The forces involved in 
developing geologic structures are among the important 
factors controlling the distribution of porosity and 
permeability in carbonate and sedimentary rocks. 
Movement along structural zones creates porosity and 
increases permeability by fracturing; this can be 
modified at a later time by chemical processes occur­ 
ring in the aquifer as water moves through the fracture 
system.

Much of the present-day structure in the study area 
(figs. 12-14) is the result of the Laramide deformation 
that occurred in Late Cretaceous and early Tertiary 
time. Many zones of weakness that existed prior to 
Laramide deformation were the most common avenues 
for the release of stress during the deformation; 
northwest-, east-southeast-, and northeast-trending 
structural features of Precambrian, Paleozoic, and 
Mesozoic age occur throughout the study area. Many 
of these structural features were initiated as shear zones 
of Precambrian age that developed in the basement 
rocks and since have been zones of weakness. For ex­ 
ample, the Nashfork-Hartville fault trend in Wyoming 
and South Dakota is a component of a broad Precam­ 
brian shear zone called the Colorado lineament (Warner, 
1978). Warner postulated that this shear zone, which 
extends from Arizona to the Great Lakes, divides the 
Precambrian basement into provinces of two different 
ages, one of 2,400 million years on the north and one 
of 1,750 million years on the south.

The large fault and lineament systems that have 
developed in many bedrock units of the northern Great 
Plains during geologic time are important features in 
the analysis of the existing hydrologic system. Both 
faults and lineaments appear to provide paths for in­ 
creased movement of ground water (Chilingar and 
others, 1972; Weimer and others, 1982). These features 
also can be barriers to the flow of water normal to the 
direction of the fault or lineament. An example of this 
barrier effect was presented by Konikow (1976) in his 
analysis of the flow system in the Powder River basin; 
geologic structure along the eastern edge of the Bighorn 
Mountains appears to limit water movement from the 
recharge area in the Bighorn Mountains to the Powder 
River basin.

Structural movement along major faults and linea­ 
ments affects the porosity and permeability distribu­ 
tion throughout a large area and through a long geologic
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FIGURE 11. Extent of Laurentide (Wisconsin) ice in the northern Great Plains and vicinity.
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FIGURE 12. Major Paleozoic structural features in the northern Great Plains and vicinity.

time. Structural adjustments between large blocks of 
geologic material modify the existing primary porosity 
and permeability of the rock by fractures or by develop­ 
ment of a secondary porosity. Structural adjustments 
also may result in a decrease in porosity and permeabil­ 
ity by precipitation of minerals in rock pore spaces.

Structural movement along or between these large 
blocks also affected sedimentation of clastic materials, 
such as those in the Lower and Upper Cretaceous 
bedrock units. Block movement may result in shallow- 
water, near-shore environments where coarse-grained 
sediments are deposited. Later, movement between the 
blocks may result in a lowered, deep-water environment 
where fine-grained or calcareous sediments are depos­ 
ited. Maps drawn by R.K. Blankennagel (USGS, writ­ 
ten commun., 1982) show patterns of linear structural 
trends that apparently relate to changes in sedimen­ 
tation rates and lithologic type because of adjustments 
between structural blocks.

Many of the structural features in the northern Great 
Plains are associated with present-day physiographic

features that affect both the deep and shallow ground- 
water flow systems and surface-water drainage pat­ 
terns. A set of lineaments A, B, and C shown in 
figure 14 were selected to indicate such effects. Linea­ 
ment A, which is located in northeastern North Dakota, 
may be a control on stream channel and lake location 
in this part of North Dakota. Also, a deep, bedrock 
trench filled with glacial materials (Downey and Arm­ 
strong, 1977) appears to lie along the trend of this 
feature. This bedrock trench may have been a zone of 
weakness that was eroded by glacial action during the 
Pleistocene. Lineament B, a major fault offsetting the 
eastern flank of the Bighorn Mountains, also affects the 
surface-water drainage pattern and ground-water flow 
system in this part of the study area. Lineament C, a 
major lineament cutting the Black Hills in South 
Dakota, has a major effect on the ground-water flow 
system near the Black Hills area.

Carbonate rocks are relatively soluble in water, and 
the development of karstic features is common 
wherever these rocks are exposed to the weathering
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FIGURE 13. Subsurface paleolineament zones of Jurassic and Cretaceous age in the northern Great Plains and vicinity.

process. The complex interconnected solution features 
that develop in carbonate rocks during relatively short 
periods of weathering are illustrated in figure 15. Sando 
(1974) described ancient karstic features, including 
enlarged joints, sink holes, caves, and solution breccias, 
that developed in the Mississippian limestone in north- 
central Wyoming. He further stated that most of the 
open spaces were filled by sand and residual products 
reworked by a transgressive sea during Late Mississip­ 
pian time. Large and extensive cave systems in outcrop 
areas of carbonate rocks in the Bighorn Mountains and 
in the Black Hills are further evidence of the importance 
of the dissolution process in the development of second­ 
ary permeability in carbonate rocks underlying the 
northern Great Plains.

REGIONAL HYDROLOGY

The confined ground-water system of the northern 
Great Plains includes numerous permeable horizons,

many of which are discontinuous, and all of which vary 
considerably in hydraulic properties from one location 
to another. During the study, five major subdivisions 
(pis. 1 and 2) of the regional aquifer system were made: 
Cambrian-Ordovician aquifer system; Mississippian 
aquifer system including Madison Limestone; Penn- 
sylvanian aquifer system; Lower Cretaceous aquifer 
system; and Upper Cretaceous aquifer system. Each of 
these is an aggregate of permeable, low-permeable, and 
semiconfining materials; each has been identified as an 
aquifer system primarily because vertical head dif­ 
ferences within each system tend to be much smaller 
than those between the adjacent systems. To some ex­ 
tent, the division is arbitrary; it has been made to assist 
in analysis and discussion of the northern Great Plains 
regional aquifer system as a whole.

These five major aquifer systems within the regional 
system make up one of the largest confined aquifer 
systems in the United States (pi. 3). The flow system 
extends more than 600 mi from mountainous recharge 
areas in Montana, Wyoming, and South Dakota to
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FIGURE 14. Lineament patterns, delineated using Landsat imagery, in the northern Great Plains and vicinity.

discharge areas in the eastern Dakotas and the Cana­ 
dian Province of Manitoba. The total area involved 
is more than 300,000 mi2. The geologic units that 
make up each of the five major aquifers and the inter­ 
vening semiconfining zones are summarized on plates 
1 and 2.

POTENTIOMETRIC SURFACES

The predevelopment potentiometric-surface maps 
(before 1950) for the aquifer systems containing rocks 
of Paleozoic age (figs. 16-18) are those developed by 
Miller and Strausz (1980a, b). The potentiometric- 
surface map for the Pennsylvanian aquifer (fig. 19) is 
from unpublished data developed by W.R. Miller 
(USGS, written commun., 1980) from drill-stem tests.

The predevelopment potentiometric-surface maps 
developed by Miller and Strausz (1980a, b) show the 
altitudes of freshwater heads that were determined from 
shut-in pressures of drill-stem tests according to a

procedure outlined by Miller (1976, p. 17). He used the 
following equation, modified from Murphy (1965):

fc=(FSIPXQ-PRD+LSD,

where

h=altitude freshwater surface in feet above mean
sea level, 

FSIP=final bottom-hole pressure in pounds per
square inch,

C=factor to convert FSIP to feet of water, 
PRD=depth to pressure recorder in feet below land- 

surface datum (LSD),
LSD=altitude of land surface in feet above sea level; 

land-surface datum.

The factor C equals 2.307 ft of water per pressure in­ 
crement of 1 lb/in2. It assumes pure water at a temper­ 
ature of 4 °C and a density of 1.00 g/cm3 . The 
resultant map indicates the altitude at which water
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FIGURE 15. Solution features in marine limestone developed in subtropical conditions similar to those postulated to exist during Late 
Mississippian time. A, Opening in rock due to removal of limestone by solution. Photograph shows north wall of a cenote, or well, near 
Chichen Itza, Yucatan, Mexico.

levels would stand in tightly cased wells open to an 
aquifer if the water in the well had a density of 1.00 
g/cm3 . Gradients of freshwater head in a variable- 
density ground-water system are not always propor­ 
tional to the magnitude of flow, and they do not always 
indicate the actual direction of flow. However, flow 
velocity can be calculated from freshwater-head infor­ 
mation if fluid density is known throughout the system. 

Overall accuracy of the hydraulic-head data shown on 
the predevelopment potentiometric-surface maps for the 
Cambrian-Ordovician and Madison aquifers is esti­ 
mated to be about ±150 ft. Accuracy of hydraulic-head 
data for the Pennsylvania aquifer and Devonian for­ 
mations may be less accurate. It should be noted that 
the predevelopment potentiometric-surface maps are 
not corrected for chemical-osmotic potential. Chemical- 
osmotic effects have been suggested (Hitchon, 1969) as 
the cause for anomalous potentiometric surfaces and

salinities in several formations in Canada north of the 
study area. Berry and Hanshaw (1960) noted a closed 
potentiometric low in the Lower Cretaceous Viking For­ 
mation of Canada that they attributed to the effects of 
chemical-osmotic forces.

The predevelopment potentiometric-surface data 
from the Lower and Upper Cretaceous aquifers (figs. 20, 
21) are from a report by Lobmeyer (1982). Lobmeyer 
primarily used data from drill-stem tests and a conver­ 
sion procedure from pressure to feet of freshwater 
similar to that used by Miller and Strausz (1980a, b) for 
the aquifer systems consisting of rocks of Paleozoic age. 
Lobmeyer pointed out that inaccuracies exist in the 
maps, which are similar to those in the Paleozoic 
potentiometric-surface maps of Miller and Strausz 
(1980a, b). He stated that the accuracy of the potentio­ 
metric surface shown on the maps is only about ± 250 
ft in those areas around the Black Hills on the South
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FIGURE 16. Predevelopment potentiometric surface of the Cambrian-Ordovician aquifer system (before 1950).

Dakota-Wyoming border, around the edge of the 
Powder River basin, and in central Montana. The Up­ 
per Cretaceous potentiometric-surface map is believed 
to be accurate within one contour interval except where 
contours are inferred from land-surface altitudes ob­ 
tained from l:l,000,000-scale contour maps.

GEOCHEMISTRY

The geochemical system existing in the aquifers of 
the northern Great Plains is complex, involving 
numerous rock-water interactions as water moves 
along flow paths from the highland recharge areas to 
the discharge areas. The two principal geochemical 
mechanisms along all the major flow paths in aquifer 
systems consisting of rocks of Cambrian through Penn- 
sylvanian age are evaporite dissolution and dedolomiti- 
zation; however, cation exchange and sulfate reduction 
also occur at places within the geochemical flow system.

Ground-water temperatures vary considerably in the

major aquifers of the northern Great Plains; the max­ 
imum temperatures are in the Cambrian-Ordovician 
(more than 150 °C) and Mississippian aquifer systems 
(more than 130 °C) (figs. 22, 23). Because of relatively 
shallow depths of burial, maximum temperatures of 
ground water in the Lower Cretaceous (more than 
120 °C) and Upper Cretaceous aquifer systems (more 
than 60 °C) (figs. 24, 25) are not as high as those in the 
deeper aquifers systems consisting of rocks of Paleozoic 
age.

Solution of halite along the western margins of the 
Williston basin contributes quantities of sodium 
chloride to the ground water, forming brines in the deep 
part of the basin. The brine is associated with the deeper 
aquifer systems (figs. 26-29) and does not occur in the 
Triassic and Jurassic formations or in the Lower and 
Upper Cretaceous aquifer systems (figs. 30-32).

The major conclusions from the geochemistry study 
are as follows:
1. The chemistry of water from aquifer systems con­ 

sisting of rocks of Paleozoic through Mesozoic
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FIGURE 17. Potentiometric surface derived from measurements of head in locally permeable parts of the Devonian rocks.

age is controlled by a variety of geochemical 
mechanisms, with dissolution of evaporites and 
mixing of water being dominant. Although not a 
dominant control, dedolomitization also is a 
significant geochemical mechanism.

2. The dominant geochemical control on water from 
the aquifer systems consisting of rocks of Paleo­ 
zoic age in Montana and North Dakota is the 
evaporite deposits of the Central Montana trough 
and the Williston basin.

3. Geochemical evidence from each delineated aquifer 
system indicates that sulfate reduction and 
cation-exchange mechanisms are active.

4. Geochemical evidence indicates that ground-water 
leakage between the Cambrian-Ordovician, 
Mississippian, and Pennsylvanian aquifer 
systems is extensive.

5. The Triassic and Jurassic formations are a confin­ 
ing bed for the underlying aquifer systems.

6. Geochemical data indicate that ground-water flow 
in Montana is principally from the western

recharge areas northeastward toward Canada and 
eastward toward the Williston basin.

Ground-water flow in rocks of Paleozoic and Meso- 
zoic age appears to be relatively slow in North 
Dakota where the flow probably is diverted north­ 
ward and southeastward around the Williston 
basin.

With the exception of ground water in comparative­ 
ly small areas in the immediate vicinity of 
recharge areas and of ground water in the 
Williston basin, the dominant type of ground 
water in aquifer systems consisting of rocks of 
Cambrian through Pennsylvanian age is a sulfate 
water (figs. 33-36). Stratigraphically above the 
Pennsylvanian aquifer are the Lower Cretaceous 
aquifer system, in which the ground water is 
generally a mixed type (fig. 37), and the Upper 
Cretaceous aquifer system, in which the ground 
water is dominantly a bicarbonate type (fig. 38).

Water of the sodium chloride type generally is found 
within the Williston basin.
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FIGURE 18. Predevelopment potentiometric surface of the Mississippian aquifer system (including the Madison Limestone) (before 1950).

GEOHYDROLOGY

The five major aquifer systems (pis. 1, 2) underlying 
the northern Great Plains area compose one of the 
largest confined aquifer systems in the United States. 
The flow system (pi. 3) extends more than 600 mi from 
mountainous recharge areas in Montana, Wyoming, and 
South Dakota to discharge areas in the eastern Dakotas 
and the Canadian Province of Manitoba. The total area 
of the aquifer system in both countries is approximately 
300,000 mi2.

All aquifer systems crop out and receive recharge in 
the highland areas in the western part of the study area 
(pi. 3). Recharge also occurs in aquifer outcrops in the 
Black Hills uplift area of South Dakota (fig. 2). The ma­ 
jor recharge area for the Madison Limestone (part of 
the Mississippian aquifer system) in the Black Hills is 
a plateau on the west flank of the Black Hills uplift 
where the limestone shows many solution features such 
as caves and sink holes. The Wyoming State Engineer's 
Office (1974) states that estimated recharge in an area

of 187,000 acres is about 6.8 in. per year, roughly 
146 ft3/s. Virtually all eastward-flowing streams drain­ 
ing the recharge areas lose a part of their flow (Swen- 
son, 1968a, b; Wyoming State Engineers Office, 1974) 
as they cross the aquifer outcrops. Recharge also results 
from infiltration of precipitation falling directly on the 
exposed rocks in lowland areas.

Streamflow measurements on several streams drain­ 
ing the east side of the Black Hills (fig. 2) indicate that 
as much as 10 ft3/s were lost from the streams as they 
crossed the outcrop of the Madison Limestone of the 
Mississippian aquifer system (Swenson, 1968a, b). Prior 
to a program of stream-channel sealing in 1937, 
streamflow losses of about 100 ft3/s were reported by 
Powell (1940). Based on similar lithology and degree of 
weathering, it is reasonable to assume that most 
streams draining comparable western mountainous 
areas, such as the Bighorn Mountains, would lose 
similar quantities of flow as they cross the outcrop areas 
of aquifer systems consisting of rocks of Paleozoic age.

Recharge to the Lower Cretaceous aquifer system
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FIGURE 19. Predevelopment potentiometric surface of the Pennsylvanian aquifer system (before 1950).

takes place by infiltration at outcrop areas and leakage 
from the underlying aquifer systems. Miller and Rahn 
(1974) calculated 0.8 in./yr of recharge at outcrops of 
Lower Cretaceous sandstone in the Black Hills. An out­ 
crop area for the Lower Cretaceous aquifer system of 
about 334 mi2 (H.L. Case, III, USGS, written com­ 
mun., 1982) in the Black Hills area and a recharge rate 
of 0.8 in./yr, results in about 20 ft3/s of recharge to the 
Lower Cretaceous aquifer system in the Black Hills 
area. Brown (1944) gaged many streams along the 
eastern flank of the Black Hills. In contrast to water 
losses to the Paleozoic aquifer systems, Brown noted 
that no measurable stream loss from any of the ob­ 
served streams was detected at the outcrop of Creta­ 
ceous rock. It is possible that recharge to the 
Cretaceous aquifer systems occurs as upward leakage 
from Paleozoic rocks at shallow depth in the recharge 
area of the Black Hills. Schoon (1971) postulated that 
recharge occurs in the Black Hills area but did not 
distinguish relative quantities of recharge and sources 
of the recharge.

Although the available data indicate that large quan­ 
tities of water enter the aquifers along the outcrop areas 
in the western highlands, not all of this water recharges 
the deep, regional aquifer system and moves to the 
eastern discharge area. A large part of the recharged 
water discharges in a short distance through springs 
and seeps along the flanks of the mountainous areas 
(Swenson, 1968a, b; Rahn and Gries, 1973; Hodson, 
1974). The fraction of the total recharge that remains 
in the deeper aquifer systems becomes the regional flow. 
The diagrammatic expression of the flow conditions (pi. 
3A, B) summarizes the predevelopment (about 1950) 
flow regime for both the Cambrian-Ordovician and the 
Mississippian aquifer systems. These flow conditions 
were synthesized on the basis of digital-model simula­ 
tions and interpretation of available geologic and hydro- 
logic information.

The rates of recharge shown for selected recharge 
areas are the infiltration which enters the aquifers 
in areas where they are close to or at land surface 
and which remains within the regional-flow system.
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FIGURE 20. Predevelopment potentiometric surface of the Lower Cretaceous aquifer system (before 1950).

Discharge from the Mississippian and Pennsylvania!! 
aquifers is to adjacent and overlying aquifer systems 
along the eastern subcrops (pi. 3B, C). Discharge from 
the Cambrian-Ordovician aquifer system is to adjacent 
shallow aquifer systems or through springs and seeps 
in the Lake Agassiz basin of North Dakota and in 
Canada where the Cambrian and Ordovician formations 
crop out (pi. 3A).

Discharge from the Lower Cretaceous aquifer system 
is mainly upward to the overlying aquifer systems in 
eastern South Dakota (figs. 39, 40) and along the sub- 
crop of the Lower Cretaceous rocks (fig. 41) in the Lake 
Agassiz basin of North Dakota (pi. 3D). At the present 
time, considerable water is discharged from the Lower 
Cretaceous aquifer system through unused wells along 
the Missouri and James River valleys of South Dakota 
(H.L. Case, III, USGS, written commun., 1982). Dis­ 
charge estimates from the Lower Cretaceous aquifer 
system based on model simulation and interpretation 
of available data are shown on plate 3D.

Ground-water discharge through springs located

along the outcrop of Paleozoic rocks in the Canadian 
Province of Manitoba (van Everdingen, 1968) appears 
to have an effect on the composition of water in Lake 
Winnipegosis and Lake Manitoba (pi. 3). Water from 
both lakes contains as much as 600 mg/L of chloride. 
Springs along the lakes discharge as much as 0.1 ft3/s 
of water with a dissolved-solids concentration ranging 
from about 29,000 to 63,000 mg/L. The dominant ions 
present are sodium and chloride. Seven springs located 
on the shore of Lake Winnipegosis in northern Mani­ 
toba were shown by Cole (1915) to discharge about 
0.2 ft3/s from Devonian rocks underlying the lake. 
Because ground-water flows slow (figs. 42, 43) and the 
time since ice covered this area of Manitoba is short 
(12,000 to 14,000 years), it is possible that the water 
being discharged through springs is a mixture of brine 
from the deeper part of the aquifer and glacial melt 
water injected into the aquifer while it was covered by 
glacial ice. The range in dissolved-solids concentration 
suggests that the water is a mixture of three flow com­ 
ponents: (1) flow from the brine area, (2) injected water
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FIGURE 21. Predevelopment potentiometric surface of the Upper Cretaceous aquifer system (before 1950).

from the Pleistocene glacial ice, and (3) fresher water 
flowing from the south along a flow path from the Black 
Hills (pi. 3,4).

The Mississippian aquifer system does not crop out 
in the eastern part of the study area. The formations 
that make up the aquifer system terminate in the sub­ 
surface and are overlain by younger rocks consisting 
mostly of Cretaceous shales. Thus, the discharge from 
the Mississippian aquifer system in this area consists 
of upward leakage through the overlying confining 
systems and lateral leakage (pi. 3A, B) to the Cambrian- 
Ordovician aquifer system. Ground-water discharge is 
concentrated along the eastern rather than the northern 
limits of the Mississippian aquifer system because 
stratigraphic unconformities between the Paleozoic 
aquifer system and the overlying confining systems in 
the Canadian Provinces of Saskatchewan and Manitoba 
have resulted in conditions favorable to accumulation 
of oil and gas in stratigraphic traps (McCabe, 1963). As 
a corollary to this, conditions in the area of trapping

oil and gas must have low-permeability cap rocks, thus 
being unfavorable for discharge of ground water upward 
from the Mississippian aquifer system to the overlying 
aquifer systems.

An area of minimal ground-water flow on the eastern 
flank of the Williston basin coincides with an area of 
high concentration of dissolved solids resulting in 
substantial fluid density (figs. 26, 28, 44). Three 
hypotheses were considered in explaining the hydrologic 
flow system in and near the areas of the dense brine. 
The first hypothesis is that the brine is static and that 
the hydrologic situation is similar to what was described 
by Hubbert (1969): freshwater flowing through a 
synclinal structure comes into contact with static, dense 
brine along a sharp fluid interface. Hubbert (1969) 
showed that the body of saline water under these con­ 
ditions does not lie uniformly in the deepest part of the 
structure but, rather, is displaced upward along the 
base of the outflow flank; that is, whereas the inflow 
flank is occupied entirely by moving freshwater, the
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FIGURE 22. Water temperatures in the Cambrian-Ordovician aquifer system.

outflow flank contains static brine in the lower part of 
the aquifer and moving freshwater above. The flow of 
freshwater in the Williston basin is around the dense 
brine area, as well as above, and this reflects the fact 
that the structure is actually a basin rather than the 
simple syncline analyzed by Hubbert (1969). The flow 
above the brine apparently is by upward leakage to 
aquifer systems overlying the Mississippian aquifer 
system rather than to the upper part of the aquifer 
system itself. However, model simulations of the flow 
system indicate slow flow velocities in the brine areas 
of the Mississippian aquifer system, indicating that the 
brine is not static as stated in Hubbert's (1969) 
hypothesis.

Simulation results show slow but consistent flow 
velocities generally directed to the east and northeast 
through the dense brine in both the Cambrian- 
Ordovician and Mississippian aquifer systems. This in­ 
dicates that a small component of the regional flow ac­ 
tually moves directly across the Williston basin from 
west to east through the brine areas. These simulation

results suggest a second hypothesis regarding the brine; 
that is, the brine actually represents a very slow mov­ 
ing segment of the regional flow system. This hypoth­ 
esis suggests one explanation for the origin of the brine, 
which can be attributed to solution of salt from halite 
beds as the water moves through the basin, as described 
by Grossman (1968). The process of solution of salt is 
enhanced by increasing water temperature with depth; 
the maximum salinities are found in regions of max­ 
imum temperature. Decrease in salinity in up-dip areas 
on the eastern flank of the basin presumably is due, at 
least in part, to precipitation of halite associated with 
lower temperature, although dilution by fresher water 
also is undoubtedly a factor. To the extent that precip­ 
itation of halite occurs, it should result in a very gradual 
decrease in permeability during geologic time intervals 
in the areas where precipitation occurs.

Finally, with regard to the second hypothesis, it 
should be noted that even though some flow exists, the 
situation is still similar to Hubbert's static brine 
hypothesis. Velocities of flow are very low relative to
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FIGURE 23. Water temperatures in the Mississippian aquifer system, including the Madison Limestone.

those elsewhere in the system, and most of the flow of 
fresher water appears to be deflected around the brine 
to the north or south or through the confining system 
into aquifer systems overlying the Mississippian aquifer 
system. Thus, both the hydraulics and the density 
distribution seem to be fairly close to what would be 
observed in a system of totally static brine conforming 
to Hubbert's (1969) analysis.

A third hypothesis regarding the brine is that it is 
in motion but that its movement represents an attempt 
of the system to adjust to changes in recharge and 
discharge associated with the end of Pleistocene glacia- 
tion. These changes were discussed in detail by Downey 
(1984a). If during Pleistocene glaciation the brine were 
in a static configuration of the type described by Hub- 
bert (1969), the configuration could not be at equilibrium 
with the new boundary conditions imposed with the 
retreat of the ice sheets. Thus, the brine would begin 
to move at the end of glaciation, seeking a new 
equilibrium configuration compatible with the new 
recharge and discharge patterns; this readjustment still

could be in progress at present. Such a process could 
be contributing to some extent to the apparent move­ 
ment of the brine; however, ground-water flow velocities 
computed by simulation appear to conform more to 
the interpretation of a simple flow across the basin than 
to delayed adjustment to the Pleistocene glacial 
changes.

In summary, the second hypothesis that the brine 
represents a sluggish segment of the regional flow pat­ 
tern across the basin seems to agree best with simula­ 
tion results and with existing field data. Origin of the 
brine appears to have been the dissolution of halite, and 
as the density of the brine has increased, undoubtedly 
it has had an increasing effect on the flow pattern, caus­ 
ing fresher water to divert around it to the north and 
south or above it into other aquifer systems overlying 
the Mississippian aquifer system. Although the second 
hypothesis seems most acceptable, elements of the 
other hypotheses also are probably reflected in the ac­ 
tual situation. The present configuration of the brine 
on the outflow side of the basin and its generally slow
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FIGURE 24. Water temperatures in the Lower Cretaceous aquifer system.

velocity of ground-water flow approximate the static 
brine situation described by Hubbert (1969), even 
though the brine is not totally static; distribution of the 
saline water still might be shifting in response to 
changes in recharge and discharge at the end of Pleisto­ 
cene glaciation.

Saline water also is found in other parts of the study 
area for example, in deeper parts of the Powder River 
basin although not at the concentration of the brine 
in the Williston basin. However, similar processes 
presumably control the saline water's distribution and 
movement.

Because the highland recharge areas were not covered 
by major ice sheets (fig. 11) during the glacial stages 
of the Pleistocene, recharge to the deep aquifer systems 
from these areas continued. The resulting ground-water 
flow system (fig. 11) allowed the dissolution of halite 
along the western edge of the Williston basin to con­ 
tinue during the glacial period; however, because of the 
short geologic time and the slow flow velocities in­ 
volved, the brine could not move out of the hydrologic

system and tended to remain in the same general 
location, as shown on plate 3A and B.

The flow pattern in the Cambrian-Ordovician aquifer 
system (pi. 3A) generally is similar to that in the 
Mississippian aquifer system, although the Cambrian- 
Ordovician aquifer system extends farther to the east 
and north than the Mississippian aquifer system and 
crops out in the Canadian Province of Manitoba (fig. 
39). A generalized geohydrologic section showing the 
ground-water movement in the Cambrian-Ordovician 
aquifer system in North Dakota is shown in figure 41. 
The location is near the eastern terminus of the 
Cambrian-Ordovician aquifer, and the figure illustrates 
the general relationship of the Cambrian-Ordovician 
aquifer system to shallow ground-water systems and 
surface-water bodies.

The Cambrian-Ordovician aquifer system contains the 
same characteristic dense brine as does the Mississip­ 
pian aquifer system on the eastern flank of the Williston 
basin (fig. 26). The Cambrian-Ordovician aquifer system 
apparently discharges in part to a number of saline
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FIGURE 25. Water temperatures in the Upper Cretaceous aquifer system.

lakes in eastern North Dakota, and the component of 
flow to the north of the Williston basin is accordingly 
larger than in the Mississippian aquifer system. The 
hypothesis of discharge to these lakes is supported by 
several types of evidence. The saline lakes in question 
are located in the eastern discharge area of the 
Cambrian-Ordovician aquifer system (fig. 41) and are 
associated with depressions that overlie deposits of fine 
sand and gravel. These lake depressions have been at­ 
tributed to artesian water discharging from deep 
regional flow systems (Laird, 1944).

A supporting hypothesis is (Downey, 1969, p. 12) that 
during Pleistocene glaciation of the area, melt water 
resulting from melting at the base of the ice sheet (Gow 
and others, 1968; McGinnis, 1968) was forced into the 
aquifer systems by hydrostatic pressure. After deglacia- 
tion, the hydrostatic pressure was greatly decreased, 
allowing large quantities of water to move rapidly out 
of the aquifer systems. This relatively rapid movement 
of water through overlying material resulted in erosion 
of the overlying lake sediments, forming the depressions

in which the lakes exist today. Test drilling indicates 
that fairly thick deposits of glacial sand and gravel 
underlie the depressions and are hydraulically con­ 
nected with underlying bedrock (Downey, 1973). 
Chemical analyses of water samples collected from the 
test holes and lakes (Downey, 1971) indicate a chemical 
similarity to water taken from the Cambrian-Ordovician 
aquifer system. These analyses indicate that ground 
water is able to move upward from the deep aquifer 
systems through the glacial sand and gravel deposits 
to discharge points at the bottom of the lakes, which 
in the eastern discharge area function as ground-water 
drains for the underlying aquifer systems.

The existence of water at the base of continental ice 
sheets has been suggested by many authors (Robin, 
1955; Gow and others, 1968; McGinnis, 1968; Weert- 
man, 1972). The water is the result of melting at the 
base of ice because of geothermal and frictional heat. 
McGinnis (1968) estimated that the heat available to 
a temperate ice sheet from these sources could produce 
about 0.32 ft3 of melt water per square foot of surface
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FIGURE 26. Concentration of dissolved solids in water from the Cambrian-Ordovician aquifer system.

area of the ice sheet per year. The continental ice sheet 
that existed in the northern Great Plains during the late 
Pleistocene covered an area of about 121,500 mi2 in the 
United States. Based on 0.32 ft3 per square foot of sur­ 
face area, this analysis results in about 7 mi3 of water 
per year available for recharge to the underlying aquifer 
systems. The water would be under significant hydro­ 
static pressure from the weight of overlying ice.

Upward leakage through confining beds appears to 
be one of the major discharge mechanisms (fig. 39) for 
all the aquifer systems underlying the northern Great 
Plains. Vertical leakage between aquifers may be 
detected by geochemical methods, although the lack of 
geochemical data for many areas limits definition of the 
areas of leakage. Leakage occurs both through the 
confining-bed matrix and along fractures associated 
with the lineament zones in the confining bed (Weimer 
and others, 1982). Confining beds are not present 
everywhere: they were either removed by erosion or 
they were never deposited. In those areas where the con­ 
fining beds are absent, such as eastern South Dakota,

substantial hydraulic connection exists between 
aquifers, and leakage may occur from one aquifer to the 
adjoining one at a rate that is dependent on existing 
hydraulic-head differences. Where the confining bed is 
thick and unfractured, leakage through the confining 
bed is minimal. Leakage along fractures is dependent 
on the degree of fracturing, the cross-sectional area of 
the fractures, and the interconnection between 
fractures.

Geochemical facies maps such as those shown in 
figures 33, 35, 36, and 37 for the Cambrian-Ordovician, 
Mississippian, Pennsylvanian, and Lower Cretaceous 
aquifer systems can be used to indicate areas where 
leakage is occurring between aquifer systems. Similar 
water types at the same location in adjoining aquifer 
systems indicate that water is able to move between the 
two systems through the confining beds at these sites. 
This type of geochemical data is of value in the adjust­ 
ment of the vertical-leakage data sets in the calibration 
of simulation models of the aquifer system.

Halite units, such as those in the Charles Formation,
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FIGURE 27. Concentration of dissolved solids in water from the Silurian and Devonian rocks (a major confining system or unit overlying
the Cambrian-Ordovician aquifer system).

are considered in this study to be impermeable. 
However, geochemical evidence (J.F. Busby, USGS, 
written commun., 1982) indicates extensive leakage be­ 
tween the Cambrian-Ordovician, Mississippian, and 
Pennsylvania!! aquifer systems in the northern Great 
Plains. The Triassic and Jurassic formations, then, pro­ 
vide the zone of minimal vertical permeability that 
limits leakage between the aquifer systems consisting 
of rocks of Paleozoic and Mesozoic age to a very slow 
rate. Extensive development of the Paleozoic aquifer 
systems would not affect the Mesozoic aquifer systems 
in most of the area within a reasonable time frame (40 
years). Plans for future development of the deep aquifer 
systems in the northern Great Plains region need to con­ 
sider leakage from, and storage in the associated con­ 
fining beds, because water yielded by the aquifer 
systems will be derived, in part, from storage in the 
associated confining beds, except at places where the 
confining beds are absent or are extensively fractured. 
Water from the confining beds may have an entirely

different chemical quality than water from the devel­ 
oped aquifer system.

Leakage between the Mississippian aquifer system 
and the Lower Cretaceous aquifer system in eastern 
South Dakota has been noted in several studies and was 
the basis for Swenson's (1968a) theory of recharge to 
the artesian basin of the Dakotas. Swenson suggested 
that water enters the Madison Limestone in the Black 
Hills area, moves generally eastward approximately 
two-thirds across the State of South Dakota, and is 
discharged by vertical leakage to the Lower Cretaceous 
(Dakota) aquifer. Swenson's area of discharge from the 
Mississippian aquifer system to the Lower Cretaceous 
aquifer system as suggested by simulation results is 
similar to that shown on plate 3D.

In the areas of substantial leakage shown on plate 3D, 
confining beds are thin or absent between the Mississip­ 
pian aquifer system and the overlying Lower Cretace­ 
ous aquifer system. Also, the Pennsylvanian aquifer 
system is less than 200 ft thick in this area (Swenson,
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FIGURE 28. Concentration of dissolved solids in water from the Mississippian aquifer system, including the Madison Limestone.

1968a). Geochemical fades maps (figs. 35, 36) indicate 
that water from the Pennsylvania!! aquifer system is 
similar to water in the underlying Mississippian aquifer 
system and that vertical leakage is occurring between 
these two aquifer systems in this area. Swenson (1968a) 
presented evidence to indicate water from the Lower 
Cretaceous (Dakota) aquifer system (fig. 37) is similar 
in chemical type to that in both the Mississippian and 
Pennsyrvanian aquifer systems in the area of high 
leakage shown on plate 3D.

Except for flow volumes, simulation results indicate 
that the theory advanced by Swenson (1968 a) concern­ 
ing the ground-water regime in the Lower Cretaceous 
aquifer system of South Dakota is basically correct. 
Geochemical data (Swenson, 1968a; K.D. Peter, USGS, 
written commun., 1982) also support the conclusion that 
water is moving from the Mississippian and Pennsylva- 
nian aquifer systems to the Lower Cretaceous aquifer 
system in eastern South Dakota and North Dakota, as 
illustrated on plate 3B and D.

Geologic structure appears to be an important control

(Weimer and others, 1982) of the rate and direction of 
ground-water movement in the study area. For exam­ 
ple, the Casper fault (fig. 2) appears to prevent ground- 
water flow to the south from the Powder River basin, 
and the major fault system bounding the Bighorn 
Mountains on the east (fig. 14, B) limits recharge to the 
Powder River basin. Recharge from the Bighorn Moun­ 
tains appears to be channeled by faults and joints 
associated with major lineament zones and moves 
northeastward (pi. 3) across the northern part of the 
Powder River basin (south of the Cedar Creek anticline) 
to join the flow system from the Black Hills recharge 
area. This flow system continues around the southern 
part of the Williston basin northeastward to the 
discharge area in northeastern North Dakota and 
eastern Manitoba. The Weldon-Brockton fault zone 
(fig. 2) appears to be a major conduit for ground-water 
movement (pi. 3A, B) from the Big Snowy Mountains 
and associated highland areas in Montana to discharge 
areas in Canada north of the Williston basin. The reader 
may refer to Professional Paper 1402-E for a detailed
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FIGURE 29. Concentration of dissolved solids in water from the Pennsylvanian aquifer system.

discussion of these structural effects on ground-water 
movement.

SIMULATIONS

A calibrated digital simulation model such as the one 
developed for the northern Great Plains aquifer system 
can be used to evaluate the effects of planned develop­ 
ment of the system provided the initial and boundary 
conditions, hydraulic parameters, and other needed 
hydrologic data can be specified. The accuracy of the 
evaluation depends primarily on the accuracy of the 
model input data. If a model is calibrated with accurate 
data where the hydraulic head, transmissivity, leak­ 
age, and storage coefficient are accurately known, or 
where the error range of each parameter is known then 
the evaluation by the model will be reliable within the 
range of acceptable error.

During the study of the northern Great Plains 
regional aquifer system, only hydraulic-head data were

reasonably accurate. The other hydraulic parameters 
were estimated on the basis of field experience and were 
constrained by a reasonable range of each parameter; 
therefore, the digital simulation model is not considered 
to be fully calibrated. Nevertheless, the model was 
useful for understanding the aquifer systems and for 
estimating the effects of future development of the 
regional aquifer system.

To illustrate this potential, hypothetical simulations 
were made. Figures 45-47 indicate the effects on the 
Pennsylvanian and Cambrian-Ordovician aquifer 
systems if the Mississippian aquifer system is devel­ 
oped with a hypothetical pumping rate of 27.9 ft3/s for 
continuous pumping of 5.9 years. The storage coeffi­ 
cient of the Mississippian aquifer system was assumed 
to be 2.0 X10"6. The effect on the Cambrian-Ordovician 
aquifer system is much greater than the effect on the 
Pennsylvanian aquifer system (figs. 48, 49). If the value 
of the storage coefficient of the Mississippian aquifer 
system is increased by two orders of magnitude from 
2.0 X10-6 to 2.0 X10-4 with all other conditions kept the
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same, the development effects on the Pennsylvanian 
aquifer system become negligible, and the effect on the 
Cambrian-Ordovician aquifer system is also reduced 
dramatically, as shown in figure 49. Even the drawdown 
in the Mississippian aquifer system is reduced 
significantly, as shown in figure 48, indicating that the 
value of the storage coefficient is important for using 
the model to evaluate the development effects. The 
reader should refer to Professional Paper 1402-E for 
a detailed discussion on model simulations.
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FIGURE 36. Hydrochemical facies of water in the Pennsylvanian aquifer system.
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FIGURE 37. Hydrochemical facies of water in the Lower Cretaceous aquifer system.
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