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FOREWORD

THE REGIONAL AQUIFER-SYSTEM ANALYSIS PROGRAM

The Regional Aquifer-System Analysis (RASA) Program represents a
systematic effort to study a number of the Nation’s most important aquifer
systems, which, in aggregate, underlie much of the country and which repre-
sent an important component of the Nation’s total water supply. In general,
the boundaries of these studies are identified by the hydrologic extent of each
system and, accordingly, transcend the political subdivisions to which investi-
gations have often arbitrarily been limited in the past. The broad objective for
each study is to assemble geologic, hydrologic, and geochemical information;
to analyze and develop an understanding of the system; and to develop predic-
tive capabilities that will contribute to the effective management of the
system. The use of computer simulation is an important element of the RASA
studies to develop an understanding of the natural, undisturbed hydrologic
system and the changes brought about in it by human activities and to pro-
vide a means of predicting the regional effects of future pumping or other
stresses.

The final interpretive results of the RASA Program are presented in a
series of U.S. Geological Survey Professional Papers that describe the geology,
hydrology, and geochemistry of each regional aquifer system. Each study
within the RASA Program is assigned a single Professional Paper number
beginning with Professional Paper 1400.

Droten A Lo

Gordon P. Eaton
Director
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CONVERSION FACTORS AND VERTICAL DATUM

This paper uses the inch-pound system of units as the primary system of measure-
ments and the metric system of units for water chemistry measurements. For readers
who wish to convert measurements from the inch-pound system to the metric system,
the conversion factors are listed below:

Multiply inch-pound units By To obtain metrie units
inch (in.) 25.4 millimeter
foot (ft) 0.3048 meter
mile (mi) 1.609 kilometer
square mile (mi%) 2.59 square kilometer
inch per hour (in‘h) 254 millimeter per hour
inch per year (in/yr) 25.4 millimeter per year
foot per day (ft/d) 0.3048 meter per day
foot per mile (ft/mi) 0.1894 meter per kilometer
foot squared per day (ft%/d) 0.0929 meter squared per day
gallon per day (gal/d) 3.785 liter per day
million gallons per day (Mgal/d) 3.785 million liters per day
gallon per day per square mile [(gal/d)/mi’] 1.461 liter per day per square kilometer
milligram per liter per foot [(mg/L)/ft] 3.2808 milligram per liter per meter

Sea level: In this report, “sea level” refers to the National Geodetic Vertical Datum
of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the
first-order level nets of both the United States and Canada, formerly called Sea Level
Datum of 1929.
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FIGURE 8. —Physiographic subdivisions

The North Carolina Coastal Plain consists of two
natural subdivisions, as described by Stuckey (1965, p.
9): the Tidewater region, sometimes called the Outer
Coastal Plain, and the Inner Coastal Plain (fig. 3). The
Tidewater region consists of the coastal area, where
large streams and many of their tributaries are affected
by oceanic tides. Land-surface altitudes range from sea
level to 50 ft throughout most of the area and average

—
100 KILOMETERS

of the North Carolina Coastal Plain.

about 20 ft. Altitudes exceed 50 ft only on dunes at Kill
Devil Hills on the Outer Banks in Dare County and along
a 25-mi-long ridge extending from southern Onslow
County into northern New Hanover County. The Tide-
water region is generally of low relief and is swampy.
The Inner Coastal Plain lies between the Tidewater
region and the Fall Line. It has a gently rolling land
surface in contrast to the low relief of the Tidewater
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region. Land-surface altitudes range from about 50 ft at
the Tidewater boundary to more than 700 ft at the Fall
Line in southeastern Montgomery County. Altitudes
along the Fall Line are lowest in the north—about 100 to
150 ft in Northampton County near the Virginia border,
about 150 to 200 ft in Wilson and Edgecombe Counties,
about 200 to 300 ft in Harnett and Cumberland Counties,
more than 700 ft in Montgomery County, and about 400
to 500 ft near the South Carolina border.

Three subdivisions of the Inner Coastal Plain were
recognized by Stuckey (1965). One is the area north of
Craven, Lenoir, and Wayne Counties. Here the land
surface is generally flat to gently rolling, except near
major streams and the western border, where it is
dissected in many places.

The second subdivision is the eastern part of the Inner
Coastal Plain south of the northern area. Here the broad,
flat uplands between major streams commonly are
swampy and are very similar to those in the Tidewater
area. Several large lakes are found in Columbus and
Bladen Counties and throughout much of Cape Fear
River valley; especially in Bladen County, circular to
elliptical depressions called Carolina bays are a promi-
nent part of the landscape. Some of these bays are filled
with lakes, and all except those drained for agricultural
purposes are swampy. The land near the major rivers,
such as the Cape Fear, is quite dissected. These streams
may be incised 50 ft or more into the flat, swampy
uplands. The uplands near the dissected valleys are
swampy, and this attests to the lack of extensive drain-
age of the swamps through the shallow aquifers.

The third subdivision is the western part of the
southern Inner Coastal Plain, known as the Sand Hills
(Fenneman, 1938, p. 39). Figure 3 shows the Sand Hills
area relative to the rest of the Coastal Plain. It covers
about 2,500 mi? in all or parts of Lee, Harnett, Cumber-
land, Hoke, Moore, Montgomery, and Richmond Coun-
ties in North Carolina and extends into South Carolina.

The eastern limit of the Sand Hills is imprecisely
defined. The area is generally coincident with the upper
Coastal Plain physiographic region of Daniels and others
(1972), which includes the area between the Piedmont
and the toe of the Coats Scarp in North Carolina and the
Orangeburg Scarp in South Carolina at an altitude of
about 275 ft.

As the name implies, the dominant feature of the Sand
Hills is a deep layer of unconsolidated to poorly consoli-
dated surficial sand that underlies the upland areas. The
area is characterized by rolling hills having rather flat
crests and altitudes generally ranging from 450 to 550 ft.
The larger streams of the area originate in the Piedmont
and flow eastward or southeastward across the Coastal
Plain, where their valleys have steep sides and well-
developed flood plains. Local relief up to 200 ft is

common. Rainfall readily infiltrates the surficial sands
and percolates downward to the deep water table.
Ground water is the major source of streamflow in the
local streams. Accordingly, flow in these streams is the
most consistent of any area of the State. The streams
seldom flood or go dry, because of the large infiltration
capacity of the sandy soil and the great ground-water
storage capability of the thick sand aquifer.

GEOLOGIC SETTING

The Coastal Plain sediments are characterized by (1)
mostly clastic rocks ranging from clay to gravel, with
lesser amounts of marine limestone, all resting on a
foundation of crystalline basement rocks, (2) a generally
eastward dip, (3) a general thickening of beds toward the
east, and (4) an increase in the number of individual beds
in the seaward (eastward) direction. Figure 4 shows the
ages of Coastal Plain sediments and the general eastward
thickening of these units. The rock stratigraphic units
equivalent to the chronostratigraphic units in figure 4 are
listed in table 1.

Table 1 also shows the general age relationship of the
Coastal Plain sediments. Geologic names are applied to
the hydrogeologic units in this report, and table 1 serves
as a stratigraphic reference. Because many authors have
begun using stage names from Europe and the Gulf
Coast of the United States to define stratigraphic units
and to relate them to time-equivalent rocks in those
places, these stages are included in table 1 for convenient
reference.

The major regional structure of the Coastal Plain that
influences the geology and the hydrology is a homocline
that dips seaward. During initial stages of continental
separation, Coastal Plain sediments were laid down
mostly under nonmarine and marginal-marine condi-
tions. Subsequently, the sediments became more marine
in character. According to Rona (1973), as the Atlantic
Ocean widened, major alternating marine transgressive
and regressive phases of sedimentation on each side of
the ocean were controlled largely by oceanwide eustatic
sea-level changes caused by variable rates of sea-floor
spreading and variable volume of the mid-oceanic ridge.

| Warping or faulting along continental margins also con-

tributed to local sea-level fluctuations which, in turn,
controlled the transgressive or regressive depositional
character of the sedimentation. Cyclic glaciation and
deglaciation, particularly in Pleistocene time, was also an
important process with regard to the rise and fall of sea
level and to consequent regressive or transgressive
Coastal Plain sedimentation (Vail and others, 1977).
The depression of the Earth’s crust under the Coastal
Plain, beginning about 150 million years ago, apparently
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has not been a simple process (Watts, 1981). Transverse
structural features such as arches and troughs are super-
imposed on the general homoelinal dip of the sediments.
The axes of these structures, the most widely known of
which is the Cape Fear arch, trend in an easterly or
southeasterly direction. Other less well known struc-
tures are the Norfolk arch in the southern Virginia
Coastal Plain, the Albemarle embayment on the north-
ern side of Albemarle Sound, and an unnamed positive
structure roughly parallel to the lower Neuse River.
These structures are shown in figure 5. Similar struc-
tures are present elsewhere in the Atlantic Coastal Plain
and Continental Shelf areas (Maher and Applin, 1971).
The arches and troughs are blocklike structures bounded
by zones of weakness (probably faults) in the erystalline
basement rocks; the blocks moved up or down relative to
each other in response to basement-rock tectonics or to a
combination of nonuniform loading resulting from sedi-
mentation and erosion.

Along with the movement of these structures, move-
ment along possibly associated smaller faults is reflected
in the sediments accumulated since Late Jurassic time.
LeGrand (1955) postulated faulting in the area of the
Cape Fear arch. Wrench-fault zones were proposed by
Brown and others (1972) to explain intricate patterns of
thinning and thickening in chronostratigraphic units of
the Coastal Plain. More recent investigations have
shown evidence of faulting in Coastal Plain sedi-
ments—Mixon and Newell (1977) in Virginia, Prowell
and O’Connor (1978) in Georgia, Zoback and others
(1978) in South Carolina, Harris and others (1979) in

North Carolina, and Behrendt and others (1981) in South
Carolina. The maximum known vertical displacement of
the contact between the basement and Cretaceous sedi-
ments is nearly 200 ft (Mixon and Newell, 1977) along a
fault in northern Virginia. In North Carolina, vertical
displacement within Coastal Plain sediments is as much
as 30 ft, shown in a cross section by Harris and others
(1979, fig. 3). The effects of geologic structure on the
movement of ground water within Coastal Plain aquifers
are discussed in the next section.

HYDROLOGIC SETTING

The Coastal Plain ground-water flow system consists
of aquifers made up of permeable sand, gravel, and
limestone layers separated by confining units composed
of less permeable sediments. These permeable layers
and confining units constitute the sediments described in
the previous section.

As described by Heath (1980, p. 14), “Water enters
ground-water systems in recharge areas and moves
through them, as dictated by hydraulic gradients and
hydraulic conductivities, to discharge areas....In a humid
area, such as North Carolina, recharge occurs in all
interstream areas—that is, in all areas except along
streams and their adjoining flood plains. The streams and
flood plains are, under most conditions, discharge areas.”

Because clay beds, which restrict vertical movement
of ground water, are scattered throughout the aquifer
system, recharge to shallow-lying unconfined aquifers is

considerably greater than recharge that moves down-
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TABLE 1.—Generalized stratigraphic units of the North Carolina Coastal Plain
GLOBAL STAGES GULF COAST STAGES
SERIES USED IN NORTH USED IN NORTH STRATIGRAPHIC UNITS
CAROLINA? CAROLINA®
Holocene o = Informal names, alluvium, dunes, etc.
es | 52
] £ @ [Informal names used as: terrace deposits, Pleis-
s E 3 R [tocene deposits, or Pleistocene and Pliocene deposH
Pleistocene S.-‘ b g% its. Some formal names: Flanner Beach I-‘omation’,
ou James City Formation®, and Waccamaw Formation®.
&3
Pliocene 5 Yorktown Formation®
Upper Miocene Eastover Formation®
Middle Miocene Pungo River Formation®
Lower Miocene Belgrade Formation’
Oligocene limestone (informal)
Oligocene
River Bend Formation’
Upper Eocene Jacksonian Not recognized in North Carolina
Middle Eocene Claibornian Castle Hayne Limestone®
Lower Eocene Sabinian Unnamed unit recognized in subsurface®
Paleocene Midwayan Beaufort Formation®
Maestrichtian Navarroan Peedee Formation®
Campanian Tayloran Black Creek Formation®
Upper
Santonian Middendorf Formation!® !
Cretaceous Austinian
Coniacian Cape Fear Formationl? 13
Turonian Eaglefordian
Unnamed units?®
Cenomanian Woodbinian
Lower Washitan
Albian and Unnamed units®
Cretaceous Fredericksburgian
Jurassic(?) Unnamed unit tentatively identified in subsurface®

1Jordan and Smith, 1983. ®Brown, 1959.
ZMixon and Pilkey, 1976.
:’Blackwelder, 1981.

‘swain, 1968.

SWard and Blackwelder, 1980.
‘Kimrey, 1964.

"Ward and others, 1978.

0wens, 1983.

1250n1, 1976.
13Renken, 1984.

ward to confined aquifers. For example, Heath (1980)
estimated that under natural steady-state conditions,
rainfall recharge to North Carolina Coastal Plain soils
(and hence to the unconfined parts of the aquifers) varies
between 5 and 21 inches per year, depending on soil type.

Brown and others, 1972.

11Christ‘.opl’xer and others, 1979.

Most of this water provides base flow for streams, is
transpired by plants, and is evaporated through the soil.
Less than 2 inches reaches confined aquifers; the amount
that reaches the deepest aquifers of the system has been
estimated to be less than 0.5 inch (Heath, 1980).
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FIGURE 5.—Structural features of the Coastal Plain of North Carolina and southern Virginia. (Adapted from Gibson, 1967.)

A few studies support these estimates of natural
recharge. Through analysis of water-level maps, Wyrick
(1966) calculated that confined aquifers underlying Mar-
tin County at depths of 100 to 300 ft receive recharge
at a rate of 22,000,000 gallons per day (gal/d). This
is equivalent to 0.96 inch of rainfall over the 482-mi®
county. Heath (1975) determined that for the uppermost
hydrologic units in the Albemarle-Pamlico region—the

Quaternary, Yorktown, and Castle Hayne aquifers—
combined annual ground-water discharge is about 0.5
inch. Thus, assuming that ground-water recharge is
equal to discharge, the combined recharge to these
aquifers is also about 0.5 inch per year. In 1976, Winner
calculated that the confined Cretaceous aquifers of
Wilson County received about 67,000 gallons per day
per square mile ((gal/d)/mi®), or about 1.4 inches of
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annual recharge. A water-budget analysis of a small
watershed in Pitt, Beaufort, and Craven Counties
showed the average annual ground-water outflow
through the confined Castle Hayne Limestone to be
about 0.80 inch (Winner and Simmons, 1977).

Ground water discharges from the Coastal Plain aqui-
fer system as seepage into streams, lakes, and drainage
ditches; by evapotranspiration from soil zones; by
upward leakage through confining beds to stream val-
leys; and by upward leakage to the bottoms of estuaries.
The amount of discharge from the system equals the
recharge to it, and the amount discharged from shallow
and deep aquifers is in proportion to their recharge, as
described above. The bulk of ground-water discharge,
other than that lost to evapotranspiration, provides the
base flow of perennial streams. Discharge from deeper
confined aquifers is primarily by leakage across confining
beds; it is controlled by the difference in heads across
these confining beds (or groups of confining beds called
confining units) and by the hydraulic properties of the
confining beds.

Although the bulk of ground-water discharge to
streams is from unconfined aquifers, the areas along
streams also are discharge areas for confined aquifers.
According to LeGrand and Pettyjohn (1981), for homo-
clinal aquifer systems such as the North Carolina Coastal
Plain aquifers, places where streams cross confining-bed
outcrops are the last downdip chance for ground water to
discharge easily from confined aquifers. Such places are
depicted on potentiometric-surface maps as natural
cones of depression, or as V-shaped contours with the
apex pointed downstream (see Siple, 1960, fig. 1). The
term “artesian water-gap” was used by LeGrand and
Pettyjohn (1981) to describe this type of feature, which
occurs in most aquifers along the major streams flowing
over the Coastal Plain of North Carolina.

All sediments deposited under marine conditions ini-
tially contained seawater having a chloride concentration
of about 19,000 milligrams per liter (mg/L) (Hem, 1985,
p. 7). As sea level declined and land surface was exposed,
rainfall on that land surface recharged the ground-water
system with freshwater. This initiated a flushing and
dilution action that began to remove seawater from the
aquifer system. The rate of flushing is directly related to
the amount of freshwater flowing in the aquifers. For an
unconfined aquifer in a barrier-beach setting, rainfall
over a year or two may be sufficient to recreate a
freshwater lens following an ocean overwash (Winner,
1978); in contrast, for a deep confined aquifer, significant
flushing of seawater requires thousands of years or
more. The freshwater-saltwater boundary between
ground water containing chloride concentrations of less
than 250 mg/L up to about 19,000 mg/L is gradational. In
the vertical dimension, this transitional distance can be
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as much as 3,000 ft (Meisler, 1980, p. 6), depending on
the hydraulic conductivity of the aquifer materials and
the availability of freshwater.

The occurrence and origin of saltwater in clastic
Coastal Plain aquifers from Long Island, N.Y., through
North Carolina have been described by Meisler (1980).
He attributed ground water fresher than seawater in
deep aquifers offshore to sea-level declines of a few
hundred feet that have occurred several times during
past glacial advances and retreats. Although the flushing
of seawater from deep aquifers is a slow process, Upson
(1966) concluded that, for the northern Atlantic Coastal
Plain, current positions of the freshwater-saltwater
boundaries suggest that the hydrodynamic adjustments
of these boundaries have been rapid enough to keep pace
with sea-level changes since the Late Cretaceous. How-
ever, Meisler and others (1984, p. 14, 15) used a mathe-
matical model to simulate the position of the freshwater-
saltwater boundary during Tertiary and Quaternary
time, and they concluded that, because of frequent
sea-level fluctuations, it is unlikely the boundary has
been in equilibrium during the past 900,000 years. They
also stated that simulation results suggest that the
position of the boundary off the New Jersey coast is not
in equilibrium with present sea-level conditions but
reflects lower sea levels.

Inasmuch as the sea has alternately inundated the
present onshore areas of North Carolina and receded
offshore, a complex pattern has developed in the position
of the freshwater-saltwater transition zone in the several
aquifers. Each aquifer has its own seaward limit of
freshwater as dictated by (1) its rates and location of
recharge, (2) its hydraulic properties, (3) its hydraulic
gradients, and (4) the thickness and properties of the
overlying confining units, which affect the amount of
freshwater circulation in the aquifer.

The most prominent geologic structure that influences
regional ground-water movement is the seaward-dipping
Coastal Plain homocline. The hydrologic effects of the
other structural elements in the Coastal Plain are neither
well known nor extensively documented. For the North
Carolina Coastal Plain, one can only speculate on how
faults may affect the ground-water system. Movement
along a fault could partially (and locally) disrupt confining
units and allow greater interaquifer leakage.

Superimposed on the natural recharge- and discharge-
flow regime of the Coastal Plain aquifers are the effects
of pumping from some of the aquifers. Because virtually
all withdrawals are from the confined parts of the
system, the effects of pumping extend over thousands of
square miles. Three large cones of depression have
developed in the North Carolina Coastal Plain that affect
more than 20 percent of its area (fig. 6) and are important
to the future management of ground-water supplies in
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TABLE 2. — Virginia, North Carolina, and South Carolina Coastal Plain hydrogeologic units

VIRGINIA HYDROGEOLOGIC
UNITS!

NORTH CAROLINA HYDROGEOLOGIC
UNITS

SOUTH CAROLINA HYDROGEOLOGIC
UNITS?

Columbia aquifer

Surficial aquifer

Surficial aquifer

Yorktown confining bed

Yorktown confining unit

Yorktown-Eastover aquifer

Yorktown aquifer

St. Marys confining bed

Pungo River confining unit

St. Marys-Choptank aquifer

Pungo River aquifer

Calvert confining bed

Castle Hayne confining unit

Chickahominy-Piney Point aquifer

Castle Hayne aquifer

Nanjemoy-Marlboro Clay
confining bed

Beaufort
confining unit

Aquia aquifer

Brightseat confining bed?

Brightseat aquifer?

Beaufort aquifer

North Carolina
units
not present

in Virginia

Peedee confining unit

Peedee aquifer

Black Creek confining unit

North Carolina

units

not present

in South Carolina

Black Creek aquifer

Black Creek aquifer

Unnamed confining unit

Middendorf aquifer

Upper Potomac confining bed

Upper Cape Fear confining unit

Unnamed confining unit

Upper Potomac aquifer

Upper Cape Fear aquifer

Middle Potomac confining bed

Lower Cape Fear confining unit

Middle Potomac aquifer

Lower Cape Fear aquifer

Lower Potomac confining bed

Lower Cretaceous confining
unit?

Lower Potomac aquifer

Lower Cretaceous aquifer4

Cape

Fear

aquifer

1Meng and Harsh (1984).

2southeastern Coastal Plain aquifer system (W.R. Aucott, U.S. Geological Survey, written

commun., 1987).

3Restricted to northern Virginia; not present along North Carolina-Virginia boundary.
‘Restricted to northern North Carolina; not present along North Carolina-South Carolina

boundary.

between geophysical logs along sections is about 9 mi; the

maximum is 24 mi. Dip sections were connected with

strike sections (pl. 1) so as to correlate beds from south

to north.

GEOPHYSICAL LOGS

The delineation of the hydrogeologic units, as shown in

the hydrogeologic sections, was accomplished by means
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TABLE 3.— North Carolina Coastal Plain geologic and hydrogeologic
wnits

GEOLOGIC UNITS AQUIFERS AND CONFINING UNITS

Quaternary deposits Surficial aquifer

Yorktown confining unit
Yorktown Formation
Yorktown aquifer

Eastover Formation
Pungo River confining unit

Pungo River Formation
Pungo River aquifer

Belgrade Formation
River Bend Formation

Castle Hayne confining unit

Castle Hayne aquifer
Castle Hayne Limestone

Beaufort confining unit
Beaufort Formation
Beaufort aquifer

Peedee confining unit
Peedee Formation
Peedee aquifer

Black Creek Formation Black Creek confining unit

Middendorf Formation Black Creek aquifer

Upper Cape Fear confining unit
Upper Cape Fear aquifer

Cape Fear Formation
Lower Cape Fear confining unit

Lower Cape Fear aquifer

Lower Cretaceous confining unit
Unnamed units
Lower Cretaceous aquifer

of well-to-well correlation of lithologic units through use
of geophysical logs, mainly standard single-point electric
logs (spontaneous-potential and resistance curves) and
natural gamma-ray logs. In a number of instances,
interpretation of these logs was aided by use of multi-
electrode resistivity logs, where available, and by drill-
ers’ logs and descriptions of well cuttings.

The method of correlation was to compare geophysical
logs from adjacent wells on section lines to determine the
continuity of sediments between them. Inasmuch as
abrupt changes in lithofacies of units can occur over
distances of less than a mile, emphasis in correlation was
placed on continuity of groups of similar beds rather than
on continuity of an individual bed. For example, figure 8
shows the continuity of groups of sand and clay beds over
a distance of more than 20 mi. Most individual beds
within a group cannot be traced from log to log with
reliability, although some with distinctive log character-
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FIGURE 7.—Logs of exploratory hole and construction features of
observation wells at a typical NRCD research station.

istics can be traced long distances. These are marker
beds used as guides in correlation.

Not all log-to-log correlations are as apparent as those
shown in figure 8. Difficulties of interpretation may arise
when determining the continuity of a unit between two
wells where only an electric log is available from one well
and only a gamma-ray log is available from the other, or
between wells having electric logs with widely varying
curve scales.

GROUND-WATER LEVELS

As geophysical log correlations were developed,
water-level data were added to the well traces on the
hydrogeologic sections to determine the head distribu-
tion throughout the geologic column at a given well site.
These data were taken primarily from NRCD observa-
tion wells at research stations, such as those illustrated
in figure 7, although a significant number of measure-
ments were obtained from drill-stem tests in the initial
test holes. Water-level data from wells other than NRCD
research-station wells were also used.

The distribution of head in the test hole and observa-
tion wells at a research station was compared with the
geophysical log of the test hole, and confining units were
selected on the basis of this head distribution (fig. 9).
Log-to-log correlations of beds, together with analysis of
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TABLE 4. — Summary of aquifer and confining-unit hydrogeologic data

[min., minimum; max., maximum; avg., average]

Average estimated Approximate areal

North Carolina Coastal Altitude of top Thickness® Average percent hydraulic extent of
Plain aquifers and (in feet) (in feet) of permeable conductivity aquifer
confining units min,  max. max. min. avg. material (feet per day) (square miles)
Surficial aquifer +2 4605 180 3 35 79 29 25,000
Yorktown confining unit =173 +107 73 2 22 15 -- --
Yorktown aquifer ~-580 +100 343 4 76 71 22 11,800
Pungo River confining unit -615 -5 160 4 55 14 -- --
Pungo River aquifer -759 -8 225 4 53 80 32 8,000
Castle Hayne confining unit -810 +85 43 4 14 14 -- --
Castle Hayne aquifer -820 +74 952 7 178 81 65 11,500
Beaufort confining unit -1,127 +19 80 5 24 19 - .-
Beaufort aquifer -1,207 0 171 4 70 73 35 10,700
Peedee confining unit -1,324 4100 60 3 24 17 - --
Peedee aquifer -1,355 +86 351 6 146 68 34 13,900
Black Creek confining unit -1,511 4597 168 4 45 16 -- --
Black Creek aquifer -1,612  +593 409 22 165 59 28 21,200
Upper Cape Fear confining unit -1,709  +455 180 6 48 18 -- -
Upper Cape Fear aquifer -1,852 4295 481 12 113 62 30 22,200
Lower Cape Fear confining unit -1,763 ~18 147 12 52 17 -- =
Lower Cape Fear aquifer -1,910 -64 475 20 173 58 34 17,000
Lower Cretaceous confining unit -2,203 =347 69 7 b4 10 -- -
Lower Cretaceous aquifer -2,267 -354 2,249 15 773 53 25 7,300

Maximum and minimum observed

water occupies different positions in different aquifers
and that chloride gradients vary throughout the sedi-
mentary section.

HYDROGEOLOGIC FRAMEWORK

This section contains a description of each aquifer unit,
its areal extent, the distribution of permeable material
within the unit, the occurrence of saltwater, the proper-
ties of the overlying confining unit, and the relation
among aquifers. Discussions center on the movement of
ground water between aquifers, the locations where
aquifers and confining units overlie or underlie each
other, and aspects of ground-water movement related to
natural conditions or to pumping conditions. Although
not specifically stated in each instance, the discussion of
an aquifer is also meant to include its overlying confining
unit, A number of figures are presented to show the areal
extent of contact between aquifers. Any exchange of
water between adjacent aquifers is inferred to pass
through intervening confining units, unless otherwise
noted.

Summary data for each aquifer and confining unit are
listed in table 4. Included are minimum and maximum
observed altitude of unit top, maximum and minimum
observed thickness of unit, estimated average percent of
permeable material making up the umit, average esti-
mated hydraulic conductivity (for aquifers), and areal
extent of the aquifer. Hydrologie data for each of the 161

thickness where unit is present.

control wells used for the study are given in the “Sup-
plemental Data” at the end of the report. These data
were used to construct the maps showing the altitudes of
the tops of the aquifers, the percentages of sand in the
aquifers, and the thicknesses of the confining units cited
in this section (pls. 15-24).

The occurrence of saltwater in each aquifer is included
in the discussion because it affects the development of
these aquifers. Two chloride concentrations in water
were mapped—250 and 10,000 mg/L. The 250 mg/L
chloride concentration value was chosen because it is the
recommended upper limit in drinking-water standards
(U.S. Environmental Protection Agency, 1978). Water
containing 250 mg/L chloride, or more, is considered
saltwater in this report. The 10,000 mg/L chloride con-
centration value was used by Meisler and others (1984, p.
14) in their simulation models to represent the no flow
boundary, because they assumed that ground water
having such high chloride concentration moves very
little. Discussions of the hydrogeologic units follow.

SURFICIAL AQUIFER

The surficial aquifer defined in this report consists
primarily of post-Yorktown deposits of Quaternary age
near land surface. This unit is very important to the
hydrology of the area because it extends over a large
part of the Coastal Plain and because infiltration from
rainfall is the bulk of the recharge to the Coastal Plain
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aquifer system. The aquifer transmits water laterally to
streams and serves as a source bed holding the water
that moves downgradient to deeper aquifers.

The surficial aquifer is not restricted to a single
geologic unit in terms of either age or lithology. Because
the origin and age of the surficial aquifer are not the
same everywhere, it is necessary to describe in broad
terms the various rock units of the aquifer as they occur
in several parts of the Coastal Plain and to discuss some
of the names applied to them. Surficial aquifer sediments
in the Tidewater region (where land surface altitude is
less than 40 to 50 ft) were deposited under shallow
marine or estuarine conditions. These consist of fine
sand, silt, clay, shell, and peat beds, plus scattered
deposits of coarser grained material in the form of relict
beach ridges and flood-plain alluvium.

Geologic or morphostratigraphic names have been
applied to some of these surficial deposits by several
investigators. For most of Carteret County and part of
Pamlico County, Mixon and Pilkey (1976) used the name
“Flanner Beach Formation” to describe surficial deposits
consisting of well-sorted sands and silty sands interbed-
ded with silt and clay. The Flanner Beach Formation is
topped in places by the Minnesott sand, a relict beach
ridge. Blackwelder (1981) used the names “James City
Formation” and “Windsor Formation” (Coch, 1968) for
various post-Pliocene beds along and east of a line
between central Gates County and central Craven
County. Elsewhere in the Tidewater region (fig. 3), the
sediments of the surficial aquifer are generally referred
to as undifferentiated Pleistocene or Pliocene and Pleis-
tocene rocks generally occupying the upper 30 to 40 ft of
section but thickening eastward to about 200 ft near the
Outer Banks.

West of the Tidewater region, the sediments compos-
ing the surficial aquifer change character; they become
coarser and more poorly sorted. With the exception of
one area described below, no attempt has been made to
assign formal names to these sediments. They are gen-
erally described as Pleistocene terraces or simply terrace
deposits; where present, they lie unconformably on rocks
of Cretaceous to Miocene age and range in thickness from
a few feet to as much as 30 ft.

In Columbus and Brunswick Counties, Swain (1968)
assigned surficial gray and white calcareous sands, silty
sands, and shelly sands to the Waccamaw Formation of
Pliocene age on the basis of ostracods. He suggested that
these beds, up to 20 ft thick, may extend northward to
Hyde County. Hazel (1977) thought the Waccamaw
Formation of southeastern North Carolina and north-
eastern South Carolina to be of Pliocene and Pleistocene
age. The Waccamaw is included in the surficial aquifer.

Grayish-brown coarse sand and gravel containing silt
and kaolinitic clay balls constitute the surficial deposits in
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Moore County. This material, called the Pinehurst For-
mation by Conley (1962), was mapped by Daniels and
others (1972) eastward into Harnett County, where it
overlies fine sand, sandy clay, and clay of marine origin
called the Macks Formation. The Macks was extended
eastward into Johnston County by Daniels and others
(1972), but the full extent of this unit is not known. These
surficial materials of the Inner Coastal Plain and Sand
Hills overlie Cretaceous sediments. They are undifferen-
tiated and in this report are included in the surficial
aquifer.

RECHARGE RATES

Recharge to the surficial aquifer depends on how
rapidly rainfall can infiltrate into the aquifer. As noted in
the preceding discussion, the rocks of the aquifer are not
uniform in either composition or thickness. Recharge
rates depend on the capacity of the soils formed from the
various rock materials to allow water to move downward
through the unsaturated zone.

One way of evaluating relative recharge rates is to look
at the infiltration capacities of the various soil associa-
tions delineated by the U.S. Soil Conservation Service.
Soil associations having similar characteristics of drain-
age, sand-clay content, and permeability were identified
on the General Soil Map of North Carolina (Tant and
others, 1974) and arranged as groups having good,
moderate, or poor infiltration capacity (fig. 11).

Soils deemed to have good infiltration capacity were
well-drained to very well-drained sandy soil and sandy
loam having vertical saturated permeabilities of 2 to 20
inches per hour. A few sandy soils containing significant
amounts of clay were included if their permeabilities
were within this range. Heath (1980) estimated that
annual recharge to thick, sandy soils in the surficial
aquifer may be as much as 20 inches of equivalent
rainfall.

Fine sand, silty loam, and sandy clay loam having
vertical saturated permeabilities of 0.2 to 6 inches per
hour were considered to have moderate infiltration
capacity. Poorly drained clay, clay loam, and sandy-clay
loam having vertical saturated permeabilities of 0.06 to 2
inches per hour were considered to have poor infiltration
capacity. Recharge to the surficial aquifer through these
soils having poor infiltration capacity may be as little as
5 inches per year, according to Heath (1980).

The general groupings of soil infiltration capacities in
figure 11 show a relation to the rocks making up the
surficial aquifer. For the most part, soils derived from
fine sand, silt, and clay of marine origin in the Tidewater
region have poor to moderate infiltration capacities,
whereas soils derived from the coarser fluvial sediments
in the Inner Coastal Plain tend to have higher infiltration
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units B, C, and D in the extreme southeastern part of
Virginia.

The Black Creek aquifer in this report is defined to
include the sediments of both the Black Creek and
Middendorf Formations and their downdip equivalents
as interpreted from geophysical logs and lithologic
descriptions. The correlation of the Black Creek aquifer
throughout the Coastal Plain is shown on the hydrogeo-
logic sections on plates 2-14.

The updip limit of the Black Creek aquifer extends
eastward from the Fall Line at the South Carolina State
line to Johnston County, and thence northeastward to
Gates County, where it swings eastward, nearly paral-
leling the Virginia border (pl. 21). The top of the Black
Creek aquifer is about 1,600 ft below sea level in western
Dare County (well 48, pl. 7). Although data are not
available to define the aquifer farther east with confi-
dence, sediments equivalent to those of the Black Creek
aquifer are as-deep as 3,000 ft at Cape Hatteras (Brown
and others, 1972, pl. 50). In general, the aquifer is more
steeply dipping in the northern Coastal Plain than to the
south. It dips east-southeast at a rate of about 17 ft/mi,
inereasing coastward to about 38 ft/mi in the north; in the
south, the maximum southeastward dip of the aquifer is
about 12 ft/mi. The aquifer is thickest along the Pender
County coast northward to central Craven County,
where it is as much as 400 ft thick.

DISTRIBUTION OF PERMEABLE MATERIAL

On the average, the Black Creek aquifer contains
nearly 60 percent sand (pl. 21). The distribution of sand
is fairly uniform throughout the aquifer. There are no
large areas where the aquifer is composed of less than 50
percent or more than 70 pereent sand, nor are there any
regional trends. The largest variations of sand percent-
age are in the Sand Hills area. These are attributed to
the heterogeneous, fluvial nature of the Middendorf
sediments.

Sand in the Black Creek aquifer is predominantly very
fine to fine. Lithologic deseriptions eommonly refer to
some Black Creek beds as fine “salt and pepper” sands,
a reference to their content of dark glauconite grains.
The hydraulic conduectivity of the Black Creek aquifer is
estimated to range from about 15 to 50 ft/d, the average
value being about 28 ft/d (table 4).

As interpreted from lithology, the aquifer has lower
hydraulic conductivity values in the northeast from Cur-
rituck to Tyrrell and Dare Counties, along its northwest
limit, and in the Sand Hills area. It has higher hydraulic
conductivity values along the southeast coast from east-
ern Brunswick County to Onslow County.

More definitive values of hydraulic conductivity for the
Black Creek aquifer are derived from aquifer tests. In
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Martin County, an average test value is 23 ft/d (Wyrick,
1966, p. 39). Sumsion (1970, p. 33) listed tests in Pitt
County showing a range of values from 16 to 33 ft/d. A
value of 30 ft/d was derived from two aquifer tests at
Kinston, Lenoir County (Nelson and Barksdale, 1965, p.
22); for the Middendorf sediments (locally called the
Sandhills aquifer) at Pinehurst, Moore County, test data
indicated a hydraulic conductivity of 19 ft/d (NRCD,
Office of Water Resources, 1980). In addition to these
data, preliminary tests at several NRCD research sta-
tions showed the hydraulic conductivity of the Black
Creek aquifer to be approximately 15 to 50 ft/d.

OCCURRENCE OF SALTWATER

The transition zone in the Black Creek aquifer closely
parallels the transition zone in the Peedee aquifer in the
northern half of the Coastal Plain, but in the south it is
slightly west of the one in the Peedee aquifer. The
greatest width of the transition zone in the Black Creek
aquifer ranges between 6 and 10 mi, and is similar to that
in the Peedee aquifer in the southern Coastal Plain.

The position of the 250 mg/L isochlor, along with
chloride econcentration values for points within the aqui-
fer, are shown on several hydrogeologic sections (pls. 2,
4-8, 11, 13). In a small area of central Craven County,
freshwater in the Black Creek aquifer occurs beneath
saltwater in the Peedee aquifer (pls. 6, 13). The areal
extent of this anomaly ean be seen by comparing the 250
mg/L isochlors on plates 20 and 21.

The 10,000 mg/L isochlors in the Black Creek aquifer
also are shown on plate 21 and in three hydrogeologic
sections (pls. 6-8). No analyses of water from the Black
Creek aquifer are available that show chloride concen-
trations of 10,000 mg/L or more; the positions of these
isochlors have been inferred from the chloride values of
water samples from overlying and underlying aquifers
and from Meisler (1980, fig. 4).

BLACK CREEK CONFINING UNIT

The Black Creek confining unit, which overlies the
Black Creek aquifer, is composed of clay, silty clay, and
sandy clay, primarily of the uppermost beds of the Black
Creek Formation. Along the western limit of the Black
Creek aquifer in the northern Coastal Plain, where
Tertiary rocks overlie it, the confining unit may include
clay beds of the lower parts of the Beaufort or Yorktown
Formations. In the deeper subsurface, where the conti-
nuity of confining units is interpreted from head relation-
ships and water-quality data, the confining unit may be
composed of clay beds of either the Black Creek or
Peedee Formation. Where the Black Creek aquifer is
composed of the Middendorf Formation in the Sand Hills,
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the Black Creek confining unit is the uppermost Midden-
dorf clay.

The correlation and interpretation of the extent of the
Black Creek confining unit are shown on plates 2-14. In
the highly dissected Sand Hills, the Middendorf clays
that constitute this confining unit are cut through in
many places by streams, as illustrated on plate 2. Thus,
the aquifer here is confined only beneath hilltops. Far-
ther east, the channels of larger streams, such as the
Cape Fear and Neuse Rivers, also have cut through the
confining unit to allow direct hydraulic connection
between the streams and the Black Creek aquifer.

The Black Creek aquifer pinches out before reaching
the Fall Line along the northern half of the Coastal Plain.
Beyond the pinch out, clay beds equivalent to the Black
Creek confining unit are included in the upper Cape Fear
confining unit overlying the upper Cape Fear aquifer,
which extends farther west than the Black Creek aqui-
fer.

The extent and thickness of the Black Creek confining
unit are shown on plate 21. The average thickness of the
confining unit is about 45 ft, but it ranges up to at least
168 ft (table 4). The confining unit thickens over the
eastern part of the Coastal Plain. This thickening reflects
the regional coastward thickening of Coastal Plain sedi-
ments. The pinching out of aquifer units and the merging
of clay beds add considerable thickness to the confining
unit in a number of places along the Inner Coastal Plain.

The Black Creek confining unit is thinnest in the Sand
Hills area, averaging about 10 ft, owing to the discontin-
uous nature of Middendorf fluvial sand and clay beds.
Here, the confining unit is defined as the first clay bed
occurring near the top of the Middendorf Formation.

RELATION WITH OTHER AQUIFERS

The Black Creek aquifer and its confining unit are
overlain by the Peedee, Beaufort, Yorktown, and surfi-
cial aquifers (fig. 19). The Peedee aquifer covers the
eastern two-thirds of the Black Creek aquifer, and the
surficial aquifer (where present) is in contact with the
Black Creek aquifer from the Fall Line to the western
limit of the Peedee aquifer in much of the southern
Coastal Plain, except for a small area of intervening
Yorktown aquifer in Robeson County. The Yorktown
and Beaufort aquifers overlie the Black Creek along its
western limit in the northern Coastal Plain.

Recharge to the Black Creek aquifer oceurs mainly by
downward percolation from the overlying aquifers. This
recharge process generally is limited to interstream
areas along the western half of the area.

The Black Creek aquifer in the western part of the
aquifer area discharges into streams where their chan-
nels cut into it or into its overlying confining unit.
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Discharge by upward leakage generally occurs southeast
of a line from central Gates County to central Columbus
County. However, in some areas of heavy pumping from
the Black Creek aquifer, such as in the central Coastal
Plain around Lenoir and Craven Counties (fig. 6), natural
discharge has been completely captured by pumping.

The upper Cape Fear aquifer and confining unit under-
lie the Black Creek aquifer everywhere except in a
narrow area along the Fall Line from Richmond to
Johnston Counties. Where the upper Cape Fear aquifer
is absent near the Fall Line, the Black Creek aquifer
directly overlies basement rocks, as shown on plates 2, 4,
and 5.

UPPER CAPE FEAR AQUIFER

The upper Cape Fear aquifer comprises permeable
zones in the upper part of the Cape Fear Formation.
These sediments compose a distinct hydrologic unit apart
from the lower part of the Cape Fear Formation. The
Cape Fear Formation has been described by various
workers from its outerops exposed along the Cape Fear,
Neuse, and Tar Rivers and is the oldest exposed Creta-
ceous unit of the North Carolina Coastal Plain. First
named by Stephenson (1907), these rocks were called the
Patuxent Formation by Clark and others (1912) and the
Tuscaloosa Formation by Cooke (1936). The name “Cape
Fear Formation” was reinstated by Sohl (1976). The
Cretaceous age of the Cape Fear has been long estab-
lished, but the specific placement of the formation within
the system has not been firmly fixed. For example, the
age of the Cape Fear as given by recent workers ranges
from late Santonian (Christopher and others, 1979) for an
upper limit, to Early Cretaceous (Jordan and Smith,
1983) for a lower limit. However, the U.S. Geological
Survey considers the Cape Fear Formation Austinian in
age (Renken, 1984).

The Cape Fear Formation is not recognized from
Virginia northward, and its extension north of the Cape
Fear River is by virtue of similar exposures along the
Neuse, Tar, and Roanoke Rivers. Swift and Heron (1969,
p- 209) also correlated the Cape Fear Formation in the
northeast Coastal Plain with the Washitan and Freder-
icksburgian sediments in Halifax County described by
Brown (1963, p. 4).

The lithologic characteristics of the Cape Fear Forma-
tion in outcrop were thought by Heron and Wheeler
(1964, p. 16) to indicate deposition in a nearshore marine
environment. The outcropping Cape Fear consists of
alternating beds of sand and clay that are commonly 3 to
5 ft thick but range from a fraction of a foot to 15 ft thick.
Some beds show vertical gradation from sand to clay,
while others carry thin conglomerates of quartz pebbles
or mudstone fragments. Where the Cape Fear is deeply



























HYDROGEOLOGIC FRAMEWORK

Lower Cretaceous sediments were correlated into
Virginia by Brown and others (1972) as sediments
belonging to Trinitian, Fredericksburgian, and Washitan
Stages. Brown and Cosner (1974) also described Lower
Cretaceous strata in southern Virginia along the North
Carolina border, and equated these with sediments of the
Potomac Formation. Lower Cretaceous sediments are
not known in the subsurface along the North Carolina-
South Carolina border.

The Lower Cretaceous aquifer is the lowermost aqui-
fer defined in this report. The mapped extent in North
Carolina is limited to the northern tier of counties, as
shown on plate 24; south of this area, hydrogeologic data
are lacking to separate the lower Cape Fear and Lower
Cretaceous aquifers. The southward projection of the
limit of the Lower Cretaceous aquifer was estimated
from the limit of Lower Cretaceous sediments shown by
Maher and Applin (1971, pl. 17). The section on plate 8
shows the aquifer from its western limit in Virginia
downdip to Currituck County, N.C. The aquifer also has
been identified in a test hole (well 160, pl. 14) in Virginia
that penetrates all the Coastal Plain sediments.

The upper surface of the Lower Cretaceous aquifer
dips east, steepening from 15 ft/mi near its western limit
to about 25 ft/mi near the coast. The altitude of the
aquifer top in northeastern North Carolina ranges from
less than 600 ft to as much as 2,267 ft below sea level (pl.
24). The thickness of the aquifer also increases to the
east, as shown on plate 8, from about 25 ft near its
western limit (well 161) to 812 ft in well 57. The average
thickness of the aquifer west of the 10,000 mg/L isochlor
boundary is about 500 ft.

DISTRIBUTION OF PERMEABLE MATERIAL

The Lower Cretaceous aquifer averages 53 percent
sand in five wells that penetrate it (table 4). The distri-
bution of these wells is shown on plate 24. The proportion
of sand to clay varies little from west to east in the
aquifer, although the aquifer thickens greatly in this
direction.

Grain sizes interpreted from geophysical logs appear
to be mostly fine to medium, with a few scattered beds of
coarse sand. Some sand layers apparently either contain
a significant proportion of clay or are somewhat glauco-
nitic. The deeper parts of the aquifer include limestone
beds. Estimates of hydraulic conductivity range between
20 and 30 ft/d. Brown and Cosner (1974) report trans-
missivity values for the Lower Cretaceous aquifer at
Franklin, Va., about 10 mi due north of the Gates
County-Hertford County line at the Virginia border, to
be between 6,000 and 24,000 feet squared per day (ft%/d).
Given an average thickness of about 600 ft, the hydraulic
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conductivity for the aquifer in that area ranges between
10 and 40 ft/d.

OCCURRENCE OF SALTWATER

The Lower Cretaceous aquifer in North Carolina con-
tains little freshwater. Freshwater is restricted to a
small area along the Virginia border in Hertford and
Northampton Counties (pl. 24) where the freshwater-
saltwater transition zone trends almost east-west. The
transition zone is 1 to 2 mi wide. Just at the southern
edge of the transition zone, a water sample from near the
bottom of the aquifer contained 1,100 mg/L chloride (well
67, pl. 8).

The 10,000 mg/L isochlors extend southward from the
Virginia border in the vicinity of the Camden County-
Currituck County line to northern Pasquotank County,
and thence westward to the aquifer limit in southern
Hertford County (pl. 24). The distance between the
10,000 mg/L isochlors intersecting the top and bottom of
the aquifer is large, primarily because of the great
thickness of the Lower Cretaceous aquifer. Two water
samples, one from the upper part of the aquifer in
Pasquotank County (well 108, pl. 8) and another from the
lower part of the aquifer in well 160 (pl. 14) in Virginia,
were the control data for the interpretation of the 10,000
mg/L isochlors.

LOWER CRETACEOUS CONFINING UNIT

The Lower Cretaceous confining unit, which overlies
the Lower Cretaceous aquifer, consists of clay and sandy
clay beds that belong to sediments of either Early
Cretaceous or Late Cretaceous age. The degree of
continuity of this confining unit along the western margin
of the aquifer is not well understood. For example, there
are no data to indicate whether the aquifer or the
confining unit first pinches out updip.

Downdip, the confining unit is correlated between a
few wells (pl. 8) and shows a general trend of thickening
toward the coast (pl. 24). The thickness of the unit ranges
to nearly 70 ft in Camden and Currituck Counties. The
average thickness is about 44 ft, based on data from eight
wells that penetrate the confining unit (table 4).

RELATION WITH OTHER AQUIFERS

The Lower Cretaceous aquifer and its confining unit
are overlain everywhere by the lower Cape Fear aquifer,
as shown in figure 23, and are underlain everywhere by
crystalline basement rocks. Aside from the negligible
ground-water flow in fractured or weathered bedrock, all
water flowing into or out of the Lower Cretaceous
aquifer must pass through the lower Cape Fear aquifer.
Patterns of natural recharge and discharge in the Lower
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Cretaceous aquifer have been masked, at least in the
northern Coastal Plain, by the effects of large ground-
water withdrawals from the Lower Cretaceous and
lower Cape Fear aquifers in Virginia.

Comparative water-level measurements in these aqui-
fers in North Carolina do not extend far enough back in
time to provide information about the predevelopment
condition of the aquifer. However, the direction of
ground-water movement in the Lower Cretaceous aqui-
fer may be inferred from the orientation of saltwater in
the aquifer. The transition zone in the Lower Cretaceous
aquifer (pl. 24), which is oriented nearly east-west, is
presumed to represent a front of saltwater that has been
created by action of freshwater flowing in a direction
more or less perpendicular to the front. Therefore, it
appears that predevelopment ground-water movement
in the aquifer was in a southerly direction, flowing from
recharge areas in Virginia to discharge areas in Virginia
and North Carolina. All of this discharge in North
Carolina was by upward leakage through the Lower
Cretaceous confining unit to the lower Cape Fear
aquifer.

SUMMARY

The North Carolina Coastal Plain is underlain by a
generally eastward dipping and eastward thickening
wedge of sedimentary rocks ranging in age from Holo-
cene to Cretaceous and composed of unconsolidated
gravel, sand, silt, and clay with scattered beds of shells,
indurated to loosely consolidated beds of limestone,
sandy limestone, and shell limestone. These sediments
lie on crystalline basement rocks and attain a thickness of
more than 10,000 ft east of Cape Hatteras. Most of these
rocks are nonmarine and deltaic in origin. They consist
largely of sand and clay sequences that are discontinuous
and heterogeneous and locally show evidence of exposure
to the atmosphere. This is especially true of the lower-
most one-third to one-half of the sedimentary section
making up the oldest rock layers. The upper sequences
are largely marine in origin and include nearshore and
estuarine deposits, lagoonal sediments, and beds depos-
ited in deep waters. The entire Coastal Plain sedimen-
tary sequence has a complex erosional and depositional
history as a result of continental rifting, the presence of
structural highs and lows in the underlying basement
rocks, and fluctuations in the level of the sea.

The stratigraphic continuity of these sediments was
delineated primarily by using geophysical logs in con-
junction with lithologic data to construct 18 intercon-
nected hydrogeologic sections throughout the Coastal
Plain. Aquifers and confining units also were delineated
on the basis of lithologic similarities, information on
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water levels in different sedimentary layers, and differ-
ences in water quality.

Ten aquifers and nine confining units constitute the
hydrogeologic framework of the North Carolina Coastal
Plain. The names of the aquifers (except the lowermost
aquifer) were derived from the geologic formation most
closely associated with each aquifer. Uppermost to low-
ermost, these are the surficial aquifer, Yorktown aqui-
fer, Pungo River aquifer, Castle Hayne aquifer, Beau-
fort aquifer, Peedee aquifer, Black Creek aquifer, upper
Cape Fear aquifer, lower Cape Fear aquifer, and Lower
Cretaceous aquifer.

Along with the hydrogeologic sections, maps showing
the altitude of the top of each aquifer, the thickness of
each confining unit, and the percentage of permeable
material in each aquifer provide areal descriptions of
these aquifers. Hydrogeologic data for each of 161 well
sites include the altitude of the top of each unit, the
thickness of each unit, the percentage of permeable
material in each unit, and an estimate of hydraulic
conductivity for each aquifer; these data are given in the
“Supplemental Data” section at the end of the report.
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REGIONAL AQUIFER-SYSTEM ANALYSIS—NORTHERN ATLANTIC COASTAL PLAIN
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