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FOREWORD

THE REGIONAL AQUIFER-SYSTEM ANALYSIS PROGRAM

The Regional Aquifer-System Analysis (RASA) Program was started in
1978 following a congressional mandate to develop quantitative appraisals of
the major ground-water systems of the United States. The RASA Program
represents a systematic effort to study a number of the Nation’s most
important aquifer systems, which in aggregate underlie much of the country
and which represent an important component of the Nation’s total water
supply. In general, the boundaries of these studies are identified by the
hydrologic extent of each system and accordingly transcend the political
subdivisions to which investigations have often arbitrarily been limited in the
past. The broad objective for each study is to assemble geologic, hydrologic,
and geochemical information, to analyze and develop an understanding of the
system, and to develop predictive capabilities that will contribute to the
effective management of the system. The use of computer simulation is an
important element of the RASA studies, both to develop an understanding of
the natural, undisturbed hydrologic system and the changes brought about in
it by human activities, and to provide a means of predicting the regional
effects of future pumping or other stresses.

The final interpretive results of the RASA Program are presented in a series
of U.S. Geological Survey Professional Papers that describe the geology,
hydrology, and geochemistry of each regional aquifer system. Each study
within the RASA Program is assigned a single Professional Paper number,
and where the volume of interpretive material warrants, separate topical
chapters that consider the principal elements of the investigation may be
published. The series of RASA interpretive reports begins with Professional
Paper 1400 and thereafter will continue in numerical sequence as the interpre-
tive products of subsequent studies become available.

Dallas L. Peck
Director
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GEOHYDROLOGIC FRAMEWORK OF THE SNAKE RIVER PLAIN
REGIONAL AQUIFER SYSTEM, IDAHO AND EASTERN OREGON

By R.L. WHITEHEAD

ABSTRACT

The Snake River Plain in southern Idaho is a major geologic
structure of uncertain origin. Surface geology is generally well
defined, but subsurface geology is poorly defined below about
500 feet. Rocks that underlie the plain form the framework for a
regional ground-water system that supplies large quantities of
water for irrigation and makes the plain nationally important in
terms of agricultural production.

The 15,600-square-mile Snake River Plain is a grabenlike
structure that formed in middle Miocene time. The graben may
have been formed by oblique extensional forces resulting from
interactions between the North American and Pacific tectonic
plates. The oldest known rocks underlying the plain, penetrated
in a 14,007-foot-deep test hole northwest of Boise, are of middle
Miocene age. Miocene volcanic rocks at the plain’s margin that
dip toward and underlie the plain were highly faulted and se-
verely eroded before the plain was formed.

Faults along the margins of the eastern part of the plain are
not visible at land surface and have been defined chiefly by geo-
physical methods. However, well-defined fault systems bound
the western part of the plain.

The eastern plain is underlain predominantly by Quaternary
basalt of the Snake River Group, which is intercalated with
sedimentary rocks along the margins. Basalt crops out or is less
than 10 feet below land surface in the central part of the east-
ern plain and is usually less than 100 feet below land surface
elsewhere. Geophysical data and drillers’ logs indicate that
Quaternary basalt in the central part of the eastern plain is as
much as 5,000 feet thick. A test hole about 10 miles northeast
of the Snake River near Wendell provided the first information
about deep subsurface stratigraphic relations in that part of the
plain. The stratigraphic sequence penetrated in the test hole is
similar to that in the north wall of the Snake River canyon be-
tween Milner and King Hill. In that area, basalt of the Snake
River Group thins toward the river and is underlain by sedi-
mentary rocks and basalt of the Tertiary and Quaternary Idaho
Group.

The western plain is underlain mainly by unconsolidated and
weakly consolidated Tertiary and Quaternary sedimentary rocks
as much as 5,000 feet thick. Basalt also is present in the west-
ern plain and is most extensive near Mountain Home.

Quaternary basalt of the Snake River Group, which composes
much of the Snake River Plain regional aquifer system, is highly
transmissive. In the eastern plain, a thick sequence of thin-
layered basalt flows yields large volumes of water to wells. Wells
open to less than 100 feet of the aquifer yield as much as 7,000
gallons per minute; yields of 2,000 to 3,000 gallons per minute
with only a few feet of drawdown are common. Transmissivity

commonly exceeds 100,000 feet squared per day and, in places, 1
million feet squared per day.

Large springs in the Snake River canyon between Milner and
King Hill issue at the contact between highly transmissive pil-
low lava and less transmissive underlying rocks. In 1980,
ground-water discharge between Milner and King Hill, largely
spring flow, averaged about 6,000 cubic feet per second.

In the western plain, coarse-grained sedimentary deposits are
thickest and transmissivity is highest along the northern mar-
gins. The percentage of coarse-grained sedimentary deposits de-
creases to the southwest, where lacustrine sedimentary deposits
predominate.

In most of the eastern plain, the upper part of the ground-
water system is unconfined. At depth and in much of the west-
ern plain, aquifers are confined.

Across most of the plain, Quaternary basalt aquifers overlie
aquifers in the Tertiary Idavada Volcanics and Banbury Basalt
of the Idaho Group. The older volcanic rocks are typically much
less transmissive than the Quaternary basalt. Faults and frac-
tures are permeable zones for water storage and conduits for
water movement. In places near the margins of the plain, the
Idavada Volcanics contains important geothermal aquifers.

INTRODUCTION

The Snake River Plain is an arcuate area of
15,600 mi? (fig. 1) that extends across southern
Idaho into easternmost Oregon. The plain ranges
from about 30 to 70 mi in width and from 2,100 to
6,000 ft in altitude above sea level. The relatively
flat plain slopes generally westward and is sur-
rounded by high mountains that range from 7,000 to
12,000 ft in altitude. The Snake River, the main
stream draining the area, enters eastern Idaho from
Wyoming and generally follows the southern edge of
the plain. The Snake River is one of the steepest
large rivers in North America (Malde, 1968, p. 6). In
places, the river is entrenched as much as 700 ft
below the surface of the plain.

Areal extent of the Snake River Plain, as defined in
this study, is based on geology and topography. Gen-
erally, the boundary of the plain is at the land-surface
contact between the Tertiary and older rocks that bor-
der the plain and the Quaternary sedimentary and

Bl
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volcanic rocks that underlie the plain. In some areas,
an arbitrary boundary was selected on the basis of
topographic relief, even though the younger rocks ex-
tend beyond the boundary.

Distinct changes in geology and hydrology near
King Hill make feasible a geohydrologic division of
the plain into eastern and western parts (fig. 1). The
line separating the two parts is a drainage divide
from the northern boundary of the plain to the
Snake River at King Hill, the Snake River upstream
to Salmon Falls Creek, and Salmon Falls Creek to
the southern boundary of the plain. The eastern
plain is 10,800 mi?% the western plain is 4,800 mi?

Agriculture and its related activities dominate the
economy of the plain. In 1980, more than 3 million
acres were irrigated. Of this area, nearly 1 million
acres were supplied by ground water (Lindholm and
Goodell, 1986). Ground water also is the source for
most municipal, industrial, and domestic supplies.

PURPOSE AND SCOPE

The U.S. Geological Survey’s Snake River Plain
Regional Aquifer-System Analysis (RASA) study
began in October 1979. The purposes of the study
(Lindholm, 1981) were to (1) refine knowledge of the
regional ground-water-flow system, (2) determine ef-
fects of conjunctive use of ground and surface water,
and (3) describe water chemistry. To accomplish
these goals, the study was divided into subprojects to
(1) define the geohydrologic framework, (2) deter-
mine the hydrologic budget, (3) define the water
chemistry, (4) determine water use, and (5) develop
digital ground-water-flow models of the eastern and
western parts of the plain.

Lindholm (1981) presented a plan of study for
the Snake River Plain regional aquifer study. Pre-
liminary interpretative reports generated by the
RASA study to date (1986) include (1) a regional
water-table map and description of the ground-
water-flow system (Lindholm and others, 1983 and
1986); (2) a description of the gechydrologic frame-
work (Whitehead, 1986b); (3) water budgets and
flow in the Snake River (Kjelstrom, 1986); (4)
water withdrawals for irrigation (Bigelow and oth-
ers, 1984); (5) a map of land use showing irrigated
acreage (Lindholm and Goodell, 1986); (6) a de-
scription of surface- and ground-water quality
(Low, 1985); and (7) a ground-water-flow model of
the eastern Snake River Plain (Garabedian, 1986).

Final interpretative results of the Snake River Plain
RASA study are presented in Professional Paper 1408,
which consists of seven chapters as follows:

Chapter A is a summary of the aquifer system.

Chapter B (this report) describes the geohydro-
logic framework, hydraulic properties of rocks com-
posing the framework, and geologic controls on
ground-water movement.

Chapter C describes ground-water/surface-water
relations and ground-water budgets.

Chapter D describes solute geochemistry of the
cold-water and geothermal-water systems.

Chapter E describes water use.

Chapter F describes results of ground-water-flow
modeling of the eastern Snake River Plain.

Chapter G describes results of ground-water-flow
modeling of the western Snake River Plain.

PREVIOUS STUDIES

General geologic features of part of the eastern
Snake River Plain were described briefly by Hayden
(1872) during a geologic reconnaissance of Montana
and adjacent territories. The first information on
ground water was given by Lindgren (1898), who de-
scribed the geology and water resources of the Boise
quadrangle in the western part of the Snake River
Plain.

Russell (1902, 1903a, b) described the geology of
the entire Snake River Plain in detail. He also de-
scribed many of the large springs in the Snake River
canyon in his 1902 report. His 1903 reports describe
the geology and artesian basins of southeastern Ore-
gon and southwestern Idaho. Lindgren and Drake
(1904a, b) described the geology and water resources
of the Nampa and Silver City quadrangles in south-
western Idaho.

Mansfield (1920, 1927, 1929) described geology and
mineral resources of southeastern Idaho, including part
of the Snake River Plain. Water resources are dis-
cussed in some detail in Mansfield’s 1920 report, but
are mentioned only briefly in his 1927 and 1929 re-
ports. A preliminary report by Stearns and Bryan
(1925) describes the geology and water resources of
the Mud Lake area in the northeastern part of the
Snake River Plain. A 1938 report by Stearns and oth-
ers was the first comprehensive report on water re-
sources of the eastern Snake River Plain. A 1939 report
by Stearns and others is the completion report of the
earlier (1925) study by Stearns and Bryan.

Mundorff and others (1964) described the water re-
sources of the entire Snake River Plain, with empha-
sis on use of ground water for irrigation. Norvitch and
others (1969) used a transient state, electric analog
model to study effects of artificial recharge on the
eastern Snake River Plain regional aquifer system.
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Crosthwaite (1973, 1974) described the results of
test drilling and ground-water investigations in
parts of the Snake River Plain. Mantei (1974) de-
scribed an electric analog study, and deSonneville
(1974) and Newton (1978) conducted digital model
studies of the eastern Snake River Plain. Numer-
ous local studies, most of which are listed in the
references, have been conducted in parts of the
plain.

Results of many more recent geophysical and
geologic studies of the Snake River Plain are
presented in a single volume that describes the
Cenozoic geology of Idaho (Bonnichsen and Breck-
enridge, 1982).
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WELL-NUMBERING SYSTEM

The well-numbering system (fig. 2) used by the
U.S. Geological Survey in Idaho indicates the loca-
tion of wells within the official rectangular subdivi-
sion of the public lands, with reference to the Boise
base line and Meridian. The first two segments of
the number designate the township (north or
south) and range (east or west). The third segment
gives the section number; three letters follow
which indicate, respectively, the Y2 section (160-
acre tract), s~ section (40-acre tract), and Va—Va—
Vs section (10-acre tract); last is the serial number
of the well within the tract.

Quarter sections are lettered A, B, C, and D in
counterclockwise order from the northeast quarter of
each section. Within the quarter sections, 40-acre
and 10-acre tracts are lettered in the same manner.
Thus, well 7S-15E-12CBA1 is in the NEXANWY.SWY,

sec. 12, T. 7 S., R. 15 E., and was the first well in-
ventoried in that tract.

GEOLOGIC HISTORY

Much of the following brief geologic history of
southern Idaho and adjacent States was modified
from Ross and Forrester (1958, p. 29-36).

Marine sedimentation predominated during
much of the Paleozoic Era; however, gentle crustal
disturbances caused uplift during much of the late
Paleozoic Era. Deposition resumed thereafter and
continued throughout the Mesozoic Era, during
which igneous activity and extensive, violent
crustal movements were common. During the Cre-
taceous Period, the Idaho batholith intruded indu-
rated Paleozoic and Mesozoic rocks and thrust
them as much as 50 mi eastward. Uplift continued
until the early Cenozoic Era, when erosion became
prevalent. After a long interval of erosion, renewed
uplift again created a rugged, mountainous terrain.
Eruption of the Challis Volcanics of Eocene age
began about 51 million years ago (McIntyre and
others, 1982, p. 3) and lasted about 11 m.y. Challis
lava flows were areally extensive and nearly filled
many valleys. Toward the end of this eruptive peri-
od, ash flows predominated. A period of erosion fol-
lowed, resulting in a subdued topography before
Miocene volcanic activity began.

Rocks referred to in this report as older silicic
volcanic rocks and older basalts were extruded dur-
ing the Miocene Epoch. They covered much of the
Snake River Plain area, particularly the southern
and western parts. Most of the area north and
west of the plain has been free of volcanic activity
since Miocene time. Miocene volcanic rocks were
deformed and eroded before later volcanic activity
and formation of the Snake River Plain.

Unknown forces associated with Miocene volcanic
activity created the depression now referred to as
the Snake River Plain (Leeman, 1982, p. 156; Mabey,
1982, p. 150). Following structural formation of the
plain, volcanic activity resumed and continued into
the Holocene. Basaltic lava of the Tertiary Snake
River Group was the last extruded material; the lat-
est eruption was about 2,000 years ago. Concurrent
with volcanism, sediment derived largely from moun-
tains bordering the plain was deposited as layers
intercalated with the basalt. The plain continued to
subside as a result of loading from extruded lava
and sedimentary deposits and from weakening of
the crust as lava was removed from underground
magma chambers. The base of Cenozoic rocks is now
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Ficure 2.—Well-numbering system.
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thousands of feet below sea level, particularly in the
western part of the Snake River Plain.

ORIGIN OF THE SNAKE RIVER PLAIN

Postulations about the origin of the Snake River
Plain involve both volcanism and tectonism. The sur-
face of the plain displays a variety of volcanic fea-
tures, such as cinder cones, craters, shield volcanoes,
and lava flows, that attest to its geologic youth.
Holocene volcanism, open fissures, and evidence of
continued subsidence show that the plain is an
actively developing structure (Mabey, 1982, p. 150).
Investigators have proposed a variety of theories
concerning the formation of the plain, no one of
which takes into account all known geological and
geophysical information (Robertson and others, 1974,
p. 36). However, most investigators agree that devel-
opment of the plain began in middle Miocene time
(Christiansen and McKee, 1978, p. 287).

The Snake River Plain has been described as a
depression, downwarp, graben, and rift. Early investi-
gators Lindgren (1898) and Russell (1902) recognized
that northwest-trending faults bounding the western
plain suggest that it is a graben. On the basis of the
plainward dip of rocks along the margins, they also
recognized that downwarping had occurred. Down-
warping has played a definite part in the plain’s for-
mation, if only as a reaction to other crustal
movements. The theory that the entire plain is a major
rift (Hamilton and Myers, 1966) cannot be totally sat-
isfied with the current information, which is based
mainly on geophysical data (Robertson and others,
1974, p. 36). On the basis of surface geology and geo-
physical anomalies, Mabey (1982, p. 140) discussed
the plain as three separate units—the northwest-
trending western Snake River Plain, the northeast-
trending eastern Snake River Plain, and the central
Snake River Plain. The western and central parts of
the plain may have similar origins and may be termed
grabens or rifts. On the basis of gravity anomaly rela-
tions, however, they differ from typical continental
grabens or rifts (Mabey, 1982, p. 145). The Snake
River Plain also may be related to the regional rift
that extends through northern Nevada and that de-
veloped as a response to regional west-southwest ex-
tensional forces. The eastern Snake River Plain
appears to have formed by different forces, such as a
response to extension normal to the plain’s axis. The
eastern plain also may be the track of an eastward-
migrating thermal anomaly now centered in the geo-
logically active Yellowstone Plateau region (Mabey,
1982, p. 150).

The thermal or hot spot theory concerning the ori-
gin of the Snake River Plain was proposed by
Morgan (1972) and was discussed most recently by
Leeman (1982, p. 155). A migration of rhyolitic vol-
canism from west (about 17 m.y. old) to east (about
0.07 m.y. old) resulted in 1.2 to 1.6 in./yr of longitu-
dinal movement along the axis of the plain. The loca-
tion of inferred regional and local stress fields and
geophysical evidence from large-scale reconstitution
of crustal rock tend to support the theory of the
North American tectonic plate passing over a perma-
nent, deep-rooted hot spot currently under the Yel-
lowstone Plateau. Christiansen and McKee (1978,
p. 299-304) discussed an alternative theory based on
a volcanotectonic evolution model and related forces
associated with the North American and Pacific
plates. They stated (p. 304):

The High Lava Plains [includes the Snake River Plain] are a
transitional transform boundary zone of the Great Basin***
[The] model emphasizes the axis of the High Lava Plains as a
“soft” edge to the zone of oblique extension that lies mainly to
the south. This transitional boundary is essentially aseismic and
is characterized along its entire length, especially in the Snake
River Plain, by Quaternary volcanic fields***.

The plain’s origin remains uncertain. It is not
known what rocks and structures are present at
depths of more than a few thousand feet. However,
recent geophysical and tectonic modeling studies
have provided much insight about the deep crustal
structure of the Snake River Plain. Continuing col-
lection and analysis of geological and geophysical
data, coupled with theoretical modeling efforts,
may someday provide a more definitive answer.

STRUCTURE

High-angle normal faults that bound the west-
ern plain (pl. 1) have long been recognized
(Russell, 1902). Gravity, seismic, and geologic stud-
ies suggest at least 9,000 ft of aggregate vertical
displacement (Malde, 1959, p. 272). Most faults are
downthrown toward the axis of the plain, resulting
in the grabenlike structure of the western plain.
Interpretation of seismic data by Wood and Ander-
son (1981, p. 14) suggests deep-seated faulting in
the central part of the western plain, as well as
along its margin (fig. 3). Faults are not well de-
fined along the boundary of the eastern plain.
However, on the basis of seismic data and model-
ing, Sparlin and others (1982, p. 2619-2633) sug-
gested that faults along the northern boundary of
the eastern plain may have an aggregate throw of
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TaBLE 5.—Specific-capacity data and calculated transmissivity, by county

Specific capacity, in gallons per day per foot of drawdownl

B25

County Number Mean Standard  Maximum Minimum Median Calculated
of wells deviation transmissivity?
(x 1,000 ft2/d)
Idaho
Ada 239 62 290 3,600 0.037 8.3 10
Bannock 29 180 580 3,000 .086 12 33
Bingham 29 440 340 3,800 2.5 81 87
Blaine 11 8.1 11 30 .10 3.1 1.1
Bonneville 14 740 1,000 3,600 55 400 150
Butte 17 430 980 3,600 2.7 47 85
Canyon 240 37 120 1,500 .088 11 59
Cassia 52 260 530 2,900 .80 36 49
Clark 3 53 25 75 26 58 8.8
Elmore 99 210 800 5,000 014 15 39
Fremont 13 77 230 830 2.0 10 13
Gem 18 5.0 7 24 017 2.9 64
Gooding 12 460 470 1,800 6.0 450 91
Jefferson 39 1,300 1,500 7,200 10 730 280
Jerome 52 440 540 1,800 5.0 180 87
Lincoln 9 580 860 2,700 4.0 450 120
Madison 21 700 820 2,400 10 290 140
Minidoka 34 610 740 3,500 30 420 120
Owyhee 920 120 530 3,000 .017 3.6 21
Payette 33 15 33 160 .094 1.3 2.2
Power 34 200 400 1,800 91 68 37
Twin Falls 21 49 170 780 35 3.6 8.0
Washington 9 2.1 5 16 .0094 .25 24
Oregon
Malheur 47 13 30 200 .0039 5.6 19

1Rounded to two significant figures.

2Based on mean specific capacity and equations of Theis and others (1963, p- 331).
Assumptions: Well radius, 0.5 ft; storage coefficient, 0.15; time (duration), 0.083 d (2 h).

and gravel deposits included in the alluvium may
be highly transmissive.

Storage coefficients determined from aquifer tests
also vary widely, as shown in table 4. Values given
indicate that aquifers range from unconfined to con-
fined; older alluvium usually has the lowest values,
but there are exceptions. Owing to the heterogeneity
of basalt and intercalated sedimentary rocks, ground
water is confined in places, as suggested by low stor-
age coefficients.

Because aquifer tests have been few and widely
scattered, the more readily available specific-capacity
data were used to estimate transmissivity throughout
the plain by a method of Theis and others (1963, p.
331). Specific-capacity data, summarized by county
and listed in table 5, were obtained from drillers’ logs
and aquifer tests. Transmissivities in table 5 were
calculated using the mean specific capacity for each
county. In general, calculated values show some agree-
ment with aquifer test values in table 4. Comparison
(by county) of average transmissivities determined

from aquifer tests with those estimated from specific-
capacity data shows that the latter are lower by as
much as an order of magnitude. Although the differ-
ence is seemingly large, values estimated from specif-
ic capacity give at least a general indication of an
aquifer’s ability to transmit water. Most wells for which
specific-capacity data are available are partially pen-
etrating; therefore, estimated transmissivities are
lower than for fully penetrating wells. In addition,
losses in the pumped well cause transmissivities esti-
mated from specific-capacity data to be lower than
transmissivities obtained from aquifer tests that in-
cluded observation wells.

GEOLOGIC CONTROLS ON
GROUND-WATER MOVEMENT

As a whole, the regional aquifer system in the
eastern Snake River Plain behaves as an unconfined
system, although locally, interbedded clay layers and
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dense, unfractured basalt cause semiconfined condi-
tions. In the western plain, water in many sand and
gravel aquifers is confined by clay layers.

Wells drilled near faults along the margins of the
plain, chiefly the western plain, commonly produce
geothermal water. Faults in these areas are impor-
tant avenues for the vertical movement of water
(Chapman and Ralston, 1970, p. 4; Lewis and Young,
1982, p. 22). Alternatively, faults may impede or
change the direction of horizontal ground-water move-
ment (Lewis and Goldstein, 1982, p. 39; Lewis and
Young, 1982, p. 6). Upward leakage of geothermal
water recharges overlying basalt and sedimentary-rock
aquifers containing cold water.

QUATERNARY BASALT AQUIFERS

The physical characteristics of the Quaternary
basalt govern the amount of water in storage and
rates of ground-water recharge and discharge.

Water moves horizontally through porous and
permeable interflow zones in basalt aquifers. An
interflow zone consists of highly fractured vesicular
basalt and cinders that compose the top part of one
flow and the base of the overlying flow. Horizontal
water movement in the rest of a basalt flow is
probably several orders of magnitude less than in
the interflow zone. Water in the basalt moves ver-
tically along joints and faults. Vertical movement
is dependent chiefly on the degree of fracturing
and the presence or absence of sedimentary inter-
beds that may impede water movement.

Layers of dense basalt with extremely low hydrau-
lic conductivity may act as a confining bed and cause
anomalous water levels in some areas. In such areas,
water may first enter a drill hole several feet to sev-
eral tens of feet below the expected water table. This
may be the reason for some reported dry holes in
basalt of the Snake River Group. When a deeper
zone of high hydraulic conductivity is penetrated, the
water level in the hole may rise. The amount of rise
is generally less than 5 ft but can be more than 50 ft
(Nace and others, 1959, p. 48). Well A (fig. 12) is
drilled into the dense, unfractured central part of a
flow and is dry. Well B, however, is drilled through
the central part of a flow (where little water is pres-
ent) and into fractured, highly transmissive basalt.
The water level in well B will rise to about the level
of the regional water table. Such was the case dur-
ing the drilling of a test hole at site 2N-27E-23AC2.
The 1,000-ft hole was completed in dense basalt and
remained dry for 13 months (Nace and others, 1959,
p. 49). The hole subsequently was deepened to 1,065
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ft, and water in the hole rose to 981 ft below land
surface.

Pillow lavas typically have the highest hydraulic
conductivity. Most were formed in lava-dammed
lakes that filled ancestral canyons of the Snake
River. Highly permeable pillow lava in ancestral
canyons is intersected by the present-day Snake
River canyon between King Hill and Milner. In-
cluded in the reach are some of the Nation’s largest
springs (Thousand Springs area, fig. 1), which dis-
charged about 6,000 ft*/s in 1980 (Kjelstrom, 1986).
H.R. Covington (U.S. Geological Survey, written
commun., 1984) mapped the north wall of the Snake
River canyon between King Hill and Milner as part
of the RASA study (pl. 2). He verified that the larg-
est springs issue at various altitudes from pillow
lavas in ancestral Snake River canyons.

In places, the springs issue from the canyon wall
at the contact between Quaternary basalt of the
Snake River Group and underlying Idaho Group
sedimentary rocks of low hydraulic conductivity;
elsewhere, springs issue at the contact between
basalt of the Snake River Group and Tertiary
Banbury Basalt of the Idaho Group.

In the vicinity of Thousand Springs (segment 7-8,
pl. 2), sedimentary rocks of the Idaho Group (Glenns
Ferry Formation) crop out in the north canyon wall
and extend several miles northeastward beneath the
Quaternary basalt. A 200-ft-thick layer of Idaho Group
sedimentary rocks (clay, sand, and gravel) was pen-
etrated in the RASA test hole. The presence of similar

Layers of dense basalt of very
low hydraulic conductivity

Zone of high
hydraulic Well A Well B

conductivity (Dry) {nearly impermeable)

(T
R
, |

Ficure 12.—Effect of dense basalt layers on ground-water levels in
a hypothetical flow of basalt of the Snake River Group. Drawing
not to scale.
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types of rocks in several other drill holes in the Thou-
sand Springs area indicates that sedimentary rocks of
the Idaho Group may be areally extensive in the west-
ern part of the eastern plain. Therefore, in the Thou-
sand Springs area, sedimentary rocks constitute the
base of the Quaternary basalt aquifer in places. The
steeper water-table gradient in this part of the Snake
River Plain is attributed to lower transmissivity caused
by thinning of the basalt aquifer. The underlying sedi-
mentary rocks are less transmissive and are confin-
ing in places (Lindholm and others, 1983).

In the RASA test hole (fig. 4), hydraulic head in the
upper part of the Banbury Basalt (670 ft below land
surface) is about 65 ft higher than the water table in
the basalt of the Snake River Group (260 ft below
land surface). The thick sedimentary zone that sepa-
rates the two basalt units is the confining layer. In-
creases in hydraulic head are more pronounced at
greater depths. Hydraulic head in the Banbury Basalt
sequence (1,100 ft below land surface) is about 155 ft
higher than the water table in the Snake River Group.
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Some water in the Banbury Basalt may be from the
geothermal system in the underlying Idavada
Volcanics.

Semiconfined aquifers respond to external stresses
such as atmospheric pressure changes, earthquake
waves, and pumping, similar to a confined system.
Where the unsaturated zone is capped by confining
layers, some uncased wells expel or draw in air when
atmospheric pressure differs from the air pressure in
the unsaturated zone (fig. 13). The exchange of air
continues until a pressure equilibrium is reached. The
exchange of air in wells is common in the eastern
Snake River Plain where many wells are uncased, a
situation that allows air entering the well bore to pen-
etrate a considerable distance in the unsaturated
basalt surrounding the well.

Atmospheric pressure changes may affect water lev-
els by several tenths of a foot (fig. 14); accordingly,
water-level measurements must be adjusted to inter-
pret aquifer tests properly. Adjustments are particu-
larly necessary when (1) barometric (atmospheric)

EXPLANATION

P,  Atmospheric pressure

P, Unsaturated zone pressure below
semiconfining layers

LOW ATMOSPHERIC PRESSURE
Air is expelled from well
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—
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P,> P,

Ficure 13.—Effects of atmospheric pressure changes on air movement in the unsatur-
ated zone. Drawing not to scale.
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pressure changes are large, (2) water-level changes
are small, and (3) the aquifer has a high barometric
efficiency (Mundorff and others, 1964, p. 49). Truly
confined aquifers usually have the highest barometric
efficiencies. E.H. Walker (U.S. Geological Survey, writ-
ten commun., 1963) reported that barometric pres-
sure efficiencies of 80 to 100 percent are common in
basalt of the Snake River Group during the first few
hours of an atmospheric pressure change. However,
in many instances, the water-level response tends to
decrease with time after the atmospheric pressure
changes.

The uneven surface of basalt flows caused by dif-
ferential cooling and overlapping of flows from adja-
cent sources creates areas of internal drainage in which
water ponds, evaporates, or percolates to the water
table. Ponded water may be from direct precipitation,
runoff, or irrigation water. Disposal wells are used to
drain some of these areas.

TERTIARY SILICIC VOLCANIC AND BASALT AQUIFERS

Hydraulic conductivity of Tertiary silicic voleanic
rocks is generally low relative to that of Quaternary

2000—TT T T T T T T T T T 1283
200.1

28.5

200.2 28.7

200.3 28.9

DEPTH TO WATER, IN FEET

BELOW MEASURING POINT

ATMOSPHERIC PRESSURE,
IN FEET OF WATER

200.4 29.1

\
\Atmospheric 4
pressure et
Burley airport
(inverted) —129.3

200.5 - v o
1 1 i 1 1 1 1 1 1 1 1
2930311 2 3 4 56 7 8 9
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From Crosthwaite
and Scott (1956)

Ficure 14.—Effects of atmospheric pressure changes on water
level in well 8S-23E-2BA1.
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basalt. Pleistocene silicic volcanic rocks at the north-
eastern end of the plain (pl. 1; geologic cross section
F-F', pl. 3) are an exception. Water movement in si-
licic volcanic rocks is controlled largely by fractures.
Although. not considered part of the Snake River
Plain regional aquifer system, silicic volcanic rocks
are aquifers in many areas near the margins of the
plain.

Hydraulic conductivity of Tertiary basalt (mainly
Banbury Basalt of the Idaho Group) varies widely
but generally is much less than that of Quaternary
basalt. As seen in outcrops and cores, primary and
secondary porosity of the Banbury Basalt and,
consequently, hydraulic conductivity commonly are
reduced by secondary mineralization. Because Ter-
tiary basalt flows are usually much thicker than
Quaternary flows, interflow zones within a given
thickness are fewer and transmissivity is lower. In
a 10,365-ft test hole at the Idaho National Engi-
neering Laboratory (fig. 1), transmissivity of the
Quaternary basalt was estimated to be 1,000 to
10,000 times greater than that of the Tertiary
basalt (J.T. Barraclough, U.S. Geological Survey,
written commun., 1979). The degree of hydraulic
connection between Tertiary and Quaternary
basalts is largely unknown in much of the plain.
Outside the margins of the Snake River Plain, Ter-
tiary basalt is an important aquifer.

SUMMARY

Rocks underlying the Snake River Plain form the
framework for a regional ground-water system that
supplies large quantities of water for irrigation. For
study purposes, the Snake River Plain was divided
into eastern and western parts on the basis of rock
type and hydrology. The eastern plain is underlain
by predominantly basaltic rocks, the western plain
by unconsolidated sedimentary rocks.

The western part of the Snake River Plain is a
graben with distinct fault zones along its margins.
Faults bordering the eastern part of the plain are not
exposed at land surface and are defined chiefly by
geophysical methods. The Snake River Plain is an
uncommon structural feature in the Earth’s crust.
Holocene volcanism, open fissures, and continued sub-
sidence indicate that the plain is an active structure;
development of the plain began in middle Miocene
time. Several theories concerning the plain’s origin
have been presented, no one of which is in agreement
with all known geological and geophysical data. As a
result of geological and geophysical modeling studies,
several new ideas concerning the plain’s origin have
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been proposed. A volcanotectonic evolution model re-
lates forces associated with movements of the North
American and Pacific plates to the formation of the
plain. The Snake River Plain appears to be a transi-
tional transform boundary zone of the Great Basin,
created by oblique extensional forces.

The oldest known rocks underlying the plain are
of middle Miocene age. Miocene volcanic rocks at the
plain’s margin were intensely faulted and severely
eroded before the plain was formed. Deep crustal
structure of the plain has been described by geo-
physical studies, but little detailed work has been
done to describe structure and distribution of major
rock types in the upper few thousand feet.

An unnamed group of silicic voleanic rocks of
middle Miocene age underlies the Payette Formation
and the Columbia River Basalt Group in the western
plain. In the eastern plain, the unnamed silicic
volcanic rocks underlie the Walcott Tuff, Starlight
Formation, and Salt Lake Formation. The Idavada
Volcanics, Starlight Formation, and Walcott Tuff
overlie the Columbia River Basalt Group and older
sedimentary rocks of the Salt Lake Formation. The
Idaho Group and its basal formations, the Banbury
Basalt and Poison Creek Formation, overlie the
Idavada Volcanics and the Salt Lake Formation.
They, in turn, are overlain by basalt of the Snake
River Group and terrace gravels.

A 90-mi reach of the north Snake River canyon
wall from King Hill to Milner was mapped to deter-
mine geologic controls on springs and to define geo-
hydrologic relations. The stratigraphic sequence in
the canyon, in the vicinity of Thousand Springs, is
similar to that in the RASA test hole about 10 mi
northeast of the canyon.

The chiefly unconsolidated sedimentary rocks in
the western plain are as much as 5,000 ft thick;
basalt of the Snake River Group in the eastern plain
may be equally thick. Near the margins of the east-
ern plain, sedimentary rocks are intercalated with
basalt. A thick sedimentary layer of the Idaho Group
separates basalt of the Snake River Group from the
Banbury Basalt of the Idaho Group in parts of the
eastern plain. Where sedimentary rocks are absent,
separation was made on the basis of greater second-
ary mineralization in the Banbury Basalt.

Electrical resistivity soundings and gravity model-
ing helped define distribution of major rock units.
Electrical resistivity data were especially helpful in
estimating the thickness of Quaternary basalt, which
is the major rock unit in the Snake River Plain re-
gional aquifer system.

Pleistocene and Holocene sand and gravel aqui-
fers in the Boise River flood plain and along the
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northern margin of the western plain are highly
transmissive. During the Pleistocene Epoch, sedi-
ment was repeatedly washed onto the plain from
bordering mountains to the north. The percentage
of coarse-grained sedimentary deposits decreases to
the southwest, where fine-grained sedimentary de-
posits predominate. Discontinuous lenses of sand
and gravel within the fine-grained sedimentary de-
posits yield small to moderate quantities of water
to wells. A basalt aquifer near Mountain Home is
highly transmissive. Wells drilled along the margin
of the western plain penetrate faults that transmit
geothermal water from underlying Tertiary silicic
voleanic rock aquifers. These aquifers usually are
confined, and wells completed in them commonly
flow at land surface.

Most ground-water movement in layered basalts is
horizontal through highly porous and permeable
interflow zones. Vertical water movement is consider-
ably restricted and is dependent on degree of frac-
turing and presence or absence of fine-grained
intercalated sedimentary rocks that may impede move-
ment. Numerous thin flows and, consequently, many
hydraulically connected interflow zones characterize
the basalt aquifer in the eastern plain. The basalt
aquifer is thickest in the central part of the eastern
plain and thins toward the margins, where sand and
gravel aquifers also provide adequate supplies of water
to wells. Clay layers within the sedimentary sequence
are confining in places, as is dense basalt.

Transmissivity of basalt of the Snake River
Group, as determined from aquifer tests, commonly
exceeds 100,000 ft?%d and, in places, 1 million ft%d.
Yields of wells completed in basalt of the Snake
River Group are some of the largest in the Nation.
Wells open to less than 100 ft of the aquifer yield
as much as 7,000 gal/min; yields of 2,000 to 3,000
gal/min with only a few feet of drawdown are com-
mon. However, owing to the heterogeneity of
basalt, not all wells are as successful. In areas of
thick flows and dense basalt, well yields may be
low.

The aquifer in basalt of the Snake River Group, as
a whole, behaves as an unconfined system, but clay
layers and dense, unfractured basalt are locally con-
fining. Layers of dense basalt with extremely low hy-
draulic conductivity may be confining and cause
anomalous water levels in some areas. Even though
the regional water table is at a relatively uniform
altitude in these areas, a well may have to be drilled
several tens of feet below that water-table altitude
before reaching a permeable zone. Water will then
rise in the well to an altitude about the same as that
of the regional water table.
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Ancestral canyons of the Snake River were filled
with highly permeable pillow lavas that are inter-
sected by the present canyon. Some of the Nation’s
largest springs issue from pillow lavas in the north
wall of the Snake River canyon. In 1980, ground-
water discharge (largely spring flow) between Milner
and King Hill averaged about 6,000 ft*/s. Springs are
located at the contacts between highly transmissive
basalt of the Snake River Group and less transmis-
sive sedimentary rocks and Banbury Basalt of the
Idaho Group.

Faults and fractures in the Idavada Volcanics and
Banbury Basalt are permeable zones for water stor-
age and conduits for water movement. Geothermal
water issues from the Idavada Volcanics in fracture
zones along the margins of the plain.
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