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FOREWORD

THE REGIONAL AQUIFER-SYSTEM ANALYSIS PROGRAM

The RASA Program represents a systematic effort to study a number of the
Nation’s most important aquifer systems, which, in aggregate, underlie much
of the country and which represent an important component of the Nation’s
total water supply. In general, the boundaries of these studies are identified
by the hydrologic extent of each system and, accordingly, transcend the politi-
cal subdivisions to which investigations have often arbitrarily been limited in
the past. The broad objective for each study is to assemble geologic, hydro-
logic, and geochemical information, to analyze and develop an understanding
of the system, and to develop predictive capabilities that will contribute to the
effective management of the system. The use of computer simulation is an
important element of the RASA studies to develop an understanding of the
natural, undisturbed hydrologic system and the changes brought about in it
by human activities and to provide a means of predicting the regional effects
of future pumping or other stresses.

The final interpretive results of the RASA Program are presented in a
series of U.S. Geological Survey Professional Papers that describe the geology,
hydrology, and geochemistry of each regional aquifer system. Each study
within the RASA Program is assigned a single Professional Paper number
beginning with Professional Paper 1400.

Charles G. Groat
Director
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REGIONAL AQUIFER-SYSTEM ANALYSIS—NORTHEASTERN UNITED STATES

HYDROGEOLOGIC FRAMEWORK OF STRATIFIED-DRIFT
AQUIFERS IN THE GLACIATED NORTHEASTERN UNITED STATES

By ALLAN D. RANDALL

ABSTRACT

The Northeastern United States was probably glaciated several
times. In most valleys, however, the last ice sheet eroded down to
bedrock, and all of the stratified drift that now overlies bedrock can
be ascribed to the last deglaciation. Only in northeastern Ohio,
northwestern Pennsylvania, and parts of southwestern and central
New York do valleys commonly contain complex stratigraphy that
results from repeated glaciation: multiple till sheets interlayered
with lacustrine silt and with sand or gravel aquifers. Most stratified
drift was deposited in the major valleys or lowlands when they were
inundated by rising sea level or, more commonly, by proglacial lakes.
Coarse-grained sediment was deposited in these water bodies as
deltas and subaquatic fans, commonly amid stagnant ice blocks near
the margin of the active ice, and also in channels within the ice sheet.
The sediment was derived partly from debris-laden basal ice and
subglacial till, entrained by meltwater flowing through tunnels, and
partly from fluvial erosion of recently deposited drift in the uplands
that bordered the valley-bottom lakes. The stratified drift consists of
three facies deposited successively: proximal coarse-grained
heterogeneous ice-contact deposits, followed by distal fine-grained
lake-bottom sediment, and finally by coarse-grained surficial
sediment deposited in shallow lakes or stream channels. One or two
facies may be absent at any given site, but all three can be identified
in many places along every major valley or lowland. Coarse-grained
ice-contact deposits commonly constitute the bulk of the stratified
drift in narrow or shallow valleys, whereas in broad lowlands they
are widely scattered and occupy only a small fraction of the valley
floor. In valleys where depth to bedrock exceeds about 100 feet, the
bulk of the stratified drift commonly is fine grained, and
transmissivity is not generally proportional to saturated thickness.
Coarse sand and gravel tend to be more abundant in the southern
part of the glaciated Northeast than farther north.

Several concepts or generalizations are widely applicable in
interpreting the distribution of coarse-grained aquifers within
glacial drift in the glaciated Northeast. In many localities, stratified
drift can be divided into a series of morphosequences, which
represent successive time intervals during deglaciation. Grain size
decreases distally within each morphosequence; coarse,
heterogeneous ice-contact sand and gravel predominates at the
proximal end, whereas coarse sand commonly overlies lake-bottom
fines at the distal end. Successive morphosequences can be difficult
to distinguish, however, and coarse proximal deposits that are

especially prominent and easily recognized commonly overlie
relatively high bedrock and have small saturated thickness. Some
investigators have inferred that water-yielding coarse sand and
gravel are widely distributed at the base of the stratified drift,
overlying till or bedrock, as a result of continuous deposition of
subaquatic fans at the ice margin during retreat, even in broad
lowlands where surficial stratified drift is predominantly fine
grained. Other studies indicate, however, that subaquatic fans did
not form in all valley reaches and that within broad lowlands they
are restricted to relatively narrow zones that follow former subglacial
channels. Straight or sinuous narrow ridges composed of coarse sand
and gravel extend a few thousand feet, generally northward, from the
heads of at least some morphosequences. These ridges, termed
eskers, were deposited within or at the mouths of subglacial tunnels
and are potential sources of large water supplies. Narrow zones of
coarse stratified drift, typically eskers bordered or interspersed with
other ice-contact deposits, are nearly continuous for several miles
along some valleys and across low saddles. These zones seem to be
the product of meltwater flow through persistent subglacial tunnel
systems, are spaced 5 to 15 miles apart, and typically constitute
aquifers more productive than any in intervening valleys. Coarse
sand and gravel derived from upland watersheds was deposited
where tributary streams entered proglacial lakes in the valleys. In
deep valleys of the Appalachian Plateau and perhaps elsewhere, this
coarse sand and gravel was deposited largely as subaquatic and
surficial fans that now provide vertical hydraulic continuity between
those tributaries and deep aquifers. In many regions, however, much
sand and gravel was deposited near the proglacial lake surface in the
upper parts of deltas, overlying fines and largely above the water
table today. Where the deltas or fluvial sand deposits were built
against or atop stagnant ice, collapse or settlement as the ice melted
lowered the surficial sand and gravel, thereby increasing its
saturated thickness.

Stratigraphy, water-transmitting properties, and saturated
thickness of stratified drift can vary greatly over distances of a few
hundred feet. Such variations are seldom fully known and are
difficult to represent at map scales much smaller than 1:50,000. The
glaciated Northeast can, however, be classified into several broad
hydrophysiographic regions that are distinctive in their typical
aquifer geometry, although many boundaries are gradational. In
most of these regions, valleys generally sloped away from the ice
sheet, and stratified drift was deposited in local lakes that formed
successively as the ice retreated. Regions of low to moderate relief
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characterized by abundant, generally coarse-grained stratified drift
deposited in small, closely spaced valleys occur chiefly in the
southern part of the glaciated Northeast. Locally, sandy outwash was
thick enough to bury the pre-existing topography, resulting in small
regions in which water-level response to pumping resembles what is
expected in an infinite aquifer. Abundant sandy valley trains extend
for miles in major valleys south of the limit of glaciation. By contrast,
regions of low to moderate relief in northern Maine contain little
surficial stratified drift; the most central of these regions has almost
none and is bordered by regions of sparse stratified drift that is
chiefly fine grained, or largely buried beneath till, or limited to
narrow eskers that follow but do not fill the valleys. The Tug Hill
Plateau in north-central New York and the Pocono Plateau in
northeastern Pennsylvania also are regions of slight local relief
(except near the plateau margins); their small valleys drain radially
and contain little sand or gravel. The mountain regions in northern
New England and northern New York have narrow valley floors
where scattered bedrock outcrops imply even narrower aquifers;
much stratified drift is perched above stream grade on the valley
sides. Relief is comparably high in the Catskill Mountains and
Appalachian Plateau, but stratified drift here is not generally
perched on the valley sides, and bedrock does not crop out on the
valley floors. In the Catskills, valley fills seldom exceed 150 feet in
saturated thickness and include thick till deposited on lee (down-ice)
sides of hills. In the Appalachian Plateau, valley fills commonly
exceed 150 feet in saturated thickness; those that do are mostly silt
and clay, capped and commonly underlain by sand and gravel,
although west of Salamanca, New York, some valleys contain
multiple drift sheets. Valleys that drained toward the ice along the
northern margin of the Appalachian Plateau are unusually deep and
also commonly contain multiple drift sheets. The drift is
predominantly diamicton and fine-grained stratified sediment, but
sand and gravel occur as discontinuous lenses at several depths.
Broad lowlands along the Great Lakes, Lake Champlain, coastal
Maine and New Hampshire, the St. Lawrence, Connecticut, and
Hudson Rivers, and a few other places were inundated by extensive
proglacial lakes or marine waters. These lowlands are characterized
by widespread silt, clay, and fine sand interrupted by till-covered
hills. Ice-contact sand and gravel deposits underlie small parts of the
inundated areas, commonly as ice-channel fillings or esker deltas.
Extensive surficial sand-plain aquifers are common only where
tributary watersheds are large in relation to lowland area. These
lake-dominated lowlands offer few opportunities for induced
infiltration from large streams, whereas in many regions induced
infiltration is the principal source of water to most large-capacity
wells.

INTRODUCTION

The Northeastern United States was repeatedly
invaded and covered by continental ice sheets during
the past 2.5 million years (Ruddiman and Wright,
1987). The ice greatly deepened some valleys, trans-
ported vast quantities of sediment, and deposited the
sediment upon the scoured bedrock as a mantle of gla-
cial drift. Meltwater was released seasonally as the ice
melted, particularly during periods of ice retreat
(deglaciation), and deposited much sediment as strati-
fied drift in valleys or lowlands at or beyond the ice
margin. The stratified drift includes sand and gravel
deposits that now constitute the Northeast’s most

productive aquifers, which are capable of supplying
well yields at least an order of magnitude larger than
generally obtainable from the underlying bedrock.
Evaluation, development, and protection of these aqui-
fers require knowledge of what might be termed “aqui-
fer geometry”—that is, the three-dimensional extent
and distribution of saturated, water-yielding coarse
sand and gravel relative to bedrock, to fine-grained
non-water-yielding drift, and to recharge sources such
as streams and infiltrating precipitation. These rela-
tionships constitute the hydrogeologic framework that
constrains any appraisal or simulation of hydraulic
behavior, yield, or use of the aquifers.

The grain size, water-transmitting properties, and
saturated thickness of stratified drift can vary greatly
over distances of a few thousands, hundreds, or even
tens of feet. Aquifer geometry in some localities has
been reasonably well defined through examination of
earth materials in excavations, abundant borehole
records, geophysical exploration, and hydrologic test-
ing. Commonly, however, hydrologists must evaluate
localities where data are not readily available in suffi-
cient detail that aquifer geometry is unmistakably
obvious. Particularly in such localities, interpretations
depend greatly on the conceptual models that the
investigator uses to organize available data. Useful
concepts or generalizations have been developed from
well-documented studies of particular localities and
from recognition of typical patterns based on experi-
ence or literature covering many localities. The first
part of this paper explains several concepts that are
widely applicable in interpreting aquifer geometry in
the glaciated Northeast. The latter part describes dis-
tinctive aspects and examples of aquifer geometry in
each of several regions, which are delineated on plate 1.
Readers primarily interested in a particular locality
would probably need to look at only one or two of these
regional descriptions.

The glaciated Northeast, as described in this paper
and illustrated in figure 1, includes nearly all parts of
the United States east of Cleveland, Ohio, that were
covered by the most recent (Wisconsinan) ice sheet:
northeastern Ohio, northern Pennsylvania and New
Jersey, nearly all of New York and New England—an
area of 122,000 square miles. Long Island, N.Y., east-
ern Cape Cod, and the islands of Massachusetts are
excluded because even though they were glaciated,
their geology and hydrology are fundamentally differ-
ent: they are largely surrounded by saltwater and are
generally underlain by poorly consolidated Cretaceous
sediments that include aquifers much more permeable
and productive than the bedrock elsewhere in the gla-
ciated Northeast. South of the Wisconsinan glacial bor-
der (fig. 1), some valleys were glaciated during older
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from the Delmar readvance (Dineen and Hanson,
1983). A readvance is not required to account for
the upward coarsening from silt to sand in this
region; the sand can be explained by increased
water velocities as the lake filled with sediment
and lake level declined, and by wind blowing fine
sand into the lake from adjacent sandy terraces
(Dineen and Rogers, 1979; Dineen and Hanson,
1983).

2. Significant sand and gravel aquifers whose stratig-
raphy seems equally consistent with readvance or
with a pause in retreat without readvance. For
example, a 5-mile-long, deeply kettled valley train
near Lake Luzerne, N.Y. (Connally and Sirkin,
1971), deltas near Rosendale, N.Y. (Dineen,
1986a) and near Middlebury, Vt. (Connally, 1982),
and a deltaic outwash plain near Westfield, Mass.
(Larsen and Hartshorn, 1982, p. 123) were
ascribed to deposition from readvanced ice. None
of the authors cited, however, presented evidence
that rules out deposition of these features partly
or entirely during the initial retreat (whether or
not the ice subsequently readvanced to the head of
each feature), nor do they mention any package of
sediments underlying these features that could be
ascribed to initial retreat prior to the proposed
readvance. Fleisher and Cadwell (1984) ascribed
thick, pitted outwash gravel overlying fine-
grained lake deposits near Cooperstown, N.Y., to
readvance, and Fleisher (1991a, b) later hypothe-
sized that ice tongues could easily readvance as
much as 12 miles across the deformable bed pro-
vided by the fine-grained lake deposits. A similar
stratigraphic section would have resulted from a
prolonged pause in retreat north of the locality
described, however, whether or not the ice
readvanced.

The most extensive of the proposed readvances
listed in table 2 is the readvance in northeastern
Maine. It represents a well-documented but quantita-
tively minor interruption in deposition of coarse-
grained sediments and may be of hydrologic signifi-
cance in that the discontinuous near-surface diamicton
could slightly decrease the transmissivity of valley-
fill aquifers and recharge to those aquifers. The dia-
micton is a distinctive feature of northeastern Maine,
described further on in the section “Low-Relief Fringes
of Maine Residual Ice Cap.”

In summary, although the Northeastern United
States was glaciated several times, multiple drift
sheets in which sand and gravel aquifers alternate
with confining layers are generally lacking. Apparently,
the Wisconsinan ice generally eroded to bedrock in the

major valleys. Remnants of pre-late Wisconsinan drift,
chiefly till, are preserved in some upland localities, and
evidence for readvance by late Wisconsinan ice has
been reported from several valleys or lowlands. Some of
the proposed readvances probably never occurred or
were quite localized, however, and others apparently
had little effect on the depositional environment or the
topography that controlled it. Consequently, sediment
deposition was commonly much the same before and
after these minor readvances, or changed in ways that
would be expected whether or not readvance occurred.
By contrast, multiple drift sheets are widespread and
hydrologically significant in three regions identified on
plate 1 and discussed later in this paper: the Western
Appalachian Plateau, the northern rim of the
Appalachian Plateau, and the New Jersey terminal
moraine.

TABLE 2.—Proposed local readvances during late Wisconsinan
deglaciation of the Northeastern United States

Locality References and remarks

Eastern New England

Northeastern Maine Kite, 1983; Borns and Borns, 1986; diamicton
at or near top of sand and gravel at many
sites in lower St. John and Aroostook
valleys.

Pineo Ridge, Maine Borns, 1973; Borns and Hughes, 1977.

Bloom, 1963. Readvance reinterpreted as
minor ice-front oscillation by Smith, 1981.

Stone and Koteff, 1979. Interpretation based
on one exposure of till over disturbed
rhythmites.

Kennebunk, Maine

Manchester, N.H.

Connecticut River lowland

Middletown, Conn. Flint and Cushman, 1953; Flint, 1956.
Readvance refuted by Stone and others

(1982) and London (1985).

Chicopee, Mass. Larsen and Hartshorn, 1982; Larsen, 1982.

Hudson-Champlain lowland

Averill and others, 1980. Readvance disputed
by Stanford and Harper, 1991.

Connally and Sirkin, 1970; Dineen, 1986a.
Readvance disputed by Duskin, 1986.

Tappan, N.Y.

Rosendale, N.Y.

Delmar, N.Y. Dineen and Rogers, 1979; Dineen and
(also Yosts, N.Y.) Hanson, 1983; Dineen and Hanson, 1985.
Luzerne, N.Y. Connally and Sirkin, 1971. Readvance
disputed by DeSimone and LaFleur, 1986.
Bridport, Vt. Connally, 1970, 1982.

Lake Ontario lowland

Niagara County, N.Y. Smith and Calkin, 1990. Two tills separated
by silt in Lake Ontario bluffs.
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THE ENVIRONMENT OF STRATIFIED-
DRIFT DEPOSITION: PROGLACIAL
LAKES AT THE ICE MARGIN

Glacial drift is collectively the end product of erosion
and deposition by the ice itself and by meltwater. Ice
eroded most effectively in the valleys and deposited till
most abundantly as hills or localized accumulations on
upland hillsides. Meltwater, by contrast, eroded chan-
nels in the uplands and deposited stratified drift chiefly
in the major valleys. The stratified drift was deposited
in proglacial lakes or marine embayments that devel-
oped in major valleys or lowlands during deglaciation
and, to a lesser extent, along stream channels that
spread across the valley floors after the proglacial
water bodies had filled with stratified drift or had
drained.

The importance of proglacial water bodies as sites of
sediment deposition has been long and widely recog-
nized. Davis (1890) and Salisbury (1892) recognized
that sand or “wash” plains (outwash plains) in
Massachusetts and New Jersey were predominantly of
deltaic origin. Flint (1930, p. 63, map) interpreted the
stratified drift of Connecticut as “successions of mar-
ginal ice-contact terraces of debris built delta-wise into
temporary glacial lakes.” Smith and Ashley (1985,
p. 136, p. 169) mentioned that glaciolacustrine deposits
are major components of the glacial drift in North
America, and that the most common ice-contact lakes
are small, short-lived lakes that form at glacier mar-
gins. Teller (1987, fig. 21) calculated that more than
40,000 square miles along the ice margin in eastern
North America were inundated by large lakes during
most of the last deglaciation, not counting the numer-
ous small lakes or the extensive areas where marine
water bordered the ice sheets.

Nearly 10,000 years elapsed between initial retreat
of the late Wisconsinan ice sheet from its southern-
most margin in Pennsylvania and New Jersey (fig. 1)
and the disappearance of the last ice from north-
central Maine. In any given locality, however, uncover-
ing of the landscape and deposition of stratified drift
took place within a few hundred to, at most, a few thou-
sand years, during which depositional conditions
changed and after which incision and regrading by
postglacial streams generally prevailed. In this paper,
discussions of events or conditions during deglaciation
in any locality refer to the relatively short period when
proglacial lakes existed there and the ice margin was
retreating, or perhaps briefly readvancing, through
that locality.

WHY PROGLACIAL LAKES WERE UBIQUITOUS

Proglacial lakes developed along ice margins during
deglaciation for several reasons:

1. Deep erosion by ice in some valley reaches created
closed basins that trapped water after the ice
melted. The Finger Lakes of New York, some of
which were eroded far below sea level, are prime
examples (Coates, 1968; Mullins and Hinchey,
1989); ice-scoured closed basins also have been
documented in other localities (Newman and
others, 1969; Handman and others, 1986; Fleisher
and others, 1992; Moore and others, 1994).

2. Many valleys drained or sloped toward the ice sheet,
which blocked the natural outlet of runoff. Thus,
water accumulated as proglacial lakes in these
valleys during ice advance and retreat. Each lake
spilled across the lowest saddle on the divide or, in
a few instances, across or under the ice. Among
the many proglacial lakes of this type were those
in the Genesee and former Allegheny valleys of
western New York (Frimpter, 1974; Muller and
others, 1988), the northern Adirondack region
(Denny, 1974), the Nashua valley of eastern
Massachusetts (Koteff, 1982), and the northwest-
ern Green Mountains (Wagner, 1972). The appar-
ent absence of lacustrine deposits in a few north-
draining valleys several miles in length has been
ascribed to the presence of stagnant ice, which
was inferred to have occupied all space below the
lowest saddle on the watershed perimeter (Denny,
1974, p. 7; Cadwell, 1985, p. 83) or to have allowed
water to drain out through crevasses or tunnels to
a lower, more northerly outlet (Randall, 1978a,
p. 13; Miller and Randall, 1991).

3. In the glaciated Northeast, far more valleys drained
away from the ice sheet than toward it. During
deglaciation, most of these valleys also contained
proglacial lakes, each of which was ponded behind
drift recently deposited downvalley. Whenever the
surface of the ice melted down to an altitude lower
than the surface of the drift downvalley, a pro-
glacial lake developed. Overflow from the lake
spilled across the earlier deposits, slowly incising
them—or, in a few localities, spilled across a bed-
rock saddle that was slightly lower than the
deposits choking the main valley. Commonly, sed-
iment filled these lakes almost as fast as they
formed, thereby lengthening the dam or spillway
that controlled the lake level. Examples of self-
damming sequences of stratified drift are found in
the lower Connecticut River valley (Stone and
others, 1982, p. 9; Koteff and others, 1987, p. 3),
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abundance of coarse stratified drift over short distances
caused by more localized aspects of bedrock topography
and ice dynamics, but nevertheless deserve consider-
ation in regional studies.

Several authors have inferred that the net rate of
ice-margin retreat increased with time during
deglaciation in New England and eastern New York;
some interpretations (Schafer, 1968, 1979; Mickelson
and others, 1983) were based on a few radiocarbon
dates, others (DeSimone and LaFleur, 1986, p. 226) on
volumes of ice-marginal stratified drift. When the
Wisconsinan ice sheet was at its maximum extent, it
flowed approximately southward from central Canada
across all of the northeastern United States (Andrews,
1987, p. 15; Hughes, 1987); as the ice thinned, however,
its flow was more affected by relief, and after about
14,000 years ago, most ice from Canada flowed east-
ward along the St. Lawrence lowland or westward
along the axes of Lakes Ontario and Erie (David and
Lebuis, 1985; Hughes, 1987, fig. 21). These diversions
could be expected to decrease the flux of ice and
sediment toward the ice margin between Maine and
Pennsylvania, resulting in faster retreat, less melt-
water generated per unit area uncovered, and less
erosion and transport of sediment by meltwater. Fur-
thermore, the direction of both superglacial and sub-
glacial meltwater flow is controlled by the slope of the
ice surface (Shreve, 1985) and parallels the flow of the
ice itself. At the Wisconsinan maximum, therefore, the
ice margin in the glaciated Northeast must have
received whatever seasonal meltwater was generated
in much of southeastern Canada, as well as all of the
Northeastern United States. Late in deglaciation, how-
ever, seasonal meltwater flux from Canada would have
been diverted in the same manner as the ice flux. All of
these changes could be expected to result in a decrease
from south to north in volume of sand and gravel trans-
ported and deposited by meltwater.

The ratio of clay and silt to sand and gravel within
the glacial drift varies considerably across the glaciated
Northeast as a function of bedrock lithology. At one
extreme, coarsely crystalline metamorphic bedrock
yields many hard, durable cobbles, pebbles, and
sandsize mineral grains. By contrast, shale and silt-
stone bedrock yield weak fragments that readily
separate into their constituent particles of clay and silt
size during transport by ice and meltwater. Many
authors have reported that till consists largely of frag-
ments of the underlying bedrock. For example, Denny
and Lyford (1963, p. 6) stated that till in the
Appalachian Plateau of New York and Pennsylvania
has a sandy texture near coarse-grained sandstone and
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conglomerate of Pennsylvanian age, but has a silty-clay-
loam or silt-loam texture where the bedrock is fine
sandstone and siltstone of Devonian age. Clark and
Karrow (1983) reported that till on dolomite and sand-
stone in the St. Lawrence lowland contains 57 percent
sand and 35 percent silt, whereas till on the
Precambrian metamorphic bedrock at the north edge of
the Adirondack Mountains contains 66 percent sand
and 27 percent silt. Melvin and others (1992, fig. 4)
showed that till derived from granitic crystalline rocks
in southern New England is consistently more sandy
and less silty than till derived from phyllite, marble, or
from metasedimentary rocks in eastern Massachusetts.
Where multiple drift sheets occur in Ohio,
Pennsylvania, and western New York, the lowermost
sheet closely reflects the local bedrock, whereas one or
more overlying tills are enriched in silt and clay because
the ice readvanced across interstadial silt and clay in
the Lake Erie and Lake Ontario basins (LaFleur, 1979b;
White, 1982).

Because stratified drift includes many beds that dif-
fer widely in grain size and sorting, its average grain
size in a particular region cannot be determined as
readily as that of till. Some striking regional differ-
ences are apparent, however. For example, in New
England and the Adirondack Mountains of New York,
most sand grains are individual mineral species, and
fine sand to coarse silt are abundant in deltaic strati-
fied drift. In the Appalachian Plateau of New York, by
contrast, many sand grains are tiny fragments of shale
or siltstone; deltaic foresets are commonly fine to
coarse sand to gravel, and fine to very fine sand is
much less abundant than silt and clay. In a reach of
West Canada Creek valley that borders the western
Adirondacks, lake-bottom sediments derived from the
Adirondacks contain thin clay layers alternating with
thick fine-sandy silt layers, whereas lake-bottom sedi-
ments derived from regions of shale and carbonate
bedrock to the west and southeast contain more clay
and finer grained silt (Ridge, 1985, p. 62, 104-112). In
central Connecticut, poor sorting and interstitial silt
and clay are more abundant in ice-contact deposits
derived from Mesozoic shale and arkosic sandstone
than in nearby deposits derived from Paleozoic gneiss
and schist (Randall, 1964, p. 54). These qualitative
observations suggest that both aquifers and confining
units within the stratified drift could be somewhat
more permeable in regions of metamorphic bedrock
than in regions of shale or siltstone, but whether the
differences are enough to affect ground-water flow sig-
nificantly has not been demonstrated.
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STEPWISE RETREAT AND THE
MORPHOSEQUENCE CONCEPT

Stratified drift in much of southern New England and
New Jersey has been classified into a series of units,
known as morphosequences, that represent successive
time steps or intervals in deglaciation. The development
of the morphosequence concept has been summarized by
Koteff (1974) and Koteff and Pessl (1981). The concept is
essentially as follows: whenever the ice margin
remained in the same location long enough for stratified
sediment to build up to the surface of a proglacial lake,
streams flowing across that sediment imparted a
smooth fluvial profile graded to lake level or (if the lake
filled completely) to the spillway across which it drained;
all the stratified deposits that underlie that profile are of
nearly the same age and constitute a single morpho-
sequence, within which grain size decreases distally.
Coarse, heterogeneous, poorly sorted gravel (facies 1)
predominates near the proximal (upslope) end but
grades distally into deltaic sands that, in turn, prograde
across fine-grained sediment, such that the distal
(downslope) end of the morphosequence commonly con-
sists of fine gravel and sand (facies 3) overlying lake-
bottom silt, clay, and (or) very fine sand (facies 2).

Progressive melting of the ice sheet resulted in fre-
quent creation of new morphosequences, as illustrated
in figure 7. When the ice margin bordering a small lake
retreated past a spillway that was lower than the exist-
ing lake surface, the lake began to drain through the
new outlet; subsequent stratified deposits were graded
to the new lake level and generally can be distinguished
by their lower elevation from earlier deposits. When the
ice margin retreated without exposing new outlets, the
proglacial lake expanded headward past the former
proximal sediments without change in lake level, and
eventually a new morphosequence formed with its head
against the repositioned ice margin. In this situation,
the distal parts of successive morphosequences
approached the same lake level and, thus, cannot be
easily distinguished by means of elevation. Whether
lake levels remained constant or declined abruptly,
however, several successive profiles developed along
each valley system as the ice retreated, and generally
overlap in shingled fashion (fig. 7). Their gradients are
typically about 20 or 25 feet per mile, but approach
40 feet per mile near the heads of some morpho-
sequences and can be as gentle as 8 feet per mile in dis-
tal outwash plains (Cadwell, 1972, table 6: Koteff, 1974,
p. 125; C. Koteff, U.S. Geological Survey, oral commun.,
1994). Generalization as to gradient is difficult because
initial depositional gradients varied and have been
variably altered by isostatic rebound. Koteff and Larsen
(1989) and Larsen and Koteff (1988) presented evidence
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that isostatic rebound in central New England did not
commence until the ice margin had retreated at least as
far as northern Vermont, and that lake shorelines and
morphosequence profiles south of northern Vermont
have all been upwarped by 4.74 feet per mile to the
N. 21° W. Farther north, rebound began before the ice
was gone; therefore, early depositional surfaces such as
morphosequences were upwarped more than later lake
shorelines (Larsen, 1987). In western New York and
northeastern Ohio, the direction of maximum rebound
is N. 27° E., and the magnitude of rebound increases
northeastward (Calkin and Feenstra, 1985).

In principle, delineation of morphosequences can be
useful in geohydrologic appraisals because thin
surficial sand or fine gravel can be expected to overlie
fine-grained sediments near the distal end of a mor-
phosequence, whereas coarse sand and gravel, in part
highly permeable, can be expected to predominate near
the head of a morphosequence. In practice, however,
delineation of individual morphosequences can be diffi-
cult, for several reasons. Large parts of many mor-
phosequences were deposited over or against stagnant
ice and subsequently collapsed to the point that the flu-
vial depositional profiles are unrecognizable. Parts of
some morphosequences were planed off by meltwater
or postglacial streams. In some deep valleys or where
the ice melted quickly, subaquatic fans never built up
to lake surface, so no fluvial profile ever developed. In
some places, successive ice-marginal deltas butt
against one another to form a large terrace that seems
to be one morphosequence but is actually several mor-
phosequences, some of which can be so short that they
are predominantly coarse grained throughout. Because
these complications are so common, delineation and
gechydrologic interpretation of morphosequences on
the basis of topography or elevation alone are unlikely
to be reliable; some information from strategically
placed excavations and (or) boreholes is generally
needed as well. Examples of successive abutting deltas
that can be distinguished by elevation and by lithology
in excavations are described by Evenson and others
(1985, stops 8-9), Stanford and others (1998), Koteff
and others (1984), and Larsen (1992). A detailed exam-
ple of morphosequence analysis that considers several
complications is presented farther on in the section
“Eastern Hills and Valley Fills.”

Reports that evaluate stratified-drift aquifers in
localities within the glaciated Northeast generally
include a brief account of the study methods; few such
reports mention identifying ice margins or basing
interpretations on morphosequence maps. Some maps
of transmissivity or ground-water availability bear a
close resemblance to maps of bedrock topography or
saturated thickness; this resemblance suggests that
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1. Southern Maine.—Where isostatic depression
allowed the ocean to abut the retreating ice mar-
gin, many marine deltas were formed on the distal
side of bedrock ridges, fed by meltwater streams
through gaps in those ridges (Thompson and
Smith, 1983, p. 8), and subaquatic outwash was
commonly localized on the proximal sides of other
bedrock ridges (Thompson, 1982, p. 222). The bed-
rock ridges seem to have temporarily anchored the
active ice margin, which elsewhere retreated rap-
idly by calving. This concept of bedrock highs as
localized anchors (pinning points) for floating ice
shelves is commonly invoked in the geological lit-
erature (for example, Powell, 1981).

2. North-Central Connecticut.—West of Route 10 in
southern Granby and northern Simsbury, Conn.,
level depositional surfaces at altitudes of 270 to
310 feet cap deltaic ice-contact deposits (facies 1)
that are sandy and permeable but thinly satu-
rated, as evidenced by well records and by expo-
sures that indicate the sand rests on till or
bedrock at altitudes at or above adjacent streams
or lowlands (Randall, 1970; Melvin and Bingham,
1991). Near Route 10, the bedrock surface declines
eastward to altitudes below sea level, and east of
Route 10, broad terraces of stratified drift at alti-
tudes of 200 feet or lower are underlain by more
than 100 feet of fine-grained facies-2 lake sedi-
ment (fig. 18).

3. Southeastern New York.—Frimpter (1972, pl. 2)
mapped many localities as underlain by unsatur-
ated surficial sand and gravel. Most of these fea-
tures are topographically prominent ice-contact
deposits (facies 1) whose unsaturated condition
could result only from high bedrock beneath.

Thus, although some facies-1 ice-contact deposits
can be easily identified from their relatively high alti-
tude and position at the heads of morphosequences, as
well as from exposures of coarse-grained sediment, the
typical occurrence of such deposits over buried knolls or
valley sides of bedrock or till precludes interpreting
such deposits as potentially productive aquifers with-
out investigating bedrock topography and saturated
thickness.

Some maps of surficial geology depict units
characterized by constructional topography of knobs
and hollows, or undulating gentle slopes, and by
exposures described as sandy diamicton and (or) vari-
ably sorted, variably stratified deformed sand. These
materials are commonly interpreted as the result of
resedimentation, mass movement, and collapse of
earlier deposits, at least some of which had been
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transported and deposited by meltwater. They have
been mapped as ablation till, morainal till, complex or
mixed deposits, kame moraine, or inwash according to
the perception of the investigator and the array of sed-
iments visible in typically poor exposures. They occur
particularly in areas of sandstone or coarse crystalline
bedrock and particularly on lower hillsides in regions of
high relief. Predominance of diamicton and position
above stream grade severely limit the aquifer potential
of most such deposits.

DISTRIBUTION OF BURIED FACIES 1
BENEATH FINE-GRAINED SEDIMENTS

As previously explained, many broad valleys or low-
lands are underlain by extensive fine-grained sedi-
ments (facies 2), in part capped by a thin surficial sand
or gravel layer (facies 3). Landforms commonly include
broad flood plains, swamps, former lake bottoms, and
low terraces. Coarse ice-contact deposits (facies 1) are
locally evident as high-standing landforms that border
the valley floor or interrupt low-lying areas. The pre-
ceding section pointed out that many of these ice-
contact deposits were built where bedrock is relatively
high or shallow and, thus, are too thinly saturated to be
major aquifers. An important question is whether
facies 1 also is present beneath facies 2 in the low-lying
areas and constitutes a buried, basal aquifer.

No simple, universal answer to this question is yet
available. On the one hand, conceptual models of the
retreat of an active ice margin in ponded water call for
deposition of gravel and sand in subaquatic fans near
the mouths of subglacial meltwater conduits (Shaw,
1985, p. 53; Smith and Ashley, 1985, p. 171). Multiple
subglacial streams flow beneath some modern glaciers
and deposit their load of coarse sediment near the
glacier snout (Gustavson, 1975; Powell, 1981). Lateral
continuity of the resulting sand and gravel across the
valley presumably depends on the sediment load, rate
of retreat, and spacing of conduits (Rust and
Romanelli, 1975, fig. 14). Continuity along the length of
the valley seems likely, because meltwater must have
been generated continuously during retreat, at rates
that often increased when the rate of retreat increased.
On the other hand, any blocks of stagnant ice that lin-
gered south of the active ice margin would have pre-
vented proximal coarse stratified drift from being
deposited over the entire width of the valley. Further-
more, where the ice margin retreated by stepwise stag-
nation, coarse sediment would likely be concentrated in
crevasses between shrinking ice blocks near the head of
each stagnation zone and might be completely absent
in the distal part of each zone. Many maps provide evi-
dence of ice-block depressions and ice-walled channels
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in the glaciated Northeast, and many borehole records
document sites where facies-2 fines directly overlie till
or bedrock.

Studies of several lowlands or valleys in the glaci-
ated Northeast have inferred that basal sand and
gravel deposits are widespread and have interpreted
those deposits as the products of multiple subaquatic
fans. For example:

1. Coastal Maine.—Bingham (1981), Smith (1982,

1983), and Smith and others (1982) reported that,
in much of coastal Maine, a discontinuous but
widespread layer of sand and (or) gravel overlies
bedrock and is, in turn, mantled by clay (facies 2)
that was deposited in the marine waters that
fronted the retreating ice and inundated the
region for a time after deglaciation. Smith (1982,
1983) considered the basal layer to be ice-contact
deposits or subaquatic outwash and ascribed it to
numerous small meltwater streams or sheetflow
that emerged from the base of the ice and (or) to a
“tidal pumping” process wherein a floating ice
shelf rises and falls with the tide, creating cyclical
landward and seaward flows in the thin wedge of
water beneath the ice and thereby winnowing the
upper part of the underlying till and any sediment
dropped from the floating ice. The stratigraphy
described by Smith was based largely on expo-
sures on low hills; he did not collect subsurface
data to investigate whether an extensive sandy
layer also was present beneath the thicker marine
clay in major valleys. Reports on the ground-water
hydrology of coastal Maine and New Hampshire
generally do not mention such a thin, widespread
aquifer.

2. Rockaway River Basin, N.J—Canace and others

(1993) presented an interpretive map that repre-
sents the vertical sequence of unconsolidated sed-
iments in much of Morris County, N.J. The map
and accompanying geologic sections indicate val-
ley floors north of the terminal moraine to be
underlain in most places by all three depositional
facies, including a basal confined aquifer. Stanford
(1988; 1989a, b) inferred the presence of a gener-
ally active ice margin retreating in a stepwise
manner during deglaciation, and Stanford and
others (1990) drew conceptual diagrams of aquifer
geometry in New Jersey that indicate a nearly
continuous blanket of coarse subaquatic-fan
deposits atop bedrock in narrow valleys (fig. 9).
The well logs and yields compiled by Canace and
others (1993) demonstrate that such a basal layer
is indeed virtually continuous in the Lockjaw
River-Stony Brook valley northeast of Denville,

N.J., a reach 5 miles long by 0.5 mile wide (fig. 4);
water depth was about 125 feet. Logs of wells in
nearby valleys, however, indicate that the basal
aquifer can be very thin or absent locally or are too
sparse to demonstrate continuity. Large areas in
two broad valleys in eastern Morris County appar-
ently lack a basal aquifer. Most well logs in Morris
County do not suggest a progressive downward
coarsening from facies 2 to facies 1, as would be
expected under conditions of continuous deposi-
tion of subaquatic fans at a retreating ice margin.

3. Appalachian Plateau, N.Y.—MacNish and Randall
(1982, pl. 1) inferred basal aquifers to be wide-
spread in deep valleys of south-central New York
and considered them to have resulted, in part,
from retreat so rapid that coarse sediment could
not build up to lake surface. Lake depths probably
ranged from 150 to 500 feet. Well logs from this
area (Randall, 1972) included 110 wells north of
latitude 42°14' that penetrated through a sub-
stantial thickness of fine sediment (facies 2) into
sand, gravel, or bedrock at depths greater than
100 feet. Of these, 21 percent did not penetrate a
basal aquifer above bedrock; 56 percent reported a
sharp contact of fine sediment over gravel, sand
and gravel, or coarse sand; 17 percent indicated
some downward coarsening, generally clay over
“quicksand” (silt to fine sand) over gravel; and
8 percent penetrated fine sediment over “sand,”
which might have proved to coarsen further had
drilling continued. Drilling generally stopped as
soon as an adequate water supply was obtained,
so thickness of the deep aquifer(s) cannot be esti-
mated. The abundance of deep aquifers beneath
fine sediments seems consistent with the hypoth-
esis of subaquatic-fan deposition; the sparse evi-
dence for systematic downward coarsening does
not. Perhaps coarsening downward may be more
widespread than indicated by the data cited, inas-
much as most logs were reported by drillers who,
after drilling through many feet of non-water-
yielding fine sediment, may have been little inter-
ested in subtle differences until they reached
coarse layers that produced water.

4. Central Massachusetts.—Walker and Caswell (1977)
inferred that a basal layer of sand and gravel
occurs “widely but not everywhere” beneath the
fine-grained sediments of glacial Lake Hitchcock
in central Massachusetts. More detailed studies,
however, have emphasized the absence of such a
basal layer in particular localities. For example, in
an area near the Connecticut River where the lake
had been 250 to 400 feet deep, the fine-grained



























































































































HYDROGEOLOGIC FRAMEWORK OF STRATIFIED-DRIFT AQUIFERS

recharge to the valley-fill aquifers (Morrissey and oth-
ers, 1988), chiefly by means of the runoff in channels of
tributary streams but also by unchanneled surface or
subsurface runoff. Most surficial valley-fill aquifers are
crossed by large trunk streams that could provide
abundant induced recharge if ground-water develop-
ment were to take place; those that are crossed only by
small, ephemeral tributaries that originate locally in
the adjacent uplands are classified separately as head-
water aquifers (fig. 38B).

Other types of aquifers are less numerous than
valley-fill aquifers but nevertheless are widely distrib-
uted across the glaciated Northeast. For example,
broad lowlands commonly contain isolated kames,
kame deltas, or ice-channel fillings (facies 1) bordered
and overlapped by fine-grained sediment (fig. 38C).
Some coarse ice-contact deposits (facies 1) on hillsides
are perched above stream grade (fig. 38E). Some out-
wash or alluvial deposits (facies 3) on valley floors are
also perched above stream grade, where postglacial
streams have incised their channels into the under-
lying fine-grained sediment (fig. 38D). All these
perched deposits are distinctive because saturated
thickness is commonly small and induced recharge is
impossible. In a few localities, surficial outwash is so
thick and extensive that it inundates the bedrock
topography (fig. 38F) and, thus, approaches the condi-
tion of an infinite aquifer without boundaries, in which
upland hillsides are of minor importance as recharge
sources. A few aquifers are completely buried beneath
fine-grained sediment and, being separated from surfi-
cial aquifers, receive recharge only by slow seepage
through bedrock or the fine-grained sediment
(fig. 3843, A4).

A common approach in modeling flow in valley-fill
aquifers has been to treat the entire valley fill as the
aquifer. This approach was used in some valleys only
because the aquifer geometry was not well enough
understood to do anything else. This approach is
entirely appropriate, however, for valley fills that con-
sist almost entirely of facies 1 (and/or 3) with only
small lenses of fine-grained sediment (fig. 3841). It also
may be appropriate for valley reaches that contain
extensive lake-bottom deposits (fig. 3842-A3) if those
deposits are chiefly fine sand to coarse silt that is suffi-
ciently permeable to transmit water fairly readily to
wells that tap coarser sand and gravel. A more sophis-
ticated approach that can accommodate any combina-
tion of aquifer geometry represented in figure 3841-A3
would be a two-layer quasi-three-dimensional model
(Randall, 1986; Bergeron, 1987). By contrast, the
aquifer geometries shown in figure 38B-E could all be
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simulated by models with a single active layer and
various boundary conditions. Kontis, Randall, and
Mazzaferro (in press) discuss in more detail the design
of models to simulate typical aquifer geometries and
the estimation of hydraulic properties of aquifers for
use in those models. Except near the edges, valley-fill
and outwash-plain aquifers typically contain 50 to
100 feet of saturated sand and gravel that typically
ranges from 50 to 100 feet per day in hydraulic conduc-
tivity, resulting in transmissivity between 2,500 and
50,000 feet squared per day. Saturated thickness of
sand-plain and hillside aquifers tends to be inversely
proportional to hydraulic conductivity, so transmissiv-
ity is likely to average around 2,000 feet per day in
sand-plain aquifers, probably less in hillside aquifers.

HYDROPHYSIOGRAPHIC REGIONS
IN THE GLACIATED NORTHEASTERN
UNITED STATES

The glaciated Northeast has been divided into
regions (pl. 1) that differ in the typical distribution or
geometry of coarse-grained stratified drift with respect
to fine-grained stratified drift, till, bedrock, and
streams. The regions are termed “hydrophysiographic
regions” because their delineation is based on aspects
of hydrology that can be important in the evaluation of
aquifer yield or water-resource development, and yet
those aspects are, in part, functions of such physio-
graphic properties as relief, slope orientation, drainage
density, and size of tributary watersheds, and bound-
aries of some regions on plate 1 correspond closely to
physiographic boundaries delineated by Fenneman
(1938), Cressy (1966), and Denny (1982). The salient
characteristics of these regions are summarized in the
next few paragraphs. The remainder of the paper is
devoted to capsule descriptions of individual regions.

In about 70 percent of the glaciated Northeast,
major valleys sloped generally away from the ice sheet,
and waterborne sediment was deposited as stratified
drift in a succession of local lakes within those valleys.
The lakes drained across recently deposited stratified
drift downvalley or across saddles on the divides. This
large area contains a wide variety of terranes, however.

1. Southern New England, eastern New York, and
northern New Jersey are generally characterized
by low to moderate relief with closely spaced,
small valleys. Most proglacial lakes in these val-
leys were relatively small and shallow, deglacia-
tion took place slowly, and large seasonal
meltwater volumes were generated from the vast
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expanse of ice to the north. Consequently, coarse-
grained stratified drift (facies 1 and 3) is abun-
dant, especially at the numerous morphosequence
heads or ice-marginal positions. In a few areas of
low relief, sandy deltaic or fluvial outwash is
abundant enough to bury the preexisting topogra-
phy, creating extensive outwash-plain aquifers.

2. Other regions, however, have equally low to moder-
ate relief but much less stratified drift. In north-
ern and northeastern Maine, volumes of coarse-
grained stratified drift are small because a nearly
stagnant residual ice cap that no longer trans-
ported sediment was the only source of meltwater
at the time this region was deglaciated. The cen-
tral part of this region, which contains almost no
stratified drift, is bordered on the northwest by an
area where valley floors are underlain by silt and
clay, on the northeast by an area where valley
floors are underlain by sand and gravel largely
buried beneath till, and on the southeast by an
area where narrow eskers commonly follow the
valleys but do not fill them. Other areas character-
ized by low internal relief and by small valleys
that generally lack significant stratified-drift
aquifers include the Tug Hill Plateau of New York
and Pocono Plateau of Pennsylvania (although
relief is high along plateau margins).

3. Several regions have consistently high relief. Those
in northern New England and northern New York
are characterized by small areal extent of coarse
stratified drift, much of which is perched above
stream grade on the valley sides where it is easily
drained. Bedrock outcrops are fairly common in
the flood plains, so valley-fill aquifers must be
even narrower than the narrow valley floors. By
contrast, the Catskill Mountains and Appalachian
Plateau of New York, Pennsylvania, and Ohio
have little stratified drift perched on the valley
sides, and bedrock outcrops do not occur on the
valley floors. In the Catskill Mountains, valley fills
rarely exceed 150 feet in saturated thickness; they
include till (deposited chiefly on the lee side of
hills) and silty to clean sand and gravel but
relatively little fine-grained stratified drift. In the
Appalachian Plateau from the Catskills west to
Salamanca, N.Y., valley fills commonly exceed
150 feet in saturated thickness, so silt and clay
are correspondingly thicker and more extensive,
although commonly capped and underlain by sand
and gravel. The sand and gravel are especially
thick at ice-marginal positions and in wedges of
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valley-train outwash. West of Salamanca, stratig-
raphy in some valleys is similar to that farther
east, but relief is smaller, the network of intersect-
ing valleys more complex, and many valleys con-
tain multiple till layers or drift sheets.

In about 10 percent of the glaciated Northeast, deep
valleys sloped northward toward the ice sheet. Valleys
in the northern 10 to 30 miles of the Appalachian
Plateau were deeply eroded and later filled with thick
drift, predominantly layers of diamicton and fine-
grained stratified drift. Sand and gravel occur as dis-
continuous lenses at multiple depths, especially near
tributaries. In the northern reaches of some valleys in
this region, and also in northwestern Vermont where
ice similarly advanced against a steep slope, most
valleys contain chiefly fine-grained sediments, but
stratigraphy seems to conform to the 3-facies single-
deglaciation model.

About 20 percent of the glaciated Northeast consists
of broad lowlands that were inundated by large progla-
cial lakes or marine waters during deglaciation. Clay,
silt, and fine sand widely mantle the lower parts of the
landscape, interrupted by till-covered hills. Ice-contact
sand and gravel underlie only a small fraction of the
inundated areas, commonly as ice-channel fillings or
esker deltas, but also as thin basal sand sheets in some
places. Surficial facies-3 sand aquifers are absent or
insignificantly thin in many lowland areas but are
extensive in the relatively narrow Connecticut and
Hudson River lowlands and elsewhere near mountain
fronts. Very few opportunities for induced infiltration
exist anywhere in these lowlands.

South of the glacial border, in Ohio, Pennsylvania,
and New Jersey, valleys that drained away from the ice
contain sandy valley-train deposits that, despite post-
glacial incision, still constitute aquifers in many valley
reaches.

The capsule descriptions of individual regions that
follow were written from the bottom up; that is, any
generalizations or insights about the hydrogeologic
framework of each region that could be extracted from
maps or other literature were summarized and illus-
trated by typical examples, rather than attempting to
select representative values from each region to popu-
late some preconceived array of aquifer characteristics
or dimensions. Persons who are primarily interested in
one or more specific localities need not read all the
material that follows but should examine the descrip-
tion of the appropriate region(s), as shown on plate 1,
for concepts and references that apply to those particu-
lar localities.
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GLACIATED REGIONS THAT GENERALLY
SLOPED AWAY FROM THE ICE

In about 70 percent of the glaciated Northeast, the
major valleys sloped away from the retreating late
Wisconsinan ice sheet, chiefly as a result of
pre-Pleistocene geomorphic development, but locally
because streams were diverted southward when their
former valleys were blocked by earlier ice sheets.
Generally, these major valleys contained a succession
of small proglacial lakes during deglaciation and
received large volumes of sediment-laden meltwater.
They now contain nearly continuous surficial deposits
of coarse stratified drift that also extend across saddles
between valleys in some areas of low relief and are
locally underlain or interrupted by fine-grained
stratified drift. Some tributary valleys and some seg-
ments of major valleys sloped toward the ice and con-
tained proglacial lakes that spilled through saddles on
the watershed perimeter, but commonly these lakes
were similar in size and depth to the lakes that spilled
over older stratified drift in the more numerous valleys
that sloped away from the ice. The stratified-drift-filled
valleys are separated by much more extensive uplands
in which the bedrock is mantled predominantly by till.
The uplands are incised by small tributary valleys
whose floors are above the grade of the stratified drift
in the major valleys. The tributary valleys are floored
by several feet of alluvium but contain no stratified
drift, other than a few isolated deposits on hillsides. A
few uplands are large enough to be shown as areas of
scant stratified drift on regional maps.

REGIONS WITH MODERATE TO LOW RELIEF
AND ABUNDANT COARSE STRATIFIED DRIFT

Much of southern New England, eastern New York,
and northern New Jersey is a region of moderate to low
relief in which valleys that contain stratified drift are
closely spaced but separated by till-mantled ridges or
uplands. Sand and gravel underlie 15 to 35 percent of
most large watersheds. This nearly contiguous region
(pl. 1) is referred to herein as the Eastern Hills and
Valley Fills region. A few parts of southeastern New
England are designated as outwash plains regions on
plate 1 because relief is especially low and the entire
landscape is inundated by abundant sand and gravel.
Elsewhere in the glaciated Northeast, several small
areas have been assigned to the outwash plains and
Eastern Hills and Valley fills regions because the sand
and gravel they contain are similarly distributed.
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EASTERN HILLS AND VALLEY FILLS

Local relief in the Eastern Hills and Valley Fills
region is less than 1,000 feet, commonly much less, as
indicated for much of the region by Denny (1982,
fig. 10). Deglaciation took place chiefly by stagnation-
zone retreat, during which a succession of morpho-
sequences developed along most valleys. Proglacial
lakes were generally small and shallow enough that
sandy or gravelly facies-1 deposits predominate in
many places. Silt and very fine sand, generally capped
by coarser sand and (or) fine gravel, were deposited in
the distal parts of morphosequences.

Stone and others (1982, p. 6) categorized the strati-
fied drift of Connecticut into four depositional environ-
ments: (1) Major glacial lakes in lowlands, (2) ice-
marginal ponding in north-draining valleys in uplands,
(3) glaciolacustrine-glaciofluvial systems in south-
draining valleys, and (4) glaciofluvial systems. Their
descriptions and example maps indicate considerable
stratigraphic similarity among the four categories,
however. All categories generally consist of surficial
fluvial sand and gravel (delta topsets or fluvial
terraces) overlying delta foresets and (or) bottomsets,
and all include fine-grained sediments at the distal
ends of morphosequences. Categories 1 and 2 both
include small areas in which surficial stratified drift is
fine grained because deltas never prograded completely
across lake-bottom deposits to fill the lake.
Categories 1, 2, and 3 all include areas in which succes-
sive deltas abut one another and are difficult to distin-
guish. Only the largest proglacial lakes, where fine-
grained lake-bottom deposits are continuous for miles
and large tributary deltas and (or) fluvial terraces
result in extensive thin surficial sand-plain aquifers,
were deemed sufficiently distinctive in aquifer geome-
try to warrant separate classification in this paper.

The northwestern part of New York’s Adirondack
uplands is assigned to the Eastern Hills and Valley
Fills region on plate 1, even though all major streams
drain northward, because the volume, landforms, and
relief of the stratified drift are similar to that in south-
ern New England. During deglaciation, meltwater
drained away from the ice sheet southwestward across
low saddles and eventually to the Black River lowland.
Stratified drift is extensive; it covers more than half of
some quadrangles, and in some places it forms an
anastamosing network of valley fills that connect
across former saddles and surround till-mantled hills
(Cadwell and Pair, 1991). Most hills rise only about
200 feet above the adjacent valley fills. Few drillhole
records are available in this sparsely populated area,
but surficial stratified drift is predominantly coarse
grained, and morphosequences have been identified in
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many localities from topography and scattered expo-
sures. In the Brother Ponds quadrangle, for example,
cobble gravel at the head of an esker-fed morpho-
sequence grades southeastward to sand beneath a
smooth depositional surface that ends near a former
saddle incised by the postglacial Grass River
(J.T. Gurrieri, field maps, New York State Geological
Survey files). Gurrieri (1983) described proximal
subaquatic-fan or delta deposits at two ice-marginal
positions near Saranac Lake and a gross morpho-
sequence (probably multiple) extending southwest-
ward from Loon Lake.

Three small areas within or bordering the Ontario
lowland of western New York were slightly above the
level of proglacial lakes that inundated most of this
region and are characterized by distinct valleys con-
taining well-defined morphosequences. One area, along
the Wayne-Ontario County line, is described in the sub-
section “Interdrumlin Outwash” under “Erie and
Ontario Lowlands.” Another area, south of Tug Hill,
contains several valley-fill aquifers, including much of
the Tug Hill aquifer described by Miller and others
(1988).

Example: Quinnipiac Valley in Southington,
Conn.—Aquifer geometry in Southington, Conn., and
adjacent towns (fig. 39) is reasonably well understood as
a result of detailed surficial geologic mapping and com-
pilation of borehole records. It is described here in some
detail to illustrate the closely spaced variability that is
typical of stratified drift in the Eastern Hills and Valley
Fills region and how that variability can be deciphered.
Early in deglaciation, meltwater drained southward
through three saddles in a low divide in Cheshire (near
the south edge of fig. 39). Later, meltwater drained east-
ward through the Quinnipiac Gorge (1.5 miles north of
the southeast corner of fig. 39), although it was ponded
100 feet above the present river level for a while by drift
barriers in the gorge (LaSala, 1961) or immediately to
the west (Stone and others, 1982). Deposition of strati-
fied drift in water ponded behind these saddles and drift
barriers was undoubtedly a continuous process, but
topography and lithology indicate that the resulting
deposits can be divided into several areally distinct mor-
phosequences (fig. 39) that reflect stagnation of succes-
sive marginal segments of the ice.

The distribution of water-yielding gravel and
medium to coarse sand within the stratified drift was
affected by at least four factors:

1. Deltaic Deposition.—Meltwater flow was consis-
tently southward, and deposition was commonly
deltaic. Hence, coarse sand and gravel are most
abundant near the north margin of each mor-
phosequence, whereas deposits farther south tend
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to be fine grained at depth but coarsen upward
toward the delta surface, as illustrated in a geo-
logic section (fig. 40). Cobble gravel layers can be
found even at the south margin of deltas, however
(Stone and others, 1982, p. 19).

2. Collapse.—Each morphosequence was built against
or atop stagnant ice, which eventually melted,
leaving irregularly shaped depressions. At least
the margins of the depressions are commonly
underlain by sediments similar to, and collapsed
from, the adjacent landforms. Hanshaw (1962)
observed anticlinal structure in several ice-
channel fillings and ascribed it to collapse as the
channel walls melted. Undisturbed delta surfaces
are many feet above the modern water table, but
surficial coarse sand and gravel that collapsed
along the delta margins are now saturated.

3. Depth to Bedrock.—The retreating ice margin stag-
nated in successive segments, often at narrow or
shallow valley reaches that offered maximum
resistance to flow. Hence, the northern (proximal)
ends of morphosequences commonly lie on shallow
bedrock.

4. Feeder Channels.—Ice-channel fillings occur at the
north margin of many morphosequences; some
extend as much as a mile farther north as contin-
uous or segmented sinuous ridges (fig. 39). Some
probably formed in tunnels at the base of the ice
sheet through which pressurized meltwater car-
ried sediment southward to feed subaquatic fans
and deltas at the ice margin—an interpretation
suggested by their position at the north end of del-
tas and by coarse sediments observed in expo-
sures and well records (Lougee, 1938; Simpson,
1959; LaSala, 1961; Mazzaferro, 1973, well S235;
Stone and others, 1982, p. 19). Others, however,
are merely deltas built in narrow lakes within ice
crevasses. One well on an ice-channel filling in
Cheshire penetrated a typical downward-fining
deltaic section of gravel over sand over silt
(Mazzaferro, 1973, well Cs186). Short north-
pointing noses at the north margin of a few
morphosequences may mark lesser feeder
channels.

Eastern Southington.—Morphosequences 2, 3, and 4
(fig. 39) are separated by lowlands underlain by clay,
silt, fine to very fine sand, and a little coarser sand, all
of which were deposited on the lake bottom during and
after deposition of these sequences. By contrast,
sequences 4, 5, and 6 are part of a continuous pitted
outwash plain (Hanshaw, 1962) of nearly uniform slope
(fig. 40), interpreted as a single morphosequence by
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Ice-contact stratified drift is widely distributed
across Pike County (Davis, 1989, pl. 2) but is found
mostly as irregular hummocky masses on hillsides,
north of low saddles, or on one side of shallow valleys,
in positions that suggest it is largely above stream
grade and, therefore, unsaturated. Outside the valleys
of the Delaware River and its major tributary, the
Lackawaxen River, surficial stratified drift and allu-
vium underlie only 5 percent of Pike County, and only
9 of 252 wells inventoried by Davis (1989) are finished
above bedrock; two of these penetrate surficial ice-
contact deposits or outwash, and seven presumably
penetrate morainal or buried stratified drift in areas
mapped as till. Large areas in northern Monroe County
and vicinity are mantled by end moraine, described as
ranging from sandy or very sandy till to ice-contact
stratified drift with hummocky topography, draped con-
tinuously over hills and valleys (Sevon, 1975a). End
moraine in southwestern Monroe County is described
as till with minor sand and gravel (Crowl and Sevon,
1980). Hollowell and Koester (1975) mention morainal
hills of sand and gravel in adjacent southernmost
Lackawanna County. Northwestern Monroe County is
a high plateau in which surficial stratified drift is vir-
tually absent (Sevon, 1975a; Carswell and Lloyd,
1979); bouldery till mantles the hills, and a surficial
carpet of closely spaced boulders blankets valleys or
swales. East-central Monroe County is a lower plateau
where drift thickness is locally appreciable, but only
5 of 112 wells inventoried by Carswell and Lloyd (1979)
tap sand and gravel.

As on Tug Hill, small streams on the Pocono Plateau
are incised into drift or bedrock where they approach
the plateau margins and descend to major valleys or
lowlands. These tributary valleys include V-shaped
gorges but more commonly are floored by flood plains of
gravelly alluvium a few hundred feet wide, some of
which are interpreted as underlain by Wisconsinan
outwash (Sevon, 1975a, b; Davis, 1989). Well records
compiled by Carswell and Lloyd (1979) indicate that
the lower slopes and floors of tributary valleys in east-
central Monrece County are underlain by 50 to 150 feet
of drift in several localities, but the well records provide
little information as to lithology.

The Pocono Plateau region, as outlined on plate 1, is
bounded on the northeast, southeast, and southwest by
deeply incised valleys. Perhaps, as inferred for Tug
Hill, meltwater from regions to the north was largely
captured by these incised valleys during deglaciation.
Also, the consistently high altitude and lack of large
valleys in Pike and Monroe Counties hindered the
development of proglacial lakes in which stratified drift
could have been deposited. The area to the northwest,
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in Wayne County, has somewhat greater relief and is
drained by south-flowing tributaries whose valleys
apparently contain appreciable stratified drift; thus, it
is tentatively assigned to the Eastern Hills and Valley
Fills region.

NORTHEASTERNMOST ADIRONDACKS

Another upland with small local relief and minimal
stratified drift is in northern Clinton County, N.Y., at
the northeasternmost corner of the Adirondack
uplands (pl. 1). The region is underlain by the Potsdam
sandstone of Cambrian age and includes several areas
as large as 12 square miles in which the flat-lying bed-
rock is totally exposed, having been swept clean of gla-
cial drift by the catastrophic drainage of Lake Iroquois
(Denny, 1974). Tributaries of the Great Chazy River
drain the region and are generally incised several feet
into bedrock. Stratified drift occurs as part of reces-
sional moraines and as small, scattered gravel knolls
(Denny, 1970, 1974; Cadwell and Pair, 1991) that are
outside the shallow valleys and above stream grade
and are presumably unsaturated. As inferred for Tug
Hill, subglacial meltwater flow during deglaciation was
probably captured by the adjacent St. Lawrence and
Champlain lowlands, so did not cross this intervening
upland spur.

CENTER OF RESIDUAL ICE-CAP AREA IN MAINE

The last stages of deglaciation in New England and
maritime Canada involved splitting the vast
Laurentide ice sheet along the St. Lawrence valley,
reorganization of ice south of the St. Lawrence to form
an independent ice dome centered in northern Maine
and Quebec’s Gaspe peninsula, followed by radial
shrinkage of that ice dome and, finally, melting of the
last stagnant remnants in northern Maine and Gaspe.
This process is illustrated in figure 43 and has been
described in several papers, including LaSalle and
others (1977), David and Lebuis (1985), Hughes and
others (1985), Chauvin and others (1985), and Lowell
and Kite (1986Db, c¢). In response to the early phases of
Wisconsinan deglaciation, sea level rose enough to
allow ice in the lower St. Lawrence valley to dissipate
directly into the ocean by calving, a process that is
many times faster than retreat on land by melting.
Therefore, the ice margin retreated rapidly up the
St. Lawrence valley, and ice began to drain out of the
bordering uplands into the valley and rapidly down the
valley toward the ocean. Meanwhile, the rising sea
level abutted the retreating ice margin in southern
Maine and presumably caused rapid calving there too.
Lowell and Kite (1986b, p. 81) speculated that rapid
drawdown of the ice sheet in response to marginal
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A.

18,000 years BP.—Ice flows southeastward over all of
New England
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EXPLANATION
---------- Ice divide
Flow lines
Ice margin
D Dome
S Ice-divide saddle

BP, before present

B. 14,000 years BP.—Downdraw into ice stream along
St. Lawrence lowland has created an independent ice
dome centered in northern Maine

(From Hughes and others, 1985.)

C. 12,000 years BP.—Small residual ice cap is all that
remains of the ice sheet in New England. Horizontal
lines show lakes and marine transgressions between
14,000 and 12,000 years BP

FIGURE 43.—The flow regime of the eastern Laurentide ice sheet 18,000 to 12,000 years ago, according to a glaciological model.
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calving might have quickly flattened its profile enough
that the ice remaining over most of Maine could barely
flow and dissipated largely by melting in place.

Once a saddle developed on the ice-sheet surface
over the St. Lawrence valley (fig. 43B), not only ice but
also meltwater from Canada no longer flowed south-
ward into Maine because meltwater flow within as well
as atop the ice was controlled by the ice-surface profile.
Furthermore, areas in Maine north of the crest of the
ice dome (fig. 43B) no longer contributed sediment or
meltwater to the southern margin of the ice sheet. As
the ice margin continued to retreat, smaller and
smaller volumes of meltwater would have been avail-
able to entrain, sort, and transport sediment. One
might expect, therefore, to find the volume of stratified
drift becoming progressively smaller from southern
coastal Maine northwestward to the center of the
residual ice cap. Field observations suggest that
such is indeed the case, as described in the following
paragraphs.

An elongated oval region of roughly 4,500 square
miles in northern Maine that contains few stratified-
drift deposits and even fewer significant stratified-drift
aquifers is delineated on plate 1. This region, where the
last remnants of the ice sheet melted in place, is char-
acterized by low hills and by scattered higher peaks
that rise as much as 1,000 feet above the valleys.
Drainage within this region is outward in all direc-
tions. Valley floors are generally flat, swampy, and
underlain by organic-rich alluvium deposited in many
generations of beaver ponds. Several valley reaches are
inundated by large lakes, some of which were created
or augmented by dams. The drift is thin in most places
(Lowell, 1983; Thompson and Borns, 1985). Shallow
exposures generally consist of loosely compacted till of
sandy loam to loam texture that includes lenses and
stringers of sand or silt; compact silty to sandy till is
exposed instead in some places (Kite, 1983, p. 57). Sev-
eral areas are mapped as stagnation moraine or undif-
ferentiated drift (Thompson and Borns, 1985; Halter,
1985), each of which may include some stratified sand
and gravel, but only a few scattered ice-contact or out-
wash deposits are shown on published maps. Lowell
(1983, p. 16) asserted that very few valleys in this
region contain “appreciable or systematic gravel
deposits.” Lowell and Kite (1986b, p. 76, 79, 80)
reported that sand and gravel deposits are scarce in
this region, much less abundant than in the fringe
areas to the south and northwest, and are generally
less than 16 feet thick. Kite (1983, p. 66) stated that
isolated kames are found throughout the St. John
watershed in northern Maine, but generally have little
topographic expression and are difficult to discern;
such deposits would be of little significance as aquifers.
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Fine-grained lake-bottom stratified drift is equally
scarce; Kite (1983, p. 177-181) found no silt or clay
beneath peat in several upland swamps that might
have been ponded during deglaciation, and found at
most 1 to 3 feet of silt along the shores of several mod-
ern lakes. Low, sandy deltas have been deposited where
streams now enter these lakes, however (Kite, 1983,
p. 181; Halter, 1985), and may constitute aquifers.

The boundaries of the region of negligible stratified
drift (pl. 1) were placed where they would be approxi-
mately equidistant from the axis of the residual ice cap,
as defined by striations (Lowell and Kite, 1986a), and
would exclude most of the coarse stratified deposits
mapped by Lowell (1980), Thompson and Borns (1985),
and Lowell and Kite (1986b). Some coarse stratified
drift might be present but as yet unrecognized, how-
ever, in this uninhabited area where roads and excava-
tions are few and boreholes nonexistent. Coarse
stratified drift has been found beneath till in excava-
tions and boreholes in valieys east of this area, as
described further on.

LOW-RELIEF FRINGES OF MAINE RESIDUAL ICE CAP
WITH LITTLE COARSE STRATIFIED DRIFT

On the fringes of Maine’s residual ice cap, stratified
drift is apparently more abundant than near the center,
but less abundant than in most areas of comparable
relief farther south. Aquifer geometry in three fringe
areas of low relief is distinctive, as described below.

NORTHWESTERN LAKE-DOMINATED FRINGE

Northwesternmost Maine drains southeastward
toward the St. John River. As the residual ice cap in
Maine retreated southeastward from the Canadian
border, a series of proglacial lakes formed that initially
drained northwestward across saddles in the Notre
Dame Mountains, but later drained northeastward
across various lower saddles to the St. Francis River
(Kite, 1983; Lowell, 1985). Lake-bottom fines underlie
the few broad, flat valley floors. Maps by Lowell (1980,
1985) and Thompson and Borns (1985) indicate several
isolated deltas, eskers, kames, and kame terraces, most
of them perched above stream grade on valley sides and
probably thinly saturated. Individual deposits identi-
fied by Kite (1983, p. 160-1) do not all correspond to
deposits shown on these maps, an inconsistency that
reflects the difficulty of mapping in this undeveloped,
wooded terrane. Gravel mapped as outwash covers
more than 8 percent of the land surface in part of this
subregion (Lowell, 1980), but most of these deposits
mantle hillsides rather than fill valleys, are less than
10 feet thick (Lowell, 1980, p. 11), and are probably dis-
continuous. Areas of hummocky stagnation moraine
could contain lenses of sand and gravel. In summary,
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although coarse stratified drift is more abundant in
this northwestern fringe area than near the center of
the former ice cap, aquifers are probably thin and
widely separated.

NORTHEASTERN VALLEY-FILL FRINGE

The distribution of stratified drift in northeastern-
most Maine is similar to that in the Eastern Hills and
Valley Fills region; that is, stratified drift is found
generally along the larger valleys but seldom on the
intervening hills. The areal extent and volume of
stratified-drift aquifers seem, however, to be smaller
than in southern Maine and in regions to the south or
west. For example, ice-contact deposits and outwash
mapped along Munsungan Stream (Thompson and
Borns, 1985) are perched on the valley sides (Tolman
and Lanctot, 1981; Lowell, 1983, p. 25). Only discontin-
uous aquifers are recognized along the upper Aroostook
River (Tolman and Lanctot, 1980), and several reaches
of the lower Aroostook River and its tributaries are
interpreted as bordered by till and bedrock (Prescott,
1972; Weddle and Neil, 1989). Only organic-rich allu-
vium is mapped along the flat, swampy floors of most
valleys.

Aquifer delineation in this region is somewhat hin-
dered by the presence of a diamicton layer within or,
more commonly, atop the stratified drift, as observed in
many pits and river-bluff exposures and reported in
several borehole logs, although at least an equal num-
ber of comparable exposures reveal no such layer. Thus,
the presence of till on the floor of a valley reach does not
necessarily rule out the possibility of sand and gravel
at greater depth. Exposures along the Aroostook River
valley are described and evaluated by Borns and Borns
(1986). Exposures along the St. John River valley are
described and evaluated by Genes and Newman (1980),
Kite (1983), and Lowell and Kite (1986¢). Logs of sev-
eral boreholes are presented by Prescott (1971a,
1973a), and logs of several exposures and boreholes are
summarized by Tolman and Lanctot (1980), Weddle
and Neil (1989), and Weddle and others (1989). Maps
by Prescott (1972, 1973a) clearly indicate a few locali-
ties where productive sand and gravel aquifers are
inferred to underlie surficial till, and others can be
identified by comparison of surficial geology with aqui-
fer maps by Weddle and others (1989). In this fringe
area, near-surface diamicton is apparently a common
but discontinuous and minor component of narrow
valley fills composed primarily of coarse-grained
stratified drift.

The widespread distribution of diamicton at shallow
depth within or atop stratified drift in northeastern
Maine is suggestive of a regionwide ice advance. Some
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diamicton exposures are described as compact
lodgement-type till and have fabrics consistent with the
directions of ice movement inferred from striations
(Lowell and Kite, 1986¢; Borns and Borns, 1986). Multi-
ple drift sheets have been documented to the west in the
lowlands of southern Quebec (Blais and Shilts, 1989;
Shilts and Blais, 1989). If the numerous diamicton
occurrences in northeastern Maine are the result of a
single ice readvance, however, that readvance caused
remarkably little erosion or deposition of stratified drift.
Furthermore, much of the diamicton exposed at land
surface in this region has been described as sandy or
gravelly and noncompact (Kite and Borns, 1980, p. 214;
Kite, 1983; Weddle and others, 1989) and might consti-
tute ablation debris resedimented by debris flows from
the ice or valley sides. Lowell and Kite (1986¢, p. 29)
interpreted layers of sand, sandy gravel, diamicton, and
sandy diamicton at a site near Fort Kent as deposits of
meltwater or debris flow during deglaciation.

EASTERN ESKER-DOMINATED FRINGE

East-central Maine is a region of low relief where
stratified drift was not deposited in proglacial lakes or
marine waters as in most of the glaciated Northeast;
hence, fine-grained stratified drift is virtually absent.
Coarse-grained stratified deposits do not fill the bed-
rock valleys and were not built against valley walls.
Deposition occurred in tunnels or channels within the
ice sheet and formed narrow esker ridges or, less com-
monly, more complex constructional landforms along
the esker alignments. The gentle ridges and valleys in
this region trend approximately south-southeast, dis-
cordant to the bedrock structure but parallel to the
eskers and to striations that record the direction of ice
flow (Thompson and Borns, 1985). Many esker seg-
ments follow shallow, linear valleys of modern streams,
generally slightly to one side of the valley axis; some
segments cross low hills or saddles where they are
probably thinly saturated, while others bisect large
swamps.

An example of aquifer geometry, typical except that
two eskers are unusually close to each other, is illus-
trated in figure 44. The eastern esker parallels South
Branch Meduxnekeag River but only locally abuts the
river. Some borehole records near where Meduxnekeag
River crosses the esker and is joined by South Branch,
and farther north near Houlton, indicate that esker
sand and gravel extends 40 to 60 feet below the altitude
of land surface adjacent to the esker (Prescott, 1971b;
Tolman and Lanctot, 1981). This geometry seems to
require that a meltwater channel was incised into the
subglacial till before esker deposition, and (or) that the
esker is bordered by younger sediment—such as till
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(Hansen, 1986), but in the extensive tributary deltas,
grain size increases upward. In Connecticut and
Massachusetts, the deep deposits are red because they
were derived from subglacial meltwater that contained
abundant fragments of Mesozoic red sandstone and
shale that underlie the Connecticut River lowland; the
younger layers are gray because sediment from
tributaries that drain highlands of crystalline bedrock
to the east and west came to predominate as the ice
margin retreated (fig. 58).

Surficial Aquifers.—Throughout the existence of
Lake Hitchcock, tributaries built deltas into the lake.
Sediment volumes were greatest at first, when decay-
ing ice in the tributary watersheds and areas to the
north that temporarily drained into those watersheds
generated abundant meltwater, and streams were rap-
idly regrading their till-choked upland valleys. At the
distal margins of these deltas, fine-sand foresets flatten
and grade into the coarse “summer” layers of lake-bot-
tom varves, as shown in many exposures (Webb, 1957,
mile 54.6; Ashley and others, 1982, stops 3 and 5;
Koteff and others, 1987, stop 9; McElroy, 1987). When
Lake Hitchcock drained, redistribution of sediment
was again rapid as the deltas, as well as the upland val-
leys, were incised; streams built fans and flood plains
across the former lake floor and built deltas into small,
shallow lakes that remained in depressions on the lake
floor. Continued incision has lowered present channels
to well below the initial post-lake flood plain.

One result of all this sediment redistribution and
incision is widespread surficial sand-plain aquifers.
They consist chiefly of very fine to medium sand and
generally are perched above stream grade; that is, most
streams are incised below the level at which sand rests
upon or grades into the underlying clay-silt rhythmites,
as clearly shown on maps of surficial sediments in cen-
tral Connecticut (Stone and others, 1979) and in South
Hadley, Mass. (Saines, 1973). Although the surficial
sand is only thinly saturated near the incised streams,
elsewhere it is capable of supplying 5 to 50 gallons per
minute to individual springs, dug wells, or driven well
points. Cushman (1964) and Ryder and others (1981)
indicated that yields of 100 to 400 gallons per minute are
possible at a few locations. Ryder and others (1981, pl. B)
mapped most of the former lake area as a surficial sand
aquifer overlying clay to very fine sand. They recognized
two categories of saturated thickness of the surficial
sand: 0 to 15 feet, and 15 to 80 feet. An excavation within
the thinner category (Ashley and others, 1982, stop 2)
cut through 5 to 10 feet of tabular cross-bedded layers of
fine to very fine sand into varved clay; springs issued
from the lower part of the sand. Other studies have
reported surficial sand thicknesses of 0 to 50 feet
(Antevs, 1922) and 30 feet (Hansen, 1986) atop clay.
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FACIES DISTRIBUTION IN VERMONT
AND NEW HAMPSHIRE

In Vermont and New Hampshire, Lake Hitchcock was
much narrower than in southern New England (Ridge
and Larsen, 1990, fig. 11), relief bordering the lake was
greater (Denny, 1982), the rate of ice retreat was probably
more rapid (Schafer, 1979), and the ice margin was appar-
ently characterized by extensive stagnation rather than
by active ice (Stewart and MacClintock, 1969; Larsen,
1982; Larsen and Koteff, 1988). Large volumes of water
flowed south through subglacial tunnels near the valley
axis, depositing esker segments of varying lengths that
commonly constitute productive aquifers, although they
underlie only part of the valley width and are locally dis-
continuous or perched on bedrock above the water table.
Eskers are well documented in the following localities:

1. At least 10 successive ice-contact, apparently esker-
fed deltas lie near the Connecticut River between
the Massachusetts State line and Putney, Vt.
(Larsen and Koteff, 1988, p. 110). Several expo-
sures revealed a ridgelike gravel core mantled by
deltaic and (or) collapsed sand and, near the top,
lake-bottom very fine sand or silt.

2. Many esker segments, some continuous for several
miles, are present along the Connecticut River val-
ley over at least 18 miles from Lyme, N.H., to
Hartland or Windsor, Vt. (Lougee, 1939; Stewart
and MacClintock, 1969, p. 91; Larsen, 1987a).
Hodges and others (1976b) demonstrated that these
features constitute highly productive aquifers.

3. An esker follows the lower reaches of the White
River valley, a tributary to the Connecticut River
valley that also was occupied by Lake Hitchcock
(Larsen, 1987a). Where best exposed between
Sharon and South Royalton, Vt. (Larsen, 1987a,
stop 5), the esker is largely above the water table,
as indicated by bedrock exposures in the river
channel, but Hodges (1968c) depicted a continu-
ous productive aquifer along the White River val-
ley for several miles downstream from this point.

4. The Passumpsic River valley, another tributary that
was inundated by Lake Hitchcock, contains an
esker that extends for 24 miles from East
Haven, Vt., nearly to the Connecticut River.
Stewart and MacClintock (1969, p. 93) note that
near St. Johnsbury, Vt., the esker is massive but
nearly buried by lake sediment.

All along the Connecticut River valley and tributaries
formerly occupied by Lake Hitchcock, eskers and related
ice-contact deposits are continuously overlapped or
buried by lake-bottom varved silt and clay (Antevs,
1922; Lougee, 1939, p. 137; Larsen, 1987a, stop 5 and
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mile 66.6; Larsen and Koteff, 1988, stop 5A) and by fine
sand to silt that could represent both tributary deltas
and fining-upward sequences deposited by retreating
subglacial drainage. The proximal coarse ice-contact
deposits underlie only a fraction of the valley floor; else-
where fine-grained lake deposits rest directly on till or
bedrock (Antevs, 1922; Stewart and MacClintock, 1969,
p- 102; Hodges and others, 1976b). Stewart and
MacClintock (1970) mapped extensive lake-bottom silt
and clay. Exposures along the White River valley
(F.D. Larsen, Norwich University, written commun.,
1985) indicate that the entire valley was filled with fine
to very fine sand rhythmically alternating with thin
layers of silt or clay. Sand was deposited widely as deltas
into Lake Hitchcock and as river terraces after the lake
was drained (Larsen and Koteff, 1988, p. 114), especially
south of White River Junction (Stewart and
MacClintock, 1970), but many of these surficial sand
deposits are narrow, deeply incised, and overlie very fine
sand or silt that transmits water downward; therefore,
they drain readily and are not dependable aquifers.

WALLKILL LOWLAND

A broad lowland underlain chiefly by shale, siltstone,
and carbonate bedrock lies west of the Hudson River in
Ulster and Orange Counties, N.Y., and Sussex County,
N.J. It is drained primarily by the northeastward-
flowing Wallkill River and was extensively inundated by
lakes ponded in front of the retreating Wisconsinan ice
sheet, as represented by the “L” symbol on plate 1. Early
in deglaciation, the ponded water drained southward to
the Delaware River across saddles 520 to 500 feet in alti-
tude near Augusta, N.J. (Connally and others, 1989;
Stanford and others, 1998). Later, lake level dropped as
meltwater escaped eastward to the Hudson River across
a succession of progressively lower saddles. The strati-
fied deposits in this lowland have been variously inter-
preted as deposited amid stagnant ice or in front of
active ice (Dineen, 1986a). Diamicton layers capping or
interbedded with coarse-grained stratified drift provide
evidence of locally active ice at Augusta, N.J.
(R.W. Witte, New Jersey Geological Survey, oral com-
mun., 1989), Pellets Island, N.Y. (Connally and others,
1989, stop 3) and nearby areas (Bugliosi and others,
1998), and Rosendale, N.Y. (Waines, 1979). Modern
streams generally flow along wide drift-filled valleys
that parallel the north-northeast strike of the bedrock,
but locally cut across ridges in narrow valley reaches.

Ice-Contact Deposits (Facies 1).—Early-deglacial ice-
contact deposits, whose hummocky topography suggests
collapse, are scattered across the Wallkill lowland. Some
lie within bedrock valleys, bordered and overlapped by
younger lake-bottom sediments (figs. 59, 60), but
because lake levels were higher than many bedrock
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ridges, some ice-contact deposits are draped over or
banked against ridges above modern stream grade and
are largely above the water table (Frimpter, 1972, pl. 2).
Frimpter (1972) and Stanford and others (1998) inferred
that the ice-contact deposits exposed discontinuously
along several valleys are linked by continuous basal
gravel aquifers buried beneath fines. For example, as
explained earlier in the section titled “Meltwater
Channels in Lowlands,” exposed and buried ice-contact
sand and gravel are apparently continuous for at least
19 miles along the west side of the Wallkill valley from
New Hampton, N.Y. (fig. 60B), south to Hamburg, N.J,;
this suggests a persistent subglacial meltwater channel.
Buried ice-contact deposits seem less abundant in the
part of the Wallkill lowland north of New Hampton
(Frimpter, 1972, pl. 2). The Wallkill lowland is bordered
on the northeast by the Hudson River trench, on the
southeast by the Hudson highlands, which drain largely
east or south, and on the west by a narrow ridge,
Shawangunk Mountain; therefore, inwash was slight
and no concentration of ice-contact deposits is found
along the lowland margins. '

Surficial Aquifers (Facies 3).—Silt and clay are wide-
spread in the valleys of the Wallkill lowland, at land sur-
face or mantled by Holocene peat and muck (Frimpter,
1972; Cadwell, 1989). In only a few localities are they
overlain by significant thicknesses of coarse-grained sed-
iment. Three deltas or delta segments are recognized in
the lowest reach of Rondout Creek valley, near and north
of Rosendale (Frimpter, 1972; Waines, 1979; Cadwell,
1989). The largest of these, at Tillson, blocked the ances-
tral Wallkill valley and diverted the Wallkill River
through a postglacial gorge; it constitutes a significant
sand-plain aquifer (Frimpter, 1972). Exposures and well
records indicate that the surficial sand that caps all three
deltas is everywhere underlain by silt and clay; little evi-
dence has been reported of a morphosequence head or ice
margin where coarse sediment extends from land surface
to bedrock. For this reason, and because surficial diamic-
ton has been observed locally, these deltas have been
interpreted as the product of glacial readvance into an
established (or reestablished) proglacial lake (Waines,
1979; Dineen, 1986a). Surficial deltaic or lake-bottom
sand also caps lacustrine silt and clay in the middle
Rondout Creek valley between Wawarsing and High
Falls; it is the product of abundant meltwater from ice
near Ashokan Reservoir pouring south through a variety
of channels into a lake in Rondout Creek valley (Dineen,
1986a). The surficial sand is thin and fine grained, how-
ever, and was not mapped or mentioned by Frimpter
(1972); it is, at best, a minor sand-plain aquifer. The only
other extensive surficial aquifers in the Wallkill lowland
are the several feet of alluvial gravel that underlie the
flood plains of the large streams.
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respects: (1) Spacing is not strictly a function of spacing
of preexisting bedrock valleys but rather reflects the
spacing of meltwater channels within the ice sheet and
the position of the ice margin during oscillations or
pauses in retreat; and (2) the zone of stagnant ice that
typically bordered the retreating ice margin and was
the principal locus of ice-contact deposition elsewhere
seems to have been generally absent here, especially
near the present coast; instead, the forward edge of the
ice probably stood as a cliff or floating shelf of active ice
that calved into the ocean (Smith, 1981, 1982, 1984;
Thompson, 1982; Moore, 1982). Ice-contact deposits
formed in three or perhaps four types of settings,
described in turn below.

Eskers and Related Deposits.—Much of the coarse
sand and gravel in coastal Maine and New Hampshire
is found in or associated with eskers, many of which
extend, with only short gaps, for several miles in gen-
erally north-south orientations (Stone, 1899; Leavitt
and Perkins, 1935). Eskers are described in a previous
section of this paper entitled “Esker Systems in
Maine.” In this coastal region, generally, an esker will
have a core of relatively coarse gravel, overlain or
surrounded by finer gravel and sand and commonly
overlapped by marine clay in a typical fining-upward
subaquatic-fan sequence (Thompson and Smith, 1983,
p- 5-6, 34).

Ice-Marginal Deposits.—Linear ridges parallel to
the former ice front have been recognized in many
places in coastal Maine (Prescott, 1974a, b; Borns,
1974; Thompson, 1980, 1982; Smith, 1982; Smith and
others, 1982). These ridges consist of gravel and coarse
sand, sand and silt, till, or any combination thereof.
The stratified components are thickest near eskers but
are widely distributed elsewhere. Some of these ridges
are thought to have formed by ice push during oscilla-
tory retreat of an active ice front, as evidenced by
numerous thrust faults and recumbent folds, by inter-
calated till slices, and commonly by a till carapace atop
the proximal slope (Smith, 1982; Smith and others,
1982; Thompson and Smith, 1983, p. 27, 32). Other low
ice-marginal ridges seem to be incipient deltas that
were deposited under or in front of a floating ice termi-
nus but did not build up to sea level (Thompson, 1982;
Smith, 1982).

Glaciomarine Deltas.—Deltas were built into thé sea
along the retreating margin of the ice sheet in at least
50 localities in Maine (Thompson, 1982, p. 221) and at
least 26 in New Hampshire (Moore, 1982; Larson and
Goldsmith, 1989; Koteff and others, 1989, 1993). They
are characterized by:
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1. A broad, level surface, graded to the maximum level
of marine submergence (Thompson, 1982, p. 222).

2. Thin surficial gravel (originally fluvial topsets, com-
monly reworked by waves) overlying foresets of
sand and fine gravel (Koteff and others, 1993).

3. Interfingering distally and downward with marine
clay (fig. 71G-I).

4. Kettles and collapsed deposits on the proximal mar-
gin (fig. 71H). Less frequently, the proximal mar-
gin 1s a bedrock ridge, cut by one or more saddles
through which meltwater carried sediment.

Glaciomarine deltas formed only where major melt-
water drainage systems emptied into the sea. Many
occur at or near the inland limit of marine sub-
mergence, commonly at the southern end of esker
systems (fig. 71H). Some are laid out in series along an
esker, having formed successively as the ice margin
retreated (Leavitt and Perkins, 1935, p. 52; Thompson,
1982, p. 221). Others represent successive northward-
retreating positions of the mouths of persistent melt-
water streams not associated with eskers (Larson and
Goldsmith, 1989).

Possible Widespread Sheets of Sand or
Gravel.—Some scattered kames or kame fields or
hummocky stratified drift are not on esker or ice-
marginal trends nor associated with known glacioma-
rine deltas (Prescott 1974b, 1977; Thompson, 1982).
Thompson (1982) interprets some of these deposits as
originating because bedrock or till hills “temporarily
anchored the ice margin and localized deposition of
sand and gravel that washed out from beneath the
ice,” implying that a thinner layer of sand and gravel
might have been widely deposited elsewhere. If melt-
water emerged from the base of the ice as small
streams or as sheet flow, in most of this region it would
have entered marine water in which its sediment load
could readily be deposited as stratified drift, perhaps
in the form of small subaquatic fans. Furthermore, a
floating ice shelf rises and falls with the tide and,
thus, allows cyclical landward and seaward flow of
seawater in the thin space beneath the ice, a process
that might winnow the upper part of the underlying
till and any sediment dropped from the melting ice
shelf. These mechanisms had the potential to create a
discontinuous but widespread layer of sand or gravel
between the till and the marine clay that was depos-
ited later after the ice front had retreated farther.
Bingham (1981), Smith (1982), and Smith and others
{1982) report that such a thin sand or gravel deposit
mantles large areas on low hills in the coastal region
and is thickest near eskers; Smith ascribed it to the
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mechanisms mentioned above. He did not collect
subsurface data to show whether the same deposit
extended beneath adjacent valleys, however. Subsur-
face data were obtained by Tepper (1980) from
25 domestic wells drilled through marine clay in val-
leys in the town of Arundel, Maine, 13 of which pene-
trated sand or gravel beneath the clay; although one
well reportedly penetrated 100 feet of gravel, gener-
ally the basal sand or gravel was thin and had no obvi-
ous distribution pattern. Some wells in other localities
studied by Tepper (1980) also penetrated gravel
between clay and bedrock. Most reports on the
ground-water hydrology of coastal Maine and New
Hampshire do not mention any widespread thin basal
aquifer beneath marine sediments, however.

FINE-GRAINED MARINE DEPOSITS

Fine-grained marine sediment, the Presumpscot
Formation of Bloom (1960), is widespread in coastal
Maine and New Hampshire. Maps by Prescott (1963,
1974a, 1977) and Bradley (1964) suggest that fine-
grained marine sediment may underlie as much as
65 percent of some towns near the coast. In areas of
higher relief, the marine deposits are limited to the
deeper valleys, which once constituted estuaries
between till-covered uplands.

Fine-grained marine sediments reach thicknesses of
100 to 200 feet in many lowlands (Prescott, 1967;
Borns, 1974; Tepper, 1980; Smith, 1981; Thompson,
1982, p. 24) but are only a few feet thick on many hill-
sides within the inundated region. Generally, the max-
imum altitude of marine silty clay is 50 feet or more
below the maximum sea level during deglaciation in
any particular locality (Thompson, 1978).

The typical marine sediment is a blue-gray, massive,
silty clay (Thompson, 1982). Thin clayey silt layers sep-
arated by sand and silt laminae were deposited in the
inland estuaries (Borns and Hagar, 1965a, p. 1236) and
near the top of the marine section (Bradley, 1964).

The marine deposits overlap and locally bury ice-
contact deposits such as kames and eskers. Locally,
near the landward limit of their deposition, marine
deposits are found only in depressions such as kettle-
holes and the bottoms of modern lakes. A few exposures
indicate that the marine silty clay was deposited before
the last remaining ice melted (Goldthwait and others,
1951, p. 43; Borns and Hagar, 1965a, p. 1237). The
marine silty clay interfingers with the distal parts of
glaciomarine deltas and deltaic ice-frontal deposits
(Smith and others, 1982, fig. 4; Moore, 1982, fig. 3;
Moore, 1990, fig. 10).
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LATE COARSE-GRAINED SURFICIAL SEDIMENT

Although the Presumpscot Formation occupies low-
lands throughout coastal Maine and New Hampshire,
commonly it is mantled by younger sand and gravel of
various origins. Outwash, chiefly well-sorted fine to
coarse sand, is found near the marine limit in many
localities, deposited as valley trains by aggrading melt-
water streams and as deltas prograding across marine
fines. Outwash can be several tens of feet thick but
commonly becomes finer with depth and thins south-
ward; many test borings (Tolman and others, 1983) in
the large area of deltaic outwash between Kennebunk
and Sanford, Maine, reveal 35 to 90 feet of sand, the
lower part fine to very fine, overlying marine clay
(fig. 71F). As postglacial isostatic rebound raised land
surface relative to the sea, streams incised the outwash
and redeposited the sand farther out into the receding
sea; most of this redeposited marine sand is less than
15 feet thick, thinner than the outwash as well as lower
in altitude. The stream terraces incised into the out-
wash are capped by alluvial deposits; those along the
Kennebec River are chiefly coarse gravel and were
interpreted by Borns and Hagar (1965b) as a valley
train from a late-glacial ice cap, but later were reinter-
preted as postglacial (H.-W. Borns, University of Maine,
written commun., 1995). Beach deposits, chiefly silty
fine sand but locally gravel, occur as fringes around
hills and were derived by wave erosion of the hillsides
as the sea receded.

AQUIFER GEOMETRY IN THIS REGION

Several examples of typical aquifer geometry in the
area of marine incursion in Maine, New Hampshire,
and extreme northeast Massachusetts are illustrated
in figure 71. Facies-1 aquifers include eskers, related
constructional ice-contact deposits, widespread thin
sheets, and glaciomarine deltas; facies-3 aquifers
include outwash and alluvium. Two generalized sec-
tions across the Kennebec River valley (fig. 714, B)
show an esker overlapped by marine silt and clay. In
the upstream reaches of this valley (fig. 71B), the
marine fines grade up into sandy outwash (Embden
Formation of Borns and Hagar, 1965a, b) that is largely
above stream grade and, thus, could supply only small
well yields. Both sections show alluvium, inset into the
marine fines and extending below stream grade, that is
mostly gravel and could perhaps be tapped by shallow
wells. Near Pittsfield, Maine (fig. 71C), an esker that
follows the Sebasticook River valley for a few miles is
bordered by swampy lowlands that are capped by 15 to
20 feet of outwash or alluvium, beneath which are
marine fines. A section along the Maine Turnpike
north of Portland (fig. 71D) crosses an ice-contact
deposit whose cross profile is eskerlike, but no esker
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trough-crossbed sets of variable orientation,
locally truncated by channels filled with struc-
tureless sand that contains sand clasts; it was
deposited as subaquatic outwash by density cur-
rents near the mouth of a subglacial channel
(Larsen, 1987b, p. 224).

2. Kingsbury Branch and Connecting Valleys.—Maps
by Hodges and others (1976a) suggest that the
valley of southward-flowing Kingsbury Branch
contains a larger volume of more continuous ice-
contact deposits than the parallel valleys of North
Branch and upper Winooski River to the west and
east. A well-documented esker extends from the
valley of Kingsbury Branch southward into the
Winooski valley in the town of East Montpelier.
The esker has a saturated thickness of 60 feet, a
transmissivity of 40,000 feet squared per day, and
is bordered and partly buried by fine sand, silt,
and clay. Hodges and others (1976a) suggested
that the esker may continue on a southward tra-
jectory toward Barre and toward the valley of
north-flowing Stevens Branch, which heads at
Williamstown Gulf (fig. 21). Near the head of
Kingsbury Branch, at Lake Woodbury, kame
terraces (Stewart and MacClintock, 1970; Hodges
and others, 1976a) commonly crest at 1,000 to
1,040 feet, which is at or slightly above the
projected level of the proglacial lake (Lake
Winooski) that was controlled by Williamstown
Gulf, allowing for postglacial rebound (Larsen,
1987a, p. 37). The ice-contact deposits in this set
of valleys are inferred to reflect a persistent
subglacial channel system early in deglaciation of
this region, as described earlier in the section
“Regional Meltwater Drainage Systems.”

3. Mississquoi Valley, Upstream from North Troy.—
This reach of the Mississquoi valley drains north
into Canada. Early in deglaciation, melt-water
drained south through Eden Notch, a saddle
1,360 feet in altitude at the head of the valley
(fig. 24, east of Mt. Norris). Sand and gravel
deposits immediately north of the notch were
probably deposited by meltwater from a sub-
glacial channel that followed the Mississquoi
valley, as discussed earlier in the section “Other
Temporary Meltwater Channels in Uplands.” Far-
ther north, fine-grained lake deposits are wide-
spread below an altitude of 840 feet, and small
deltas or fans occur at this altitude near tributar-
ies. Stewart and MacClintock (1969, p. 171) report
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that the lake deposits mantle kame gravels, which
seem to be products of the earlier subglacial chan-
nel system.

4. Mississquoi Watershed Downstream From East
Richford.—Surficial stratified drift downstream
from East Richford, Vt., where the Mississquoi
River returns to the United States, consists
largely of fine-sandy deltas and lake-bottom fines
deposited in valleys ponded at successive levels of
Lake Fort Ann, a large water body that occupied
the Champlain lowland late in deglaciation. The
only extensive coarse ice-contact deposits reflect
meltwater flow across local divides early in
deglaciation or perhaps following a local read-
vance (Parrott and Stone, 1972). Ice-contact
deposits between West Berkshire and Enosburg
Falls, Vt., are tapped by a municipal well (Hodges,
1967b) and head in a segmented esker about
3 miles long. South of Enosburg Falls, kame ter-
races and eskers extend across a divide near
Bakersfield, Vt. (Stewart and MacClintock, 1970;
Parrott and Stone, 1972). These two masses of ice-
contact deposits are aligned with each other and
could reflect successive depositional events along
a single meltwater-drainage system, although
they are not known to be continuous, and inter-
vening surficial gravel deposits are interpreted as
younger (Parrott and Stone, 1972).

Valleys in the north-draining mountain region that
borders the Champlain lowland are typically narrow
and steepsided. Bedrock outcrops seem to be less com-
mon along the stream channels and valley floor than in
the adjacent Eastern Mountain region (pl. 1), but in
several places, streams have cut short gorges through
bedrock spurs on which they were superposed when
proglacial lakes drained. Hence, any basal ice-contact
sand and gravel aquifers are likely to be bounded by
bedrock walls only several hundred feet apart.

Ice retreated from this region by stagnation in seg-
ments that were at least a few miles in length; indeed,
much of the region may have stagnated at the same
time (Schafer, 1967). Evidence of active ice is reported
from several localities, however. Numerous exposures
of till and deformed strata within lake deposits have
been attributed to one or more readvances of the
Champlain lobe in the Memphremagog and
Mississquoi basins near the Canadian border, where
altitude and relief are the lowest in this region and
decline northward (Wagner, 1972; Parrott and Stone,
1972). Denny (1974, p. 7-8) described exposures of till
overlying deformed deltaic sands along the Saranac
and Great Chazy Rivers in New York, also at relatively
low altitudes near the Champlain lowland. Till
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overlying inwash terraces in the headwaters of West
Branch Ausable River near Lake Placid was attributed
to a minor readvance by Cubbison (1989) and Gurrieri
and Musiker (1990, p. 191-2). Several exposures of till
overlying deformed lake-bottom fines farther down-
stream along the Ausable River valley were illustrated
and interpreted by Craft (1979) as deposits of local
mountain glaciers late in deglaciation. Remnants of the
continental ice sheet also may have functioned briefly
as local glaciers in a few mountain valleys in Vermont
(Wagner, 1970; Connally, 1971). Thus, till layers are
abundant amid the stratified drift in parts of this
region, and some exposures (for example, Craft, 1979,
figs. 11, 29) suggest a complex stratigraphy with more
than one drift sheet. More generally, however, the tills
seem to be incidental interruptions in a typical 3-facies
stratigraphy.

NORTHERN RIM OF THE APPALACHIAN PLATEAU

Nearly all of the Appalachian Plateau in Ohio,
Pennsylvania, and New York drains southward to the
Ohio, Susquehanna, or Delaware Rivers, but the north-
ern 10 to 30 miles of the plateau drains northward to
Lake Erie, Lake Ontario, or the Mohawk River. In this
northern rim, valley fills are unusually thick and com-
monly include multiple drift sheets rather than the sin-
gle drift sheet with three depositional facies that is
typical of valley fills nearly everywhere else in the gla-
ciated Northeast. Because the valley fills are so thick
and complex, this region is treated at greater length
than most other regions. A review of aquifer geometry
in the region as a whole is followed by brief descriptions
of several valleys that have been studied in some detail.

All major valleys that drain the north rim of the
plateau were deeply scoured by glacial erosion. The
Finger Lakes of New York are spectacular examples;
the bedrock surface is at least 800 feet below sea level
beneath parts of Seneca and Cayuga Lakes (Muller,
1965b; Mullins and Hinchey, 1989). In many through
valleys, bedrock a few miles north of the modern drain-
age divide is 1,000 to 1,500 feet lower than the bedrock
saddle, which is at most a few miles south of the mod-
ern divide. Such large differences in altitude must have
resulted in unusually deep proglacial lakes during both
advance and retreat of the ice. These lakes were longer
as well as deeper than most lakes in southward-
draining valleys and, thus, probably trapped a higher
percentage of the fine-grained sediment carried by
meltwater. During both advance and retreat, ice
tongues must have been partially buoyant but stalled
for long periods within the steep north-sloping reach at
the head of each valley, which was a barrier to ice
tongues just as escarpments farther north on the ridges
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between these valleys were barriers to the ice sheet as
a whole. All these factors favored deposition of sedi-
ment, particularly fine-grained sediment. At present,
all northward-draining valleys along the northern rim
of the Appalachian Plateau contain several hundred
feet of drift; some reaches contain as much as
1,000 feet. In general, the bulk of the valley fill consists
of interlayered diamictons and fine-grained lake depos-
its, but in some valley reaches, the latter seem to
greatly predominate. Multiple diamicton layers are evi-
dent not only within the Valley Heads and Lake
Escarpment moraines, but also in reaches to the north
and south.

Sand and gravel is much less abundant than dia-
micton and lake-bottom fines, at least in the upper part
of the section, and is apparently absent in some locali-
ties. Sand and gravel occurs chiefly as discontinuous
lenses of variable thickness that could have been
deposited as subaquatic fans by subglacial meltwater
and as alluvium in fans or channels of north-flowing
streams during interstadial intervals. Tributary deltas
are small, perhaps because upland ridges between val-
leys are too narrow to allow large tributary watersheds
and because the steep valley walls below lake level may
have favored slumping and subaquatic fans. Surficial
sand and gravel is generally limited to the alluvial fans
and channel deposits of postglacial streams; saturated
thickness seldom exceeds 20 feet and is locally negligi-
ble due to Holocene incision. In a few valleys, these thin
alluvial deposits have been considered potentially
important aquifers in that shallow wells or infiltration
galleries might obtain significant yields sustained by
seepage induced from streams (Frimpter, 1972;
Randall, 1979). At the southern ends of the Finger
Lakes, about 50 feet of Holocene aggradation has
occurred as a result of isostatic rebound that tilted the
lakes southward; this alluvium is mostly organic-rich
mud, but gravel aquifers are present where large trib-
utaries reach the valley floor (Kantrowitz, 1970; Crain,
1974). In the northern half of Cattaraugus Creek
watershed in Wyoming and Erie Counties, N.Y., and
rarely elsewhere, southward-draining tributary valleys
contain surficial valley trains of sand and gravel.

Some information suggests that a basal aquifer is
commonly present in the deep northward-draining val-
leys of the Appalachian Plateau. Productive basal aqui-
fers have been penetrated by boreholes in Dale Valley
(Randall, 1979) and in Cayuga Inlet, Tully, northern
Schoharie, and Cobleskill Creek valleys (fig. 74), as
described farther on. Seismic-reflection profiles across
each of the Finger Lakes (Mullins and Hinchey, 1989;
Mullins and others, 1991) reveal a basal unconsoli-
dated facies that is seismically chaotic (typical of stony,
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heterogeneous sediments), has a hummocky upper sur-
face, and approaches 300 feet in thickness near the
south end of some lakes but thins and becomes younger
northward. It is overlain by a layer that is reflection-
free (interpreted as massive muds), and then by a set of
parallel high-amplitude reflectors (typical of rhyth-
mites) that are interrupted in some valleys by
southward-thinning reflection-free wedges (inter-
preted as massive sandy silt or diamicton deposited
rapidly during individual inflow events). At the top of
the section are northward-thinning postglacial sedi-
ments. All this information seems consistent with the
hypothesis that valley fills in this region are largely the
product of the last major deglaciation, as is generally
true elsewhere. According to this hypothesis, when the
Wisconsinan ice reached its maximum thickness and
extended into Pennsylvania, it further scoured these
valleys, which were already overdeepened by earlier
glaciations. A long pause in retreat when the ice sheet
fronted on the north margin of the plateau allowed
time for deposition of an unusually thick basal facies
that included subglacial channel gravels, subaquatic
fans, and diamictons of various origins. Any later
readvances may have been surges controlled by glacier
dynamics in proglacial lakes rather than by climate.
Surges would have involved thin ice tongues that
advanced and retreated quickly (Teller, 1987), and,
therefore, left little coarse stratified sediment. Valley-
fill stratigraphy that contains the typical three deposi-
tional facies associated with a single deglaciation
seems to become increasingly prevalent with distance
north of the modern drainage divide. A fourth facies
composed of fine-grained, organic-rich Holocene allu-
vium was deposited locally atop facies 2 or 3 when iso-
static rebound reduced northward stream gradients
and caused the Finger Lakes to prograde southward
(Lawson, 1977; Mullins and others, 1991).

Other information, however, indicates that a large
part of the drift in many valleys is older than late
Wisconsinan and, thus, contradicts the foregoing
hypothesis that the valley fills are essentially a single
late Wisconsinan drift sheet. At Millport, N.Y., within
the Valley Heads moraine along a deep trough that
extends south from Seneca Lake, wood recovered from
fine sand beneath till at a depth of about 175 feet was
more than 40,270 radiocarbon years in age
(P.E. Calkin, State University of New York, written
commun., 1989). Just north of the Valley Heads
moraine in a trough that extends southeast from
Cayuga Lake, wood from the upper part of a thick
varved sequence overlain and underlain by till was
dated as 41,900 years in age (Bloom, 1972, citing
Schmidt, 1947). Preliminary analysis of pollen grains
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in borehole samples from Conewango valley suggest
mid-Wisconsinan interstadial deposits at a depth of
about 130 feet and Sangamon interglacial deposits at
about 500 feet (Pefley and Calkin, 1990). Peat at Otto,
N.Y.,, and wood at Collins, N.Y., have been dated as
63,900 and 52,000 radiocarbon years in age, respec-
tively (Muller, 1964; Calkin and others, 1982; Muller
and Calkin, 1993); the Otto site lies in a narrow
northeast-southwest valley segment that might not
have been effectively scoured by ice, but the Collins site
lies on the deep Conewango (ancestral Allegheny)
trough that is aligned generally parallel to flow of ice
out of the Erie basin. Drift 100 to 300 feet thick below
the grade of the Genesee River south of Portageville
was inferred to predate the late Wisconsinan ice
advance to the glacial border (Braun, 1988). The bulk
of the till and stratified drift in northeastern Ohio was
deposited by the Titusville ice advance in mid-
Wisconsinan time and was subsequently mantled by
late Wisconsinan drift (White and others, 1969; White,
1982). All of this evidence, taken together, indicates
that if ice advanced to the Wisconsinan drift border in
late Wisconsinan time, as concluded by Crowl and
Sevon (1980) and Muller and others (1988), then that
ice did not generally remove preexisting drift from
northward-draining valleys along the north rim of the
Appalachian Plateau. If the drift in those valleys was
deposited incrementally during multiple cycles of ice
advance and retreat, coarse proximal stratified drift
would not be expected to occur exclusively or predomi-
nantly at the base of the section. Borehole records from
most of the valleys that are described in more detail
below provide no clear evidence that coarse-grained
stratified drift is any more abundant at the base of the
valley fill than at shallower depths. The upper part of
the section in these valleys consists of multiple drift
sheets, predominantly diamicton interbedded with
lacustrine fines, with subordinate lenses of coarse sand
and gravel of variable thickness. A reasonable hypoth-
esis, therefore, is that the deep part of the section was
deposited under much the same conditions as the shal-
low part, except for deeper water that might have
favored a higher proportion of fine-grained sediment.

Brief descriptions of stratigraphy in several individ-
ual valleys along the northern rim of the Appalachian
Plateau follow, arranged from east to west. All but the
last of these valleys are labeled in figure 74, as are
several places mentioned in the text.

SCHOHARIE CREEK WATERSHED

The watershed of northward-draining Schoharie
Creek includes three contrasting terranes, the first two
of which resemble the north rim of the plateau farther
west:
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1. Upper Schoharie Watershed, South of Breakabeen.—
Valley floors and, in most places, lower valley-side
slopes are underlain by till interbedded with lake-
bottom fines and scattered lenses of water-yielding
sand and gravel. Rich (1935), who studied the
southern part of the watershed, mapped the rela-
tively gentle slopes that characterize the lower val-
ley sides as “thick drift” composed mostly of
“hardpan-type till,” and presented sections and
borehole logs that reveal 225 to 280 feet of inter-
layered till, clay, and fine sand with few possible
aquifers. Cadwell and Dineen (1987) mapped some
lower valley slopes as kame deposits, despite the
general lack of flat-topped morphosequence rem-
nants, and mapped some broad hummocky areas at
higher elevation as kame moraine. Soils maps indi-
cate that most areas mapped as kame moraine in
Schoharie County are underlain by till, at least at
shallow depth (Flora and others, 1969). Wells on
the valley floors and lower slopes of Schoharie
Creek and most tributaries are reported to pene-
trate chiefly hardpan (till) with lesser amounts of
clay, quicksand (silt or very fine sand), sand, or
gravel to depths of 100 to 250 feet (U.S. Geological
Survey, unpublished records). North of Prattsville,
the lower sides of valleys are generally mantled by
fine sand, silt, and clay deposited in proglacial
lakes that overflowed at Grand Gorge (altitude
about 1,600 feet) and later at Franklinton
(1,180 feet); lake fines are not found southeast of
Prattsville, perhaps because stagnant ice choked
these valley reaches (Cadwell, 1985).

2. Lower Schoharie Valley (Breakabeen North to
Esperance) and Cobleskill Valley.—Thick, pre-
dominantly fine-grained drift also characterizes
this region, but lake-bottom sediments predomi-
nate over till, and a basal aquifer is commonly
present. Lake-bottom sediments, 100 to 300 feet
thick and apparently continuous, underlie the val-
ley floors (U.S. Geological Survey, unpublished
records) and many segments of the valley sides.
These sediments are commonly capped and per-
haps interbedded with till reworked from lake-
bottom sediments during ice readvance (Darien
soils of Flora and others, 1969) and are underlain
in many places by deep gravel. The deep gravel
might be alluvium that predates the last glacia-
tion, but its upper surface seems to have a steplike
downvalley profile that suggests discrete sub-
aquatic fans deposited at successive positions as
ice retreated downvalley. In a few localities, gravel
layers also occur higher in the valley fill.
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has been mapped at scales of 1:62,500 or larger. County
soils maps at similar scales are readily translated to
surficial geology and are available for much of the gla-
ciated Northeast, and detailed hydrogeologic maps are
available for some localities. On the average, stratified
drift underlies only about 15 percent of the glaciated
Northeast; thus, its delineation greatly narrows the
area that merits closer examination to locate produc-
tive aquifers capable of yielding large water supplies.

AQUIFER GEOMETRY WITHIN
THE STRATIFIED DRIFT

Almost all aquifer appraisals must go beyond merely
delineating the areal extent of stratified drift. In some
places, stratified drift is too thin, too thinly saturated,
or too fine grained to yield much water. In other places,
productive aquifers within the stratified drift are inter-
rupted or confined by till, fine-grained stratified drift,
or shallow bedrock. Knowledge of aquifer
geometry—that is, the three-dimensional distribution
and extent of saturated, water-yielding coarse sand
and gravel relative to non-water-yielding fine-grained
drift, to bedrock, and to streams that are potential
recharge sources—is essential to understanding the
ground-water flow system, siting large-capacity wells,
evaluation of aquifer yield, and prevention or remedia-
tion of ground-water contamination. Delineation of
aquifer geometry requires some information from the
locality of interest and also a conceptual model(s) to
organize that information.

INFORMATION THAT IS USEFUL
IN DELINEATING AQUIFERS

The following types of information are commonly
used to interpret aquifer geometry to the extent they
are available within the locality of interest.

Surficial Geology.—Surficial geology maps and soils
maps commonly depict not only the areal extent of
stratified drift but also the spatial variation in grain
size and (or) depositional environment.

Well Records and Borehole Logs.—The U.S. Geologi-
cal Survey, State and local government agencies,
college professors and students, and consultants have
over the years collected and published or archived
many records and logs of drillholes, chiefly water wells
but also test borings intended for engineering
foundation design of highway structures or large build-
ings. Some States and counties currently require
water-well drillers to submit records of wells soon after
construction, but for many localities, no agencies have
collected anything approaching a complete set of
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records of all wells. Many geohydrologic studies incor-
porate a review of published or archived records, collec-
tion of additional records, and supplemental test
drilling at key locations.

Geophysical Exploration—Several methods of sur-
face geophysical exploration have proven useful in
interpreting the geometry of stratified-drift aquifers.

Electrical resistivity or conductivity can, in general,
be empirically correlated with grain size and, thus,
with hydraulic conductivity of glacial drift in geo-
graphic areas where ground-water quality is uniform.
Coarse-grained material is generally less conductive
(more resistive) to electric current than fine-grained
material, and three methods—direct-current resistiv-
ity, inductive terrain conductivity, and very low fre-
quency (VLF) terrain resistivity—can detect
conductive material below resistive material (Haeni,
1995). Thus, these methods can ordinarily distinguish
areas in which thin surficial aquifers overlie fines from
areas where all or most of the unconsolidated deposits
are coarse grained, although such interpretations can
be complica.ed by local topographic irregularities that
result in large differences from place to place in
thickness of highly resistive unsaturated surficial sand
and gravel. Inductive terrain conductivity can detect
lateral changes in thickness and grain size of individ-
ual conductive layers in conductive terranes, and VLF
can detect lateral changes in grain size in resistive
terranes.

Seismic refraction can reliably determine depth to
bedrock and commonly also depth to the water table.
The combined use of seismic, resistivity, and
electromagnetic methods in conjunction with borehole
logs and measurements of specific conductivity of
ground water often can provide a reasonably compre-
hensive interpretation of aquifer geometry (Haeni,
1995).

Continuous seismic-reflection surveys taken from
boats can distinguish coarse-grained sediments from
fine-grained sediments along and beneath rivers and
lakes, which is where such information is most needed
because thick coarse-grained surficial aquifers that
border and underlie rivers and lakes are especially
promising as aquifers from which large ground-water
withdrawals can be sustained by induced infiltration.
Many valleys in the glaciated Northeast are character-
ized by reaches of predominantly coarse sediment
alternating with reaches in which a thin surficial
aquifer overlies thick lacustrine fines. Continuous
seismic reflection also can detect significant
thicknesses of coarser drift beneath the fines, although
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borehole data are usually required to determine
whether the basal deposits are ice-contact sand and
gravel deposits or morainal drift of low hydraulic con-
ductivity (Haeni, 1988; Reynolds, 1988; Mullins and
Hinchey, 1989).

Water-Level Measurements and Water-Temperature
Profiles.—Measurements in wells of water level and
change in temperature with depth have been used to
establish continuity of aquifers, define preferential flow
paths, and identify barriers to flow. For example, Ferris
and others (1962) and Walton (1962) explained how
aquifer boundaries can be located by applying image-
well theory to the analysis of drawdown or recovery of
water levels in wells. Crain (1966) cited seasonal
changes in water level in a few wells (fig. 30) as evi-
dence that valley-side alluvial fans are the principal
source of recharge to a midvalley buried gravel aquifer.
Randall (1977) used temperature profiles, water levels,
and lithology of drill cuttings to demonstrate that a
surficial aquifer had been downwarped, as part of an
ice-block depression that is no longer recognizable topo-
graphically, and constituted the principal flow path
whereby induced infiltration reached a well field
(fig. 35). Randall (1986a, p. 14—15) used temperature
profiles and water levels to demonstrate continuity of a
gravel aquifer between two municipal wells despite dif-
fering stratigraphy, and to demonstrate discontinuity
of a widespread silty clay confining layer beneath a
river reach where induced recharge took place readily.
Winslow (1962) and Winslow and others (1965) used
temperature observations in many wells to determine
the location and depth of the principal flow path of
induced infiltration to a well field.

CONCEPTUAL MODELS THAT ARE USEFUL
IN ORGANIZING INFORMATION

Seldom is information so abundant and detailed that
the hydrogeologic framework of stratified-drift aquifers
is unequivocally obvious. Therefore, those who organize
and interpret that information commonly rely on some
idealized mental images of what to expect. The following
generalizations, or “conceptual models,” are explained in
this paper and are widely applicable in identifying pro-
ductive aquifers within the stratified drift.

Expect Three Depositional Facies.—Throughout the
glaciated Northeast, most tracts of stratified drift
larger than 1 square mile contain some combination of
three successive depositional facies:
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Facies 1. Proximal or ice-contact facies, predominantly
coarse grained, heterogeneous and widely variable
in sorting, deposited close to active ice and (or) amid
abundant stagnant ice.

Facies 2. Distal facies, predominantly silt, clay, and
very fine sand, deposited in somewhat larger bodies
of water than facies 1.

Facies 3. Surficial facies, coarse grained, commonly
well sorted, deposited in shallow water; commonly
overlies facies 2; includes prograding deltas, fluvial
outwash, and postglacial alluvium, terraces, and
fans.

At any given moment during deglaciation, facies 2 and
3 were being deposited farther from the ice margin
than facies 1; that is, farther downvalley and in
valleys that no longer received meltwater. At any
given location, one or two facies may be absent, but
where all three are present, facies 1 was deposited
first, followed by facies 2, then facies 3. Therefore, in
most valleys, the entire stratigraphic section at some
locations is coarse grained (facies 1, or 3/1), whereas at
other locations nearby it is coarse over fine (3/2),
coarse over fine over coarse (3/2/1), or, in broad
lowlands, fine over coarse (2/1).

Expect Stratigraphy from a Single Deglaciation.—The
Northeastern United States was covered at least twice by
continental ice sheets, and the retreat of the last ice sheet
was occasionally interrupted by brief readvances. In a
few regions, notably the northern rim of the Appalachian
Plateau, valley fills include multiple layers of till and
stratified drift (facies 1 or 2) that record this history of
multiple glaciation. In most regions, however, the last ice
sheet eroded to bedrock, and any readvances caused only
minor perturbations in the depositional environments
wherein facies 1, 2, and 3 were being deposited during
deglaciation.

Identify Morphosequences.—During deglaciation,
stratified drift often filled all available ponded depres-
sions in a reach of valley, and meltwater streams estab-
lished a smooth fluvial profile graded to some lake or
bedrock saddle. All deposits associated with such a pro-
file constitute a morphosequence. Thin surficial sand or
pebble gravel commonly overlie fine-grained sediments
near the distal end of a morphosequence, whereas
coarse sand or pebble gravel predominate near the
proximal end or head. Some maps of surficial geology
divide stratified drift into morphosequences. Where no
such maps are available, the location of coarse-grained
morphosequence heads can often be inferred from alti-
tudes of terrace remnants shown on topographic maps
and from grain size in excavations or drillhole logs.
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Locate Ice Margins.—Coarse-grained stratified drift
(facies 1) is likely to be concentrated wherever the ice
margin paused during retreat and to grade distally to
fine-grained sediments. Many geologic studies have
been directed to delineating the margin of the former
ice sheet at one or more times during deglaciation.
These inferred ice margins commonly link several mor-
phosequence heads, which are interpreted as marking
pauses during retreat. Projections of former ice mar-
gins across uplands to connect morphosequence heads
in separate valleys have little hydrologic significance;
but where ice margins crossed broad lowlands, the
coarse stratified drift may form a semicontinuous
swath, in part concealed below younger, fine-grained
sediments.

Follow Subglacial Channels.—Much of the stratified
drift that was deposited at the margin of ice tongues in
valleys had been entrained by meltwater at the base of
the ice sheet and transported along subglacial tunnels
to the ice margin; some sediment entrained by
meltwater in adjacent uplands also found its way to
these channels. Coarse, permeable ice-contact deposits
termed eskers were commonly formed in these straight
to sinuous conduits and remain today as exposed or
buried ridges of sand and gravel extending proximally
from morphosequence heads. In localities where ice
retreated rapidly by calving, subaquatic fans formed at
tunnel mouths. Subglacial channels were persistent
features within the retreating ice and have resulted in
continuous, narrow basal aquifers as much as a few
miles long in some places.

Test Near Tributaries.—Tributary streams, both
large and small, were sources of sediment to major val-
leys during deglaciation, as they are today. The coarse
fraction was deposited chiefly near the valley margin,
as ice-contact deposits amid stagnant ice and later as
subaquatic fans and deltas into persistent large lakes.
Not only is stratified drift likely to be relatively coarse
near tributaries, but the modern tributaries are poten-
tial sources of recharge that could sustain the yields of
wells completed in the stratified drift. In many valleys,
the coarse sediments near tributaries constitute ave-
nues by which recharge can reach deep ice-contact
deposits that are elsewhere buried beneath fines.

Look for Collapsed Margins.—A substantial fraction
of the total volume of coarse-grained stratified drift in
the glaciated Northeast lies above modern stream
grade and, thus, is thinly saturated. Many facies-3 del-
taic and outwash deposits were graded to lake levels
well above the modern valley floors, and subsequent
stream incision or abandonment of temporary spill-
ways has left these deposits high and dry—except
where they were built over buried ice blocks whose
eventual melting allowed surficial coarse layers to
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collapse below the modern water table. Many facies-1
ice-contact deposits rest upon shallow bedrock along
the valley sides or around bedrock knolls in midvalley
and also are thinly saturated—except along their head-
ward or valleyward margins where bedrock is deeper
and some coarse stratified drift has collapsed to lower
elevations.

ANTICIPATING AQUIFER DISTRIBUTION
TYPICAL OF PARTICULAR
HYDROPHYSIOGRAPHIC REGIONS

The abundance and distribution of stratified-drift
aquifers were affected by the changing dynamics of the
continental ice sheet during deglaciation and by many
aspects of the subglacial landscape, such as relief,
drainage density, and drainage orientation toward or
away from the ice sheet. Different regions were affected
differently; therefore, generalizations as to aquifer
geometry in a particular region can be more specific
than generalizations intended to apply to the entire
glaciated Northeast. Several regions are delineated
and described in this paper with the expectation that a
review of aquifer geometry in each region would prove
useful in guiding appraisal of individual localities.
These hydrophysiographic regions have been grouped
into four broad categories, as follows.

Regions that Sloped Generally Away from the Ice.—
This category includes some areas that sloped toward
the ice but had such low relief that only small lakes
were ponded behind the low saddles on the watershed
perimeter. In regions of moderately low relief in south-
ern New England, New Jersey, and southern and
northwestern New York, the principal valleys contain
abundant, nearly continuous stratified drift in which
coarse-grained sediment is a major component. By con-
trast, regions of moderately low relief in northern and
central Maine have minimal amounts of stratified drift,
which occurs partly as valley fills and partly as eskers
that follow but do not fill valleys. Mountain regions in
northern New England and northern New York are
characterized by narrow valley floors that are largely
capped by coarse alluvium, commonly interrupted by
bedrock outcrops, and in part underlain by stratified-
drift aquifers; stratified drift also is found on the valley
sides, perched above stream grade. Relief is equally
high in the Appalachian Plateau, but no stratified drift
is perched on the valley sides, no outcrops occur on the
valley floors, valley fills generally exceed 2,000 feet in
width and 150 feet in thickness, and facies-2 fines pre-
dominate wherever depth to bedrock is relatively great.
In the adjacent Catskill Mountains, typical valley fills
contain few fines and are less than 2,000 feet wide, less
than 150 feet thick, and are locally narrowed by thick
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till on the lee (down-ice) side of hills. The Tug Hill
Plateau of New York and Pocono Plateau of
Pennsylvania have low internal relief except along the
plateau margins; valleys are small and generally lack
significant stratified-drift aquifers.

Broad Lowlands Inundated by Large Water
Bodies.—Extensive deposits of silt, clay, and fine sand
in these lowlands are interrupted by many till hills, by
a few ice-marginal deltas, and (at intervals of several
miles) by linear sand and gravel deposits, the products
of subglacial meltwater channels. Some lowland areas
are capped by extensive surficial sand-plain aquifers
deposited by upland runoff from adjacent regions, but
generally, facies-2 fines are the uppermost sediments.
Induced infiltration is seldom possible in these low-
lands. The margins of adjacent uplands are commonly
characterized by high-level deltas now deeply incised
and perched above stream grade.

Regions of High Relief that Sloped Toward the
Ice.—Deep valleys are filled with predominantly fine-
grained sediments seldom capped by a surficial aquifer.
Along the north rim of the Appalachian Plateau, val-
leys contain diamicton layers and scattered lenses of
sand and gravel interbedded with fines. In northwest-
ern Vermont and northeastern New York, most valleys
contain a single extensive layer of fines, locally under-
lain by facies-1 sand and gravel, with bedrock outcrops
common on valley floors.

Regions At or South of the Wisconsinan Drift
Border—The Wisconsinan drift border in New Jersey
approximately coincides with a terminal moraine of
chiefly till that overlies a network of bedrock valleys
containing gravel aquifers of Illinoian and Wisconsinan
ages. From New Jersey to Ohio, valleys draining south
from the drift border were aggraded with sandy valley
trains many miles long, now deeply incised but still sig-
nificant aquifers that extend 40 to 100 feet below
stream grade in many valleys.
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GLOSSARY

Several terms related to glacial geology and used in
this paper are defined below.

Ablation till: loosely consolidated, generally sandy
and stony debris that had been contained within
stagnant ice and remained in place when the ice
was removed by melting or sublimation.

Alluvial fan: a gently sloping mass of predominantly
gravelly sediment, shaped like an open fan or a
segment of a cone, deposited by a stream where it
issues from its own upland valley and enters a
larger valley.

Alluvium: unconsolidated sediment deposited by a
postglacial stream along its flood plain or in an
alluvial fan; generally consists of gravel or grav-
elly sand, overlain by organic-rich fine sand to silt
along the flood plains of larger streams.

BP: before the present; refers to age in years deter-
mined by measuring decay of carbon—14 or other
radioactive isotopes.

Constructional topography: any array of mounds,
ridges, hummocks, hills with rounded or level
tops, or similar topographic forms whose height
results from accumulation of unconsolidated sedi-
ment rather than from the form of the surface on
which the sediment accumulated.

Dead-ice sink: an unusually large ice-block depres-
sion, within which progressive melting of stag-
nant ice provided a progressively expanding space
or sink for sediment deposition.

Diamicton: any nonsorted unconsolidated sediment
containing a wide range of grain sizes, regardless
of genesis; includes till and various products of
mudflow, debris flow, or slumping.

Distal: remote from the source of sediment; stratified
drift deposited far from the active ice margin is
termed distal.

Drift: all rock fragments or particles transported by
glacier ice and deposited by the ice or by melt-
water; includes till, stratified drift, and deposits
resedimented by mass movement soon after depo-
sition by ice or meltwater.

Drop pellets: nonlithified clasts (of diamicton, clay, or
silt) dropped from floating ice into sediments accu-
mulating on the bottom of a proglacial lake.

Esker: a narrow, steep-sided, commonly sinuous and
sharp-crested ridge composed of stratified sand
and gravel deposited by a meltwater stream in a
tunnel at the base of an ice sheet.
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Foreset: one of the inclined layers of sediment (gener-
ally sand) deposited along the advancing, rela-
tively steep frontal slope of a delta; foresets
individually grade into, and collectively prograde
across, flat-lying bottomsets.

Fines: fine-grained unconsolidated sediment, includ-
ing very fine sand, silt, and clay.

Glaciofluvial: pertaining to or deposited by melt-
water streams flowing beside or away from a
glacier.

Glaciolacustrine: pertaining to or deposited in pro-
glacial lakes.

Grounding line: the locus of points beyond which an
active ice sheet that ends in ponded water loses
contact with the ground and becomes a floating ice
shelf.

Gilbert-type delta: a delta that exhibits the compo-
nents originally described by G.K. Gilbert, namely,
a nearly level surface underlain by topset, foreset,
and bottomset beds.

Ice-channel filling: a narrow, steep-sided, linear or
sinuous ridge composed of stratified sand and
gravel, deposited by a meltwater stream in a tun-
nel at the base of the ice sheet or in an ice-walled
channel open to the sky; includes eskers and
crevasse fillings.

Ice-contact: refers to deposits or margins of deposits
that were formed against, among, or atop masses
of ice, ordinarily stagnant ice, and that exhibit
deformation resulting from loss of support when
the ice melted.

Ice stream: a zone within an ice sheet in which the ice
flows more rapidly than bordering ice; usually
such rapid flow follows a broad bedrock valley
directly into a large lake or ocean.

Inwash: unconsolidated sediment delivered to a pro-
glacial lake or to the stagnant marginal zone of
the ice sheet by tributary streams that are not fed
by meltwater.

Jokulhlaup: a catastrophic flood resulting from the
sudden draining of a proglacial lake through an
outlet formerly blocked by ice.

Meltout till: till deposited by slow release of sediment
from melting ice that is motionless (stagnant).
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Moraine: a distinct accumulation of drift, composed
mostly of till (except in valleys, where stratified
drift may predominate), whose topographic form
is independent of the bedrock on which it was
deposited and is commonly, but not necessarily,
ridgelike; moraines referred to in this paper are,
strictly speaking, end moraines, deposited along
the margin of active ice.

Morphosequence: a body of stratified drift that was
laid down by meltwater when deposition was con-
trolled by a specific base level such as a proglacial
lake or spillway; the deposits become generally
finer distally and their upper surface (where not
collapsed) slopes smoothly in the same distal
direction.

Moulin: a roughly cylindrical, nearly vertical, well-
like hole in an ice sheet, carved by meltwater as it
descends from the surface to the base of the ice.

Mudboil: a low, cone-shaped mound of sand with a
central crater from which erupts muddy water
that has flowed upward along a fracture, driven by
artesian pressure.

Openwork: describes gravel composed entirely of
well-sorted granules, pebbles, or cobbles with lit-
tle or no interstitial sand, such that pore spaces
between the stones are readily visible and hydrau-
lic conductivity is extraordinarily high.

Outwash: stratified sand and gravel transported and
deposited by meltwater beyond the region in
which active or stagnant ice predominantly fill the
valleys.

Outwash plain: a broad, outspread, gently sloping
sheet of sand and gravel deposited by meltwater
streams in front of or beyond an ice margin; com-
parable to valley train but wider and less con-
strained by valley walls.

Proximal: close to the source of sediment; stratified
drift deposited in open water or amid stagnant ice
immediately beyond the margin of active ice is
termed proximal.

Radiocarbon years: the age of sediment containing
organic matter, as calculated from measurements
of the amount of carbon-14 relative to other car-
bon isotopes; ages greater than 10,000 radiocar-
bon years are about 87 percent of ages calculated
by more precise but less widely applicable meth-
ods (Bard and others, 1990).
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Resedimented: applied to sediments initially depos-
ited by one depositional mechanism but later
transported and deposited by another mechanism,
generally retaining some but not all physical char-
acteristics associated with the initial deposition;
most commonly applied to glacial drift subse-
quently transported by solifluction or debris-flow
processes.

Rhythmites: a succession of sediment layers charac-
terized by alternation among two or more litholo-
gies. In proglacial lakes, alternate layers of clay
and silt (grading to fine sand and silt near sedi-
ment sources) are the most common type of
rhythmites.

Sand-plain aquifer: an extensive, nearly level
surficial sand deposit that overlies fines and is
drained by streams that are commonly incised
into the fines, such that induced infiltration is
impossible and discharge occurs by riparian
springs or seeps.

Sandur: outwash plain.

Stack units: map units that depict not only the
uppermost earth material but also one or more
underlying materials; for example, g/s (gravel
overlying sand) or 20g/30fs (20 feet of gravel over-
lying 30 feet of fine sand).

Stade: a substage (of a glacial stage) that is marked
by a glacial advance.

Stratified drift: sorted and layered sediment depos-
ited by or in meltwater; includes gravel, sand, silt,
and clay.

Thalweg: the line of continuous maximum descent or
greatest slope that connects the lowest points
along a valley (or, if so specified, along the bedrock
surface beneath unconsolidated deposits in the
valley).

Through valley: a valley that was cut through a bed-
rock ridge and floored with stratified drift depos-
ited by through-flowing meltwater during
deglaciation but that now is crossed by a water-
shed divide and drained only by tiny streams on
each side of the divide.

Till: a nonsorted, generally nonstratified, poorly per-
meable unconsolidated sediment, deposited from
and underneath a glacier without reworking by
meltwater and consisting generally of particles
ranging from clay to boulder size, some of which
have been transported considerable distances.
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Topset: one of the nearly horizontal layers of sedi-
ment (generally gravel) deposited slightly above
lake level by streams as they cross the top of a
delta and transport sediment toward the frontal
delta slope; individual topsets locally are continu-
ous with individual foresets, but collectively
topsets cap and, in places, truncate foresets.

Tunnel valley: a steep-walled trench cut in drift or in
bedrock by a subglacial stream.

Valley fill: all unconsolidated sediment that overlies
bedrock within a valley, partly or (in rare
instances) totally filling the valley.
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Valley train: a long, narrow body of outwash depos-
ited by meltwater beyond the margin of the ice
sheet but confined within the walls of a valley.

Underfit stream: a stream that seems too small to
have eroded the valley in which it flows; a fairly
common result of drainage changes caused by gla-
cial erosion or deposition.

Unconformity: a boundary between layers of sedi-
ment that represents a substantial period of non-
deposition and may reflect loss of some sediment
by erosion before renewed deposition took place.
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Mineral Industry Surveys (MIS’s) are free periodic statistical
and economic reports designed to provide timely statistical data
on production, distribution, stocks, and consumption of signifi-
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the need for current data. The MIS’s are published by commod-
ity as well as by State. A series of international MIS’s is also
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Published on an annual basis, Mineral Commodity Summa-
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covering nonfuel mineral industry data. Data sheets contain
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worldwide minerals and materials industry during a calendar
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ters about virtually all metallic and industrial mineral commod-
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