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S = A'+B (log t)+Ct, 

in which B (log t) represents the elastic flow and Ct, the 
pseudoviscous flow. The term A' in the equation repre­
sents the early part of the deformation of cylinders, 
which he stated (Griggs, 1939, p. 228) to be of no 
importance in long-term tests. 

The deflections of cantilever bars of coal, however, 
can adequately measure the creep characteristics of 
coals if the responses of the bars to environmental 
changes are considered (C. D. Pomeroy, British 
National Coal Board, written commun., 1955). Pom­
eroy used an equation similar to Griggs' for cylinders 
(1939, p. 228) to represent the creep of cantilever 
bars: 

In this equation dis the deflection, and A 1 is a term 
�r�e�p�r�~�s�e�n�t�i�n�g� the first part of the deflection, before 
pseudoviscous deformation begins; A 1 is determined by 
measuring the point on the vertical axis of the graphs 
at which a horizontal line from the beginning of the 
pseudoelastic portion of the creep curves intersects the 
vertical axis. Also in the equation, t is elapsed time, 
B1 (log t) generally is the straight-line part of the 
curves plotted on semilogarithmic graphs (figs. 56-60) 
representing the pseudoelastic or nearly recoverable 
portions of the creep deformations when the pseudo­
viscous deformation is very small, and c1t is a term 
representing the slope of the pseudoviscous portions of 
the creep curves (indicating a constant rate of creep) 
when the pseudoelastic strain is very small. The 
equation does not adequately describe the early parts 
of the deformation because the logarithmic part 
approaches minus infinity as time approaches zero 
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FIGURE 52.-Triaxial compressive test results of coal 
cores from Sunnyside No. 1 Mine, Utah, showing 
axial strain on horizontal axis plotted against 
differential (axial minus lateral) stress. Tangent 
moduli (E) determined graphically on each curve. 
Dots are recorded datum points. Dashed lines and 
queries(??) are projected values due to gauge 

failure. A, Cores tested in unconfined compression, in 
up to two loading cycles. B, Cores tested with 1,379 
kPa (200 lbf/in2

) confining stress in one loading cycle. 
C, Cores tested with 6,895 kPa (1,000 lbf/in2

) 

confining stress, in up to three loading cycles. D, 
Cores tested with 34,480 kPa (5,000 lbf/in2

) confining 
stress, in one loading cycle. 
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FIGURE 53.-Stress-strain curve for triaxial compressive test of coal core from Sunnyside No. 1 Mine, Utah, subjected to 
repeated cycles ofloading at a confining stress of6,895 kPa (1,000 lbf/in2

). Core 4N, cut normal to bedding of coal. Half 
arrows indicate increasing stress; full arrows indicate decreasing stress. Number of arrows on each line segment 
corresponds to number of loading cycle. Dots are recorded datum points. Dashed line and queries(??) are projected 
values due to gauge failure. 

(Griggs, 1939, p. 228). Furthermore, the term A1 

(describing the earliest parts of the deformation) is 
difficult to evaluate. We do not agree with Griggs 
(1939, p. 228) and Pomeroy (written commun., 1955) 
that the earliest parts of the deformations are not 
important to the long-term results. When plotted on a 
linear time scale (fig. 55), the deflection of a bar loaded 
with 95 g (3.35 oz) showed a rapid and linear initial 
deflection rate in the first lf2 hour. Between lf2 and 4 
hours the deflection gradually decreased. After the 
first 4 hours, the bar deflected at a uniform rate, 
yielding a nearly straight-line curve, until slightly 
more than 24 hours had elapsed. Thus, the first lf2 hour 
of the deflection curve (fig. 55) may represent initial, 
nearly elastic deformation which gradually decreases 
with an increase in pseudoviscous deformation until 4 
hours have elapsed. After 4 hours elapsed, the bar 
deformed by pseudoviscous creep until 1 day elapsed. 
Neither Griggs nor Pomeroy considered the defor­
mation prior to 1 day's elapsed time. The term A 11 

therefore, probably should include both elastic and 
time-dependent pseudoviscous deformation; the pseu­
doviscous portion increases rapidly near the end of the 
time represented by A1• The B 1 (log t) term in the 
equation also approaches infinity as time approaches 

·infinity, but this is not important to our bar tests 
because of the short lengths of time and because 

environmental changes mask any small late 
deflections. 

The deflection curves we obtained (figs. 56-60) are 
more complex than the ones shown by Griggs (1939) 
and by C. D. Pomeroy (written commun., 1955). Beyond 
an elapsed time of about 1 day, our curves seem to 
represent combined and simultaneous pseudoviscous 
and pseudoelastic deformation (representing the 
B 1 (log t) and c1t terms of the equation). The pro­
portional amounts of each of these terms that describe 
individual deformation curves change with increas­
ingly large amounts of elapsed time. 

Deflections of clamped cantilever bars can be used to 
determine the elastic modulus of the material from 
which the bars are made. The following discussion is 
adapted from Singer (1951, p. 212-213). Let L be the 
length of the beam, H the height, and B the width; total 
weight of the beam is W. Deflection (d) of the beam 
results from the sum of the concentrated load on the 
end of the beam (P) and a distributed load represented 
by the weight of the beam (W). The deflection of the 
beam after loading will then be represented by the 
following equation: 

WL3 PL3 

d=--+--
8 EI 3 EI 
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where 
E is the elastic modulus of the material and I is the 
moment of inertia of the beam. The elastic modulus, 
therefore, can be determined by 

L 3x(3W+BP) 
d=-----

24 d I 

which, for beams with rectangular cross sections, is 
equivalent to 

E = 

where 

(3W±8P)L3 

2dBH3 

B is the width and H is the height of the beam. 
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TABLE 7.-Measured deflections of coal bars and computed moduli of elasticity 
[Analyst: B. K. Barnes. Weight of bars (11.03 g) estimated from average densities of coal (table 1). Pis amount of weight added to end of bar, d0 

is deflection measured immediately after bar was weighted, E0 is elastic modulus computed from initial deflection (d0 ), d2 is deflection after 
2 hours, and E 2 is modulus computed from d2] 

In grams 
(measured) 

85 
85 
95 
95 
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115 
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125 
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135 
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155 
155 
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165 
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175 

p 

In ounces 
(calculated) 

3.0 
3.0 
3.4 
3.4 

3.7 
4.1 
4.1 
4.4 
4.4 

4.8 
4.8 
5.1 
5.5 
5.5 

5.8 
5.8 
6.2 
6.2 

In inches 
(measured) 

0.0096 
.0068 
.0183 
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.0069 
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.0089 
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.0106 

.0160 

.0139 

.0334 

.0189 
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.0135 

.0221 
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In millimeters 
(calculated) 

0.2438 
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38.7 
63.8 
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82.5 
34.5 
60.1 

41.5 
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57.9 
39.6 

.. 
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.440 
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.850 

.180 
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.415 
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.273 
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X 
V) 9 
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In inches 
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In millimeters 
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.8865 
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.6121 

.9093 
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.8560 
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37.5 
56.2 
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112.9 
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17.0 
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kPa 
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FIGURE 55.-Deflection of a coal bar (bar A in fig. 56) from Sunnyside 
No. 1 Mine, weighted with 95 g (3.5 oz), during first 29 hours 
versus linear time scale (dashed line is generalized curve that 
intersects actual plotted points at about 36 hours). Compare with 
figure 56. 
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show general trends of deflections. 
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FIGURE 57 .-Deflection of bars of coal from Sunnyside No. 1 Mine, 
Utah, weighted with 105 g (3. 7 oz) (A, open circles about dots) and 
115 g (4.1 oz) (B and C, dots), plotted against logarithm of time. 
Dashed curves mechanically fitted using French curves, to show 
general trends of deflections. 

All bars used in our tests were of the same size, 
constituting a volume of 8.29 cm3 (0.51 in3

). Using an 
average density of 1.33 g/cm3 (0.05 lb/ft2

), determined 
from table 1, the average weight of the coal bars was 
11.03 g (0.389 oz). Elastic moduli for deformation of 
the bars shown in figures 56-60, calculated from 
equation 1, are shown in table 7. The elastic moduli 
(E0 ) calculated from the deflection that occurred as 
soon as the bars were weighted (d0 ) are close to the 
static secant modulus deteremined for core 10N tested 
in unconfined compression (table 1). The modulus of 
core 10N, however, was more than five times less than 
the modulus of other cores of coal from the Sunnyside 
No. 1 Mine (table 1) and was about three times less 
than the secant modulus determined from the coal 
cores from the Sunnyside No. 3 Mine (table 2) (F. L. 
Gaddy, E. R. Rodriguez, and T. C. Miller, written 
commun., 1959). The elastic modulus determined from 
deflection of the coal bars was about one-tenth the 
moduli Scheibner (1979, p. 24-25) calculated for coal 
from the Sunnyside No. 1. The lower moduli probably 
resulted from the different testing methods used in 
these various reports, but the variations in secant 

moduli for unconfined cores in table 1 suggest that, 
although the moduli are of the same order of mag­
nitude, actual variations exist in the coal. 

Elastic moduli of the coal bars determined from 
deflections measured 2 hours after loading (E2 in table 
7) generally are less than the moduli determined from 
the initial loading (E0 ), probably because the deflection 
after 2 hours is increased by the onset of nonelastic 
deformation; therefore, the measurements include 
both elastic and nonelastic moduli. 

The curves in figures 56-59 in general show an 
initially rapid deflection after being weighted. Fol­
lowing this rapid initial deflection, most curves, for 
example, A in figure 56, show a long, almost linear 
increase in deflection with the logarithm of time (pseu­
doelastic) for the first 8-50 days, followed by nonlinear 
deflection with the logarithm of time. Coal bars with 
the same weights, however, did not always behave 
similarly. Bar B, represented by curve B in figure 56, 
showing almost twice the initial rapid deflection of the 
one represented by bar A, after about 3 days began to 
deform pseudoelastically but at a much increased rate. 
A coal bar weighted with 105 g (A in fig. 57) after about 
3 days of elapsed time showed an almost logarithmic 
decrease in deflection with the logarithm of time. Some 
bars weighted with the same mass, showed as much as 
four times the deflection of others (8 and C in fig. 57). 
Generally, bars weighted with heavy masses (C, D, and 
E in fig. 58 and and C in fig. 59) began to deflect at 
increasingly rapid rates (pseudoviscous deformation?) 
after about 10-30 days. A few bars (A in fig. 57 and B 
in fig. 59) showed little or no increase in deflection with 
time after the initially rapid deformation, probably 
indicating that the coal did not creep markedly. The 
few bars that showed decreasing deflection with time 
may indicate the effects of chemical changes within the 
coal, either as a result of stress or of temperature or 
humidity changes in the laboratory. The nearly cyclic 
variations in deflection (shown by solid lines in figs. 
56-60) at about the same times for different coal bars 
probably result either from environmental changes or 
from accidental disturbances in the laboratory. 

Several bars of coal, after being loaded for several 
days, were unloaded to observe the recovery from 
deflection and also to investigate the behavior of the 
coal upon second loadings. After being weighted with 
85 g (3.0 oz) for 7 days, one bar was completely 
unloaded (A in fig. 60). About one-half of the total 
deflection of this bar was recovere.d immediately; the 
remainder was recovered at a nearly uniform rate until 
about 98.5 days, at which time the bar was closer to 
its original configuration than it had been at the initial 
measurement about 0.27 days after weighting. 
Another bar also weighted with 85 g (3.0 oz) was 
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unloaded at about 10.2 days. Mter rapidly recovering 
about 20 percent of its deflection, this bar was reloaded 
at about 10.8 days; when reloaded, the bar showed no 
further creep (8 in fig. 60). A third bar weighted with 
125 g (4.4 oz) deformed rapidly at first, changing to a 
much slower deformation rate at about 0.3 days. This 
bar was unloaded at 10.1 days and immediately began 
to recover the slow deformation. When reloaded at 
about 10.8 days, after recovering the deformation lost 
during unloading, the coal continued to deform at a 
slightly higher rate than before unloading, changing 
gradually to a slower rate than before unloading (C 
in fig. 60). The deformation of the bar weighted with 
125 g ( 4.4 oz) was nearly the same as the deformation 
of one bar weighted with 85 g (3.0 oz) (8 and C in 
fig. 60), although the bar with 125 g (4.4 oz) defm:med 
at slightly less deflection. 

One coal core (core 4N, table 1) from the Sunnyside 
No. 1 Mine was subjected to three cycles of loading 
during triaxial testing under 6,895-kPa (1,000-lbf/in2

) 

confining stress (fig. 49). In order to test the creep 
response of the coal, loading and unloading rates were 
much slower than those normally used. Although the 
slow loading and unloading rates yielded larger 
hysteresis loops than those of samples tested with 
rapid loading and unloading rates, the resulting stress­
strain curves for this test are not markedly different 
from curves for other samples from the Sunnyside 
No. 1 Mine that were tested normally at higher rates 
and loadings. The test was unsuccessful in yielding 
creep information that could be correlated with the 
tests of deflection of weighted coal bars because the 
amount of hysteresis was very close to the amount of 
hysteresis shown by other samples tested at the same 
confining stress but with normal loading rates (fig. 49). 

CHANGES IN CHEMICAL COMPOSITION 
RElATED TO STRESSES IN COAL 

Triaxial compressive testing of coal cores from Sun­
nyside No.1 and Sunnyside No.3 Mines revealed small 
differences in strengths of cores that failed under the 
same confining stresses (fig. 61). Although these differ­
ences were so small that they might have been the 
results of experimental error, we also considered other 
possibilities. To do this, infrared spectral analyses 
were run on various major megascopic types of coal 
selected from some of the cores in order to measure 
their contents of major organic-chemical constituents. 
Detailed discussions of infrared analytic techniques 
are given by Friedel and Queiser (1956, 1966). Results 
of our analyses indicate either that some of the 
constituents of vitrain are particularly sensitive to 
changes in stress or that the failure strengths of some 

samples are sensitive to variations in chemistry. The 
constituents most related to these variations are the 
amounts of benzene-ring compounds and the amounts 
of kaolin in vi trains of the cores. 

Using infrared spectra, we analyzed vi trains, repre­
sented by points in figure 61, in some of the cores from 
the Sunnyside No.3 Mine. The amplitudes of spectral 
curves (fig. 62), which show the infrared transmittance 
from samples through a range of wavelengths, were 
measured at appropriate points to determine the 
amounts of organic compounds in each vi train sample. 
Lower transmittance on the spectral curves indicates 
higher contents of specific organic-chemical groups. 
Because the amounts of benzene-ring compounds in 
the vitrains appeared to vary in some systematic 
manner, we investigated the amounts of these com­
pounds further. The axial stress at failure, confining 
stress, and transmittance for the wavelength repre­
sented by 1,2-position isomers of benzene-ring com­
pounds were then recalculated so that 172,400-kPa 
(25,000-lbf/in2

) axial stress, 69,000-kPa (10,000-lbf/in2
) 

confining stress, and the transmittance at 13.29x104 A 
(angstroms) were unitized to 100 percent in a pro­
cedure similar to practices common in petrologic calcu­
lations (Alling, 1936, p. 25; Spock, 1962, p. 285-287). 
When plotted in ternary diagrams (fig. 63A), the dis­
tribution of the plotted points can be closely repre­
sented by a curved line, showing that the failure 
stresses partially depend upon the amounts of these 
benzene-ring compounds in the coal. 

We also measured the infrared spectral curves for 
the contents of 1,2,4-position; 1,2,3,4-position; and 1, 
4-position isomers of benzene rings (fig. 63B) and for 
aliphatic hydrocarbons (fig. 63C) in vitrain from the 
same cores from Sunnyside No. 3 Mine. The 1,2,3, 
4-position or 1,4-position isomers of benzene rings 
(wavelength at maximum transmission 12.30x104 A) 
yield results similar to those for the 1,2-position 
isomers of benzene rings, although the spread of the 
points representing higher stress levels is greater. The 
curves fitted by inspection to the plotted points in 
figures 63A and 63B are nearly identical. When plotted 
in a similar ternary diagram (fig. 63C), the results of 
measuring the contents of aliphatic hydrocarbons 
(wavelength 3.45x104 A) showed much more dispersion 
than either of the types of benzene-ring substitutions 
and resulted in a random distribution. A few fusains 
were analyzed for comparison with the vitrain; as 
shown in figures 63B and 63C, these results showed no 
systematic variation. Somewhat similar correlations 
between chemistry and strength of coals have been 
reported previously. Hobbs (1964) found that the yield 
stress of low-rank British coals decreased with increas­
ing volatile content above 34,500-kPa (5,000-lbf/in2

) 

confining stress. 
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FIGURE 60.-Deflection of bars of coal from 
Sunnyside No. 1 Mine plotted against 
logarithm of time. Bar loaded with 85g 
(3.0 oz), unloaded after 7 days (A, dots); bar 
loaded with 85 g (3.0 oz), unloaded during 
lOth day, and reloaded (8, open circles 
about dots); and bar loaded with 125 g 
(4.4 oz), unloaded at 10.1 days, and 
reloaded at 10.8 days (C, open triangles 
about dots). Dashed curves are fitted 
mechanically using French curves, to show 
general trends of deflection. x, x', and x" 
indicate points on curves at unloading and 
onset of deflection to points y, y', andy''. 
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L. J. Fredrickson, Jr. (Spectran Laboratories, oral 
commun., 1960), who did the infrared spectral anal­
yses, thought that kaolinite in the Sunnyside No. 3 
Mine coal showed a consistent variation through the 
samples. The ternary diagram for kaolinite (fig. 64) 
shows little dispersion at low stress levels and 
approximates the curves for benzene rings, but at high 
s·tress levels it shows increasingly greater dispersion of 
the plotted points. Apparently, kaolinite content 
influences the strength of coal only at low confining 
stresses. 

The infrared spectral analyses seem to indicate that 
some organic chemical constituents of coal, principally 
the benzene-ring compounds, are correlated with 
stresses in the coal at failure. Because the organic 
compounds formed during coalification, these com­
pounds are indigenous to the coal. Most of the vari­
ations in amounts of the compounds, therefore, are 
original, but some of the variations may have resulted 
from molecular rearrangement during the compressive 
testing procedures. Kaolinite, in contrast, is a detrital 
component carried into the original coal swamp by 
rivers, and any correlation between kaolinite content 
and strength of the coal may indicate that kaolinite 
influences the mining stress le.vels at which the coal 
fails. Because curves for organic compounds (fig. 63) 
and kaolinite (fig. 64) are similar, the chemical com-· 
position of coal probably affects the strength of the coal 
more than the stress on the coal changes the chemical 
composition of the coal. These results suggest that, by 
using infrared spectral analyses of benzene-ring com­
pounds and kaolinite in combination, the strengths of 
coals in new mining areas might be estimated as an aid 
to design of mining plans. Kaolinite content estimates, 
however, would only be useful at low levels of confining 
stress. 

CONCLUSIONS 

Although the mechanisms producing coal mine 
bumps and related types of failures in underground 
coal mines are complex, the results of the work in the 
Sunnyside coal mining district do permit several con­
clusions. These conclusions may not be generally appli­
cable and might not even apply to mining in the entire 
Sunnyside district because of subtle differences in 
geology as well as differences in mining procedures. 
Some techniques of study and understanding of 
mechanisms of failure that have been identified can be 
used to establish geologic principles and to suggest 

mining practices that may minimize coal mine bumps 
in other coal mining areas: 

1. Bumps are only one facet of mine-opening defor­
mation that results from high stress concen­
tration. If roofs and ribs are strongly supported, 
floors may heave, and the additional stress on 
floors may cause ribs to bump. Partially yield­
able support, however, may relieve abnormal 
stress concentrations and reduce incidence of 
violent deformation. 

2. Mine ribs commonly fail along curving shear 
fractures that increase in dip downward 
(figs. 19, 20, 22). 

3. Many mine roofs and floors fail as results of 
strong components of lateral stress. Such fail­
ures may be followed at later times by violent 
bumps of ribs. 

4. Deformational features in the coal are of both pre­
mine and post-mine ages. 

5. Coal in the Sunnyside Mines is deformed by both 
fracture and creep. 

6. Shatter zones in the mines have both direct and 
indirect relationships to bumps. Mine openings 
oriented at large angles with respect to shatter 
zones are more prone to violent bumps than are 
openings oriented at small angles to shatter 
zones. 

7. Geologic features, such as lithologies of roof rocks, 
orientations of sand grains, ripple marks, and 
trace fossils, and stratigraphy of roofs and 
floors, strongly influence the deformation of 
mine openings, including bumps. 

8. Subsidence of the land surface is a result of 
collapse of roof rocks into mined-out openings. 
The collapse extends upward through as much 
as 680 m (2,220 ft) of overburden which includes 
several thick, competent sandstones. 

9. Stress accumulated as a result of mining tends to 
concentrate along faults and other geologic dis­
continuities. 

10. Triaxial compressive tests of coal indicate that 
the compressive strength of coal increases 
markedly when subjected to lateral (confining) 
stress. Coal from the Sunnyside No. 1 Mine is 
slightly stronger than coal from the Sunnyside 
No.3 Mine, which may account for the greater 
number of violent bumps in the No. 1 Mine. 

11. The failure strengths of coal samples at low levels 
of confining stress are affected by small 
amounts of kaolinite contained in vitrain. The 
contents of benzene-ring compounds apparently 
can be correlated with failure strengths. 
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