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CONVERSION FACTORS

Multiply By To obtain
inch (in.) 254 millimeter
foot (ft) 0.3048 meter
cubic foot per second (ft¥/s) 0.02832 cubic meter per second
mile (mi) 1.609 kilometer
square mile (mi%) 2.590 square kilometer

VERTICAL DATUM

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD
of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of the
United States and Canada, formerly called Sea Level Datum of 1929.

GLOSSARY OF TERMS

Antidune: Bed forms of curved symmetrically shaped sand waves that may move
upstream, remain stationary, or move downstream. Antidunes occur in trains that are
in phase with and strongly interact with gravity water-surface waves. The water-
surface waves have larger amplitudes than the coupled sand waves. At large Froude
numbers, the waves generally move upstream and grow until they become unstable
and break like surf (breaking antidunes). The agitation accompanying the breaking
obliterates the antidunes, and the process of antidune initiation and growth is
repeated. At smaller Froude numbers, the antidunes generally remain stationary and
increase and decrease in amplitude without breaking (standing waves; Simons and
Richardson, 1966, p. v).

Backwater: Water backed up or retarded in its course as compared with its normal or
natural condition of flow. In stream gaging. a rise in stage produced by a temporary
obstruction such as ice or weeds, or by the flooding of the stream below.

Bank, left and right: Reference terms used to specify the banks on the left and right when
facing downstream.

Bedform: Alluvial-channel bottom feature whose form depends on bed-material size,
flow depth, and flow velocity. Bedforms include ripples, dunes, antidunes, and plane
bed.

Conveyance: A measure of the carrying capacity of a channel section and is directly
proportional to channel discharge. Conveyance is that part of Manning’s equation
that excludes the square root of the energy gradient or friction slope.

Crest-stage gage: A device for recording the peak water-surface elevation during a flood
by means of a cork line that adheres to a wooden rod placed in a 2-inch-diameter
metal pipe that has been secured near the channel margins.

Critical flow: If the flow is critical, the Froude number is equal to unity, and the inertial
forces balance the gravitational forces. This balance takes place at the depth at which
flow is at its minimum energy.

Dryland: Streams located in regions of semiarid to extremely arid climatic conditions.
For the conterminous United States, this would apply to regions that accrue less than
20 in. of precipitation annually.

Ephemeral: A stream or reach of a stream that flows briefly in direct response to
precipitation or snowmelt in the immediate vicinity, and whose channel is at all times
above the water table.

Flood peak: The largest value of the runoff flow which occurs during a flood, as observed
at a particular point in the drainage basin.
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Flood plain: A flood-prone area, as identified on Federal Emergency Management
Agency (FEMA) flood insurance rate maps, generally contains a floodway district
and floodway fringe district, or contains areas of land adjoining (or near) the channel
of a water course which has been, or may be, covered by floodwaters. A flood plain
functions as a temporary channel or reservoir for overbank flows. The lowland that
borders a river, usually dry but subject to flooding (Hoyt and Langbein, 1955, p. 12).

Flow regime: A range of flows producing similar bed forms, resistance to flow, and mode
of sediment transport. The lower flow regime occurs with tranquil flow and produces
bed forms of ripples, ripples on dunes, or dunes. The upper flow regime produces bed
forms of plane bed with sediment moving, standing waves, or antidunes. Water-
surface undulations are generally in phase with bed undulations. Between these two
stable regimes is the transition regime, which produces instability in the stage-to-
discharge relation and in the typical bed forms.

Froude number: A dimensionless number used as an index to characterize the type of
flow (subcritical, critical, and supercritical) in an open channel. The Froude number
is the ratio of the inertial forces to the gravitational forces, and is computed as the
mean flow velocity divided by the square root of the product of the mean depth times
the acceleration of gravity.

Grain size, coarse and fine: Coarse-grained bed material generally refers to those
particles (gravel, cobble, boulder) whose size can be individually measured with a
graduated rule or caliper; fine-grained material (sand, silt, clay) is measured by
passage through a sieve or by rate of sedimentation. See also particle size.

High-water marks: Evidence of the highest stage reached by flow. High-water marks
generally consist of debris and scour marks found along the channel boundaries.

Hydraulic radius: The ratio of the stream channel’s cross-sectional area to its wetted
perimeter in a plane normal to the direction of flow.

Hydrograph: The functional relation between time and flow discharge, as observed at a
particular point within a drainage basin. In the case of a detention and (or) retention
facility, an inflow hydrograph depicts the relation of time and runoff inflow to the
facility, and an outflow hydrograph is a graph of flow discharge from the facility
compared to time.

Intermittent stream: A stream that flows only at certain times of the year when it
receives water from some surface source (rainfall or snowmelt) or from an
intermittent spring and ceases to flow during other periods of the year. The channel is
usually above the water table.

Manning’s roughness coefficient (n value): A measure of the frictional resistance
exerted by a channel on the flow. The n value also can reflect other energy losses such
as those resulting from unsteady flow, extreme turbulence, and transport of
suspended material and debris, that are difficult or impossible to isolate and quantify.

Particle-size: The size of material on the bed of a stream, referenced to a specific diameter
(either maximum, intermediate, or minimum) of the measured particles.

Perennial stream: A stream that discharges continuously all year during dry as well as
wet years.

Relative roughness: Relative roughness is the ratio of mean depth (usually represented by
hydraulic radius, R) to the size of roughness elements (usually represented by the
median value of the intermediate diameter of the streambed material, ds).

Runoff: The portion of precipitation on land that ultimately reaches streams—especially
water from rain or melted snow that flows over the land surface.

Scour: Erosion due to flowing water, usually considered as being localized as opposed to
general bed degradation.

Slope, water-surface: The slope of the water surface, computed as the change in
elevation per unit change in the channel’s length.



Slope-area method of discharge measurement: A computational procedure whereby
stream discharge is calculated "on the basis of a uniform-flow equation involving
channel characteristics, water-surface profiles, and a roughness coefficient"
(Dalrymple and Benson, 1967).

Stream power: A measure of energy transfer of the flow. Stream power is computed as
62RSV, where R, S, and V are the hydraulic radius, in feet; water-surface slope, in feet
per foot; and mean velocity, in feet per second, respectively; and 62 is the specific
weight of water. Stream power also is defined as the energy dissipated per unit area of
streambed per unit time.

Subcritical flow: If the flow is subcritical, the Froude number is less than one and the
inertial forces are less than the gravitational forces. The flow depth in subcritical flow
is greater than the flow depth in critical flow.

Supercritical flow: If the flow is supercritical, the Froude number is greater than one and
the inertial forces are greater than the gravitational forces. The flow depth in
supercritical flow is less than the flow depth in critical flow.

Uniform flow: Flow of constant water area, depth, discharge, and average velocity
through a reach of a channel.

Velocity head: Represents the kinetic energy of the flowing fluid, generally expressed as
V2/2g, in feet, but actually is the energy per pound of flowing fluid.

Velocity-head coefficient: A factor used to adjust the velocity of the head computed from
the mean velocity in a channel section to give the true mean kinetic energy of the
flow for nonuniform distribution of velocities.

Wash load: The material which is transported by the river but is not found in significant
quantities in the bed material.

Water-surface profile: A longitudinal plot of the water-surface elevation as a function of
the distance downstream through a channel reach.

Wetted perimeter: The length of the line of intersection of the channel’s wetted surface
with a cross-sectional plane normal to the direction of flow.
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Verification of Roughness Coefficients for
Selected Natural and Constructed Stream

Channels in Arizona

By Jeff V. Phillips and Todd L. Ingersoll

ABSTRACT

Physical and hydraulic characteristics are
presented for 14 river and canal reaches in Arizona
for which 37 roughness coefficients have been
determined. The verified roughness coefficients,
which ranged from 0.017 to 0.067, were computed
from discharges, channel geometry, and water-
surface profiles measured at each of the sites. The
reaches studied cover a wide range of channel
conditions including alluvial channels, boulder
channels, constructed channels, and channels con-
taining varying amounts of riparian vegetation.
The information given for each stream segment
includes bed and bank descriptions, data tables
showing channel and hydraulic components, a
plan view, a representative cross-section plot, and
color photographs that can be used as a compari-
son standard to aid in determining roughness coef-
ficients for similarly characterized channels.

Relations derived from the data presented
relate Manning's roughness coefficient (n) to vari-
ous hydraulic components. For gravel-bed
streams, verified roughness coefficients are related
to median grain size of the bed material and
hydraulic radius resulting in an equation that can
be used to transfer results to similar dryland chan-
nels. The equation developed for base values of n
for gravel-bed channels in Arizona is significantly
different from similarly derived equations for
other regions of the United States and the world.
Another equation was developed to quantify the
magnitude of the vegetation component of

Manning's roughness coefficient for channels in
which vegetation is present.

INTRODUCTION

The U.S. Geological Survey, in cooperation with
the Flood Control District of Maricopa County, has
been studying the hydraulic effects associated with
channel-roughness elements in streams in Arizona.
Manning's roughness coefficient, n, commonly is used
to represent flow resistance for hydraulic computations
of flow in open channels. The procedure for selecting n
values is subjective and requires judgment and skill
that is developed primarily through experience. The
expertise necessary for proper selection of roughness
coefficients can be obtained, in part, by examining
characteristics of channels that have known or verified
coefficients. The roughness coefficient can be verified
by computations made using data from streamflow
measurements and from measurements of the physical
features of the channel. Photographs of channel
segments where n values have been verified can be
used as a comparison standard to aid in assigning n
values to similar channels.

Verified values of Manning's n have been
presented for streams that represent a wide range of
channel conditions in the United States and other
countries throughout the world. Past investigations
include verified roughness coefficients for 50 selected
stream channels in the United States (Barnes, 1967), 21
high-gradient streams in Colorado (Jarrett, 1985), 15
flood plains in the southeastern United States
(Arcement and Schneider, 1989), 78 rivers and canals
in New Zealand (Hicks and Mason, 1991), 11 gravel-
bed streams in California (Limerinos, 1970), 67 gravel-
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bed streams in Canada (Bray, 1979), and 21 perennial
channels in New York State (Coon, 1995). However,
only a few n-verification measurements have been
obtained for drvliand (Graf, 1988) stream channels in
arid and semiarid regions of the southwestern United
States (Aldridge and Garrett, 1973). Roughness
coefficients for a variety of channel conditions are
needed to substantiate the validity of guidelines
currently used by hydrologists and engineers to assess
flow resistance for dryland channels (Aldridge and
Garrett, 1973; Thomsen and Hjalmarson, 1991).

Purpose and Scope

The purpose of this report is to present verified
Manning's roughness-coefficient values for 37
discharge measurements at 14 selected stream sites in
Arizona (fig. 1). The information includes geometry
and roughness characteristics of the 14 sites. The
selected sites represent a wide range of channel
conditions that include unstable alluvial channels,
high-gradient boulder-strewn channels, and manmade
flood-control channels. Of the sites presented, five
were published in previous n-value assessment reports
and are included herein to increase the range of stream
types and transferability of the information (Barnes,
1967, Aldridge and Garrett, 1973).

The verification-measurement data are used to
develop empirical relations between channel and
hydraulic components and Manning's n. The relations
presented include an equation for gravel-bed streams
that relates Manning's n to relative roughness and an
equation to determine the effect of vegetation on total
roughness. These relations can be used to transfer
results to similar dryland stream channels in Arizona
and the southwestern United States.

This study is the second phase of a two-phase
investigation to assess roughness coefficients for
stream channels in Arizona. Thomsen and Hjalmarson
(1991) concluded the first phase by establishing
guidelines for determining roughness coefficients and
presented estimated n values for 16 stream channels in
central Arizona. Some of the 14 verification sites used
in this report are on the same streams as those
described by Thomsen and Hjalmarson (1991) but at
different locations. This report is intended to be used in
conjunction with Thomsen and Hjalmarson's report to
aid hydrologists and engineers in assessing and
estimating »n values for channels in arid to semiarid
environments.
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DESCRIPTION OF STUDY AREA

The basin and range topography typical in most
parts of Arizona is characterized by steep block-faulted
mountains separated by gently sloping valleys.
Dryland streams in the study area cover a wide variety
of conditions ranging from unstable alluvial channels,
generally stable channels of cobble to boulder-sized
bed material, and extremely stable bedrock channels.
Sand-dominated  streambeds  commonly  are
characterized by unstable boundary conditions, high
sediment loads, and long periods of low or no flow
punctuated by brief floods that increase discharge
several orders of magnitude within minutes (Parker,
1995). Although generally more stable than sand
channels, some gravel-dominated channels in Arizona
also are ephemeral and subject to flooding for brief
periods. Flash flooding and the general instability of
channel beds of natural channels in Arizona can
complicate the task of obtaining accurate flow-rate and
channel-geometry measurements that represent
conditions during peak discharge. Many stream
channels in urban areas are relatively stable, manmade,
and composed of either soil cement, concrete, riprap,
grouted and wire enclosed rock, grass, or a
combination of these materials (NBS Lowry Engineers
and Planners and McLaughlin Water Engineers, Ltd.,
1992).

The type, distribution, and density of riparian
vegetation can vary in the study area. Vegetation types
found in and along many streams in central Arizona
include saltcedar, willow, cottonwood, mesquite, palo
verde, and many brush and grass species. The spatial
distribution and density of riparian vegetation mainly
depend on water availability, characteristics of flow,
and water quality. The few perennial stream channels
in the study area have vegetation growing parallel to
base-flow channels; whereas vegetation can be found
growing randomly throughout the main channel of
ephemeral streams. In addition, many effluent-
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difference in water-surface elevation at
the two sections, in feet; and

L= length of the reach (Dalrymple and
Benson, 1967), in feet.

In Manning’s equation, the quantity (1.486/n)
AR?3is called conveyance, K, and is computed for each
cross section. The mean conveyance in the reach
between any two sections is computed as the geometric
mean of the conveyance of the two sections. The
discharge equation in terms of conveyance is expressed
as:

0 = (K,K,5)". (©6)

In this investigation, » is computed for each
reach of known discharge, the water-surface profile,
and the hydraulic properties of the reach as defined by
the cross sections. The following equation was
primarily used to compute n for this study and is
applicable to a multisection reach of M cross sections,
designated 1,2,3,.. M~ 1, M:

n= 1486[ B~[ (kAh,) a7 (kAhv)z_3+ ... (kAh) M-1) 7M]
Q'J 1Az+L:_3+ Lov-1y-m ()
212, 2,23 Ziy 1 Zy
where
B = (h+h) ~(h+h),

Z = AR??(Barnes, 1967).

ASSUMPTIONS AND LIMITATIONS

Although efforts were made to strictly follow the
site-selection and data-collection criteria, assumptions
were required for some of the verification
measurements as channel and hydraulic conditions
were not always ideal. The main sources of potential
errors in calculations of roughness coefficients for
dryland channels include changing boundary and
vegetation  conditions, discharge measurement
uncertainties, and changing bedforms. The verification
measurements presented in this report are qualified or
rated on the basis of these four factors. Additionally,

transfer of results presented in this report to similar
sites may be limited because of uncertainties
associated with extrapolating n values obtained for
relatively low flows to flows of greater magnitudes.

The accuracy of verification measurements
presented in this report is rated as either good, fair, or
estimated. These categories correspond to potential
percent errors of less than 10, 15, or 20 percent,
respectively. Verification measurements with an error
of greater than 20 percent were not considered for
publication in this report.

Changing Boundary Conditions

In the performance of hydraulic computations of
flow in streams that are dominated by sand-sized
material, constant-bed geometry often is assumed to
persist throughout flow events. Several investigators
indicate sand-dominated streams do mnot scour
appreciably in a uniform segment of river channel
(Culbertson and Dawdy, 1964; Benson and Dalrymple,
1967). Although most of the channel segments studied
for this report are uniform, scour of substrate material
during the rise and peak of the flow and subsequent
backfill during the flow recession requires
consideration. Accuracy ratings for the n-verification
measurements made in sand-dominated streams where
changing boundary conditions are possible, thus, were
downgraded according to the potential amount of scour
and fill.

Although the channel-geometry changes may
not be as significant as with sand-dominated streams,
flood-stage flows in gravel-bed streams also may
mobilize and transport bed material. Hydraulic
components measured for the verification measure-
ments made in gravel-bed streams, however, probably
were not large enough to cause a considerable change
in boundary conditions rtesulting from substantial
movement of the bed material.

Changing Vegetation Conditions

In arid and semiarid environments, vegetation
commonly grows throughout the main channel of
dryland streams. The vegetation can significantly
impede flow and result in large increases in roughness
coefficients, as suggested by several past studies
(Aldridge and Garrett, 1973; Thomsen and
Hjalmarson, 1991). The force and power of flows,
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however, can lay over and even remove vegetation,
thereby decreasing channel roughness and increasing
channel conveyance (Burkham, 1976:; Phillips and
Hjalmarson, 1994).

The flow-induced changes in vegetation
conditions are commonly assumed to occur before
peak flow, and postflow vegetation conditions are
assumed to reflect the roughness conditions when the
high-water marks were formed. However, for certain
conditions, this may be an erroneous assumption.
Water-level indicators in vegetated channels surveyed
following flows may not actually represent the water-
surface during the time of peak discharge. The force
and power of flow may be large enough to substantially
affect (lay over or remove) vegetation just before peak
flow and thus cause the water surface to drop
dramatically because of the decrease in flow resistance.
This phenomenon may result in a lower water-surface
elevation during peak discharge than that suggested by
the high-water indicators. This phenomenon may have
occurred for the flow of February 9, 1993, at
Hassayampa River near Arlington. The high-water
indicators may actually have been deposited before and
not during peak discharge. This verification
measurement, therefore, was rated as estimated.
Vegetation documented during and shortly after flow at
the other study sites appeared to have little or no
change compared to preflow conditions.

Uncertainties of Discharge Measurements

The accuracy of the verified n values directly
depends on the precision of the measured discharge. As
mentioned previously, discharge was determined either
by a current-meter measurement or from a well-defined
stage-discharge relation. Current-meter measurements
made by the USGS are rated as excellent, good, fair, or
poor depending on factors that include the number of
subsections in the measurement, stability of the
channel, and accuracy of the equipment (Rantz and
others, 1982). These ratings correspond to possible
errors of less than 2, 5, 8, or greater than 8 percent of
the actual discharge, respectively. Errors for discharges
determined from a well-defined and stable stage-
discharge relation are assumed to be less than
10 percent. Discharge accuracy is considered when
determining the overall accuracy rating for each of the
n-verification measurements.

Flow Depth and Magnitude

In the absence of bank vegetation and other
obstructions, the roughness for low flows in a uniform
gravel-bed stream generally decreases with increasing
depth of flow. As flow approaches bank-full stage,
however, roughness may asymptotically approach a
constant value, as shown by several previous
investigations (Limerinos, 1970; Bray, 1979; Sargent,
1979; Griffiths, 1981; Jarrett, 1985; Blodgett, 1986;
Hicks and Mason, 1991; Coon, 1995).

The basic roughness coefficient for these streams
should not vary greatly with depth of flow if the
relative roughness is greater than about 5 (Benson and
Dalrymple, 1967). Many of the verification
measurements presented in this report, however, have
values of relative roughness that are less than or close
to 5, and the variation in Manning's roughness
coefficient with depth is apparent.

For many previously published n-verification
manuals and for this report, verified n values are
obtained from flow discharge data that may not result
in a reliable value for studies requiring estimates of
roughness coefficients for design purposes. Design
discharge typically is determined on the basis of the
estimated flood having a particular recurrence interval
(100-year flood, for example). Roughness-coefficient
verification studies, however, generally are limited to
flows that may not exceed even the 5-year flood (Wahl,
1994). This limitation is caused by the relatively short
duration of n-value studies and the difficult logistics
involved in making n-verification measurements
during floodflows. Roughness coefficients can be
extrapolated to the design discharges using relations
between hydraulic components, such as R and n;
however, large uncertainties may be associated with
these extrapolations (Wahl, 1994). Water-resource
managers and engineers need to be aware of these
limitations when using this and other s-verification
manuals.

For sand-dominated streams, the amount of
variance in Manning's n with depth is much more
difficult to describe and quantify compared to gravel-
bed streams. Roughness in sand-dominated streams
depends not only on grain size but also on flow regime
and type of bedform manifested. As indicated by the
verification measurements made at the Hassayampa
River near Morristown, the relation of Manning's n to
flow depth (hydraulic radius) can actually be the
inverse of the relation for gravel-bed streams (fig. 9C,
see p. 37).
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DISCUSSION OF SIGNIFICANT RESULTS

Components of Manning's n

Attempts were made, using various techniques,
to quantify the separate components or adjustment
factors of Manning’s n for each of the verification
measurements presented in this report (table 29). The
purpose of presenting this information is to supply
additional aid to designers and engineers who need to
assess roughness characteristics of stream channels for
hydraulic studies in arid to semiarid environments.
According to current guidelines (Thomsen and
Hjalmarson, 1991), the general approach for estimating
resistance to flow in stream channels is to first select a
base value of Manning's n for the bed material. The
base value of Manning's n is represented by the size
and shape of the grains of the material that form the
wetted perimeter and that produce a retarding effect on
flow (Chow, 1959). Cross-section irregularities,
channel alignment, vegetation, obstructions, and other
factors that increase roughness then are added to the
base value of n. The following equation, first
introduced by Cowan (1956), is used to compute the
equivalent total Manning's »n for a channel using this
approach:

n= (ny+n +n,+n,+n,)m ©)
where

n, = base value of n for a straight uniform
channel,

n; = surface irregularities,

n, = variations in shape and size of the
channel,

n3 = obstructions,

ny = vegetation, and

m = correction factor for meandering or

sinuosity of the channel.

Detailed explanations for each adjustment factor can
be found in Cowan (1956), Chow (1959), Aldridge and
Garrett (1973), and Thomsen and Hjalmarson (1991).

Base Value of Manning's n for Gravel-Bed
Streams

A variety of techniques and methods have been
presented in literature that aid in estimating the base
value of Manning's n for hydraulic computations in
gravel-bed streams. Referencing tables and photo-
graphs of verified roughness coefficients is one
method; another is the use of equations that relate
Manning's # to easily measured hydraulic and channel
parameters.

Previous investigators have presented data that
indicate trends exist among hydraulic radius, median
grain-size diameter, and verified base values of n for
gravel-bed streams in specific regions of the world. For
example, Limerinos (1970) examined verified values
of n for 11 gravel-bed streams in California. Other
researchers, such as Bray (1979) and Griffiths (1981),
presented similar information for gravel-bed streams in
Canada and New Zealand, respectively (table 30).
These three investigators developed equations that
relate Manning’s n to hydraulic radius and median-
grain size of the bed material (table 30). A similar
equation was developed for gravel-bed streams in
Arizona in which the base n value was the only factor
that contributed to total roughness (table 30; Phillips
and Ingersoll, 1997).

The four equations are plotted to show the
relation between Manning’s » and relative roughness
(R/ds) for gravel-bed streams in different parts of the
world (fig. 18). In order to perform this simple
comparison of equations, a constant ds; value of 0.30
ft was used, and hydraulic-radius values ranged from
0.6 to 7.5 ft (fig. 18).

The plots in figure 18 have a similar trend that is
fairly steep for relative roughness values less than
about 5. Although the general trend among the different
relations is similar and, for relative roughness values
larger than about 5, all the trend lines asymptotically
approach constant values, a significant shift is apparent
in the relation for verified n values presented in this
report (fig. 18). As indicated by the three equations
developed for areas outside Arizona, the asymptotic »
values range between approximately 0.036 and 0.041.
According to the data presented for dryland gravel-bed
streams in Arizona, however, the data trend
asymptotically approaches a base n value of about
0.028. If the equations presented are to be properly
used as aids in determining base values of Manning’s
n, adequate descriptions of channel characteristics
from which the data were obtained must be presented.
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Table 30. Equations for relations among base n values, hydraulic radius, and median diameter of bed material for gravel-bed
streams in different parts of the world

[Equations 10-12 are from Coon (1995)]

Source Equation Range in dy (ft) Location
(10
Limerinos (1970) 6 0.02 to 0.83 California, U.S.A.
0.0926R

" = 035+ 20log (R/dy)

an

Griffiths (1981) 0.04 to0 0.99 New Zealand

. 0.0927R""°

"~ 0.760 + 1.981og (R/d,)

12)

Bray (1979) 0.06 to 0.48 Alberta, Canada

_ 0.0927R""
0.248 + 2.36l0g (R/d

n
s0)

13)

n verification? 0.28 t0 0.36 Arizona, U.S.A.

. 0.0926R""
146 + 2.231og (R/dy)

'Phillips and Ingersoll (1997).
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Figure 18. Relation of Manning’s n and relative roughness for gravel-bed stream channels in Arizona
and throughout the world. All trend lines are plotted for values of ds, equal to 0.30 foot, and values of
R range from 0.6 to 7.5 feet.
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A discussion, therefore, follows that presents potential
factors that may account for the differences between
the relations (fig. 18).

Possible explanations for the apparent shift in
relations may be found by examining differences in
channel and flow characteristics for the separate
regions in which the data for the equations were
obtained. For example, most of the streams used in the
derivation of equations 10, 11, and 12 (table 30) for
California, New Zealand, and Canada, respectively, are
perennial and in relatively humid climates; whereas
many of the streams that were studied in Arizona are
ephemeral and in an arid to semiarid climate. Channels
of ephemeral streams in dry climates, such as Skunk
Creek above Interstate 17, may contain substantial
amounts of fine-grained particles between the larger
cobble-sized particles primarily because of the lack of
regular base-flow conditions required for sediment
transport. The presence of a fine-grained matrix may
result in mitigated turbulence around the cobbles. The
overall hydraulic effect would be a lower expenditure
of energy by the fluid during flow resulting in lower
values of n,.

The substantial shift in trendlines also may
reflect extraneous flow-retarding effects associated
with irregularities in bank shape and changes in
channel alignment. Many of the sites used to develop
equations 10, 11, and 12 are located in relatively
pristine areas where streams are not substantially
affected by human influences. Three of the sites used
to derive equation 13, however, are located in river
reaches that have been channelized. In addition to
stabilizing channel banks, channelization projects
generally tend to increase conveyance by straightening
rivers, potentially resulting in a decrease of flow-
retarding effects associated with channel meanders and
other irregularities (Phillips and Ingersoll, 1997).

A third possible reason for the lower values of n),
for gravel-bed streams in Arizona may be the result of
the location of the selected sites with respect to the
stream’s headwaters. Many of the selected sites in
Arizona are at great distances from the stream’s source,
where the stream is considered base level. Particles in
base-level streams generally are rounder and reflect
better sorting and homogeneity than higher-gradient
piedmont channels (Leopold and others, 1964). For
piedmont streams where homogeneity of particles may
be relatively low, the particles that are substantially
larger than the median size can play an important role
in flow resistance (Leopold and others, 1964). For

similar values of ds, therefore, greater turbulence may
occur near channel beds of piedmont streams than near
channel beds of base-level streams resulting in larger
values of nj,. Several of the n-verification measure-
ments used for calibration of equations 10, 11, and 12
(table 30) were made in piedmont streams.
Additionally, the range in median diameter of particles
for streams in central Arizona is much narrower than
the range used to develop equations for gravel-bed
streams in other regions of the world (table 30). The
sites with relatively large median grain sizes that were
employed in the development of equations 10, 11, and
12 may have had a disproportionate effect on
roughness, a consequence that may weight the relations
toward higher values of n (fig. 18; Phillips and
Ingersoll, 1997).

A final explanation for the apparent shift in
relations may be found by examining potential
extraneous flow-retarding elements in the streams that
were used in the derivation of each equation. Although
the previous investigators attempted to incorporate
gravel-bed stream sites in which n;, was the only flow-
retarding factor, examination of several sites indicates
that the flow-retarding effects associated with bank
vegetation may have contributed to the overall value of
n. As discussed previously, Manning's n generally
decreases with depth until a constant value is
asymptotically reached. For channels that contain an
appreciable amount of bank vegetation, however, the
inverse is likely, and n can increase substantially with
flow depth (Barnes, 1967; Jarrett, 1985; and Coon,
1995). One of the sites used by Limerinos (1970), for
example, is the Merced River at Happy Isles Bridge,
near Yosemite, California. According to site-
description information and visual examination of the
major flow-retarding elements for this site (Barnes,
1967, p. 194-197), an extensive amount of vegetation
in the form of trees was present along the channel
banks, which may have had an influence on computed
n values (Limerinos, 1970, table 1). Additionally, in the
derivation of the equation for gravel-bed streams in
New Zealand (table 30, equation 11), Griffiths (1981)
used several streams that also contain bank vegetation
that may have influenced the overall computed
roughness coefficient (Hicks and Mason, 1991). If the
flow retarding effect of bank vegetation contributed to
total flow retardance at a substantial number of sites
used to derive the respective equations, the result could
be an apparent upward shift for the relation between n
and relative roughness (fig. 18). The contribution of
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bank vegetation to total flow retardance for sites used
to develop equation 13 appeared to be negligible.

Whatever the reason for the difference between
the separate equations, it seems that the relations
presented generally are subject to the hydraulic,
hydrologic, and geologic conditions of the respective
research areas. Because the established equations are
limited to the range in hydraulic and channel
components used in their derivation, application of
equation 13 to similar gravel-bed dryland streams also
is limited to this same range. For example, when
transferring results to similarly characterized dryland
stream channels, caution must be used for sites where
values of hydraulic radius are above about 4 ft (fig. 18),
and values of ds are outside the range of the data set
(table 29). Further research is required to extend the
relation developed for gravel-bed streams in Arizona
to larger magnitude flows that occur less frequently.

Influence of Vegetation on Manning's n

For 19 of the 37 n-verification measurements
made in dryland streams, vegetation was determined to
have contributed to total roughness and, therefore,
required quantifying (table 29). The vegetation
component for several of the gravel-bed streams that
contained an appreciable amount of vegetation was
determined indirectly. Using equation 13, base n values
were computed for five verification measurements
made at Skunk Creek above Interstate 17 and two
verification measurements made at Cave Creek above
Deer Valley Road (table 29). Because n; through ns
were considered to have no effect on total roughness at
these two study reaches, the corresponding effect of
vegetation on total roughness was quantified for each
measurement by subtracting the computed base n value
from total verified n (table 29).

For each of the seven n-verification measure-
ments, the average percent area of flow blocked by
vegetation was estimated. The vegetation component
data obtained indirectly using equation 13 and the
corresponding percent area of flow blocked by
vegetation were used to develop a simple best-fit
relation that can be used to estimate ny in similarly
vegetated stream channels (equation 14 and figure 19).

n, = 0.0008 B - 0.0007 (14)

where
ny= vegetation component of Manning’s n, and
B= percentage of flow blocked by vegetation.

Equation 14 was used to estimate ny for the
twelve other n-verification measurements that con-
tained an appreciable amount of vegetation (table 29).
For 3 of the 12 measurements, an estimate of n, was
required to adequately account for variations in
channel shape and size (table 29). The estimates of n,
primarily were made using standard guidelines for
assigning components of n to dryland streams
(Aldridge and Garrett, 1973; Thomsen and Hjal-
marson, 1991).

SUMMARY AND CONCLUSIONS

Thirty-seven roughness coefficients were
determined for 14 selected natural and constructed
stream channels in Arizona. The sites were selected to
represent a wide range of channel conditions that
include alluvial, boulder, and constructed channels that
contain varying amounts of riparian vegetation.
Computed roughness-coefficient values ranged from
0.017 for constructed channels to 0.067 for boulder
channels.

This report is intended to be used in conjunction
with current guidelines that describe techniques and
methods for assigning Manning's n. The descriptions of
hydraulic and physical characteristics and photographs
that reflect the major flow-retarding elements in
channel reaches for which n values have been verified
can be used as comparison standards to aid in assigning
n values to similarly characterized channels.

Relations derived from the data in this study
relate Manning's n values to various hydraulic and
channel components. For gravel-bed channels that
have a median bed-material size from 0.28 to 0.36 ft,
the median diameter of bed material, hydraulic radius,
and the verified n values are used to develop an
equation that can be used to determine n,, for similarly
characterized dryland streams. This equation indicates
substantially lower n values compared to similarly
developed equations for gravel-bed channels in other
regions of the world. The larger verified base values of
Manning’s n for gravel-bed channels in California,
New Zealand, and Canada may be the result of the
flow-retarding effects associated with channel
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Figure 19. Relation of vegetation components for vegetated channels studied and the estimated
percentage of flow blocked by vegetation (average vegetation conditions for all cross sections at each

site).

irregularities, poorly sorted bed material, or bank
vegetation.

The equation developed for base n values in
gravel-bed streams also is used to quantify the
magnitude of the vegetation component of Manning's n
value for several gravel-bed channels where vegetation
was present. A simple relation was developed for the
estimated percent area of flow blocked by vegetation
and the vegetation component. This relation can be
used at similar sites in the arid to semiarid
southwestern United States for which the effect of
vegetation on total roughness must be determined.
Further study is needed to extend the relations
developed for this study beyond current limitations of
the data sets presented in this report.
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Books and Other Publications

Professional Papers report scientific data and interpretations
of lasting scientific interest that cover all facets of USGS inves-
tigations and research.

Bulletins contain significant data and interpretations that are of
lasting scientific interest but are generally more limited in
scope or geographic coverage than Professional Papers.

Water-Supply Papers are comprehensive reports that present
significant interpretive results of hydrologic investigations of
wide interest to professional geologists, hydrologists, and engi-
neers. The series covers investigations in all phases of hydrol-
ogy. including hydrogeology, availability of water, quality of
water, and use of water.

Circulars are reports of programmatic or scientific information
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information of wide popular interest. Circulars are distributed
at no cost to the public.

Fact Sheets communicate a wide variety of timely information
on USGS programs, projects, and research. They commonly
address issues of public interest. Fact Sheets generally are two
or four pages long and are distributed at no cost to the public.

Reports in the Digital Data Series (DDS) distribute large
amounts of data through digital media, including compact disc-
read-only memory (CD-ROM). They are high-quality, interpre-
tive publications designed as self-contained packages for view-
ing and interpreting data and typically contain data sets,
software to view the data, and explanatory text.

Water-Resources Investigations Reports are papers of an
interpretive nature made available to the public outside the for-
mal USGS publications series. Copies are produced on request
(unlike formal USGS publications) and are also available for
public inspection at depositories indicated in USGS catalogs.

Open-File Reports can consist of basic data, preliminary
reports, and a wide range of scientific documents on USGS
investigations. Open-File Reports are designed for fast release
and are available for public consultation at depositories.

Maps

Geologic Quadrangle Maps (GQ’s) are multicolor geologic
maps on topographic bases in 7.5- or 15-minute quadrangle
formats (scales mainly 1:24,000 or 1:62,500) showing bedrock,
surficial, or engineering geology. Maps generally include brief
texts; some maps include structure and columnar sections only.

Geophysical Investigations Maps (GP’s) are on topographic
or planimetric bases at various scales. They show results of
geophysical investigations using gravity, magnetic, seismic, or
radioactivity surveys, which provide data on subsurface struc-
tures that are of economic or geologic significance.

Miscellaneous Investigations Series Maps or Geologic
Investigations Series (I’s) are on planimetric or topographic
bases at various scales; they present a wide variety of format
and subject matter. The series also incudes 7.5-minute quadran-
gle photogeologic maps on planimetric bases and planetary
maps.

Information Periodicals

Metal Industry Indicators (MII’s) is a free monthly newslet-
ter that analyzes and forecasts the economic health of five
metal industries with composite leading and coincident
indexes: primary metals, steel, copper, primary and secondary
aluminum, and aluminum mill products.

Mineral Industry Surveys (MIS’s) are free periodic statistical
and economic reports designed to provide timely statistical data
on production, distribution, stocks, and consumption of signifi-
cant mineral commodities. The surveys are issued monthly,
quarterly, annually, or at other regular intervals, depending on
the need for current data. The MIS’s are published by commod-
ity as well as by State. A series of international MIS’s is also
available.

Published on an annual basis, Mineral Commodity Summa-
ries is the earliest Government publication to furnish estimates
covering nonfuel mineral industry data. Data sheets contain
information on the domestic industry structure, Government
programs, tariffs, and 5-year salient statistics for more than 90
individual minerals and materials.

The Minerals Yearbook discusses the performance of the
worldwide minerals and materials industry during a calendar
year, and it provides background information to assist in inter-
preting that performance. The Minerals Yearbook consists of
three volumes. Volume I, Metals and Minerals, contains chap-
ters about virtually all metallic and industrial mineral commod-
ities important to the U.S. economy. Volume II, Area Reports:
Domestic, contains a chapter on the minerals industry of each
of the 50 States and Puerto Rico and the Administered Islands.
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separate reports. These reports collectively contain the latest
available mineral data on more than 190 foreign countries and
discuss the importance of minerals to the economies of these
nations and the United States.

Permanent Catalogs
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and “Publications of the U.S. Geological Survey, 1962—
1970” are available in paperback book form and as a set of
microfiche.

“Publications of the U.S. Geological Survey, 1971-1981” is
available in paperback book form (two volumes, publicatione
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