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Debris Flows from Failures of Neoglacial-Age
Moraine Dams in the Three Sisters and
Mount Jefferson Wilderness Areas, Oregon

By Jim E. 0’Connor, Jasper H. Hardison lll, and John E. Costa

Abstract

Cascade Range alpine glaciers have shrunk
substantially as average annual temperature has risen
0.5 to 2 degrees Celsius since culmination of the
Little Ice Age in the mid- to late 1800's. In recently
deglaciated areas in the Cascade Range, hundreds of
lakes have formed. Most of these newly formed lakes
are partly or entirely bound by bedrock rims and are
stable, but at least 30 are dammed by unconsolidated
moraines that are susceptible to breaching.

The highest concentration of lakes dammed by
Neoglacial moraines in the conterminous United
States is in the Mount Jefferson and Three Sisters
Wilderness Areas in central Oregon, where there are
currently eight moraine-dammed lakes. The largest
lake, Carver Lake on South Sister, has a volume of
almost 1 million cubic meters. Most of these lakes
formed between 1920 and 1940 during a period of
substantial warming and glacier retreat. In the Mount
Jefferson and Three Sisters Wilderness Areas, there
have been 11 debris flows from 4 complete and 7
partial emptyings of moraine-dammed lakes. Most of
these breaches occurred between 1930 and 1950, but
some were as recent as the 1970’s.

All moraine-dam breaches in the Three Sisters
and Mount Jefferson Wilderness Areas occurred
during the melt season (July-October), usually during
periods of warm or rainy weather. Many breaches
were probably a result of erosion of the steep outlet
channels, triggered by unusually large discharges
caused by (1) waves generated by rockfalls or ice
avalanches into the lake or (2) increased lake outflow
caused by precipitation and melting snow and ice.
Water flows from breached moraine dams rapidly
evolved into debris flows that traveled as far as 9

kilometers before stopping or evolving into sediment-
laden water flows. Peak discharges of at least four of
the flows exceeded 300 cubic meters per second.
Flows from breached morainal dams transformed
from clear water at the outlet into debris flows within
500 meters of the breaches by incorporating large
volumes of loose Neoglacial till and outwash from
the moraines and proglacial outwash. For the two
largest lake releases, the volume of sediment eroded
near the outlet exceeded 25 percent of the total
volume of water released. Morphological evidence
indicates that sediment was introduced into flows by
bank collapse and channel incision. Indirect discharge
estimates (primarily by a critical-depth procedure)
show that peak discharges increased in erosional
reaches; in one instance by more than a factor of four.
Erosion and sediment entrainment was restricted to
reaches with slopes that exceeded 8°, and deposition
occurred in reaches with slopes less than 18°.

Several moraine-dammed lakes still exist, and
some pose downstream hazards. Two of the lakes are
remnants of previously larger lakes that have partially
breached their moraine dams. Five lakes in the Three
Sisters and Mount Jefferson Wilderness Areas are
impounded by Neoglacial moraines that have not
been breached. Qualitative assessments of
downstream hazards from moraine-dammed lakes are
possible on the basis of the topographic setting of the
lake and downstream channel conditions.
Quantitative assessment of the likelihood of
breaching or the magnitude of downstream flows is
difficult because of the variety of mechanisms that
trigger breaches, the sensitivity of outflow
hydrographs to breach shape and erosion rate, and the
large uncertainty of downstream flow characteristics.

Abstract 1



INTRODUCTION
Background

Recent floods and debris flows! resulting from
moraine-dam failures are one of several
geomorphic consequences of substantial 19th and
20th century alpine glacier retreat at the end of the
Neoglacial period? (Clague and Evans, 1993;
Evans and Clague, 1993; O’Connor and Costa,
1993). Worldwide retreat and thinning of glaciers
from advanced late Neoglacial positions has
resulted in the exposure of a large volume of
unconsolidated, unvegetated, and locally ice-cored
sediment. These deposits include moraines,
outwash, and ice-stagnation drift and are
commonly composed of a heterogenous mixture of
particle sizes emplaced on steep slopes. This
sediment is readily mobilized, transported, and
deposited by a variety of processes, including mass
wasting, moraine-dammed lake failures, glacial
outburst floods, rapid snow and ice melting, and
precipitation-induced flooding. Although
deglaciation has triggered these processes in all
temperate glacierized environments, recent
geomorphic activity on Cascade Range volcanoes
has been notable because these volcanoes are steep,
extensively glacierized, and composed of jointed
and locally highly altered loose rock and
fragmental material (Osterkamp and others, 1986;
Walder and Driedger, 1994).

Purpose and Scope

This report focuses on central Oregon Cascade
Range stratovolcanoes of Mount Jefferson, Three

1 Debris flows are slurries of rock debris, organic material,
and water that have sufficient yield strength and
viscosity to support gravel-sized particles in suspension
(Pierson and Costa, 1992).

2 The Neoglacial period was defined by Porter and Denton
(1976) as encompassing the last 5,000 to 6,000 e yr,
when alpine glaciers reformed and advanced. The “Little
Ice Age” (Matthes, 1939) is generally regarded as the
culmination of the Neoglacial period, and is a term used
by climatologists, geologists, and glaciologists to
describe a period of worldwide lower temperatures and
advanced glacier positions from the 16th century through
the late 19th century (Grove, 1988, p. 3-5).

Fingered Jack, and the Three Sisters/Broken Top
area because of the unique concentration of recent
debris flows that have resulted from moraine-
dammed lake releases. We evaluate the relevant
late Holocene glacier and climate history of the
Three Sisters and Mount Jefferson Wilderness
Areas between Mount Jefferson and Crater Lake,
Oregon (fig. 1) and describe conditions that led to
formation and failure of Neoglacial moraine dams.
We mapped, described, sampled deposits from, and
calculated multiple indirect discharge
measurements for four debris flows that resulted
from breaching of moraine dams to determine and
track aspects of flow characteristics as each debris
flow moved downstream. The report concludes
with a discussion of hazard assessment for existing
moraine-dammed lakes in the Three Sisters and
Mount Jefferson Wilderness Areas.
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THE CENTRAL OREGON
CASCADE RANGE

Physiography
Geologic and Topographic Setting

In the United States, the Cascade Range
extends from northern California to northern
Washington. In Oregon, south of Mount Hood, the
Cascade Range is 50 to 120 km wide, and is
composed primarily of upper Eocene to Quaternary
volcanic, volcaniclastic, sedimentary, and igneous
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(1986) and Hupp and others (1987) evaluated the
frequency and magnitude of debris flows from
glacierized basins on Mount Shasta.

Floods and debris flows originating
specifically from moraine-dammed lakes have
been reported in Peru (Lliboutry and others, 1977;
Reynolds, 1990), Canada (Blown and Church,
1985; Evans, 1987; Clague, 1987; Clague and
Evans, 1994), Great Britain (Carling and Glaister,
1987), the Himalayas (Ives, 1986; Vuichard and
Zimmermann, 1987; Ding and Liu, 1992), the
European Alps (Haeberli, 1983; Eisbacher and
Clague, 1984), and the former Soviet Union
(Yesenov and Degovets, 1979). For the central
Oregon Cascade Range, Laenen and others (1987,
1992) provided a summary of known debris flows
from moraine-dammed lakes in the Three Sisters
Wilderness Area in their analysis of the hazard
posed by failure of the moraine dam impounding
Carver Lake. A 1966 debris flow from a moraine-
dammed lake on Broken Top was described by
Nolf (1966).

NEOGLACIATION IN THE
CENTRAL OREGON CASCADE
RANGE

Except for areas subject to recent volcanism,
glacial processes and deposits of the last few
millennia are the dominant influences on the
landforms and deposits of glaciated alpine areas in
the Cascade Range. Recent reviews of Holocene
glacier fluctuations in the North American
Cordillera are provided by Osborn and Luckman
(1988), Davis (1988), Grove (1988), Ryder (1989),
and Luckman and others (1993).

Neoglaciation and Little Ice Age
Chronology and Deposits

In the central Oregon Cascade Range, sharp-
crested, largely unvegetated Neoglacial moraines
stand within 2 km of the present glacier termini,
contrasting with older, more densely vegetated
moraines that are blanketed by Mazama tephra
(6,845 + 50 1“C yr BP; Bacon, 1983) and on the
south flank of Broken Top, scoria from Cayuse
Crater (>9,520 % 100 '“C yr BP; Scott and

Gardner, 1992). Altitudes of Neoglacial terminal
moraines indicate that equilibrium line altitudes
(ELA) varied widely but were as much as 200 m
below present (fig. 2) (Scott, 1977; Dethier, 1980).
The wide variation in their ELA’s probably reflects
topographic controls on accumulation, insolation,
and debris cover of these small glaciers.

Chronology

In the absence of historical records, periods of
glacier retreat and advance are difficult to date
accurately. According to the summary of Davis
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Figure 2. Equilibrium line altitudes (ELA) for present
and reconstructed late Quaternary glaciers at

Mount Jefferson and Three Sisters, Oregon. ELA
calculations were based on an accumulation area ration
of 0.6. Data for the later Pleistocene Suttle Lake
advance and the valley-head (Canyon Creek) glaciers
are from Scott (1989, p. 14) and are for glaciers east of
the Cascade Range crest. Data for present and
Neoglacial ELA’s are from this study, (Scott, 1974,

p. 68; 1977, fig. 11; 1989, p. 14), and Dethier (1980).
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(1988), however, there were at least three periods
of advanced ice positions during late Holocene
time in the North American Cordillera: (1) a poorly
dated early Neoglacial phase believed to date
between 5 and 2.5 ka3; (2) a middle Neoglacial
phase, which is recognized only in the Rocky
Mountains of Colorado and Wyoming, where
moraines date between 2 and 1 ka; and (3) a late
Neoglacial, or Little Ice Age readvance (Davis,
1988). Ages of early Neoglacial and Little Ice Age
moraines in the Cascade Range have been
determined by tephrochronology, radiometric
dating, dendrochronology, and lichenometry. Early
Neoglacial advances, all dated by radiocarbon
dating of stratigraphically linked deposits,
occurred between 5.5 and 3.0 ka at Glacier Peak
(Beget, 1984); between 4.0 and 2.0 ka at

Mount Rainier (Crandell and Miller, 1964);
younger than 4 ka at Mount Adams (Hopkins,
1976); older than 1.5 to 1.8 ka at Mount Hood
(Lundstrom, 1992, p. 143); and between 6.8 and
2.1 ka at Broken Top and Mount Bachelor (Scott,
1989). These dates are consistent with results of
recent studies in the Canadian Rockies that
indicate a period of glacier advance between 3.1 to
2.5 ka (Luckman and others, 1993).

In the Three Sisters and Mount Jefferson
Wilderness Areas, most early Neoglacial deposits
were removed or buried by Little Ice Age glacier
advances during the last few centuries. This is
consistent with many observations throughout the
world that the Little Ice Age was, in general, the
period of most advanced glacier positions of the
Holocene (Grove, 1988). Evidence from
lichenometric and dendrochronologic studies in
Oregon and Washington indicates that glaciers
reached maximum downvalley positions during the
17th, 18th, and 19th centuries. At Mount Rainier,
which has had the most thoroughly developed
Little Ice Age chronology, the outermost terminal
moraines of most major glaciers stabilized between
1750 and 1850 AD, and there was general and
substantial retreat between 1830 AD and 1950 AD
(Crandell and Miller, 1964; Sigafoos and

3 “ka” is an abbreviation for “kilo-annum,” referring to 103
years. In this report, dates reported in this format are on
the basis of radiocarbon dates that have not been
calibrated to a calendar year reference.

Hendricks, 1972; Burbank, 1981, 1982). The
maximum advance of Eliot Glacier on Mount
Hood culminated about 1740 AD (Lawrence, 1948;
Lundstrom, 1992, p. 118-126).

Late Neoglacial moraines formed by the
glaciers of the central Oregon Cascade Range may
have stabilized somewhat later than those
constructed by the larger glaciers at Mount Rainier
and Mount Hood. On Three Fingered Jack, the
oldest tree cored on the Neoglacial moraine crest
germinated about 1884 (Scott, 1974, p. 81).
Similarly, the oldest trees growing on the left
lateral moraine of Skinner Glacier, on the north
flank of South Sister, germinated about 1865. This
evidence indicates that the maximum late
Neoglacial advance in the Central Oregon Cascade
Range probably culminated in the 1850°s and
1860’s. A substantially older moraine, however,
was formed by a post- 2.3-ka advance of Lewis
Glacier. The moraine was not covered by a tephra
erupted 2.3 to 2.0 ka (Scott and Gardner, 1992) but
does have large mountain hemlocks and whitebark
pines growing on it, including one that germinated
more than 500 years ago. Although they had
thinned substantially, most glaciers in the Three
Sisters area remained in contact with Neoglacial-
age moraines through the first two decades of the
20th century.

Neoglacial Deposits

Late Holocene glaciers have effectively
eroded and transported a large volume of sediment
to proglacial positions. Massive lateral and end
moraines, and downstream outwash fans were left
as glaciers retreated from early 20th century
positions. The lateral and end moraines are large
constructional forms with crests rising to at least
120 m above the adjacent terrain (fig. 3). The
volume of Neoglacial lateral and end moraines on
North, South, and Middle Sisters, determined by
using the methods outlined by Lundstrom (1992,
p. 137-139), is about 40 million m>, equivalent to
about 30 percent of the present ice volume
(Driedger and Kennard, 1986).

Neoglacial moraines in the study area are
composed of poorly sorted bouldery, gravelly, silty
sand. The large lateral and end moraines appear to
be abandoned “dump moraines” (Small, 1983)

6 Debris Flows from Failures of Moraine Dams—Tbree Sisters and Mount Jefferson Wilderness Areas, Oregon

































moraine-dammed lakes have been documented in
the Cordillera Blanca of the Peruvian Andes
(Lliboutry and others, 1977). At least 29 of these
lakes formed prior to 1950, and at least 9 more
formed between 1932 and 1950. About 130 lakes
dammed by Neoglacial moraines have been
identified in the Himalaya of Nepal and Tibet
(Fushimi and others, 1985; Vuichard and
Zimmermann, 1987; Liu and Sharma, 1988; Ding
and Liu, 1992). Moraine-dammed lakes also exist
in mountain ranges in Kazakhstan, Asia (Yesenov
and Degovets, 1979; Popov, 1990), the European
Alps (Eisbacher and Clague, 1984; Haeberli,
1983; Dutto and Mortara, 1992), and the Canadian
Cordillera (Clague and others, 1985; Blown and
Church, 1985; Evans, 1987; Clague and Evans,
1992, 1994).

Several dozen proglacial lakes formed this
century in the Cascade Range in areas abandoned
by Neoglacial-age glaciers. Basins of most of these
lakes are partly rimmed by resistant bedrock
barriers, but several are completely bounded by
Neoglacial lateral and terminal moraines (table 1).
The highest concentration of past and present
Neoglacial moraine-dammed lakes in the
conterminous United States is in the central Oregon
Cascade Range. There are seven moraine-dammed
lakes in the Three Sisters Wilderness Area and one
in the Mount Jefferson Wilderness Area that have
surface areas larger than 5,000 m? (table 1; figs. 15,
16, and 17). In addition, there were five other
moraine-dammed lakes with surface areas as great
as 10> m? that existed as long as 40 years before
breaching their morainal dams. This high
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Figure 13. Measured mean annual temperature, portrayed as anomalies from 1951-1970 averages. Curves are 7-year
moving averages. A, Average northern hemisphere land data from Jones and Bradley (1992); B, Average annual
temperature at Corvallis, Oregon (data from Western Regional Climate Center, Reno, Nevada).
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Resources Conservation Service, Portland, Oregon.
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reach of declining gradient and diminishing peak
discharge (pl. 2; fig. 32). Downstream fining of the
deposits is inferred to be at least partly the result of
size-selective deposition (Scott, 1967, 1988) by the
debris flow. About 5 km from the outlet, White
Branch descends through a steep and narrow reach
that is constricted by rhyodacite bluffs and talus
from the Obsidian Cliffs and by the lava flow from
Collier Cone. There, gravel-content variation
increased markedly (fig. 37) due to local
incorporation and deposition of talus and bank
material.

Other sediment-sample statistics, such as mean
particle size and sorting, show no clear trend
(fig. 37). This lack of trend is probably because of
the overall cohesiveness of the flow; consequently,
the flow matrix changed little over the length the
flow. Also, large site-to-site variation in particle-
size characteristics because of variations in local
depositional environment probably masks
downstream trends.

Diller Glacier

During maximum Neoglacial advances, Diller
Glacier covered 1.03 km? on the eastern slope of
Middle Sister and formed high lateral and terminal
moraines before retreating to a present area less
than half its former size. Photographs by

[Saa T T T T T T T T

2 & sof ]
00 - Deposition/attenuation ]
Z & 600 F ]
o Entrainment or

LIJ - —
o8 40l temporary Deposition ]
T blockage 1
Lo - \ ]
3 B 200 b
L4 8 Entrainment ]
o E [ 1 1 1 1 1 Il 1

0 1 2 3 4 5 6 7 8
DISTANCE FROM BREACH, IN KILOMETERS

Figure 35. Indirect estimates of peak discharge for the
1942 debris flow on White Branch. Data portrayed as
points and error bars are critical-flow estimates; data
portrayed only as ranges are velocity-area estimates.
Solid curve is an interpretation of how peak discharge
varied downstream, annotated with inferences of the
processes controlling the changes in peak discharge.
Compare with figure 32.
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Figure 36. Range of cumulative curves for 13 samples
of matrix material (less than 32 mm) from the 1942
White Branch debris-flow deposits. Also shown is the
cumulative curve for a sample from Collier Glacier
Neoglacial moraine. Data provided by K.M. Scott
(USGS, written commun., 1991).

I.C. Russell in 1903 (fig. 5) and a 1929 Oregon
Historical Society photograph (neg. LOT 311-260)
show the glacier in contact with Neoglacial
terminal and lateral moraines, but with an ice
surface substantially lower than the moraine crests.
Between 1929 and 1937, a lake formed at an
altitude of 2,300 m between the glacier terminus
and the terminal moraine (pl. 2; figs. 15C and 16).
On the basis of our survey of the basin (figs. 17
and 18), the lake contained 3.2 x 10° m3 of water
and had a maximum depth of 22.4 m.

Aerial photographs taken September 19, 1967,
(fig. 15C) and July 17, 1973, (USFS photograph
1672-96) show the moraine dam was breached
between these dates, resulting in a debris flow that
traveled 9 km down the North Fork of Squaw
Creek before transforming into sediment-laden
streamflow near the confluence of the North and
South Forks (pl. 2; figs. 38 and 39). Sandy deposits
from this flow are traceable for another 7 km
downstream. Discharge records from a stream gage
24 km from the breach (Squaw Creek near Sisters,
Oregon) show a flow pulse of 35 m%/s on
September 7, 1970, that almost certainly
corresponds to this flow. By the time the flood
wave reached the town of Sisters, 31 km from the
breach, the flow was described as a muddy, 30-cm-
high surge (Laenen and others, 1992, p. 153).
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The lake completely emptied when the large as 3 m. Bouldery lobes on the fan surface are

moraine dam failed, releasing 320,000 m? of water cut by lower and less bouldery surfaces (fig. 38),
and entraining about 130,000 m? of till and indicating that later phases of the flow were erosive
outwash from the impounding moraine and steep and carried finer sediment. At the distal end of the
outwash surface below the moraine (fig. 38). Three fan, the debris flow inundated a meadow, covering
hundred meters from the breach, the flow dropped it with 2 m of 1- to 2-m-diameter boulders within a
over a steep reach, eroded the channel to bedrock, gravelly sand matrix. Later, the distal fan deposits
and formed a set of falls. On the outwash surface at and the underlying fine-grained fluvial deposits of
the base of the falls, the flow deposited a debris fan the meadow were entrenched as much as 4 m,
covering an area of 40,000 m”. Near the fan apex, apparently by a final, watery phase of the flow
the largest clasts have intermediate diameters as (fig. 40).
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Figure 37. Downstream variation in particle-size distribution characteristics of
matrix materials (less than 32 mm) for the 1942 White Branch flow. A, Clay and
gravel content variation. B, Graphic mean particle size (M) and standard deviations
as defined by Folk (1980, p. 40-46). Data provided by K.M. Scott (USGS, written
commun., 1991).
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Table 3. Hypothetical peak discharges for moraine-dammed lakes in the Three Sisters and Mount Jefferson

Wilderness Areas for various breach erosion rates.

[These hypothetical peak discharges are calculated on the basis of the following conditions: (1) Complete
emptying of the lake; (2) Triangular-shaped breach cross section with constant side slopes of 26.6°; (3) the
breach enlarges at a constant vertical erosion rate until the bottom of the breach reaches the altitude of the lake
bottom, at which time vertical erosion ceases and the breach geometry remains constant. Numerical methods
for calculating hydrographs are described in Walder and 0'Connor (1997). m’, cubic meters; m, meters; m/min,

meters per minute; m%/s, cubic meters per second]

Vertical erosion rate (m/min)

Lake name or Volume Depth 025 050 10 20 40
glacier terminus (m?) (m) Peak discharge (m*/s)

Carver Lake 925,000 36.6 240 455 850 1,590 2,940
Chambers Lake No.1 1,360,3001 38.41 335 630 1,175 2,190 4,030
Chambers Lake No.2 76,300 12.8 50 95 175 320 565
Collier Glacier 165,0801 4.81 80 85 85 90 90
East Bend Glacier 200,930 13.7 120 225 415 710 945
Jack Glacier 38,270 9.7 35 65 120 220 340
Thayer Glacier 666,100! 26.41 35 65 120 220 340

! Volume and depth values (and calculated discharges) are for maximum potential lakes that would be achieved only if lake Ievels
rose so that they were draining over the moraine crest. The present depths and volumes and much smaller.

downstream. Similar observations of peak
discharges increasing several-fold have been made
for flows resulting from rapid release of moraine-
dammed lakes in other parts of the world (fig. 67).
This aspect of debris-flow hazard assessment is
important because most research in debris-flow
modeling has been focused on rheology and the
effect of flow rheology on flow behavior
(Takahashi, 1978, 1981; Iverson and Denlinger,
1987; O’Brien and others, 1993). Postulated
rheologic models of debris flow are usually
incorporated into fixed-bed streamflow-routing
models to determine downstream propagation of
debris-flow hydrographs (Laenen and Hansen,
1986; Fread, 1988; O’Brien and others, 1993;
Costa, 1997). For some of the rubbly debris flows
from moraine-dammed-lake releases in the central
Oregon Cascade Range, material from the bed and
banks increased the flow volume by more than 25
percent and increased peak discharge by 100
percent or more (fig. 67). Likewise, deposition
resulted in substantial reductions of flow volume
and peak discharge over short distances. During the

1970 Squaw Creek flow, about 65 percent of the
lake volume was temporarily retained within the
flow deposits or elsewhere along the flow route
and was not part of the measured flow pulse 24 km
downstream. At least for these types of debris
flows, depositional and erosional effects on the
flow hydrograph potentially overwhelm routing
effects that might result from choices of rheologic
model and routing scheme.

Crude predictions of flow bulking and
debulking are possible on the basis of gradient
criteria as described above. The magnitude and
locations of erosion and deposition, however,
depend on flow size and rheology, channel and
overbank substrate, channel geometry, and
hillslope stability. All are factors difficult to
parameterize accurately in a predictive model. An
attempt to construct a model postdictively for the
1970 Squaw Creek flow (Laenen and others, 1987)
using only channel friction to attenuate the peak,
resulted in peak discharges that failed to match
most of the field-based indirect discharge estimates
within a factor of two. Combined with the
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Figure 67. Downstream variation in peak discharges for (A) four debris flows from moraine-dammed lake releases
in the Three Sisters Wilderness Area and (B ) five debris flows and floods from moraine-dammed lake releases in
other alpine areas. Sources for data are given in table 2.
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