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Abstract 

Abstract 

Construction of a ground-water model for a field area is not a straightforward process. 

Data are virtually never complete or detailed enough to allow substitution into the model 

equations and direct computation of the results of interest. Formal model calibration through 

optimization, statistical, and geostatistical methods is being applied to an increasing extent to deal 
with this problem and provide for quantitative evaluation and uncertainty analysis of the model. 

However, these approaches are hampered by two pervasive problems: 1) nonlinearity of the 

solution of the model equations with respect to some of the model (or hydrogeologic) input 

variables (termed in this report system characteristics) and 2) detailed and generally unknown 

spatial variability (heterogeneity) of some of the system characteristics such as log hydraulic 

conductivity, specific storage, recharge and discharge, and boundary conditions. A theory is 

developed in this report to address these problems. The theory allows construction and analysis of 

a ground-water model of :flow (and, by extension, transport) in heterogeneous media using a small 

number of lumped or smoothe:d system characteristics (termed parameters). The theory fully 

addresses both nonlinearity and heterogeneity in such a way that the parameters are not assumed 
to be effective values. 

1 

The ground-water :flovv system is assumed to be adequately characterized by a set of 

spatially and temporally distributed discrete values, ~ , of the system characteristics. This set 

contains both small-scale variability that cannot be described in a model and large-scale variability 

that can. The spatial and temporal variability in J3 are accounted for by imagining J3 to be 

generated by a stochastic proc:ess wherein J3 is normally distributed, although normality is not 

essential. Because J3 has too large a dimension to be estimated using the data normally available, 

for modeling purposes J3 is replaced by a smoothed or lumped approximation ye. (where y is a 
spatial and temporal interpola1tion matrix). Set ye. has the same form as the expected value of J3, 
yO' where e is the set of drill parameters of the stochastic process; e. is a best-fit vector to J3. A 

model function /(~),such as a computed hydraulic head or flux, is assumed to accurately 

represent an actual field quantity, but the same function written using ye., f(yB.), contains error 

from lumping or smoothing of J3 using ye •. Thus, the replacement of J3 by ye. yields nonzero 

mean model errors of the form E(f(~)- f(yB.)) throughout the model and covariances between 
model errors at points throughout the model. These nonzero means and covariances are evaluated 

through third- and fifth-order accuracy, respectively, using Taylor series expansions. They can 

have a significant effect on construction and interpretation of a model that is calibrated by 
estimating e .. 

Vector e. is estimated as 9 using weighted nonlinear least squares techniques to fit a set 

of model functions f(yG) to a. corresponding set of observations of f(J3), Y. These observations 
are assumed to be corrupted by zero-mean, normally distributed observation errors, although, as 

for J3, normality is not essential. An analytical approximation of the nonlinear least squares 

solution is obtained using Taylor series expansions and perturbation techniques that assume model 
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and observation errors to be small. This solution is used to evaluate biases and other results to 
second-order accuracy in the errors. The correct weight matrix to use in the analysis is shown to 
be the inverse of the second-moment matrix E(Y- f(ye.))(Y- f(ye.))', but the weight matrix is 
assumed to be arbitrary in most developments. The best diagonal approximation is the inverse of 
the matrix of diagonal elements of E(Y- f(ye.))(Y- f(y9.))', and a method of estimating this 

diagonal matrix when it is unknown is developed using a special objective function to compute 9. 
When considered to be an estimate of f(y9.), the estimate f(yO) is biased because of 

no~earity in f(Jl) and f( y9) ( e = e. or 9 ), but when considered to be an estimate of f((3) , 
f(y9) is biased only because of components of nonlinearity in f((3) and f(y9) known as the 
intrinsic nonlinearity. (Intrinsic nonlinearity in either f((3) or f(y9) is a component of the total 
nonlinearity in either function that cannot be eliminated by a unique transformation of either (3 or 
9, respectively.) Because both types of intrinsic nonlinearity can be small, f(yO) can be nearly 
unbiased as an estimate of f((3). Analogous results hold for a prediction g(yO) (where g is some 
function of parameters of interest to the investigator), except that in this case the intrinsic 
nonlinearity is for the combination of either g((3) and f((3) or g(y9) and f(y9), termed the 

combined intrinsic nonlinearity. The biases are evaluated to second-order accuracy using Taylor 
series expansions and the analytical least squares solution, but an investigator would probably be 
more interested in estimates of f((3) and g((3) than in estimates of :fictitious variables f(ye.) and 
g(y9.). Predictive accuracy of a model is thus strongly tied to the degree of intrinsic nonlinearity 
of the models f(Jl) and f(y9.) together with the combined intrinsic nonlinearity of the models 
and the predictions to be made with them. 

Uncertainties in the estimates of e., f(y9.), f(Jl), g(y9.), and g((3) (or some future 
measurement ofg((3)) are addressed through nonlinear confidence regions, confidence intervals, 

and prediction intervals. If (3 and the observation errors are normally distributed, statistical 
distributions of functions of the weighted sums of squared errors in the estimates necessary to 
define the regions and intervals approximate F distributions that are modified with correction 
factors. These functions are very similar to the standard ones developed for linear models except 
that the parameter set e. is stochastic rather than fixed. The correction factors correct the 
distributions to account for intrinsic nonlinearity of f(y9) and deviation of the weight matrix from 
the correct one. The correction factors are derived using the Taylor series and perturbation 
method used for the least squares; the generality of the factors and concepts leading to them are 
verified by an independent method that does not rely on Taylor series and perturbations. Because 
of the effects of spatial correlation, confidence regions and confidence intervals would generally 

be too small without using components of the correction factors needed to correct for using an 
incorrect weight matrix unless the correct one is used; prediction intervals may often be nearly 
correct. Approximate bounds .for the correction factors are developed for use when the 
information on nonlinearity and heterogeneity necessary to calculate them is not available. 
Measures of total model nonlinearity of f(y9), intrinsic nonlinearity of f(y9), and combined 
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intrinsic nonlinearity of f(y9) and g(y9) help an investigator decide when the components of the 

correction factors accounting for the types of intrinsic nonlinearity are not important. 

Two examples are analyzed to test the validity and robustness of the theory when the 

model error is large. Example 1 is for one-dimensional, steady-state flow in an aquifer having log 

transmissivity (ln1) that varies stochastically at small scale and recharge ( W) that is constant. 

Example 2 is for two-dimensional, steady-state flow in a zoned aquifer where lnT and W vary 

spatially at both large and small scales, the small-scale variations being stochastic. Hydraulic head 

data Y were generated as f(y9.) plus the sum of model errors f(f3)- f(y9.) and small, zero­

mean, independent, normal observation errors, Y - f ((3) . The most important results are as 

follows: 1) The total nonlinearity in f(y9) is large for both examples, but the intrinsic 

nonlinearity in f(y9) and the combined intrinsic nonlinearity of f(y9) and g(y9) for g(y9) equal 

to lnT, W, and a predicted hydraulic head, are all small for both examples. As the theory predicts, 

the corresponding biases also were found to be small. 2) The sum of the model and observation 

errors, Y - f ( y9 *) , has a nonzero mean and is not normally distributed for either example. 3) 

Spatial correlations between dements of Y - f ( ye *) are often large, and large values are usually 

positive for both examples. 4) Residual set Y -f(y{}) does not differ significantly from the zero­

mean, normally distributed set predicted by the theory for either example. 5) For example 2, use 

of the correct, full weight matrix produced accurate confidence and prediction intervals, as 

determined using a Monte Carlo procedure. (Because of severe ill conditioning, example 1 

produced open-ended intervals that could not be formally analyzed.) 6) Use of the best diagonal 

matrix for example 2 produced accurate confidence intervals only when the correction factors 

were used. Otherwise, the intervals are too small as determined by the Monte Carlo procedure. 

The prediction intervals did not have to be corrected. 7) Use of the estimated weight matrix for 

example 2 produced confidenc~e and prediction intervals that had to be corrected, but the minimum 

containment probability of0.92 for the intervals after correction remains slightly too small 

compared to the nominal probability of0.95 because the correction factors are more approximate 

for this case than when the best diagonal weight matrix is used. 

3 
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1. Introduction 

Background 

Ground-water models simulate the processes involved in ground-water flow and 

transport. They are among the most powerful tools available for use in water-resources studies. 
They are used to 1) analyze the effects of possible hydrologic, geologic, and man-made 

processes and features on synthetic flow systems, 2) analyze past and present actual flow 

systems to better understand rates, directions, and causes ofwater movement and (or) transport' 
within them, and 3) predict responses of actual flow systems to future changes or conditions such 

as ground-water or surface-water development, changes in recharge or discharge rates, 

contaminant spills, and so forth (Cooley, 1985; Anderson and Woesner, 1992, p. 4). Most 
modem ground-water models represent the processes involved mathematically, and so in this 

report the term ground-water model refers to this representation. Also, in this report concern is 

explicitly on flow, but as will become obvious, the theory developed here is general enough to be 
applied to transport as well. 

Even when only flow is considered, construction of a ground-water model for a field 

system using the types of data commonly available is not necessarily straightforward. Data are 
virtually never complete and detailed enough to allow substitution into the model equations and 

direct computation of the results of interest. A model can, of course, be fitted to observed data 

by manual, trial and error calibration, but, though simple in concept, even this procedure is not 
necessarily straightforward. (See, for example, the advice given by Konikow (1978).) In 
addition, as argued by Carrera and Neuman (1986, p. 199-200), Cooley and Naff(1990, Chapter 

1), and Hill (1992, p. 3-4), for example, the trial and error procedure is often highly subjective 
and fails to provide a basis for both critical, quantitative evaluation and uncertainty analysis. For 

these reasons, the attention of a number of investigators has turned to more formal optimization, 
statistical, and geostatistical procedures. (See reviews by Yeh (1986), Carrera (1988), and Ginn 
and Cushman ( 1990).) 

Application of optimization, statistical, and geostatistical procedures to model calibration 

and uncertainty analysis is hampered by two pervasive problems: 1) nonlinearity of the solution 
of the model equations with respect to some of the model (or hydrogeologic) input variables 

(termed in this report system characteristics), and 2) detailed and generally unknown spatial 

variability (referred to as heterogeneity) of some of the system characteristics. These problems 
are highly interrelated, as will be shown. 

Nonlinearity. The model equations for ground-water flow include the flow equation(s), 

boundary conditions, and initial conditions. The fundamental sources of nonlinearity in the 
solution of these equations for hydraulic head are well known. They result from multiplicative 

relations between system characteristics such as hydraulic conductivity and specific storage, and 

hydraulic head or its spatial and temporal derivatives in the model equations. (See, for example, 
Hill ( 1992, p. 69-70) for a discussion of nonlinearity from Darcy's law.) These sources of 
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nonlinearity are present even when the differential equations composing the model equations are 

classified as being linear; the solution is still a nonlinear function of the multiplicative input 
variables. For example, consider the standard linear differential equation for transient, three­

dimensional, ground-water flov¥ in an isotropic, heterogeneous porous formation, which is 

a ah a ah a ah ah 
-(K(x)-) + -(K(x)-) + -(K(x)-) = Ss(x)-- w(x,t) 
& & ~ ~ & & & 

(1-1) 

where x =the cartesian spatial coordinates x,y, and z; t =time; h = h(x,t) = hydraulic head as 

a function of x and t;K(x) =hydraulic conductivity as a function of x; Ss(x) = specific storage 
as a function of x; and w(x,t) =source (negative for a sink) as a function of x and t. The 

solution of (1-1) (and attendant boundary and initial conditions) is h(x,t). The solution is a 

nonlinear function of K(x) and Ss(x), but is a linear function of w(x,t). Additional sources of 
nonlinearity result when the model equations are classified as being nonlinear, as for unconfined 
flow problems (which have an unknown free surface) or variably saturated flow problems (where 

hydraulic conductivity and storativity are functions of pressure) or when a nonlinear hydraulic­
head or flux process is present. In this case the two sources of nonlinearity compound in their 

effects on the solution of the flow equations. 

Nonlinearity has a significant influence on methods of calibration and uncertainty 
analysis. Virtually all optimization, statistical, and geostatistical methods known to me, except 
Monte Carlo methods, are designed primarily to treat linear problems. Nonlinear problems are 

either linearized or solved through some kind of iterative or sequential solution procedure 
wherein each step solves a linear problem. For example, the Gauss-Newton method for fitting a 

nonlinear function (such as the: solution of the model equations) to data using least squares uses a 
linearization of the function obtained from a truncated Taylor series at each iteration (Seber and 
Wild, 1989, p. 25-26). Similarly, the modification proposed by Yeh and others (1996) to include 
nonlinearity in the classical cokriging method (a linear geostatistical method) for simultaneously 

estimating log-transmissivity and hydraulic head fields involves an iterative solution wherein a 
linear cokriging problem is solved at each iteration. Finally, the statistical distributions used for 

classical uncertainty analyses (or inference) are generally based on linear functions. (See Seber 

and Wild (1989, Chapter 5).) All of these methods for incorporating nonlinearity are more 
complicated, and can be less numerically stable, than their linear counterparts. Moreover, they 
often only approximately account for nonlinearity (for example, the Yeh and others (1996) 

method). 
One might conclude from the discussion in the previous paragraph that problems too 

nonlinear for linearization to provide good approximate results should be analyzed using other 

methods, such as Monte Carlo methods. Monte Carlo methods appear to be straightforward 
because they involve repeated sampling of a statistical distribution of system characteristics and 
use of the sets of variables in the model equations to generate a statistical distribution of a model 

function (such as the solution for hydraulic head) from which desired quantities such as means, 
variances, and percentiles can be computed. However, Monte Carlo methods are no panacea. In 

5 



6 A Theory for Modeling Ground-Water Flow in Heterogeneous Media 

particular, when the underlying statistical distribution is unknown or involves unknown 

distributional parameters, as it does for application to ground-water models, then the Monte 

Carlo analysis method reduces to a bootstrap method (Efron, 1982), which may not be accurate 

unless the dimension of the observed-data set is large and (or) the degree of nonlinearity of the 

model function is small (Cooley, 1997, p. 871-872). Again, nonlinearity seems to be a 

significant factor. In addition, computational requirements may be large (Peck and others, 1988, 

p. 129-130; Cooley, 1997), and, if realizations of the system characteristics of interest are 

derived using least squares, then data censoring in generating sample data for ill-conditioned or 

highly nonlinear prob~ems can become a problem because ofnonconvergence of the least 

squares method (Cooley, 1997). 

Heterogeneity. Characterization of both large- and small-scale spatial variability in 

hydraulic conductivity (or transmissivity) fields and incorporation of this spatial variability into 

ground-water models have been the subjects of extensive analysis spanning many years. (See, 

for example, discussions and reviews in Freeze (1975), Dagan (1986), Gelhar (1986), Peck and 

others (1988), and McLaughlin and Townley (1996).) However, other spatially defined system 

characteristics such as recharge (or discharge), leakance (for two-dimensional models), specific 

storage, and boundary conditions also vary spatially, at both large and small scales. 

Characterization of spatial variability of these variables and incorporation of the spatial variation 

into ground-water models have been the subjects of much less research. Freeze (1975) 

considered spatial variability in the storage coefficient in addition to spatial variability of 

hydraulic conductivity; Gomez-Hemandez and Gorelick (1989) examined spatial variability in 

hydraulic conductivity, leakance, and recharge; and Graham and Tankersley (1994a, 1994b) 

derived and used a geostatistical parameter estimation model for spatially variable transmissivity 

and recharge. In addition, Neuman and Orr (1993) and Tartakovsky and Neuman (1998) 

considered recharge to be stochastic and spatially variable in their derivations of conditional 

moment, flow equations. All of the cited studies considered hydraulic conductivity (or 

transmissivity) to be statistically independent of all other variables. (Gomez-Hemandez and 

Gorelick (1989) varied hydraulic conductivity, leakance, and recharge separately.) However, 

because of the strong relation of recharge, storativity, boundary conditions, and perhaps even 

leakance to the same rock properties governing hydraulic conductivites of rocks involved in at 

least shallow ground-water flow, these variables probably would not often be independent. 

Realistic geostatistical characterization of all of the system characteristics for a ground-water 

model does not seem to have been published. 

Consideration of scales of variation is of major importance in characterizing 

heterogeneity and incorporating heterogeneity into a model (Di Federico and others, 1999). It is 
convenient to separate the scales into two classes: those that are too small to be explicitly 

identified and represented in a ground-water model and those that are large enough to be 

explicitly identified and represented. For example, a large, mappable, sudden facies change in a 

rock unit could be represented as a hydraulic-conductivity zone boundary in a model; whereas, a 

gradual facies change could be represented as a possible trend in hydraulic conductivity. Smaller 
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scale variations might not be n1appable or otherwise explicitly identifiable. From a purely 

operational standpoint, the smallest scale at which variations can be represented explicitly in a 
standard numerical model is at the grid-block scale. Smaller-scale variations must be lumped or 

smoothed. Even so, if these grid-block and sub grid-block scale variations are not explicitly 
identifiable, means must be devised for incorporating their influence into a model. Methods 
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using geostatistical representa1tion such as those ofRamaRao and others (1995), Kitanidis (1995), 
and Yeh and others (1996) explicitly use the small scales of variation by relating small-scale 

variations in a system characte~ristic (such as log transmissivity) to small-scale variations in the 
model solution (such as hydraulic head). Methods that use lumping or smoothing of the system 

characteristics, such as trend fitting (for example, Y oon and Y eh, 197 6, and Hill and others, 

1998), zonation (for example, Cooley and others, 1986, and D' Agnese and others, 1999) and 
others such as classification of sediment types (Kuiper, 1994) do not represent small-scale 

variations explicitly. (See also reviews by Yeh (1986), Carrera (1988), and McLaughlin and 

Townley (1996).) 
Methods of lumping or smoothing the system characteristics are convenient for handling 

heterogeneity because these rnethods result in a small number of variables to be estimated. 
However, questions arise as to what a solution (for example, hydraulic head) to a model equation 
using the smoothed variables actually represents. I suspect that most individuals constructing 
models of field areas would like the solutions and computed fluxes obtained using smoothed or 

lumped system characteristics to approximate spatial and temporal running averages of the 
solutions and computed fluxes that would be obtained using variables varying at small scale. 

These ideas also were discussed by McLaughlin and Townley (1996, p. 1134-1135) and 

immediately bring to mind the concept of "effective values," which can be loosely defined as 
lumped or smoothed system characteristics that yield the average quantities just mentioned. 

Note that this definition is determinstic in the sense that local values of the variables are 

considered to be fixed, not realizations from a stochastic process. A similar, but more precise, 
definition using spatial moments was used by Kitanidis ( 1990) to find the effective hydraulic 

conductivity for gradually varying flow in a periodic medium. 
Another definition of ~effective values is based on concepts of stochastic flow theory. For 

this definition the running ave~rages mentioned in the previous paragraph are replaced by 

ensemble averages. Neuman and Orr (1993, p. 144) make a clear distinction between the 

stochastic and other definitions of effective hydraulic conductivity, give a precise and useful 
stochastic definition, and givt~ a number of references for studies involving alternative 

definitions. An important result of their study, which was for steady-state flow, is that in general 
an effective hydraulic conducitivity field as defined by them does not exist. A follow-up study 
by Tartakovsky and Neuman (1998) for transient flow came to a similar conclusion. Neuman 

and Orr (1993) and Tartakovsky and Neuman (1998) argued that effective hydraulic conductivity 

formulations obtained in previous studies only apply to special conditions. It seems quite 
probable that these results would generalize to apply for alternative definitions of effective 

hydraulic conductivity. 
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The difficulty in defining an effective hydraulic conductivity value is the result of 

nonlinearity of the model solution with respect to hydraulic conductivity. This can be deduced 

from the facts that 1) the term causing the difficulty (labeled rk (x) by Neuman and Orr, 1993, p. 

342) involves the product of hydraulic conductivity fluctuations and hydraulic gradient 

fluctuations, which is the source of nonlinearity mentioned previously, and 2) effective values of 

system characteristics that appear linearly in the model solution are readily defined. For 

example, in forms of the stochastic flow equations derived by Neuman and Orr (1993) and 

Tartak:ovsky and Neuman (1998) in which the random variability ofhydraulic conductivity is set 

to zero, the ensemble mean source term and boundary conditions are effective values because 

they yield the ensemble mean hydraulic head and computed flux fields. 

Because the model solution is nonlinear when considered to be a function of all system 

characteristics, it appears that there is little hope of defining effective values of these variables 

for general ground-water models that are based on standard flow equations such as {1-1). One 

might conclude from this that lumped or smoothed system characteristics should not be used 

with these models. Such a conclusion seems implicit in the conclusions ofNeuman and Orr 

(1993, p. 355-356) and Tartak:ovsky and Neuman (1998, p. 6). However, reasonable estimates 

for lumped or smoothed system characteristics have been obtained using nonlinear regression to 

calibrate models resulting from field studies (for example, Cooley, 1979; Cooley and others, 

1986; Yager, 1996; Christensen and Cooley, 1999a, 1999b; and D'Agnese and others, 1999), and 

any biases in these estimates did not seem to be significant. (Note: other studies obtaining 

similarly reasonable results undoubtedly exist.) These results indicate the possible existence of a 

theoretical basis for using estimates of lumped or smoothed system characteristics in ground­

water models. 

A theory involving estimation of lumped or smoothed system characteristics for ground­

water models must address the question of exactly what is being estimated. Y eh and others 

(1996, p. 85) question the identity of the hydraulic head and lumped or smoothed transmissivity 

fields estimated by minimizing an objective function of the differences between observed and 

computed data. They also make the point that, because these fields are "often undefined", ''the 

uncertainty associated with the output can not be addressed." Although the work of Christensen 

and Cooley (1999b) casts considerable doubt on the latter assertion, the question concerning 

identity is valid. A nonlinear regression model is generally stated in terms of a true (or correct) 

parameter set, which for a ground-water model would ideally represent a set of effective values. 

Moreover, uncertainty in the estimates and predictions to be made with the model is with 

reference to the true set and quantities computed using it. However, if clearly definable effective 

values do not exist, then what is the true parameter set? 

One possible approach to answering the question cited above is to consider the model to 

be empirical. A model written in terms of parameters that do not have concrete physical 

definitions fits the definition of an empirical model given by Jones (1983, p. 68-69). He defined 

the parameter set being estimated by assuming that predictions to be made with the model will be 

of the same types of data as included in the calibration-data set (Jones, 1983, p. 69). Then the 
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true parameter set (termed the "best parameter" set by Jones, 1983, p. 69) is the set that 

minimizes the limit of the obj,ective function as the data set gets infinitely large. Presumably, the 
infinitely large data set would encompass all potential predictions to be made with the model. A 

major problem with this conceptualization as applied to a ground-water model is that the model 

often is used to make predictions of types of quantities not potentially includable in the original 
data set (for example, a computed flux distribution or the results of future development), which 
again leaves the "best paramt~ter" set undefined. 

The above background discussion indicates the need for a new theory for modeling 
ground-water flow using lumped and (or) smoothed system characteristics. This theory must 

recognize and effectively deal with model nonlinearity that in general prevents lumping or 

smoothing of the heterogeneous system characteristics to obtain effective values and that causes 
the other difficulties mentioned. To address this need a viewpoint that differs from the viewpoint 

used in previous studies is adopted in this report. The model parameters are defined physically 

as the lumped or smoothed system characteristics, and estimates and uncertainty measures are 
derived based on the physical definitions. Properties of the estimates and uncertainty measures 

(for example, biases) are inve~stigated using extensions of methods used to investigate classical 

nonlinear regression models to determine when the lumped or smoothed properties would 
produce accurate approximations. 

Purpose and Scope 

The purpose of this report is to describe a new theory for modeling ground-water flow in 
heterogeneous media. The report 
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1. provides a sound theoretkal framework and sound theoretical guidance for modeling ground­

water motion in heterogeneous media using lumped and (or) smoothed system characteristics 
(termed model parameters, or simply parameters), and 

2. provides a sound theoretical framework for estimating the parameters and assessing the 

uncertainty of the estimates, model functions computed using the estimates, and predictions 

to be made with the mod1el. (The distinction between the last two quantities will become 
apparent.) 

The theory developed in this report seeks to explain some results observed from the field 
studies cited earlier (Cooley, 1979; Cooley and others, 1986; Christensen and Cooley, 1999a, 

1999b; Yager, 1996). That is: 
1. Estimates of parameters, model functions, and predicted quantities are often physically 

realistic, or close to what was expected, even though effective values of the system 
characteristics probably do not exist. 

2. Differences between the observed data and data computed using the parameter estimates are 
normally distributed. That is, these differences behave as if the model were linear and as if 
the differences between the observed data and data computed using the true parameters were 

normally distributed. 
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3. Measures of uncertainty (confidence intervals) for some parameters and computed model 

functions appear to exclude reasonable values (or to be too small); whereas, the measures for 

others do not. 

These points are revisited in section 8 of this report after the theory has been completely 

developed. 

The approach taken is derived from work by Beale (1960), Johansen (1983), and 

Hamilton and Wiens (1987). It uses a combination of Taylor series expansions and perturbation 

theory to derive approximations of parameter estimates and statistical distributions necessary to 

characterize model behavior and uncertainty when the model solution is a nonlinear function of 

the parameters and when error resulting from lumping and smoothing heterogeneous fields of 

system characteristics is significant. An approach that does not use the Taylor series and 

perturbation approximations is used to verify the principal results of the approximate analyses 

and extend the analyses to system characteristics having larger variances than those assumed for 

the approximate analyses. The viewpoint is classical, based on sampling of data from specified 

statistical distributions. A Bayesian viewpoint also could have been used, which would have 

lead to developments that are parallel to those given here. The classical viewpoint is used 

because the developments appeared to be more straightforward using it as compared to the 

Bayesian viewpoint, and because I suspect that most practicing hydrologists are more familiar 

with classical statistics than Bayesian statistics. 

This report is designed to be read at three possible levels of understanding. If only the 

introduction, the summaries at the end of each section, and the final summary and conclusions 

section are read, the reader can obtain a quick overview of the principal results without having to 

delve into the mathematics. In addition to a good knowledge of ground-water hydrology, only a 

basic understanding of stochastic flow theory and statistics are required to understand these 

sections. If all of the main text, exclusive of the appendices, is read, then the reader can 

understand the main results without having to follow the derivations. A good understanding of 

engineering mathematics, stochastic flow theory, and statistics is necessary to derive full benefit 

of this reading. Finally, the appendices contain detailed derivations of all the results. Some of 

these require some specialized knowledge of theoretical statistics. The derivations are presented 

in detail to guide the interested reader unambiguously. 
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2. Notation for Matrix Derivatives 

In this report operator notation (Johansen, 1983, p. 174-175) is used to denote matrices of 

partial derivatives. With this notation :first and second partial derivatives of some vector f of 

order n with respect to another vector 9 of order p are given by the matrices 

Df = [ BJ; ]; i = 1,2, ... ,n;j = 1,2, ... ,p 
ao1 

and 

D2f = [ a~ ]; i = 1,2, ... , n; j = 1,2, ... , p; k = 1,2, ... , p 
ao1aok 

(2-1) 

(2-2) 

Note that (2-1) is a standard :matrix of order n x p, whereas (2-2) is a three-dimensional matrix 

of order n x p x p . Algebraic operations involving three-dimensional matrices can be confusing, 

so all algebraic operations involving a three-dimensional matrix such as D2f will be explicit on i 
and will use the two-dimensional slice D2

/;, which is a standard matrix of order p x p. For 

example, a product of some vector Z of order n with D2f would be given as I Z;D2
/; or 

I D 2/;Z; instead of Z'D2f or D2tZ, where the prime indicates transpose. 06casionally, the row 

Vector D/; or column vector Df/ of order p will need to be used in calculations involving 

Dfand D2f. 
Partial derivatives with respect to vectors other than e are denoted by an appropriately 

subscripted operator. Thus, the partial derivatives off with respect to a vector f3 of order m are 

given by 

Dpf = [ BJ; ]; i = 1,2, ... ,n;j := 1,2, ... ,m 
apj 

and 

D~ f= [ 
82

h ]; i = 1,2, ... ,n;j = 1,2, ... ,m; k = 1,2, . .. ,m 
ap1apk 

(2-3) 

(2-4) 

Equations (2-3) and (2-4) art~ matrices of order n x m and n x m x m, respectively; operations on 

the three-dimensional matrix are explicit on i as before. 

Other alternatives exist for algebraic operations using three-dimensional matrices such as 

(2-2) and (2-4). One example is the notation used by Johansen (1983, p. 181-184), and another 

is the use ofVetter calculus (for example, Dettinger and Wilson, 1981). However, the explicit 

notation adopted here has the· advantage ofbeing both simple and straightforward. 
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3. Basic Theory 

System Properties and Model 

Initially, assume the ground-water flow system to be in steady state. The unsteady case is 
considered later in this section. Further, assume the flow system to be adequately characterized 

by three categories of hydrogeologic variables or system characteristics: 1) variables such as 

hydraulic conductivity (or a transformation of the variables such as log hydraulic conductivity), 
recharge from precipitation, and discharge from evapotranspiration that can vary spatially 

throughout the model; 2) variables such as hydraulic heads and fluxes that can vary spatially 

along internal and external boundaries of the model; and 3) variables such as spring and well 
discharges that occur locally, at points. The variables in the first two categories can be 

conceptualized as being continuously variable spatially as was done by Neuman and Orr (1993) 

and McLaughlin and Townley ( 1996) or as being discretely variable spatially as was done by 
Kitanidis (1995) and McLaughlin and Townley (1996). Discrete variation is often associated 

with the discretization of a model region into a grid for numerical simulation (for example, 

RamaRao and others, 1995; Kitanidis, 1995). However, discrete variation can be at as small a 
scale as desired, thus potentially making it virtually the same as continuous variation. Because 

all scales can be included in discrete variation and because it is straightforward to work with, the 
discrete viewpoint is adopted in this report. 

All of the system characteristics can be assembled into a vector J3 of order m. Each 

element in this vector is the value of a system characteristic in a particular volume element for 

category 1, a boundary segment for category 2, or a point for category 3. (An example is given 
later in this section.) Because J3 includes all scales of variation necessary to produce an accurate 

model, any model function of J3, /(13), is almost free of model error, assuming, of course, that 
the model accurately represents the physical processes. The model function could be a computed 
hydraulic head at some point, a computed flux at some point, or any other physically relevant 
function of J3. 

The system characteristics in categories 1 and 2 contain scales of variability that are 
explicitly contained in a ground-water flow model and smaller scales that are not. For example, 

a model may be zoned for a particular characteristic so that none of the spatial variability within 

each zone is explicitly contained in the model; the zone simply represents an average for the 
characteristic. Models are constructed in this way because the order, m, of J3 is generally so 
large that it is impossible to measure or otherwise estimate all of the elements in it. To include 
the influence of this unknown variability (at a smaller scale than represented in the model), it is 
common to imagine a stochastic process for J3 and use the stochastic properties of J3 in 
modeling; a vast literature has emerged based on this concept. (See reviews by Gelhar, 1986, 
and McLaughlin and Townley, 1996.) 

Following Kitanidis (1995), assume the expected value of the stochastic vector J3 to have 
- -

the form y9 , where y is an m x p interpolation or spatial averaging matrix to be examined later 
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and 9 is a vector of drift parameters of order p. Also, assume vector fl to be normally 

distributed, 
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(3-1) 

where Vpa; is an mx m covariance matrix that gives the spatial covariances among all of the 

elements of fl; the covarianc«:~ fPu a; is simply the variance of p;. The normality assumption is 

commonly made (for example: Kitanidis, 1995; McLaughlin and Townley, 1996) and, for the 

elements of fl representing hydraulic conductivity, is known to be a good approximation if fl is 

written in terms of log hydraulic conductivity. This assumption is not essential to developing the 

present theory, but some aspe:cts of the theory would be difficult to express analytically if the 

assumption were abandoned. As will be seen, the assumption can be indirectly tested. 

A simple example for y is obtained if the hydrogeology of the region is such that the 

drift for categories 1 and 2 can be approximated by zones of constant value. In this case y 

assumes the form 

'Y = (3-2) 

where vectors 1; and 0; of order m; are given by 

1 0 

1 0 
1; = 0 -;- (3-3) 

1 0 

p 

and I m;= m. Thus parameter i lies in a zone having m; discrete values of p1 in it. By 

perfri=~ the product y 9 it can be seen that the mean value of p1 at each point in a zone is 

given by (};. Note that if m; = 1, a category 3 variable is obtained. Other forms for y result 

from using interpolation (Yeh, 1986, p. 98-99). An example of the use of finite element 

interpolation is given in Hill and others (1998). 

An example involving zonation is shown in figure 1-1 and table 1-1 for two zones of 

transmissivity T, two zones of recharge rate W, two boundary segments for specified head H8 , 

and one pumping well Q. In this case, if lnT, W, H8 , and Q are normally distributed, 
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In~ 
InT2 

~ 
-e= w2 (3-4) 

HBI 

HB2 

Q 

where the overbars signify drift values and the form for ye is given in table 1-1. Note that, 

although all boundaries in the example are orthogonal and rectilinear for simplicity, they could 

be nonorthogonal and curvilinear, as could occur for a real system. This would not change the 

form of ~ ' 'Y ' or e for the example. 

ff,, W,J 

a 
• 

li tf:/1 w~ 
• 

EXPLANATION 

Drift transmissivity (T~ and recharge rate (Wj 
for zone i, i= 1,2 

Location and drift pumping rate for well 

Drift specified hydrauUc head for boundary 
segment i. i=1,2 

//////// Boundary segment t 

,, '' '' '' Boundary segment 2 

II Zone boundary 

~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 

Figure 1-1. Example involving zonation in conjunction with small-scale variability. Square 
elements designate discrete elements of internal small-scale variability contained in~. 
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Table 1-1. Zonal information for the example. 

[Vectors 1h 12, ••• , 17 are defined in (3-2) and (3-3); f; is geometric mean (drift) transmissivity in zone i; W; is 

mean (drift) recharge rate in zone i; H8 ; is mean (drift) specified head in boundary segment i; Q is the mean 
- -

(drift) pumping rate from the well; 0 i is an element of e defined in (3-4); and m; is the number of values of pj 
defined for parameter i.] 

Zone Definition 0; m; 
Vector 

11 In~ 6 

12 lnT2 
12 

13 WI 6 

14 w2 12 

15 HBI 2 

16 HB2 1 

17 Q 1 

m 40 

Assume that a set of n observations corresponding to n values of the model function 

/(Jl) can be expressed in the form 

Y = r{Jl) + & (3-5) 

where Y is the vector of observations of order n corresponding to the vector of model function 
values r{Jl), and & is a vector of observation errors of order n. Also, assume the errors to have 

zero mean and to have the normal distribution 

(3-6) 
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where V
8
o-: is the observation-error covariance matrix. Matrix Vc may often be block diagonal 

corresponding to different types of model function and corresponding data in Y. As for Jl , 
normality is not essential for the theory developed here, but some aspects of the theory are 

difficult to state analytically if normality is not assumed. The normality assumption can be 

indirectly tested. Finally, assume Jl and & to be statistically independent. 

A Spatial Average for the Vector of System Characteristics, J3 

To construct a groundl-water model, estimates of the system characteristics are needed. 
However, the dimension of Jl is too large to permit a unique estimate of Jl to be obtained. 
Furthermore, as discussed in section 1, reduction of the dimension of Jl by substituting a vector 

of "effective values" of much smaller dimension may not be possible because effective values 



16 A Theory for Modeling Ground-Water Flow in Heterogeneous Media 

may often not exist. That is, if a vector of smaller dimension is used, it may not be able to 

produce a model that reproduces both average fluxes and the average hydraulic head distribution. 
As stated in section 1, the solution to this problem followed in this report is to estimate a vector 

of reduced dimension that has a unique physical definition, but is not necessarily a vector of 

effective values, then investigate the properties of this vector, its estimate, and the resulting 
model and predictions to be made with it. If the properties are found to be favorable, then the 

model can be accepted and used. 

A possible candidate for the reduced vector might seem to be the vector of drift 
parameters, e . However, even though this vector has a unique physical definition, it is in fact 

fictitious because the stochastic process is fictitious. Often, estimates of parameters of the real 

physical system, which is imagined to be a realization of the stochastic process, are desired. 
Thus, a vector of drift parameters is not an ideal candidate for the reduced vector, and one 

pertaining to the real physical system should be selected. A vector containing the reduced vector 

is defined in this report as a spatial average of J3 that has the same form as the drift. It is derived , 
as the best-fit vector ye. obtained by minimizing {13- ye} {13- ye} with respect to general 

parameter set e to obtain 

e. = (r'r tl r'Jl (3-7) 

- -
Because J3 has an expected value of ye, e. has an expected value of e. 

If zonation is used for the drift, the indicated products in (3-7) may be performed using 
(3-2) to give 

-1 
mi 0 0 

0 -I 0 
(r'r ti= m2 

(3-8) 

0 0 -I 
mP 

-11' 
~1 0' 

2 
0' p 

0' -I1' 0' 
(y'y t1 y' = I m2 2 p (3-9) 

0' 0' -11' ... 
mP P 1 2 

and 

m;1 (1~ ,o;, · · · ,o~ )Jl 

( ) 
1 m~1 (01' ,1;, · · ·, OP' )Jl 

y'y - y'Jl = (3-1 0) 

m ; 1 (O~ ,o;, · · ·, 1~ )Jl 
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Thus, {y'y Y1 y'Jl yields the average of values in Jl for each parameter in each zone. That is, for 

parameter i 
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(3-11) 

where j(i) indicates summation over all values ofj for parameter i. 

Properties of the Vector of Model Function Differences, f{J3 )- f(ye*) 

Corresponding to modd function vector f(Jl) is the model function vector f{y9. ), 

representing values of the same model function written using the spatial average instead of Jl. 
Systematic discrepancies betw,een r(Jl) and f{ye.) are indicated by the expected value and 

variance of the difference f{Jl)-f{ye.). An expression for this difference is given by (3-18) 
using the following developme:nt. First, the errors e and e. are defined as 

-
e = Jl -ye 

e.= Jl -ye. 

These two errors are related using (3-7) as follows. 

e. = Jl - y( y'y) -I y'Jl 

= (I- y{y'y Y1 y')( e +yO) 

= (I- y{y'y Y1 y')e 

(3-12) 

(3-13) 

(3-14) 

Second, expansion of f(Jl) and f(y9.)to second order around f(yO) using truncated Taylor 
series yields 

- - 1 - 2 -
/; (Jl) = /; (y9) + Dp/i (Jl- y9) + -((3- yO)'Dp /; (Jl- yO); i = 1,2, .. . ,n 

2 
- - 1 - 2 -

/;(y9.) =/;(y9)+Dp/;y(9. --9)+-(9. -9)'y'Dp/;y(9. -9); i= 1,2, ... ,n 
2 

(3-15) 

(3-16) 

where Dp/; and n; /; are row-vector and ~trix compone~ts of D pf and D~f as defined by 
(2-3) and (2-4). They are evaluated at Jl =yO. Third, e.- 9 is expressed in terms of e as 

e. -9 = (y'y)-1y'Jl-9 

= (y'y)-1y'(e+yB)-O 

= (y'y)-Iy'e (3-17) 
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Fourth, expansion of f(J~)- f(y9.) results in 

- -
.ft(Ji)- .ft(y9.)= .ft(Ji)- .ft(y9)+ .ft(y9)- /;(y9.) 

1 2 1 - 2 -
= Dp/;e. +-e'Dp/t e--(9. -9)'y'Dp/;y(9. -9) 

2 2 

= D ph (I- y(y'y)-1 y')e + ~e'(D) ft - y(y'y)-1 y'D) ft y(y'y)-1 y')e; i = 1,2, .. . ,n (3-18) 
2 

Equation (3-18) is used in theorem 4.6.1 in Graybill (1976, p. 139-140) to evaluate the 

expected value and variance of f(Ji) -f(y9.). The final result is obtained by using the facts that 

E(e) = 0 and Var(e) = Vpa~, where E( .. ·) and Var( .. ·) stand for the ensemble expected value 

(mean) and variance, respectively, and is 

where tr(· ··) stands for matrix trace. Because J3 has a symmetric distribution, (3-19) is third­
order accurate. Note that if the model is linear so that D; /; is zero, the expected value is zero. 

The variance of f(Ji) -f(y9.) is the matrix 

Var(f(J3)-f(y9.)) = [E(/;(Ji)- .ft(y9.))(f1 (J3)- j 1 (y9.)) 

- E(/; (Ji)- /; (y9.))E(f1 (Ji)- / 1 (y9.))] (3-20) 

Evaluation of the first expected value using (3-18) and the fact that any triple product of a zero­

mean symmetrically distributed variable is zero yields 

1 
+ 2e'(D ;JJ - y(y'y)-1 y'D; JJ 'Y (y'y) -1 y')e) 

= E (Dp/; (I- y(y'y)-1 y')ee'(I- y(y'y)-1 y')Dp/l) 

1 
+-E(e'(D;/; - y(y'y)-1y'D) /; y(y'y)-1 y')e)(e'(D~ f 1 - y(y'y)-1 y'D~f1 y(y'y)-1 y')e) (3-21) 

4 

Because e is symmetrically distributed, (3-21) is fifth-order accurate. Evaluation of the second 

expected value uses the result from appendix A that for symmetric matrices A; and A 1 

(3-22) 

where x......, N(O,Ia2
). Let x = Vfi112e, a 2 =a;, and 
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A; = V~12 (D; /; - y(y'y)-1y'D) /; y(y'y)-1 y')V~12 • Then, from the definition of e, 

E(ee') = Vp a), so that 

E(/;(~)- /;(yS.))(/1 (~)- / 1 (y8.)) 

= Dp/; (I- y(y'y) -1y1V p (I- y(y'y)-1y')Dp/l a; 
+~tr((D;/;- y(y'y)-1y'Dp2

/; y(y'y)-1y')Vp)tr((Dp2 h- y(y'y)-1y'D; h y(y'y)-1y')Vp)a; 
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+-itr((D;/;- y(y'y)-1y'D;/; y(y'y)-1y')Vp(DJf1 - y(y'y)-1y'D;f1 y(y'y)-1y')Vp)a; (3-23) 

where I is the identity matrix. Finally, substitution of (3-19) and (3-23) yields the variance as 

Var(f(~)- f(yO.)) = Dpf(I- y(y'y)-1 y')Vp (I- y(y'y)-1y')Dp f'a; 

+ -i[tr< D~f, - r(r'rt'r'o; f,r(r'rt'r')Vp (o; J,- r(r'rt'r'o: ! 1 r(r'rt'r')Vp) ]a-; (3-24) 

Spatial covariance of f(~)-f(ye.) exists whether or not the model is nonlinear. The magnitudes 

of the sensitivities Dp f strongly influence the magnitudes of the covariances. 

The product y(y'y)-1 y' can be evaluated for the zonation example and then applied to 

n;t; - y(y'y)-1 y'D) J; y(y'y)-1y' to illustrate the meaning ofthis term. From (3-2) and (3-9) 

- 11 1' mt 1 1 012 ol,., 

021 - 11 1' 02p y(y'y)-ly' = m2 2: 2 
(3-25) 

op1 op2 - 11 1' 
mP P P 

where Okl is an mk x m 1 subrnatrix of zeros. Thus, a submatrix of y(y'y)-1y'DJ J; y(y'y)-1y' 

corresponding to parameters k and 1 is 

(3-26) 

which is a mk x m 1 submatrix for which each element is the average second derivative with 

respect to values of P1 pertaining to parameters k and 1. From this it is apparent that 

n;ji - y(y'y)-1y'DJ J; y(y'y)-1y' is a matrix of deviations of 8 2 /;I ap1apk values from their 

averages as defined in (3-26).. If these deviations are small, then the second term in (3-24) may 

be small, even if the magnitude of D~fwere large. A similar observation may be made for 

(3-19). 

For purposes of comparison, the expected value and variance of the difference 

f(~) -f(y8) also can be cornputed. From (3-12) and (3-15) 
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/; (Jl) - /; ( ye) = D P /; e + _!_ e 'D; /; e ; i = 1 ,2, ... ,n 
2 

Hence, using the same procedures as before, 

and 

(3-27) 

(3-28) 

(3-29) 

Because ye. is a best-fit vector to J}, J;(ye.) would be expected to be closer to J;(Jl) 
than .t;{re) would. In this case E(r{Jl)-f(ye.)) should be smaller in magnitude than 
E(f(Jl)-r(ye)), and Var(r(p)-r(ye.)) should be smaller in magnitude than Var(f(Jl)-r(re)). 

Neuman and Orr (1993) obtained a result almost analogous to (3-28) using a much 

different method. They allowed for conditioning of their results on possible hydraulic 
conductivity data. They then showed that the conditional (and unconditional) ensemble mean 

hydraulic head and flux distribution (analogous to E(f(J})) are not obtained from a solution of 

the standard ground-water flow equation written in terms ofthe conditional (or unconditional) 

ensemble mean hydraulic conductivity distribution (analogous to f(y9)). They also derived a 

correction term analogous in effect to the trace term in (3-28). The main conceptual differences 

are that (3-28) applies to all types of system characteristics but involves only the unconditional 
mean e. 

Properties of the Error Vector, Y -f(ye*) 

The above discussion focused on errors in the model function resulting from smoothing 

the small-scale variability inherent in f3 by replacing J} with y9. . These errors are model errors. 

(See also discussion by Hill, 1992, p. 42-43.) By adding the observation-error vector Y -f((3) 
from (3-5) to the model-error vector f(J}) -f(y9.) from (3-18), the total-error vector Y -f(y9.) 
is obtained as 

~- /;(y9.) = ~- /;(Jl) + J;(Jl)- /;(y9.) 

- D f, (I ( , )-1 ') I '(D2f, ( , )-1 'D2f ( , )-1 ') .. - 1 2 - &; + p ; - y y y y e + - e p ; - y y y y 13 ; y y y y e , z - , , ... ,n 
2 

(3-30) 

The expected value and variance of the total error are obtained from (3-30). From (3-6) it can be 

seen that E ( & ) = 0 . Thus, the expected value of Y- f ( y9.) is the same as the expected value of 

f(J})- f(y9.), or 
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(3-31) 

Also, because & and e are assumed to be statistically independent, the variance of Y - f ( y9.) is 

(3-32) 

For purposes that will become apparent in sections 4 and 5, the linear-model component of the 

variance (which involves D pf but not D~f) is defined as 

(3-33) 

so that 

Var(Y- f(y9. )) = V.a; 
+ ~[tr((n;.r. -y(y'yt'y•n;t y(y'yt'y')Vp(n; f,- y(y'yt•.,·n; f, y(y'yt'y')Vp)]a-; (3-34) 

For comparison Y -f(y9) can be expanded like (3-30) using (3-12) and (3-15) to obtain 

- 1 
Y;- /;(y9) = &i + Dpfie +-e'D~/; e; i = 1,2, .. . ,n 

2 

from which 

and 

(3-35) 

(3-36) 

(3-37) 

Note that because of the quadratic terms involving e in both (3-30) and (3-35), neither set 

of total errors is normally distributed. 

Reducing Model Error 

It is important to consider how the model error terms in the variance (3-32) might be 

reduced. Some ideas are obt'lined by examining Dp /;(I- y(y'y)-1 y')Vp (1- y(y'y)-1 y')Dp/1~. 
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First of all, ifp = m, then y(y'y)-1 y' =I, and the term is zero. Because m can be very large, 

generally much larger than n, letting p = m is not generally possible. Temporarily, 

(3-38) 

for convenience, so that DP /;VDpfJ may be examined. In (C-14), appendix C, DP fy is shown 

to be independent ofm, so that Dpfhas elements of order m-1
, termed O(m-1

), in magnitude. 

Therefore, the magnitude of the model error term may be small if m is large and V is diagonal, 

because for V diagonal 

(3-39) 

Matrix V can approach diagonal if VP approaches diagonal and m is large. This is because as 
m ~ oo, (y'y)-1 ~ 0, so that I- y(y'y)-1y' ~I. (See, for example, (3-8) and (3-25).) Matrix 

Vp approaches diagonal as the correlation lengths implied by its co variances get shorter, but is 

full with increasingly larger covariances as correlation lengths get longer. 
To some extent the stochastic process generating J3 can be designed at the descretion of 

the investigator constructing a model. The above analysis suggests that all trends and features of 

large enough scale to be identified be removed from the stochastic process and incorporated into 

y9 . This should be done even if geostatistical analysis indicates that J3 (or some subset of it) 

could be represented differently, for example as a stationary random process having a long 

enough correlation length that an identified trend could be interpreted as a random fluctuation. It 
is better to assign the trend to the drift and reinterpret the stochastic process to reduce both the 

magnitude of Vp and the correlation length. Ideally, Vp should represent only random noise, 

with no nonzero covariances. If only short correlation lengths are implied by Vp , then 

DP /;VDpfJ should be close to O(m-1
). For large m, then, the term DP /;VDp.[j could be 

small. However, if significant features are not identified and incorporated into ye, elements in 

VP could be large and correlation lengths could be long simply as a result of the unidentified 
features. Because Vp would not be diagonal, a large value of m would not necessarily make the 

magnitude of the term small. Thorough hydrogeologic field work, resulting in identification and 

incorporation of all significant hydrogeologic features, is very important. 

Modifications for Unsteady Flow 

For general unsteady flow, J3 is distributed in both space and time. The drift ye also 

extends over both space and time, which can be accomplished by making y an interpolation 

matrix over both space and time and allowing elements of e to be different at different points in 

time. Vector J3 is distributed as a correlated random function around the drift, but probably 

would often be continuously variable temporally rather than discretely variable. However, if 
discrete time elements are small enough, then discrete time variation approximates continuous 
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variation. This viewpoint has the advantage of not requiring a separate formulation from the one 

adopted for spatial variability. 
As an example of time-dependent variability, let the vector of drift parameters at any time 

t between times tr and f 7 +1 be well described by a linear function of time. Then 

- - -
9( t) = (j r e r + (j r+1 e r+ 1 (3-40) 

- -

where er is the set of drift parameters at time tr' er+1 is the set of drift parameters at time tr+1' 

and 

f-(
7 

(jr+1 ==--­
fr+1 -fr 

(3-41) 

If the spatial variability ofth~~ drift can be approximated by zones of constant value, then 'Y of 
(3-2) is replaced for r=1, for example, by 

a{11 01 01 01 0"~11 01 01 01 
02 a{12 02 02 02 0"~12 02 02 

op op op a{1P op op op a~1P 
r= 0"1211 01 01 01 ai11 01 01 01 (3-42) 

02 0"1212 02 02 02 ai12 02 02 

op op op at1P op op op ... ai1P 

where 1; and 0; are given by (3-3) and superscripts of the form k on the a functions designate 

discrete time elements of J3 ~cent~ed at tk between t1 and t 2. Any number of these elements 

may be accommodated. Vector 9 is redefined to correspond with 'Y as 

(3-43) 

This redefined vector is not time dependent. Finally, note that a more complicated time 

dependent drift can be accornmodated by using more than one linear function contiguously in 
time so that r > 1. The added functions add rows and columns in block diagonal form to (3-42). 

A more complicated function of time than linear might often reduce the number rand thus the 

number of parameters in e . 
Some variables such as hydraulic conductivity might be constant with time, but others 

such as recharge might vary, even somewhat erratically, with time. Vector J3 and drift re must 
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reflect these types of variability. The type of drift variability is easily specified using parameter 

subsets e r, but specifying the type of time variability in J3 also requires the use of V pa~ • Let 

some variable at a point in space be given at two different points in time as Pi and /!_; , an<!_ let 

corresponding rows of y be yi and y 1 • Then, if the variable is constant in time, yie = y 19 and 

Pi = P 1 so that for all k, Cov(Pi , p k) = Cov(p 1 , p k) (and symmetric relations). Thus, 

vpik = vp1k = vpki = VftkJ. These relations further induce the relations vp;; = vpii = vpiJ = vp1;, 

which specify that the correlation between p, and p
1 

is unity. Note that, although a correlation 

of unity makes Vp singular, matrices such as Dp f(I- y(y'y)-1y')Vp (1- y(y'y)-1y')Dp f'a~ 
probably would not be singular as shown below; V.a; almost certainly would not be singular. 

As an example, let the spatial order of J3 be 3 and the temporal order be 2, so that each of 

the pairs (fip fi4 ), (fi2 , fi5 ), and (fi3 , fi6 ) is a variable at a fixed spatial location for two 

different time elements. Then the full covariance matrix V Pa~ is 

Vpu Vp12 Vp13 VP14 Vpt5 VP16 

Vp21 Vp22 Vp23 VP24 VP25 VP26 

Vpa~ = VP31 Vp32 Vp33 VP34 VP35 VP36 a2 
VP41 VP42 Vp43 VP44 Vp45 VP46 

p (3-44) 

vP5l Vp52 VP53 VP54 vp55 VP56 

Vp6t VP62 Vp63 VP64 VP65 Vp66 

Now let P1 = fi4 , fi2 = fi5 , and fi3 = fi6 so that all three variables are constant in time. Then 

Vptk = VP4k = Vfi ki = vpk4, VP2k = VP5k = V/Jk2 = vpk5, and VP3k = VP6k = vpk3 = vpk6 · Application 
of the three sets of equalities yields 

Vpu Vp12 VPB Vptt Vp12 VPB 

Vp21 Vp22 VP23 Vp21 Vp22 Vp23 

Vpa~ = VP31 VP32 VP33 VP31 Vp32 VP33 a2 
Vpu Vp12 VpB Vpu Vp12 VPB 

p (3-45) 

Vp21 Vp22 Vp23 Vp21 Vp22 Vp23 

Vp31 Vp32 Vp33 VP3I VP32 Vp33 

which is a four-fold repetition of the underlying 3 x 3 spatial covariance matrix. Thus, if the 

rank of the spatial covariance matrix is 3, the rank of the full covariance matrix is also 3 because 

each row and column is repeated three times. (The determinant of a matrix is zero if any row or 

column is repeated.) This argument generalizes inductively, so that, in general, the rank of 

Vpa~ is no less than the rank ofthe spatial covariance matrix contained within it. 

Finally, elements of matrices such as D pf and D~f are computed at their respective 

spatial and temporal points. Thus, even if all variables specified in J3 are constant in time, 

covariance matrices such as DP f(I- y(y'y)-1y')Vp (1- y(y'y)-1y')Dp f'a~ or DP tV PDP f'a~ 
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reflect the temporal variation of/(~) inherent in unsteady flow. Consider the example for 

which Vpa~ was computed using (3-45) for simplicity. Then an element of the matrix is 
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(3-46) 

Now, the sensitivities are not truly additive because pk (or Pe) applies for one time element and 

Pk+3 (or Pe+3 ) applies for the next contiguous time element. Thus, the sums represent the time 

varying sensitivities. If flow were steady, then the sensitivities would be constant in time, so that 

the full covariance matrix would be just the steady-state covariance matrix. 

The above analysis shows that all results obtained for steady flow can be applied for 

unsteady flow, if y, 9, and ~ incorporate the time variant properties. Thus, no distinction 

between the two types of flow is made in subsequent developments. 

Summary of Principal Results 

The ground-water flow system is assumed to be adequately characterized by a set ofm 

system characteristics, termed (3, that fall into three categories: 1) variables such as hydraulic 

conductivity, recharge, and discharge that can vary spatially throughout the model; 2) variables 

such as hydraulic heads and fluxes that can vary spatially along internal and external boundaries 

of the model; and 3) variables such as spring and well discharges that occur locally, at points. 

Initially, flow also is assumed to be steady state so that (3 varies only spatially. Vector (3 thus 

contains discrete values of th(;: system characteristics in volume elements for category 1, 

boundary segments for category 2, or points for category 3. The discretization is assumed to be 

fine enough that any model function of (3,f((3), is almost free of model error. 

Vector (3 represents small-scale variability that cannot be explicitly described in a model 

and larger-scale variability that can. The influence of the small-scale variability is included in a 

model by imagining a stochastic process for (3 and using the stochastic properties of (3 in 

modeling. Specifically, in (3-1) (3 is assumed to be normally distributed with a mean given by 
- -

an interpolation y9 of a set of p drift parameters e and covariance given by a spatial covariance 

matrix vp dp . 
A set ofn observations Y differs from a set ofn corresponding values f(~) of the model 

function /(~) by an observation-error vector E, which is considered to be normally distributed 

with a mean vector of zero and covariance matrix Ve a;. The model and distribution are stated 
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by (3-5) and (3-6), respectively. The normality assumed for f3 and & is not essential for the 

theory developed in this report, and the assumption can be indirectly tested. 

The vector f3 has too large a dimension to be estimated. Hence, a vector of reduced 

dimension that has the same form as the drift is to be estimated. The vector to be estimated is 

obtained as the vector ye. that is the best fit to f3. It is derived by minimizing the criterion 

(f3- y9)'(f3- y9) with respect general set of parameters 9 to obtain 9. = (y'y)-1 y'~, which is (3-

7). The estimate of 9. is derived in section 4. 

The model function f(f3) and model function f(y9.) do not in general have the same 

expected value (ensemble average) if the model is nonlinear in f3 or y9 •. A third-order correct 

result for the expected value of the difference, or model error, f(f3) -f(y9.) is given by (3-19). 

The covariance matrix for this difference is given by (3-24) and indicates that model error 

resulting from replacing f3 with y9. can be highly correlated throughout the model. 

Error vector Y - f ( y9.) is obtained by adding the observation error Y - f (f3) to the 

model error f(f3)- f(y9.). The expected value of this error is the same as the expected value of 

f(f3) -f(y9.) because the expected value of the observation error is zero. The covariance matrix 

for the error vector, (3-32), is obtained by adding Vs a; to the variance of f(f3)- f(y9.) because 

f3 and & are assumed to be statistically independent. If Vs a; is diagonal or nearly so, the 

correlations among the errors Y; - /; ( y9.), i = 1 ,2, ... ,n, are reduced over the correlations among 

the differences /;((3)- /;(y9.), i = 1,2, ... ,n. 

Model error can be reduced by selecting the stochastic process so that correlation lengths 

in Vp are as short as possible. That is, trends and significant hydrogeologic features should be 

represented in ye so that Vp ~ represents mostly short-correlation length variability. This 

deduction results from an analysis of the covariance matrix for f(f3)- f(y9.) given by (3-39) 

that showed that the magnitudes of the covariance terms can be small if Vp is diagonal and m is 
large. 

For general unsteady flow ~is distributed in both space and time, and the drift y9 varies 

in both space and time. Time variation of the drift is accomplished in the theory developed in 

this report by making y an interpolation matrix in both space and time and by allowing elements 

of 9 to be different at different points in time. Time variation of~ is approximated using the 

same discrete viewpoint adopted for spatial variation because time elements can be made small 

enough to approximate continuous variation. All results obtained for steady flow can be applied 

for unsteady flow, if y, 9 , and f3 incorporate the time variant properties. The vectors and 

matrices are simply augmented to account for any number of time elements and a time variant 

drift. Thus, further developments will not distinguish between the two types of flow. 
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4. Estimation and Prediction 

Estimation of the Vector of Spatial Average System Characteristics, 
e. 

Vector e. must be estimated because, being a linear combination involving J3, it is 
unknown. Vector e. and the: procedure used to estimate it must both be constructed so that e. 
has a unique estimate. Weighted least squares estimation is shown here to lead to desirable 

properties and uncertainty estimates for parameters and predictions. For this method the 

following objective function is minimized. 

S(9) = (Y- f(y9))'ro(Y- f(y9)) (4-1) 

where e is an arbitrary vector of parameters of order p and ro is an arbitrary, positive definite 
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n x n weight matrix, possible forms for which are to be developed. Note that, strictly speaking, 
weighted least squares is the term often applied when ro is diagonal (Draper and Smith, 1998, p. 

223). However, Seber and Wild (1989, p. 27) use the term as a synonym for generalized least 
squares, which is expressed fbr the theory developed in this report as 
ro-1 oc E(Y -f(y9.))(Y -f(y9.))' as shown in section 5. For nomenclatural convenience, the 

term weighted least squares is generalized further in this report so that ro can be arbitrary and 

nondiagonal, but is positive definite. The term generalized least squares (also called Gauss­
Markov estimation) is applied when ro-1 oc E(Y -f(ye.))(Y -f(ye.))'. Another objective 

function is introduced when <0 is unknown. Because weights are approximated, this case can be 

termed approximate weighted least squares. 

Note that model error is included in the matrix E(Y- f(y9.))(Y- f(y9.))', which is not 
standard statistical usage (for example, Seber and Wild, 1989, p. 28). This is not without 

precedent. For example, Tasker and Stedinger (1989) employed a similar idea to derive a 
generalized least squares model for regional regression analysis of floods. 

In modeling studies, 8(9) is minimized using standard techniques of nonlinear regression 
such as adaptive least squares (Cooley and Hill, 1992). However, to develop the theory that is 
used to analyze the estimates and predictions to be made with them, and to develop the theory 

underlying the uncertainty analysis methods, an approximate analytical solution of the 

minimization problem is needed. This solution is obtained using extensions of methods given by 
Johansen (1983). First, the linear-model component of the error vector Y- f(y9) is defined as 

(4-2) 

which from (3-1) and (3-6) has the normal distribution 

(4-3) 
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Next the estimate e is expressed as e , plus a term I that is first order in U, plus a term q that is 

second order in U, e, and their product, or 

Vectors I and q are obtained in appendix B by a combination Taylor series expansion and 

perturbation technique that formally assumes Var(U) to be small. The solutions are 

I= (Df'roDf)-1 Df'roU 

and 

1 

q = (Df'roDf)-1(LD2 ilrof Z +t Df'~ro1 (e'D~f1e -I'D2 f))) 
I ] 

where ro! 12 and ro 1 stand for row i and columnj of ro112 and ro, respectively, and 

Z =(I- R)ro 2 U 

in which 

1 1 

R = ro 2Df(Df'roDf)-1 Df'ro 2 

The robustness of results obtained using (4-4) is explored in section 7. 

Bias in the Estimate 0 of e* 

(4-4) 

(4-5) 

(4-6) 

(4-7) 

(4-8) 

Bias in the estimate 9 of e. results because the model functions f(J3) , f( ye.), and f( ytl) 
are nonlinear in Ji, e., and 9, respectively. The bias is derived here in the same manner as used 
in standard nonlinear regression (Seber and Wild, 1989, p. 182) except that in the present 

instance there are additional influences from model error. The following development leads to 
the main result, ( 4-15). 

First the linear-model component of the error vector Y -f(ye.) is defined as 

which has the normal distribution 

U. ---- N(O, V
8
a; + D pf(l- y(yy)-1y')Vp (I- y(yy)-1y')Dp f'a ~) 

= N(O, v.a;) 

where V.a; = Var(U.) as defined by (3-33). 

(4-9) 

(4-10) 
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The difference 9- e. can be written using (3-17), ( 4-5), ( 4-6), and ( 4-9) as 

e- e. = e-e -<e. -e) 
=I+ q- (y'y)-1 y'e 

1 

= (Df'roDf)-1Df'roU +(Df'roDf)-1 (~D2 /;lrofZ +-
2

1 
Df'Lro1 (e'D~f1e-I'D 2 f))) 

l J 

- (IY'roDf)-11Y'roDf(y'y)-1 y'e 

29 

1 

= (Df'roDf)-1 Df'roU. + (Df'mDf)-1(LD2 /;lrof Z +-
2

1 
Df'Lro1 (e'D~f1e -I'D2 f))) (4-11) 

l J 

where the result Df = Dpf'Y ((C-14), appendix C) was used. Hence, the bias is 

E(9-0.)=E(q) 
1 

= (Df'roDf) -1 (L E(D 2 /;lrof Z) + -
2

1 
Df'L ro1 E( e'D~ f 1e -I'D2 f 11)) 

I } 

(4-12) 

1 

For reasons that are apparent later, E{D2 J;lrof Z) is not evaluated. The second expected value is 

in which ( 4-5) is used to yield 

With (4-13), the bias is writtt~n 

Because E (9.) = e, the bias in 9 as an estimate of 9. is the same as the bias in 9 as an 
estimate of e . 

Bias in Estimates of the Model Function Vectors f(J3) and f(yB*) 

Expression of the difterence J; (yO) - /; (~) using (B-11 ), appendix B, yields 

(4-13) 

(4-14) 
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I 

+ D.J; (Df'roDf) -I L D 2 fklro I Z 
k 

I I I I 
= -ro~2 (1- R)7roJ (Dp/je + ;-ce'D~fje -I'D 2 f)))+ ro~2aro2E 

I 

+ D/; (Df'roDf) -I L D2 _hlro I Z 
k 

(4-16) 

so that the bias may be written by using (4-13) to obtain 

I I 

E(/; ( y{)) - /; ((3)) "' - .;- ro ~2 (I - R) 7 ro J tr(D~ fi Vp u ~ - D2 .fi Var(l)) 

I 

+ D.J; (Df'roDf) -I L E(D2 fklro I Z) (4-17) 
k 

Again, model nonlinearity can cause bias. Similarly, writing the difference /;(yS)- /;(yO.) 
using (3-18) and ( 4-16) results in 

.t;(yG)- .t;(y9.) = /;(13)- /;(y9.)+ J;(yG)- J;(13) 

"' D p j, (I - y( y' 'Y) -I y' )e + .;-e' (D; j, - y( y'y) -I y'D; j, y( y'y r I y')e 

_ _!_ _!_ 1 _ _!_ _!_ 

- ro. 2 (I- R)L ro~ (D f.e +-(e'D2 f.e -I'D2 f.l)) + ro. 2 Rro 2 E 
I j 1 P1 2 P1 1 l 

I 

+ D.t; (DfmDf) -I L D 2 fklro I z 
k 

(4-18) 

so that the bias is 

E(j, (y{J)- j, (y(}.))"' ±tr((D;J, - y(y'y)-'y'D; j, y(y'yf' y')V p )u: 

1 _ _!_ _! _!_ 

- 2roi 2 (I- R)7roJtr(D~ / 1 Vp a~- D 2j 1 Var(l)) + D/;(Df'roDf)-ItE(D2 fklroiZ) (4-19) 

The bias in f(yG) as an estimate of f(y9.) is the difference between the bias in f(yG) as an 

estimate of f(l3) and the bias in f(y9.) as an estimate of f(l3). 

Bias and Other Properties of the Residuals, Y- f( yt}) 
Bias. Residuals Y -f(yO) are the estimates ofthe errors Y -f(y9.). Second-order 

approximations are computed in appendix B and are 
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i = 1,2, .. . ,n (4-20) 

Residuals have the same form when written in terms of U. rather than U. This important result 
is obtained by using the identity ro; 112 (I - R )ro 11 2 Df ( y 'y) -1 y 'e = 0 , which results because 

(I- R)ro112Df = 0: 

" _ _!_ _!_ 1 _!_ _!_ 

Y;- h(y8) ~ ro; 2 (I- R)(ro 21J. + 
2 

7ro] (e'DJ f 1e -I'D2 f)))- D/; (DfmDf)-1tD2 fklro~ Z; 

i = 1 ,2, ... ,n ( 4-21) 

Hence, either U or U. can be~ used to get the expected values of the residuals as 

1 1 1 

E(Y;- j,{yiJ)),., ~m~2 (I-R)7ro}E(e'D; fje -I'D2 fjl)- Df,(Df'mDfr1 fE(D 2 fklmfZ) 

1 _ _!_ _!_ _!_ 

= 2ro; 2 (I- R)7ro]tr(DJ f 1 Vp a~-D2 f 1Var(l))- Dh(Df'roDf)-1 fE(D 2 fklro~ Z); 

i = 1,2, . .. ,n (4-22) 

Model nonlinearity can cause the expected values of the residuals to be biased as estimates of 

expected values of the errors Y;- f;(yf).) given by (3-31). Model nonlinearity also can cause the 
residuals to have a non-normal distribution. (Note the quadratic terms involving e and I in 
(4-21).) 

Effects of nonlinearity on measures of non randomness from model error. Residuals 

from a modeling problem are commonly analyzed for indications of non randomness resulting 

from model error (Draper and Smith, 1998, p. 59-61; Cooley and Naff, 1990, p. 167-171; Hill, 

1998, p. 20-24). A sum of all residuals of nearly zero is taken to indicate a good overall fit of a 
ground-water model to the data, and a nearly horizontal band of data for a plot of weighted 

residuals ro! 12 (Y- f(yS)) in relation to weighted estimated model function values ro!12f(yS)) is 
taken to indicate a lack of model error. These measures also can be affected by nonlinearity. 

First the sum is examined. A weighted residual is written as 

ro? (Y- f(yS)) 
1 1 1 1 

,., (I- R),(m2u. + ~ 7mJ (e'n; ./je -I'D2 f)))- ro/Df(DfiDDrr1fD 2 fklrofz (4-23) 

where (I- R); is row i of I- R. For a linear model the sum of weighted residuals should not 

be significant because, from E( U.) = 0, its expected value is zero. However, for a nonlinear 

model the expected value is 
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! " 1 ! 
E("Lrof (Y- f(y9))) ~"I (I- R); -

2 
"f;ro} tr(D~ ~ V pa~ - D 2 

/ 1 Var( I)) 
I I ] 

1 1 

-"IrolDf(Df'roDf)-1 "LE(D2 fklrolZ) 
i k 

It is possible for model nonlinearity to substantially increase the magnitude of the sum of 

residuals. 

(4-24) 

The extent to which a plot of weighted residuals in relation to estimated weighted model 

function values deviates from a horizontal band can be evaluated by computing the slope of a 

line through the data, which is given from the following development as (4-27). {This 

development can be skipped, if desired.) The standard equation for the slope in linear regression 

(Draper and Smith, 1998, p. 25) indicates that the slope is proportional to 

}: ro!12f(y0)ro! 12 (Y- f(yO))-}: ro! 12f(y0)"L ro!12 (Y- f(yO)) In. Evaluation of the first term in this 

expression through second order terms in U, e, and their product using (4-23) and (B-11), 

appendix B, yields 

"I roff(y{})rof (Y- f(y{))) 
i 

! - ! 1! 1 ! 
~"I (roff(y9) + R;(ro 2 U + -

2 
"f;ro}e'D~f1e) + -

2 
(I- R);"Iro}I'D 2 f 11 

I J J 

1 1 1 1 

+ rofDf(DfiDDf)-1 fD 2 fklroj Z)((l- R), (ro>u, + ~ ::roJ (e'D~J1e -I'D~/))) 
1 I 

- rofDf(Df'roDf)-1 "ID2 fklroiZ) 
k 

! - ! 1 ! 
~"I roff(y9)((1- R); (ro 2 U. + -

2 
"f;ro} (e'D~f1e -I'D2 f))) 

l J 

I 1 

- rof Df(Df'roDf) -I "I D 2 fklroi Z) 
k 

(4-25) 

where R; is row i of Rand, because R is symmetric, idempotent (Cooley and Naff, 1990, p. 

165), R(I- R) = R'(I- R) = 0. Similarly, evaluation of the second term results in 

"I roff(ye)"Irof (Y- f(ye))l n 
i i 

! - ! 1! 1 ! 
~"I (roff(y9)+R;(ro 2 U +-

2 
"f;ro}e'D~f1e)+-2 (I-R);"f;ro}I'D 2 f 11 

l J J 

1 1 1 1 

+ rofDf(DfiDDfr' f D2 /kim] Z)f ((I- R), (ro2 U, + ~ 7 roJ (e'D~j1e -I'D~/))) 
I 1 

- ro l Df (Df'roDf) -1 "I D 2 fklro I Z) In 
k 
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1 1 1 

~ L rolf(yO)L((I- R)i (ro2U. + -
2

1 
LID} (e'D~f1e -I'D~ f))) 

I I j 

1 1 

- rol Df(Df'roDf)-1 L D2 fklro~ Z) In (4-26) 
k 

Combination of ( 4-25) and ( 4-26) gives 

1 ! 1 ! 
L rolf(yO)rol (Y- f(yO))- L rolf(yO)L rolf(Y- f(yO))I n 
i i i 

! - ! 1 ! 
~ L rolf(y9)((1- R);(ro 2 U. + -

2 
~roy (e'D~f1e -I'D2 f))) 

I } 

1 1 1 1 1 

- rolDf(Df'roDf)-1 
Lk D 2 fklroiZ)- ~rolf(yO)L((I- R)i (ro2U. + -

2

1 ~roJ (e'D~f1 e -I'D~ f))) 
I I } 

1 1 

- rof Df(Df'roDf) -1 L D2 fklro f Z) In (4-27) 
k 

The slope of a line through the plot is altered from what it would be for a linear model. For a 

linear model the slope should not be significant unless an intercept is needed, but for a nonlinear 

model it could be significant just because of model nonlinearity. Note that the slope has an 
expected value of zero for a linear model, but this is not necessarily true for a nonlinear model. 
Seber and Wild (1989, p. 179) cite the same behavior for the classical nonlinear model. The 

slope and its implications are analyzed further later in this section. 

,... 

Bias in Predictions, g( y9) 

Predictions to be made with the model also are affected by model nonlinearity. A 
prediction, defined as any function of yO of interest that is not contained in f(yO), is termed 

g(yO). That is, g(yO)can lx: the same type of function as any element J:(yO) (such as a 

hydraulic head or flux), but "'as not observed as Y; . Variables g(J3) and g( y9.) are predicted 

using g(yO). ,.. 
Development of the bias E(g(y9)- g(~)) starts with 

- - 1 - -
g(J3) = g(y9) + Dp g(J3- y9) + -(J3- y9)'D~g(J3- y9) 

2 

(4-28) 

where Dp g is the row vector [8g I ap1 ] evaluated at ~=yO and D~ g is the matrix 
[82g I apiap1] evaluated at J~ =yO. Then, the difference g(yO)- g(~) is written using (4-28) 

and (B-13), appendix B, as 



34 A Theory for Modeling Ground-Water Flow in Heterogeneous Media 

g(yi})- g(Jl) = -(g(Jl)- g(yO)) + g(yi})- g(ye) 

1 _!_ 1 _!_ 

~ -D ge - -e'D2 ge + Q'ro 2 U + -(I'D2 gl- Q'L ro 2 1'D2 f.l) 
f3 2 p 2 j J J 

I I 

+ -
2

1 Q'~roJe'D~f1e + Dg(Df'roDf)-I~D 2 /;lrof Z 
1 I 

_!_ 1 _!_ 1 _!_ 

= -Dpge + Q'ro 2 U- ;-<e'D~ge-Q'7ro]e'D~j1e)+;-(I'D
2gi-Q'7ro]I'D2 

f)) 

I 

+ Dg(Df'roDf) -I L D2 /;lrof Z 
i 

where 

1 

Q = ro2Df(Df'roDf)-1Dg' 

The bias is 

" 1 _!_ 

E(g( y9)- g(Jl)) ~ -2(tr(D~ gVp ) - Q'7 ro] tr(D~ / 1 Vp )) a~ 

1 _!_ _!_ 

+ -
2 

(tr(D2 gVar(l))- Q'Lro] tr(D2 j 1Var(l))) + Dg(DfmDf)-I~E(D2 /;lro1 Z) 
1 I 

Note that the form of ( 4-31) is similar to ( 4-17). 
" Development of the biasE(g(y9)- g(y9.)) proceeds from 

- - 1 - -
g(y{).) = g(y9) + Dg(9. - 9) + -(9. - 9)'D2 g(9.- 9) 

2 

= g(yO) + Dg(y'y) -I y'e + _!_e'y( y'y)-I D2 g (y'y) -I y'e 
2 

Then, ( 4-28), ( 4-29), and ( 4-32) are combined, to get 

g(yi})- g(y9.) = g(Jl)- g(y9.) + g(yi})- g(Jl) 

~ Dp g(I -y(y'y)-I y')e + 2.e'(D: g- y(y'y)-I y'D} gy(y'y)-I y')e 
2 

_!_ 1 _!_ 1 _!_ 

-D ge+Q'ro 2 U --(e'D2 ge-Q'Lro~e'D2 J.e)+-(I'D2gi-Q'Lro 21'D2f-1) 
P 2 P J 1 P1 2 1 1 1 

I 

+ Dg(Df'roDf)-I LD2 /;lrof Z 
i 

Again, the bias is 

(4-29) 

(4-30) 

(4-31) 

(4-32) 

(4-33) 
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" 1 2' 1 2 1 2 E(g(y{})- g(y9.)) ~ 2tr((Dp·g- y(y'y)- y'D P gy(y'y)- y')Vp )a P 

1 1 

- ~ ( tr(D~ gV p) - Q'7 roJ tr(D~ / 1 V p) )u} + ~ ( tr(D
2 
g Var (l)) - Q'7 roJ tr(D

2 
fXar(l) )) 

1 

+ Dg(Df'roDf)-1 LE(D2 /;lro]~ Z) 
i 

Equation (4-34) is analogous to (4-19). The bias in g(ye)as an estimate of g(y9.) is the 

difference between the bias in g(ye) as an estimate of g((3) and the bias in g(y9.) as an 
estimate of g((3) . 

The Concept of Intrinsic Nonlinearity 
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(4-34) 

Model nonlinearity can cause potentially significant bias in estimates of e., estimates of 

model functions f((3) and f(y9.), and predictions of g((3) and g(y9.). If these biases were 

truly significant, then use of a ground-water model could be severely compromised, unless, of 
course, the biases could be estimated. It turns out that many of the bias terms are small if unique 

transformations +(9) and a((}), of vectors 9 and (3 , nearly linearize the model so that 

transformed second-derivative matrices of the form D!f and D!f are small. (Note that this 
symbolic notation for the matrices is slightly improper in that f is not the same function of + or 

a as it is of 9 or (3 . The notation is used to keep the number of variable names at a minimum, 

and simply implies substitution of 9(+) for 9 or (}(a) for (3 in fwhen evaluating the 
derivatives.) Only the existence of the transformations is needed because they never need be 

used. If the transformations substantially reduce, or even eliminate, nonlinearity, then certain 

terms in the biases can be small, even though 9 and (3 actually used in the model functions are 
not necessarily the sets that produce minimum degrees of nonlinearity. This is because, as will 
be shown, the terms involve the second-derivative matrices and can be invariant under 

transformations such as +(9) and a((}). 
Beale (1960, p. 57) introduced a quantitative measure of the degree to which a model can 

be linearized by transformation of 9 to +(9), which he termed the intrinsic nonlinearity. (He did 

not consider the f((3) model.) Bates and Watts (1980) expanded on this concept and introduced 
another measure, which they termed the intrinsic curvature. Seber and Wild (1989, Chapter 4) 

give a good discussion oftht~ ideas, and the interrelations among the ideas, ofBeale (1960), 

Bates and Watts (1980), and others. For the theory developed in this report curvature measures 
such as introduced by Bates and Watts (1980) are not nearly as useful as extensions ofBeale's 

(1960) results. The extensions are obtained using Johansen's (1983) methods of analysis, which 

are a simplification of Beale's (1960) methods. In addition, in this report the term intrinsic 
nonlinearity is not just applie:d to a single measure, but instead is applied to the model as a 

whole. Thus, the term low (degree of) intrinsic nonlinearity is applied to a model that can nearly 

be linearized, and the term high (degree of) intrinsic nonlinearity applied to a model that cannot 
nearly be linearized. 
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There are two types of intrinsic nonlinearity, one for f as a function of 0, f(yO), and one 

for f as a function of 13, f(l3) . The former involves second derivative matrix D 2f , and the latter 

involves second derivative matrix D~f. Both of these types could be referred to as model 

intrinsic nonlinearity. However, the form of the terms that express the intrinsic nonlinearity for 

f(~) involve both D~f and I- R or Q in such a way that, to be small, the terms must satisfy 

some special requirements. This type of intrinsic nonlinearity is referred to in this report as 

system intrinsic nonlinearity, and unless otherwise indicated, the term model intrinsic 

nonlinearity in this report refers only to the type for f(y9). Some measures of intrinsic 

nonlinearity are indicated as the ideas are developed further. 

In appendix C the method given in Seber and Wild (1989, p. 692-694) is used to show 

that terms of the form (I- R) L aij 2 x'D 2 j 1y and Q' L cJ? x'D2 j 1y- x'D2 gy reflecting types of 

model intrinsic nonlinearity ar6 invariant under transfobnation of 0 . In these terms x and y are 

given vectors of order p. Extensions of Seber and Wild's (1989) methods are used to show that 

terms of the form of (I- R)L cJ? e'D~j1 e and Q' L cJ? e'D~j1e- e'DJ ge reflecting types of 

system intrinsic nonlinearity also can be approximateiy invariant under transformation of 13. 
However, as shown in appendix C, the nonlinear component of the transformation from D~f to 

D!f must behave similarly to the nonlinear component of the transformation from D2f to D~f 
in order to allow for approximate invariance of the terms. The invariance, and approximate 

invariance for the terms involving e, causes the terms to take on values dictated by the smallest 

values of the matrices D~f, D!f, D~g, and D!g, which are transformations of D2f, D~f, 
D2 

g, and D~g, respectively. The same transformation of 0 or 13 must make both D~f and 

D~g or D!f and D!g small for terms involving both D2f and D2 g or D~f and D~g, so 

these terms may often be larger than terms involving only D2f or D~f. Because the former 

terms involve both the model function f and the prediction function g, the intrinsic nonlinearity 

indicated by these terms is termed in this report the combined intrinsic nonlinearity. As before, 

there are two types of combined intrinsic nonlinearity. The type for f(y9) and g(y9) is termed 

the model combined intrinsic nonlinearity, and the type for f(l3) and g(l3) is termed the system 

combined intrinsic nonlinearity. 

Effect of Intrinsic Nonlinearity on Estimates of Model Functions and 
Residuals 

Effect on bias. All of the bias terms involve one or more of the terms 

D.t; (DfmDf) -1 t E(D 2 fklro~12 Z), Dg(Df'roDf) -1 L E(D 2 fklro~ 2 Z), (I- R) L al? E (I'D2 f)), 
(I-R)Lro1

;
2 E(e'D~j1e), E(I'D 2gi)-Q'Lro~12 E0'D2f)), or 

1 

E(e'D~ge) -Q'Lro~/2 E(e'D~j1e). In appendix C the first three terms are shown to be small 

when the model intrinsic nonlinearity is small; the fourth is shown to be small when the system 

intrinsic nonlinearity is small; the fifth is shown to be small when the model combined intrinsic 

nonlinearity is small; and the sixth is shown to be small when the system combined intrinsic 
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nonlinearity is small. It is worthwhile to explore the effects of intrinsic nonlinearity on the bias 

terms. 

37 

The bias in 0 as an estimate of G. is given by (4-12) or (4-15). With g(y{}) = B;, 
(DfmDf);1rE(D 2 fklroi12 Z)., where (DfmDf);1 is row i of (Df'roDf)-1

, is of the form 

Dg(Df'roDf)-1rE(D2 fklroi12Z). Therefore, if the model intrinsic nonlinearity is small, the bias 

becomes 
k 

Note that the trace term is the difference between the contribution of nonlinearity to 

E(f(Jl) -f(yG)) (which can be seen from (3-28)) and the contribution of nonlinearity to 

(4-35) 

E ( f (yO 0) - f (yO)) ' where e 0 = e + I . It is tempting to speculate that the similarity of the two 
terms could often cause their difference to be small. This possibility has not been investigated in 

this report. 
,.. 

For small model and system types of intrinsic nonlinearity, the bias in f(yG) as an 
estimate of f(Jl) is obtained from (4-17) as 

E(/; (yO)-/; (Jl)) ~ 0; i = 1,2, .. . ,n (4-36) 

In other words, estimates of f(J3) are nearly unbiased if both types of intrinsic nonlinearity are 

small. However, under these same circumstances the bias in f(yO) as an estimate of f(y9.) is 

given from ( 4-19) as 

(4-37) 

which is the bias in f(y9.) as an estimate of f(J3). Because interest is generally in replicating 

f(J3), not f(yG.), the bias given by ( 4-37) would not seem to be too important. 

Effects on residuals. Properties of residuals change materially when both model and 

system types of intrinsic nonlinearity are small. In this case the residuals given by (4-21) can be 
written 

Y; - /; (yO))~ ro; 2 (I- R) ro 2U.; i = 1,2, .. . ,n 

so that 

E(Y;- /;(yO))~ 0; i = 1,2, .... ,n 

Even though the errors Y;- /;(yG.) may have nonzero expected values, the residuals have 

expected values of nearly zero. The variance also is simplified. From (4-38) 

(4-38) 

(4-39) 
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I 
~ -

Var(Y- f(y9)) ~ ro 2 (I- R) ro 2Var(U .)ro2 (I- R) ro 2 

I I 1 I 

= ro -:z (I- R)ro2V.ro2 (I- R) ro-2 a; (4-40) 

Another form of the variance is useful in section 5 for examining model uncertainty. Let T. be 

the nonlinear terms in (3-21). Then from the results of appendix C the product 
(I- R) roi 12T. roi12 (I- R) is exactly of the form that is small when system intrinsic nonlinearity 

is small. Therefore in this instance 

I I I I 

Var(Y- f(yf})) ~ ro-2 (I- R)ro2(V
8
a; + E(f(Jl) -f(y9.))(f(J3)- f(y9.))')ro2 (I- R)ro-2 

1 -
= ro 2 (I- R) ro 2E{Y- f( y9. ))(Y- f(y9. ))' ro2 (I- R) ro 2 (4-41) 

Finally, because U. is assumed to be normally distributed 

1 1 I I 

Y- f(ye)-- N{O, ro-2 (I- R)ro2v.ro2 (I- R) ro-2a;) 
1 - -

~ N(O, ro 2 (I- R)ro 2E(Y- f(y9. ))(Y -f(y9.))' ro2 (I- R)ro 2 ) (4-42) 

The residuals can be normally distributed even when the errors Y - f ( y9.) are not. In addition, 
the residuals behave as if the model were nearly linear. 

Detection of intrinsic nonlinearity. An analysis of the residuals from a specific 

modeling problem indicates the possible importance of intrinsic nonlinearity. If model and 
system types of intrinsic nonlinearity are both small, then from (4-23) the sum of weighted 
residuals is 

Lffi l (Y - f ( yf})) ~ L (I - R); ro 2 U. 
i i 

and from (4-27) the slope of the weighted residual plot is proportional to 

L roff(ye)rof (Y- f{ye))- L roff(ye)L rof (Y- f(yf}))/ n 
i i i 

I - -
~ Lroff(y9)(1 -R);ro2 U. -L ro?f(y9)L(I -R);ro 2 U. In 

i i i 

(4-43) 

(4-44) 

That is, ifboth types of intrinsic nonlinearity are small, both the sum ofweighted residuals and 

the slope of the plot of weighted residuals in relation to ro~ 12f(y9) are the values expected for a 

linear model. The slope should not be significant unless an intercept is needed. 
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From ( 4-42), a sample distribution of weighted residuals that is not significantly different 

from normal adds evidence that both types of intrinsic nonlinearity are small and suggests in 

addition that U * is normally distributed. If U * is normal, then the deviation of the distribution 

of Y- f(y9.) from normality results from model nonlinearity. 

A check for model intr:insic nonlinearity only is to premultiply the weighted residual 

vector by R. From ( 4-23) and the fact that R(I - R) = 0, the result should be a vector of nearly 

zero values if model intrinsic nonlinearity is small. In theory Df used in R is computed at e = e , 
which is unknown. However, note that DfJ = D~f, where J is the Jacobian defined by (C-1), 

appendix C, and D ~f is nearly constant when model intrinsic nonlinearity is small. Hence, 

because R is invariant under transformation of parameters, it is nearly constant when e is varied 

if model intrinsic nonlinearity ils small. In this case any set e not too remote from e can be used 

to compute Df, and thus R, for the check except 9 = e . If 9 = B, the product of R and the 

weighted residual vector is alvvays zero. 

Effect of Intrinsic Nonlinearity and Combined Intrinsic Nonlinearity on 
Predictions 

The effect of intrinsic nonlinearity and combined intrinsic nonlinearity on biases in 

predictions is similar to the effect of intrinsic nonlinearity on biases in estimates. That is, if the 

model intrinsic nonlinearity is small, then ( 4-31) becomes 

E(g( y{))- g(~)) 
1 ! 1 _!_ 

~ -;-(tr(D~gVP)- Q'7ro] tr(D~f1 V p ))a~+ ;-Ctr(D 2 gVar(l))- Q'7ro] tr(D
2 h Var(l))) (4-45) 

and, if both the model and system types of combined intrinsic nonlinearity are small, then 

" E(g(y9)- g((3)) ~ 0 (4-46) 

Because ( 4-46) requires that f and g both be nearly linearized by the same transformations of e 
and 13, ( 4-46) may be harder to satisfy than ( 4-45). For example, if g(~) = p; and g( yB) = y ;B, 
where y; is row i of y , then ( 4-45) is equivalent to ( 4-35). (There is no additional bias from 

estimating P; with 'Y;e •. ) However, if g(~) were, for example, a hydraulic head, and most of 

the data in Y were hydraulic head data, then small model and system types of intrinsic 

nonlinearity would probably :imply small model and system types of combined intrinsic 

nonlinearity as well. Evaluation ofbias E(g(yB)- g(y9.)) adds the term 
1 
-tr((D;g- y (y'y)-1y'D; gy(y'y)-1y')V P )a; to both (4-45) and (4-46). (See (4-34).) As for 

0-37), interest generally is in predicting g(~) not g(y9.), so the extra component ofbias may 

not be too important. 

Residuals that pertain to predictions can be derived using constrained regression as 

discussed in section 5 and appendix E. These residuals can be analyzed with methods analogous 
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to those used for the standard residuals to detect both types of combined intrinsic nonlinearity. 

Discussion of this is deferred to section 5 after discussion of the basic concepts of the 

constrained regression. 

Estimation and Prediction When the Weights are Unknown 

The theory developed in this report thus far is valid for any weight matrix, ro. For 
Gauss-Markov estimation ro is defined using ro -1 oc E(Y -f(y9.))(Y -f(y9.))', which, from 

(3-32) is generally full (that is, not diagonal). This definition (the second-moment matrix) is 

used instead of Var(Y -f(y9.)) (the covariance matrix) used in classical regression because of 
the nonzero vector E(Y -f(y9.)). As shown in (B-18)-(B-22), any squared linear combination 

of the form E(l'(O- 8*))2 is minimized through third-order terms by using this definition. 

Obenchain (1975, p. 378) considered the classical linear model with correlated errors and 

suggested letting ro -1 be diagonal, with diagonal elements given by the variances of the errors. 

He cited several benefits from this definition, including the fact that the model would fit the data 

(with the residuals having a mixture of positive and negative signs) instead ofbeing 
systematically offset from the data (with the residuals tending to have one sign) as can happen in 

Gauss-Markov estimation. For the theory developed in this report the variances of the errors 

would be replaced by E(Yz- J;(y9.))2
• However, if E(Y -f(y9.))(Y -f(y9.))' is unknown, its 

diagonal elements E(Yz- J;(y8.))2 might also be unknown. 

Diagonal elements E(Yz- J; (y8.))2 can be estimated from field evidence for large-scale 

heterogeneity (Christensen and Cooley, 1999b), estimates of observation-error variances (Hill, 
1998, p. 45-49), and analysis of residuals (Cooley and Naif, 1990, Chapter 5). These methods 

generally result in grouping the diagonal elements into q groups, each of which appears to have 

nearly uniform values. In this case the objective function S(9) is written 

q 

S(S) = L:m k L:(~- /;(y9))2 

k=1 G i(k) 
(4-47) 

where m is the weight for group k and i(k) indicates summation over the observations in group 
Gk 

k. 

An analysis of residuals yields estimated weights w Gk that give apparently uniform 

average variability ofweighted residuals for all groups (Cooley and Naif, 1990, p. 168-171), that 
is, so that 

1 "2 1 "2 1 "2 
-I(~- J;(y9)) WGl ~- I(Y;- J;(y9)) WG2 ~ ••• ~- L (Y;- J;(y9)) WGq 
n

1 
i(I) n

2 
i(2) nq i(q) 

where nk is the number of observations in group k. From ( 4-48) the estimated weights 
approximately satisfy 

(4-48) 
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-1 1 " 2 
w Gk oc- L (Y; - J; (yf})) (4-49) 

nk i(k) 

An objective function that, when minimized with respect to 9, gives normal equations 

having weights exactly satisfying ( 4-49) is 

(4-50) 

Appendix D shows that, through third order in Y; - /; ( y9.), £(9) and S(9) +constants are 

proportional when OJ Gk is defmed as 

a 2n 
OJ = E k • k= 1 2 q 

Gk L E(Y;- /;(y9.))2 ' ' , ... , 
i(k) 

(4-51) 

This definition is approximately equivalent to the definition proposed by Obenchain ( 197 5) 

discussed earlier, the approximation resulting from grouping the errors. Appendix D also shows 

that the normal equations obtained from £(9) and S(9) are equivalent through second order in 

Y;- J;(yfl.) under the same: conditions. Barlebo and others (1998, p. 154) used (4-49) to 

compute the weights in the normal equations, but they did not formally justify the procedure. 

The above analysis l1eads to the conclusion that the results for estimation and prediction, 

including effects of the various types of intrinsic nonlinearity, may be approximately applied 

when the weights are unknown. 

Summary of Principal Results 

Vector e. is estimated using nonlinear least squares based on the objective function 

given by (4-1), S(9) = (Y --f(y9))'ro(Y -f(y9)). In this function ro is a positive definite weight 

matrix that is proportional to the inverse of E(Y- f(yfl.))(Y- f(y9.))' for generalized least 

squares (Gauss-Markov estimation) but is arbitrary for most developments. The inverse of the 

second-moment matrix E(Y -f(yO.))(Y -f(yf}.))' is shown to be the correct weight matrix to 

use for Gauss-Markov-type estimation instead ofthe inverse of the matrix Var(Y -f(yO.)) used 

in classical regression because of the nonzero vector E(Y- f(yf}.)). As a basis for the theory 

needed to analyze the estimate 9 of e * and functions of the estimate, an analytical solution for 
the estimate that is second-order correct in &, e = J3- ye, and their products is obtained using 

Taylor series and perturbation expansions; the solution is given by ( 4-4)-( 4-6). 

The second-order-correct approximation for 9 is used to develop approximate 

expressions for the biases E(fl -9.), E(f(yfl) -f((3)), and E(f(yfl) -f(y9.)) given by (4-15), 

( 4-17), and ( 4-19), respectively. These biases can all be nonzero because of model nonlinearity 
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with respect to e and (3. In spite of the presence of model error, the biases are zero for a linear 

model. 

Model residuals, defined as Y -f(yO), are estimates ofthe errors Y -f(yO.). An 
approximate expression (4-22) shows that the estimates can be biased as estimates of Y -f(yO.) 

because of model nonlinearity. Measures used to gage the quality of fit of a specific model to 

field data such as the sum of weighted residuals :Lro~ 12 (Y- f(yij)) (where ro! 12 is row i of ro112
) 

and the plot of weighted residuals m! 12 (Y- f(ye)) in relation to weighted model function values 

m!12f(ye) also can be affected by model nonlinearity. For a linear model both the sum of 

weighted residuals and the slope of the plot should not be significant if the model is correct. 

However, for a general model both the sum and the slope can be significant because of model 

nonlinearity, which can be seen from (4-23) and (4-27), respectively. 

A prediction to be made with the model is defined as any function of ye of interest that is 

not contained in f(yO). It is termed g(yO) and is used to predict g((3) or g(yO.). Note that 

function g( yO) can be the same type of function as any element /; (yO) (for example hydraulic 

head or flux), but it was not observed as~. Biases E(g(yfl)- g((3)) and E(g(yO)- g(yO.)) are 

given by ( 4-31) and ( 4-34 ), respectively. As for the model function biases, the prediction biases 

can be nonzero because of model nonlinearity. 

If the biases in f(ye), Y -f(yO), and g(yO) were large, they could severely compromise 

use of a ground-water model, unless they could be adequately estimated. However, many ofthe 

bias terms can be small if unique transformations +(6) and a.((3) nearly linearize the models 

f(yO) and f((3). The transformations do not have to be known. If such a transformation for 9 

exists, then the model intrinsic nonlinearity is said to be small. If such a transformation for (3 
exists, and if in addition certain approximations applied to second derivatives of f(J3) and 

explained in appendix C are accurate, then the system intrinsic nonlinearity is said to be small. 

Other bias terms pertaining to the predictions are small if the transformations nearly linearize 

f(yO) and g(yO), and f((3) and g((3), simultaneously. If these transformations exist, then 

model and system types of combined intrinsic nonlinearity are both said to be small, assuming 

for the latter accurate approximations for the second derivatives of f ((3) and g(f3) . 
If the model intrinsic nonlinearity is small, then as shown by (4-35) some of the bias in 0 

is eliminated, and as shown by (4-36), if model and system types of intrinsic nonlinearity are 

small, f(yO) is nearly unbiased as an estimate of f((3). The generally nonzero component 

E(f(y9.)- f(f})) remains as bias in the estimate of f(y6.), as shown in (4-37). However, a 

ground-water study generally is concerned with estimating f((3), not f(yO.), so this bias may 

not be important. Properties of the residuals also change when intrinsic nonlinearity is small. 

That is, when model and system types of intrinsic nonlinearity are small, the residuals become 

nearly unbiased (E(Y- f(yO)) ~ 0 as given by (4-39)), their covariance matrix is nearly like the 

covariance matrix for a linear model (as shown in (4-40) and (4-41)), and, ife and & are 

normally distributed, they can be normally distributed as given by (4-42). 

The presence of significant model and system types of intrinsic nonlinearity can be tested 

for by examining the slope of the plot of weighted residuals in relation to weighted estimated 

function values and the product of the R matrix (defined by ( 4-8)) with the vector of weighted 
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residuals. Although R is defined using quantities computed at 9 = e , any 9 not too remote from 

e except 0 may be used to compute R for the test. From ( 4-23), a nearly zero vector of the 
product ofR and the vector of weighted residuals indicates that the model intrinsic nonlinearity 

is small, and from (4-44) the absence of a significant slope suggests that both model and system 
types of intrinsic nonlinearity are small. A sample distribution of weighted residuals that is 
nearly normal adds evidence that both types of intrinsic nonlinearity are small. Similar tests for 

combined intrinsic nonlinearity are developed in section 5. 

The second-moment matrix necessary for Gauss-Markov estimation often would be 
unknown. Obenchain (1975) suggested using the diagonal elements of this matrix and indicated 

several benefits from this definition, including a better fit of the model to the data than often 

results from Gauss-Markov estimation. Although it is likely that the diagonal elements also 
would be unknown, they might be estimated from field evidence for large-scale heterogeneity, 

estimates of observation-error variances, and analysis of residuals. These methods generally 

result in grouping the diagonal elements into q groups, each of which appears to have nearly 
uniform values. Objective function S(9) is then written in the form of(4-47) to incorporate 

these groups. A formulation that automatically weights residuals in each of the groups according 

to the apparent variance for the group results from minimizing the objective function (4-50), 
£(9) =- fnkln( :L (Y;-;; (y9)) 2

), where nk is the number of observations in group k. Through 
second ~;der in \1)_ f(y9.), the normal equations resulting from using £(9) and S(9) are shown 

to be the same. Hence, the bias and other analyses developed for the case when the weight 
matrix is known may be used as an approximation when the weight matrix is unknown. 
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5. Uncertainty Analyses 

Confidence Regions, Confidence Intervals, and Prediction Intervals 

Section 4 dealt with estimation of e. and functions f(ye.) f(J3), g(ye.), and g(p). 
Principal concerns were with possible biases in the estimates G , c(ye ), and g(ye). Expressions 
were derived to indicate how accurate the estimates are, on the average. These expressions do 

not indicate either the precision of the estimates, or how close specific estimates might be to the 

values of interest (values of e., J; (ye. ), J; {p), g(ye.), or g(p) ). Uncertainty in prediction of 
specific future observations, which contain additional future measurement error, also was not 

addressed by the average-accuracy expressions. However, estimates of uncertainty are necessary 

in order to express the confidence that an investigator has in the results (flow system analysis and 
predictions) of a model study. In this report uncertainty in estimates is expressed through 

confidence regions and confidence intervals. Uncertainty in predictions of future observations is 

expressed through prediction intervals. 
A joint confidence region for all parameters (simply referred to in this report as a 

confidence region) is defined as a usually closed but possibly open region that has a specified 

probability 1-a of containing the true (as opposed to estimated) parameter set e •. It is a 
random region that always encloses e . An interpretation is that if many realizations of e and & 

were used for an equal number of regressions to find values of e ' then the fraction of associated 

confidence regions containing e * would be approximately 1 -a . A major difference between 
the confidence region defined here and a confidence region defined for a classical linear or 
nonlinear model is that the true parameter set for a classical model is considered to be fixed; 

whereas, the true parameter set e * used here is stochastic. The theories pertaining to the two 
types of regions turn out to be analogous, however. Cooley and Naff(1990, p. 172-175) give a 

thorough discussion of confidence regions, including a generalization for parameter subsets, for a 

linear approximation ofthe classical nonlinear model. Graybill (1976, p. 183-192) gives a 

complete theoretical foundation for confidence regions for a classical linear model, and Seber 

and Wild ( 1989, Chapter 5) discuss approximate confidence regions for the classical nonlinear 
model. 

A type of confidence interval derived directly from a confidence region is called a 
Scheffe interval (Graybill, 1976, p. 199; Seber and Wild, 1989, p. 194). For the confidence 

region used in this report it is an interval for some function of parameters e., say g(ye.), 
computed as the maximum and minimum values of g( ye) taken over all parameter sets e lying 
within the confidence region. It is a simultaneous interval so that g(yO.) lies within its Scheffe 

interval with probability 1- a while all other linearizable functions of e. lie within their 
Scheffe intervals with the same probability. That is, the probability is only a that any one of the 

virtually infinite number of possible Scheffe intervals will not contain its respective function of 

e .. The term "linearizable" was used to eliminate pathologic functions of 8 that cannot be 
linearized using Taylor series, as is required for the analysis used in this report. Scheffe 

intervals for nonlinear models are discussed within a classical context by Vecchia and Cooley 
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(1987), and are further discussed and applied to a field problem by Christensen and Cooley 

( 1999a ). Approximate Schefie intervals are briefly discussed for the classical nonlinear model 
by Seber and Wild (1989, p. 194), and a thorough discussion of the theory as applied to the 

classical linear model is given by Graybill (1976, p. 195-200). 

45 

An individual confidence interval for g(y9.} is defined as a usually closed but possibly 
open interval around g(ye) that contains g(ye.} with specified probability 1-a. As for a 

confidence region and Scheffi~ interval, an individual confidence interval is random, but it is not 

simultaneous. It applies only to the selected function so that, in contrast to the Scheffe interval, 
a fraction a of all individual~confidence intervals for linearizable functions of e * will not 

contain their respective functions of e * . Also, a confidence interval as defined in this report 
differs from the classical one in that the parameter set e * is stochastic in the present case instead 
ofbeing fixed as in the classic:al case. As noted by Cooley (2000, p. 1161) this gives the 

confidence interval as defined here some of the properties of a prediction interval. An individual 

confidence interval could also be obtained for g(J3), which would in general be larger than an 
individual confidence interval for g(ye.} because it receives an extra component of variance 

from the difference g(f})- g(y9.}. This interval has more in common with prediction intervals 

than with confidence intervals, so is included with them. Individual confidence intervals for 
classical nonlinear models are: discussed by Seber and Wild (1989, Chapter 5), and a thorough 

discussion of their theoretical basis as one type in a family of joint intervals for a classical linear 

model is given by Graybill (1976, p. 201-204). 

Finally, an individual prediction interval for some future observation YP of g(J3) is 

defined as a usually closed but possibly open interval around g(y9) that contains YP with 

specified probability 1-a. Because YP and g(f}) are both stochastic, the only difference 
between a prediction interval and a confidence interval for g(f}) is the extra component of 
variance from the difference YP- g(f}), which is the variance from a future measurement error. 

A classical prediction interval also is defined for the stochastic variable YP, so it does not differ 
in definition from the one defined in this report. Approximate prediction intervals for a classical 

linearized model are discussed in Seber and Wild (1989, p. 193-194), and prediction intervals for 

a classical linear model are dc~rived and discussed by Graybill (1976, p. 267-270). Christensen 
and Cooley ( 1999b) discuss and apply prediction intervals to two field sites using a nonlinear 

model in a classical context where model error was assumed to add variance analogous in form 

to measurement error variance. They showed that both new and old data are contained in their 
prediction intervals with apparently correct or slightly conservative probability. 

In the following sections and associated appendices, confidence regions, confidence 
intervals, and prediction intervals are derived using the combination Taylor series and 
perturbation methods used fi>r estimation. These methods were used by Johansen (1983) and 
Hamilton and Wiens (1987) for similar analyses applied to the classical nonlinear model. In the 

last section of appendix F many of the results are extended to apply approximately when the 
small-variance conditions for the perturbation analysis are violated. 
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Development of Confidence Regions and Scheffe Intervals 

Statistical distribution and confidence region when the weight matrix is known. For 

the formal derivation of the statistical distribution necessary to define a confidence region, it is 

assumed that Var(U) , Var (U.) , and Var(D P fe) are all small, and that Var (D P fe) is much 

smaller than Var(U.). These assumptions were used to derive distribution (F-57) in appendix F, 

which is repeated here as 

(S(B._?- S(B))Ip ,..., c F( ,n _ ) 
S(9)/(n- p) r p p 

(5-1) 

where F (p, n - p) signifies an F random variable with p and n - p degrees of freedom and c r is 

a correction factor defined by (5-3). Equation (5-1) implies the (1-a)x 100 percent confidence 

regton 

(5-2) 

where Fa(p,n- p)is the upper a point ofthe F(p,n- p) random variable. That is, 

(1 -a) x 100 percent of the continuum of possible F (p, n - p) values are less than Fa (p, n - p) , 
which yields the inequality in (5-2). As discussed earlier, (5-2) defines a region that has a 

(1-a) x 100 percent chance of containing S(9.). If equality is used, then S(O.) is replaced 

with a bounding surface of S(9) values that forms the limit of the confidence region. 

Co"ection factor. The correction factor is defined as 

(5-3) 

where, from the definitions following (F-59), 

1 1 

f wa~ = (tr((I- R)ro2V.ro2)- n + p)a; (5-4) 

and 

I I 

y1a: = E(S(B)) -tr((l- R)ro2v.ro2 )a; (5-5) 

and, from the definitions following (F -63 ), 

1 I 

r wa~ = (tr(Rro2v.ro2)- p)a; (5-6) 



Uncertainty Analyses 47 

and 

1 1 

r 1a: = E(S(9.)- S(O))- tr(Rro2 V.ro2 )a; (5-7) 

More detailed definitions oftht! terms (termed component correction factors) f wa~, y1a:, 
y wa~, and r 1a: from the perturbation analysis are given by (F-60)-(F-62), (F-64), and (F-65). 

Factors f wa~ and y wa~ corre:ct for the possibility that ro -1 
-:;:. V., and factors f 1a: and r 1a: 

correct for model intrinsic nonlinearity. The latter two factors are zero when there is neither 
model nor system types of intriinsic nonlinearity. Finally, note that ro -1 cannot be entirely 

arbitrary; it should be compose:d of V e plus a matrix V m a~ I a; , where V m is dependent only on 
model error ( (F -61 ), appendix F). 

In the last section of appendix F the mean and variance of an expression that is analogous 
to, but more general than, (5-1) are analyzed using a method that does not rely on Taylor series 

expansions or perturbations. The analysis shows that the small-variance assumptions can be 
relaxed if the correction factors are written in terms of Q instead of V., where 

Q = E(Y -f(y9.))(Y -f(y9.))' I a; (5-8) 

Distribution (5-1) written using the redefined correction factors, (F-133)-(F-135), is most 

accurate if (V0;)
112 ae is twice or more (E(/;(J3)- /;(y9.))2Y12

, i = 1,2, ... ,n. The redefinitions 
give a more accurate indication of errors resulting from the form of ro than the original factors 

because Q is the correct forrn for ro -1 for Gauss-Markov estimation, not V •. However, as 

indicated by (G-7) and associated text in appendix G, the difference between Q and V. is of 

order larger than the order of terms dropped for the perturbation analysis, so that any differences 

resulting from the two different variances may often be small. Hence, in this section Q and V. 
are often used interchangeably. Finally, note from the forms of (5-3)-(5-7) that the value of c, is 

unchanged by the redefinition .. 

A useful form for the <~orrection factor is given by ( 5-18) and can be developed as 
follows. When model intrinsic nonlinearity is small the expected value of S(O) can be obtained 

from (F -99) as 

1 1 

E(S(O)) ~ tr((I- R)ro2 Qro2 )a; (5-9) 

Now let 

1 1 

tr((I- R)ro2 Qro2 )a; = b(n -- ap)a; (5-10) 

where 

(5-11) 
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Then to evaluate a, (5-10) is used with (5-11) to yield 

1 1 1 I 

bap =bn-tr(ro 2 Qro2 )+tr(Rro2 Qro2 ) 

I I 

= tr(Rm 2 Qro2 ) (5-12) 

from which 

I I 

a= tr(R(m/ b) 2 Q(ro/ b) 2 )/p (5-13) 

Also 

1 I 

E(S(O.)) = tr(roQ)a; = tr(m2nm2 )a; = bna; (5-14) 

so that, for small model intrinsic nonlinearity, 

E(S(e.)- S(O)) ~ bna; - b(n- ap )a; = bapa; (5-15) 

From (5-4) and (5-10) using redefined correction factors 

(5-16) 

Similarly, from (5-6) and (5-12) 

2 2 4 b 2 4 pa& + r w(J' p + YIO'& = apa& + YIO'& (5-17) 

so that the correction factor can be written as 

(5-18) 

If the model intrinsic nonlinearity is negligible, then (5-18) becomes 

(5-19) 
n-ap 

Relation between the correction factor and spatial correlation. An approximation given 

by (5-20) can be used to illustrate the relation between the correction factor and spatial 

correlation. The approximation is based on replacing arbitrary positive definite matrix bm-I 
with bro -I, defined as a diagonal matrix composed of the diagonal elements of n. Then 

(ro/ b)I12 Q(ro/ b)I12 is similar to a correlation matrix. This matrix is approximated with the form 
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1 e c ... e 
1 1 

( & 1 b) 2 o.( & 1 b) 2 ~ e 
1 c ... e 

= (1-e)I +el (5-20) 

e e c ... 1 

where 0 :::; e :::; 1 so that significant spatial correlation from model error is assumed to be positive, 

and 1 is a matrix of ones. Equation (5-20) has the correct limits when 0. is diagonal and when 

all correlations implied in Q are unity. If L (I- R); is small (as is often the case and is easily 
checked for any particular model), then the; sum of any row or column ofR is approximately 

unity. This assumption yields the two useful results 

1 1 

R(rol b)2 o.(&l b)2 ~ (1-e)R + et (5-21) 

and 

1 1 

(I - :R )( & 1 b) 2 o.( & 1 b) 2 ~ o-e )(I - :R) (5-22) 

in which 

1 1 

:R = &2nr(nr'&Dr)-1 nr'&2 (5-23) 

Use of the approximation to investigate spatial correlation effects is based on replacement 

of ID with ro and use of(5-21) so that (5-13) becomes 

a = tr(R( ro I b) 2 0.( ro I b) 2 ) I p ~ 1- e +en I p (5-24) 

which gives 

n-ap~ (1-e)(n- p) (5-25) 

and 

ap ~(1-c)p+cn (5-26) 

Then expression of ( 5-18) and ( 5-19) in terms of e gives 

(1'; + (y w (1' ~ + r I (1': ) I p ( n - p )( (1- e) p + en + r I (1'; I b) 
e = ~ ---------'---

r a; +(fwa~ +fia:)l(n-- p) p((1-e)(n- p)+fia; /b) 
(5-27) 

and 
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(5-28) 

Equations (5-27) and (5-28) show the dependence of the ratio ((S(9.)- S(fJ))Ip) I ~(B)I(n- p)) 

on the spatial correlation from model error when a diagonal weight matrix is used. When 

positive correlation is large as indicated by a large value of c, the ratio becomes much larger than 

given by F(p,n- p). The large spatial correlation causes S(O) to be too small compared to 

S(9.)as indicated by a large value of a. (See (5-24).) This type ofbehavior is verified by 

synthetic examples, some of which are given in section 7. In the last section of appendix Fit is 

argued that use of ro should cause the ratio to be more nearly crF(p,n- p) distributed than use 

of arbitrary choices for ro. If Q and ro are unknown, then cr cannot be exactly evaluated for 

practical work, and a different technique given in the final part of this section can be used. 

Approximate evaluation of the co"ection factor. The component correction factor 

f 1a: is given by (G-1), appendix G, and (G-1) is evaluated in (G-2)-(G-7). Examination of 

(G-1)-(G-7) shows that f 1a: can be written in terms of (rol b)I 12 Q(rol b)I12 and b2a:. As for 

cr, f 1 cannot be evaluated exactly unless Q and ro are known. In the simplest case where 

bro -I is set equal to Q (for example, when spatial correlation is small enough to be ignored so 

that Q ~ boo -1 or when using Gauss-Markov estimation), ( ro I b) 112 Q( ro I b) 112 can be set equal to 

I, so that 

(5-29) 

where 

1 I I 

C; =(I- R); LroJro2Df(DfmDf)-I D2 f
1
(Df'roDf)-1Df'ro2 (5-30) 

J 

In all cases, from (F-65), y
1 
a: equals - y

1 
a:. In section 6, f 1a: is derived and investigated 

using general concepts of intrinsic nonlinearity. Finally, examination of(F-57) using (F-59) and 

(F-63) or (F-66) shows that substitution of ro for rol b does not change the confidence region or 

any of the confidence intervals. 

An estimate of bd;. Substitution of(5-29) into (5-27) gives a correction for model 

intrinsic nonlinearity in terms of bd;, which is unknown and so must be estimated. If model 

intrinsic nonlinearity is small, ba~ may be written using the combination of(5-9) and (5-10) as 

" 
ba 2 ~ E(S(O)) 

8 
n-ap (5-31) 

which has as an estimate 
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" 

8
2 = S(O) 

n-ap (5-32) 

Model intrinsic nonlinearity is rarely large (Seber and Wild, 1989, p. 136), so y1a: will often 

not be needed. 

Computation of a Scheffe interval when the weight matrix is known. As discussed 

earlier in this section, a Scheffe interval for g( ye.) is found from the maximum and minimum 

values of g(yO) over the confidence region. Vecchia and Cooley (1987, p. 1240-1241) argued 

that, if there are no maxima or minima of g(y9) within the confidence region that are more 

extreme than those on the boundary, the interval can be obtained by finding extreme values of 

g(y9) on the boundary ofth{~ confidence region. Christensen and Cooley (1999a, p. 816) gave a 

graphical proof that the intenral can be obtained using the method of Lagrange multipliers by 

finding extreme values of 

(5-33) 

where A, is the Lagrange mulltiplier. Cooley (1999, p. 118) argued that the assumption about 

existence of alternative maxirna and minima is almost nonrestrictive, and Christensen and 

Cooley (1999a, p. 812) show·ed that the assumption held for a field case. Numerical 

methodology for solution of(5-33) is given in Vecchia and Cooley (1987). 

Confidence region and Scheffe interval when the weight matrix is unknown. When the 

weight matrix is unknown, £(9) given by (4-50) should be the objective function instead of 

S(9). The analysis developed for the ro -known case can be used as an approximation when the 

weight matrix is unknown. This is shown as follows. For convenience let 

11· = y -f(y9.) (5-34) 

and 

f} = y -f(yf}) (5-35) 

Then, use of (D-9), appendix D, yields, through third order in 11• and ft, 

(5-36) 

where S(9) is defined using (4-47). From (F-55), appendix F, the right-hand side is 

approximately proportional to a chi squared random variable. However, to help compensate for 

the approximate nature of(5-36), a; is approximated with S(O)/(b(n-ap)) so that anFrandom 

variable may be used. This idea is developed as follows. Modification of(5-36) by using the 



52 A Theory for Modeling Ground-Water Flow in Heterogeneous Media 

approximation and the idea that b ~ 1 if the error groups adequately reflect the error structure 
results in: 

" 
£(9.)- f(B) ~(n-ap) S(9.)-: S(9) 

S(9) 

Then (5-1) gives 

(S(9~-S(B))/ P ~ n- P (£(9.)-f(B))r-.JcrF(p,n- p) 
S(9)/(n- p) p(n -ap) 

or 

£(9.)-f(B)"' p(n-ap) crF(p,n- p) 
n-p 

If model intrinsic nonlinearity is small so that ( 5-19) is approximately valid, then 

f(9.)- f(B) "' apF(p, n- p) 

so that an approximate confidence region is given by 

" f(9.) -£(9) ~ apFa(p,n- p) 

(5-37) 

(5-38) 

(5-39) 

(5-40) 

Because n - ap = 0 if a = nIp , a is bounded above by nip. In this case a very conservative 
confidence region is given by 

" f(9.) - f(9) ~ nFa (p, n - p) (5-41) 

A Scheffe interval based on (5-40) is computed by finding extreme values of 

L(9,J) = g(y9) +A-(apFa (p,n- p)- f(9) + f(B)) (5-42) 

Numerical methodology for computing a Scheffe interval from (5-42) is given in Cooley (1999). 

Development of Individual Confidence Intervals 

Statistical distribution and confidence interval when the weight matrix is known. 
Consider the distribution of (S(O)- S(O)) /(S(O) /(n- p )) , where 0 is a regression estimate that 

is constrained so that g( yO) = g( y9 *) . This regression estimate is derived in appendix E using 
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" 
the same methods as used to derive the unconstrained regression estimate e . In appendix F, e 
is used to derive the stated distribution using the same methods and assumptions as used for 
(5-1). The result is (F-57), which is repeated here in the form 
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S(O)- S(S) ~ F(1 _ ) 
" cc ,n p (5-43) 

S(8)/(n- p) 

where cc is a correction factor defined by (5-45). From (5-43) note that, by analogy with 

(5-2), 

(5-44) 

The maximum and minimum values of g( ye) over region ( 5-44) (termed a likelihood region) are 

the maximum and minimum values of g(y8) that could equal g(y8.) at probability level a. 
That these limits form a (1- a) x 100 percent individual confidence interval is shown graphically 

by Christensen and Cooley (1999b, p. 2637-2638). For further developments in this section note 
that F (1, n - p) = t 2 

( n - p) , vthere t( n - p) is the Student t random variable with n - p degrees 

of freedom. 

Correction factor. The correction factor is defined analogously to cr as 

where f wa~ and y1a: are defined by (5-4) and (5-5), respectively. From the definitions 

following (F-66), y wa~ and y1a: are defined for (5-45) as 

and 

(5-45) 

(5-46) 

(5-47) 

More detailed definitions based on the perturbation analysis are given by (F-67) and (F-68). 
Factor y wa~ corrects for the possibility that ro -I * V., and factor y1 a: corrects for model 

intrinsic nonlinearity and model combined intrinsic nonlinearity. 

As before, an expression analogous to, but more general than, (5-43) is analyzed in the 
last section of appendix F. The same conclusions as reached before, regarding use of Q instead 

of V. to improve the accurac:y of the correction factors, are again reached. 
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Approximate evaluation of the co"ection factor. To evaluate c c in terms of Q and ro , 

first note from (5-46) that 

l l 

2 2 4 1 Q' 2v 2Q 2 4 ae + rwap +riae = Q'Q ro .ro ae +riae (5-48) 

As indicated previously, up to the order of the perturbation approximations used, Q and V. may 

be used interchangeably. However, by using the definitions of V. and Q in (3-21) it can be 

seen that Q'ro112 (Q- V.)ro112Q ~ 0 so that Q'ro112Qro112Q ~ Q'ro112V.ro112Q. Thus, a larger 

value for (5-48) is 

(5-49) 

Correction factor cc is obtained by using (5-49) and the definition for f wa~ in (5-45) as 

I 1 

c = (n- p)(Q'(ro/ b)2 Q(ro/ b)2 Q + Q'Qria; /b) 

c Q'Q(n-ap+fia;lb) (5-50) 

When spatial correlation is small or Gauss-Markov estimation is used, fia; /b may be evaluated 

using (5-29). Computation of ria; /b is discussed in section 6. 
Relation between the correction factor and spatial co"elation. Equation (5-50) shows 

possible strong dependence of the ratio (S(O)- S(O))/(S(O)/(n- p)) on spatial correlation when 

ro = ro * bQ-1
• Expansion the form L(Qi -LQj ln) 2 leads to the relation 0 ~ Q'lQ ~ nQ'Q, 

where Q is Q using ro = ro . Therefore, if ~patial correlation were positive and large 

((ro/ b)112 Q{ro/ b)112 near 1) and if most entries in Q had the same sign, the numerator of cc 
could be large ifn were large, as is the numerator of cr from (5-27). However, unlike cr, cc 
could be small, even ifn and correlation were large, if Q'(ro/ b)112 Q(ro/ b)112 Q were small 

compared with Q'Q as could occur if entries in Q were fairly uniform and equally divided by 

sign. Component correction factor ria; /b defined for cc is for model combined intrinsic 

nonlinearity and so is less likely to be near zero than is ria; /b defined for cr. The former 

component correction factor is given as (G-8), appendix G, and is evaluated in (G-9), (G-11 ), (G-

14), (G-15), and (G-17)-(G-19). The final result is lengthy, but straightforward, and so is not 

given here. In section 6, ria: is investigated using general concepts of combined intrinsic 

nonlinearity. 

Computation of an individual confulence interval when the weight matrix is known. 
As discussed after (5-44), an individual confidence interval is found from the maximum and 

minimum values of g(y9) over the likelihood region, (5-44). If there are no maxima or minima 
of g( y9) more extreme than those on the boundary of ( 5-44 ), then an individual confidence 
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interval is calculated in the saJme manner as for the Scheffe interval. That is, an individual 

confidence interval is calculated from extreme values of 

S(O) A 

L(0,.-1) = g(y9)+..1(--cct~ 12 (n- p)-S(9)+S(9)) 
n-p 

where ta 12 (n- p) is the (1- a I 2) x 100 percentile of the t distribution, and 
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(5-51) 

t ~ 12 ( n - p) = Fa (1, n - p) . Numerical methodology is the same as used for a Scheffe interval. 
Individual confidence interval when the weight matrix is unknown. As for confidence 

regions and Scheffe intervals,. when the weights are unknown £(9) defined by ( 4-50) should be 

used in place of S(O). An analysis like the one given by (5-34)-(5-42) applies for the present 

case if Ti = Y -f(yO) replace:s 11. = Y -f(y9.). Thus, 

"' A 

£(0)- £(B) ~(n-ap) S(O) ~,S(O) 
S(O) 

so that, from (5-43), as an approximation 

"' " n-ap 2 £(9)- £(9),..., cJ (n -· p) 
n-p 

If model intrinsic nonlinearity is small, then cc is given by (5-50) so that (5-53) becomes 

1 1 

£(9)- f(i})- (Q'( rou 1 b)~~ roGI b )
2 

Q + y
1
a; I b)t2 (n- p) 

where ro is replaced by the diagonal matrix of m
0

k values, ro
0

• 

(5-52) 

(5-53) 

(5-54) 

Because ro
0 

and Q are assumed to be unknown, (5-54) cannot be directly used. A 
useful approximate bound for Q'( ro

0 
I b)112 Q(ro

0 
I bY 12 Q is obtained as follows. For 

convenience, temporarily let ( ro
0 

I b i'2 Q (ro0 I b Y12 = C . Then, if ro
0 

adequately approximates 

ro , diagonal entries of C are all approximately 1 's and off diagonal entries are all less than or 

equal to approximately 1 in magnitude. Assuming that all significant off-diagonal entries in C 
are positive, the approximate maximum magnitude of an entry of the row vector Q'C is given 

either by the sum of all positive values of Q; or the negative of the sum of all negative values of 
Q;. Let either sum be 'L Q; , where i(s) indicates the sum over all entries having the saJme sign. 

Then the approximate ~urn value that Q'CQ could have, V mx, is obtained as 

(5-55) 
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where the maximum overs (max(···)) indicates the maximum for either the sum over positive 

signs or the sum over negative ssigns. Finally, as an approximate bound 

1 1 

Q'( (j)G I b) 2 Q(roG I b) 2 Q vmx ---'"'---------"-''------ < --
Q'Q - Q'Q 

(5-56) 

Hamilton and Wiens (1987) and Cooley (1997) found that for the cases they studied 

y1 a; lb did not increase the size of a confidence interval more than about 6 percent, although 

Hamilton and Wiens ( 1987) found that y1 a; I b could decrease the size of a confidence interval 

as much as about 35 percent. Thus, an approximate, perhaps conservative, confidence interval 

can be computed by using (5-56) in (5-54), neglecting y1 a; lb, and finding extreme values of 

v ~ 
L(9,1L) = g(y9)+1L(Q~ t~ 12 (n- p)-£(9)+£(9)) (5-57) 

Detection of Combined Intrinsic Nonlinearity 

Analysis of weighted residuals to detect possible significant model and system types of 

intrinsic nonlinearity was discussed in section 4, where it was found that significant model and 

system types of intrinsic nonlinearity can be indicated by a slope of the plot of weighted 

residuals in relation to weighted function values that is significantly different than zero. It also 

was found that premultiplication of the weighted residual vector by R should yield a vector of 

nearly zero values if model intrinsic nonlinearity is small. Similar measures for model and 

system types of combined intrinsic nonlinearity are developed using a weighted constrained 

residual vector (I- QQ' IQ'Q)ro112 (Y- f(yO)) that equals the standard residual vector when 

model intrinsic nonlinearity and model combined intrinsic nonlinearity are both small. This is 

shown as follows. Use of(E-29), appendix E, yields 

(I - ~~ )ro ~ (Y - f ( yi))) 

:=::::(I- QQ' )(I- R + QQ')(ro~U +- rro~ (e'D2 f e- fD 2
/ T)) 

Q'Q Q'Q * 2 } } p } } 

-(1- QQ' )(R- QQ' )ro~Df(Df'roDf)-1 {rD2 rk T (j)k~z- D2gT-1-Q'ro~U.) 
Q'Q Q'Q k JJ Q'Q 

+ _!_(I - QQ') _g_ ( T'D2 g T - e'y(y'y) -I D2 g(y'y) -1 y' e) 
2 Q'Q Q'Q 

.!_ I .!_ ,..., ,..., 

=(I-R)(ro 2 U. +2"7ro](e'D~f1e-I'D
2f1 1)) 
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QQ' I 1 1 I 

- (R--)ro2 Df(Df'roDf)-I (rD2 .fk T rok2 z- D2gT-Q'ro2 u *) 
Q'Q k Jj Q'Q 

(5-58) 

Next (C-4) and (C-11), appendix C, show that the nonlinear model terms are small in magnitude 

if the model intrinsic nonlinearity and the model combined intrinsic nonlinearity are small. 

Finally, comparison of(5-58) with (4-23) shows that, in this instance, weighted constrained and 

standard weighted residuals are both approximately given by (I- R)(ro112U. +.!.. rro~ 2e'D~ J; e). 
If model intrinsic nonlinearity and model combined intrinsic nonlinearity

2 
ate both small, 

the sum of weighted constrained residuals should be nearly the same as the sum of weighted 

residuals, or 

L (1- QQ,) i ro ~ (Y - f ( yB)) ~~ L (I - R) i ( ro ~ U. + _!_ L rot e'D p2 
/ 1 e) ~ L ro 1 (Y - f ( y(})) 

i Q'Q i 2 j j 

(5-59) 

where (I- QQ' I Q'Q); is row i of I- QQ' I Q'Q. Additionally, if the weighted constrained 

residual vector is premultipli(~d by R, the result should be a vector of nearly zero values if the 

model combined intrinsic nonlinearity is small. Matrix R and vector Q can be computed for the 

test using the same set of parameters as used to compute R for the test applied to residuals. (See 

discussion in the paragraph £ollowing ( 4-44 ). ) 

The slope of the plot of weighted constrained residuals in relation to weighted function 

values ro~ 12f(ye) should not be significant if model and system types of intrinsic nonlinearity 

and model and system types of combined intrinsic nonlinearity are all small, as shown by the 

following development of(5·-62). (This development can be skipped if desired.) The slope is 

proportional to rro~ 12f(ye)(I-QQ' IQ'Q);roi 12 (Y -f(ye)) 
- rro}12f(ye)r(t -QQ' IQ'Q);ro112 (Y -f(ye))l n. Evaluation of the first term to second order 

usfug (E-5), (E-14), (E-28), and (5-58) results in 

1 QQ' 1 

rrolf(yO)(I --);ro2 (Y ·-f(yO)) 
j Q'Q 

I QQ' 1 1 

~ r(roff(ye.) + (R- --); (ro2u. + _!_ rroJ2 (e'D2pfj.e- T'D2 f}.T)) 
i Q'Q 2 j 

QQ' I 1 1 1 

+(R ---),.ro2Df(Df'roD:r)-I(rD2 -rk T ro~Z-D2gT-Q'ro2U.) 
Q'Q k }J Q'Q 

_ _!__
1
-Q;(T'D 2 g T -e'y(y'y)-1D 2g(y'y)-1y'e) + _!_ rmljl cT'D 2 f}.T -e'y(y'y)-I D 2 fl. (y'y)-Iy'e)) 

2 Q'Q 2 j 

1 I , 1 1 

•((I-R);(ro2u. +_!_rro-1~(E~'Dp2 / 1
-e- T'D2f

1
.T))-(R- QQ );ro2Df(Df'roDf)-I(rD2/kTro~Z 

2 j Q'Q k 

- D2gT-1-Q'ro~U )) 
Q'Q • 
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(5-60) 

Similarly evaluation of the second term yields 

1 QQ' 1 

L ro 1 f( ye )L (I - -); ro 2 (Y- f ( ye)) In 
i i Q'Q 

! ! 1 ! ,_ ,_ 
~ rrolf(y9.)~((1- R);(ro 2 U. + -

2 
rro] (e'D1f1e- I 'D2 

/ 1 I)) 
l l J 

QQ' 1 1 1 1 

-(R- Q'Q),ro2Df(Df'roDf)-'q:n2 ft. 1ro]Z- D2 gl Q'Q Q'ro2U.))/ n (5-61) 

Combination of(5-60) and (5-61) results in 

1 QQ' 1 1 QQ' 1 

L ro 1 f( ye )(I - -); ro 2 (Y - f ( ye)) - L ro 1 f ( ye )r (I - -); ro 2 (Y - f( ye)) In 
i Q'Q i i Q'Q 

~ rrolf(y9.)((1- R);(ro~U *+..!._LOll~ (e'D2p/;·e- T'D2 f].T)) -(R- QQ' );ro~Df(Df'roDf)-1 
i 2 j Q'Q 

1 1 1 1 1 

• (rD2 fk Tro%Z- D2g T-
1
-Q'ro2u .))- rro1f(y9.)r((I -R);(ro2u. +..!._ rroJ (e'D2p/je- T'D2 ~ T)) 

k Q'Q i i 2 j 

(5-62) 

When the model and system types of intrinsic nonlinearity and the model and system types of 

combined intrinsic nonlinearity are negligible, the slope is the slope for a linear model, which 

should not be significant. Note that in this case the expected value of the slope is zero. 

The constrained regression estimate 0 , which yields the constrained weighted residuals, 
is obtained with the constraint g(yO) = g(y9.). However, g(y9.) is unknown. Therefore, the 

confidence limits of g( y9.) must be used instead of g( y9.) ' and the necessary values of e are 

found by solving the appropriate extreme value problem, (5-51) or (5-57), depending on whether 

or not ro is known. Note that this gives two sets of constrained weighted residuals to analyze for 

each confidence interval, one set at each confidence limit. 

Development of Individual Prediction Intervals 

Forms for predicted variables, covariances, and sum of squared errors. A predicted 

observation is given by 
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where & P is a predicted observation error that is assumed to have the marginal normal 

distribution 

and ~Pa; = Var(cp). Equation (5-63) can be written in terms of a combined model and 

observation error, YP- g(ye.), by using (4-28) and (4-32) as follows. 

- -
YP = g(y{l.) + g(~)- g(yO) + g(yO)- g(y{l.) + & P 

= g(y8.) + D ge + _!_e'D 2 ge -- Dg (y'y)-1 y'e - _:e'y(y'y)-1 D2 g(yY)-1 y'e + & 
p 2 p 2 p 

= g(yO.) + u; + _!_e'(D~g- y(yt)-1 D2 g(yt)-1y')e 
2 

= g(y{l.) +v. 

where 

and 

59 

(5-63) 

(5-64) 

(5-65) 

(5-66) 

(5-67) 

The form for v. implkitly assumes that model errors e remain the same for predictions as 

they were for the original model. This should be true for errors in framework properties such as 

hydraulic conductivity, and is correct for all types of error if the prediction interval is used to 

bound a present value of g(f3) by setting ~P to zero. The form is an approximation for future 

values of hydrologic variables such as recharge and discharge. In fact, if the model errors for 

recharge and discharge were c~ontrolled mainly by transient processes, then there might be little 

to tie the original model errors for recharge and discharge to the predicted model errors for 

recharge and discharge. In this instance the two sets of errors could have the same mean and 

spatial covariance, but could be nearly independent of each other. This case is addressed by 

setting the appropriate covariances to zero as explained below. 

Assume & P and e to be independent, as are & and e. However, & P and & may be 

correlated, so let 

Also, let 

(5-68) 
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and 

Cov(U. ,u;) = E(D13 f(l- y(yt)-1y') e + &)(e'(l- Y(rY)-1y') D11 g' + sp) 

= D13 f(l- y(yt)-1y') V 11 (I- Y(rY)-1 y') D13 g'a~ + Ccpa; 

= cepO"~ + c&pO"~ = cp 0"~ 

(5-69) 

(5-70) 

where Cepa~ = D13 f(l- y(ri')-1y') V 11 (I- y(ri')-1y') D13 g'a~ and the covariance between U. 
and u; results because of(5-68) and because u. and u; involve the same model errors, e. If 

some of the model errors for the predictions were envisioned to be independent of the original 

model errors as discussed above, then these covariances could be set equal to zero. 
Addition of the predicted observation to the set of observations implies a corresponding 

augmented sum of squares function. For a Gauss-Markov type of estimation this would be of the 

following form (which neglects nonlinear terms in the covariance matrix because only the form 

ofthe matrix is of interest here). 

[Y-:(y9)J[;~ ~r[Y-:(y9)] 
= (Y -f(ye))'(V.-1 + v.-1cpc~ v.-1 /C)(Y -f(y8))-2(Y -f(y8))'V.-1Cpu/C 

+v 2 IC (5-71) 

where v = ~ - g(y8), C = ~ -C~ v.-1CP, and the augmented matrix was inverted by 
partitioning (Hohn, 1964, p. 108-1 09). In terms of a general weight matrix, the augmented sum 

of squares has the same form and is defined as 

Sa(B,v) = (Y -f(y8))'W(Y -f(y8))+2(Y -f(y8))'Wpv+~v2 (5-72) 

where W, WP, and WP compose a general, augmented weight matrix, Wa, defined by 

(5-73) 

Statistical distribution and prediction interval when the weight matrix is known. As for 

the statistical distribution used to define the individual confidence interval, derivation of the 

appropriate distribution to define a prediction interval involves minimizing the sum of squares 
subject to a constraint. In the present case the function to minimize is Sa (8, v) subject to the 

constraint g( y8) + v = ~ . The constrained parameter vector is therefore (8, v) . It is convenient 

to replace v with ~ - (}P , so that (}P is the new parameter. With this definition the augmented 
sum of squares becomes 
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Sa(9,Bp) = (Y -f(y9))'W(Y -f(y9))+ 2(Y -f(y9))'WP (~ -{}p) 

+ ~ (Yp- (}p)2 

Note from the relations v = ~. - g(y9) = ~ -{}P that 

61 

(5-74) 

(5-75) 

Equation (5-7 5) becomes the new constraint for the constrained regression. Special cases of 

( ~ 1~) are 0 p = g( yO) ' (}; = g( re.) ' and ~ = g( yO) . The constrained regression estimate 
(9,BP) is derived to second-order accuracy in appendix E. 

In appendix F the appropriate distribution to define a prediction interval is derived as 
(F-89), which is repeated hen~ in the form 

(5-76) 

where (B, OP) are unconstrait1ed regression estimates obtained by minimizing Sa(9,0P)and cP is 

a correction factor to be defined by (5-78). Equation (5-76) implies the likelihood region 

(5-77) 

Maximum and minimum values of g( y9) + v over the likelihood region are the maximum and 

minimum values that ~ could have at probability level a, which defines the prediction interval. 

Co"ection factor. The correction factor c P is defined as 

2 2 4 
a e + Y waa p + Y1acre 

c =--------------------
p 2 (f 2 " 4)/( ) ae + waa p + Y1aae n- P 

(5-78) 

where, from (F-91)-(F-95), appendix F, perturbation-based forms for the component correction 

factors are 

1 1 

f waa~ = (tr((Ia- Ra)W]V.a W])- n + p)a; (5-79) 

1 1 

Yia(j: = E(Sa(B,Op)) -tr((Ia- Ra)W]V.a wi )a; (5-80) 

(5-81) 
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and 

(5-82) 

In ( 5-79)-( 5-82), I a is the identity matrix of order n + 1 , 

I I 

Ra = W]Dafa(Daf;WaDafa)-1Daf;W] (5-83) 

I 

Qa = W]Dafa(Daf;WaDafa)-1D 0 h' (5-84) 

and 

(5-85) 

in which Dafa and Dah are augmented variables defined by (E-46) and (E-48), and 

(5-86) 

1 

As before, factors f waa~ and r waa~ correct for the possibility that wJ * v.a' and factors 
Y1aa: and y1aa: correct for model intrinsic nonlinearity and model combined intrinsic 
nonlinearity. 

An analysis of an expression analogous to, but more general than, (5-76) was performed 

using the same methods as used for individual confidence intervals. This analysis is omitted here 

because it is almost identical to the analysis for individual confidence intervals and reaches 

nearly identical conclusions. The only difference in conclusions is that the generalization of 

distribution (5-76) behaves even more like a (correctionfactor)x 12 (n- p) distribution than does 

the generalization of (5-43). 

Approximate evaluation of the co"ection factor. First the general augmented form of 

Q, Qa, is defined by 

n. = [ E(Yp- g(yO,))~ -f(yO,))' Ia; 

in which, using ( 5-65)-( 5-67) and ( 5-69), 

E(Y -f(y9.))(Yp- g(y9.))/a;] 

hm;1 
(5-87) 
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= vp +2_tr
2
((D; g -r(rt)-1y' n; gy(ri) -~' )Vp )a; I a~ 

4 

+ 2_tr(((D; g- y(yy)-1y' n; gy(rY) -~, )Vp ) 2 )a; I a~ 
2 
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(5-88) 

Second, the general weight matrix W a is replaced by a block diagonal weight matrix created by 
ignoring terms corresponding to the off-diagonal covariances between Y- f(y9.) and 
YP - g( y9.) . The general weight matrix ro replaces W and the general weight m P replaces Wp. 
Thus, the weight matrix is given by 

(5-89) 

Third, by analogy with ( 5-48) and ( 5-49), the numerator of c P becomes 

(5-90) 

where now 

1 

Qa = ro~Dafa(Daf~roaDafar-1 D0h' (5-91) 

Fourth, evaluation of Qa using (5-89), (E-48), and (E-56), appendix E, yields 

(5-92) 

Fifth, (5-90) is expressed using (5-87), (5-89), and (5-92) as 

(5-93) 

where C = E(Y -f(y9.))(J;,- g(y9.))1 a;. 
Evaluation of the denominator of c P uses the definition of Ra as 

Ra = ro~12 Dafa(Daf~roaDafa)-1 Daf;ro~ 2 • Then, from (5-89) and (E-56), appendix E, 
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R. = r:. ~ 1 (5-94) 

Evaluation off waa~ shows that 

1 1 

Ywaa~ =(tr((la -Ra)roiV.aroi)-n+ p)a; 
I I 

::;; (tr((la -Ra)roiOaroi)-n+ p)a; 
1 I 

=(tr((I-R)ro2nro2)-n+ p)a; 

(5-95) 

The component correction factor and, therefore, the form of the denominator for c P are the same 

as for cr and cc. Finally, c P can be expressed as 

where, as shown in appendix G, f 1aa; = y1a;. Component correction factor y1aa: is evaluated 

in (G-31 )-(G-42), appendix G. The result is lengthy and is not given here. In section 6, r Iaa: is 

investigated using general concepts of combined intrinsic nonlinearity. When spatial correlation 

is small or Gauss-Markov estimation is used, f 1a; may be evaluated using (5-29). 
The relation between the co"ectionfactor and spatial correlation. Although (5-96) 

shows dependence of the ratio (Sa(O,BP)- Sa(B,BP))/(Sa(O,BP)/(n- p)) on spatial correlation, 
the dependence is less than that displayed by (5-50) because of terms involving m;I. In fact, if 
mp = wp and m;1 >> Q'Q, then from (G-46), appendix G, y1aa; ~ 0, and, letting 

n - ap = (1- c)( n - p) , 

1 
c ~--------

p 1-c+y1a;/(b(n-p)) 

Furthermore, because f 1a; I b is usually small, 

1 
c ~-­

p 1-c 

(5-97) 

(5-98) 

which, unlike cc, has no dependence on n. Behavior of prediction intervals when m;I >> Q'Q 
is analyzed further later in this section. 

Computation of a prediction interval when the weight matrix is known and is block 
" " diagonal. When w a = ro a' (5-7 4 ), written in terms of estimates 9 and (} p ' reduces to 
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(5-99) 

~ ~ 

so that 9 is the standard regression estimate obtained by minimizing S(9), and (}P = YP. 

Therefore, when wa =IDa, Sa(B,Op) = S(O). Similarly, when wa =IDa, Sa(9,v) from (5-72) 
reduces to 

sa (9, v) = s (9) + OJ pv 2 (5-100) 

which is more convenient than Sa(9,(}P) for calculating prediction intervals. Finally, because 

the prediction limits are the rnaximum and minimum limits (extreme values) of g( y9) + v over 

the likelihood region ( 5-77), a prediction interval can be computed under the same assumptions 
as used for (5-51) from the extreme values of 

s~ ~ 
L(9,v,A.) = g(y9)+v+A.(--~ -cPt~12 (n- p)-S(9)-mpv 2 +S(9)) 

n-- p 
(5-101) 

Numerical methodology for finding the extreme values is given by Vecchia and Cooley (1987). 

Often the second mornent of YP- g(y9.) will be known rather than the weight mp. This 
second moment is given by o.~; 1ba;, so (5-100) would be written incorporating it as 

(5-102) 

Variance ba; is unknown. Christensen and Cooley (1999b, p. 2629) argued that replacement of 

ba; with its estimate s 2 (given by (5-32)) should lead to a slightly conservative prediction 

interval. Thus, when m; 1 b a; is known, the prediction interval should be computed from 

(5-1 03) 

The estimated weight (mP/(ba;))s 2 simply replaces the known, general weight mP in (5-101) 

when making the calculations. 
Approximate prediction interval when the predicted error predominates. With the 

above background, the approximate form for a prediction interval for the fairly common case 
where OJP = mp and m;1 >> Q'Q can now be developed. The development utilizes linearized 

models for f( y9) and g( y9), but the interval also will be shown to apply for nonlinear models. 
The linearized models are obtained as Taylor series expansions about y9 that retain only the 

first-order terms rather than both the first- and second-order terms as previously done. This 
yields 

- -
f(y9) ~ f(y9) + Df(9- 9) (5-104) 
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and 

- -
g(yO) R: g(y9) + Dg(9- 9) (5-105) 

As shown in appendix H, insertion of(5-104) and (5-105) into (5-101) followed by solution of 

the extreme value problem gives the limits of g(yO) + v = YP as 

which has the form of a standard linear prediction interval (Seber and Wild, 1989, p. 193). 
When OJP = UJP and m;l >> Q'Q, (5-32), (5-98), and (5-106) Can be COmbined tO Obtain 

I 

YP = g(yO)±ta12 (n- p)(m;1s 2
)
2 

(5-106) 

(5-107) 

Ifthe variance m;1ba; is known, then (mp l(ba;))s2 should replace weight wp so that m;1ba; 
1 "-1 2 rep aces OJP s . 

Equation (5-106) also applies for nonlinear models when values of y1a; and y1aa; are 
both small in magnitude. This is because model intrinsic nonlinearity and model combined 
intrinsic nonlinearity are both small so that an equation of the form of(5-106) could have been 

derived using parameters + for which the models are nearly linear. Since Q'Q and g(yO) are 
both invariant under transformation of parameters, (5-1 06) is valid for nonlinear models 

g(yO)and f(yS). This analysis also applies to (5-107) when m;1 >> Q'Q. Equation (5-107) 

implies that the variance of g(y9.)- g(yO) is small compared to the variance of YP- g(y9.) 

because m;1 s 2 is the estimated variance of yp - g(y9.)' but (5-107) implies that 

(Yp- g(y0))/(m;1s 2
)

112 has an approximate t(n- p) distribution. 
An important COnclusion tO be drawn from (5-107) iS that, if OJP = aJP and m;1 >> Q'Q, 

the effects of spatial correlation are contained almost wholly in the estimates g(yO) and s 2 

when mP is known and in the estimate g(yO) when m;1ba; is known. In the latter case spatial 
correlation has negligible effect on width of the prediction interval. 

Testing prediction intervals for accuracy. Christensen and Cooley (1999b) showed that 

general prediction intervals can be tested for overall accuracy using a cross-validation procedure 

whereby Y values are withdrawn from the data set Y and predicted using prediction intervals one 
(or a few) at a time. The percentage of Y values that should be contained in their prediction 
intervals at probability a can be determined and compared with the actual number of Yvalues 
that are contained in their prediction intervals. This procedure should test primarily for the 
possibility that one or more correction factors c P should be larger than the values used. In the 

two field cases that Christensen and Cooley (1999b) studied, values of c P were implicitly 
assumed to be unity, and no evidence was found to indicate that the prediction intervals were too 
small. Christensen and Cooley (1999b) also used new data to test the prediction intervals and 

again found no evidence to indicate that they were too small. 
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Prediction interval when the weight matrix is unknown. When the weight matrix is 

unknown, an extension of £(9) can be used instead of Sa {9, {) P) • Two separate formulations are 

used depending on whether YP is contained in one of the q error groups or not. Both 

formulations lead to approxintations of(5-76). If YP is contained in one ofthe error groups, for 

example groupj, then the augmented form fa(O,v) is defined by 

(5-108) 

where 8k1 is the Kronecker delta defined by (A-3), appendix A. If YP is not in an error group, 

then an equation like (5-108) would involve a separate error group and term ln(v 2
), which has a 

value of negative infinity when v is zero (such as, for example, when v = v). This problem is 

eliminated by defining fa(O,v) when v is not in an error group as 

" 
OJP 2 f 0 (9,v) = £(9) +-

2 
V 

bae 
(5-109) 

Where W ;I ba; is presumed tO be known. 

If YP is contained in one of the error groups, then expansion of (5-1 08) using the same 

ideas as employed in appendiK D yields 

,....._, " 1 ,....., " 
fa (9,v)- fa (9,v) ~ -

2 
{S(H) + mG.fJ2 - S(9)) 

a rJ 
E 

(5-110) 

where v = 0 and mG1 replac(~s m P. Next, substitution of S(B)I(n- ap) for a; as was done to 

obtain (5-37) results in 

(5-111) 

If YP is not in an error group, then estimation of mP /(ba;) with (n- ap)mp I S(B) in (5-109) 

and use of (5-52) shows that 

(5-112) 

Use of(5-111) or (5-·112) with (5-76) results in the approximate distribution 

(5-113) 
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If model intrinsic nonlinearity is small, then c P can be simplified so that (5-113) can be written 

(5-114) 

where, as in (5-54), roa replaces & , and, if YP is in an error group, m;I = m~; and, if YP is not 
. -I "-I 
m an error group, m P = m P • 

Matrices Q and roa are assumed to be unknown, so the numerator of the correction 

factor must be approximately bounded with a form like (5-56). The same arg.ument as use4 to 
- -

obtain (5-55) may be used for the numerator written in the form Q'a(roGa I b)2 Qa (roGa I b) 2 Qa 

(where roaa is roa augmented with mP) to obtain 

(5-115) 

Use of(5-92) to evaluate (5-115) yields 

v mxa = v mx for a sum of positive values ) 
I I 

V mxa = V mx + 2m ~l V Ix + OJ ;I for a Sum Of negative values 
(5-116) 

As an approximate bound 

I I 
- -

Q'a (roGa I b)2 Qa (roGa I b)2 Qa < V mxa 

Q'Q + m;I - Q'Q + m;I 
(5-117) 

As for (5-57), r Iaa; I b probably will not increase the width of a prediction interval 
significantly. Therefore ( 5-114) and ( 5-117) can be used to compute an approximate prediction 

interval by finding extreme values of 

(5-118) 

where either (5-108) or (5-109) is used to compute f a(B,u) and f 0 (0,v). Note that because of 
the logarithmic form off a(B,u), solution of(5-118) is always a nonlinear problem, even if 
g(y9) and f(y9) are both linear. This also applies to (5-57). 
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Summary of Principal Results 

Results of section 4 indicate how accurate an average estimate of e., f(ye.), f((3), 
g( ye.) , or g((3) (or some future measurement of g((3)) might be, but do not indicate either 
precision of the estimates or how close a specific estimate might be to the value it estimates. 

These uncertainties are addressed in this section through confidence regions, confidence 
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intervals, and prediction intervals. A joint confidence region for all parameters (referred to here 

simply as a confidence region) is a usually closed but possibly open region around e that has a 

specified probability 1-a of containing the true (as opposed to estimated) parameter set e .. As 

used here, it differs from a classical confidence region in that e. is stochastic rather than fixed. 
A Scheffe-type confidence interval for g( ye.) is derived from a confidence region as the 

maximum and minimum limits of g( ye) over the confidence region. This interval is 

simultaneous in that g(ye.) lies within its Scheffe interval with probability 1-a while all other 

linearizable functions of e. lie within their Scheffe intervals with the same probability. (The 
limitation to linearizable functions eliminates pathologic functions of e. to which the theory 

developed here does not apply.) An individual confidence interval for g(y8.) is a usually 
closed but possibly open interval around g(yB) that contains g(y9.) with specified probability 

1 - a . It is not simultaneous;; it applies only to the selected function so that a fraction a of all 

individual confidence intervals for linearizable functions of e * will not contain their respective 
functions of e •. Again, as used here, the individual confidence interval differs from the classical 

one in that e. is stochastic rather than fixed. Finally, an individual prediction interval for some 

future observation YP of g(f3) is a usually closed but possibly open interval around g(y{)) that 
contains YP with specified probability 1 - a . 

The approximate contidence region given by (5-2) is derived by a combination second­
order Taylor series and perturbation method that formally assumes model and observation error 

variances to be small, with the model-error variance Var(D pfe) being much smaller than the 
observation-error variance Var(&). However, a different method is used to show that 

approximate validity also holds when the variances are not small. The confidence region is 
defined using the standard upper a point of the F random variable for the sum of squares ratio 

((S(e.) -S(S))/ p)/(S(B)/(n- p)) and applies for nonlinear models f(y9) and f((3) and an 

arbitrary weight matrix ro. Equation (5-2) contains a correction factor cr that is defined by 
(5-3) and corrects for both m -1 not being proportional to E (Y - f ( ye. ) )(Y - f ( ye.))' and 

nonzero model intrinsic nonlinearity. Matrix E(Y- f( ye. )){Y- f( ye. ))' would have to be 

known to exactly calculate cr. An approximation given by (5-20) is used to illustrate the effect 
of correlations implied by the:~ matrix. The resulting approximation for cr is given by (5-27) and 

uses a diagonal weight matrix ro oc [ E ( Y; - /; ( ye. ) ) 2 r 1 and a constant effective spatial 
correlation c. The approximate form for cr shows that when positive spatial correlation from 
model error is significant, a c:onfidence region and Scheffe interval would be too small without 

using cr. This results primarily because S(S) is too small compared to S(e.). Sum of squares 

S(S) does not measure the systematic variation ofY from f(y9.) that is caused by the spatial 
correlation. 
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A Scheffe interval for g( ye.) is computed by finding the limits of g( ye) over the 

confidence region. If there are no maxima or minima of g(y{}) within the confidence region that 

are more extreme than those on the boundary, then the computation can be made using a 

Lagrange multiplier formulation given by (5-33) that yields limits of g(y{}) on the boundary of 

the confidence region. 

When the weight matrix is unknown, £(9) should be used instead of S(9)to describe the 

confidence region. An analysis shows that an approximate confidence region and Scheffe 

interval based on £(9) can be constructed using the theory developed for the case where the 

weight matrix is known. The confidence region is given by ( 5-41 ), and the Lagrange multiplier 

formulation for a Scheffe interval is given by (5-42). 

An individual confidence interval is computed using methods analogous to those used to 

compute a Scheffe interval. In this report a region defined by (5-44), analogous to a confidence 

region, is constructed from the ratio (S(e)- S(B))/(S(B)I(n- p)), where 9 is a regression 

estimate that is constrained so that g(yO) = g(y{}.). The region is defined using the square of 

the standard upper a I 2 point of the Student t random variable and a correction factor c c that is 

analogous to cr. Maximum and minimum limits of g(y{}) over the region, termed a likelihood 

region, form the confidence interval. Correction factor cc, which is defined by (5-45), corrects 

for ro-1 not being proportional to E(Y -f(y{}.))(Y -f(y9.))', model intrinsic nonlinearity, and 

model combined intrinsic nonlinearity. Spatial correlation can cause cc to be large. However, 

cc also can be near unity (no correction) even if spatial correlation is large, as shown by the 

analysis following (5-50). 

When the weight matrix is known, the Lagrange multiplier formulation for finding the 

limits of g(y{}) is given by (5-51). When the weight matrix is unknown, the theory developed 

for when the weight matrix is known is again used to obtain an approximate likelihood region 

and Lagrange multiplier formulation based on £(9) instead of S(9). The Lagrange multiplier 

formulation is given by (5-57), which is written in terms of an approximate bound developed for 

the correction factor that is needed when the weight matrix is unknown. 

Model and system types of combined intrinsic nonlinearity might be detected by 

analyzing the weighted residuals obtained from the constrained regression. The analysis is 

analogous to the analysis of standard weighted residuals used to detect model and system types 

of intrinsic nonlinearity. The components ofthe product ofR and the weighted constrained 

residual vector (I - QQ' I Q 'Q)ro 112 (Y - f( yO)) defined by ( 5-58) will not necessarily be 

approximately zero if the model combined intrinsic nonlinearity is significant, and the plot of the 

components of the weighted constrained residual vector in relation to components of the 

weighted function vector ro112f(y0) may exhibit a significantly nonzero slope if model and 

system types of intrinsic nonlinearity and model and system types of combined intrinsic 

nonlinearity are significant. 

A prediction interval is derived using a regression that is constrained so that 

g(yO) + v = YP, where v is the predicted error and (O,v) is the constrained parameter vector. 

The constrained regression estimate is obtained by constrained minimization of a sum of squares 

function that is augmented by including terms resulting from the predicted error v . The 
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augmented problem is comple:tely analogous to the problem for individual confidence intervals 

except in the augmented case there is one more parameter and one more observation. Correction 

factor c P, which is analogous to cc, corrects for the possibility that W;1
, the inverse of the 

augmented weight matrix, is not proportional to E (Y - f ( y9.) )(Y - f ( y9.) )' (augmented to 

include products involving tht~ predicted error) and for model intrinsic, and model combined 

intrinsic, nonlinearity. An approximation for cP is derived by defining ro~1 as a block diagonal 

matrix with ro and a general prediction weight OJ P forming the diagonal blocks. Analysis of c P 

as given by ( 5-96) shows that spatial correlation can cause c P to be large, but that, in general, c P 

should be less dependent on spatial correlation than c c • A cross-validation method developed by 

Christensen and Cooley (1999b) can be used to test the possibility that one or more values of c P 

are too small. 

When the weight matrix is known, the usual Lagrange multiplier formulation, augmented 

to include the predicted error:, is used to compute limits of the prediction interval. This is given 

by (5-1 01 ). If the model intrinsic and model combined intrinsic types of nonlinearity are small, 
then (5-1 06), which has the fi)rm of a standard linear prediction interval, may be used instead of 

(5-1 01 ). When the weight matrix is unknown, augmented forms, £a (9, v), of £(9) are used for 

the prediction interval. The {iorm of £a (9, v) depends on whether the prediction is contained in 

one of the q error groups or not. If it is, £ a(9, v) is given by (5-108) and if it is not £ a(9, v) is 

given by (5-109). Approximate theory based on the weight-matrix-known case is used to obtain 

the Lagrange multiplier formulation given by ( 5-118), which applies to both forms of £a (9, v) . 
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6. Further Analysis of Intrinsic Nonlinearity and Combined 
Intrinsic Nonlinearity 

As shown in Section 5, the Fa value for confidence regions, and the t a 12 value for 

confidence and prediction intervals, have to be adjusted with correction factors because the F 
and t distributions do not approximate the actual distributions of the pertinent variables well 

when ro-1 
::f:. Q and when model and system types of intrinsic nonlinearity and model and system 

types of combined intrinsic nonlinearity are significant. The correction factors are derived in 

appendix F using the combined Taylor series and perturbation method and are evaluated in 

appendix G. The correction factors for ro -I ::f:. Q are further investigated without using the 

Taylor series and perturbation method in the last section of appendix F where the original 

assumptions for the method are shown to be overly restrictive if the correction factors are 

redefined in terms of Q rather than V. . In the present section the analysis of the correction 

factors for model and system types of intrinsic nonlinearity and model and system types of 

combined intrinsic nonlinearity is continued. 

Analysis of Intrinsic Nonlinearity 

General forms for component correction factors. To begin the analysis, the residual 

vector is expanded as the sum of a vector of the form of the linear-model residual vector and two 

components that will be shown to be functions of model intrinsic nonlinearity: 

+ ro-2 Rro 2 (Y- f(ye)) (6-1) 

use of linear model (5-1 04) labeled fo ( y9)' where e = e. and e = 9 ' facilitates showing that the 

second term on the right-hand side is a function of model intrinsic nonlinearity. With these 

relations and the relation (I - R )ro 112 Df = 0 , ( 6-1) can be written 

Y- f(y(}) = ro 2 (I- R)ro 2 (Y- f(y9. )) + ro 2 (I- R)ro 2 (f(y9.)- f0 (y9.)- f(y(}) + f0 (ye)) 

+ ro- 2 Rro 2 (Y- f(ye)) (6-2) 

In appendix I the last two terms on the right-hand side of(6-1) or (6-2) are shown to be zero if 
the model intrinsic nonlinearity is zero. The effects of system intrinsic nonlinearity are 

contained solely in the error vector ro -II 
2 (I - R )ro II 

2 (Y - f ( y9 *)) in which Y - f (yO*) = U * + d , 

where d = f (13) - f0 (13) - f (yO*) + f0 ( y9 *) ( (F -103 ), appendix F). The intrinsic system 

nonlinearity is small if ro -112 (I- R)ro112d is small, which is shown in (F-1 04)-(F-1 08). These 
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analyses are accomplished without using perturbation approximations. Equation (6-2) also is 

shown in appendix I to correspond to the perturbation form given by (B-12), appendix B. 

Component correction factors fia: and ria: for cr can be expressed in terms of Q 

rather than V. by using (6-2) in (F-134) and (F-136), appendix F: 

1 1 

fia; = E(S(O)- (Y- f(y9. ))'ro2 (I- R)ro2 (Y- f(y9.))) 

= 2E(f(y9.)- f0 (yS.)- f(yO) + f0 (y0))'ro 2 (I- R)ro 2 (Y- f(y9. )) 

(6-3) 

1 1 

ria;= E(S(9.)-S(O)-(Y --f(y9.))'ro2Rro2(Y -f(y9.))) 

= -E(S(O)-(Y -f(y9.))'ro 2 (1-R)ro 2 (Y -f(y9.))) 

(6-4) 

Equations (6-3) and (6-4) substantiate that the component correction factors are a direct function 

of the degree of model intrinsic nonlinearity, but do not correct for system intrinsic nonlinearity. 
Approximations and approximate bounds for component correction factors. Analysis 

of the terms on the right-hand side of(6-3) would be very difficult in general. An approximate 

analysis can be made for Gauss-Markov estimation using the assumptions adopted for the 

perturbation analysis together with the additional assumption that ro-1 = V. ~ Q. The 
approximation for fia; is given by (6-9) using the following development. In appendix I the 

three terms on the right-hand side of(6-3) are evaluated using the above assumptions as 
(6-5)-(6-7): 

~ -2 2,tr(CJ)a; = -2pa; 
i 

(6-5) 

E(f(y9.)- f0 (yS.)- f(yO) + f'0 (yO))'ro 2 (I- R)ro 2 (f(y9.)- f0 (y{}.)- f(yO) + f 0 (yO)) 

(6-6) 

~ 2-tr(CJ)a; = pa; (6-7) 
I 
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Variables a and p are as defined by Johansen (1983, p. 183-184), and C; is defined by (G-3), 
which is 

1 1 1 

C; =(I- R); L roJ ro2 Df(Df'roDf)-1 D 2 f
1 
(DfmDf)-1 Df'ro2 

1 
(6-8) 

From (6-3) and (6-5)-(6-7) 

1 4 =-(a-4p)a 
4 & 

(6-9) 

Following Johansen (1983, p. 184), bounds for f 1 can be developed from a and p. 
1 

From (6-6) and (6-7) a= 2p + tr 2 (C;) so that a~ 2p or pI a~-. Also, because tr(C;) ~ 0, 
PIa~ 0, so that 0 ~pI a~_!_. Finally, because f 1 can be written2as 

2 

(6-10) 

it follows that 

(6-11) 

Equations (6-11) and (I-12), appendix I, indicate that f 1a; is bounded by 

1 1 

± -
4

1 E(~ I'.D2
/; l.rol (I- R)~ ro J I~D 2 

/ 1 I.) 
1 1 

~ ±E{f(y{)0 ) -f0 (yG0 ))'ro
2 (I- R)ro 2 (f(y00 ) -f0 (y{) 0 )) (6-12) 

where 00 = 9. +I. and I. is defined by (F-5). The ideas of(I-1)-(I-5) also allow the bounds to 
be written as 

1 1 

± E(f(yG0 )- f0 (yG0 ))'ro2 (I- R)ro2 (f(yG0 )- f0 (yG0 )) 

= ±E(f(yG0 ) -f0 (yG0 )- Df\jl)'ro(f(yG0 ) -f0 (yG
0
)- Df\jl) (6-13) 

where 

(6-14) 
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The analysis ofbounds and the development leading to (6-12)-(6-14) are very similar to 

the original development of the concepts of model intrinsic nonlinearity given by Beale (1960). 

In fact, Johansen ( 1983, p. 178) scaled ( 6-12) to define a measure of model intrinsic nonlinearity 

from Beale ( 1960, p. 59) as (in the notation used in this report) 

(6-15) 

where 

(p + 2)a; = E(I:Df'roDfl. )2 I per; (6-16) 

This measure, which is directly proportional to the bounds, is a scaled measure of the sum of 

squared weighted discrepancies between linear ( f 0 ( ye( ~ 0 ))) and nonlinear (f ( ye( + 0 ))) model 

results when the models are written in terms of best-transformation parameters cj». The reasons 

for the scaling ((p + 2)a;) are explained by Beale (1960, p. 54-59). 

Evaluation of approximate bounds. If 0 is a good estimate of e., then 

lr(ye.)- f 0 (ye.)- f(yO) + f0 (yS)I < lr(y9)- f0 (yO)I so that f 1a: as defined by (6-9) could be 
greater in magnitude than f

1
o·: as defined without the perturbation approximations by (6-3), 

assuming G is the same for both. In this case, the bounds for (6-9) given by (6-12) or (6-13) 

could bound (6-3) as well. If Q and a; were known, then one possibility for computing (6-12) 

would be to evaluate it directly from (6-6). However, computer codes are not available for 

computing the required second derivative matrices for most ground-water models. Another 

possibility is to use Monte Carlo simulations of the right-hand side of(6-12) in which as an 
approximation I. ""N(O, (Df'roDf)-1 Df'ro112 (ro/ b )112 Q(ro/ b )112 ro112Df(Df'roDf)-1 ba;). In 

most cases ba; is unknown, so that its estimate s 2 must be substituted in the calculations. 

Similarly, e. also is unknown, so that the estimate 0 must be substituted for e., and 00 must 

now be computed as G + I. , where 9 is fixed during the Monte Carlo simulations. In this case, 

the Monte Carlo method is a type of percentile bootstrap method (Efron, 1982, p. 78-84). If Q 

is unknown, then (6-12) cannot be approximated using the correct distribution for 90 • In this 

case the importance of intrinsic nonlinearity is gaged by an empirical measure described later in 

this section. 

Analysis of Combined Intrinsic Nonlinearity for Confidence Intervals 

General forms for component correction factors. As before, expansion of the 

constrained residual vector yic~lds an identity, the right-hand side of which is the sum of a vector 

having the form of the linear-1nodel constrained residual vector and two components that will be 

shown to be functions of model combined intrinsic nonlinearity: 
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1 QQ' 1 1 QQ' 1 
y- f(yG) =ro -2 (I- R + -)ro2 (Y- f(y9. )) +ro -2 (I- R + -)ro2 (f( y9.)- f(yG)) 

Q'Q Q'Q 

1 QQ' 1 

+ro 2 (R--)ro 2 (Y-f(y9)) 
Q'Q 

(6-17) 

The second term on the right-hand side is a function of model combined intrinsic nonlinearity. 

The equation needed to show this is obtained by expanding (6-17) using the idea used to obtain 

(6-2), along with the constraint g(y9.) = g(yO) and the relation 

QQ' ro~ (f
0 
(y9.)- f

0 
(yG)) =_g_Dg(DfroDf)-IDfroDf(9.- G) 

Q'Q Q'Q 
Q ~ Q ~ 

=-Dg(9. -9) =-(g0 (y9.)-g0 (y9)) 
Q'Q Q'Q 

(6-18) 

where g 0 ( y9) is linear model (5-1 05). The equation needed is 

1 QQ' I 1 1 

Y- f(yij) =ro- 2 (I- R + Q'Q)m' (Y -f(y9. )) +ro-2 (I- R)ro2 (f( y9,) -f0 (y9,) 

1 QQ' 1 1 QQ' 1 
-f(yG)+f

0
(yG))+ro-2(R __ \ro2(y -f(yG))+ro-2 -ro2 (f(y9.)-f(yG)) 

Q'Q' Q'Q 

-ro-l ci~ ro~ (f0 (y9.)- f 0 (y9)) +ro-~ Q~ (go(y9,)- g 0 (y9)) 

_ _!_ Q ~ 
-ro 2 Q'Q (g(y9.)- g(y9)) 

1 QQ' I I QQ' 1 

=ro 2 (I-R + Q'dro2 (Y -f(y9.))+ro 2 (I-R + Q'dro2 (f(y9.)-f0 {y9.)-f(y9)+f0 (y9)) 

_ _!_ Q ~ ~ _ _!_ QQ' _!_ ~ 
-ro 2 Q'Q (g(y9.)-g0(y9.)-g(y9)+g0 {y9))+ro 2 (R- Q'Q1o 2 (Y -f(y9)) (6-19) 

In appendix I all terms on the right-hand side of(6-17) or (6-19) except the first term are shown 

to be zero if the model combined intrinsic nonlinearity is zero. This is accomplished using an 

extension of the argument used for (6-2). As before, the system intrinsic nonlinearity is 

contained in the error vector ro- 112{I- R)ro I12(Y- f(y9.)). If ro- 112 (I- R)ro112d is small, the 

system intrinsic nonlinearity is small. Equation ( 6-19) also is shown in appendix I to correspond 

to the perturbation form (E-29), appendix E. 

The component correction factor r 1a; pertaining to an individual confidence interval 

can be expressed in terms of Q by using (6-19) in (F-147) to obtain 
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l QQ' l 

r 1a&4 = E(S(i})- S(O)- (Y- f(yO. ))' ro2 -ro2 (Y- f( y9. ))) 
Q'Q 

l QQ' l 

= E(S(B)- (Y- f(yO.))'ro2 (l- R + Q'Q)ro2 (Y- f(yO.)))- y1a: 
1 

= 2E((f(y0.)- f0 (yO.)- f(yfi) + f0 (yO))'ro2 - (g( y9.)- g 0 (yO.)- g(yO) 

+ g0 (y{))) Q~J(I- R + ~~Jo~ (Y -f(yG. )) + E((f(yG.) -f0 (y9.) -f(y9) 

~ _!_ ~ ~ Q' QQ' 
+f0 (y9))'ro 2 -(g(y9.)- g 0 (y9.)- g(y9) + g 0 (y9)) Q'Q)(I- R + Q'Q) 

1 

• (ro 2 (f(yG.) -f0 (y9.) -r(y{)) + f0 (y9))- Q~ (g( yO.)- g 0 (yO.)- g(y9) 

1 QQ' 1 

+ g 0 (y{j)))+ E(Y -f(y{j))'ro2 (R- Q'Q)'o2 (Y -f(y{j))- f 1u: (6-20) 

Equation (6-20) substantiates that the component correction factor is a direct function of the 
degree of model combined intrinsic nonlinearity, but does not correct for system combined 
intrinsic nonlinearity. 

Approximations and approximate bounds for component correction factors. As before, 
an approximate analysis for Gfauss-Markov estimation uses the assumptions from perturbation 
analysis and the additional assumption that ro-1 = V. ~ Q. The approximation for y 1a: is given 
by (6-27) using the following development. In appendix I the three terms on the right-hand side 
of(6-20) are evaluated as (6-21)-(6-23): 

1 

2E((f(y9.)- f0 (y9.)- f(yO) + f0 (yO))'ro2 - (g(yO.)- g 0 (y9.)- g(yO) 

+ g 0 (y{j)) Q~~)(I- R+ ~~)ro1(Y -f(yG.)) 

1 1 QQ' 1 

~ -2L.tr(C;)a: + 2E(L. ro~ zT:D2
/; (DfroDf)-1Dfffi2 (R ---)ro2Df 

i i Q'Q 
1 

• (DfiDDf)-1D2gT. Q~Q Q'ro~U.) (6-21) 

~ ~ _!_ ~ ~ Q' 
E((f(y9.) -f0 (y9.) -f(y9) + f0 (y9))'ro 2 

- (g(y9.)- g 0 (y9.)- g(y9) + g 0 (y0)) Q'Q)(I- R 

+ ~~)(ro~ (f(y9.) -f0 (y9.) -f(y9) +f0 (y{)))-Q~ (g(y9.)- g 0 (y9.)- g(y{l) + go(y{j))) 

1 2 ~ 4 1 ~2 4 1 ,...._ ~ 4 ,...._ ,...._ 4 
~-L.tr (C; )a&+- I. tr (C; )a& --I. tr(C ;)tr(F;)a& - L tr(C ;F; )a& 

4 i 2 i 2 i i 
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I QQ' I 

E(Y- f(yO))'ro2 (R --)ro2 (Y -f(yO)) 
Q'Q 

~ L tr( c; )a: + L tr(F;2 )a: 
i i 

where ci' F;, and A are defined by (G-10), (G-12), and (G-13), appendix G, respectively, 
which are (6-24)-(6-26): 

C. =(1-R+ QQ').Lro±(R- QQ')ro±Df(DfroDf)-ID2f.(DfroDf)-IDf'ro~(R- QQ') (6-24) 
I Q'Q l j J Q'Q j Q'Q 

F. =__g_A 
I Q'Q 

A =(R- QQ' )ro~Df(DfroDf)-ID2g(DfroDf)-IDf' ro±(R- QQ') 
Q'Q Q'Q 

Substitution of(6-21)-(6-23) into (6-20) yields 

To form general bounds for (y I + r I )u: ' let 

- 2"'- - "'2 a = L tr ( C; - F;) + 2 L tr ( ( C; - F; ) ) 
i i 

Then 

and 

(6-25) 

(6-26) 

(6-27) 

(6-28) 

(6-29) 

(6-30) 
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When g(y9) is linear, as, for example, when the confidence interval is for a parameter, A= 0 
and (6-29) and (6-30) form the: bounds ±a I 4. These are of the same form as the bounds for (6-

9). When the model combined intrinsic nonlinearity is very small so that C; ~ F;, the bounds 

given by (6-29) and (6-30) may be very wide. 

Equation (6-29) indicates that the upper bound of (y1 + y1 )a: is 

which also can be written in the form 

(r 1 + Y1 )a: :$; E(f(y00)- f0 (y90 )- Dt\jl)' ro(f(y00 )- f 0 (y00 )-Dt\jl) 
2 ,..._ ,..._ 

+ Q'Q E(g(y9o)- go(r9o))2 (6-32) 

where 90 = e. + T. ' in which 'I. is defined by (F-7), and 

(6-33) 

as can be verified by substituting (6-33) into (6-32). Equation (6-30) indicates that the lower 

bound of (y1 + y1 )a: is 

( " ) 4 > 1 E("" "'1 'D2 ~""'1 ~ "'1 'D2 "'1 Q' )(I R QQ')("" ~I 'D2 ~""'1 Q "'1 'D2 "'1 ) YI+riac_- .c...• J;•m;-· g.--+- .c...ID1·• J 1;··--· g. 
4 i Q'Q Q'Q j Q'Q 

- _!_ E(L T:D2.f:T. rof (I - R + _9Q') L ro1~ I:D2f
1
.T.) 

2 i Q'Q j 

1 Q' QQ' 1 

""E((f(y90)- f0 (y90 ))'ro2 - (g(y90)- g 0 (y90 )) Q'Q)(I- R + Q'Q)(ro2 (f(yi}0 ) 

-f0 (y9'0 ))-Q~ (g(y90 )- g 0 (y9'0 )))- 2E(f(y90)- (f0 (y90 ))'ro~ (I- R + ~~)ro~ 
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or 

(y I + r I )a: ~ E(f( yeo)- fo (reo)- Df\jl)' ro(f( yeo)- fo (yeo)- Df\jl) 

- 2E(f(ye0 ) -f0 (ye0 )- Df\j/0 )'ro(f(ye0)- f0 (ye0 )- Df\j/0 ) 

where 

(6-34) 

(6-35) 

(6-36) 

as can be verified by substituting (6-36) into (6-35). If Q were known, the bounds could be 

obtained by Monte Carlo simulation similar to the method outlined for (6-12). 

Analysis of Combined Intrinsic Nonlinearity for Prediction Intervals 

Genera/forms for component correction factors. Prediction intervals are analyzed in 

the same way as were confidence intervals. The final form for the augmented constrained 

residual vector is given by ( 6-41) as shown by the following development. First, expansion of 

the augmented residual vector analogously to ( 6-1) yields 

1 1 1 1 

Ya -fa(y9, OP) = w: 2 (Ia- Ra)W} (Ya -fa(y9., o;)) + w: 2 (Ia- Ra)W} (fa(yO., o;) 

(6-37) 

or 

1 1 1 1 

Ya -fa(y9, OP) = w: 2 (Ia- Ra)W} (Ya -fa(y9., o;)) + w: 2 (Ia- Ra)W} (fa(y9., o;) 

(6-38) 

All terms on the right-hand side of(6-37) or (6-38) except the first are zero if model intrinsic 

nonlinearity is zero as can be shown using an analysis exactly analogous to the one used for (6-1) 

or (6-2). Also, the effects of system intrinsic nonlinearity are contained in the first term on the 

right-hand side of(6-38). Finally, the expansion given by (6-38) corresponds to the expansion 

obtained by perturbation analysis. All of these results are so similar to the ones obtained 
previously that they are not elaborated further here. 
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Next, expansion of the augmented, constrained residual vector analogously to ( 6-17) 

produces 

Then, use of the relation 

and the constraint g(y9.) + v. = g(yB) +v in (6-39) shows that 

where the relations v. = YP - o; and v = YP - 'iJP were used. As before, all terms on the right­
hand side of(6-39) or (6-41) t!xcept the first are zero if the model combined intrinsic nonlinearity 
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is zero. The method of showing this is the same as used for ( 6-1 7) or ( 6-19) and is not given in 
this report. The expansion of Ya -fa(yB, OP) given by (6-41) corresponds to the expansion 
obtained by the perturbation method. 

The component correction factors Yiaa; and YIP; can be expressed analogously to 
(6-3) and (6-20) as 

l 1 

Yiaa: = E(Sa(O, {Jp )-(Ya -fa(y9., e;))'W}(Ia -Ra)W}(Ya -fa(y9., e;))) 
1 1 

= 2E(fa(y9., e;)- f0a(y9., o;)- fa(yG, 0 p) + f0a(yG, 0 p))'W} (Ia - Ra)W} (Ya 
1 

* * • J'\. A A " -

-fa (y9., 8 p)) + E(fa(y9., Op) -f0a (yO., 8 p)- fa(y9, 0 p) + f0a(y9, 8p))W] (Ia 

(6-42) 

and 

1 * • ~ ,..._ ,..._ ,..._ -
= 2E((fa(y9., 8 p)- f0a(y9., 0 p)- fa(y9, 8 p) + f0a(y9, 8 p))'W] - (g(y9.)- g 0 (y9.) 

- g(y9) + g 0 (y{j)) ?~ )(I.- R. + Q:Q~ )W} (Y. -f.(y{},, o;)) + E((f.(y(},, o;) 
QaQa QaQa 

1 

-foaCyO., e;) -fa(ya, Op) +f0a(y9, 1fp))'W}- (g(y9.)- g 0 (y9.)- g(yO)- g 0 (yO)) 

Q' Q Q' _!_ • * -- -- -- --
• 1 a )(Ia -Ra + ~ 0 )(W](f0 (y9.,8p)-foa(Y9•,8p)-fa(Y9,8p)+foa(Y9,0p)) 

QaQa QaQa 

1 

• wJ (Ya -fa(yO, Op))-YIP: (6-43) 

Approximations and approximate bounds for component correction factors. The 

assumptions adopted for the perturbation analysis and the assumption that W;1 = v.a ~ Qa 

allow an idealized analysis of the same type as that leading to (6-13) to conclude that, for Gauss­

Markov estimation, Yiaa; is bounded by 
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" "o " " 
where [9~ (} p] = e~a = e~a +~~a and 

(6-45) 

Similarly, the upper bound for (r1a + f 1a)a: is analogous to (6-31) and (6-32): 

.....,I .......,0 .....,I I f 
where [90 8 p ] = Boa = e.a + l.a and 

(6-47) 

Finally, the lower bound is analogous to (6-34) and (6-35): 
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(6-48) 

where 

If the elements corresponding to the covariances in Qa are neglected when forming the 
weight matrix, wa = (l)a so that (6-44)-(6-49) can be expressed in terms ofunaugmented 
variables using (E-38)-(E-40), (E-48), (E-56), appendix E, (5-89), (5-91), (5-92), and (5-94). 

The results are that (6-44) and (6-45) become (6-13) and (6-14), respectively, and that (6-46)-(6-
49) become 

(Y1a + Y1a)a: ~ E((f(r00 )- f0 (r00 )- Df\j/)'ro(f(r00)- f0 (r00)- Df\j/) 

+ iifPw/iJ p) + Q'Q 
2 

_1 E(g(y9o)- go (y9o))' 
+mP 

where 

and 

(Y1a + Y1a)a: ~ E((f(r00 )- f0 (rOo)- Df\j/)'ro(f(r00)- f0 (r00 )- Df\j/) 

+ ijJ pmpijJ p)- 2E((f(rOo)- fo (reo)- Df\i/ oYm(f(yOo)- fo(rOo)- Df\i/ o) 

+ iiJopmpiiJop) 

where 

(6-50) 

(6-51) 

(6-52) 

(6-53) 

(6-54) 
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(6-55) 

The result that (6-44) and (6-45) become (6-13) and (6-14) when Wa = roa confirms the 

result obtained with the perturbation method that, at least when wa = (J)a' YIP: = fia:. Also, 

when m;1 >> Q'Q, (6-50) and (6-53) become (6-13) because, from (H-12), appendix H, 

90 ~eo. This confirms the result of(G-46) that YIP: Ri 0 when m;1 >> Q'Q. 
A Monte Carlo method to compute bounds for r I aa: could be developed as an extension 

of the method used to compute bounds for y1a: discussed previously. 

Empirical Measures of Model Intrinsic Nonlinearity, Model Combined 
Intrinsic Nonlinearity, and Total Model Nonlinearity 

A measure of model intrinsic nonlinearity. If V.(or Q) is unknown, then (6-12) cannot 

be approximated using the correct distribution for 00 • In this case an empirical measure of 

model intrinsic nonlinearity sinillar to the one derived by Beale (1960, p. 57-59) and revised by 

Linssen (1975, p. 97-98) can be developed to indicate the importance of model intrinsic 

nonlinearity. A measure similar to the square ofLinssen's measure combines (6-15) and (6-16) 

with the expected values replaced by sample averages computed using sets e 0 - e on the 

periphery of the linear confidence region (Y -f0 (y90 ))'ro(Y- f0 (y90 )) - S(O) 
=(90 -O)'Df'roDf(90 -0)5:pc

7
S(O)Fa(P,n- p)l(n- p), where f0 (y90 )=f(y0)+Df(90 -9) 

and Di indicates evaluation at 9 = 9 . However, values of the earlier form given by Beale 

(1960, p. 58) (without the correction factor) presented by Guttman and Meeter (1965) are 

consistently larger than corresponding values of ( 6-15) also presented by them. A possibly 

better approximation would be to place the sets e 0 - e on the surface where 

(90 - O)'Df'roDf(90 - 0) is equal to its estimated expected value, aps2
, obtained by substituting 

s 2 for ba; in (5-15). 

Beale (1960) and Linssen (1975) both defined their empirical measures in terms of 

specific regression 9 . Howe:ver, to conform to the theoretical measure ( 6-15), the empirical 

measure is defined here to be: independent of any specific regression. For practical use, the 

measure must be evaluated at 0 , which makes it analogous to Beale's and Linssen' s measures. 

The measure of model intrinsic nonlinearity based on the foregoing ideas is thus defined as 

(6-56) 

where 

'I' t = (Df 'roDf) -l Df'ro( f ( y9 t)- f0 ( y9 t )) (6-57) 
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- - -
and the 2p parameter sets e e are obtained as e e = (9 £ - 9) + e for which the change e e - e is 

computed using the Cooley and Naff(1990, p. 189) method, except that Cooley and Naff's d 2 is 

set equal to the expected value apro; . This definition uses a linear probabilit~ region 

(Y -f0 (y9e))'ro(Y -f0 (y9t))-S(9) = (9£- O)'Df'roDf(9t- 9) centered on 9 and having a 

diameter apro; instead of the linear confidence region centered one used by Beale and 

Linssen. The measure is, therefore, defined to be independent of any specific regression. For 

practical calculation apba; is replaced in (6-56) with aps2 because ba; is unknown. 

Similarly, the sensitivity matrix Df and parameter set 9 are replaced with Df and e because Df 
and 9 is unknown. If a is unknown, then its bound nIp can be used. 

A measure of model combined intrinsic nonlinearity. The measure of the model 

combined intrinsic nonlinearity is based on (6-32) and (6-35). It is independent of a specific 

regression and is defined in three parts. The first part is drawn from the first terms on the right­

hand sides of(6-32) and (6-35) and is 

(6-58) 

where 

(6-59) 

(6-60) 

1 I I 

4 = Q'Q Q'(ro/ b) 2 Q(ro/ b) 2 Q (6-61) 

- -
Parameter sets Be = (9£- 9) + e form limits of a probability interval of the same width as a 

linear confidence interval, but are centered one instead of e. They are computed as described 

later in this section. Two quantities in addition to M min are needed to measure the importance of 

the sum y
1 

+ y
1 

related to bounds (6-32) and (6-35). In scaled form these are 

(6-62) 

and 

(6-63) 
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w~ere the ~portru;-ce of (Jj + fi )a;_: is m~asured by the }ar~er ~ mag~tude of . 
( M min + 2Bu); lxJ' s and ( M min - 2B L); lxJ' s • Note that Bu IS M min as if f ( y9 £) were the linear 
model f0 ( y9 £) and B L is M min as if g( y9 £) were the linear function g 0 ( y9 £) . 

Parameter sets 9£ are located at points on the surface where (9£- O)'Df'roDf(9£- 0) is 

equal to its expected value when 9£ - e has the same distribution as T. . From (F -66), this 

expected value is given by (}'~~ + r w(J'~' where, from (5-49), 

(6-64) 

If ro or (OG is used for (0' (6-64) has the approximate bound given from (5-56) as 

V mxba; I Q'Q, which can be used when ~ is unknown. Points on the surface corresponding to 

the ends of the probability interval can be used to evaluate 9£, since nonlinearity effects in these 

areas would seem to be most important. This idea follows from an alternative to the use of 

expected values in ria: suggested by Spjotvoll (Johansen, 1983, p. 189). Values of 9£ at the 
ends of the linearized probability interval are computed using (H-12) with m;1 set equal to zero, 

d~ set equal to Q'(ro/ b)112 !.l(ro/ b)112 Qba; /Q'Q, and g(ye) replaced with g(yO). The 

average using the two values is used as the sample average. For practical use ba; is replaced by 

; ' e is replaced by 9 ' and derivatives are evaluated at 9 . 
A measure of total nrodel nonlinearity. Finally, a measure of model nonlinearity for a 

model using parameters 9 instead of + can be defined. This type of nonlinearity is referred to 

as the total model nonlinearity because it is the sum of model intrinsic nonlinearity and 

parameter effects nonlinearity, the latter of which is the part of the total model nonlinearity that 

can be removed by the transformation +(9) (Draper and Smith, 1998, p. 528-529). A 

modification of the measure of the total model nonlinearity as defined by Beale (1960, p. 54) is 

defined in this report as the average sum of weighted, squared discrepancies between nonlinear 

and linear model values scale:d using the squared diameter of the expected value of the linear 

probability region, apba; : 

(6-65) 

Parameter sets 9 e are defined in the same way as for N min , and the measure is modified for 

practical evaluation analogously to il min • 

Summary of Principal Results 

Component correction factors f I(}': ' r I(}': ' f I p: ' and r I a(J': ' which are components 0 f 
correction factors cr, cc, and c P developed in section 5, correct for model intrinsic nonlinearity 

and model combined intrinsic nonlinearity that can affect the confidence regions, and confidence 

and prediction intervals, also developed in section 5. These component factors are analyzed 
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using a method that is free of the assumptions and restrictions inherent in the combined Taylor 

series and perturbation method originally used to derive them. The new method is based on 

expansion of the residual vector Y -f(yS) as an identity that is the sum of three vectors, two of 

which are shown to be zero when model intrinsic nonlinearity is zero, and a third given as 

of 112 (I - R )ro 11 2 (Y - f ( ye.)) , which has the form of the residual vector for a classical linear 

model. System intrinsic nonlinearity is contained in the third term. Factor f 1a: is given by (6-

3), which is f 1a: = E(Y- f(yS))'ro(Y- f(yS))- E(Y- f(y9.))'ro 112 (I- R)ro112 (Y- f(y9.)) as 

obtained using the identity. Factor r 1a: equals - y1a: when used in cr and is given by (6-20) 

when used in cc. Development of(6-20) is analogous to development of(6-3), but is more 

complex because of the constraints used in developing quantities for individual confidence 

intervals. The factors correspond exactly to the same factors derived using the Taylor 

series/perturbation method when the perturbation approximations are used. However, they apply 

more generally and establish the fact that the concepts of model intrinsic nonlinearity and model 

combined intrinsic nonlinearity are valid beyond the Taylor series/perturbation approximation. 

An approximate analysis for Gauss-Markov estimation uses the Taylor series/ 

perturbation forms of the factors together with the assumption that 

ro112 E(Y- f(y9.))(Y- f(y9. ))'ro112 ~I to give approximate bounds (6-11) for f 1a: that are the 

same as bounds originally obtained for the classical nonlinear model by Johansen (1983). The 

bounds are written in nonperturbation form as (6-12) and (6-13). The analyses are extended to 

yield approximate bounds for r 1a: as used in cc. The bounds are given in terms of f 1a: by 
(6-31) (or (6-32)) and (6-34) (or (6-35)). 

All of the methods extend readily to apply for f 1aa: and r 1aa: as obtained for 

prediction intervals. Component correction factors f 10a: and r 1aa: are given by (6-42) and (6-

43), respectively; approximate bounds for f 1aa: for Gauss-Markov estimation are given by (6-

44); and similar bounds for r 1aa: are given by (6-46) and (6-48). These are all of the same form 

as the bounds for y1a: and r 1a:. When the augmented weight matrix is given by roa, the 

bounds assume the simplified forms given by f 1aa: = f 1a:, (6-50), and (6-53). These forms 

confirm the generality of results obtained using the Taylor series/perturbation method. In 

particular, when E(Yp - g( y9. ))2 >> Var(Dg(00 -e.)) (where 00 is e obtained using a linear 

model approximation), ria: ~ 0. 

Measures of model intrinsic nonlinearity and model combined intrinsic nonlinearity are 

defined to indicate the possible importance of r 1a: and f 1a: when estimates ofbounds for 

these factors cannot be computed because the second moment matrix of Y -f(y9.) is unknown. 

These measures are given by (6-56)-(6-64). A quantity known as the total model nonlinearity 

measures the weighted sum of squared discrepancies between model functions f(y9) and 

linearized approximations of them. This measure is given by (6-65) and is always greater than or 

equal to the measure of model intrinsic nonlinearity. 
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7. Experimental Results 

The objective of this section is to explore consequences of the theory presented in 
sections 1-6 for two specific hypothetical examples. The investigation is intended to test, for the 
two examples, the validity and robustness of the theory when the model error is large. Thus, the 

investigation is not, and is not intended to be, exhaustive. Such an investigation is beyond the 
scope of this report. The first example is for one-dimensional, steady-state flow in an aquifer 

having spatially (one-dimensionally) varying transmissivity and constant recharge. 

Transmissivity varies stochastically and only at small scale. Although the example is 
numerically simple, it turns out to be rather ill conditioned. The second example is for two­

dimensional, steady-state flovv and is based on the example used by Cooley and Naff (1990, 

p. 79-81). Both transmissivity and recharge vary spatially (two dimensionally) at both large and 
small scales, with the smal1-s(~ale variations being stochastic. This example is much more 

numerically complex than the first, but turns out to be well conditioned. 
To provide for flexibility in interpretation of results, all variables in both examples are 

scaled with arbitrary length parameters l d and l q and an arbitrary time parameter t c to make 
them dimensionless. Thus, h is (hydraulic head)/ l d ; x andy are distance/ l d ; Tis transmissivity 

xtc/(ldlq); Wis(rechargerate) xtc/lq; qisjlux xtc/(ldlq); andQis(pumpingdischarge) 

x tc /(l]lq). Specific values of these variables such as x = L are scaled consistently. For 

simplicity, the modifier "dime:nsionless" is omitted when discussing these variables. 

Example 1 - One-Dimensional, Steady-State Flow with Recharge 

Models and stochastic properties. Consider a general, one-dimensional, steady-state 

flow system for which the hydrogeology is depicted in figure 7-1. Hydraulic head is known at 

the lower (x = 0) end of the system and the (Darcy) flux is known at the upper (x = L) end. 
Recharge and transmissivity can vary from block ( Ax1) to block in the system. The solution for 

hydraulic head h( x) at any point x that lies in block j is given by 

h( qj-1 j-1 qi-1Axi I ( wj 2 j-1 wi 2 J x) =--(x-x1_1)- L- -- -(x-x1_1 ) + L -(Ax;) +h0 T. t=1 T. 2 T1- t=I 1'; 
J l 

(7-1) 

where T, is transmissivity in block i, W, is recharge rate in block i, h0 is the known hydraulic 
head at x = 0, and 

(7-2) 

in which q L is the known flux at x = L and N is the number of blocks. This is the f (~) model. 

For simplicity let Wbe invariant and constant over the flow region, 0 ~ x ~ L. Also, let 
all ~ be independently and identically log-normally distributed so that for this example (3-1) is 
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/3, = ~ T, ~ N(~,a~ ~; .i_= 1,2, ... ,N} 
pi+N - W; N((} 2' 0), l -1,2, . .. ,N 

(7-3) 

where 01 is the In T drift parameter and 02 is the W drift parameter. Recharge W was placed in 

w, 

r, 

EXPLANATION 

T; Transmissivity for block i of length /hi =xi-x,_, 

Recharge rate for block i of length l:!.xi =xi-x,_, 

ho Specified hydraulic head (h) at x=O, the lower end 

qL Specified Darcy flux (q) at x=L, the upper end 

J3 because it is to be estimated as a 

parameter. Giving all Pi+N a variance 
of zero fixes them at the value of 02 in 

the stochastic process. For this system, 

y is defined by (3-2), and 11 and 12 

each have dimension N 
( m1 = N and m2 = N) . Specific values 

for the quantities needed to specify 

example 1 are given in table 7-1. 

Figure 7-1. Assumed hydrogeology of the one­
dimensional, ground-water flow system for example 
1. 

Table 7-1. Model specifications for example 1. 

Drift transmissivity: 

Drift recharge rate: 

Known hydraulic head at x = 0 : 

Known flux at x = L : 
Block size: 

Standard deviation of the In T process: 

Observation-error covariance matrix: 

Number of blocks: 

Number of observations: 

Number of parameters: 

exp(0 1) = T = 1,000 
- -
(}2 = w = 0.003 

h0 = 10 

qL =20 
Llx; = 100, i = 1,2, . .. ,N 

G"p =0.5 
V

8 
=I, a

8 
= 0.1 

N=30 
n=11, at x =50, 350, 650, 950, 1,250, 1,550, 

1 ,850, 2, 150, 2,450, 2, 750, 2,950 

p=2 

A one-dimensional stochastic transmissivity process with no spatial correlation is not 

physically realistic (Bakr and others, 1978). However, this simple example is intended to 

provide an initial test of the validity and robustness of the theory presented here, and the 

uncorrelated, one-dimensional process is sufficient for this purpose. Some results for spatially 

correlated transmissivities are given later in this section. 
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From (3-7), (3-1 0), and (3-11 ), B. 1 is simply the arithmetic average, (3-11 ), of the P; 
values over all values of i pertaining to parameter j, so that the transmissivity corresponding to 

0.1 is simply the geometric mean, T., of the 1'; values. By replacing allY'; with T. and all W; 
- -

with() 2 = W, (7-1) becomes f(yf).), which can be rearranged to become 

h.(x) = _!f.Lx+ W x(L -~x) + h
0 

T. T. 2 
(7-4) 

Examination of (7 -1) reveals that it can be written as a linear model in terms of the 2N 
quantities qi-I IT;, i = 1,2, ... ,lv, and W; IT;, i = 1,2, . .. ,N. These constitute a one-to-one 
transformation of the 2N linearly independent system characteristics In T; , i = 1,2, ... , N, and 
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~, i = 1,2, . .. ,N, and thus form the transformation a.(Jl). Similarly, (7-4) can be written as a 
linear model in terms ofthe two quantities q

1 
IT and WIT. These constitute a one-to-one 

transformation of the two parameters lnT and W composing 9 and thus form the transformation 

cp(9). Because both transforrnations linearize their respective models, both models ((7-1) and 
(7-4)) have no model intrinsic nonlinearity. The system intrinsic nonlinearity is defined in this 

report to be in terms of I- R, which would be computed using (7-4), and D~f, which would be 

computed using (7-1). For the system intrinsic nonlinearity to be small, A. defined as A.= J{/yJ 
by (C-24), appendix C, must be nearly constant. It is a straightforward task to compute J~ and 

yJ, then A. to show that A. is constant (not a function of (3 or 9 ). However, the approximation 

given by (C-27) also must be accurate. Evaluation of this expression revealed that it is not exact. 

Whether or not it is accurate t~nough to yield small system intrinsic nonlinearity must be 
determined by testing numerical results, which is done later in this section. 

Mean errors, covariances, and other population properties. The vector of mean errors 
E(f(Jl)- f(y9.)), the matrix of second moments E(f(Jl) -f(y9.))(f(Jl) -f(y9.))', and the 

covariance matrix Var(f(Jl) -f(y9.)) were approximated for the 11 observation points given in 
table 7-1. Rather than develop the computer codes necessary to use (3-19), (3-23), and (3-24) to 
approximate these quantities, they were approximated using straightforward Monte Carlo 

simulations. For each realization a value of p was generated from (7-3), 0.1 was computed, then 

these were used directly in the~ integrated finite difference solutions for h( x) and h. (x) given by 
Cooley and Naff(1990, p. 81-83), which are exact for the boundary value problems leading to 

(7-1) and (7-4). Means, second moments, and covariances of the errors were computed as 

standard sample quantities. Values of sample skewness and kurtosis of the errors also were 
computed to check for deviations of the error distributions from normality. This would have 
been tedious using the Taylor series expansions, but was straightforward using the Monte Carlo 
method. 

Results for a Monte Carlo sample size of 15,000 are given in figure 7-2 and tables 7-2 

and 7-3. Mean errors E(f(Jl) -f(y9.)) increase steadily from the known head boundary to the 
known flux boundary, where they are large, over 9. This suggests a large degree of total system 

nonlinearity (nonlinearity in f(~) ). However, although mean errors E(f(y9.)- f(y9)) show a 
similar increase, the increase is small because the average, 0.1 , varies with the small standard 
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deviation of 0.5 I .f30 = 0.091 about 

01 • That produces a small value of 
E(e'y(y'y)-1 y'D~/;y(y'y)-1 y'e)/2 in (3-

18) for all i. Values of elements in the 

second moment matrix 

E(f(J3) -f(y9.))(f(J3) -f(y9.))' 

0 500 1000 1500 2000 2500 3000 

increase in the same manner as do 

errors E(f(f3)- f(y9.)). Values of the 

standard deviations reach a maximum at 

about the halfway point in the system, 

but then decrease toward the known 
flux boundary. Correlations are large 

for most pairs of errors, but are 

especially large for pairs near the 

known flux boundary. Values of 

skewness and kurtosis indicate that the 

DISTANCE (x) 

Figure 7-2. Curves containing mean model 

functions E(f(~)), E(f(y(}.)), and f(y9) 
representing mean hydraulic heads for small-scale 
lnT variability, average lnT variability over 

0 :$; x :$; L , and the fixed In T drift for example 1. 

distribution of errors is not normal, 
being especially skewed and leptokurtic 

near the known head boundary. A 

similar increase in deviation of model 

errors from normality also was found to 

occur near a specified head boundary by Smith and Freeze (1979, p. 525). These results show 

that model errors have the potential of having a significant detrimental influence on regression 

modeling of the flow system. 

Table 7-2. Values of mean, skewness, and kurtosis for the distribution of/;(~)- /;(y9.) 
at observation points, i, for example 1. 

Obs. no. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Mean 
0.187 
1.30 
2.35 
3.37 
4.39 
5.36 
6.28 
7.17 
8.03 
8.85 
9.38 

Skewness 
1.55 
0.848 
0.657 
0.515 
0.455 
0.430 
0.417 
0.396 
0.441 
0.567 
0.752 

7.21 
4.29 
3.81 
3.45 
3.37 
3.36 
3.40 
3.40 
3.48 
3.63 
3.94 

*compare with the theoretical value ofO for a normal distribution of/; ((3)- /; (y9.). 
+compare with the theoretical value of3 for a normal distribution of/; ((3)- /; ( y9.) . 
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Table 7-3. Second moment and correlation matrices for the distribution of /; (~)- /; ( ye.) at 

observation points, i, for exrunple 1. 

a. Second moment matrix 
Obs. 

Second moment valu<~s with the diagonal in the first column 
no. 
1 0.746 1.56 1.65 1.73 1.81 1.85 1.90 1.96 2.01 2.07 2.11 
2 10.1 11.4 11.9 12.4 12.9 13.3 13.8 14.2 14.6 14.8 
3 19.1 21.3 22.2 23.1 23.9 24.6 25.4 26.1 26.6 
4 29.6 31.6 32.8 33.9 35.0 36.1 37.1 37.8 
5 40.2 42.3 43.7 45.2 46.5 47.8 48.7 
6 50.3 52.5 54 A 56.1 57.9 58.8 
7 60.5 63.1 65.1 67.0 68.2 
8 70.8 73.5 75.6 77.1 
9 81.0 83.8 85.4 
10 91.0 93.2 
11 97.7 

b. Correlation matrix 
Obs. 

Standard deviation in the first column and correlations in the remaining columns 
no. 
1 0.843 0.536 0.378 0.304 0.254 0.215 0.186 0.162 0.143 0.133 0.130 
2 2.90 0.759 0.602 0.507 0.440 0.388 0.347 0.316 0.296 0.291 
3 3.78 0.830 0.693 0.600 0.528 0.468 0.424 0.396 0.388 
4 4.28 0.860 0.741 0.647 0.576 0.518 0.476 0.464 
5 4.57 0.883 0.769 0.682 0.609 0.550 0.529 
6 4.65 0.887 0.783 0.695 0.622 0.591 
7 4.59 0.895 0.786 0.696 0.652 
8 4.40 0.891 0.776 0.717 
9 4.07 0.881 0.798 
10 3.57 0.915 
11 3.10 

Nonlinearity measures using ro = ro. Values of the nonlinearity measures 

N, N min' M min' BL and Bu given by (6-56)-(6-65) and obtained using {1) = ro are tabulated for 
ln T, W, and head at x = 3,000 in table 7-4. (All three of these are specific functions that have 

been labeled g(y9) in general here. However, for clarity ln T and Ware used instead of g(y9). 
Similarly for clarity hat X= 3,000 is labeled hp. Weight matrix ro used to compute the 

measures is obtained as explained later in this section.) Total model nonlinearity N is large; the 

sum of weighted, squared discrepancies is about 38 times the squared diameter of the region on 

the periphery of which the discrepancies are computed. However, as was expected, model 

intrinsic nonlinearity is, to within round-off error, zero. Model combined intrinsic nonlinearity is 

small for ln T but is somewhat larger for W. It is, to within round-off error, zero for hP as 

should be expected because the solution for head, (7-4), has no intrinsic nonlinearity. The 
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bounds for (rl + rl )a: would be large for wand hp but the large bound for hp would be far 
too conservative, the reason for which is discussed after (6-30). Additional inquiry into model 

combined intrinsic nonlinearity for W is presented after the following regression results. 

Table 7-4. Values of the nonlinearity measures for log transmissivity, recharge rate, and 

hydraulic head at x = 3,000 for example 1. 

[The value of a needed was computed using (5-13) as 4.6056; the value of b needed was computed using (5-11) as 

1.0000; and the value of~ needed was computed using (6-62) as 0.97400.] 

For log transmissivity: 
" 

Mmin = 0.0346 

Bu = 7.75x10-18 

BL = 0.0346 

N=38.o 
" -8 

Nmin = 2.98x10 
For recharge rate: 

Mmin = 0.171 

Bu =0 
" BL =0.171 

For head at 3,000: 
" -7 M. =1.10x10 mm 
" Bu = 0.253 
" BL = 0.253 

Regression results and analysis of residuals using ro = ro . A regression was performed 

using the method of Cooley and Hill (1992) on hydraulic-head data Y from a realization of the 

Monte Carlo process. A vector of zero-mean random normal deviates having a standard 

deviation of0.1 (table 7-1) was added to f(J3) to account for a small observation error. Note that 

the diagonal elements of the second moment matrix of table 7-3a are increased by only 0.01 by 
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Figure 7-3. Hydraulic head data Y; at observation points 

i (dots) along X, fitted model j(y{)) using (I)= cO, and the 
T distribution for example 1. 

adding these deviates to the 
stochastic process; model error 

completely dominates the process. 

Hence, the theoretical conditions for 
validity of the theory are not 

satisfied, and robustness of the 

theory is being tested. Initially the 

weight matrix (I) used was ro ' the 

diagonal matrix, each element of 

which is the inverse of the sum of 

0.01 and the diagonal value of the 

second moment matrix from table 7-

3a. Partial results for ro = Q-1 and 

ro = I are discussed later in this 

section. 

The data, regression curve, 

and spatial T distribution are 

illustrated in figure 7-3. The 
systematic bias shown in figure 7-2 
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is completely absent from the tit of the regression curve to the data, which suggests small system 

intrinsic nonlinearity. (Several other regressions also were performed for comparison and 

produced the same results.) Nrote that the pattern of residuals appears to be both rather 

systematic and related to the local variations in T. However, the four groups of like signs has a 

greater than 10 percent chanct~ of occurring by chance alone (Draper and Smith, 1998, p. 193-

198). Thus, correlation from model error could not be conclusively identified from the pattern of 

residuals in this plot. 

Weighted residuals ro~ 12 (Y -f(y{})) are compared with measures oftheir theoretically 
correct values in figure 7-4. Measures of the theoretically correct values are 1) the sample means 

of ordered simulated, weighted 

residuals generated at the 11 

observation points by Monte Carlo 

simulation from the weighted form of 

( 4-42), and 2) the means plus and minus 

2 times the sample standard deviations 

of these same ordered, simulated, 

weighted residuals. For comparison, in 

figure 7-5 the weighted residuals are 

plotted with the same theoretical 

measures, but are obtained from the 
incorrect distribution 

N(O, (I- R)S(O) /(n- p )) , which, 

noting that 

:R = ro112Drcnr'&nr) -l nr'ro112 

= ro112Df(Df'roDf)-1 Df'ro112 in the 

present example, generally would be 

used for field studies. Plotting positions 

(approximations of the cumulative 

percents for the statistical distribution) 

~ = 1 00( i - 1 I 2) In, i = 1,2, ... , n, 
(Draper and Smith, 1998, p. 71) were 

used for both plots, and 10,000 Monte 

Carlo simulations were used to generate 

both sets of theoretical measures. 

All of the residuals are 

contained within the two-standard 

deviation limits when the simulated 

residuals are correct, but three are not 
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Figure 7-4. Probability plot of weighted residuals 

ro~ 12 (Y -f(y{))) (dots), sample mean (solid line) of 

ordered, simulated, weighted residuals from the 

theoretically correct distribution, and plus and minus 

2 standard deviation limits (dashed lines) of the 

ordered, simulated, weighted residuals for example 1. 

when the simulated residuals are incorrect. Note that the means and limits when the simulated 

residuals are correct differ from the means and limits when the simulated residuals are incorrect. 

The mean has more of an S shape, the tails are more variable, and the center is less variable for 
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Figure 7-5. Probability plot of weighted residuals 
ro!12 (Y- f(yi})) (dots), sample mean (solid line) of 

ordered, simulated, weighted residuals from the 
incorrect distribution N(O,(I -R)S(B)/(n- p)), and 

plus and minus 2 standard deviation limits (dashed 
lines) of the ordered, simulated, weighted residuals 
from the same distribution for example 1. 

the correct residuals as compared to the 

incorrect residuals. The S shape 
appears to be reflected by the residuals. 

The plot of weighted residuals 

versus weighted function values shown 
in figure 7-6 has a mean weighted 

residual of0.0149 and a slope of 

-0.0921, neither of which are large. 
Visually, it appears to have a wave-like 

pattern, although the four groups of like 

signs could occur by chance greater 
than 10 percent of the time (Draper and 

Smith, 1998, p. 193-198). Thus, there 

is no quantitative evidence from the 
mean residual, the slope of the plot, or 

the sequence of signs that the residuals 

plot is abnormal. Any correlation of 

residuals resulting from the correlation 

of errors shown in table 7-3b is not 

conclusively shown in the plot. 
A measure of model intrinsic 

nonlinearity that can be used in addition 

to (6-56) and (6-57) for a specific 
regression was indicated in section 4 to 

be the product ofR and the weighted 

residual vector. The squared length of 
this product vector, given by 

(Y -f(ye))'ro112 Rro112 (Y -f(ye)), can 
be used as a summary measure. Note 
that the expected value of this function 

appears in the component correction factor defined by (6-3). Similarly, a measure of model 

combined intrinsic nonlinearity was indicated in section 5 to be the product ofR and the 
weighted constrained residual vector. The squared length of this product vector, given by 
(Y- f(yB))'ro112 (R- QQ' /Q'Q)ro112 (Y- f(yB)), can be used as a summary measure in addition 

to the general measures given by (6-58)-(6-63). The expected value of this function appears in 
the component correction factor defined by ( 6-20). Values of the functions were computed using 

ro = ro and found to be near zero. In particular, the value of the second function for W is only 
slightly larger than values for ln T and h P. Therefore, model combined intrinsic nonlinearity for 

W does not appear to be significant, even though M min for it is not near zero. 
Confidence intervals using ro = ro. Values of 0.;' their estimates B;' 95 percent 

linearized confidence intervals computed from 0; ±ta12 (n- p)(ccS(O)(Df'roDf)~1 /(n- p))112 
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(where (Df'roDf)~1 is the ith diagonal element of (Df'roDf)-1 
), and 95 percent nonlinear 

confidence intervals computed using (5-51) are shown together with their uncorrected (cc = 1) 
counterparts in figure 7-7. Value hP. = g(A.e.), its estimate hP, its 95 percent linearized 

confidence interval computed from hP ±ta12 (n- p)(ccS(B)Dg(Df'roDi)-1Dg' /(n- p))112
, and 

its 95 percent npnlinear confidence interval computed using (5-51) also are shown in corrected 
and uncorrected forms in the figure. 

The uncorrected confidence 

intervals are apparently too sntall; one 
out of the three linearized intervals and 

two out of the three nonlinear intervals 
do not contain their true valut~s. 
Correction factors c c were computed 

using (5-50) with y
1 

and y
1 

set to zero. 

Linearized intervals using the correction 
factors are large, true values fa.lling well 

within the intervals. The nonlinear 
intervals show the effects of severe ill 
conditioning, which is indicated by a 

value of0.997 for the linearized 

correlation (Cooley and Naff, 1990, p. 
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117) between the estimates ht f and W . Because of this ill conditioning, only ratios WI ln T 

are unique for the upper limits of the confidence intervals for ln T and W so that the confidence 

intervals are open ended (unbounded). Also, the solution for the lower limit of the confidence 
interval for hP is unique only in terms of the ratio. The uncorrected nonlinear confidence 

interval for hP is the same as the linear one, and the lower limit of the corrected interval 

probably only differs from tht:: lower limit for the corrected linear interval because of the 
influence of the nonuniqueness. This correspondence occurs because of the absence of model 

intrinsic and model combined intrinsic types of nonlinearity, as explained in the paragraph 
following (5-1 07). Corrected confidence intervals all contain their true values, and so may be 
accurate. However, because of the ill-conditioning problem, the actual containment probabilities 

could not be investigated by 1\-fonte Carlo analysis as was done for example 2 discussed later in 
this section. 

Results for alternative weight matrices. Regressions also were performed using 

ro = n-1 (Gauss-Markov estimation) and ro =I (ordinary least squares). Gauss-Markov 
estimation produced nearly the same parameter estimates and model fit to the data as obtained 
using ro = ro, and ordinary least squares produced results only slightly different. Linearized 

confidence intervals for lnT •. , W, and hP. are shown in figure 7-8. Both corrected and 

uncorrected intervals are shown for ordinary least squares; no correction is required for Gauss­
Markov estimation. Correctt~d intervals using both methods are nearly the same and both are 

smaller than comparable intervals obtained using ro = ro (figure 7-7). This may indicate that the 
latter intervals are somewhat conservative. Uncorrected intervals using ordinary least squares 
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percent confidence intervals for example 1. 

are smaller than comparable, uncorrected intervals obtained using ro = ro. The former intervals 

for W and h P* do not contain their true values, and are likely to be more inaccurate than the 
latter intervals. However, all intervals except those using Gauss-Markov estimation require 
correction for model error. Finally, although not illustrated, neither set of residuals appears to 
differ from a set expected for the theoretical zero-mean normal distribution. 

Co"ection factors and bounds. Correction factors and bounds V mx I Q'Q for ~ given by 
(5-56) (with roG replaced by both ro and I) are given in table 7-5. Note that the values of a 
suggest that, as predicted by theory, S(O)/(n- p) considerably underestimates ba;, the value 
of (n- ap)l(n- p) being 0.199 when ro = ro and 0.0707 using ordinary least squares. Only a 
small part of the total variance, ba;, is variance about the regression curves. Values of cr and 
cc are therefore large. Correction factors cr and cc obtained using ordinary least squares are 
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larger than correction factors c, and cc obtained using (J) = ro' reflecting the theoretically 
predicted result that F and t distributions are approximated better when ro = ro than when ro is 
arbitrary. The bounds V mx !Q'Q for ~ are twice or more the value of~ except for the bound 
pertaining to hP obtained us.ing ordinary least squares. The requirement for the bound to be 
more than approximate is that the error groups accurately reflect the error structure. Because I 

does not approximate ro well, the bound is less than ~ . Correction factors are needed for all 
confidence intervals and both confidence regions. The bounds for ~ generally would give much 

larger confidence intervals than using ~ . 
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Table 7-5. Correction factors for example 1. 

[a is computed using (5-13); b is computed using (5-11); C
7 

is computed using (5-19); cc is computed using (5-

50)with rl =0; ; iscomputedusing(6-62); VmxiQ'Q iscomputedusing(5-56)with (l)G replacedby ro or 

I.] 

Weight 
Variable a b cr cc ; VmxiQ'Q 

matrix 
" InT 4.61 1.00 23.2 4.90 0.974 2.62 (l) 

w 4.61 1.00 23.2 5.85 1.16 3.53 

hp 4.61 1.00 23.2 12.6 2.51 3.77 

I InT 5.18 50.2 73.3 9.19 0.649 3.29 
w 5.18 50.2 73.3 9.93 0.702 4.10 

hp 5.18 50.2 73.3 52.8 3.73 2.96 

Correlated errors. Thus far, values of lnJ: have been uncorrelated. However, InT 

values often are considered to be correlated (Bakr and others, 1978; Delhomme, 1979; Gelhar, 

1986). As is suggested in section 3, when the correlation is manifested as a definite trend, the 

stochastic process used to apply the present theory should probably consider the trend to be the 

drift ye , even if the data showing the trend also could be considered to be a realization of a 

process having stationary drift. This idea is illustrated here for a one-dimensional, stationary, 

exponentially correlated, In T process. To specify this process, (7-3) is replaced with a form in 

which for simplicity W is not a parameter: 

(7-5) 

-
where P has order m = N, y = 1, (} = In T is the stationary drift, and 

(7-6) 

In (7 -6) £ is the correlation length. Realizations of p can be generated using the simple method 

given by Kitanidis (1997, p. 191 ). 

Figure 7-9 illustrates a realization of the correlated In T process that shows a distinct 

linear trend. The drift if = In T and the mean B. = InT. also are shown. For this realization, 

a P = 0.5 and £ = 3,000. It is apparent that estimating (}. would yield a very crude model of the 

system; the trend needs to be included. One means of doing this is to revise the drift to be the 

linear trend, so that the revised drift is ye' where e = [01 ' Bz ]'' 01 and 0 2 are drift values of 
In T at x = 0 and x = L, r .

1 
= ( L - x.) I L, and r. = x. I L, i = 1,2, ... , m, where x. is x at the 

l l 12 l - l 

midpoint in block Llx;. Note that because of this revision, e. = 9 for this realization. Revised 
residuals p - y9. from the fit of ye. to p are given by 

p- ye. = p- y(y'y)-1y'p =(I -y(y'y)-ly')P (7-7) 
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-
Then, revised values of ~, ~rev, dispersed about the revised drift y9 are given by 

(7-8) 

which has revised covariance nmtrix (I- y( y'y) -1 y')V fJ (I- y( y'y) -1 y')a~. Thus, because the 

rank of this covariance matrix is m- p, 

(7-9) 

is a singular normal distribution. 

The change from distribution (7-5) to distribution (7-9) changes Var(f(~)- f(ye. )) . For 

example, the linearized version of this covariance matrix, which was originally 

Dpf(l-11' /m)Vp(l-11' lm)Dpf'a~, is revised to be 

D pf(l- y(y'y)-1 y')V p(l- y(y'yr1 y')D pf'a~ where y is for the linear drift. Note that, although 

Var(~rev) is singular, if m- p ~ n, 
which would generally be the case, 

Var(f(P,.ev)-f(yB.)) would be full 

rank, n, if D pf has rank n. Original 

and revised, linearized correlation 

matrices are given in table 7-6. For the 

revised process, standard deviations of 

the model errors are greatly r1educed, 

positive correlations are reduced, and 

negative correlations replace some of 

the original positive correlations. 

Correction factors a, 
c,., ;, and cc also were computed in 

the same way as in table 7-5 assuming 

W = 0 , using the covariance matrices 

derived from table 7-6, and Setting Y I 
and y

1 
to_zero. For the original process 

where ln T is constant, the tnodel used 

to calculate the correction factors is (7-
4 ), where W = 0 . For the revised case 

4.0 L___ _ _J__ _ __L __ ....L.-_ ___.__ __ ..____ _ _J 

0 500 1000 1500 2000 2500 3000 

DISTANCE (x) 

Figure 7-9. Realization (dots) from a stationary 

random process having an exponential covariance 

funct~n for which a f1 = 0.5 and R = 3,000. The 

drift 8 of the process, the revised drift (the drift of 

the residuals), and the mean B. of the realization also 

are shown. 

a model with linearly varying ln T is needed. This is 

(7-10) 
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where T0 = e8
*1 is Tat x = 0 and TL = e8

*2 is Tat x = L. With use of(7-4) and table 7-6a, 

correction factors a and cr are computed to be a= 4.68 and cr = 7.42; for InT., c; = 4.68 and 
cc = 7.42. With use of(7-10) and table 7-6b, correction factors a and c, are computed to be 

a= 1.05 and cr = 1.06; for lnT0 , c; = 0.601 and cc = 0.608; for lnTL, c; = 0.596 and 
cc = 0.603. Examination of the equations used to compute these correction factors shows that 

the reduction in magnitudes by the revision results primarily from the change in correlation 

structure. Thus, not only are the magnitudes of the model errors greatly reduced, but also, 

because of the change in correlation structure, the need for correction is virtually eliminated by 

the revision for this example. Not using the correction factors would give conservative 

individual confidence intervals. 

Table 7-6. Standard deviations and correlations of model errors resulting from the original and 

revised, correlated log-transmissivity processes for example 1. 

a. Correlation matrix, original process using (7 -4) 
Obs. 

Standard deviation in the first column and correlations in the remaining columns 
no. 
1 0.484 0.950 0.883 0.818 0.756 0.697 0.644 0.601 0.575 0.599 0.699 
2 3.01 0.966 0.908 0.845 0.784 0.728 0.680 0.651 0.676 0.782 
3 4.89 0.975 0.924 0.866 0.809 0.759 0.727 0.749 0.855 
4 6.15 0.979 0.934 0.881 0.830 0.795 0.812 0.910 
5 6.83 0.981 0.940 0.893 0.856 0.865 0.948 
6 6.96 0.983 0.945 0.908 0.908 0.970 
7 6.60 0.984 0.952 0.942 0.978 
8 5.76 0.985 0.968 0.974 
9 4.50 0.988 0.967 
10 2.87 0.976 
11 1.70 

b. Correlation matrix, revised process using (7 -1 0) 
Obs. 

Standard deviation in the first column and correlations in the remaining columns 
no. 
1 0.337 0.895 0.729 0.511 0.170 -0.359 -0.646 -0.598 -0.481 -0.361 -0.293 
2 1.73 0.900 0.676 0.282 -0.367 -0.763 -0.739 -0.614 -0.478 -0.399 
3 2.17 0.875 0.488 -0.267 -0.820 -0.863 -0.751 -0.606 -0516 
4 1.99 0.780 0.007 -0.745 -0.919 -0.857 -0.722 -0.627 
5 1.51 0.532 -0.377 -0.776 -0.840 -0.761 -0.677 

6 1.16 0.482 -0.102 -0.375 -0.447 -0.426 

7 1.29 0.743 0.423 0.219 0.151 

8 1.56 0.861 0.651 0.541 

9 1.54 0.890 0.774 

10 0.985 0.941 

11 0.235 
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Example 2-Two-Dimensional, Steady-State Flow in a Zoned System 

Model and stochastic properties. This example is based on an example problem used by 

Cooley and Naff(1990, p. 79-81). The assumed hydrogeology is illustrated in figure 7-10. 

There are three zones of constant drift for T and W; a river having a known streambed specific 

conductance, R2 ; two wells pumping at known rates Q
1 

and Q
2 

; a specified head boundary on 

which hydraulic head varies Hnearly between the values h81 , h82 , and h83 ; and a known flux 

boundary composed of five no-flow (q 8 = 0) segments and two segments along the north 

boundary where q81 and q82 are known, nonzero, values. 

The stochastic process involves both Wand T and is defined only for small scale (grid­

cell to grid-cell) variability. For simplicity, ln ~ and W; for grid-cells i are all assumed to be 

statistically independent. Specifically, the assumed distributions are 

Pi = ln ~ ---- N(ii k, fP;; a~); i = i(k); k = 1,2,3 } 

Pi+N = wi ---- N(ii k, fPi+N,i+~r~ ); i = i(k); k = 4,5,6 
(7-11) 

where~= 0.5 and ~N, i+N = 0.0001. At river cells, W does not appear in the flow 

equation, so /J;+N is not defined by (7-11) and can be set to zero at these cells. Matrix y is 
defined by (3-2) with lk having dimension mk equal to the number of grid cells occupied by 

parameter k. Three more parameters, h81 , h82 , and h83 , are estimated in the regression. 

Distributions (7 -11) could bt~ augmented as for the first example to incorporate these parameters, 

but, because the distributions are never used, they are ignored. Specific values for the variables 

needed to specify example 2 are given in table 7-7. 

As for example 1, a two-dimensional transmissivity process with no spatial correlation is 
not physically realistic (Bakr and others, 1978). This idea might be extended to the recharge 

process as well. However, as for example 1 the example is intended to provide a test of the 

validity and robustness of the theory, and the uncorrelated process is sufficient for this purpose. 

Mean errors, covariances, and other population properties. As for example 1, the 

vector of mean model functions (mean hydraulic heads) E(f(J3)), the vector of mean errors 

E(f((3)- f(y9.)), the matrix of second moments E(f((3)- f(y9.))(f((3)- f(y9. ))',the covariance 
matrix Var(f((3)- f( y9. )) , ~md the vectors of skewness and kurtosis were approximated for the 

32 observation points shown in figure 7-10. Monte Carlo simulation using the integrated finite 

difference model in Cooley :and Naff(l990, p. 81-83) was again used for the calculations. 
Partial results for a Monte Carlo sample size of5,000 are· given in table 7-8; off-diagonal second 

moments and correlations are not shown. The magnitudes of the mean errors range between 0 

and 4.15 and correlate clost:~ly with the magnitudes of the mean hydraulic heads; the mean errors 
are not large but do indicate measurable total system nonlinearity in zone 3 and at pumping 

wells. All positive values of mean error occur in zone 1 under the influence of ground-water 

discharge and pumping frorn the two wells. The values that have smallest magnitude occur at 
and near the river. The largest second-moment values are associated with the largest magnitudes 
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Figure 7-10. Assumed hydrogeology of the two­
dimensional, ground-water flow system for example 
2. 

of mean error; they are variable and 

again are small near the river. Because 
of its permeable bed, the river nearly 

forms a specified head boundary of 
river elevation 4.5; hence, the smaller 
errors and variances of errors near it. 

Skewness ranges from -0.661 to 
0.964, with 13 negative and 19 positive 

values. Most negative values are 

associated with the positive errors. 

Kurtosis ranges from 2.95 to 4.87, with 
all but one, except along the specified 

head boundary, being greater than 3. 

Thus, even though the mean errors are 
not large, the error distribution is not 

normal. It is skewed and generally 

leptokurtic, as for example 1. 
Most off-diagonal second 

moments and correlations are small. 

Out of the 496 distinct correlations, 44 
lie between -0.2 and 1.0; 12lie between 

0.5 and 1.0; 3 lie between 0.8 and 1.0, 
being 0.826, 0.832, and 0.837 between 
observations 28 and 32, 14 and 20, and 

14 and 19, respectively; 6 lie between 

-0.36 and -0.26, and are between 
observation 15 and each of observations 

18, 21, 23, 28, and 32. Most large 
correlations involve observation 13 and 
higher numbers. As is shown later in 

this section, these small numbers of 
correlations are sufficient to yield 
significant model-error influences. 

Nonlinearity measures using ro = ro . Values of the nonlinearity measures N and N min 

were computed using ro obtained in the same way as for example 1. Values of M min , Bu, and 
B L were computed using the same ro for the six parameters of ln T and W, and for hydraulic 

head hP at grid point (13, 9), the point selected for prediction. Values of N and N min are 

N = 1.43 and N min = 0.0157. Values of M min, Bu, and BL are all less than, or on the order of, 
1 o-3

' the largest being M min = 8.06 X 1 o-3 for ~. Thus, only total model nonlinearity is 
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Table 7-7. Model specifications for example 2. 

Drift transmissivities: 

Drift recharge rates: 

Known streambed specific conductance: 

Known river elevation above an arbitrary datum: 

Specified hydraulic heads: 

Known fluxes: 

Known pumping ratc~s: 

Standard deviation of the In T process: 

Standard deviation of the W process: 

Observation-error covariance matrix: 

Number of blocks: 

Number of observations: 

Number of paramet<;~rs: 

exp(01 ) = T1 =50 
- -

exp(0 2 ) = T 2 = 500 
- -

exp(03 ) = T3 = 20 
- -
~4 =WI= 0.0003 
o s = w2 = -o.ooo1 
- -
06 = w3 = o.ooo2 
R2 = 0.1 

4.5 

hBl = 10 

hB2 = 5 
hB3 = 5.5 

qBl = 0.5 

qB2 = 0.28 
Ql = -100,000 

Q =-50000 
2 ' 

0.5ap, with ap =1 

0.0001a p, with a P = 1 

Vs =I, ac: = 0.1 

N=162 

n=32 

p=9 

significant, and both model intrinsic, and model combined intrinsic, types of nonlinearity are 

probably negligible. Values of (Y- f(yO))'ro 112 Rro112 (Y- f(yO)) and 

(Y - f (yO))' ro 112 (R - QQ' I Ql 'Q)ro 112 (Y - f ( ye)) obtained using sensitivities Df and results 

discussed next were always near zero, which corresponds with this conclusion. 

105 

Regression results and analysis of residuals using ro = ro . Hydraulic head data Y used 

for the regression were obtained by adding a vector of zero-mean random normal deviates (small 

observation errors) having a standard deviation of0.1 to a realization f(Jl) of the Monte Carlo 

process. As for example 1, this increases the diagonal elements of the second moment matrix 

(table 7-8) by only 0.01, so that again model error completely dominates the stochastic process. 

Initially, the weight matrix used was ro. Partial results for ro = n-1 and ro =I are considered 

later in this section. 

The data Y and residuals Y -f(yO) are illustrated in map form in figure 7-11. There 

seems to be no systematic pattem·in the residuals. Weighted residuals ro112 (Y- f(yO)) are 

plotted with their theoretically correct measures in the same way as for example 1 in figure 7-12. 

For comparison the weighted residuals are plotted in figure 7-13 with theoretical measures of the 

(incorrect) distribution N(O, (I- R)S(O)/(n- p)) that generally would be used for field studies. 
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Table 7-8. Values of mean model function, mean error, second moment, variance, skewness, 

and kurtosis for the distribution of /; (J3) - J; ( y9.) at observation points, i, for example 2. 

Obs. Mean model Mean Second Variance Skewness Kurtosis+ 
no. function error moment 
1 58.1 -2.06 52.8 48.6 0.270 3.30 
2 74.2 -2.10 86.5 82.1 0.245 3.22 
3 57.6 -2.26 49.4 44.3 0.206 3.18 
4 29.6 -1.30 25.6 23.9 0.316 3.30 
5 6.80 -0.077 0.318 0.312 0.563 3.65 
6 5.74 -0.032 0.149 0.148 0.821 4.12 
7 5.83 -0.031 0.173 0.172 0.964 4.87 
8 5.50 0 0 0 0 3 
9 4.20 0.003 0.007 0.007 -0.661 3.94 

10 4.50 -0.002 <0.001 <0.001 -0.547 3.94 
11 -40.7 2.45 83.4 77.4 -0.330 3.27 
12 5.56 0 0 0 0 3 
13 5.64 -0.058 0.115 0.112 0.672 3.77 
14 12.1 -0.122 1.84 1.83 0.432 3.37 
15 3.70 0.008 0.026 0.025 -0.265 2.95 
16 -85.0 4.15 205.7 188.5 -0.632 3.83 
17 6.29 -0.079 0.215 0.209 0.552 3.65 
18 -14.9 1.18 14.2 12.8 -0.364 3.19 
19 16.6 -0.198 3.03 2.99 0.335 3.23 
20 12.4 -0.146 1.87 1.85 0.368 3.28 
21 4.19 0.001 0.006 0.006 -0.519 3.40 
22 -16.7 1.24 13.5 11.9 -0.277 3.24 
23 -3.25 0.628 4.08 3.69 -0.389 3.26 
24 8.33 0 0 0 0 3 
25 53.8 -1.60 20.6 18.1 0.149 3.20 
26 38.3 -1.28 16.2 14.6 0.233 3.44 
27 0.342 0.325 1.45 1.35 -0.615 3.54 
28 -2.11 0.512 2.60 2.34 -0.340 3.12 
29 7.36 -0.040 0.860 0.859 0.881 4.30 
30 5.57 0.199 1.19 1.15 -0.622 3.68 
31 83.1 -1.83 25.4 22.0 0.323 3.66 
32 1.50 0.236 1.06 1.01 -0.511 3.46 

*compare with the theoretical value ofO for a normal distribution of/; (J3)- J; ( ye.) . 
+Compare with the theoretical value of3 for a normal distribution of/; (J3)- J; ( ye.). 

As in example 1, 10,000 Monte Carlo simulations were used to obtain both sets of theoretical 
measures. All but one of the weighted residuals are contained within the ± 2 standard deviation 
limits for the theoretically correct distribution. The limits for the correct distribution allow for 
greater variability in tail values from set to set of weighted residuals than does the incorrect 
distribution. However, all but two of the weighted residuals are contained within the limits for 
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the incorrect distribution., and the data 
are well within the limits at the tails. 

Both sets of measures display similar S 

shapes that appear to be reflected in the 
weighted residuals. Hence, the 

weighted residuals appear to follow the 

normal distribution ( 4-42) expected for 
a model having negligible modt~l and 

system types of intrinsic nonlinearity. 

Furthermore, neither the map 
distribution of residuals nor the: 

weighted residuals plot that would be 

used for field studies detect the: 
influence of correlation of model errors. 

The plot of weighted re:siduals 

in relation to weighted function values 
ro! 12f(y9) is shown in figure 7--14. 

Except for the three near-zero weighted 

residual values beyond the weighted 
function value of 50, the plot does not 

appear abnormal. The three cited 

values occur for specified head nodes 8, 

12, and 24 for which the data values are 
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Figure 7-11. Hydraulic head data Y; (upper number) 

and residuals Y; - /; (yO) (lower number) at 
observation points i for (1) = ro for example 2. 

only subject to the small observation errors and the weights are large. Therefore, the large 

weights make the values of ro!/ 2f(y9) large, and the linear segments ofhead distribution along 
the boundary are fitted closely to only three values of head on the boundary. Thus, this plot too 

does not show any obvious efiects of model-error correlation. Finally, neither the mean 
weighted residual value of- 0.0428 nor the slope of - 3.07 x 1 o-3 are large in magnitude, which 
corresponds with the other indications of small model and system types of intrinsic nonlinearity. 

Confidence and prediction intervals using ro = ro. Values of B.;, i = 1,2, ... ,6, and hP. , 
their estimates B; and hP, and both their corrected 95 percent linearized, and corrected 95 
percent nonlinear confidence intervals are shown in figure 7-15. All are computed in the same 

manner as for example 1. Lint:~ar and nonlinear prediction intervals for YP , computed using 
hp ± ta 12 (n- p)(c pS(O)(Dg(Df'roDf)-1Dg' + m;1)/(n- p))112 and (5-101), also are shown on the 
figure. Correction factors c c and c P used in the calculations are listed in table 7-9. The effects 

of model nonlinearity are small; linear and nonlinear confidence intervals have nearly the same 
size. The effects of model error are variable. The value of cc is 4.22 for hP, so an uncorrected 

confidence interval for hP. would be only about half the size it should be. However, an 
uncorrected confidence interval for ln T.1 or W.2 would be about 81 percent of its corrected size. 

The value of ln T.3 is slightly outside of both its linear and its nonlinear confidence intervals. 
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Figure 7-12. Probability plot ofweighted residuals 
&!12 (Y- f(ye)) (dots), sample mean (solid line) of 

ordered, simulated, weighted residuals from the 
theoretically correct distribution, and plus and minus 
2 standard deviation limits (dashed lines) of the 

ordered, simulated, weighted residuals for example 2. 

Finally, the prediction interval for YP 
contains its predicted value, which is 

considerably different than hp*. This 
difference shows the large effect of 

heterogeneity in T, W, or both. Note the 

small value of cP compared with the 

corresponding value of cc, which is 
why confidence and prediction intervals 
have similar sizes in spite of the large 

predicted error variance of 

approximately m;1ba; = 19.6. 
Monte Carlo accuracy checks 

using ro = ro. A Monte Carlo analysis 

was performed to check the accuracy of 
the confidence and prediction intervals. 

For each realization a data set Y was 

generated as for the above example; 

then values of e.' hp* or yp' 9' and 
h P or YP were computed; finally a 
nonlinear confidence or prediction 

interval was computed and checked to 

see if it contained a value 

In T.i, W.i, i = 1,2,3, h p* , or Yp . For 
comparison, the analysis also was 

performed for uncorrected confidence 
intervals. Results for 500 realizations 
are given in table 7-10. Corrected 

confidence and prediction intervals 

appear to be accurate. The average 

containment probability for the confidence intervals is 0.945, and the lowest is 0.934. For the 
prediction interval the containment probability of0.952 is nearly exact. In contrast, uncorrected 

confidence intervals are too small, with the largest containment probability being 0.892 and the 
smallest 0.656. These results show the importance of correcting confidence intervals for model­

error correlations. Because c P = 0.902, uncorrected prediction intervals would be about 5 
percent larger than corrected ones, and so would be accurate or slightly conservative. The theory 
presented in section 5, indicates that uncorrected prediction intervals should be more accurate 
than corresponding confidence intervals if the value of OJP used is accurate. 

The theory predicts that, if a model has small model and system types of intrinsic 
nonlinearity, then E(f(yS)) approximately equals E(f(Jl)) as given by (4-36) and additionally, if 
the model and system types of combined intrinsic nonlinearity are small, then E(g(y9)) 

approximately equals E(g(Jl)) as given in (4-46). These ideas were checked using the Monte 
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Carlo results. All values of E(/; (J3)) 

are predicted to within less than 1 

percent by E (/; ( yS)) except at 

observations number i = 23, 27, and 28, 
where the values are 0.0783, 0.0588, 
and 0. 07 61 units greater than 

E(/; (yO)). These errors represent 

-2.39, 18.8, and -3.60 percent of 

E(/; (J3)), respectively. For the six 

parameters, the percent changes of 

E ( B;) from the drift parameters 

B; =E(O.;), i=1,2, ... ,6, are 1.18, 
0.982, 2.29, 7.35, 6.74, and 4.41. In 

addition, the percent decrease of E(hP) 

from h P is -0.789 percent. Thus, the 

biases are small, which corresponds 

with the other indications of small 

model and system types of intrinsic 

nonlinearity. 

Results for alternative weight 
matrices. As for example 1, Gauss­

Markov ( ro = 0 -t) and ordinary least 

squares ( ro = I) regressions also were 

performed. In contrast to the results of 

example 1, figure 7-16 shows that 

ordinary least squares estimat<~s are 

noticeably different from Gauss­

Markov estimates for ln T3 , W2 , W3 , 

and h P , and corrected, linearized 
confidence intervals for ordinary least 

squares are different from (generally 
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Figure 7-13. Probability plot of weighted residuals 

ro!12 (Y -f(yB)) (dots), sample mean (solid line) of 

ordered, simulated, weighted residuals from the 

incorrect distribution N(O, (I- R)S(S)/(n- p)), and 

plus and minus 2 standard deviation limits (dashed 

lines) of the ordered, simulated, weighted residuals 

from the same distribution for example 2. 

larger than) the same intervals: for Gauss-Markov estimates. Comparison with figure 7-15 shows 

that Gauss-Markov estimates and confidence intervals are generally closer to corresponding 

estimates and intervals using ro = ro . Thus, in contrast to example 1, Gauss-Markov estimation 

and regression using (J) = ro produce very similar estimates and confidence intervals, if the 

confidence intervals using ro == & are corrected for model-error correlation. Finally, as for 

example 1, neither set of residuals (not illustrated) appears to differ from one expected for the 

theoretical zero-mean normal distribution. 

Results for an unknown weight matrix. The entire analysis yielding regression 

estimates, confidence intervals, and prediction intervals was repeated for the case where n and 

ro are unknown. For this case, the observations must be grouped using assumptions regarding 
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similarities of model and observation errors. The three error groups illustrated in figure 7-17 

were obtained according to the following criteria. 
Group 1-- Upland areas of similar hydrogeology (apparent T and W); large magnitudes of 

sensitivities and most residuals based on ordinary least squares. 
Group 2-- Lowland area of nearly uniform hydrogeology (apparent T and W); small 

magnitudes of sensitivities and most residuals based on ordinary least squares. 

Group 3-- Lowland area of hydrogeology similar to that of group 2; large magnitudes of 

sensitivities and most residuals based on ordinary least squares. 
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-2 '"' 
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I I 
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I L _l_ I I I 

30 40 50 60 70 80 

WEIGHTED FUNCTION VALUE ( C0/12 f(yA)) 

Figure 7-14. Plot of weighted residuals 

-

-

90 

ro! 12 (Y -f(y(})) in relation to weighted function 

values ro~ 12f(y{}) for example 2. 

The theoretical weight matrix roa 

(which would be unknown for field 

studies) was approximated by inverting 
the diagonal matrix of group averages 

of nii values. Elements mGll,ll and 
ma16 ,~6 for observations 11 and 16 (the 
pumping wells) were additionally 

weighted by the ratio of the group 

average to the average of the two 
second moments for these observations. 

This ratio also is used as a multiplier 

occupying the position of a weight in 
£(9) . The ratio would be unknown and 
would have to be estimated, if needed, 
for field studies.· 

Values of the nonlinearity measures were computed in the same manner as computed 

previously, except weight matrix ro a was used in the present case. The value of N is 1.5 8 and 

the value of N min is 0.0230, only slightly larger than those obtained using ro. The values of 
M min, Bu, and B L for the six parameters of In T and W, and for h P, are all less than, or on the 
order of, 10-3

, with the largest being M min = 6.66x 10-3 for W1 • Thus, only total model 
nonlinearity is significant, and model intrinsic, and model combined intrinsic, types of 

nonlinearity are negligible. As before, values of (Y -f(ye))'ro~ 2 Rro~ 2 (Y -f(yf})) and 
(Y -f(yB))'ro~ 2 (R-QQ' /Q'Q)ro~ 2 (Y -f(yB)) (where Rand Q are computed using 

sensitivities Df and Dg and weight matrix ro a ) are near zero, which agrees with this conclusion. 
The same hydraulic-head data set Y as used for the previous analyses also was used for 

the present one. The data and residuals Y- f(yf}) are illustrated in map form in figure 7-18, and 
weighted residuals are plotted together with correct and incorrect theoretical distributional 
measures in figures 7-19 and 7-20. Weights used to compute the theoretical measures are the 
ones estimated by the regression, which are w Gk, k = 1,2,3, as given by ( 4-49) with equality 
replacing proportionality. Otherwise, the plots were constructed in the same manner as were the 
analogous ones in figures 7-11 - 7-13. Features of the plots in figures 7-18- 7-20 are very 

similar to features in figures 7-11 - 7-13 discussed previously. Weighted residuals are plotted in 
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Figure 7-15. True zonal valw;~s InT.;, W.i (i = 1,2,3), and hP., their estimates obtained using 

(t) = ro ' and their 95 percent confidence or prediction intervals for example 2. 

Ill 

relation to weighted function values in figure 7-21. Note that the three residuals for observations 

on the constant head boundary do not correspond to large weighted function values in the present 
case because group weights were used for them. No abnormalities are obvious, so that model­
error correlation is not obvious from the plots. Also, neither the mean residual value of0.0788 

nor the slope of - 2.46 x 1 o-3 are large in magnitude, which again agrees with the other 
indications of small model and system types of intrinsic nonlinearity. 
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Table 7-9. Correction factors for example 2. 
[a is computed using (5-13); b is computed using (5-11); cr is computed using (5-19); cc is computed using (5-50) 

with y
1 

= 0; c p is computed using (5-96) with y
1 

= 0; c; is computed using (6-62); V mx I Q'Q is computed 

using (5-56); weight matrix used is ro' I, or roG as appropriate; m;1 ba; = 19.624; {j)~~a; = 4.1496; -,not 

computed] 

Weight 
Variable a b cr cc cP c; Vmx IQ'Q 

matrix 
,... 

In I; 1.70 1.00 2.34 1.51 1.10 5.47 (1) 

lnT2 
1.70 1.00 2.34 3.62 2.63 9.47 

lnT3 1.70 1.00 2.34 1.66 1.20 7.19 

~ 1.70 1.00 2.34 1.55 1.13 7.08 

w2 1.70 1.00 2.34 1.51 1.10 4.87 

w3 1.70 1.00 2.34 1.55 1.13 8.38 

hP or YP 1.70 1.00 2.34 4.22 0.902 3.07 9.78 

I In~ 2.27 19.0 4.51 1.88 0.948 3.42 

lnT2 2.27 19.0 4.51 18.1 9.13 3.21 

lnT3 2.27 19.0 4.51 2.19 1.10 5.69 

~ 2.27 19.0 4.51 1.89 0.951 3.58 

w2 2.27 19.0 4.51 1.33 0.672 6.16 

w3 2.27 19.0 4.51 2.11 1.06 5.82 

hP or YP 2.27 19.0 4.51 8.44 1.95 4.25 8.06 

roG In~ 1.90 0.914 2.93 1.83 1.19 5.10 

lnT2 1.90 0.914 2.93 7.78 5.04 7.74 

lnT3 1.90 0.914 2.93 2.75 1.78 6.70 

~ 1.90 0.914 2.93 1.98 1.28 6.89 

w2 1.90 0.914 2.93 1.99 1.29 4.72 

~ 1.90 0.914 2.93 2.52 1.64 7.55 

hP or YP 1.90 0.914 2.93 9.22 3.75 5.97 7.48 

True values 0.; , i = 1,2, ... ,6, and h P* , their estimates, their corrected 95 percent 
linearized and nonlinear confidence intervals, and the 95 percent linearized and nonlinear 
prediction interval are shown in figure 7-22. The linearized confidence intervals are computed 
as in figure 7-15 except weights w0 k replace weights mu used before. To correspond with this, 
group weight WG3 replaces mp for the prediction interval. Nonlinear confidence intervals are 
computed using (5-57), and the nonlinear prediction interval is computed using (5-118). To 
make the intervals as accurate as possible for testing purposes, known factor c; is used in place 
of bound V mx IQ'Q in (5-57) and the extension of c; applying for prediction intervals is used in 
place of V mxa I(Q'Q + m;1

) in (5-118). This extension is defined as 
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I I I 

~~a= ,
1 Q~(Wa/b) 2 0.a(Wa/b) 2 Qa (7-12) 

I Q.Q. 

~n the present example ~ is CO:mputed USing (1) = (l)G and ~a is COmputed USing Wa = (l)Ga. 

~atrix roGa is roG augmented 'With mGj (in which j = 3 here) by analogy with (5-89). 

!Correction factors cc, c P' and ~ used are given in table 7-9; the value of ~a is 2.43. 
I 

I 

[Table 7-10. Containment probabilities for 95 percent confidence and prediction intervals 

rbtained using Ol = m for example 2. 

Ia. Corrected intervals b. Uncorrected intervals 
I 

[variable No. Containment Variable No. Containment 
I outside probability outside probability 
I interval* Interval* 

lmr.l 27 0.946 lnT.1 54 0.892 
i 28 0.944 lnT.2 156 0.688 ilnT.2 
)1nr.3 23 0.954 lnT.3 63 0.874 

w.I 32 0.936 w.I 69 0.862 

w.2 33 0.934 w.2 56 0.888 

w.3 25 0.950 w.3 62 0.876 

hp* 26 0.948 hp* 174 0.656 

yp 24 0.952 Computed for 500 realizations 

Computed for 500 realizations 

Linearized confidence intervals for parameters in figure 7-22 are only slightly larger than 

I corresponding intervals o btain1ed using ro = ro shown in figure 7-15. The linearized confidence 

I interval for hP is much smaller than the one in figure 7-15. Nonlinear confidence intervals can 

I be much larger than the corresponding linear intervals, probably because of the nonlinearity 

I resulting from the logarithmic form of the objective function £(9) rather than because of model 

nonlinearity. The large value of~ for hP (5.97 in table 7-9) has apparently combined with this 

process to yield a large nonlinear confidence interval for h p* . Because of this, this confidence 

interval is much larger than tht~ prediction interval for which ~a is much smaller (2.43). When 

the two intervals were recalculated with no correction, the prediction interval was computed to 

be (-27.0, -19.0), and the confidence interval was computed to be (-26.0, -19.8), so that the 

expected larger prediction interval was obtained. As shown next, the confidence interval for hp* 
is extremely conservative because of the large value of ~ . Because the correction factors are 

1 

computed using constant weight matrices ro a or ro Ga , they are only approximate when applied 

I to confidence and prediction intervals computed using £(9) or £a (9). These intervals use new 

weights computed for each realization ofY. 
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Figure 7-16. True zonal values InT.;, W.; (i = 1,2,3), and hP*, their estimates obtained using 
Gauss-Markov estimation or ordinary least squares, and their 95 percent linearized confidence 
intervals for example 2. 

A Monte Carlo analysis was performed to check the containment probabilities by 
generating data sets Y and calculating corresponding nonlinear confidence and prediction 
intervals as was done using ro = ro . The results are shown in table 7-11. Because of the greater 

degree of approximation used when ro is unknown than when (1) = ro ' results when ro is 
unknown are not as accurate as when ro = ro. The confidence intervals for lnT.2 and hP. are 

large compared to confidence intervals using (1) = ro (figures 7-15 and 7-22), and are apparently 

very conservative because their containment probabilities are both 1.00. As discussed in the 
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previous paragraph, this probably 

results because the correction factors 

are too large. For example, when the 

Monte Carlo analysis applying for h P 

was rerun using ~ = 2.8, a containment 

probability of 0.948 was obtained. The 

confidence intervals for quantities other 

than ln T. 2 and h P* seem to be too small 
because the containment probabilities 

are all less than 0.95. However, the 

smallest probability is approximately 

0.92, so that the intervals are not greatly 

in error. This bias probably is because 

the correction factors are too small. 

Finally, correction of all confidence 

intervals and the prediction interval is 

needed. When the intervals are 

uncorrected, the largest containment 

probability is 0.892 and the smallest is 

only 0.624 (table 7-11). 

It appears that correction factors 

computed assuming roa is known and 
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Figure 7-17. Error group numbers for observation 

points for example 2. 

used when roa is unknown could be less accurate than correction factors computed and used 

when roa is known. To chec:k this idea, the Monte Carlo analysis was repeated using ro =IDa. 

The results for corrected confidence intervals are shown in table 7-11 c. The results are better 

than those in table 7-11 a in that the very large containment probabilities for ln T.2 and h p* have 

been decreased and are now accurate, and the remaining probabilities have been increased and 

are slightly more accurate, averaging approximately 0.934 now, whereas for IDa unknown they 

average approximately 0.928. However, grouping the errors yields confidence intervals that are 

less accurate than those obtained by not grouping the errors (that is, using ro = ro, table 7-10a). 

This corresponds with the theory developed in appendix F, which predicts that the likelihood 

region is most nearly r distributed when g-I is approximated as a weight matrix by ro. It is 

encouraging that confidence and prediction intervals using (1) =cO, (1) =IDa, and unknown 

weights all are of acceptable accuracy when the error structure is dominated by model errors. 

Co"ectionfactors and bounds. As has been shown in the previous discussions, it is 

generally necessary to use the correction factors to increase the accuracy of confidence and 

prediction intervals to an acceptable level. Values of a indicate that S (0) /( n - p) underestimates 

ba; (table 7-9), with the bias for ordinary least squares being the largest 

((n- ap)/(n- p) = 0.503) as it is for example 1. The smallest bias is obtained using ro = ro, for 

which (n- ap)l(n- p) = 0.726. If the matrix of group averages IDa were used as a known 

weight matrix, then the underestimate would be (n-ap) /(n- p) = 0.648. Thus, while the biases 
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Figure 7-18. Hydraulic head data Y; (upper number) 

and residuals Y;- J; (yB) (lower number) at 

observation points i for ro unknown for example 2. 

Summary of Principal Results 

are considerably smaller than those for 

example 1, they are still significant, and 
the rankings are predictable by the 

theory as explained in the previous 

paragraph. Values of cr and cc 
generally are largest using ordinary 

least squares and smallest using (t) = ro ' 
although some small reverses in value 
occur. This again conforms with the 

theory. The approximate bounds for; 

are all large except for the bounds 
pertaining to In T2 using ordinary least 

squares. The failure of this bound is 

explained by the fact that I is not a good 
approximation of ro . All values of ; 

obtained using group averages are 

bounded by V mx I Q'Q , which conforms 
with the idea that roG is an adequate 
approximation of ro and that the error 

groups are adequate. Use of the bounds 
often would yield much larger 

confidence intervals than use of;. 

Two examples are analyzed to test the validity and robustness of the theory developed in 
this report when the model error is large. Example 1 is for one-dimensional, steady-state flow in 

an aquifer having transmissivity ( 1) that varies stochastically and one dimensionally at small 
scale and recharge ( W) that is constant. Example 2 is for two-dimensional, steady-state flow in a 
zoned aquifer where transmissivity and recharge vary spatially at both large and small scales, the 

small-scale variations being stochastic. 
An analytical solution (7 -1) for example 1 allows for potential block-to-block variation in 

InT and W (that is, J3) along the flow path. This solution is simplified in (7-4) to be in terms of 

c~nstant average In T over all blocks ( 0.1 = In T.) and the constant drift value of recharge 
(02 = W). The two solutions (one using block-to-block variations in T and Wand the other 
using spatially constant T and W) show that the intrinsic nonlinearity of both models is zero and 

that transformations a(J3) and +(9) linearize both models. Even so, system intrinsic 
nonlinearity may not be small unless the approximations discussed in section 4 are accurate. 



1-
z 
UJ 
u 
a: 
LU 
c.. 
UJ 
> 
~ 
.....J 
::> 
~ 
:J 
u 

99.9 
99.8 

99 

98 

95 

90 

80 

70 

60 

50 

40 

30 

20 

10 .,....,... 

/ 
// 

.,.../ 

---:/ 
1 

0.5 

0.2 
0.1 

0.05 

Experimental Results 

I 
I 

I • 
I • 

I • 
/ . 

/. . 
I: 

I. • 
I • 

/_ .. /.· 
/. 

/ . 
/ . 

/ . 
/ . 

/ . 
/ . 

/ . 

I 
I 

I 
I 
I 

0.01 ............... L.L.J-J..L.JL.U.J..L.I...L.L.LJ..L..I.U..U..L..I..I..J..I,.LL.J,..LJ..u...u...L,.LJ...U..I,.J...L.L.LJ..L..I..I..I..I..I"-L.U-LJ...I...LL.LJ..J...U,.L.u..u...LJLJ,J...J...I.J...L.L.LJ..L..I..I..I..I..I.u...u..LJ...I..I..I.LI...I..I..I..LJLJ.,LJ,..LJ...I..I..I..U-J 

-3 -2 -1 0 1 2 3 

WEIGHTED RESIDUAL (w~~(Y-f('Y~))) 

117 

Figure 7-19. Probability plot ofweightedresiduals w~i2 (Y -f(y{})) (dots), sample mean(solid 
line) of ordered, simulated, \Veighted residuals from the theoretically correct distribution, and 
plus and minus 2 standard deviation limits (dashed lines) ofthe ordered, simulated weighted 

residuals for example 2. Matrix w G is the diagonal matrix [wGk]. 

Values of pi = ln 1';, i = 1,2, ... , N (where N is the number of blocks), are assumed to be 

independently and identically normally distributed as N(~1 , a~), where a~ = 0.25. Values of 

Pi +N = W; are assumed to be constant at the drift value () 2 • 

The vector of mean errors E(f(f3) -f(y9.)), the matrix of second moments 
E(f(f3)-f(y9.))(f(f3)-f(y9*))', the covariance matrix Var(f(f3)-f(y9.)), and the vectors of 
skewness and kurtosis for the errors f(l3) -f(y8.) were approximated for 11 observation points 
using a Monte Carlo method. Mean errors increase steadily from the known head boundary at 
the lower end of the system to the known flux boundary at the upper end, where they are large. 
Terms in the second moment matrix and correlations computed from the covariance matrix are 
large, especially near the known flux boundary. Values of skewness and kurtosis indicate that 
the distribution of f(l3)- f(yH.) is not normal. These results all show that the system total 
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Figure 7-20. Probability plot of weighted residuals w~/ (Y- f(y{})) (dots), sample mean (solid 

line) of ordered, simulated, weighted residuals from the incorrect distribution 
N(O, (I- R)S(S)/(n- p)), and plus and minus 2 standard deviation limits (dashed lines) of the 

ordered, simulated, weighted residuals from the same distribution for example 2. Matrix w a is 

used to compute R and is the diagonal matrix [ w Gk] • 

nonlinearity is large and that model error has the potential of having a large, possibly 

detrimental, effect on regression modeling of the flow system. 
Measures of total model nonlinearity, model intrinsic nonlinearity, and model combined 

intrinsic nonlinearity defined by (6-56)- (6-65) were computed using weight matrix ro, 
calculated as described in the next paragraph. These values show that the model as written in 
terms of average values is highly nonlinear, but confirm that it has no model intrinsic 

nonlinearity. Model combined intrinsic nonlinearity also is zero for g(y9) = hP (the predicted 

value of hydraulic head at the known flux boundary), but model combined intrinsic nonlinearity 
for parameters In T and W is larger. Subsequent analyses of regression results indicate that these 

model combined types of intrinsic nonlinearity are both negligible. 
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Hydraulic head data ·y for regression analysis were obtained by adding a vector of zero­

mean random normal deviates having a standard deviation ofO.l to f(~) obtained as a 

realization from the Monte Carlo process. This simulates the additive influence of a small 

observation error on the data and adds only 0.01 to the diagonal elements of the second moment 

matrix; model error completely dominates the process. Thus, analysis using these data tests the 

robustness of the theory when the assumption of small model-error variances is not satisfied. 

Each diagonal element of m used for the regression was obtained by inverting the sum ofO.Ol 

and a diagonal element of the: second-moment matrix. 

Regression using (l) =: m produced the estimate e 0 The vectors of residuals y -f('YO) 

and weighted residuals ro112 (Y -f(y{})) were analyzed for signs of spatial correlation inherited 

from model-error correlations and non-normality resulting from the non-normal distribution of 

f(~)-f('Y9.). Probability plots were made of weighted residuals together with theoretical 

measures consisting of the means plus and minus two standard deviation limits of ordered, 

simulated residuals generated by Monte 

Carlo simulation from both the 

theoretically correct distribution of 

residuals and the (incorrect) distribution 

that would be used in field studies 

(N(O,(I- R)S(G)/(n- p)). The 

residuals lie within the limits of the 

correct distribution, but thre,e points lie 

outside of the limits for the incorrect 

distribution. The plot of weighted 

residuals in relation to weighted 

function values ro~ 12f(y{}) shows a 

suspicious, but not abnormal, pattern. 

Both the mean weighted residual and 

the slope are negligible, which is 

predicted if both model and system 

types of intrinsic nonlinearity are small. 

Linearized and nonlinear 95 

3~~,---~,~,~~,---~,~,--~,--~ 

....I 
<( 
::> 

2 -

Cl 1 -
U5«i) 

• 
-

-

~ ~ .. 
o ~ or---~--------.~·~·------------~ 
~ ~ 
I !:::!(3 
S2 ~~ -1 .. 

.. 
-

w-
$ 

-2 - -

-3~~~---~~~~~~~---~1~1--~1--~ 
-20 -10 0 10 20 30 40 50 60 

WEIGHTED FUNCTION VALUE { w~~f('YA)) 

Figure 7-21. Plot of weighted residuals 

w~/(Y -f(y{})) in relation to weighted function 

values w~/f(yG) for example 2. Matrix w 0 is the 

diagonal matrix [ w Gk] • 

percent confidence intervals for InT., W, and g('Y9.) =hi'* demonstrate that correction factors 

( c c values) must be used because several uncorrected confidence intervals do not contain their 

true values InT., W, or hP,., whereas their corrected counterparts do. The nonlinear confidence 

intervals also show the effect of a severe ill-conditioning problem involving a very large 

correlation between B1 (In f) and B2 (W). That is, one limit of each of the intervals is unique 

only for the ratio WI In T . Thus, the nonlinear confidence intervals for InT. and W are 

unbounded on one side. 

Regressions also we:re conducted using Gauss-Markov estimation and ordinary least 

squares ( ro = I) . Only linearized confidence intervals were computed. When no correction 

factors are used, linearized confidence intervals obtained using Gauss-Markov estimation (which 
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Figure 7-22. True zonal values lnT*i' W.i (i = 1,2,3), and hp*, their estimates obtained when ro 
is unknown, and their 95 percent confidence or prediction intervals for example 2. 

require no correction) are largest and corresponding uncorrected intervals obtained using 

ordinary least squares are smallest, with uncorrected intervals obtained using ro = ro lying in 
between. These results primarily reflect the fact that unless S(B)I(n- p) is divided by a factor 

that corrects for spatial correlation, this quantity considerably underestimates E(S(B.))/ n when 

ro = ro (where the factor equals 0.199) and for ordinary least squares (where the factor equals 

0.0707). Correction using cc, which contains the factor, produces confidence intervals obtained 
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Table 7-11. Containment probabilities for 95 percent confidence and prediction intervals when 

ro is unknown for example 2. 

a. Corrected intervals 

Variable 

lnT.1 

lnT.2 

lnT.3 

w.I 
w.2 
w.3 
hp* 

No. 
outside 
interval* 

37 

0 

23 

42 

38 

41 

0 

13 

Containment 
probability 

0.926 

1.00 

0.954 

0.916 

0.924 

0.918 

1.00 

0.974 

b. Uncorrected intervals 

Variable 

ln T.1 

lnT.2 

lnT.3 

w.I 
w.2 
w.3 
hp* 
yp 

No. 
outside 
Interval* 

54 

177 

77 

62 

63 

85 

188 

153 

Containment 
probability 

0.892 

0.646 

0.846 

0.876 

0.874 

0.830 

0.624 

0.694 

Computed for 500 realizations Computed for 500 realizations 

c. Corrected intervals computed 
using ro = roa . 

Variable No. Containment 
outside probability 
interval* 

lnT.1 
33 0.934 

lnT.2 
27 0.946 

lnT.3 29 0.942 

w.I 34 0.932 

w.2 31 0.938 

w.3 37 0.926 

hp* 26 0.948 

Computed for 500 realizations 

using ro = ro that are larger than corrected intervals obtained using ordinary least squares, which 

are in tum similar to the inte:rvals obtained using Gauss-Markov estimation. 

The case involving correlated values of ln 1'; was examined to test the concept outlined in 

section 3 that when correlation is manifested as a trend, the trend should be considered to be the 

drift. It was found that model error and the effect of correlation could be reduced considerably 

by removing the trend from linearly trending ln T data generated from a stationary process 

having exponential covariance with a long correlation length. The need to use correction factors 

when computing confidence: intervals was eliminated. 
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For example 2, the stochastic process involves both T and W varying grid cell by grid 

cell. Drift values are defined for three zones. All grid-cell values ln 1'; and W; , where i is a grid­

cell number and there are N cells, are assumed to be statistically independent, so that P; = ln 1'; 
has the normal distribution N(B k, 0.5 2

), k = 1,2,3, and pi+N = W; has the normal distribution 

N(Bk, 0.0001 2
), where k =4,5,6. 

As for example 1, the vector of mean errors E(f(Jl) -f(y9.)), the matrix of second 

moments E(f(Jl)- f(y9.))(f(J3)- f(y9.))', the covariance matrix Var(f(J3) -f(y9.)), and the 

vectors of skewness and kurtosis were approximated for 32 observation points using a Monte 

Carlo method. Model results were obtained with an integrated finite difference model. The 

magnitudes of mean model errors are generally small, but are measurable in one zone and at 

pumping wells. Diagonal elements of the second moment matrix correlate closely with 

magnitudes of mean hydraulic heads, E(f(J3)). Correlations computed from the covariance 

matrix are often small; only 12 out of the possible 496 distinct correlations are over 0.5. Values 

of skewness and kurtosis again indicate that the statistical distribution of model errors is not 

normal. Thus, even in the absence of widespread large correlations, model errors may have a 

significant effect on model analyses. 

Values of the same model nonlinearity measures used for example 1 indicate that the 

model for example 2 is not as nonlinear as the model for example 1. Model intrinsic nonlinearity 

is larger than for example 1, but is small. Values of the model combined intrinsic nonlinearity 

measures for all six parameters and a predicted head (hp) are all of the order of 10-3
• 

Therefore, model intrinsic nonlinearity and model combined intrinsic nonlinearity should have 

little influence on model predictions and uncertainty analysis. 

The philosophy of obtaining the hydraulic head data Y for example 2 is the same as used 

for example 1. Zero-mean random normal deviates having a standard deviation ofO.l were 

added to f(J3) obtained as a realization of the Monte Carlo process to yield an error structure 

dominated by model error. Weight matrix ro was obtained in the same way as for example 1. 

Regression produced estimates of the three zonal ln T parameters, the three zonal W parameters, 

and three hydraulic heads defining the hydraulic heads along a specified head boundary. 

Probability plots for the weighted residuals obtained as for example 1 suggest that the 

weighted residuals follow the theoretically expected normal distribution. However, in contrast to 

example 1, the weighted residuals also lie inside of the two-standard deviation limits for the 

incorrect distribution, which means that this plot, which would be used in field studies, would 

not detect the influence of model-error correlations. The plot of weighted residuals in relation to 

weighted function values has no visually apparent abnormalities; the slope and mean are both 

small in magnitude. These results suggest small model and system types of intrinsic 

nonlinearity. 

Comparison of corrected linear and nonlinear confidence intervals for all six ln T and W 

parameters and hP shows that the effect of model nonlinearity is small. Magnitudes of the 

correction factors show that all intervals need correction using the correction factors. The 

prediction interval contains its predicted value YP, which is considerably different than h P* . 

This difference shows the large effect of heterogeneity in T, W, or both. 
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A Monte Carlo process consisting of repeated applications of the procedure used to 

calculate the nonlinear 95 percent confidence and prediction intervals was used to check the 
accuracy of the intervals. Both corrected and uncorrected intervals were computed. Corrected 

1 confidence intervals and the corrected prediction interval were found to be accurate, the average 

I 

containment probability being nearly 0.95. In contrast, uncorrected confidence intervals were 

found to be too small, the largest and smallest containment probabilities being 0.892 and 0.656, 
I 

I respectively. The uncorrected prediction interval is accurate, however, 

The Monte Carlo results also were used to check for bias in E(f(yB)) and E(g(yB)), the 

latter applying for the six lnT and W parameters and hP. These means should be nearly 

I 

unbiased for a model with small model and system intrinsic, and model and system ~ombined 
intrinsic, types of nonlinearity. This was found to be true, with the biases in E(f(y{})) being 

negligible and the largest percc~nt change in E(g(yB)) from E(g(y{}.)) being 7.35 percent for 

g(y{}) =B4 = ~. 
Regression estimates and linearized confidence intervals also were computed based on 

Gauss-Markov estimation and ordinary least squares. In contrast to the results of example 1, 

Gauss-Markov estimates are different from estimates obtained using ordinary least squares, and 

linearized confidence intervals obtained using the former method are generally smaller than 

corresponding corrected intervals obtained using the latter. Also in contrast to example 1, 

estimates and confidence intervals obtained using Gauss-Markov estimation are very similar to 

I corresponding estimates and corrected confidence intervals obtained using ro = ro . 
I The entire analysis yiellding regression estimates, confidence intervals, and prediction 

intervals was repeated for the case where the weight matrix is unknown. Errors were grouped 

into three groups according to similarities in hydrogeology, sensitivities, and residuals obtained 

using ordinary least squares. .An additional weighting adjustment was made to observations at 

the two pumping wells to account for the large model errors at these points. 

The nonlinearity measures and the results of analyzing the residuals from the regression 

are very similar to the corresponding measures and results obtained using ro = ro . Regression 

estimates and linearized confidence intervals for parameters are similar to the corresponding 

estimates and intervals 0 btained using (1) = ro ; the prediction interval is smaller than the one 

obtained before. Nonlinear confidence and prediction intervals can be much larger than those 

obtained using ro = ro. This appears to result more from the logarithmic form of £(9), which 

causes weights to be calculab::d as part of the procedure to obtain the intervals, than from model 

1 nonlinearity. 
1 A Monte Carlo analysis of the accuracy of the confidence and prediction intervals 
, confirms that the large intervals are very conservative. The other corrected intervals are not 

quite as accurate as the ones obtained using ro = ro because the containment probabilities are all 

less than 0.95, the smallest being approximately 0.92. The correction factors, which were 

derived assuming known weights, are less accurate when calculated using weights calculated 
during the regression; use of the bounds would produce much larger intervals. All intervals need 

to be corrected; the containment probabilities for uncorrected nonlinear confidence intervals 

range from 0.624 to 0.892. 
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8. Summary and Conclusions 

Application of geostatistical and statistical optimization procedures to ground-water 

model calibration and uncertainty analysis is hampered by two pervasive problems: 
1) nonlinearity of the solution of the model equations with respect to some of the hydrogeologic 

input variables (termed system characteristics), and 2) detailed and generally unknown spatial 

variability (heterogeneity) of some of the system characteristics. Because of the lack of detailed 
site-specific information on heterogeneity, heterogeneity is often described geostatistically. 

However, efficient inclusion of both nonlinearity and heterogeneity in geostatistical and 

statistical optimization formulations of ground-water models has remained elusive. This report 
describes a new theory and approach for efficient modeling of ground-water flow to include 

nonlinearity and a geostatistical description of heterogeneity using a small number of model 

parameters. The theory provides a sound framework for 1) lumping and smoothing the system 
characteristics to define the model parameters and 2) estimating the parameters and assessing the 

uncertainty of the estimates, model functions computed using the estimates, and predictions to be 
made with the model. 

The following general conclusions can be drawn from this report. A brief summary of 

the results leading to each conclusion also is included. 

1. The vector of system characteristics, (l , can be replaced with a lumped or smoothed 
approximation ye. (where y is a spatial and temporal interpolation matrix) when constructing a 

ground-water model. This idea is used because f3, which contains both small and large scales of 

variability (or heterogeneity) in such properties as hydraulic conductivity, recharge, discharge, 
boundary conditions, pumping rates from wells, and other quantities that characterize the 

ground-water system, has too large a dimension to be estimated using the data normally 

available. The small-scale variability contained in f3 is accounted for by imagining f3 to be 
generated by a stochastic process. Vector y9. is a spatial and temporal average having the same 

form as the drift, ye, of the stochastic process, but is a best-fit vector to f3. Vector e. does not 

have to be a vector of effective values. A model function f (Jl) , such as a computed hydraulic 
head or flux, is assumed to accurately represent a field quantity because of the detailed nature of 

f3, but a model function f(ye.) contains error resulting from lumping or smoothing of f3 by 

ye.. Thus, the replacement process yields mean model errors of the form E(f(Jl)- f(ye.)) 
throughout the model and correlations between model errors at points throughout the model. 
This can be regarded as the penalty paid when replacing f3 with y9. . The nonzero means and 

correlations can have a significant effect on construction and interpretation of a model that is 
calibrated by estimating e * . 
2. Vector e. can be estimated as 9 using weighted nonlinear least squares techniques. The 

estimate f ( y{}) (where f is a vector of computed values of one or more model functions 
corresponding to data Y at observation points used for the least squares) is a biased estimate of 

f(ye.) because of (total) nonlinearity in f(f3) and intrinsic nonlinearity in both f(f3) and f(y8). 
(Intrinsic nonlinearity in f(f3) or f(y9) is the portion of total nonlinearity that could not in 
theory be eliminated by some unique transformation of f3 or e , respectively, although to yield 
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only small bias, small intrinsic nonlinearity in f ((3) must be combined with the requirement that 

approximations of second derivatives of f((3) explained in appendix C be accurate. Special 
terminology was applied for the various types of nonlinearity, and the reader is referred to 

section 4 for an explanation.) When considered to be an estimate of f((3), f(y{}) is biased only 

because of intrinsic nonlinearity in f((3) and f(y9). Because the intrinsic nonlinearity can be 

small and the approximations can be accurate, f(y{}) can be a nearly unbiased estimate of f((3), 

but, because total nonlinearity is generally much larger, f(y{}) can often be more biased as an 

estimate of f(y8.). Analogously, the prediction g(y{)) (where g is some function of parameters 

of interest to the investigator) is a biased estimate of g( y9.) because of (total) nonlinearity in 

g(rJ) and combined intrinsic nonlinearity in g(rJ), f((3), g(y9), and f(y9). (Combined 

intrinsic nonlinearity is the portion of total nonlinearity in the pairs g(rJ) and f((3) or g(y9) and 

f ( y8) that could not in theory be eliminated by some unique transformation of (3 or 9 , 

respectively. Again, special terminology was applied for the various types of nonlinearity, and 

the reader is referred to section 4 for an explanation.) When considered to be an estimate 

ofg((3), g(y{)) is biased only because of combined intrinsic nonlinearity or inaccurate 

approximations of the second derivatives of f((3) and g(rJ), as explained in appendix C. 

Combined intrinsic nonlinearity may often be larger than intrinsic nonlinearity, but should 

generally be much smaller than total nonlinearity, so g(y{)) should generally be expected to be 

less biased as an estimate of g((3) than as an estimate of g(y9.). An investigator would 

probably be more interested in estimates of the real variables f((3) and g((3) than the fictitious 

variables f(y9.) and g(y9.), so the extra component ofbias with respect to the functions of 

y9. may not be too important. In any case, the predictive accuracy of a model is strongly tied to 

the degree of intrinsic nonlin(~arity and combined intrinsic nonlinearity ofthe models f((3) and 

f ( y9) , and predictions g(rJ) and g( y9) . As a final point of interest, the forms of the terms 

expres~ing bias from total nonlinearity contained in the biases E(f(y{}) -f(y9.)) and 

E(g(y9)- g(y8.)) show that the terms express an interaction ofheterogeneity and nonlinearity 

because the terms equal zero if there is no small-scale heterogeneity, a condition that is 

expressed as (3 = e and y = ][ (the identity matrix). 

3. The c"orrect weight matrix to use when estimating e and evaluating uncertainty in e, f(y(}), 

and g(y9) is the inverse of the second moment matrix for the total error vector, 

Y -f(y9.) = Y -f(~)+f(~)-f(y9.), where Y -f(rJ) is an observation-error vector and 

f (~) - f ( ye.) is the model-error vector. However, Obenchain ( 197 5) argued that use of this 

matrix can produce a poor mtodel fit to the data Y. In cases where this proves to be true or where 

the data on (3 are insufficient to compute this matrix, a diagonal estimate of it may be used. This 

diagonal weight matrix is ideally composed of inverses of the diagonal elements of the second 

moment matrix, but for practical computation the errors may be grouped based on similarities in 

factors believed to cause the errors. The theory implies that a weight matrix based only on 

observation errors would not be a good substitute unless model errors were small. 

4. Distributions of functions of the sums of squared, weighted errors that are F and t 2 

distributed for a classical linear model form the basis for confidence regions for 9. , confidence 

intervals for g( y9.) , and prediction intervals for g( ye.) + v. (where v. is a predicted 
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combination model and observation error) used for model uncertainty analyses. A combination 

Taylor series and perturbation technique that assumes the variances of Y -f(y9.) and 

f ((3) - f ( y9.) to be small, with the latter being much smaller than the former, was used to derive 

these distributions for a nonlinear model and an arbitrary weight matrix, the latter to allow for 

the choices for the weight matrix given earlier in this section. The functions of the sums of 

squared, weighted errors were found to have distributions that are multiples of the F and 12 

distributions, where the multipliers are termed correction factors. The correction factors are 

functions of intrinsic nonlinearity of f ( y9) , combined intrinsic nonlinearity of f ( y9) and g( y9), 
and the deviation of the weight matrix from the inverse of the second moment matrix for 

Y -f(y9.). Corrections for nonlinearity in f(f3) and g(f3) cannot be made readily. 

5. Additional analyses (appendix F) that do not use Taylor series and perturbation expansions 

show that the corrected F and 12 distributions apply approximately even when the model and 

observation errors are large. However, the analyses also show that the approximations should 

get worse the further the distribution of Y- f(y(}.) deviates from normal, and the correction 

factors do not directly include these non-normality effects. Two examples where the model error 

variance composes most of the total error variance, and both are large, yield results that are 

predicted accurately by the theory, even though Y -f(y9.) in both cases is definitely not 

normally distributed. In particular, approximate nonlinear confidence and prediction intervals 

have close to correct containment probability if the critical 1 value is multiplied by the 

appropriate correction factor, but intervals can be much too small if the factor is omitted. More 

study is needed to determine the potential for inaccuracies from assuming Y -f(y9.) to be 

normally distributed when it is not. 

6. Magnitudes of the correction factors are problem dependent. Normally the contribution from 

intrinsic nonlinearity of f ( y9) can be neglected; the contribution from combined intrinsic 

nonlinearity of f(y9) and g(y9) was observed to be small for the two example problems, but 

this may not always be the case. The importance of both of these contributions can be tested. 
Contribution from model error can be minimized by using a structure y9 that accounts for as 

much variability in the field set f3 as possible, consistent with the necessity of designing a 

nonsingular problem. However, results from example 2 show that even localized large 

correlations resulting from model error may have a significant effect on the magnitudes of the 

correction factors and thus on the confidence and prediction intervals. The localized correlations 

would probably not be detected by an analysis of residuals. Therefore, prediction intervals 

should be tested for accurate containment probability by using techniques such as the cross­

validation techniques proposed by Christensen and Cooley (1999b). Any new data also should 

be similarly tested to determine whether or not they are contained in their prediction intervals 

with nearly correct probability. 

7. When the geostatistical data are insufficient to permit estimation of the correction factors or a 

diagonal weight matrix, then a method that assumes the weights to be unknown can be used to 

estimate 9. and compute confidence and prediction intervals, with approximate bounds 

replacing the correction factors. To use this method, only the error grouping discussed in section 

4 needs to be known. The method will probably produce conservative confidence and prediction 
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intervals if most of the variability in the diagonal second moments can be accounted for by 

grouping the errors. Prediction intervals often will be more accurate than confidence intervals if 
the variance of v. is accurately known. 

8. The theory developed for modeling ground-water flow in heterogeneous media using 

regression methodology explains the observed field results listed in the introduction: 

a) Estimates f(y{}) and g(y{}) often are physically realistic or close to what should be expected, 

even when effective values of the form of 9 to replace J3 are known not to exist. Biases are tied 

to the magnitudes of intrinsic nonlinearity of f(J3) and f(y{}), and combined model intrinsic 

nonlinearity of f(J3) and g(J3), and f(y9) and g(y{}), all which can be small. If the major 

hydrogeologic features are accurately contained in a model, the biases can be reduced further. 

The importance of the intrinsic and combined intrinsic types of nonlinearity for f(y9) and g(y9) 

can be evaluated for any particular model by using measures derived in this report and in 

previous studies (Linssen, 1975; Johansen, 1983). Evaluation of the types of intrinsic 

nonlinearity for f(J3) and g(J3) is more difficult, but can be carried out by analyzing residuals. 

The analyses carried out for the two examples in this report indicate that biases from intrinsic 

nonlinearity are insignificant for both them. However, development of better diagnostic 

methodology is needed, and this is beyond the scope of this report. 

b) Residuals Y - f ( y{}) often behave as if the model were linear and as if errors Y - f ( ye.) had 
a zero-mean normal distribution. If intrinsic nonlinearity in f(J3) and f(y9) is small and J3 has a 

normal distribution, then the residuals have a zero-mean normal distribution as if the model were 

linear and as if Y -f(y9.) had a zero-mean normal distribution. Model nonlinearity and model 

error do not manifest themselves as an abnormality in the residuals in this case. Both examples 

have residuals that appear to have zero-mean, normal distributions. In a field situation, log 

hydraulic conductivity is known to often have nearly a normal distribution, which yields the 

required near-normal distribution for at least some elements of J3. 

c) Some confidence intervals appear to exclude reasonable values; whereas, others do not. This 

characteristic is explained by correction factors that can vary greatly from one confidence 

interval to another; uncorrected confidence intervals can range from accurate to highly 

inaccurate. For example, in example 2 the ordinary least squares confidence interval for the 

recharge in zone 2 is only about 15 percent too small without correction; whereas, the ordinary 

least squares confidence interval for log transmissivity for zone 2 is about 425 percent too small 

without correction. 

9. Finally, although not emphasized earlier, it is worth noting that model function f(J3) can be 

interpreted very broadly. For example, f(J3) can be a model function for various types of 

models, including stochastic models such as proposed by Neuman and Orr (1993) and 

Tartakovsky and Neuman (1998). Function f(J3) can even be interpreted as data directly on J3, 
such as /; (J3) = P1 (the ith error-free observation, which is the jth element of J3 ). If this is the 

only type of data in f(J3) , then the entire theory would cover the use of direct observations of J3 
to construct a model. More commonly, the data could be mixtures of more than one type, as, for 

example, data on a model function such as hydraulic head and direct observations of J3 , and 

f(J3) would be defined accordingly. 
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Appendix A- Evaluation of E(x'Aix)(x'Ajx) 

Let x = [x;] be a zero-mean normal random variable so that 

(A-1) 

where I is the identity matrix and a 2 is an arbitrary variance. Then, for arbitrary symmetric 

matrices A; = [a;kd and A 1 = [a1kl], 

E(x'A;x)(x'A 1x) 

= E(L.L.aiklxkx1)(L.L.aJilrXqXr) 
k I q r 

= L.L.L.L.a;klaJqrE(xkx1xqxr) 
k I q r 

= LLLLG;klaJqr(<5krglq + 8kq8lr + <5kl8qr)a4 

k I q r 

= (L.L.a;klaJik +L.L.a;klaJkl +L.L.a;kka1u)a4 

k I k I k I 

= (L.L.a;kkaJll + 2L.L.aiklaJLk )a4 

k I k I 

= tr(A; )tr(A 1 )a
4 + 2tr(A;A 1 )a

4 

where 8 iJ is the Kronecker delta, 

{

1, i = j 
8ij = 

0, i * j 

and the standard result E(xkx1xqxr) = (8kr8lq + 8kq8lr + 8kl8qr)a4 is obtained by using the 
characteristic function for a multivariate normal distribution (Anderson, 1958, p. 39). 

(A-2) 

(A-3) 
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Appendix B - Second-Order Correct Parameter and 
Parameter Function Estimates; Third-Order Correct Sum of 

Squares Estimate 

Second-Order Correct Parameter Estimates 

To develop I and q in 9 - 9 = I + q, methods used by Johansen ( 1983) are extended to 

include model error from heterogeneity. First, expansion of f(y9) through second order around 
f(y9) using a truncated Taylor series yields 

- - 1 - 2 -
J;(y9) = J;(y9) + D/;(9 -9) +-(9-9)'D J; (9 -9); i = 1,2, ... ,n 

2 
(B-1) 

where DJ; and D2 J; are row-vector and matrix components of Df and D2f as defined by 

(2-1) and (2-2). They are evaluated at 9 = 9 . Second, use of (B-1) and ( 4-4) gives, up through 
second order in U and e, 

J;Cre) = J;cr9) + nJ;ce- 9) + _!_ce -ern2 1; ce- e) 
2 

= J; (yO)+ DJ; (I+ q) +_!_(I+ q)'D2 J; (I+ q) 
2 

- 1 2 
~ J; (y9) + DJ;I + DJ;q + 21'D J;l 

nj; = Dh + c9- 9)'D2 J; 

~ DJ; + I'D2 J; 

(B-2) 

(B-3) 

where Dj; indicates evaluation at 9 = 9. Third, S(9) is minimized using (3-35), ( 4-2), (B-2), 

and (B-3), keeping terms up through second order in U, e, or their product. The result is 

"'HD.f.loy~ + ;-e'D~f1e- D.!)- Df1q -;-I'D2 f)) + HD 2
f.lmy(U1 - Djjl) 

=0 ~~ 

Because I is the first-order solution, it must satisfy 

L~Df/m;1~- Df)) = 0 
l J 

(B-5) 
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or, in matrix form, 

I= (Df'roDf)-1 Df'roU (B-6) 

Putting (B-5) into (B-4) gives 

.L.LDJ;'miJ(-
2

1 e'D~/1e- D.f; q --
2

1
1'D2 ~.I)+ ~.L D2

/; lmiJ (U1 - Df;l) 
I j I j 

=0 (B-7) 

Now, use of (B-6) in the last term in (B-7) yields 

.L.LD2
/; lmiJ(U1 - Df)) 

l j 

= .L D 2
/; lroi (U- Df(Df'roDf)-1 Df'roU) 

i 

I I I I 

= .L D 2/; lroiro -2 (I- ro2 Df(DfmDf)-1 Df'ro2 )ro2 U 
i 

1 1 

= .LD 2
/; lro;ro 2 (I- R)ro 2 U 

i 

1 

= .LD 2
/; lro;ro-1ro2z 

i 

1 

= .LD~ lrofZ (B-8) 
i 

where ro. is row i of ro ro112 is row i of ro112 Z =(I- R)ro112U and 
l ' I ' ' 

R = ro112Df(Df'roDf) -1 Df'ro112
• Thus, (B-7) becomes 

I 

-
2

1 
.L Df'ro 1 ( e'D~f1e -I'D2 f))- Df'roDfq + .L D 2 /;lrol Z = 0 
j I 

(B-9) 

or 

1 

q = (Df'roDf) -I (.L D 2 /;lrof Z + -
2

1 Df'~ ro 1 ( e'D~ f 1e -I'D2 
/ 11)) 

l j 

(B-10) 

where ro 1 is columnj of ro. 

Second-Order Correct Parameter Function Estimates 

An estimated model function value J; ( y9), a residual Y; - J; ( y9), and a prediction 

g(yB) are developed using I and q. An estimated model function value is expressed to second 

order using (B-2), (B-6), and (B-1 0) as 
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" - 1 2 
/;(yf}) ~ /;(y9) + D/;1 + D/;q +-I'D/; I 

2 
I 

=/;(yO)+ D/;(DfmDf)-1 Df'roU + D/;(Df'roDf)-1 (LD2 jkto2 Z 
i 

+..!_Df'Lro -(e'D2 f.e-I'D2f.I))+..!_I'D21'.1 2 j J p 1 J 2 Ji 

- _!._.!_ .!_ .!_ 1 .!_ 
=/;(yO)+ ro; 2 ro 2 Df(Df'roDf)-1 Df'ro 2 (ro 2 U + 2ro 2 ro -1 7 ro je'D~fje) 

1 1 1 1 1 

+ ;-m~2 (I- m2 Df(Df'mDfr1 Df'm' )m 2m -l7 m )'D2 f)+ D/,(Df'mDf)-
1 
fD

2 
f,lmi Z 

l l l l 1 - -- - 1 - 1 -- -
=/;(yO)+ ro; 2 R(ro 2 U +-L ro

1
2 e'Dp2 j

1
.e) + -ro; 2 (I- R)L ro]I'D 2 fjl 

2 j 2 j 

l 

+ D/; (Df'roDf)-1 L D 2 fklroi Z 
k 

(B-11) 

where ro~ 2 is row k of ro112
• 

A residual is defined as Y; - /; ( yi}) . Then a second-order approximation is computed 

using (3-5), (3-27), and (B-11) as follows. 

Y; - /; ( yi}) = Y; - /; <P) + J: (p) - /; (yo) - (J: ( yi}) - J: (yo)) 
1 _!._ !._ 1 .!_ 1 _.!_ !._ 

~ &; + Dp /; e + 2e'D~/;e -ro; 2 R(ro 2 U +"2 7ro]e'D~jje) - 2m/ (I- R)7ro]I'D
2 
fjl 

l 

- D/;(Df'roDf)-1L D2 fklroi Z 
k 

1 1 1 l 

= m;' (I- RXm 2U +;-7mJ (e'D~fje-I'D2 !))) - D/,(Df'mDfr
1 
fD

2 
f,lmiZ (B-12) 

A prediction g( ytl) of g(p) or g( yO.) can be computed using an equation analogous to 

(B-2) together with (B-6) and (B-10): 

" - ,.. - 1"- "-
g(yf}) = g(yO) + Dg(O- 0) + -(0- 9)'D2g(O- 9) 

2 

- 1 2 
~ g(y9) + Dgl + Dgq +-I'D gl 

2 
1 

= g(yO) + Dg(Df'roDf)-1 DfmU + Dg(Df'roDf)-1(LD 2 /;lrof Z 
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1 _1_ _1_ 

+ -Q'ro 2 ro -1 I ro .e'D2 f.e + Dg(Df'roDf)-1 I D2 flrof Z 
2 j } p } i 

1 1 1 

= g(yB) + Q'ro2U + _!_(I'D 2 gl- Q'Iro21'D2 f.l) + _!_Q'Iro2e'D 2 f.e 
2 i 1 1 2 i 1 p; 

1 

+ Dg(Df'roDf)-1 I D2 f;lrof Z (B-13) 
i 

where Q = ro112 Df(Df'roDf)-1 Dg'. 

Third-Order Correct Sum of Squares Estimate 

To obtain all of the terms through fourth order in U, e, and their product resulting from 
the second-order expansion for f(y{}), the term I'D2fq must be kept in (B-2). This does not 
result in true fourth-order accuracy in U, e, and their product for the sum of squares because, in 
order to obtain this, a third-order term of the Taylor series would have to be retained. This term 
is not retained because evaluation of third-order derivatives off is not practical. 

With the added term, (B-12) becomes 

1 1 1 1 

r;- .t;(y{J)"' m; 2 (I- R)(m'u + ~ ~m} (e'D~f1e -I'D2 
/}))- Dj,(Df'mDf)-1fD2 j,lmfz 

-I'D2fq (B-14) 

so that 

S(B) =II(~- f(y{)))m;~_(Y~_- f~_(yB)) 
i f 

1 1 1 1 

~I I (ro;2 (I- R)(ro2 U + 2_ Iro
1
2 (e'Dp2 f

1
.e -I'D2 f

1
.1))- Df (Df'roDf)-1 I D2 fklrof Z 

i f 2 j k 

1 1 1 

-I'D2 
/; q)m;~_ ( ro ~2 (I- R)( ro 2 U + ~ 7 ro J (e'D~ f 1e -I'D2 f))) 

1 

- Dft (Df'roDf)-1 I D 2 fklrol Z -I'D 2 f~_q) 
k 

_1_ 1 _!_ _ _1_ _ _!_ _1_ 

~ (ro 2 U + "2 7 ro] (e'D~f1e -I'D 2 f)))'(l- R)7 7 (ro; 2 
)' m;trot 2 (I- R)(ro 2 U 

1 1 1 

+ 2_ Iro2 (e'D 2 f.e -I'D2 f.l))- 2(ro2U + 2_ Iro~ (e'D 2 f.e -I'D2 f.I))'(I- R) 
21 1 P1 1 21 1 P1 1 

1 1 1 1 

• I I (ro;2 )'w;~_Dft( Df'roDf)-1I D2 fklrof Z- 2U'ro2 (I- R)I I (ro;2 )' mui'D 2ft q 
i f k i f 

1 1 

+I rof ZI'D 2 fk ( Df'roDf)-1I I D/;'muDft (Df'roDf)-1I D 2 fklrof Z 
k i f k 
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1 1 1 1 

= (ro2U +~ ~roJ (e'D~f1e -I'D2 n))'(I- R)(ro2U +~ ~ro~ (e'D~f1e -I'D
2 
n)) 

1 1 1 1 

- 2(ro2U + ~ 7ro~ (e'D~f1e -I'D2 /)))'(I- R)ro2Df(Df'roDf)-
1 t D2 

fklrof Z 

1 1 1 1 

- 2U'ro2 (I- R)I (rol )'I'D 2 /;q +Iroi ZI'D 2 fk (Df'roDf)-1I D2 fklrof Z 
i k k 

1 1 1 1 

= (ro2U +_.!_I ro2(e'D2 f.e -I'D2 f.I))'(I- R)(ro2 U + _.!_ Iro2 (e'D 2 f.e -I'D
2 
f.l)) 

211 Pl 1 211 Pl 1 

1 1 1 1 

- 2U'ro2 (I- R)I (rol )'I'D 2 /;q +I roi ZI'D 2 fk (Df'roDf)-1I D2 fklrof Z 
i k k 

(B-15) 

where (I- R)ro 112 Df = 0. Now, use of(B-10) gives 

1 I 1 

U'ro2 (I- R)I (rol )'I'D 2 /;q = Z'I ( rol )'I'D 2 /;q 
i i 

1 1 

= Z'I(rol )'I'D 2
/; ( Df'roDf)-1 (ID 2 f.lro2 Z + _.!_ Df'Iro. (e'D 2 f e -I'D

2 
f.l)) 

; 1 11 2 11 Pl 1 

1 1 

= IroiZI'D 2 /k(Df'roDf)-1ID 2 fklrofZ 
k k 

1 

+ ~ t ro l ZI'D 2 fk (Df'roDf) -1 Df'7 ro 1 ( e'D~f1e -I'D2 f 11) (B-16) 

Finally, substitution of (B-16) into (B-15) results in 

1 1 1 1 

S(9),., (ro2U +~ ~roJ (e'D~f1e -I'D2 n))'(I- R)(ro2U +~ ~roJ (e'D~f1e-I'D2 
/})) 

1 1 

-I roi ZI'D 2 fk (Df'roDf)-1ID 2 fklrof Z 
k k 

1 

-I ro 2 ZI'D 2 J; (Df'roDf) -1 Df'I ro . ( e'D2 f .e -I'D 2 f .I) k k k 
1

1 P1 1 
(B-17) 

Proof that Any Squared Linear Combination E(l'(B- e* ))2 is Minimized 

Through Third-Order Terms When m-1 oc E(Y -f(yO*))(Y -f(yO*))' 

This proof is an adaptation of the Gauss-Markov theorem as given by Beck and Arnold 
(1977, p. 232-234). Use of(3-30) and (4-11) allows the solution for 0- e. to be expressed in 

the form 

e- e. = (Df'roDf)-1Df'ro(Y- f(y9.)) +A (B-18) 
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where 

I 

A= (Df'roDf)-1 (~D2 /;lrofZ +-
2

1 Df'~ ro 1 (e'y(y'y)-1 y'D~f/Y(Y'Y)-1 y'e -I'D2
/))) 

l J 

(B-19) 

Let na; = E(Y -f(ye.))(Y -f(y9.))'. Then, if ro oc Q-1
, the solution Ov -9. is given by 

Sv- e.= (Dftl-1Df)-1 Df'Q-1(Y -f(y9.)) + Av (B-20) 

where Av is A for which ro oc n-1
• Combination of(B-18) and (B-20) gives 

B-9. =ev-e.+ C'(Y -f(y9.)) +A- Av 

= (Df0-1Df)-1Df'Q-1(Y -f(yO.))+C'(Y -f(y9.))+ A (B-21) 

where C' = (DfmDf)-1 Df'ro- (Dftl-1Df)-1 Df'Q-1
• Now (B-21), the definition of Q, the fact 

that C'Df = 0, and the fact that expected values of third order products involving U. and e are 
zero are used to obtain, through third order in U * and e, the squared linear combination 

E(l'(S- e.)) 2 = l'E((Df'Q-1Df)-1 Df'Q-1(Y- f(y9.)) + C'(Y- f(ye.)) +A) 

•((Y -f(y9.))'Q-1Df(Df'Q-1Df)-1 +(Y -f(ye.))C' +A)/ 

~ /'((Df'Q-1Df)-1a; + 2C'E(Y -f(ye.))(Y -f(y9.))'Q-1Df(Df'Q-1Df)-1 

+C'nca;)l 
= l'(Df'Q-1Df)-1la; + l'C'Q-1Cla; (B-22) 

Thus, because C' = 0 when ro oc n-1
, E(l'(S- e. )) 2 is minimized through third-order terms by 

selecting ro to be proportional to Q -1 
• 
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Appendix C - lnvariance of Terms Expressing Intrinsic 
Nonlinearity and Combined Intrinsic Nonlinearity 

Terms Expressing Intrinsic Nonlinearity with Respect to f(y9) 

135 

An expression of the form (I- R)Lro~.' 2 x'D2 f 1y is shown to be invariant under a unique 

transformation of 9 to +(9). Under thes'e circumstances the expression takes on a value 
conforming to the smallest magnitude that the transformation of the matrix D2 f 1 could have, 

and the magnitude of the expression can be small if the transformation nearly linearizes f. Note 
that the actual transformation that makes fmost nearly linear does not have to be obtained to 
show the required invariance. 

The Jacobian for the transformation evaluated at 9 = 9 is defined as the nonsingular 
pxp matrix 

[
a e. J J = - 1 

; i = 1,2, ... ,p;j = 1,2, ... ,p 
a(Jj 

Then Dftransforms to D;f and D2ftransforms to D!f, where 

DfJ = D;f = [ BJ; ]; i = 1,2, ... ,n;j = 1,2, ... ,p 
a(Jj 

and 

D!f = [ 
82 

/; ]; i = 1,2, ... ,n;j = 1,2, ... ,p; k = 1,2, ... ,p 
8¢Jj8¢k 

- -
Both matrices are evaluated at + = +(9). 

(C-1) 

(C-2) 

(C-3) 

With the above relations, the subject expression transforms from 9 to + as follows. 

1 

(I- R)Lro}x'D 2 f 1y 
1 
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1 1 1 8+' B+ 
=(I -ro2D~f(D~f'roD~f)-1 D~f{o2 )::roJ Eu~1 aoi D!fj aok xiyk 

1 

=(I- R~)~roJ (J-1x)'D!J1 (J-1y) (C-4) 
J 

where (I- ro 112D ~f(D ~f'roD ~r)-1 D ~f'ro 112 ).L ro~12 D ~!1 = 0, and 
J 

1 1 

R~ = ro 2D ~f(D ~f'roD ~f)-1 D ~f'ro2 (C-5) 

Equation (C-4) shows that (I- R~)~ro~12 (J- 1 x)'D!f1 (J-
1y) has the same form as, and is equal 

to, (I- R)Lro~ 2x'D 2 j 1y no matter
1
what transformation of the form +(9) (including 9 itself) is 

used. Thud, it is invariant under transformation of 9 to +CO). Note that R also is invariant. 

Forms for x (andy) encountered in this report are x =I, x = (Df'roDf)-1 D//, 
X= (Df'roDf)-1 Dg'' and X= e. -9 = (y'y)-1 y'e. Then forms for J-1x are 

J-11 = J-1(Df'roDf)-1Df'roU 

= (J'Df'roDfJ)-1 JDf{oU 

= (D ~f'roD ~f) -1 D ~f'ro U 

J-1 (Df{oDf)-1 D// = (J'Df'roDfJ)-1 J'D/;' 

= (D ~f'roD ~f) -1 D ~/;' 

J-1 (Df'roDf)-1 Dg' = (J'Df{oDfJ)-1 JDg' 

= (D~f'roD~f)-1 D~g' 

where DgJ = D;g and 

[ 
p a pi aok J [api J . . yJ = L-- = - ; 1 = 1,2, ... ,m;J = 1,2, ... ,p k=1 aok Bf/J1 Bf/J1 

(C-6) 

(C-7) 

(C-8) 

(C-9) 

(C-10) 

which is evaluated at +. Equation (C-10) is the transformation of y, where f3 is written as a 
function of yO, and 0 is written as 0( cj») (the inverse transformation of +CO) ). Because e and U 
are random variables that are not functions of 9 , they do not transform. 
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!Terms Expressing Combined Intrinsic Nonlinearity with Respect to 
j f( y8) and g( y8) 
I 

I 

I Next, an expression of the form Q'L:ro~12x'D 2 f 1y- x'D2 gy is shown to be invariant 

)under transformation of 9 to cj)(9). Therefore, if the same transformation transforms matrices 

D2f and D2 g to matrices that are small in magnitude, the expression will be small in 

magnitude. That is, if the same transformation nearly linearizes both f and g, the expression will 

be small in magnitude. 

Transformation of the subject expression shows invariance in the same way as does (C-4) 
as follows. 

I 

Q'L:ro}x'D2 f 1y- x'D 2 gy 
J 

1 

= Q, L:roJ (J-Ix)'D!JJ (J-Iy)- (J-Ix)'D!g(J-Iy) 
J 

where D ,g(D ~f'roD ~f)-1 D ,r'ro112 Lro~12D ~!1 - D ~g = 0 and 
J 

1 

Q~ = ro2D~f(D,f'roD;f)-1 D;g' 

Terms Expressing Intrinsic Nonlinearity with Respect to f(p) 

(C-11) 

(C-12) 

Invariance of the form (I- R)Lrou 2e'D 2pf.e can only be shown to be approximate. In 
. J J 

this case unique transformations cj)(9) 
1
and a.(f3) are used. First some preliminary relations are 
- -

needed. Because of the equality f3 = y9 + e, where e is not functionally dependent on 9 , the 

chain rule of calculus gives 

(C-13) 

or, if evaluated at the set f3 = y9 , 
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(C-14) 

The derivative of(C-13) is 

(C-15) 

or, if evaluated at the set p = ye , 

D2 
/; = y'D~/;y; i = 1,2, ... ,n (C-16) 

Finally, the Jacobian of the transformation a(J3) evaluated at f3 = y9 is defined as the m x m 
nonsingular matrix 

J .8 = [ api ]; i = 1,2, ... ,m;j = 1,2, ... , m 
aaj 

so that 

D pfJp = Daf = [ B/; ]; i = 1,2, ... ,n;j = 1,2, ... , m 
aaj 

(C-17) 

(C-18) 

Next, the approximate relation of a to Ci) is obtained. From the definition~= yS, 
- -

dJ3= ydl (C-19) 

Also 

(C-20) 

and 

- -
d9.=Jdcl> (C-21) 

Substitution of(C-20) and (C-21) into (C-19) and premultiplication of the result by J{) yield 

(C-22) 

Now, if 9 and f3 transform similarly because J3 is just at smaller scale than 9, then yJ is an 
approximate interpolation of Jp, so that at f3 = ye, J{/yJ is approximately constant. With this 
approximation, (C-22) can be integrated to give 
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a~ Af +[integration constants] (C-23) 

where 

(C-24) 

With the above results, transformation of (I- R):Lro~12e'D~f1e in an analogous manner 

to transformation of (I- R):Lro112x'D 2 f.y results in 
1 

j J J 

(C-25) 

where the derivatives are evaluated at (3 = y9. The term involving Daf must be written in terms 

of D;f in order to remove it as was done in (C-4). First (C-2), (C-14), (C-18), and (C-24) are 

used to obtain 

(C-26) 

Next, approximation of B2a/ ap;apk evaluated at (3 = yB with its best-fit vector A.a;k gives 

(C-27) 

where a;k; i = 1 ,2, ... ,m; k = 1 ,2, ... ,m is a set of vectors equal to the set 

(A.'w;kA.)-1A.'w;kB 2a/ ap;apk and W;k is a set ofweight matrices to be explained. Again, the 

derivatives are evaluated at (3 = y9. Finally, substitution of (C-26) and (C-27) into (C-25) yields 

1 

=(I- R;):LroJ (J{J1e)'D!f1 (J{J1e) 
J 

(C-28) 

If each approximation of Daf1B
2al Bp;apk with D;f1a;k is accurate, then 

(I- R):L ro~12e'D~f1e is nearly invariant and the term is small if D~/1 is small. If each 
J 
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approximation is not accurate, then the term may not be small even if D!f1 is small. The 

weight matrices are conceptually designed to give the most nearly invariant final result. An 
approximation analogous to (C-27) is developed with a different perspective in paragraphs 
containing (F-1 04)-(F-1 08), appendix F. 

Finally, (C-4), (C-16), and (C-28) are used to show that the expressions 
(I- R)I ro~12 e'y(y'y) -1 y'D~f/Y( y'y) -1 y'e and (I- R)I ro~12e'(D~f1 - y(y'y) -1 y'D~f1y( y'y) -1 y')e 
are at le~st approximately invariant. First 1 

1 

(I- R)I ro2 e'y( y'y) -1 y'D 2 f.y( y'y) -1 y'e 
j } p } 

1 

=(I- R)Iro2e'y(y'y)-1 D2 f.(y'y)-1y'e 
j } } 

(C-29) 

so that, with (y'y)-1 y'e = x = y, (C-29) is of the form (I- R)I ro~12 x'D 2 j 1y, which from (C-4) is 

invariant. The difference between (C-28) and (C-29) gives th6 second expression, which, 
therefore, is approximately invariant. 

Terms Expressing Combined Intrinsic Nonlinearity with Respect to 
f(J3) and g(f3) 

As for (I- R)I ro~12e'D~f1e, invariance of the form Q'I ro~12e'D~f1e- e'D~ge can only 
be shown to be approiimate. The same basis and approximatiorls as used to get (C-28) are again 
used, but they are extended to involve g((3) also. For this note that 

(C-30) 

Then 

1 

Q'Iro2e'D2 f.e-e'D 2 ge j } p } p 

I_ I_ m m 82 /· m m 
= Dg(Df'roDf)-1 Df'ro 2 Iro} I I 1 eiek- I I 

1 i=1 k=1 apiapk i=1 k=1 
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m m 8a' 2 aa 
-I L (-Dag-+D;ga;k)e;ek 

i=l k=l api apk 
I 

= Q~ Iro} (J/}e)'D!/1 (J/J1e)- (J/J1e)'D!g(J/J1e) (C-31) 
J 

so that Q'I ro~12e'D~f1e- e'D pge is approximately invariant. 
Fi~Jtlly, use of(C-11), (C-16), and (C-31) shows that the expressions 

Q'I ro~12e'y( y'y) -I y'D~ j
1 
y( y'y) -I y'e- e'y( y'y) -1 y'D~gy(y'y) -1 y'e and 

Q'f ro~12e'(D~f1 - y(y'y) -1 y'D~f1y(y'y) -1 y')e- e'(D~g- y(y'y )-1 y'D~ gy( y'y) -I y')e also are 

approximately invariant. The development is analogous to the development in (C-29) and the 
discussion following (C-29). 
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Appendix D -Third-Order Analysis of the Objective Function 
When the Weights are Unknown 

When the weights are unknown, an objective function can be written as (4-50): 

I q 2 
£(9) =- Lnkln( L 'h ) 

2 k=l i(k) 
(D-1) 

where 

1]; = r: - J; (y9) (D-2) 

Through third order in 'I; , £(9) is shown in this section to be proportional to ( 4-4 7) plus some 

constants, so that through second order in 'I; the normal equations obtained by minimizing 

£(9) are equivalent to the normal equations obtained by minimizing (4-47). 

First a set of weights m Gk, k = 1,2, ... , q , are defined from 

-2 

m~~ = o-e L E(Y;- /;(y9.)) 2
; k = 1,2, ... , q 

nk i(k) (D-3) 

Because the expected value and variance of Y;- J;(y9.) are taken to be uniform in each group, 

so that 

-1 2 
= {l)Gko-e 

(D-4) 

(D-5) 

Now expansion of £(9) through second order in 17;2 -E(Y;- /;(y9.)) 2 using a truncated Taylor 
series yields 

(D-6) 

where the derivatives are evaluated at 1J;2 = '1~ =E(Y;- /;(y9.)) 2
: 

(D-7) 
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82 In( I qJ) =-8 ___ 1_=-~ 
8(ql) 8(qJ) t(k) 8(17~) I 11i a:ni 

f(k) 

(D-8) 

Substitution of (D-7) and (D-8) into (D-6) produces 

1 q 2 1 q 2 n 
+-Im L17· +-I m Iq---

4a2 k=I Gk i(k) I 4a2 k=I Gk J(k) J 4 
8 8 

= _1_ _ _1_ q mAk 2 2 _!_ q _1 2 _ 3n 
2 

S(O) 4 I I I 1]; 171 + L nk 1n(nkmGka8 ) 

a 
8 

4a 
8 

k=I nk i(k) J(k) 2 k=I 4 
(D-9) 

where n = f nk. Thus, through third order in 7];, £(0) and S(O) +constants are proportional, the 

proportioruiftty factor being a ; 2 
• 

Minimization of £(0) with respect to 0 using (D-1) yields 

q A A 

IwGk I D/; (~- /;(y{})) = 0 
k=l i(k) 

(D-10) 

where 

-1 1 A 2 
w oc- I (~- /;(y9)) 

Gk nk i(k) 

(D-11) 

Also, minimization of S(O) using (4-47) results in 

q A A 

ImGk I D/; (~- /;(y{})) = 0 
k=l i(k) 

(D-12) 

From (D-9) it can be seen that (D-10) and (D-12) differ by terms of third order in 1];. Thus, 

through second order in 1]; , the two sets of normal equations are equivalent. 
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Appendix E - Second-Order Correct Constrained 
Regression Estimates; Third-Order Correct Constrained 

Sum of Squares Estimates 

Second-Order Correct Constrained Parameter Estimates for 
Confidence Intervals 

A Lagrange multiplier formulation is used to obtain a constrained regression estimate, e, 
of 0 * . The approximation method and solution procedure are similar to the ones used in 
appendix B to obtain 9 . 

First let e-9 = T + q' where T is the first-order term and q is the second-order term, 

both of which are to be obtained. Then, a second-order Taylor series expansion gives, up 
through second-order in U. and e, 

/; (yO) = /; ( yB) + D/; (e- B)+ 2_ (B- B)'D 2/;(B- B) 
2 

= /;(yB) + D/;T + D/;q +_!_(T + q)'D2/;(T + q) 
2 

~ J; (yO)+ D.t; T + DJ;q + 2_ T'D'l; T 
2 

and 

g(ye) = g(yB) + »g(e -B) +_!_(e- B)'»2 g(e -B) 
2 

~ g(yB) + DgT + Dgq +_!_ T'D2gT 
2 

Next using (3-17), 

/;(yO.) =/;(yB)+D/;(9.-S) +2_(9. -B)'D2/;(9.-S) 
2 

= /; ( yB) + D/; ( y'y rl y' e + 2_ e'y( y'y r 1D 2
/; ( y'y rl y' e 

2 

and 

g(yO.) = g(yB) + Dg(9.- B)+ 2_(9.- S)'D2g(O.- B) 
2 

= g(yB) + Dg(y'yr1y'e +2_e'y(y'yr1D2 g(y'y r 1 y'e 
2 

(E-1) 

(E-2) 

(E-3) 

(E-4) 
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Combination of (E-1) and (E-3), and (E-2) and (E-4), results in 

/; (ye) = /; (y9.) + DJ;(e- e.)+ 2_(e- O)'D2J;(e- 0) - 2_(9.- O)'D2/;(9 .-0) 
2 2 

~ /; (y9.) + DJ; (T- (y'yr1y'e) + DJ;ij + ~ T'D2/;T -~e'y(y'y)1 D2
/; y(y'y)1 y'e (E-5) 

2 2 

and 

....., ....., 1,....,- ,.....,_ 1 - -
g(y9) =g(y9.)+Dg(9- 9.) +-(9-9)'D 2g(9-9) --(9.-9)'D2g(9.-9) 

2 2 

~ g(y9.) + Dg(T- (y'y rl y'e) + Dgij + 2_ T'D2 g T- 2_e'y(y'yr1 D2gy(y'yr1 y'e 
2 2 

(E-6) 

The constrained regression estimate is obtained by minimizing S(9) subject to the 
constraint that g(y9) = g(y9.). This can be formulated as the Lagrange multiplier problem 
(Boas, 1966, p. 145-150) 

L(9,J) = S(9) + 2J(g(y9.)- g(y9)) (E-7) 

Minimization of (E-7) is accomplished using (3-30), ( 4-9), (C-16), (E-5), and (E-6), keeping 
terms up through second order in U * , e, or their product. The result with respect to 9 is 

~ =-2LL D];mij(Y1 - f 1(ye))-2JDg' 
UU I 1 

~ -2L~ (D/;'+D 2/;T)m9.(Y1 - .0(r9.)-D/1 (T -(y'yr1y'e)-Df1ij 
I 1 

1 ,....., ,....., 1 ,....., 
--I'D2/-1 +-e'y(y'yr1 D2.f-(r'rr1 y'e) -2J(Dg'+D2gl) 

2 1 2 1 

= -2 L L (D/;' + D2 /;T)mij ( U.1 + -
2

1 e'(D~/1 - y(y'y r1 y'D~f1y(y'y r1 y')e- D/1 (T 
l 1 

1 ,.._, ,.._, 1 ,.._, 
-( y'y ) 1 y'e) - D.t; ij-- I 'D2f. I +-e'y( y'y ) 1 D2f. ( y'y ) 1 y'e) - U (Dg' + D2 g I) 

1 2 1 2 1 

"'-217 Dj,'my(V.j +-ie'D~ fj e-Df/T-(y'yr'y' e)- Dfj ii -;-T·n:r)") 

-2LLD2.hlmij(U.1 -D/1 (1 -(y'yr1y'e))- 2J(Dg'+D2gl) 
I 1 

=0 

or 



146 A Theory for Modeling Ground-Water Flow in Heterogeneous Media 

+I I D 2 /;T mij(U.1 - Df1 (T- (y'yr1y'e )) +A (Dg' + D 2g T) = o 
I J 

where D.{; and Dg indicate evaluation at 9 = e . The result with respect to A is 

BL -
- = 2(g(y9.)- g(y9)) 
BA 

or 

Because I is the first-order solutio~ it must satisfy 

or, in matrix form, 

and 

Dg(T- (y'y rl y'e) = 0 

To solve for l (E-ll) is premultiplied by Dg and (E-12) is used to get 

Dg(D ftoDf)- 1 Df'roU * + A.Dg(Df'roDf)-1 Dg' = 0 

or 

A.= Dg(D f'roDf)-1 Df'roU * 
Dg(D f'roDf) -1 Dg' 

The~ substitution of (E-13) into (E-ll) yields 

T- ( ' )-1 'e = (D f'roDf)-1 Df'roU - Dg(D f'roDf)-
1 

Df'roU * (Df'roDf)-1 D ' 
'Y 'Y 'Y * Dg(D f'roDf) -1 Dg' g 

(E-8) 

(E-9) 

(E-10) 

(E-ll) 

(E-12) 

(E-13) 
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= (Df'roDf)-1(1- Dg'Dg(Df'roDf)-
1 

)Df'roU. 
Dg(D f'roDf)-1 Dg' 

1 1 1 

= (D f'roDf) -1 Df'ro 2 ( ro 2 Df(D f'roDf) -1 Df'ro 2 
1 1 

_ ro2 Df(Df'roDf)-1 Dg'Dg(Df'roDf)-1 Df'ro2 )ro~ U 
Dg(D f'roDf) -1 Dg' * 

1 QQ' 1 
= (Df'roDf)-1Df(o2 (R ---)ro2u. 

Q'Q 
(E-14) 

To evaluate q (E-14) is substituted into (E-8) to get 

1 QQ' 1 

I D f'ro
1
. (U.

1
. + ~ e'D2pf

1
.e)- Df'roDf(Df'roDf) -1 Df(o 2 (R- --)ro2 U. 

j 2 Q'Q 

-Df'roDiq --
2

1 ~ Df'ro1 I' D 2 j 1T +I D2/;Tro; (U.-Dr(T -(y'yr1y'e)) 
1 I 

+A, (Dg' + D 2gi) 

(E-15) 

where Dfm112 Rro112 = Df'ro. Now 

1 QQ' 1 

U. -Df(i -(y'y ) 1 y'e) = U. - Df(Df'roDf)-1 Df'ro2 (R- Q'Q)ro2U. 

1 QQ' 1 
= (I- Df(Df'roDf)-1 Df'ro2 (R --)ro2 )U. 

Q'Q 
1 1 1 , 1 

= ro -2 (I - ro 2 Df(D f'roDf) -1 Df (o 2 (R - QQ ) )ro 2 U. 
Q'Q 

1 QQ' 1 

= ro 2 (I- R + -)ro2 U. 
Q'Q 

(E-16) 

where RQQ' = QQ'. Let Z =(I- R + QQ' /Q'Q)ro112 U •. Then (E-15) becomes 

1 QQ' 1 
_!_I D f'ro. e'D2 f.e + Df'ro2 --ro2 U - Df'roDiq- _!_I Df'ro. T 'D2 j.T 
2 j 1 p 1 Q'Q • 2 j 1 1 

1 

+I D 2 /;T roJZ+ A-(Dg' + D2gT )= 0 (E-17) 
i 

or 
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1 QQ' 1 1 
q = (Df'roDf)-1 (Df'ro2 --ro2u. + :L D2 /;T rofZ + _!_ :L Df'ro

1
. (e'D~f1.e- T'D2 j

1
.T) 

Q'Q i 2 j fJ 

(E-18) 

Putting (E-14) and (E-18) into (E-9) permits evaluation of A, : 

1 QQ' 1 1 QQ' 1 1 
Dg(Df'roDf)-I Df'ro2(R ---)ro2u. + Dg(Df'roDf)-I(Df'ro2 --ro2U. + :L D2 JJ rofZ 

Q'Q Q'Q i 

I '"" ,..., ,..., I '"" '"" I I 
+ 2 7Dfro1 (e'D~j1e- I 'D2 / 1 I) +l(Dg' + D2 g I))+ 2 I 'D

2 g I - 2e'y(y'y ri D2 g(y'y r y'e 

1 1 1 I I 

= Q'(R- QQ )ro2u. +Q'ro2u. +Dg(Df'roDf)-1:LD2JJro/Z +_!_:LQ'ro1~(e'D~f1.e- T'D2.t;
1
.T) 

Q'Q i 2 j fJ 

+ A,(Q'Q + Dg(Df'roDf)-I D2 g T) + _!_ T'D2 g T- _!_e'y(y'y ri Dg(y'y r1y'e 
2 2 

1 1 1 

= Q'ro2U. + Dg(DfmDf)-1 ~ D2 JJ rofZ + -
2
I :LQ'roJ (e'D~f1e- T'D 2 hT) 

1 1 

,..., I ,..., ,..., I 
+ A.(Q'Q + Dg(Df'roDf)-I D2 gl) +-I 'D2 gl - -e'y(y'y r1 Dg(y'y ri y'e 

2 2 
=0 

where 

Q'(R- QQ') =Q'R-Q' =0 
Q'Q 

Therefore, 

1 1 1 

A,= _ _!_(Q'ro 2u. + Dg(DfmDf)-1 :L D2 /;T rofZ + 2. :LQ' ro
1
2 (e'D 2p/

1
.e- T'D2 f 1 T) 

d ; 21 
I ,..., ,..., I 

+-I 'D2 g I - -e'y(y'y ri D2 g(y'y ri y'e) 
2 2 

where, through first order in the temporary variable &(which is all that is required), 

d-1 = (Q'Q + Dg(Df(oDf)-1 D2 g T)-1 = (Q'Q + &)-1 

~ (Q'Q)-1- (Q'Q + &)-21&=0& 

= (Q'Q)-1 
- (Q'Q)-2 Dg(Df'roDf)-1 D2 g T 

Putting (E-21) into (E-20) yields, through second order 

(E-19) 

(E-20) 

(E-21) 
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1 1 1 

.l ~ --1
-(Q'ro2u. + Dg(Df'roDf)-1 :L D2 /;T rofZ + _!._ :LQ'ro1~ (e'D2p/

1
-e- T'D2 

/
1
-T) 

Q'Q i 2 j 

1 
1"-' "' 1 1 "' -

+-I 'D2gl --e'y(y'y f 1 D2 g(y'y f 1y'e) + Dg(Df'roDf)-1 D2gl Q'ro 2 U. 
2 2 (Q'Q)2 

(E-22) 

Next, substitution of (E-22) into (E-18) gives 

1 QQ' 1 1 

q ~ (DfmDf)-1(Dfm2 --ro2u. + :L D 2 JJ rofZ + _!._ :L Df'ro
1
-(e'D2p/

1
-e- T'D2 

/ 1-T) 
Q'Q i 2 j 

I 1 I 

- (-
1
-(Q'ro2u + Dg(Df'roDf)-1 :L D 2 +T ro2z +_!._ :LQ'ro2(e'D 2 f.e- T'D2 j.T) Q'Q * i J i l 2 j J p J J 

1 "' "' 1 1 "' .!. "' 
+-1 'D2gl --e'y(y'y f 1 D2 g(y'y f 1y'e)-

2 
Dg(DfmDf)-ID2gl Q'ro 2 U.)(Dg' + D2 gl )) 

2 2 (Q'Q) 
I , 1 I · 

~(DfmDf)-1 (Df'ro2 QQ ro2U. +L D 2 JJrofZ +_!_LDf'ro
1
-(e'D 2p/

1
-e- T'D 2

/
1
-T) 

Q'Q i 2 j 

I 1 1 

--
1
-(Q'ro2U. +Dg(Df'roDf)-1:L D 2flrofZ + _!_:LQ'ro-

1
2 (e'Dp2 j

1
e- T'D 2

/
1
-T) 

Q'Q i 2 j 

1"' "' 1 1 "' .!. 
+-I 'D2gl --e'y(y'y f 1 D2 g(y'y f 1y'e)Dg' + Dg(Df'roDf)-1 D2gl Q'ro 2 U.Dg' 

2 2 (Q'Q)2 
1 

--
1
-Q'ro2U.D2 gT) (E-23) 

Q'Q 

Pairs of terms in (E-23) evaluate to become the following. 

1 QQ' 1 1 1 

Df'ro 2 --ro2 U. ---Dg'Q'ro 2 U. 
Q'Q Q'Q 
1 1 , 1 1 

= Df'ro2 ro 2 Df(DfmDf)-1 Dg' _g_ro2 U. - -
1
-Dg'Q'ro2 U. 

Q'Q Q'Q 

=0 

r 1 

L D2 /;T rolz --
1
-Dg'Dg(DfmDf)-1:L D 2 /;T rofZ 

j Q'Q j 

r 
=(I --

1
-Dg'Dg(Df'roDf)-1):L D2 /;T rolz 

Q'Q j 

1' 

= Df'roDf(Df'roDf)-1 (1 --
1
-Dg'Dg(Df'roDf)-1)Df'roDf(Df'roDf)-1L D 2 .!;T rofZ 

Q'Q i 

1 1 1 1 1 1' 

= Df {o 2 ( ro 2 Df (Df'roDf) -1 Df 'ro 2 - -
1
-ro 2 Df (Df 'roDf) -1 Dg 'Dg(Df 'roDf) -1 Df 'ro 2) ro 2 

Q'Q 

(E-24) 
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r 

• Df{Df'roDf)-1I D 2 /;T rofZ 
i 

1 1 1 I' 

= DfiD2 (R- ~~)ro2 Df(DfiDDf)-1 ~ D' J,T ro}Z (E-25) 

I' 

~ 7 Df'roj ( e' ~fje- T 'D'fj T) - ~ Q!Q Dg' 7 Q'ro}( e'D~ J;e-T 'D2 .tJJ 

= ~ Df'roDf (Df roDf) -I 7 Df' ro/ e'D~ J;e- T 'D '.t; T) 
I' 

_ _!__1- Df'roDf(DfroDf)-IDg'IQ'ro2 (e'D2 J;e- T'D 2 j.T) 
2 Q'Q j } p 1 1 

I I I I 
= _!_ Df'ro2 (ro2 Df(Df'roDf)-I Df'I ro

1
. - -

1
-ro2 Df(Df'roDf)-I Dg'Q'I ro

1
2 )(e'D2pJ;e- T 'D2 

/ 1 T) 
2 j Q'Q j 

I QQ' I 

= .!._ Df'ro2 (R--) Iro2 (e'D2 J;e- T 'D 2 J.T) (E-26) 
2 Q'Q j 1 p 1 1 

I 1 
1 

2 
Dg(Df'roDf)-ID 2gl Q'ro2U.Dg' --1-Q'ro2U.D2g I 

(Q'Q) Q'Q 

=-(I --1 -Dg'Dg(Df'roDf)-I)D 2gT-1 -Q'ro~U. 
Q'Q Q'Q 
I QQ' I 1 I 

= -Df'ro2 (R- --)ro2 Df(Df'roDf)-I D2 g T--Q'ro2 U. 
Q'Q Q'Q 

(E-27) 

Use of (E-24)-(E-27) in (E-23) yields 

1 QQ' 1 1 1 

ij = (Df IDDf) -I (DfiD 2 (R - Q'Q )ro2 Df (Df'roDfr1 ~ D2 JJ rof :Z + ~ Df'ro2 (R 

- QQ')Iro~(e'D2 f.e- T'D2f.T)-_!_-1-Dg'(i'D 2gi -e'y(y'yriD2g(y'yriy'e) 
Q'Q j 1 p 1 1 2 Q'Q 

1 QQ' I 1 1 

- Df(o2 (R ---)ro2Df(Df{oDf)-1 D2gT--Q'ro2u ) 
Q'Q Q'Q * 

= (Df{oDf)-1 (Df'ro~ (R- QQ' )(ro~Df(Df'roDf)-I(I D2 f,.T ro -,~ Z - D2gT-1 -Q'ro~U.) 
Q'Q i Q'Q 

1 

+ _!_ Iro -1~ (e'D 2pf
1
.e- i'D 2 j

1
.i))- _!_-

1
-Dg'(i'D2 g i- e'y(y'y ri D 2 g(y'y ri y'e)) (E-28) 

2 j 2 Q'Q 
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First a second-order correct constrained residual is computed using (3-30), (E-5), (E-14), 

and (E-28) as follows. 

Y;- /;(yO)= Y;- /;(ye.) + /;(ye.)- /;(yO) 
1 ~ 

~ u.i +;-e'(D~/;- y(y'yJ1 y'D~/;y(y'yr1 y')e-D/;(1 -(y'yJ1 y'e)-D/; ij 

1 ~ ~ 1 
-21 'D2;; I +2e'y(y'yJ1 D2/;(y'yr1 y'e 

1 QQ' 1 
= u.i- D/;(Df{oDf)-I Df'rol (R- --)ro2u. + _!_(e'D2p /;e- T'D2 /;T) 

Q'Q 2 

1 QQ' I 1 1 I 

- D/; (Df'roDf)-I (Df'ro2 (R- Q'Q)(ro2Df(Df'roDf)-I(fD2 fk T rofi- D2g T Q'Q Q'ro2U.) 

1! ~ ~ 11 ~ ~ 
+- rro2(e'D2 f.e- I 'D2 f.l )) - --Dg'( I 'D2 g I - e'y(y'y r 1 D2 g(y'y )I y'e)) 

2 j J p J J 2 Q'Q 

I 1 1 QQ' 1 1 

= ID~2 (I- ID'Df(Df'IDDf)-1 Df(o2 (R- Q'Q))(ID2U, + -i7ID}(e'D~f1e-T'D2 fj I)) 

I , I I I 
- D/; (D f'roDf)-I (Df'ro2 (R- QQ )ro2Df(Df'roDf)-I (r D2 J:kT co -k2 Z- D2 g T-1-Q'ro2 U .) 

Q'Q k Q'Q 
1 1 ~ "' 

- --Dg'( I 'D2 g I - e'y(y'y ) 1 D2g(y'y r1y'e)) 
2Q'Q 

I QQ' I I 
= ro~2 (I- R + --)(ro2U. + _!_ rro2 (e'D 2 f.e -T'D2 j.T)) 

I Q'Q 2 j 1 fi 1 1 

1 Q , I 1 1 

- ro;2 (R _ _g_)ro2Df(Df'roDf)-1(rD2 +kT rok2z- D2gT-
1
-Q'ro2u.) 

Q'Q k Jj Q'Q 
1 

+ ;-(J)~2 Q~ cT•D2 gT -e'y(y'y rl D2 g(y'y rl y'e) (E-29) 

As for computation of (B-15), the term T 'D2 /;ij must be kept in the approximation (E-1) in 
order to obtain fourth-order accuracy in the approximation of the second-order Taylor series 
expansion of f(yB). Thus, to obtain the approximation for S(B), this term is subtracted from 

(E-29) and the result is used to get, through fourth order in U., e, and their products, 

S(O) = (Y- f(yO))'ro(Y- f(yO)) 
1 QQ' I 1 I 

~(co -2 (I- R + --)(ro2 U. +-r co~ (e'D2 f.e -T 'D 2 j.T)) 
Q'Q 2 j 1 p 1 1 
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1 , 1 1 1 1 

- ro -2 (R- QQ )ro2Df(Df'roDf)-I(L D2 +.I ro2z- D 2gT-1-Q'ro2 u .) + _!_ro-2 _<L(T'D 2 g T 
Q'Q Jl I Q'Q 2 Q'Q 

- e'y(y'y T1 D 2 g(y'y T1 y'e)- ro -~ Lro1~t'D2 /1-q)'ro(ro-~ (I- R + QQ' )(ro~U. + _!_ Lro1~ (e'D 2p/
1
-e 

j Q'Q 2 j 

I , 1 I 1 

- T'D 2 j
1
.T)) -ro -2 (R- QQ )ro2Df(Df'roDf)-I(LD 2 J:~.T rolZ- D 2 gT-

1
-Q'ro2U .) 

Q'Q i Q'Q 
1 I 1 

+ ~ro-2 _<L(T'D 2 g T -e'y(y'y r 1 D 2 g(y'y riy'e)- (J) - 2 L co}~T'D 2 f}q) 
2 Q'Q j 

1 1 , 1 1 

"'(ro2U. +;. 7ro~ (e'D~j1e -I'D' JJ ))'(I- R + ~~)(ro2u, +h ro] (e'D~f1e -I'D' JJ)) 
1 1 

+ (ro2 u * +_!_L ro2 (e'D 2 f.e-I'D 2 j.T))' _<L(T'D 2 g T -e'y(y'y r 1 D 2 g(y'y r 1 y'e) 
2 j } p } 1 Q'Q 

1 I 

+ ± Q~Q (I'D' g I -e'y(y'y ) 1 D' g(y'y } 1 y'e) 2 + (~ D2 j, I ro/Z- D
2 
g I Q~Q Q'ro2 U,)'(Df'roDf)~1 

1 , 1 1 1 

• Df'ro2 (R- QQ )ro 2Df(Df'roDf)-I(LD 2 +.T ro2z -D 2gi-
1
-Q'ro2U.) 

Q'Q j Jl I Q'Q 

I QQ' 1 

- 2U~ro2 (I- R + --)L ro~T 'D 2 f.q 
Q'Q j } 1 

(E-30) 

Evaluation of the combination of the last two terms, using (E-28) for ij , results in 

I I I , I 1 

(L D2 J;T rolZ- D 2 gi-
1
-Q'ro2 U .)'(Df'roDf)-IDf'ro2 (R- QQ )ro2Df(DfmDf)-I(L D 2 J;T rolZ 

i Q'Q Q'Q i 

I I 1 , 1 1 

- D 2 gT-1-Q'ro2U .) - 2Z'L ro -
1
2 T'D 2 f

1 
(Df'roDf)-I(Df'ro2 (R- QQ )(ro2Df(Df'roDf)-1 (L D2 J: T rolZ 

Q'Q j Q'Q i 

I I 

- D 2 gT-
1
-Q'ro2U.) + _!_ Lffi}~ (e'Dp2 f}.e- T'D 2 JJ.I)) _ _!__

1
-Dg'(I'D 2 gl- e'y(y'y ri D 2 g(y'y T1 y'e)) 

Q'Q 2 j 2 Q'Q 
1 1 , 1 1 

= - Z '7 ro F 'D' / 1 (D f'roDrr1 Df'ro 2 (R - ~~ )ro 2 Df (D f'roDf) -I~ D 'J, I ro l Z 

} I 1 QQ' 1 

+ (--Q'ro2U.) 2 T'D 2 g(Df'roDf)-1Dft.o2 (R- --)ro2Df(Df'roDf)-1D 2gT 
Q'Q Q'Q 

1 1 QQ' 1 

- Z'L ro2T'D 2 f.(Df{oDf)-1Df'ro2 (R ---)Lro2(e'D 2 f.e- T'D 2 j.t) 
j } } Q'Q j 1 p } 1 

1 

+ Q~Q Z'7 roJI'D' fj (Df'roDf)-I Dg'(I'D' gl -e'y(y'y ) 1 D 2 g(y'y ) 1y'e) (E-31) 

Substitution of (E-31) into (E-30) yields the final result, 
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1 1 , 1 1 

S (i}) ~ ( ro 2 U. + _!_ L ro J ( e'D ~ f
1 
e - T 'D 2 f 1 T) )'(I - R + QQ )( ro 2 U. + _!_ L ro J ( e 'D ~ f 1e - T 'D 2 f 1 T)) 

2 j Q'Q 2 j 

1 1 

+ (ro2 u * + _!_ L rol2 (e'D2pfj.e -T'D2 fl.T))' _g_( I'D2 g T- e'y(y'y ) 1 D2 g(y'y ) 1y'e) 
2 j Q'Q 

1 1 ~ ~ 
+ ---(I 'D2 g I -e'y(y'y )1 D2 g(y'y )1 y'e)2 

4Q'Q 
1 1 , 1 1 

- Z•7 roJT 'D2 
/ 1 (D fffiDf) -I Df'm2 (R-~~ )ro2 Df(D fffiDf) -If D2 J; T ro/ Z 

1 1 1 QQ' 1 

+ (--Q' ro 2 U.) 2 T 'D 2g(D f'roDf) -I Df'ro2 (R - --)ro 2 Df(D f'roDf) -I D 2 g T 
Q'Q Q'Q 

1 1 QQ' I 

- Z'Lro2l'D2 f.(Df'roDf)-1Df'ro2(R ---)Lro2 (e'D2 f e-l'D2 f.l) 
j 1 1 Q'Q j 1 p 1 1 

1 

+ - 1
- Z'L ro -12 T 'D2 fl. (D f'roDf) -1 Dg' ( T 'D2 g T- e'y( y'y ) 1 D 2 g( y'y ri y' e) 

Q'Q j 

Second-Order Correct Constrained Parameter Estimates for 
Prediction Intervals 

(E-32) 

Again, a Lagrange multiplier formulation is used to obtain the required constrained 
regression estimates, this time e and jjP, of e. and o;. As will be shown, the solution can be 
put into the same form as the solution for e for confidence intervals. Similarly, the required 

functions of e and jjp have the same forms as the functions of e for confidence intervals. 
The constrained regression estimates e = 9 + T + q and jjp = (J p + ~ are obtained by 

minimizing Sa (9, B P ) subject to the constraint that g( y9) + v = YP , where v = YP - B P . This 
can be formulated as before as the Lagrange multiplier problem 

L(B,BP ,A-)= Sa (9,0 p) + 2A- (Yp - g(y9)- v) 

= (Y -f(y9))'W(Y -f(y9)) +2(Y -f(yB))'Wp(Yp -Bp) + Wp(Yp -Bp) 2 

+ U (Bp - g(y9)) (E-33) 

To solve the problem (E-33) is minimized using (3-30), ( 4-9), (5-63)-(5-65), (5-73), (C-16), (E-

5), and (E-6), keeping terms up through second order in U. , u; , e, B; -0 P, or their product. 

Definitions ~ = jjP - 0 P and e P = B; - 0 P allow the result with respect to e to be expressed as 

BL ,..., ,..., ,..., ,..., 
~ = -2LLD.f;'Wij(Y1 - f 1 (y9))-2LD.f;'Wp;(Yp -BP)- 2A- Dg' 
U'{J I 1 I 

~-2LL(D};'+D2.t;T)Wij(Y1 - / 1 (y9.)-D/1 (T -(y'yr1y'e)-D/1q 
l 1 
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-2A(Dg' -D2gT) 

"'-2~7Df.'Wy(U.j + -ie'D~fje-Dfj(T -(y'y T1y'e)- Df)i -;-T'D2 
f)) 

-2LLD2/;TWij(U.1 -D/1 (1 -(y'yT1 y'e))-2LD/;'~;(u; +-
2

1 e'(D~g 
l J l 

-y(y'yr1 D2g(y'yr1y')e- ~ +ep)-2LD
2
/;TWp;(u; -~ +ep)-U(Dg' -D2gT) 

I 

=0 

or 

HD/,'Wy(U,j +-ie'D~fje- Df/T -(y'y T1y'e)- Df)i -;-T'D2 f)) 

+LLD2/;TWij(U.1 -D/1 (1 -(y'yT1 y'e))+LD/;'~;(u; +-
2

1 e'(D~g 
l J l 

-y(y'yr1 D2g(y'y r 1y')e- ~ +ep) + LD
2 
!;TWp;(u;- ~ +ep) +A (Dg' -D2gl) 

I 

=0 

The result with respect is (} P is 

~ ~ ~ 
-= -2L (Y1 - f1 (y9))~1 -2WP (Yp- Op)+ 2A 
aop 1 

"'-27(U,j + -ie'D~fje- Df/T -(y'y T1y'e) -D.0ii -;-T'D 2 f))~] 
* 1 2 ~ 

- 2Wp(UP +2e'(D pg-y(y'yT1 D2 g(y'y T1y')e-/P +ep) +2A 

=0 

or 

7(U,1 +-ie'D~f1e-Df/T -(y'y ty'e)- Df1ij -;-T'D 2 f))Wp1 

+Wp(u; +_!_e'(D~g -y(y'yT1 D2g(y'yT1y')e- ~ +ep)-A 
2 

=0 

Finally, the result with respect to A is 

ar ~ ~ ~ . . ~ 
BA =2(Bp -g(yB))=2(Bp -op +Bp -g(yB.)+g(ye.)-g(yB)) 

~ ~ I~ ,..., 1 
:::::: 2(/p- e P- Dg( I -(y'y T1 y'e)- Dgq --1 'D 2 g I + -e'y(y'y T1 D2 g(y'y r1y'e) 

2 2 

(E-34) 

(E-35) 
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=0 

where o;- g(y9.) = 0' or 

(E-36) 

Equations (E-34), (E-35), and (E-36) can be written as two matrix equations having the 
form of (E-8) and (E-9). First, D a and D~ are defined as derivative operators augmented to 
include B P in addition to e (that is, operators with respect to ea ). Next, the following 
augmented matrices and vectors are defined: 

(E-37) 

(E-38) 

(E-39) 

(E-40) 

(E-41) 

I. - ......, ......, _ [T- (y'y r1r'e] 
a /p-ep 

(E-42) 

ija =[~] (E-43) 

u .• =[~;] (E-44) 

(E-45) 

(E-46) 
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2 [0 OJ DafaJ = 0' 0 for faJ = (JP (E-47) 

(E-48) 

(E-49) 

G a = [y{y'y)-l 0] (E-50) 

EaJ = e'(D1g- y(y'y)-1 D2 g(y'y)-1 y')e ;j = n+ 1 (E-51) 

Finally, use of(E-37)-(E-51), transforms (E-34)-(E-36) to the two equations 

HD J:, W.y(U'aJ +-;- Eaj- D .faj (-D .fa}ia -F:»:Ja)a) 
2 ~ ~ ' 2 ~ 

+ LLDafai la~ij(U*aj- Dafaj La) +A(Dah + Dah Ia) = 0 
I J 

(E-52) 

where i ,j = 1,2, ... ,n+1, and 

(E-53) 

which are of the form of (E-8) and (E-9), respectively. ~ 

Because (E-52) and (E-53) are of the form of(E-8) and (E-9), the solutions for l.a and 
qa are of the forms of(E-14) and (E-28), or 

1 

T.a = (Daf;WaDafa)-1Dar;w} (Ra (E-54) 

and 

where 
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(E-56) 

I I 

Ra = W}Dafa(Dar;waDafa)-IDar;wJ (E-57) 

1 

Qa = W!Dafa(Dar;waDafa)-1Dah' (E-58) 

(E-59) 

and W~? and W~j 2 signify row i and columnj, respectively, of W~12 • Matrix Ia is the identity 
matrix of order n + 1 . 

Third-Order Correct Constrained Sum of Squares Estimate for 
Prediction Intervals 

In conformance with (E-37) and (E-38) an augmented constrained residual can be defined 

as 

(E-60) 

or 

(E-61) 

Because the forms of(E-14), (E-28), and Y -f(yS) are the same as the forms of(E-54), (E-55), 

and Ya -fa (yO, iJP), respectively, the augmented sum of squares estimate can be written in the 
form of (E-32), or 
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(E-62) 
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Appendix F - Derivation of Statistical Distributions Used to 
Define Confidence Regions, Confidence Intervals, and 

Prediction Intervals 

Distributions for Confidence Regions and Confidence Intervals 

Forms of sum of squares functions for perturbation analysis. Procedures generalized 

from Johansen (1983, p. 183-184) are used here to derive an approximate probability density 

function (pdf) for a ratio involving the sum of squared errors objective function S(9) . Let the 

ratio be a scalar multiple of (S(9)- S(e)) I S(e), where 9 is either the spatial average set 9. or 

the set e produced by the constrained regression. The functions, S(e) and S(E}) are given by 

(B-17) and (E-32), respectively. Equation (B-17) is repeated here in expanded form as 

l l l l 

S(O) ~ U~ro2 (I- R)ro2U. + U~ro2 (I- R)Iro2 (e'D2pf-e -I'D2 /-1) 
j } } } 

l l 

+ ± L ( e'D~/;e -I'D2 /;l)roJ (I- R)~ roJ (e'D~he -I'D2 f)) 
I } 

l I 

- L ro 1 ZI'D 2 
/; (Df'roDf) -t L D 2 /;lro 1 Z 

i i 

l 

-I ro 1 ZI'D2 
/; (Df'roDf) -l Df'L ro 1 ( e'D1 f 1e -I'D2 f 11) 

I } 

where the identity (I- R)ro112Df(y'y)-1y'e = 0 was used to allow the first two terms to be 

written in terms of U. rather than U. Equation (E-32) is given in expanded form as 

(F-1) 
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(F-2) 

The function S(e.) can be approximated using (3-30) and (4-9) as 

S(e.) = (Y- f( y9. ))' ro(Y- f( y9. )) = L L (~ -}; ( y9. ))mij (Y1 - f 1 ( y9. )) 
I } 

+ D p / 1 (I - y( y'y f' y')e+ ~ e' (D~ / 1 - y( y'y) _, y'D~ / 1 y( y'y f' y')e) 

I I 

= u:rou * + u:ro2 LOOJ ( e'(D~/i - y(y'y) -I yD~fjy(y'y) -I y')e) 
J 

1 l ! 
+ -(L ro 2 ( e'(D2 f. - y(y'y) -I y'D2 f.y(y'y) -I y')e))'L ro 2 ( e'(D2 f. 

4 .1 Pl P1 . 1 P1 
J J 

- y( y'y) -I y'D~fi y( y'y)-I y')e) (F-3) 

Equations (F-1)-(F-3) need to be put into forms that will allow perturbation analysis. 

This is accomplished as follows. First, errors U and U * are assumed to be much larger in 

magnitude than errors D pfe, all of which are small. This permits dropping terms ofhigher than 

third order in e, higher than fourth order in U or U * , and higher than a total of third order when 

products of e and U or U * are involved. From ( 4-9) 

U = U * + Df(y'y)-Iy'e 

so that, from (4-5), 

I= (Df'roDf)-IDf'roU. +(y'y)-Iy'e 

=I. + (y'y)-I y'e 

(F-4) 

(F-5) 

where I.= (Df'ronrriDf'roU •. Next (F-5) is used to substitute for I in (F-1), and all fourth­

order terms involving e and products of e and U * are dropped to give 

I I I I 
S(B) ~ U~ro2 (I- R)ro2 U. + U~ro2 (I- R)L ro~ ( e'D~f1e -I'D2 f)) 

1 

I I I I 
+ 2_ LI!D2 J:l.ro! (I- R):Ero~I~D2 f). - L ro! Z.I~D2 f, (Df'roDf)-I L D 2 J:l.ro! Z. 

4 l 1 

I 

+ Lrol Z.I~D2 };(DfmDf)-I Df'Lro )~D2 f). (F-6) 
I 1 

where z. =(I- R )roi12U * • Similarly from (E-14) 
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1 QQ' 1 

T = (Df'roDf)-1Df'ro2 (R- Q'Q)ro'u. + (y'y)-'y'e 

= T. + ( y'y)-1y'e (F-7) 

where T. = (Df'roDf) -1 Df'ro112 (R- QQ' I Q'Q)ro112 U •. Use of (F-7) to substitute for T in (F-2) 

in which fourth order terms in e, and in products of e and U. , are dropped produces 

1 QQ' 1 1 QQ' 1 
S(O) ~ u:ro2 (I- R + --)ro2u * + u:ro2 (I- R +--)LID~ (e'D2 f.e- I'D2j.T) 

Q'Q Q'Q j J p J J 

1 QQ' 1 1 Q 
+_!_L L'D2j;l.ro2 (I -R +-)Lro2L'D2~".L+ u:ro2 -(T'D2gT -e'y(y'y)-1D2g(y'yfiy'e) 

4 i I I Q'Q j } J} Q'Q 
1 

1 ~ 2 ~ 2 Q ~, 2 ~ 1 Q ~ 2 ~ 2 
--L LD /; l.roi - I. D g I.+--( I.'D g I.) 

2 i Q'Q 4Q'Q 
I 1 , 1 1 

- Z'L ro1~ I:D2 /
1
. (Df'roDf) -1 Df'ro 2 (R - QQ )ro2 Df (Df'roDf) -1 L D 2 J; Lrol Z 

j Q'Q i 

1 I I QQ' I 

+ (--Q'ro2U. )2 tD2g(DfmDf)-IDf'ro2 (R- --)ro2Df(Df'roDf)-ID2gL 
Q'Q Q'Q 

1 I QQ' I 

+ Z'L ro 21:D2 f.(Df'roDf)-IDfm 2 (R- --)L ro~ I.'D 2f.l 
j J J Q'Q j J J 

I 

+ -
1
-Z'Lro21' D2f.(Df'roDf)-IDg'L'D2gL 

Q'Q j J * J 
(F-8) 

Approximate characteristic function for sum of squares ratio. The statistical 

distributions are derived using characteristic functions, which are Fourier transforms ofpdfs 
(Papoulis, 1965, p. 153). They are used to simplify the derivations, and readers not familiar with 

their use should read Papoulis (1965, p. 153-162, 213-214, 244-245) for an excellent discussion. 
The joint characteristic function for the distribution of the ratio (S(9)- S(S))/ S(S) is 

'f/(s,t) = E(exp{is(S(9)- S(S)) + itS(tl)}) (F-9) 

where i = ~ and sand tare Fourier transform variables analogous to m1 and m2 ofPapoulis 

(1965, p. 213). Equation (F-9) can be expanded for evaluation by writing S(9)- S(O) and 
S(S) in the form of chi-squared (z 2

) distributed variables plus deviations, or 

S(9)- S(S)) = Q1 (U .) + (S(9)- S(tl)- QI (U.)) 

= QI(U.)+D1 

and 

(F-10) 
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where 

1 -
Q1(U.) = u:v. 2MV. 2U. 

1 
- -

Q2 (U.) = u:v. 2 (I -H)V. 2 U. 

M = H when 0 = e. 
PP' -

M=-when0=0 
P'P l 

1 1 

H = V.-2Df(DfV.-1Df)-1DfV.-2 

1 

P = V.-2Df(DfV.-1Df)-1Dg' 

(F-12) 

(F-13) 

(F-14) 

(F-15) 

(F-16) 

(F-17) 

(F-18) 

Note using (4-10) that v.-112U.- N(O,Ia;). Then, because I -H is symmetric and 

idempotent (Cooley and Naif, 1990, p. 165) with a rank of n- p, Q2 (U .)/a; has a z 2 

distribution with n- p degrees of freedom (Theorem 4.4.1, Graybill, 1976, p. 134), or 

(F-19) 

Similarly, because M is symmetric and idempotent with a rank of p 1 = p when M = H and 

with a rank of p 1 = 1 when M = PP' I P'P , 

(F-20) 

Use of (F -1 0) and (F -11) in (F -9) allows an approximate characteristic function to be 
expressed as a product of the joint characteristic function for Q1 (U.) and Q 2 (U.) and a 

correction factor. To start the evaluation, lf/(s,t) is expanded and approximated to get 

lf/(s,t) = E(exp{is(Q1(U.)+D1)+it(Q2 (V.)+D2 )}) 

= E(exp{is(Q1 (U .) + it(Q2 (U. )}exp{isD1 + itD2 }) 

~ E( exp{ isQ1 (U.) + itQ 2 (U.)} (1 + isD1 + itD 2 )) (F-21) 
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Evaluation of approximate characteristic function. To evaluate (F-21), v.-112U. needs 

to be written in terms of statistically independent variables that also appear in Q1 (U *) and 
Q2 (U.) . This is accomplished by writing v.-112 U. as 

1 1 1 l - -- - -

V. 2U. =MV. 2U. +(H-M)V. 2U. +(1-H)V. 2U. 

=W+T+Z (F-22) 

where W = MV.-112 U., T = (H- M)V.-112U., and, in the following development only, 

Z = (I -H) v.-11 2 U. . It can be verified readily that HM = MH = M , from which it can be seen 

that Cov(W, T) = Cov(W,Z) = Cov(T,Z) = 0. Hence, W, T, and Z are uncorrelated, so that, 

because they are also normally distributed, they are statistically independent (Theorem 3.5.1, 

Graybill, 1976, p. 1 05). Functions Q1 (U.) and Q2 (U.) can be expressed in terms ofW and Z 

as 

(F-23) 

Q2(U.) = Z'Z = IZI
2 

(F-24) 

Use of(F-6) in (F-18) shows that D2 can be written as a sum of second- and fourth-order 

polynomial functions of v.-112U. and a third-order polynomial function ofe, u.' and u. Also, 
from (F-22), the sum of second- and fourth-order polynomial functions of v.-112U. can be 

written as a sum of second- and fourth-order polynomial functions of T, W, and Z. Thus, the 

kth term in this sum can be expressed in the factored form 

(F-25) 

where 2~, 211, and 2v are powers to be determined, and ~' J.l, and v are integers. With use of 
(F-25) the kth term in (F-21) is 

E(exp{isQ1 (U.) + itQ2 (U.)}itC2k(T, W,Z)) 

= itE(exp{isQ1 (U.) +itQ2 (U.)}ITI
2~jWI2JijZj 2v C2k(T !ITj, w !jwj,ZijZj)) 

= itE(exp{isQ1 (U.) + itQ2 (U.)}jTj
2~jWj 2JijZj 2v)E(C2k(T !ITI, w ljWI,Z!IZI)) (F-26) 

where the fact was used that ITI, IWI, IZI, T !ITI, W !IWI, and Z/IZI are all mutually independent 
(Johansen, 1983, p. 183). Now, using (F-25), 

E(C2k(T, W,Z)) = E(jTI2~1Wj2JIIZI 2v)E(C2k (T /jTI, W fiWj,Z/IZI)) (F-27) 

Solution of(F-27) for E(C2k(T !ITI, W !IWj,ZIIZI)) and substitution of the result into (F-26) 
yields 
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itE( exp{isQ1 (U *) + itQ2 (U *) }C2k (T, W, Z)) 

= itE(exp{isQ1 (U.) + itQ2 (U.)}ITI
2
.;IWI

2
.uiZI

2
u)E(C2k(T, W,Z))/ E(ITI

2
.;IWI

2
.uiZI

2
u) (F-28) 

A similar development of each term C1k (T, W, Z) in D1 in (F-21) can be used to get 

isE(exp{isQ1 (U.) + itQ2 (U.)}C1k (T, W,Z)) 

= isE(exp{isQ1 (U .) + itQ2 (U .)}ITI
2
.;IWI

2
.ujZj

2
u)E(C1k(T, W,Z))/ E(jTI

2
.;jWj

211
jZI

2
u) (F-29) 

The third-order term in D2 can be expressed as C2 (e,E) because U. and U are both 
linear functions of e and E. Then use of this term in (F-21) and expansion of the exponential in a 

Taylor series produces 

itE(exp{isQ1 (U .) + itQ2 (U.)}C2 (e,E)) 

= itE(l + isQ1 (U.) + itQ2 (U.) + _!_(isQ1 (U.) + itQ2 (U.)) 2 + _!_(isQ1 (U.) + itQ2 (U. ))3 

2 6 

+ · · ·)C2 (e,E)) (F-30) 

Each power of isQ1 (U *) + itQ2 (U *) yields an overall even function of e and E because each 
term of the series is a sum ofterms involving forms etc/, where a+b is even. Each term in 
C2 (e,E) involves the form e~ sf, where c+d=3. Therefore, the sums of powers for the products 

of terms in the series and C2 (e,E) is 0+3=3, 2+3=5, 4+3=7, 6+3=9, ···,which are all odd. This 
implies that either e; or &; in each product of terms always has an odd power, so that its 

expected value is zero. Hence, the value of(F-30) is zero. An analogous analysis applies for the 
third-order terms in D1 so that the third-order terms do not contribute to the final expression. 

Characteristic functions for Q1 (U *)and Q2 (U *), which have statistical distributions 
given by (F-19) and (F-20), are (Johansen, 1983, p. 183) 

I 

tPp
1 
(s) = E(exp{isQ1(U.)}) = (1-2isa;) -2p

1 
(F-31) 

and 

_ _!_(n-p) 

tPn-p (t) = E( exp{itQ2 (U *)}) = (1- 2ita;) 2 (F-32) 

Equations (F-31) and (F-32) are manipulated to give expressions used to simplify (F-28) and 

(F-29). Taking successive derivatives of t/Jp
1 
(s) yields the general term 
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(F-33) 

At s=O, (F-33) becomes 

(F-34) 

Combination of(F-33) and (F-34), then cancellation ofi, reveals that 

(F-35) 

A similar analysis of rPn-p (t) shows that 

(F-36) 

Next, combination of(F-35) and (F-36), in which IWI
2 

and IZI
2 

are statistically independent, 

g1ves 

E(jWj
2
PjZj

2
v exp{isjWj

2 + itjZj
2

}) 

= E(jWj
2
P exp{isjWj

2
} )E(jZj

2
v exp{itjZj

2
}) 

= E(jWj
2
PjZj

2
v)f/Jp

1
+2p (s)r/Jn-p+2v (t) 

Finally, substitution of(F-37) into (F-28) and (F-29) yields the expressions 

itE( exp{isQ1 (U *) + itQ2 (U.) }C2k (T, W, Z )) 

= itf/Jp.+lp (s)r/Jn-p+lv(t)E(C2k(T, W,Z )) 

and 

isE( exp{isQ1 (U *) + itQ2 (U.) }C1k (T, W, Z )) 

= isf/Jp.+lp (s)r/Jn-p+lv (t)E(C1k (T, W, Z )) 

By definition, 2p and 2u are the powers on jwj and jzl that are factored out of 

(F-37) 

(F-38) 

(F-39) 

C tk (T, W, Z) and C 2k (T, W, Z) . (See (F-25), for example.) Examination of (F-3) (omitting the 

fourth-order term in e), (F-6), and (F-8) shows that possible values of 2p and 2u for second­

order terms are (2p, 2v) = (0, 0), (2, 0), (0, 2), and possible values for fourth-order terms are 

(2p, 2v) = (0, 0), (2, 0), (0, 2), ( 4, 0), (2, 2), (0, 4). Expected values are evaluated further on in 

this section and in appendix G where the second-order terms are shown to be functions of a~, 
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whereas the fourth-order terms are functions of a: . Thus, the sums over C1k (T, W, Z) for each 
combination (2p, 2u) are defined as 

r1a~ = E(IC1k(T, W,Z)) for (0, 0) 
k 

r2a~ = E(IC1k(T, W,Z)) for (2, 0) 
k 

r3a~ = E(IC1k(T, W,Z)) for (0, 2) 
k 

r 4a: = E(IC1k(T, W,Z)) 
k 

for (0, 0) 

r 5a: = E(IC1k(T, W,Z)) for 
k 

(2, 0) (F-40) 

r 6a: = E(IC1k(T, W,Z)) for (0, 2) 
k 

r 7a: = E(IClk(T, W,Z)) 
k 

for (4, 0) 

r 8a: = E(IC1k(T, W,Z)) 
k 

for (2, 2) 

y9a: = E(ICik(T, W,Z)) for (0, 4) 
k 

where the sums over k involve only the indicated powers. Similarly the sums over C 2k (T, W, Z) 
for each combination (2p, 2u) are defined as 

A 2 ( r 1a p = E IC2k(T, W,Z)) 
k 

for (0, 0) 

f2a~ = E(IC2k(T, W,Z)) 
k 

for (2, 0) 

y3a~ = E(IC2k(T, W,Z)) 
k 

for (0, 2) 

f4o-: = E(IC2k(T, W,Z)) for (0, 0) 
k 

A 4 ( rsae = E IC2k(T, W,Z)) 
k 

for (2, 0) (F-41) 

y6a: = E(IC2k(T, W,Z)) 
k 

for (0, 2) 

" 4 ( r 1 ae = E IC2k(T, W,Z)) 
k 

for (4, 0) 

y8a: = E(IC2k(T, W,Z)) for (2, 2) 
k 

y9a: = E(IC2k(T, W,Z)) for (0, 4) 
k 

where, again, sums involve only the indicated powers. With (F-31), (F-32), and (F-38)-(F-41), 
(F-21) can be expressed as 

lf/(s,t) = r/Jp
1 
(s)r/Jn-p (t) + isf/Jp

1 
(s)r/Jn-p (t)y1a~ + isf/Jp

1
+2 (s)r/Jn-p (t)r 2a~ 

+ isf/Jp
1 
(s)r/Jn-p+2 (t)r3a~ + isf/Jp

1 
(s)r/Jn-p(t)r4a: + isf/Jp

1
+2(s)r/Jn-p(t)r5a: 
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+ isf/JP
1 
(s )rPn-p+2 (t)y6a: + isf/JP

1 
+4 (s )rPn-P (t)y7a: + isf/Jp

1 
+2 (s )rPn-p+2 (t)y8a: 

+ isr/Jp
1 
(s )rPn-p+4 (t)y 9a: + itr/JP

1 
(s )rPn-p (t)y1a~ + itr/Jp

1
+2 (s )rPn-p (t)y 2 a~ 

+ itr/Jp
1 
(s )r/Jn-p+2 (t)y3a~ + itf/Jp

1 
(s)r/Jn-p (t)f 4a: + itr/JP

1 
+2 (s)r/Jn-p (t)y5a: 

+ itr/Jp
1 
(s)r/Jn-p+2 (t)y6a: + itr/Jp

1
+4 (s )rPn-p(t)y7a: + itf/Jp

1 
+l (s )rPn-p+2 (t)y8a: 

+ itf/Jp
1 
(s)r/Jn-p+4 (t)y9a: 
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(F-42) 

Equation (F -42) must now be put into an approximate form to derive the distributions of 
S(9)- S(O) and S(O) separately, which can be done only if S(O)- S(O) and S(O) are 

approximately statistically independent. Statistical independence is indicated if lf/(s,t) can be 

written as the product of a characteristic function in terms of s and a characteristic function in 
terms oft (Papoulis, 1965, p. 213-214). Approximate statistical independence is shown and the 

forms of the two distributions are developed as follows. From (F-31) or (F-32) note that for 

r = p 1 or r = n - p and w = s or w = t 

rPr(w) = (l-2iwa;)rPr+2(w) (F-43) 

and, by approximating (1- 2iw a;) -I through first order (which is all that is required), 

(F-44) 

Now, substitution of (F-43) and (F-44) into (F-42) keeping terms through orders a~a e and a: 
yields 

lf/(s,t) ~ r/Jp
1 
(s)r/Jn-p (t) + isf/Jp

1
+2 (s)r/Jn-p (t)((yi + Y2 + Y3)a~ + (y4 + Y5 + Y6 + Y1 + Ys + Y9 )a:) 

+ itr/Jp
1 
(s)r/Jn-p+2(t)((fi + r2 + r3)a~ + <r4 + r5 + r6 + f1 + rs + r9)a:) 

~ (r/Jp
1 
(s) + isf/Jp

1
+2 (s)(y wa~ + y1a:))(r/Jn-p(t) + itr/Jn-p+2(t)(f wa~ + y1a:)) (F-45) 

where 

(F-46) 

(F-47) 

(F-48) 

(F-49) 

Terms involving y9 and y7 in (F-42) require shifting characteristic functions from 

rPn-p+4 (t) to rPn-p (t) and from r/Jp
1
+4 (s) to rjJP

1 
(s), respectively. Because of these large shifts, the 
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forms of the terms dropped should be obtained to be sure that accuracy is not appreciably less 
than for the other terms. Use of(F-43) shows that 

isr/Jp
1 

(s)r/Jn-p+4 (t)r9a: - isr/Jp
1
+2 (s)r/Jn-p (t)r9a: 

= isr/Jp
1
+2 (s)r/Jn-p+4 (t)(l- 2isa; - (1- 2ita; )2 )r 9a; 

where 

1- 2is a; - (1- 2it a; )2 

= 1-2isa2 -1 + 4ita2
- 4i2t2a 4 = 2i(2t- s)a2

- 4i2t 2a 4 
& & & & & 

~ 2i(2t- s)a; 

so that 

Similarly 

itr/Jp
1
+4 (s )r/Jn-p (t)y 7 a: - itr/Jp

1 
(s)r/Jn-p+2 (t)y 7 a: 

= itr/Jp
1
+4 (s)r/Jn-p+2 (t)(1- 2ita; - (1- 2isa; )2 )f 7a: 

where 

1- 2ita; - (1- 2isa; i 
= 1-2ita; -1 + 4isa; -4i2 s2a: = 2i(2s -t)a;- 4i2s2a: 

~ 2i(2s- t)a; 

so that 

(F-50) 

(F-51) 

Terms dropped from (F-50) and (F-51) are of accuracy similar to the other terms dropped to 
obtain (F-45). 

The terms in (F-45) can be put into standard forms for z 2 distributions by noting the 
following. 

I 

r/Jp
1 
(s(l + (rwa~ I a;+ ria;)/ p 1)) = (1- 2is(1 + (rwa~ I a;+ ria;)/ p 1)a;) -2p! 

1 1 

=(1-2isa; -2is(rwa~ +ria:)/ p 1)-2p
1 

=(1-2isa; -s)-2p
1 
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_IP d _!P 
~ (1- 2isa;) 2 1 

+de (1- 2isa; - c)s:o 
1 

& 

= r/Jp
1 
(s) + isrpp1 +2(s)(rwa~ +ria:) 

1 

¢n-p(t(1 +(fwa~ I a;+ fia;)/(n- p))) = (1- 2it(l + (f wa~ I a;+ fia;)/(n- p))a;) -2cn-p) 
1 1 

--(n-p) --(n-p) 

=(1-2ita; -2it(fwa~ +fia;)/(n-p)) 2 =(1-2ita; -c) 2 

_!(n-p) d _!(n-p) 
~ (1-2ita;) 2 +de (1-2ita; -c)s:o c 

= r/Jn-p (t) + itr/Jn-p+2 (t)(y wa~ + Y I a:) 

where e = 2it(f wa~ + fia:)/(n- p). With (F-52) and (F-53), (F-45) becomes 

lf/(S,t) ~ r/Jpl (s(l + (r wa~ I a; +ria;) I Pt ))r/Jn-p (t(l + (f wa~ I a; + f I a;) /(n- p))) 
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(F-52) 

(F-53) 

(F-54) 

Approximate statistical distributions. By definition (Papoulis, 1965, p. 154) 

¢r(cw) = (1- 2iwca;)-r 12 is the characteristic function for the pdf for a ca;z2 (r) random 
variable, where cis some constant. Therefore, from (F-54) and to the order of accuracy of 

approximations used, S(9)- S(B) and S(O) are independently distributed as 

(F-55) 

(F-56) 

Also, by definition (Graybill, 1976, p. 66) (z2(p1)/ p1)1(z2(n- p)/(n- p)) has an F(ppn- p) 

distribution with p1 and n- p degrees of freedom, so that 

If desired, the correction factor can be approximated to the order of accuracy used in the 

derivations as 

(F-57) 

a;+(rwa~+ria:)/pi 2 2 4 ,.. 2 2 " 2 
2 ,.. 2 " 4 ~O+(rwaplas +yias)/pi)(l-(ywaplas +riae)/(n-p)) 

a & + (r w a p + rIa 8 ) /( n - p) 

~ 1 + (r wa~ I a; +ria;)/ P1 - (f wa~ I a; + fia; )/(n- p) (F-58) 
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Evaluation of correction factor. From (F-6), (F-10)-(F-18) and the definitions of the 

f;, i = 1, 9, given by (F-41) note that (n- p) times the denominator of the correction factor in 
(F-57) is 

I I I I I I - - - - -

= E(U:v. 2 (I- H)V. 2 U.) + E(U:ro 2 (I- R)ro 2 U.- u:v. 2 (I- H)V. 2 U .) 

+ E(S(B)- u:ro 2 (I- R)ro 2 U.) 
" 

= E(S(9)) (F-59) 

where E(u:v.-I12 (1- H)v.-I 12U.) = (n- p)a;, 

E(U:roi12 (I- R)roi 12 U. - u: v.-112 (I- H)V.-I12 U.) = f wa~, and 

E(S(S)- u:roi12 (1- R)roi12U.) = y1a:. The component correction factor f wa~ is given by 

1 1 1 1 1 1 

fwa~ =E(u:v.-2(V}ro2(I-R)ro2v}- -I+H)V.-2u.) 
1 I 

= (tr((I- R)ro2v. ro2)- n + p)a; 
I I I I 

= tr((l- R)ro2V. ro2 -(I- R)ro2ro-1ro2 )a; 
1 1 

= tr((l- R)ro2 (V. - ro -1 )ro2 )a; 

To make (F-60) solely a function of model error, ro -1 is expressed as the sum of Vc and a 

matrix V co a~ I a; , where V co depends only on model error. If V is defined by 
V = DP f(l -y(y'yr1y')Vp (l-y(y'yr1y')Dpf', then use of(3-33) in (F-60) gives 

1 I 

f wa~ = tr((I- R)ro2 (V- Vco)ro2 )a~ 

The component correction factor y1a: is expressed by using (F-6) to yield 

(F-60) 

(F-61) 

1 1 1 I 

f 1a; ~ -
4

1 E(~ I!D 2 /;l.rof (I- R)~roJI~D 2 
/ 11.)- E(~ rof Z.I~D2 

/; (Df'roDf)-1 ~ D2 /;l.rof Z.) 
I } I I 

1 

+ E (~ rof Z.I~D2 
/; (Df'roDf) -1 Df'~ ro )~D2 f).) 

I } 

Evaluation of the expected values in (F-62) is deferred to appendix G. 

The numerator of the correction factor times pi evaluates in the same way as the 
denominator. That is, for M = H and pi = p 

(F-62) 
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1 
- -

= E(U:v. 2 HV. 2 U.) + E(U:rou.- u:ro 2 (I- R)ro 2 U.- u:v. 2 HV. 2 U.) 

+ E(S(e.)- S(S)- u:rou. + u:ro 2 (I- R)ro 2 u.) 

= E(S(9.)- S(O)) 

where E(U'V-112 HV-112U ) = n-T
2 

* * * * .~:"'&' 

E(U:ro U. - u:ro112 (I- R)ro112 U. - u: V;112HV.-112U.) = r wa~, 
and E(S(O.)- S(O)- u:rou. + u:ro112 (I- R)ro112 U.) =ria;. Then 

1 1 1 1 1 1 

r wa~ = E(U:V.-2 (V.2ro2Rro2v.2- H)V.-2u.) 
1 1 

= (tr(Rro2v.ro2)- p)a; 
1 1 

= tr(Rro 2 (V. - ro -1 )ro2 )a; 
1 1 

= tr(Rro 2 (V- V aJro 2 )a~ 

Finally, expression of ria; using (F-3) (through third-order terms) and (F-6) shows that 

ForM= PP' IP'P and p 1 = 1 

2 2 4 
a& +rwap +ria& 
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(F-63) 

(F-64) 

(F-65) 

1 PP' 1 1 QQ' 1 1 1 1 PP' 1 

= E(U:V. 2 -P' V. 2 U.)+ E(U:ro 2 (I- R +-, -)ro 2 U.- u:ro 2 (I -R)ro2 U.- u:v. 2 -,-V. 2 U.) 
p QQ pp 

1 Q , 1 1 1 

+ E(S(9) -S(il)- u:ro2 (I-R + Q~)ro2u. + u:ro2 (I-R)ro2U.) 

= E(S(O)- S(O)) (F-66) 

where E(U'V-112 PP' IP'PV-112U ) = - 2 
* * * * v&' 

E(U:ro112 (I- R + QQ' I Q'Q)ro112 U. - u:ro112 (I- R)ro112U.- u: v.-112PP' IP'PV.-112U.) 
= r wa~, and E(S(B)- S(O)- u:ro112 (I- R + QQ' I Q'Q)ro112U. 
+ u:ro112 (1- R)ro112U.) =ria:. As before 

1 1 1 QQ' 1 1 PP' 1 

r a 2 =E(U:V-2(V2ro2 --ro2y2 --)V-2U) 
w fJ * * Q'Q * P'P * * 

QQ' 1 1 

= (tr(--ro2 V. ro2 ) -l)a2 

Q'Q & 
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QQ' 1 1 

=tr(Q'Q ro2(V. -ro-
1
)ro2)a; 

1 1 

= -
1
-Q'ro2 (V- V )ro2Qa2 

Q'Q (j) p 
(F-67) 

and, from (F-8), 

1 QQ' 1 

rl a: ~ _.!_ E(I T:D 2
/; T.ro? (I- R +--)I ro12T.'D 2f1.T.) 

4 i Q'Q j 

1 
I ~, 2 ~ 2 Q ~, 2 ~ I 1 ~ 2 ~ 2 

--E(I I. D /; l.m; -I. D g 1.) + --E( I.'D g 1.) 
2 i Q'Q 4Q'Q 

1 1 Q , 1 1 

- E(Z'IroJLD 2
/ 1-(Df'roDf)-1 Df'ro2 (R _ _g_)ro2Df(Df'roDf)-1 I D 2/;lrofZ) 

j Q'Q i 

1 1 1 QQ' 1 

+ E((--Q'ro2U.)2 L'D2g(Df'roDf)-1Dfm2(R- --)ro2Df(Df'roDft1D 2gL) 
Q'Q Q'Q 

1 1 QQ' 1 

+ E(Z'I ro2L'D'l- (Df'roDf)-1 Df'ro2 (R---)I ro~T:D 2j.T.) 
j 1 1 Q'Q j 1 1 

+ Q~Q E(Z'7ro}T.'D:f;(Df'roDf)-1Dg'T:n'gL)- f 1u; (F-68) 

Evaluation of the expected values in (F-68) is deferred to appendix G. 

Distribution for Prediction Intervals 

Forms of sum of squares functions for perturbation analysis. The same procedures as 

used to derive the distribution for confidence intervals are used to derive the distribution for 

prediction intervals. The distribution, correction factors, and the variables composing these 

results will be shown to have the same forms as those for confidence intervals. The function 
Sa(9, (}P) given by (E-62) is repeated here in expanded form as 
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(F-69) 

The perturbation analysis uses (E-41) and (E-42) in the form 

(F-70) 

then uses (F-70) for Ia in (F-69) and drops fourth-order terms involving e or eP to get 

(F-71) 

A function analogous to S(e), but applying for prediction intervals, also is needed. To 

obtain this function, A is set to zero in (E-33) so that minimization of the resulting formulation 
is simply minimization of Sa (9, (} P) . The result of this minimization is just (E-52) with A = 0 , 

which is of the form of (B-4 ), the equation set from the regression solution. That is, 
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(F-72) 

where 

(F-73) 

After solving (F-72) for Ia and qa in the same way as (B-4) was solved for I and q, the results 

in appendix B can be used to obtain an augmented sum of squares of the form of(F-1). -Finally, 

substitution of(F-73) for Ia in this augmented sum of squares yields a result of the form of(F-6): 

I I I I 

Sa(O, Op) ~ u~a w} (Ia- Ra)W}U.a + u:a w} (Ia- Ra)~Wa}(Eaj-I~JYafajla) 
} 

I I 

+ -
4

1 ~ ~~a D~Jaii*)V ~i (Ia - Ra )L W ~ Ca D~Jaj l.a 
l } 

I I 

-L W};Z.)~aD~/a;(DatWaDafa)-IL D~/a;l•aW}; Z.a 
i i 

1 

+ LW};Z.)'.aD~.fai(Daf~WaDafa)-1 Daf~ ~ Wa)'•a D~Ja)•a 
I } 

(F-74) 

where Z.a = (Ia -Ra)W~12U.a. 
Approximate characteristic function for sum of squares ratio. The joint characteristic 

function for Sa(e, OP) -Sa(B, BP) and Sa(e, BP) is 

(F-75) 

Equation (F-75) can be written in terms of z 2 distributed variables and deviations from them as 
before so that 

-...; ,..._, " " 
Sa(9, (} p)- Sa(9, (} p) = Qla(U.a) + Dla (F-76) 

(F-77) 

1 p P' I 

Q (u ) - ' 2 a a 2 la *a - u.a v.a -, -v.a u.a 
papa 

(F-78) 

(F-79) 

where V.a = Var(U *a), 
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I 

Pa = V.~2Dafa(Dac;v.;nafa)-IDah' (F-80) 

1 I 

Ha = V.~2Dafa(Dac;v.:1Dafa)-1 Dac;v.~2 (F-81) 

,......., -..., " " 
D1a = Sa(9, Op)- Sa (9, Op)- Q1a(U.a) (F-82) 

(F-83) 

The~ because U.a has a normal distribution with variance matrix V.aa;, 

1 

V.~2 U *a ,.., N(O,Iaa;) (F-84) 

Finally, the properties of Pa and Ha allow concluding that 

(F-85) 

(F-86) 

Approximate statistical distributions. The derivation to find the distributions of 
,......., ,......., " " " " 

Sa (9, (} P)- Sa (9, (} P) , Sa (9, (} P), and their ratio is completely analogous to the derivation used 
to find S(O)- S(O), S(O), and their ratio. The results are 

(F-87) 

(F-88) 

(F-89) 

where 

a; + (y waD"~ + Yfaa: )/(n- p) 

~ 1 + r waD"~+ Yfaa: - (f WOO"~+ Yfaa:)/(n- p) (F-90) 

Evaluation of co"ection factor. The factors y wa , y fa , f wa , and f fa in the correction 

factor (F-90) are analogous to r w' rf 'r w' and rf' and they evaluate in an analogous manner. 
Thus, 
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1 1 1 1 1 1 

Ywaa~ = E(U~a v.~2 (V.~W} (Ia -Ra)W}V.~ -Ia + Ha)V.~2U.a) 
1 1 

= tr((la- Ra)W} (V.a- W;1)W} )a~ 
1 l 

= tr((la -Ra)W} (Va- V(i)a )W} )a~ (F-91) 

where V liXl is analogous to V (j) , 

(F-92) 

I I 

f~aa: = E(Sa(e, Op)- u~a wJ (Ia- Ra)W]U.a) 
I I 

~ -
4

1 E(~ l'.aD~_l) *aW}; (Ia- Ra)~ WJI'.p~fa) *a) 
1 1 

I I 

- E(L.Wa~Z.)'.aD~fa;(Daf~WaDafa)-I L.D~/a;l *aW},Z.a) 
i i 

1 

+E(L.W};Z.)'*a~.fa;(Daf~WaDafa)-1 Daf~~Wa)'.D~faJI*a) 
I 1 

(F-93) 

Evaluation of r waa~ gives 

t 1 1 Q Q' t t p P' t 
2 _ E(U' y-2(y2w2 a a w2y2 a a)y-2u ) r wa (j p - *a *a *a a , a *a - -, - *a *a 

QaQa papa 

Q Q , 1 l 

= tr( a a W2(V - w-I)W2)a2 
Q~Qa a *a a a & 

(F-94) 

and use of(F-71) yields 



AppendixF 177 

(F-95) 

Evaluation of the expected values in (F-93) and (F-95) is deferred to appendix G. 

Further Analysis of Distributions and Correction Factors 

Distribution of S(S). The distributions of S(S), S(O)- S(O), and their ratio can be 

analyzed under somewhat less restrictive conditions than those required for the perturbation 

analyses. For S(S) this is accomplished as follows. First, from (F-56) and (F-59), as an 

approximation, 

" 
S(9) 2 

E(S(e))l(n- p) "'x (n- p) 
(F-96) 

If(F-96) were a good approximation, then the mean and variance of the left-hand side of(F-96) 

would nearly equal the mean and variance expected for a z 2 (n- p) random variable, n- p and 

2(n- p), respectively. It is apparent that the means match exactly. 

The variance of the variable in (F-96) is 

TT (<n- p)S(e)J = (n- p)
2 
Var(S(e)) Yar ~ " 

E(S(9)) (E(S(0))2 
(F-97) 

If model and system types of intrinsic nonlinearity are significant, it is difficult to compute the 

variance of S(S) without using the Taylor series and perturbation expansions. Hence, these 

types of intrinsic nonlinearity are assumed to be negligible, which is the same as considering 

only the effect of ro -• =t:- Q on the variance. First, the residual vector Y- f(yS) is expressed in 

terms of + , noting that the model in terms of + is linear in the absence of model intrinsic 

nonlinearity. That is, 

~ ~ 

Y -f(yO) = Y -f(yij(cj))) 
" 

= Y- f(yO(cj).))- (f (y9(cj)))- f (yij(cj).))) 
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= Y -f(y8(cj».))- D;f(cj) -cj».) 

= Y -f(y8(cj».))-D;f(D;fmD;f)-1D;fm(Y -f(y8(cj».))) 

= Y -f(y8(cj».))-DfJ(J'Df'roDfJ)-1J'Df'ro(Y -f(y9(cj».))) 
1 -

= ro 2 (I- R)ro 2 (Y- f(y8.)) (F-98) 

where cJ, and +. are equal to cj»(O) and cj»(9.), respectively, and cl> was obtained by linear least 
squares using the linear model f( y8( +)) . Thus, when model intrinsic nonlinearity is negligible 

I 1 

S(9) ~ (Y- f(y9.))'ro 2 (I- R)ro 2 (Y- f(y9.)) 

Next, error vector Y- f(y8.) is written using (3-5) and (4-9) to get 

Y -f(y8.) = U. +(Y- U. -f(y9.)) 

= U. +(&+f(J3)-&-D11f(I-y(y'y)-1 y')e -f(y9.)) 

= U. + f(J3)- f0 (J3) -f(y9.) + f0 (y9.) 

=U. +d 

where 

f 0 (J3) = f( y9) + D 11fe 

d = f (J3) - f0 (J3} - f ( y9.) + f 0 ( y9.) 

,., ~ [e' (D~ /; - y( y'y r 1 y'D~ /; y( y'y) -I y')e] 

(F-99) 

(F-100) 

(F-101) 

(F-102) 

(F-103) 

lfboth model and system types of intrinsic nonlinearity are negligible, the variance of(F-
99) can be evaluated in terms of U. using (F-100). This was previously done using (4-38), which 
results from the Taylor series and perturbation expansions. It is done here without using these 

expansions by showing that the term (I- R)ro112d directly reflects model and system types of 

intrinsic nonlinearity, as follows. The increment +.-+ in best transformation set + can be 

written in terms of the e set as J-1 (9. - e + "'*)' where, given values of •• ' c;;, e.' e, and J, "'* is 
uniquely defined. Next, a linear-model approximation p(\f/.) of f(y9.) is written using + as 

- -
p(\f/.) =f(y9)+D~f(cj». -cj») 

- -
= f(y9) + DfJ(cj». -+) 

- -
= r(yO) + nr(e. - e + 'fl·) 
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(F-104) 

and an analogous linear-model approximation of f((l) is written using a as 

-
Pa ('V a)= f(y9) + Daf(a- a) 

-
= f(ye) + DpfJ p(a- a) 

- -
= rcre) + n pf(Jl- 1e + s) 

- -
~ f(y9) + D pf((l- yO+ 'Y'V a) 

- -
= f(y9) + D pf((l- yO)+ Df\v a 

= f0 {(}) + Df'V a (F-105) 

where, given values of a , a , p , yO , and J P , l; is uniquely defined. The approximation 
l; ~ 'Y'V a is analogous to the approximation (C-27), appendix C. The best fit of 
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p( 'V) = p a ( 'V a) - p( 'V.) to f ((}) - f ( ye.) is 0 btained by minimizing, with respect to 'V = 'V a - 'V. ' 
the objective function 

S('V) = (f(Jl)- f(ye.)- P('V))'ro(f(Jl)- f(ye.)- P('V)) (F-106) 

The result is 

'V = (Df'roDf) -1 Df'rod (F-107) 

Thus, 

r (Jl) - r ( 1e.) - p( 'V) = d - nr'V 

(F-108) 

If P('V) fits f((l) -f(y9.) closely, then the linear model p('V) = f0 {(}) -f0 (yO.)+ Df'V is almost 
exact, indicating negligible intrinsic nonlinearity of f((l) (system intrinsic nonlinearity) and 
f(y9.) (model intrinsic nonlinearity). In this case (F-108) is nearly 0. From the preceding 
analysis, if model and system types of intrinsic nonlinearity are negligible, (F-99) written using 
(F-100) is approximated as 

1 1 1 1 1 1 

S(O) ~ U~ro2 (I- R)ro2u. + 2U~ro2 (I- R)ro2d + d'ro 2 (I- R)ro2d 
1 1 

~ u:ro 2 (I- R)ro 2 U. (F-109) 

which is the same relation found using the perturbation analysis. 
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Next, the variance of S(S) as given by (F-109) is evaluated. The variance of the form 

u:Au., where A is symmetric, is 

Var(V:AV.) = E(U:AU.)2 -(E(U:AU.))2 (F-110) 

in which 

E(U:AU.) = tr(A Var(U.)) (F-111) 

E(U:AU.)2 =tr2 (A Var(U.))+2tr(A Var(U.)A Var(U.)) (F-112) 

where the result of appendix A was employed. Hence, 

Var(U:AU.) = 2tr(A Var(U.)A Var(U.)) (F-113) 

Application of(F-113) to (F-109) using the definitions of V. and Q implicit in (3-21) 
produces 

1 1 1 1 

· Var(S(S)) ~ 2tr(ro2 (I- R)ro2v.ro2 (I- R)ro2v. )a: 
I I 1 1 

~ 2tr( ro2 (I-R)ro2 Qro2 (I- R)ro2 Q)a: (F-114) 

By definition 

(F-115) 

where A is analogous to V - V w in (F -61 ), and so depends only on model error. Then (F -114) 
becomes 

1 I 

Var(S(B)) ~ 2tr(I- R)a: + 4tr((I- R)ro2 Aro2 )a~a; 
1 1 1 I 

+ 2tr((l- R)ro2 Aro2 (I- R)ro2 Aro2 )a; 
1 I 

= 2(n- p)a: + 4tr((l- R)ro2 Aro2 )a~a; 
1 1 1 I 

+ 2tr((l- R)ro2 Aro2 (I- R)ro2 Aro2 )a; (F-116) 

Similarly, 

I 1 

(E(S(B)) 2 = tr 2 ((1- R)ro2nro2 )a: 
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1 1 

= (n- p + tr((I- R)ro2 Aro2 )a~ I a; ) 2 a: 
I 1 1 1 

= (n- p ) 2 a: + 2(n- p )tr((I- R)ro2 Aro2 )a~a; + tr 2 ((I- R)ro 2 Aro2 )a; 

so that 

Var((n- p)~(O)J 
E(S(9)) 

1 1 1 1 I 1 
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(F-117) 

(n- p) 2 (2(n- p)a: + 4tr((I- R)ro2 Aro2 )a~a; + 2tr((I- R)ro2 Aro2 (I- R)ro2 Aro2 )a; 
~----------------------------~----------------------------~ 

I 1 1 1 

(n- p ) 2 a: + 2(n- p)tr((l- R)ro2 Aro 2)a~a; + tr 2 ((I- R)ro2 Aro 2)a; 
I 1 1 1 1 1 

(n- p)a: + 2tr((I- R)ro2 Aro2 )a~a; + tr((I- R)ro2 Aro2 (I- R)ro2 Aro2 )a; 
= 2( n - p) 

1 1 1 1 
(F -118) 

(n- p)a: + 2tr((I- R)ro2 Aro 2)a~a; + tr 2 ((I- R)ro 2 Aro 2)a; /(n- p) 

Thus, through the second terms in the numerator and denominator, 

Var((n- p)S(S)/ E(S(S))) = 2(n- p), which is the correct value for the variance. 

It is instructive to evaluate the last terms in the numerator and denominator using 

approximation (5-22) (with b=1 for simplicity): 

1 1 1 1 

tr((I- R)ffi2 affi2(I- R)ffi2 affi2)a; 
1 1 1 1 1 1 

= (tr((I- R)ffi2nffi2(I- R)ffi2nffi2)- 2tr((I- R)ffi2gffi2) + tr(I- R))a: 

~ c 2 (n- p)a: 

and 

1 1 

tr 2 ((I- R)ffi2 Affi2)a; /(n- p) 
1 1 

= (tr((I- R)ffi2gffi2) -tr(I- R)) 2 a: !(n- p) 

~ c 2 (n- p)a: 

(F-119) 

(F-120) 

Therefore, if the approximation is accurate and ro = ro , the last two terms also are approximately 

equal. 

To relate c to relative sizes of model and observation errors, use is made of 
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~~A~~- [ (1-t5ij)E(/;(JJ)- /;(')'9.))(/j(JJ)- fj(yB.)) l 
ro ilro - I I 

(V9 ia; + E(/; (JJ)- /; (y9. ))2 
)
2 (Vtiia; + E(/1 (JJ)- / 1 (y9.))2 

)
2 

(F-121) 

Thus, if (VeiJ 112 
0"

8 
is only twice (E(/;(JJ)- /; (y9.))2 Y12

, then, even if correlations among the 

model errors are very large, an off-diagonal element of (F -121) is roughly only 

1/((22 + 1)I12 (2 2 + 1)112
) = 0.2, so that c 2 ~ (0.2) 2 = 0.04. The last two terms in the numerator 

and denominator of(F-118) are not only approximately equal, in the present example their 

magnitudes are only about 4 percent of the magnitudes of the first terms. 

The preceding analysis does not assume either model or observation errors to be small in 

magnitude. Thus, in general, the mean of (n- p)S(B)I E(S(B)) equals the mean of a x2 (n- p) 

random variable, and, if ro is set equal to ro, the variance of (n- p )S(B) I E(S(B)) can be a 

good approximation of the variance of a x 2 
( n - p) random variable if both model and system 

types of intrinsic nonlinearity are negligible. 

Distribution of S(9.)- S(O). From (F-63) and (F-55) in which PI = p and 9 =e., as 
an approximation, 

S(9.)- S(O) 2 

E(S(9.) -S(O))/ p ~X (p) 
(F-122) 

As before, if(F-122) were a good approximation, then the mean and variance of the left-hand 

side would nearly equal the mean and variance,p and 2p, of a z 2 (p) random variable. It is 

apparent that the means are the same. 

The variance ofthe variable in (F-122) is 

Tr ( p(S(9.)- S(O))) = p
2
Var(S(9.)- S(O)) 

y~ A A 

E(S(B.)- S(9)) (E(S(9.)- S(9)))2 
(F-123) 

As before, both model and system types of intrinsic nonlinearity are assumed to be negligible, so 

that use of(F-99), (F-100), and (F-109) yields 

S(9.)- S(O) ~ (Y- f(y9.))'ro(Y- f(y9.))- (Y- f(y9.))'ro 2 (I- R)ro 2 (Y- f(y9.)) 
1 I 

~ (U. + d)'ro(U. +d)- u:ro 2 (I- R)ro 2 U. 
I 1 

= U ~ ro 2 Rro 2 U. + 2 U ~rod + d 'rod (F-124) 

The last two terms are negligible only if total system nonlinearity (nonlinearity in f(fJ)) is 

negligible. Hence, use of (F -103) produces 
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Var(S(9.)- S(O)) ~ Var(U:m 2 Rm 2 U. + 2U:md + d'md) 
1 1 

~ Var(U:m 2 Rm 2 U.) + 2Cov(U:mu. ,d'md) 

+ 4Var(U~md) + Var(d'md) 

in which 

1 1 1 1 1 1 

Var(U:m2 Rm 2 U.) = 2tr(m2 Rm2 V.m2 Rm2 V. )a; 
1 1 1 1 

~ 2tr(m2Rm2nm2Rm2n)a; 

Equations (F-125) and (F-126) combine to give 

1 1 1 1 

Var(S(9.)- S(O)) ~ 2tr(m2 Rm2nm 2 Rm2 Q)a; + r 
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(F-125) 

(F-126) 

(F-127) 

where r signifies the terms left out, which from (G-7) have a leading value of order no lower 

than a; a; . If model and system types of intrinsic nonlinearity are negligible, these terms result 

from total system nonlinearity, which would be expected to increase the variance, and from using 
Q in place of V., which would decrease the variance. Remainder r represents the deviation of 

Y -f(y9.) from a zero-mean, normally distributed random variable, because, if Y -f(y9.) has 

a mean of zero and is normally distributed, use of the first line of(F-124) to compute the 
variance shows that r = 0 . 

Substitution of(F-115) into (F-127) yields 

1 1 

Var(S(9.)- S(O)) ~ 2 pa: + 4tr(Rm2 Am2 )a~a; 
1 1 1 I 

+ 2tr(Rm2 Am2Rm2 Am2 )a; + r (F-128) 

Similarly, substitution of (F-115) into (E(S(9.)- S(B)))2 as evaluated using the first line of 
(F -124) produces 

1 I 

(E(S(e.)- S(S)))2 ~ tr 2 (Rm2 nm2 )a: 
I I 

= (p + tr(Rm 2 Am 2 )a~ I a;) 2 a; 
I I I 1 

= p 2 a: + 2 ptr (Rm 2 Am 2 )a~ a; + tr 2 (Rm 2 Am 2 )a; (F-129) 

Thus, 
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Var( p(S(e.)- S(~))J 
E(S(e.)- S(9)) 

1 1 1 1 1 1 

p 2 (2pa; + 4tr(Rro2 Aro2)a~a~ + 2tr(Rro2 Aro2 Rro2 Aro2 )a; + r) 
~ 1 1 1 1 

p 2 a; + 2 ptr(Rro2 Aro2 )a~a~ + tr 2 (Rro2 Aro2 )a; 
1 1 1 1 1 1 

pa; + 2tr(Rro2 Aro2 )a~a~ + tr(Rro2 Aro2 Rro2 Aro2 )a; + r I 2 
= 2p 1 1 1 1 

pa: + 2tr(Rro2 Aro2 )a~a~ + tr 2 (Rro2 Aro2 )a; I p 

Again, through the second terms in the numerator and denominator, 

(F-130) 

Var(p(S(S.)- S(e))l E(S(e.)- S(e))) = 2p, which is the correct value for the variance. 

The third terms in the numerator and denominator can be evaluated using approximation 

(5-21) to get 

1 1 1 1 

tr(Rm2 Am 2:Rm2 Am 2 )a; 
1 1 1 1 1 1 

= (tr(Rm 2 nm 2 Rm 2 nm 2) - 2tr(Rm 2 nm 2) + tr(R) )a; 

~ c2 
( ( n - p) 2 + n2 (p -1) )a; I p (F-131) 

and 

1 1 

tr2 CRm2 Am2 )a; I P 

1 1 

= (tr(Rm2 nm2)- tr(R))2 a: I p 

~ c2 (n- p)2 a; I p (F-132) 

The term represented by (F -131) is equal to or larger than the term represented by (F -132), with 

equality occurring only for p = 1. 

As before, the preceding analysis does not assume small model or observation errors. 

Thus, the mean of p(S(8.)-S(S))IE(S(9.)-S(e)) equalsthemeanofa z 2 (p) random 

variable. However, the variance of p(S(B.)- S(O))I E(S(B.)- S(e)) could be larger than the 

variance of a x 2 (p) random variable, even if ro is set equal to m . The r terms would probably 

increase in magnitude as Y- f(ye.) becomes progressively more non-normal. 
Redefinition of component co"ectionfactors. Based on the perturbation analysis, 

E(S(S)) and E(S(e.)- S(e)) are expressed in terms of sums of correction factors in (F-59) and 

(F-63), respectively. The present analysis yields S(S) and see.)- S(O) in the absence of 
model intrinsic nonlinearity as (F-99) and the first line of(F-124), respectively. These latter 
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equations indicate that the component correction factors might be more accurate for practical use 

if they are redefined in terms of Q rather than V. as follows. 

1 1 

y wa~ = E(Y- f(y9. ))'ro2 (I- R)ro2 (Y- f(y9.))- (n- p)a; 
1 1 

= (tr((I- R)ro2oro2)- n + p)a; (F-133) 

1 1 

y1 a; = E(S(O)-(Y -f(y9.))'ro2(1-R)ro2(Y -f(y9.))) 
I I 

= E(S(S))- tr((I- R)ro2oro2 )a; (F-134) 

I I 

rwa~ = E(Y -f(y9.))'ro2Rro2(Y -f(y9.))- pa; 
I I 

= (tr(Rro2Qro2)- p)a; (F-135) 

1 I 

rIa: = E ( s ( 9 * ) - s (e) - (Y - f ( y9 *)) '(!) 
2 Rro 2 (Y - f ( y9 * ) ) ) 

1 I 

= E(S(O.)- S(~))- tr(Rro2 Qro2 )a; (F-136) 

Redefined factors f wa~ and y wa~ both measure only the influence of ro-t * Q on the 
distributionS of S(S) and S(9.)- S(O). In addition (F-99) and (F-124) show that both y1a: 
and ria; are zero in the absence of model intrinsic nonlinearity, so both measure model 

intrinsic nonlinearity. Because E(S(O.)) = tr(ro1120ro112 )a;, ria; = -f1a;, as also was found 

from the perturbation analysis. Finally, as before, E(S(S)) = (n- p )a; + f wa~ + f 1a; and 

E(S(9.)- S(G)) = pa; + r wa~ + r 1a;. Thus, the redefinitions do not change any critical 

properties of the correction factors. 

Distribution of S(i})- S(O) . The last approximate z 2 distribution to be examined is 

obtained using (F-55) and (F-66) with PI = 1 and 9 = e: 

sce2- see! _ 2 (1) 
E(S(O)- S(O)) X 

(F-137) 

For (F-137) to be a good approximation, the mean and variance of the left-hand side should be 

approximately 1 and 2, respectively. The mean is correct. 

The variance of the left-hand side of(F-137) is 

V4 ( S(e)- S(S) J _ Var(S(e)- S(S)) 
ar E(S(i})- S(S)) - (E(S(S)- S(S)))2 

(F-138) 
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The model combined intrinsic nonlinearity is considered to be negligible so that S(S) can be 

obtained from the constrained regression using linear functions f(y9(+)) and g(y9(+)) written 
as 

f(y9(+)) = f(y9.) + D;f(+- +.) (F-139) 

and 

g(yO(+)) = g(yO.) + D;g(+- +.) (F-140) 

Solution of the Lagrange multiplier problem for the constrained regression estimates Cj) is 

obtained by substituting (F-139) and (F-140) into (E-7), then minimizing L(+,A.) in the same 

manner as used to obtain T- (y'yr1y'e in (E-10)-(E-14). The result is 

from which 

Y- f(yB) = Y- f(yO(Ci))) 

= Y- f(y9(+.))- (f(yO(Ci)))- f(y9(+.))) 

= Y- f(yO(+.))- D;f(Ci)- +.) 

1 QQ' 1 

= Y- f(y9.) -D; f(D; f'roD;f)-1 D;f'ro2 (R- Q'Q)ro2 (Y- f(yO.)) 

1 QQ' 1 

= ro 2 (I- R + -)ro2 (Y- f(yO. )) 
Q'Q 

Therefore, 

1 QQ' 1 

S(O) ~ (Y- f(y9.))'ro 2 (I- R + Q'Q)ro 2 (Y- f(yO.)) 

and 

1 QQ' 1 

S(O)- S(O) ~ (Y- f(ye. ))'ro2 Q'Q ro2 (Y- f(yO.)) 

I QQ' 1 1 QQ' 1 1 QQ' 1 

= u:ro 2 --ro2 U. + 2U:ro 2 --ro 2 d + d'ro 2 --ro2 d 
Q'Q Q'Q Q'Q 

(F-141) 

(F-142) 

(F-143) 

(F-144) 
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Terms expressing model and system types of intrinsic nonlinearity cancel in (F-144), but the two 

terms containing d do not express either model or system combined intrinsic nonlinearity. Thus, 
these terms cannot be neglected, even when model and system types of combined intrinsic 
nonlinearity are small. 

Evaluation of the variance of(F-144) and subsequently (F-138) is completely analogous 
to the evaluation given by (F-125)-(F-130) if ro112 (QQ' IQ'Q)ro112 is substituted for either 

ro 112 Rro 112 or ro , as appropriate. The result is 

Vi ( S(B)- S(S) J 
ar E(S(B)- S(B)) 

1 1 1 1 1 1 

~ 
2 

a: +2tr(QQ'ro2Aro2 IQ'Q)a~a; +tr(QQ'ro2Aro2QQ'ro2Aro2 I(Q'Q) 2)a; +rl2 
1 1 1 1 

a: +2tr(QQ'ro2Aro2 IQ'Q)a~a; +tr 2 (QQ'ro2Aro2 IQ'Q)a; 
1 1 1 1 

= 
2 

a; + (2Q'ro2 Aro2Q I Q'Q)a~a; + (Q'ro2 Aro2QJQ'Q)2 a; + r I 2 
1 1 1 1 

a; + (2Q'ro2 Aro 2Q I Q'Q)a~a; + (Q'ro2 Aro 2Q I Q'Q)2 a; 
(F-145) 

This time, the variance is correct, that is, Var((S(S)- S(S)) I E(S(S)- S(S))) = 2, through all 

terms except r I 2 . As before, the r I 2 terms would be expected to increase in magnitude as 
Y- f(yij.) becomes progressively more non-normal. Although the r 12 terms are not equal to 

the r 12 terms defined previously, they have the same lowest possible leading order of a; a;. 
Redefinition of component correction factors. As before, the component correction 

factors for S(S)- S(S) are probably more accurate for practical use if they are redefined in 
terms of Q rather than V. as follows. 

1 QQ' 1 

r w a~ = E (Y - f (yO.))' ro 2 Q, Q ro 2 (Y - f (yO.)) - a; 
1 1 

= (Q'ro2nro2Q/Q'Q -l)a; (F-146) 

1 QQ' 1 

ria: = E(S(O)- S(S)- (Y- f(y9.))'ro 2 Q'Q ro2 (Y- f(y9.))) 

1 1 

= E(S(B)- S(O))- Q'ro2nro2Q/Q'Qa; (F-147) 

Factor r wa~ measures only the influence of ro -1 
-:1:- Q on the distribution of S(S)- S(O), and 

factor rIa: , which is zero for zero model combined intrinsic nonlinearity, measures the 
influence of model combined intrinsic nonlinearity on the distribution of S(O)- S(O). As can be 

,._, A 2 2 4 
seen, E(S(9)- S(9)) =a p + r wa p + riac. 
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Distribution of ratio. The final analysis is ofthe ratio 

((S(8)- S(O)) I p 1 ) /(S(tl) /(n- p )) . This ratio has an F(pi, n- p) distribution if the two 

component random variables are x 2 -distributed and independent. If x 2 
( n - p) and x 2 (pi) are 

independent, then by the chi-square summation theorem (Miller and Kahn, 1962, p. 463) the sum 

x 2 (n- p) + x2 (pi) is a x 2 (n- p +pi) random variable. Thus, the mean and variance of the 

sum of (n- p)S(O)/ E(S(O)) and PI(S(8)-S(O))/ E(S(8)-S(O)) maybe checked to see ifthey 

have approximate values of n- p +pi and 2(n- p +pi), as expected. The mean is 

E((n- p)S(S) pi(S(S)-S(S))J _ 
E(S(e)) + E(S(9)- S(e)) - n- p +PI 

(F-148) 

which is as expected. 

The variance is 

rr ((n- p)S(S) PI (S(9)- S(O))J 
rar .... + .... 

E(S(9)) E(S(9)- S(9)) 

= rr ((n- p)S(O)J 2 C ((n- p)S(S) PI (S(8)- S(B))J 
rar " + ov " ' " 

E(S(9)) E(S(9)) E(S(9)- S(9)) 

T7 (PI (S(8)- S(O))J +rar .... 
E(S(9)- S(9)) 

(F-149) 

If the covariance term is nearly zero, the variance is equal to 2(n- p + p 1) +error terms. The 

error terms already have been analyzed. The covariance term is analyzed in the same manner as 
used for the variance of S(O) and S(9)- S(O). First, 

Cov( (n- p )~(e), PI (S(9)- s\e))J 
E(S(9)) E(S(9)- S(9)) 

(n- p)p1Cov(S(B), S(9)- S(S)) 
=--~~----~~~--~ 

E(S(e))E(S(9)- S(S)) 
(F-150) 

Then, use of a derivation like the one used in (F-110)-(F-113) shows that for symmetric matrices 
A and B, 

Cov(U:Au., u:BU.) = 2tr(AVar(U.)BVar(U.)) (F-151) 

For 9 = 9. and negligible model and system types of intrinsic nonlinearity, (F-109), 
(F-115), (F-124), and (F-151) yield 

I I I I 
Cov(S(S), S(9.)- S(O)) ~ Cov(U~ro 2 (I- R)ro2u ., U~ro 2 Rro 2 U. + 2U~rod + d'rod) 
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1 1 1 1 1 1 

= 2tr(ro2 (I- R)ro2v.ro2Rro2V.)a: + Cov(U~ro2 (I- R)ro2u., d'rod) 
1 1 1 1 

= 2tr((I- R)ro2 Qro2 Rro2 Qro2 )a: + r 
l 1 l 1 

= 2tr( (I - R )ro 2 Aro 2 Rro 2 Aro 2 )a; + r (F-152) 

where r signifies the remaining terms. Approximation (5-21) gives 

1 1 1 1 

tr((I- R)ffi2 Affi2 R.&2 Aro2 )a; 
1 1 

~ tr((1- c)(I- R)Rffi2 Affi2 )a; 

=0 (F-153) 

For e = e , negligible model combined intrinsic nonlinearity, and negligible model and system 

types of intrinsic nonlinearity, a development similar to (F-152) yields 

1 1 1 , 1 

Cov(S(O), S(e)-S(O)) ~ Cov(U~ro2(1-R)ro2u.,u~ro2 QQ ro2u. 

1 QQ' 1 1 QQ' 1 

+ 2U~ro 2 --ro2 d + d'ro 2 --ro 2 d) 
Q'Q Q'Q 

Now, approximation (5-21) results in 

1 1 " " , 1 1 

tr((I- R)&2 A&2 <_?~ &2 Aro2 )ap4 ~ o 
Q'Q 

Q'Q 

Thus, from (5-21), (F-109), (F-150), and (F-155), when ro = ro the covariance term is 

approximately given by 

(n- p)p1r _ p
1
r 

E(S(B))E(S(e)- S((l))- (1- c)E(S(e)- S(B))a; 

(F-154) 

(F-155) 

(F-156) 

where, for the expected value in the denominator, E(S(O.)- S(B)) = pa; + tr(Rro112 Aro112 )a~ 
and E(S(e)- S(O)) =a; + (Q'ro112 Aro112Q I Q'Q)a~. Unless r is significant, the covariance 

term can be small, so that, if (t) = ro' the sum of (n- p)S(B)I E(S(B)) and 
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p 1 (S(9)- S(e))/ E(S(9)- S(e)) can have a mean and variance approximately the same as the 

mean and variance of a z 2 (n- p+ p 1) random variable. 
The analysis for prediction intervals using augmented variables is analogous to the 

preceding analysis given by (F-96)-(F-121) and (F-137)-(F-156). However, as suggested by the 

discussion leading to ( 5-97), the approximations are more accurate than the approximations in 
the preceding analysis. The development is not repeated here. 

An alternative noncentral chi-square approximation. As a final note, the last two terms 

ofboth (F-124) and (F-144) are nonzero because dis nonzero. This also causes E(Y -f(y9.)) 
to be nonzero, as can be seen from (F -1 03) and (3-31 ). If d were approximated as a nearly 

normal random variable, then for V = Var(Y -f(y9.)) 

1 1 

(Y -f(y9.))'V-2HV-2(Y -f(y9.)) ~ z 2(p,p) (F-157) 

where H is .computed using V instead of V. and z 2 (p, p) is a noncentral z 2 random variable 
havingp degrees of freedom and noncentrality parameter p (Graybill, 1976, p. 125). Parameter 
p is defined by 

1 1 

p = _!_ E(d)'V-2HV-2 E(d) 
2 

Now 

_1 _ _!_ 

E(Y -f(y9.))'V 2 HV 2 (Y -f(y9.)) 

=(p+2p)a; 

so that, as an approximation, 

S(9.)- S(B) 2 

E(S(9.)- S(B))I(p + 2p) ,.., X (p,p) 

for which, as in (F -63 ), correction factors are defined from 

(F-158) 

(F-159) 

(F-160) 

(F-161) 

as rwa~ = E(Y -f(y9.))'(ro112Rro112
- v-112HV-112 )(Y -f(y9.)) and 

y 1a: = E(S(9.)- S(O)- (Y- f(y9.))'ro112 Rro112 (Y -f(y9.))), the latter of which is the same as 

(6-14). A similar approach also could be used for S(O)- S(B). Both distributions could be 

analyzed using the procedures used to analyze (F-122) and (F-137). The ratios of the 
approximate noncentral z 2 random variables, such as (F-160), to the approximate central z 2 

random variable given by (F -96) lead to noncentral F distributions to define confidence regions 
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and intervals (Graybill, 1976, p. 128). Experiments indicate that this approach does not improve 

accuracy compared to the approach followed for the two examples considered in section 7. Also, 
it is doubtful that the noncentrality parameters could be estimated using the information usually 

available. For these reasons the analyses are not pursued further in this report. 
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Appendix G - Evaluation of Component Correction Factors 
for Model Intrinsic Nonlinearity 

Component Correction Factor Pertaining to Confidence Regions 

Component correction factor y1a: is given by (F-62), appendix F, as 

1 1 1 1 

y1 a: ~-4
1 

E(I ~I~D2fl.rof(I-R)ro}I:D 2/).) -E("'I;. Ik rofZ.I:D 2f(Df{oDf)-1D2 /kl.roiZ.) 
l 1 l 

1 

+ E(I Irof Z.I:D 2 f (DfmDf)-1 Df'ro 11:D2f 11.) (G-1) 
l 1 

Equation (G-1) is evaluated term-by-term using the result of appendix A. For the first term 

1 1 

E(I I I~D 2fl.roJ (I -R)ro}I~D2/).) 
I 1 

l 1 

= I IroJ (I- R)ro J E( I~ D2 f I. )(I~D2 
/ 1 I.) 

I 1 

1 l 1 l l 1 

=I Irol (I -R)roJ E(U~V.-2V.2 roDf(Df'roDf)-1 D2 /;(Df'roDf)-1 DfmV}V :2u.) 
i j 

l 1 1 l 

• (U: v.-2 v.2 roDf(DfmDf) -1 D2 ~ (Df'roDf)-1 Df'rov.2 v.-2 u.) 
1 1 1 I 

=I Irof (I- R)roJ tr(V} roDf(Df'roDf)-1D2 
/; (DfmDf)-1Df'roV.2) 

i j 

I I I I I 
• tr(V.2 roDf(Df'roDf)-1 D2 ~ (Df'roDf)-IDf'roV} )a;+ 2 I Irof (I- R)roJ tr(V.l roDf(Df'roDf)-1 

I 1 

I 

• D2 /;(Df'roDf)-I Df'roV. roDf(Df'roDf)-ID 2 ~ (Df'roDf)-1Df'roV.2 )a: 
1 I I I 

= I~rof (I- R) roJ tr(A;)tr(A1 )a; +2I~ ro;2 (I- R)roJ tr(Ai A) a; 
l 1 l 1 

I I I 1 

=(I (I- R) roJ tr(A 1 ))'~(I- R) roJ tr(A 1 )cr; + 2I I ((I- R) ro})'(I- R)roi tr(A1 At)a; 
1 1 1 l 

I I I 1 

=(I ~(1-R);roJtr(A) I(I-R);roJtr(A1)cr; +2IIItr((I-R); ro}A1 (1-R);roi At)a; 
I 1 1 l 1 £ 

1 1 1 1 I 1 
2 - - - -- -

= "tr (C.ro 2 V ro2 \-
4 +2"tr(C.ro2 V ro2C.ro2 V ro2 \-

4 
£..... I * JUc £..... I * I * JUc 
i i 

(G-2) 

where temporary variable A; is defined implicitly, and 
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1 1 1 

C; =(I- R); :L roJ ro2Df(Df'roDf)-1 D 2 ~- (Df'roDf)-1Df'ro2 (G-3) 
} 

For the second term 

1 1 

E(LL ro?z.I:D 2 J; (Df'roDf)-1 D2 fkl.rofZ.) 
i k 

1 1 

= 7fE(Z:roJroiZ.)(I:D2 ~ (Df'roDf)-
1
D

2 
fkl.) 

1 1 1 1 1 1 1 1 
-- ----

= 7 t E(U: V. 2 V.2 ro2 (I- R)ro; roi (I- R)ro2 V.2 V. 2 U *) 

1 1 1 1 

• cu: v.-2v.2 roDf(Df'roDf)-1 D2 f
1 

(Df'roDf)-1 D2 fk (Df'roDf)-1Df'rov.2v.-2u.) 
11 11 11 1 

= 7 t tr(Yl ro2 (I- R)roJ roi (I- R)ro2 V} )tr(V.2roDf (Df'roDf)-1 D 2 ~ (Df'roDf)-1 D 2 h (Df'roDf)-
1 

1 1 1 1 1 1 

• Df'roV} )a:+ 27 t tr(V} ro2 (I- R)roJ rol (I- R)ro2v. roDf(Df'roDf)-1 D2 ~ (Df'roDf)-
1 

1 

• D2 h (Df'roDf)-1Df'ro V.2 )u: 
1 1 1 1 I I 

= 7 t rol (I- R)ro2V. ro2 (I- R)roJtr(B1 Bkro2v. ro2 )a; 

1 l 1 1 l 1 

+ 271roi (I- R)ro2V. ro2B1 Bkro2V. ro2 (I- R)roJa; (G-4) 

where 

1 1 

B1 = ro2Df(DfmDfr1D2f;(Df'roDfr1Df'ro2 (G-5) 

For the third term 

1 

E(I I rol Z. I:D 2f;(Df'roDf)-1 Df'ro):D2 j 1 I.) 
I 1 

1 

=LIE ( I:D2f;(Df'roDf)-1 Df'ro1ro: Z.)(I:D 2~.1.) 
l 1 

l l 111 11 1 

= L L E(U~V.-2v.2 roDf(Df'roDf)-1 D2 /;(Df'roDf)-1Df'ro2 roJ rof (I- R)ro2V.2V.-2U.) 
l 1 

1 1 1 1 

• cu: v.-2 v.2 roDf (Df'roDff1 D2 ~ (Df'roDff1 Df'ro v} v.-2 u.) 
1 1 1 1 1 1 

= IItr(B;roJ rof (I- R) ro2v.ro2 )tr(B1ro2v.ro2 )a: 
I } 
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11 11 1 1 11 

+ 2LL1r(V.2 ro2B; roJ rof (I- R)ro2v.ro2B1 ro2v.2 )a: 
l 1 

1 1 1 1 1 1 

= L~ rol (I- R)ro2v.ro2B;ro}tr(B1ro2v. ro2 )a: 
l 1 

1 1 1 1 1 1 

+2 "'"' ro~(I-R)ro2v ro2B.ro2v ro2B.ro~a4 

""'""' l * 1 * l 1 8 
(G-6) 

I 1 

Matrix V. can be replaced with Q, as can be deduced using (3-23), (3-33), (5-8) and the 

fact that 

E(Y; - /; ( y8. ))(Y1 - / 1 ( y8. )) 

= E(Y; - /; (J3) + /; (J3)- /; ( y8. ))(Y1 - / 1 (J3) + / 1 (J3)- / 1 ( y8. )) 

= E(t:;t:1 )+E(/;(J3)- /;(y8.))(/1 (J3)- / 1 (y8.)) 

to yield 

Q = V. + O(a; I a;) (G-7) 

where O(a; I a;) signifies terms of order a; I a;. Use of(G-7) shows that replacement of 
ro112V. ro112 with ro112Qro112 in (G-2), (G-4), and (G-6) involves dropping terms of order a;a;, 
which are of higher order than kept in the perturbation analysis. 

Component Correction Factor Pertaining to Individual Confidence 
Intervals 

Component correction factor y 1a: is given by (F-68), appendix F, as 

I QQ' I 

r ]a: ~ _!_ E( L L T:D 2/; T.rol (I- R + --)ro -1~ l'D2/1.1:) 
4 i j Q'Q 

1 - - .!_Q~ ~ 11 - -
--E(I I.'D~ l.ro;2 

-- I.'D 2g I.)+ ---E( I.'D 2g 1.) 2 

2 i Q'Q 4Q'Q 
I I QQ' I I 

- E(f7Z' ro~T:n~(Df'roDf)-IDf(oZ (R- Q'Q)ro2Df(Df'roDf)-ID 2/;T. ro r Z) 

} I I QQ' 1 

+ E((--Q'ro2u .)2 L'D 2g(Df'roDf)-1Df'ro2(R- --)ro2Df(Df'roDf)-1 D 2gl.) 
Q'Q Q'Q 

1 1 QQ' 1 

+ E(LI Z'ro2 T.'D::t'(Df{oDf)-1Df'ro2 (R- --)ro~L'D 2j.T.) 
e 1 'f £ Q'Q 1 1 

+ Q~Q £(71/ roh'D'ij (Df'roDf) -I Dg'T: D 2g T.) - f p; (G-8) 
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Equation (G-8) is evaluated term-by-term using the result of appendix A as was done for (G-1). 

For the first term 

- - _!_ QQ' _!__ -
E(L L I.'D 2

/; l.ro;2 (I- R + --)ro
1
2 I.'D 2i

1
.1.) 

i j Q'Q 
1 QQ' 1 

= ~ ~ (t)? (I - R + -)ro ~ E cT 'D 2 ~'. T )(T' D 2/. T ) 7 ~ I Q'Q ] * J j * * } * 

1 QQ' 1 1 1 1 QQ' 1 1 

= L Lro~(I- R + --)ro2 E(U'V-2V2ro2(R---)ro2 Df(DfmDf)-1D2 +. (Df'roDf)-1Df'ro2 
i j I Q'Q ] * * * Q'Q J j 

QQ' 1 1 1 1 1 1 QQ' 1 1 

•(R ---)ro 2 y2y-2u )(U' y-2y 2 ro2(R---)ro2 Df(Df'roDf)-1 D2 f. (Df'roDf)-1Df'ro2 
Q'Q • • • • • • Q'Q J 

QQ' 1 1 1 

• (R---)ro 2 V 2 V 2 U ) Q'Q • • • 

1 QQ' 1 1 QQ' 1 

= L Lrof (I- R + --)roJ tr(A; )tr(A 1) u; + 2 L L rof(l- R+ --)ro ltr(A 1Ae)u: 
I j Q'Q i j Q'Q 

= ( L(l- R + QQ' )ro] tr(A
1
))'L(I- R + QQ' )ro 1~ tr(A

1
.)a: 

j Q'Q j Q'Q 

+2~ ~((I -R+ ~~)roh-(1-R+ ~~)rol tr(A1A,)u: 

= L L(I-R+ QQ');ro1~ tr(A
1
-)L(I-R+ QQ');ro1~ tr(A

1
.)a: 

i j Q'Q j Q'Q 

+2 LLLtr ((1-R+ QQ') ro~A-(1-R+ QQ') ro~ A \.-4 

I } f. Q'Q I } } Q'Q I f. f}V & 

1 1 1 I 1 1 2 ,..._, - - ,..._, - -,..._, - -

= """tr (C .ro2 V ro2 )a4 + 2"' tr(C .ro2 V ro2C .ro2 V ro2 )a4 
£..... I * & £..... I * I * & 
i j 

(G-9) 

where temporary variable A; is defined implicitly, and 

C. =(I -R+ QQ'). L ro{ (R- QQ')ro~ Df(Df'roDf)-1 D2 f. (Df'roDf)-1Df'ro~(R- QQ') (G-10) 
I Q'Q l j j Q'Q } Q'Q 

For the second term 

1 
"', 2 ,..._, 2 Q "', 2 "' 

E(L I. D /; l.ro; - I.D g I.) 
i Q'Q 

1 
- Q - 2- - 2-

= L rof-E(I.'D /;I.)(I.'D gl.) 
i Q'Q 

= Lrof(I-R+ QQ')_g_tr(A.)tr(A)a
8

4 +2Lrof(I-R+ QQ')_g_tr(A;A)a
8

4 

j Q'Q Q'Q ~ i Q'Q Q'Q 



196 A Theory for Modeling Ground-Water Flow in Heterogeneous Media 

= L~(I-R+ QQ')ro1~ tr(A1
.)tr(A)a; +2L~(I-R+ QQ')ro

1
l tr(A

1
.A)a: 

j Q'Q Q'Q " j Q'Q Q'Q 

= L L(I-R+ QQ');ro1~ tr(A1
.)_g_tr(A)a; +2 L L(I-R+ QQ');ro1~ _g_ tr(A

1
.A)a; 

i j Q'Q Q'Q " i j Q'Q Q'Q " 
I I I I I I I I 

= Ltr(C;ro2v. ro2 )tr(i\ro2v.ro2 )a:+ 2Ltr(C;ro2v. ro2F;ro2v.ro2 )a: 
i i 

where temporary variables A and A; are defined implicitly, 

F. =_g_A 
l Q'Q 

and 

A= (R- QQ' )ro~ Df(Df'roDf)-I D2g(DfmDf)-IDf'ro~(R- QQ') 
Q'Q Q'Q 

For the third term 

I I I I I I 
2 "' - - "' - -,..._ - -

= "l;.tr (F;ro2 V. ro 2 )a:+ 2Ltr(F;ro2 V. ro2 F;ro2 V.ro2 )a: 
I l 

For the fourth term 

1 l , l l 

E('fj ~ z· m} T:D'lj(Df'mDf)-1 Df'm2 (R- ~~)m2 Df(Df'mDf)-1 D 2
/, T. mlZ) 

1 1 l , l 

= 2: 2: E cZ' ro?ro2Z)( T:D2~(Df'roDf)-1 Dfm2(R- QQ )roZnf(Df'roDf)-1D2 .t;T.) 
j i 1 I Jj Q'Q I 

(G-11) 

(G-12) 

(G-13) 

(G-14) 

1 1 1 QQ' 1 1 QQ' 1 1 1 1 1 l QQ' 
= L LE(V~V. 2 V.2 ro 2 (I- R +--)ro~ro2 (I- R +--)ro2 V 2 V 2 U. XU~V. 2 V.2 ro 2 (R ---) 

j i Q'Q 1 I Q'Q * * Q'Q 
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I QQ' I I QQ' 1 1 I 
= LLro2 (I- R+ --) ro2 V ro2(1- R + --) ro~ tr(B.B.ro2v ro2)a 4 

j i l Q'Q • Q'Q J J l • 8 

I QQ' 1 1 I 1 QQ' I 
+ 2 L L ro? (I - R + --) ro 2 V ro 2 B. B .ro 2 V ro 2 (I - R + --)ro ~a 4 

j i l Q'Q * J I * Q'Q J 8 

(G-15) 

where 

(G-16) 

For the fifth term 

(G-17) 

For the sixth term 

I I QQ' 1 

E(L: L: Z' rol-I:D'l;(Df'roDf)-1Df'ro 2 (R- --)ro 2I:D 2 .t;l.) 
f_ j Q'Q 1 1 

l QQ' 1 1 

= ~ 7 E( I:D~(Df'roDf)-1 Df'ro2 (R- Q'Q )ro}rolZ)(I.'D 2 .t;l.) 
1 1 Q' l 1 1 1 

= L ~ tr(B -ro~ ro2 (I- R+ _g_) ro2 V ro2 )tr(B"'. ro2 V ro2)a 4 

i ~ I ] I Q'Q * j * 8 

1 1 1 1 Q' 1 1 1 1 

+ 2 ~ L tr(V2ro2 B .ro~ro2(1- R + _g_) ro2v ro28 .ro2v2)a 4 

7 j * I } I Q'Q * j * 8 

1 QQ' 1 1 1 1 1 

=L L ro 2(1-R+--)ro2v ro2B.ro~ tr(B. ro2v: ro2)a 4 

i j l Q'Q • l 1 1 • 8 

(G-18) 

For the seventh term 
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1 

-
1 E(L.Z'ro~T'D24. (Df'roDf)-1Dg' T'D2gT) Q'Q j J * J J * * 

= Q~Q fE(I:D' /;(Df'mDfr'»g'm/Z)(T:D'gT,) 

1 1 QQ, I QQ' I I I 

=- L. E(U~ ro 2 (R- -) B 1.Qro 1~ (I- R + -) ro 2 U. )(U~ro 2 Aro 2 U.) 
Q'Q j Q'Q Q'Q 

1 QQ' 1 QQ' I I 1 I 
= --L.tr ((R- --)B.Qro~(I- R + --)ro2v.ro2)tr(Aro2v.ro2)a 4 

Q'Q j Q'Q I I Q'Q 8 

2 QQ' 1 QQ, I I 1 I 

+ -- L.tr ((R- --)B .Qro2(1- R + --) ro2v.ro2A.ro2v.ro2)a4 

Q'Q i Q'Q l l Q'Q 8 

1 I QQ' I I QQ, I I 

= -- L. ro2 (I- R + --) ro2 V.ro2(R- --)B.Qtr(Aro2v.ro2)a 4 

Q'Q j I Q'Q Q'Q I 8 

2 I QQ' I I I I QQ' 
+ -- L. ro2 (I- R + --) ro2 V.ro 2 Aro 2V.ro2(R- --)B Q74 

Q'Q j l Q'Q Q'Q I 8 

Component Correction Factors Pertaining to Individual Prediction 
Intervals 

(G-19) 

Evaluations using a general weight matrix. Component correction factor f 1aa: is 
given by (F-93), appendix F, as · 

I I 

YJaa: ~ -
4

1 
E(L. L l'.aD~fa;l *aWa~ (Ia- Ra)WJI'.p~fa) •a) 

I J 

I 1 

- E(L.L. W~Z.)'.aD~fa;(Daf;WaDafa)-I D!fakl *aWXZ.a) 
i k 

I 

+ E(L. L. Wa~Z.)'.aD~fa; (D ac;waD afa )-I D af;Wa)'.D~fa) *a) 
I J 

(G-20) 

Equation (G-20) is analogous to (G-1) and evaluates analogously. Hence, for the first term 

I I 

E(L."L l'.aD~.fa;l *aWa~ (Ia- Ra)Wa31'.p~fa) •a) 
I J 

1 I I I 1 I 

= L.tr 2 (Ca;W]V.aWJ) a: +2L.tr(Ca;W] V.awJ Ca;W] V.awJ )a: 
i i 

(G-21) 

where 

I I 1 

Cai = (Ia- Ra);L. wt W} Dafa(Daf;WaDacariD~fa1(Daf;WaDaf)-1 Daf~J 
J 

(G-22) 



Appendix G 199 

For the second term 

1 1 

E(L. I. W}; Z.)'.aD~/a; (D af~ WaD a fa) -1 D~ fak I *a W Jk Z.a) 
i k 

I I 1 I 1 I 
=7t WJk (Ia -Ra)WJ V.aW}(Ia -Ra)W~tr(Ba1BakW}V.aW})a: 

I 1 1 I I 1 

+27t WJk (Ia -Ra)W} V.aW}Ba1BakW}V.aW}(Ia -Ra)W~a: (G-23) 

where 

I I 

BaJ =W} Dafa(Dj~WaDafa)-ID~fa1 (Daf~WaDafa)-IDaf~W} (G-24) 

For the third term 

I 

E(L.L. W~;Z.)'*a~fa;(Daf~WaDafariDaf~Wa1 1'.p~-'l.a) 
I 1 

I I I 1 I I 
=I.~ W~;(la -Ra)W] V.aW]Ba;W~tr(Ba1W}V.aW])a: 

I 1 

I I 1 I I I 
+2~L. W~;(la -Ra)W} V.a W} BaJ W}V.a W}Ba;W~a: (G-25) 

I 1 

Evaluations using a known, block diagonal weight matrix. Equations (G-21 )-(G-25) 

can be expressed in terms of roa by using (5-89), (5-94), and definitions (E-46), (E-47), and (E-

56), appendix E. When making the multiplications, the explicit sums on i,j, k, or R that involve 

augmented vectors and matrices extend over n + 1 terms and the n + 1 th slice is D~fan+I = 0, 
which follows from the definition given by (E-46). Also, w~; 2 = [ro~ 12 , 0] fori= 1,2, ... ,nand 

w~; 2 = [0, m~2 ] fori =n+ 1. Equation (G-22) becomes 

I I I 

Ca; = (Ia -Ra);~ ro~1 ro~Dafa(Daf~roaDafa)-ID~fa1 (Daf~roaDafa)-IDaf~ro~ 
1 

=[~ ~] (G-26) 

so that for (G-21) written in terms of roa 

I 1 

E(L. L l'.aD~.fail*aOl~;(la- Ra)ro11'.aD~fa) *a) 
I 1 

I I I I I I 
= ~tr 2 (C.ro2v ro2)a4 +2~tr(C.ro2v ro2c.ro2v ro2)a 4 

L,. I * & L,. I * l * & 
i i 

(G-27) 
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which is the same as (G-2). Equation (G-24) becomes 

1 1 

B aj = ro~ D afa(D af~ roaD a fa) -1 D~ faj (D af~ roaD a fa) -1 D af~ ro~ 

= [~ ~] (G-28) 

which gives, for ( G-23) written using ro a , 

1 1 

E(I I ro~;Z.)'.aD~.fa; (D af~ roaD afa )-1 D~ .fak I *aro~kz*a) 
i k 

1 1 1 1 1 1 

= 7f roi (I- R)ro2 V.ro2 (I- R)roJtr(B1Bkro2v.ro2 )a: 

1 1 1 1 1 1 

+ 27f roi (I- R)ro2 V.ro2 B1Bkro2v.ro2 (I- R)roJa: (G-29) 

Equation (G-29) is the same as (G-4). Finally, use of (G-28) yields (G-25) written using roa as 

1 

E(I I ro ~i Z.al'.a D~fa; (D af~ roaD a fa) -1 Da f'aroaJ l'.aD~ fa).a) 
l 1 

1 1 1 1 1 1 

=I I ro 2 (I- R)ro2 V ro2 B.ro~ tr(B. ro2 V ro2 )o- 4 
ij I * I) j * & 

1 1 1 1 1 1 

+ 2I I ro2 (I- R)ro2 V ro2 B .ro2 V ro2 B .ro~ o- 4 

ij I * J * I) & 
(G-30) 

which is (G-6). 

Equations (G-26)-(G-30) lead to the conclusion that f1aa: = y1a:. That is, the 

component correction factor for model intrinsic nonlinearity for prediction intervals is the same 

as the component correction factor for model intrinsic nonlinearity for confidence regions and 
confidence intervals. 

Evaluations using a general weight matrix. Component correction factor r Iaa: is given 
by (F -95), which is 
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(G-31) 

Equation (G-31) is analogous to (G-8) and evaluates analogously. Thus, for the first term 

1 I I 1 1 1 

= 'Ltr2 (Cai w}v.a W})a: + 2L.tr(Cai w}v.a wJcaiwJv.a W})a: 
i i 

(G-32) 

where 

For second term 

(G-34) 

where 

(G-35) 

in which 
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For the third term 

For the fourth term 

(G-38) 

where 

B . = (R - QaQ: )W~ D f (D f'W D f )-1D 2 .r (D f'W D f )-1D f"•'~ (R - QaQ~) 
at a , a a a a a a a a a J ai a a a a a a a" a a , 

QaQa QaQa 

For the fifth term 

1 1 

E(( ,
1 

Q:WJ U.a) 2T:a D~h(Dar;waDafa)-1 Daf~W}(Ra 
QaQa 

(G-39) 

1 1 1 1 1 1 1 1 1 

---Q'W2 v w2 Q tr(A........,2W2 v w2) 4 2 Q'w2 v w2 A""'2w2 v w2 Q 4 
, 2 a a *a a a a a *a a (]" 8 + , 2 a a *a a a a *a a a(]" & 

(QaQa) (QaQa) 

(G-40) 

For the sixth term 
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1 Q Q' 1 1 1 1 1 
2"'"' w2 (I R a a )W2 V w2 B....., w2v w2B......, w2 4 + £.... £.... ai a - a + a •a a ay· a •a a ai ay· 0' & 

i . Q'Q 1 a a 

(G:-41) 

Finally, for the seventh term 

(G-42) 

Evaluation when the prediction error predominates and the weight matrix is block 
diagonal. The following evaluation ofthe terms in (G-31) for the case where m;1 >> Q'Q 
yields an important result. First, from (5-92), 

and 

Second, use of (5-94) and m;1 >> Q'Q produces 

QQ' 
R----­

Q'Q+m;1 
1 

OJP 2Q' 

Q'Q+m;1 

-1 
OJP 

1-----
Q'Q +m;1 

(G-43) 

(G-44) 

(G-45) 

Third, when making multiplications 1) the n+ith slice of D~fa is a matrix of zeros and 2) 

w~:2 = [ ro~ 12 , 0] for i = 1 ,2, ... ,nand w~: 2 = [0, m~2 ] fori= n + 1. Finally, application of the 
above ideas to (G-32)-(G-42) shows from (G-31) that when m;1 >> Q'Q 

4 " 4 " 4 Yiaae ~ YIO'e -yiae 

=0 (G-46) 
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Appendix H - Prediction Interval for Linearized Models 

Extreme values of(5-101) using linear models (5-104) and (5-105) are obtained in this 
appendix. Specific forms of(5-104) and (5-105) needed are 

(H-1) 

and 

(H-2) 

so that, by subtraction, 

f(yO) ~ f(yS) + Df(O- 9) (H-3) 

Similarly, 

(H-4) 

Extreme values of(5-101) are obtained by taking derivatives with respect to e, v, and A to get: 
fore 

8L A A 

- ~ Dg' + U Df'ro(Y- f(y9)- Df(9- 9)) = 0 
ae 

or 

Df'roDf(O- G) =X Dg' + Df'ro(Y- f(yG)) 

=iDg' (H-5) 

where A = 1 /(2A) and the second term on the right-hand side is zero because it is the gradient 
for the least squares solution. For v 

8L 
-~1-Um v=O au p 

or 

(H-6) 

Finally, for A 
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or 

(H-7) 

where 

(H-8) 

Solution of (H-5)-(H-7) for e and X yields equations from which yp is obtained. First, 

(H-3) and (H-5) are used to obtain 

S(S)- S(O) ~ (Y- f(yO)- Df(S- O))'ro(Y- f(yO)- Df(S- 0))- S(O) 

= S(O)- 2(S- O)'Df'ro(Y- f( yO))+ (S- O)'Df'roDf(S- 0)- S(O) 

= (0- O)'Df'roDf(S- 0) 
= i 2 Dg(Df'roDf) -I Dg' 

= .X2Q'Q 

Then substitution of (H-6) and (H-9) into (H-7) gives 

d; = i 2Q'Q + mP(i
2 I m~) 

= .X2(Q'Q+m;I) 

from which 

Next, (H -11) in (H-5) are used to arrive at 

I 

0 -0= ±( d~ _ J2: (Df'roDf)-IDg' 
Q'Q + lU I p 

Finally, (H-12) is premultiplied by Dg and v is added to get 

Dg(S- 0) + iJ = g(yS)- g(yB) + iJ 

(H-9) 

(H-10) 

(H-11) 

(H-12) 
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1 1 

= ±( d~ J2 
Dg(Df'roDf)-1 Dg' ± ( d~ J2 

01 -
1 

Q'Q + 0)-1 Q'Q + 0)-1 p 
p p 

1 

= ±da(Q'Q +w;I)2 

or 

I 

YP = g(yi})±da(Q'Q +w;I)2 (H-13) 
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Appendix I - Analysis of Equations (6-2) and (6-19) 

Equations (6-2) and (6-19) are analyzed in this appendix to show 1) that certain terms in 

these equations are zero when model intrinsic nonlinearity and model combined intrinsic 

nonlinearity are zero and 2) that these equations correspond to perturbation equations derived in 

appendices Band E. Equations (6-2) and (6-19) also are used together with perturbation 

expansions and the assumption that ro112 V.ro112 ~ ro112 Qro112 ~I to evaluate component 

correction factors f I a; and rIa; . 

Analysis of (6-2) 

Form for small model intrinsic nonlinearity. To show that the second term on the right­

hand side of(6-2) is zero when model intrinsic nonlinearity is zero, an analysis analogous to the 

one used to obtain (F-108), appendix F, is used. First, the linear-model approximation of f(y{}.) 

in (F-104) is 

Next, an analogous linear-model approximation of f(,9) is 

p(\fl) = f(yB) + n ¢r(cf,- ~) 

= f0 ( yS) + Df\11 

(1-1) 

(1-2) 

Now, the best fit of P(\11) = p(\JI.)- p(\11) to f(y9.) -f(y(}) is obtained by minimizing with 

respect to \II= \II•- \II the objective function 

S(w) = (f(y9.)- f(y{})- p(w))'ro(f(y9.)- f(y{})- p(w)) (1-3) 

to obtain 

(I-4) 

The residual vector for this problem is 

f(y9.) -r(y{))- P(\11) = f(y9.)- f0 (y9.)- f(yO) + f 0 (yO)- Dfw 

= ro-2 (I- R)ro2 (f( ye.)- f0 (ye.)- f( ,9) + f 0 (yO)) (1-5) 
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If P('l') fits f(y9.)- f(yS) exactly, then the linear model p('lf) = f0 ('ye.)- f0 (y(}) + Dfw is 

exact, indicating no model intrinsic nonlinearity. In this case (1-5), which is the second term on 
the right-hand side of(6-2), equals 0. 

For the last term on the right-hand side of (6-2), 

I I 

ro -2Rro2 (Y -f(y(})) = Df(Df'roDf)-I Df'ro(Y -f(y(})) 

= DfJ (J'Df'roDfJ)-I J'Df'ro(Y- f(yS)) 

= D ;f(D ;f'roD ;f)-I D ;f'ro(Y- f(y9(cl)))) (I-6) 

If there is no model intrinsic nonlinearity, then D ;f is not a function of., so that 
D;f'ro(Y -f(y9(cl)))) is the gradient vector for the least squares solution for+ (and, thus 0), 
which is 0. 

Correspondance to perturbation form. The expansion of Y- f(yO) given by (6-2) 

corresponds exactly to the perturbation form given by (B-12), appendix B. Expansion of each 

term in (6-2) through second order in e and U shows this result: 

I -
ro 2 (I- R)ro 2 (Y- f(y9. )) 

ro-2 (I- R)ro 2 (f(ye.)- f 0 (y9.)- f(y(}) + f 0 (y(})) 

1 -~ ~ 
~- ro 2 (I- R)I: ro2 (e'y(y'y)-1 y'D2 f.y(y'y)-1 y'e -I'D2 f.l) 

2 j 1 p 1 1 

I I 

ro -2Rro2 (Y -f(yf})) ~ Df(Df'roDf)-I I:(D}; - D 2 /;(0- B))ro; (Y -f(yf})) 
i 

~ -Df(Df'roDffi I D2
/; (I+ q)ro; (Y- f(yB)- Df(l + q)) 

i 

~ -Df(Df'roDf) -I I D 2/;lro; (U- Df(Df'roDf) -I Df'roU) 
i 

1 

= -Df(DfmDf)-1 I D 2/;lrol Z 
i 

(Equation (I-9) also could have been obtained by simply substituting (B-12) into 
ro-I 12Rroi12 (Y -f(y(})) .) Then, substitution of(I-7)-(1-9) into (6-2) results in 

1 I 
" -- - 1 

Y- f(y9) ~ ro 2 (I- R)7 ro] (U. 1 + 2 e'(D~f1 - y(y'y)-1 y'D~f1 y(y'y)-1 y')e) 

1 -~ _I_ 

+ -ro 2 (I- R)I:ro~ (e'y(y'y)-1 y'D2 f.y(y'y)-1 y'e -I'D2 f.l) 
2 j 1 p 1 1 

(1-7) 

(1-8) 

(1-9) 
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1 

- Df(Df'roDf)-1 I D2flrof Z 
i 

1 1 1 

= ro -2 (I- R)IroJ (U.1 + -
2

1 (e'D~f1e -I'D2 f)))- Df(Df{oDf)-1 ~ D2/;lro1 Z 
1 I 

1 1 1 

= ro -2 (I- R)IroJ (!11 + -
2

1 (e'D~f1e -I'D2 f)))- Df(Df'roDf)-1 I D2/;lrof Z 
1 I 

(1-10) 

which is the same as (B-12). 
Approximate evaluation of terms in component co"ection factor. Equations (I-7)-(1 -9), 

(G-2)-(G-6), appendix G, the assumption that ro 112V.ro112 ~ ro112Qro112 ~I, and the definitions of 
pertinent variables are used to develop the three expected values on the right-hand side of(6-3) 
as 

2E(f(y9.)- f0 (y9.)- f(y{}) + f0 (ye))'ro 2 (I- R)ro 2 (Y- f(y9.)) 
1 1 

~ E(I (e'y(y'y)-I y'D~/; y(y'y)-1y'e -I'D2 /;I- 2l'D2 /;q)rol (I- R)~roJ (!1.1 
I 1 

1 

~ -2E(I I' D2/;qro1 Z) 
i 

1 1 

~ -2E(71' D2
/; (Df'roDf)-I (t D 2fk lro1 Z + ~ Df'7ro 1 (e'D~f1 e -I'D2 f 1l))ro1 Z) 

I 1 

~ -2E(I rol Z. I:D 2 h (Df'roDf)-1 I D2fk l.rof Z.) 
i k 

1 

+ E(I rol Z. I~D 2 h (Df'roDf)-I Df'Iro ):D2 f).) 
I 1 

= -2 I tr(C7)a: (1-11) 
i 

I 1 

~ -
4

1 E(I(e'y(y'y)-1 y'D~/;y(y'y)-1 y'e -I'D2 /;l)rol (I- R)IroJ (e'y(y'y)-Iy'D~f1 y(y'y)-Iy'e 
I 1 

-I'D 2 
/))) 

I 1 

~ -
4

1 
E(I I'.D 2/;l.rol(I-R)~roJl:D 2f).) 

I 1 

1 2 4 1 2 4 
=-I tr (C i )a c +-I tr (C i )a c 

4 i 2 i 

(1-12) 
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1 1 

~ E('L rof Z I' D2 /;(Df'roDf)-1 Df'roDf(Df'roDf)-1'L D2
/k lroi Z) 

i k 

1 1 

~ E('L rof Z. I~D 2 
/; (Df'roDf)-1 'L D 2

/k l.roi Z.) 
i k 

(1-13) 

Matrix C; is defined by (G-3). 

Analysis of (6-19) 

Form for small model combined intrinsic nonlinearity. To show that the second and 

third terms on the right-hand side of(6-19) sum to zero when the model combined intrinsic 

nonlinearity is zero, an analysis similar to the one used to obtain (1-5) is used. First, a linear­

model approximation of f(yO) analogous to (1-1) is 

p(\jl) = f(yO)+D;f(+ -+) 
= f0 (yO)+ Df\jl 

Next, the constraint is expressed using the same ideas: 

g(ye.)- g(yO) = g(yO) + Dg(e.-9 + w.)- g(yO)- Dg(O- 9 + \V) 
= go(yG.)- go(y9) + Dg'lf 

(1-14) 

(1-15) 

where \II= \II•- \if. Finally, a constrained best fit of P(\11) = p(w.)- p(\if) to f(y9.)- f(yO) is 
obtained by minimizing with respect to \II the Lagrangian function 

L(w,...t) = (f(y9.)- f(yB)- p(w))'m(f(y9.)- f(yB)- p(w)) 
~ ~ 

- 2l(g(y9.)- g 0 (y9.)- g(y9) + g 0 (y9)- Dg\11) (1-16) 

The same method as used to solve for I- ( y'y rl y'e in (E-7)-(E-14), appendix E, produces 

'I'=-( (DfiD ~~~ Dg'Q'- (DfiDDff1 Df'ro~ }o~ (f( y9,) -f0( y9,) -f(y{i) +fo(y9)) 

(Dfro Df)-1 D ' ~ ~ 
+ Q'Q 'g (g(y9,)-g. (y9.) -g(y9) + g.(y9)) (1-17) 

The constrained residual vector is 

f(y9.)- f(yB)- p(\JI) = f(y9.)- f(yB)- f0 (y9.) + f0 (yB) 
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+ Df(( (DfiD~~~ Dg'Q'- (DfiDDfr1 Df'ro~ Jro~ (f( y9,)- f
0

( y9,)- f(y9) + f 0 (y'il)) 

(DftoDf)-1 D ' ,_, ,_, 
- Q'Q g (g(y9,)-g0(y9,)-g(y9)+g0 (y9))) 

1 QQ' 1 

= ro- 2 (I- R + Q'Q)ro2 (f(y9.) -f0()•9,) -f(y9) +f0 (y9)) 

_ _!_ Q ,._, ,._, 
- ro 2 Q'Q (g( ye.)- g 0( ye.)- g(y9) + g 0 (yO)) (1-18) 

If p( 'I') as constrained by (I -15) fits f ( ye.) - f (yO) exactly, then the combined linear models 
f0 ( ye.)- f0 (yO)+ Df\jl and g 0 (yO.)- g 0 (yO)+ Dg\jl are exact, indicating no model combined 
intrinsic nonlinearity. In this case (1-18), which composes the second and third terms on the 
right-hand side of(6-19), equals 0. 

The last term on the right-hand side of(6-19) also is zero when there is no model 
combined intrinsic nonlinearity, which is shown as follows. If there is no model combined 
intrinsic nonlinearity, then the Lagrange multiplier formulation to solve for the constrained 
regression estimate + is given by 

L( ,, l) = (Y - f (yO('·)) - D ~f (' - '·) )' ro(Y - f ( y9( '·)) - D ~f (' - '·)) 

+ 2l(g(y0( '· )) - g( yO(,.))- D ~g('- '· )) 

The solution for + takes the form 

;j)' -cj). = (D~ftoD~f)-1 D~f'ro(Y -f(y9(cj).))) 

1 QQ' 1 

-(D~ftoD~f)-1 D~f'ro2 Q'Q ro2(Y -f(y9(+.))) 

from which, using the constraint D ~g( ~- cj).) = 0, the gradient is obtained as 

(D~ftoD 9sf)-1 D~f'ro(Y -f( y9(cj).))- D~f(~ -cj).)) 

1 QQ' 1 1 Q 
-(D ftoD f)-1D f'ro2 -ro2(Y -ti(y9(• )))-(D ftoD f)-1D f'ro2 -D g(:l: -• ) 

~ ~ ~ Q'Q 'I'* ~ ~ ; Q'Q ~ 'I' 'I'* 

1 QQ' l 

= (D ,.riD D ,.f)-1 D ,f'ro(Y- f( y9(+)))- (D ,.fiDD ,.f)-1 D ;f'ro2 Q'Q ro2 (Y- f(y9(cil. ))) 

- (D ,.rm n ,.rr1 n ,.r·ro~ Q~ n ,.g(D ;rm n .. rr1 n ,.r•ron ,.r< +- +·) 
1 QQ' 1 

= J-1(DftoDf)-1Df'ro2 (R --)ro2 (Y -f(yO)) = 0 
Q'Q 

(I-19) 

(I-20) 

(1-21) 
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Equation (1-21) shows that the last term of(6-19) is zero when there is no model combined 
intrinsic nonlinearity. 

Correspondance to perturbation form. The expansion of Y - f( yO) given by ( 6-19) 

corresponds to the perturbation expansion given by (E-29). Expansion of each term in ( 6-19) to 
second order shows this result: 

I QQ' I 

ro 2 (I- R + Q'Q)ro2 (Y -f( y9.)) 

"'ffi ~(I- R + ~~)7 roJ (U.1 +~e'(D~f1 -y(y'y)-1 y'D~f1y(y'y)-1 y')e) (1-22) 

(1-23) 

(1-24) 

where (E-29) was used for Y- f(yO) to obtain (1-24). Then substitution of (1-22)-(1-24) into (6-
19) yields 
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1 

-;-ro-2 Q'?Q (e'y(y'y)-1 y'D~gy(y'y)-1 y' e- T'D2g T) 

1 , 1 1 1 
- ro- 2 (R- ~~)ro2Df(DfiDDf)-1 q: D 2 ft T rofZ- D2 gT Q~Q Q' ro2U,) (1-25) 

which is (E-29). 
Approximate evaluation of terms in component correction factor. Finally, use of(I-22)­

(I-24), (G-9)-(G-19), the assumption that ro112V.ro112 ~ ro112Qro112 =I, and the definitions of 

pertinent variables yields the three expected values on the right-hand side of(6-20) as 

1 

2E((f( ye.)- f0( yO.)- f( yO)+ f0( yO))' ro2 - (g( yO.)- g 0( ye.)- g( yO) 

+ go(y9)) Q~~)(I- R +~~)rot (Y -f(y{),)) 

1 

~ E(l. ( e'y(y'y) -1 y'D~ J; y(y'y) -1 y' e-T 'D 2
/; T - 2 T'D 2

/; q) ro: -(e'y(y'y) -1 y'D~gy( y'y)-1 y' e 
I 

- T'D2g 1)~)(1- R + QQ' )I. roJ. (U.J. + 2_e'(Dp2 fJ. - y(y'y)-1y'Dp2 fJ.y(y'y)-1y')e) 
Q'Q Q'Q j 2 

1 

~ -2E(2. T'D2/; qrofZ) 
I 

1 QQ' 1 1 
~ -2E(r.T'D2J:. (DfroDr)-1 (Df'ro2 (R --)(ro2nr(DfroDr)-1(2. D2 fk T rrijz 

i I Q'Q k 

- D2g T-1 -Q'ro~U.)+2_2.ro~(e'D2 f.e-T'D2~".Q)-_!_-1 -Dg'(T'D2 gT 
Q'Q 2 j } fi } J I 2 Q'Q 

1 

- e'y( y'y)-1 D2g( y'y) -1y' e))ro2 Z) 
I 

1 1 QQ' 1 1 
~ -2E(2. ro~Z T:D2J; (Dfro Df)-1 Dfro2 (R--) ro2Df(Dfro Df)-12. D2fk T. roi.Z) 

i Q~ k 

1 1 , 1 1 1 
+ 2Eq: ro~ ZT: D2

/, (DfiD Df) -I DfiD2 (R- ~~) ro2Df(DfiD Df) -ID2 g T. Q'Q Q'ro2 u ,) 
1 1 QQ' 

+ Eq: ro~ Z T:D2 f. (DfiD Df) -I nrroi (R - Q'Q) 7 ro }: D2f}.) 

+ ~' Q E <f ro~ Z T: D'i, (DfiD Df) -I D g 'T:D
2
gT,) 

1 1 QQ' 1 

= -27 tr(C;)a; + 2E(L. ro~zT:D~(DfroDf)-1 Df'ro2 (R- Q'Q)ro2Df 

1 

• (Df'roDf)-1 D2gL-1 -Q'ro-~~ U.) 
Q'Q 

(1-26) 
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I Q' 
E((f( y9.)- f0( y9.)- f( yO)+ f0( ye))' ro2 - (g( y9.)- g 0( ye.)- g( ye) + g 0( yO)) Q'Q)(I- R 

+ QQ' )(ro~ (f( y9.) -f0( y9.) -f( yO)+ f
0

( y9)) _ _g_(g( y9.)- g 0( y9.)- g( yO)+ g 0( y(}))) 
Q~ Q~ 
1 ' ,..._ ,..._ ! ,..._ ,..._ Q' 

~ -E(L. (e'y(y'y)-Iy'D2pJ;y(y'y)-Iy' e- I 'D2~,.1 )ro2 -(e'y(y'y)-1 y'D2pgy(y'y)-Iy' e- I 'D2gl )-)(I 
4 i l Q'Q 

- R + QQ' )(I. ro ~ ( e'y( y'y) -1 y'D2 f .y(y'y) -1 y' e-T 'D2/T) - _g_ ( e'y(y'y) -I y'D2 gy( y'y) -1 y' e-T 'D2 g T)) 
Q'Q j 1 p 1 1 Q'Q p 
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+ _!_ -
1
-E(I'D2gl )2 

4 Q'Q • • 

1 ,..._ 1 ,..._ 1 ,..._ ,..._ ,..._ ,..._ 
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1 ,..._ 1 ,..._ 1 ,..._ ,..._ 1 ,..._ ,..._ 
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4 i 2 i 4 i 2 i 

1 QQ' 1 
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I 1 1 1 , 1 

= Eq: D 2J;T ro~ Z- D
2 g T Q' Q Q' ro2 u. )' (Dfl:o Df) -1 nr1:o2 (R - ~~) ro 2nr (Dfl:o Df) -1 

1 1 

•(L. D 2fk T roiZ-D2gi-1
-Q'ro2u.) 

k Q'Q 
I 1 QQ' 1 

~ E(L. ro~zT:D2}; (DfroDf)-IDfro2 (R --, -)ro2Df(DfroDf)-1L.D2/k l.rokZ) 
i QQ k 

I 1 , 1 1 1 

- 2Eq: ro1 z T: D 2
/, (Dfl:o Df) -1 Dfl:o 2 (R-~) ro2Df (Dfl:o nrr1 »1: T. Q' Q Q'ro 2 u.) 

1 1 1 QQ' I 

+ E((Q'Q Q'ro2U.) 2 T:D 2g(Dfl:oDf)-1 nr1:o> (R- Q'Q)ro2Df(Dfl:oDf)-1D1: T.) 
I 1 QQ' 1 

= L.tr(Ci)a: -2E(L.ro1zT:D2J; (DfroDf)-IDfro2 (R--)ro2Df(DfroDf)-ID2g I. 
i i Q'Q 

1 ! 1 ,..._ 
•-Q'ro 2U.)+-tr(A 2)a4 

Q'Q Q'Q & 

= L.tr(C;)a: + L.tr(F;2 )a: 
i i 



Appendix I 215 

where Ci, F\, and A are defined by (G-10), (G-12), and (G-13), respectively. 
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