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On the cover: In the background, 1:62,500-scale topographic map of the Seneca quadrangle, Md.,
(surveyed in 1907 by the U.S. Geological Survey and produced in cooperation with the State of Mary-
land). In the foreground, clockwise from top left, photograph of canal boat along the towpath (cour-
tesy of National Park Service); view of the north portal of the Paw Paw Tunnel, looking south (around
1900) (photograph courtesy of National Park Service); photograph of Devil’'s Eyebrow, an anticline of
shale, sandstone, and limestone of the Silurian Bloomsburg Formation at the site of the Round Top
Cement Mill, west of Hancock, Md. (photograph taken in 1897 by C.D. Walcott, Director of the U.S.
Geological Survey); and photograph (around 1876) of a barge at Lock 33, across the Potomac River
at Harpers Ferry, W. Va. (courtesy of National Park Service).
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Geology of the Chesapeake and Ohio Canal National
Historical Park and Potomac River Corridor, District of
Columbia, Maryland, West Virginia, and Virginia

By Scott Southworth,' David K. Brezinski,2 Randall C. Orndorff,' John E. Repetski,' and Danielle M. Denenny'

Abstract

The Chesapeake and Ohio Canal National Historical Park
is 184.5 mi long and extends from Washington, D.C., to Cum-
berland, Md. The canal passes through three physiographic prov-
inces including the Piedmont, Valley and Ridge, and the Blue
Ridge; the map area also includes rocks of the Coastal Plain and
Appalachian Plateaus provinces. Each province contains unique
packages of rocks that influenced the character of the canal and
towpath. The ages of the bedrock encountered along the length
of the park range from Mesoproterozoic to Jurassic and repre-
sent a variety of tectonic and depositional environments. The
different rock types and surficial deposits dictated the vari-
ous construction methods for the canal, which was excavated
in Quaternary flood-plain deposits as well as through bedrock.
The ancient course of the Potomac River and the deposits it left
behind also influenced the location of the canal and towpath. The
engineers made good use of the many rock types to construct the
locks, dams, aqueducts, and culverts that guided water from the
Potomac River into the canal and maintained the water level as
canal boats traveled between higher elevations in western Mary-
land to sea level in Washington, D.C. The canal and towpath pro-
vide a unique transect across the central Appalachian region for
examining the rich geologic diversity and history.

Introduction

The Chesapeake and Ohio Canal National Historical Park
(herein referred to as the C&O Canal) is unique in that it is the
only land within the National Park Service (NPS) system that
crosses 5 physiographic provinces along a major river. From the
Georgetown section of Washington, D.C., to Cumberland, Md.,
the C&O Canal provides an opportunity to examine the geologic
history of the central Appalachian region and how the canal con-
tributed to the development of this area. This report and map

'U.S. Geological Survey, Reston, VA 20192.
*Maryland Geological Survey, Baltimore, MD 21218.

cover the entire park within an area that is 184.5 mi long and 2 mi
wide (see plate 1). The geologic guide is presented as if traveling
the canal from east to west, from Georgetown to Cumberland, by
provinces and sections, such as the Piedmont (fig. 1). Geologic
features are keyed to the NPS mile markers (MM) that are found
along the left-hand side of the towpath as one travels westward
from Georgetown (MM 0) to Cumberland (MM 184.5). Distances
shown are approximate and taken from Clague (1977). Included
in the guide are references to detailed geologic information. Addi-
tional historical information is found in other guidebooks of the
C&O Canal (Boy Scouts of America, 1983; National Park Ser-
vice, 1991; Hahn, 1995; High, 1997; Davies, 1999).

Historical Background

The C&O Canal is located alongside the Potomac River,
one of many tributary rivers that empty into the Chesapeake
Bay. During colonial times, large ships could travel far up these
rivers until they encountered the Fall Line (or Fall Zone), which
is the boundary between the sandy, gravelly Coastal Plain and
the rocky Piedmont province. It was at this boundary that ships
encountered rapids, waterfalls, or shallow and narrow channels
and could go no further upstream, and so it was there that set-
tlements and centers of commerce were established. Cities such
as Baltimore, Georgetown (later to become part of Washington,
D.C.) in Maryland, and Fredericksburg and Richmond in Vir-
ginia are typical examples of communities that developed along
the Fall Line. As the population in the Tidewater region grew
and expanded westward, the Potomac River became one of the
most viable means to cross the Appalachian Mountains to the
fertile Ohio River valley and beyond. In 1785, the Patowmack
Company, under the leadership of George Washington, began
a series of “skirting” canals and riverbed improvements from
Georgetown to Harpers Ferry (Brown, 1963; Garrett and Gar-
rett, 1987). These skirting canals and sluices connected iron-ore
prospects, furnaces, and foundaries with the armory at Harpers
Ferry (fig. 2). The Patowmack Company’s failure to construct a
passage around the Great Falls of the Potomac in Virginia, and
the success of the Erie Canal in New York (built between 1817
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Figure 1. Sketch map show-
ing the geologic provinces in
the mid-Atlantic region and
the locations of the Chesa-
peake and Ohio (C&0) Canal,
— the Potomac River, and the
Potomac River basin.

and 1825) provided momentum for the “Great National Proj-
ect,” which was to build a canal along the Potomac River that
would eventually reach the Ohio River at Pittsburgh, Pa.

Construction of the canal, towpath, and associated struc-
tures began on July 4, 1828. The canal was open to Seneca,
Md., by 1831; to Harpers Ferry, W. Va., by 1834; to near Wood-
mont, Md., by 1839; and was completed only to Cumberland,
Md., in 1850. Although work on both the C&O Canal and the
Baltimore and Ohio (B&O) Railroad began on the same day, the
B&O Railroad had been operating for eight years along essen-
tially the same route when the canal finally reached Cumber-
land, Md. The C&O Canal was used mainly to transport coal
from the Appalachian Plateaus province, where it was mined,
to eastern parts of Maryland, Virginia, and Washington, D.C.,
where it was used to heat homes and buildings.

A typical canal trip took 4.5 days one way or 9 days round
trip. Mules towed a 92-ft-long boat that, when fully loaded,
weighed more than 120 tons. At peak activity, the canal saw 540
boat trips per year. Beginning with the Johnstown, Pa., flood in
1889, a series of devastating floods ruined the canal and there
was insufficient money to rebuild it. The B&O Railroad pur-
chased, rebuilt, and operated the canal until 1924 when it was
again flooded and then drained. The B&O Railroad gave the
canal property to the U.S. Government in 1938 in lieu of a $2
million debt. Justice William Douglas successfully campaigned
in the 1950s to prevent filling in the canal for the construction
of a scenic highway. The C&O Canal was designated a National
Monument by President Dwight D. Eisenhower in 1961, and a
National Historical Park by President Richard M. Nixon in 1971.
George Washington’s vision of an industrial corridor along the
Potomac River did not happen. Manufacturing plants powered
by the Potomac River were obsolete when electricity was devel-

oped, and local iron production was replaced by steel mills near
Pittsburgh, Pa. The result is a river valley nearly restored to its
natural state in the backyard of the Nation’s capital.

Geologic Setting
Physiography

The C&O Canal extends from Rock Creek in the George-
town section of Washington, D.C. (MM 0), to the confluence of
the North Fork of the Potomac River with Wills Creek at Cum-
berland, Md. (MM 184.5). It is located along the northern bank
of the Potomac River in Maryland. The easternmost 5 mi of
the canal lies within the city limits of Washington, D.C. The
Potomac River drainage basin (fig. 1) encompasses 14,670 mi® of
Virginia, Maryland, West Virginia, Pennsylvania, and the District
of Columbia. The river valley transects five major physiographic
provinces and at least five subprovinces, called “sections.” From
east to west, they are as follows: (1) the Coastal Plain province,
(2) the Piedmont province, which includes the Potomac terrane
(eastern Piedmont), the Westminster terrane (central Piedmont),
Culpeper basin, and Frederick Valley (western Piedmont); (3) the
Blue Ridge province; (4) the Valley and Ridge province, which
includes the Great Valley section; and (5) the Appalachian Pla-
teaus province (fig. 1). The provinces and sections are unique
because of the underlying bedrock, surficial deposits, and resul-
tant landscape. Because the Appalachian Plateaus begin just west
of Cumberland, Md., and the Coastal Plain begins east of Theo-
dore Roosevelt Memorial Bridge in Washington, D.C., the C&O
Canal traverses only three of the five provinces.
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Figure 2. Sketch maps showing the earliest beginnings of canal transport. A, The historic Patowmack Company'’s skirting canals and
locks, iron and manganese prospects and furnaces, limestone quarries, mills, kilns, foundries, and armory associated with early com-
merce along the Potomac River. B, U.S. canal system in 1850 (National Park Service, 1991). C, Canals and Potomac River near Wash-
ington, D.C., in 1771 as shown on a map by Pierre L'Enfant (Hall, 1991). The C&O0 Canal in the Georgetown section of Washington, D.C.
(where MM 0 is the mile marker for the beginning of the canal), the Alexandria Aqueduct, and the Alexandria Canal were built by 1843.
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Coastal Plain deposits are scattered in this region due to
erosion. The Fall Line (or Fall Zone) is the boundary between
the Piedmont and Coastal Plain. The boundary is not sharp,
but is more of a broad area characterized by waterfalls in the
Potomac River from Washington, D.C. (Little Falls) west to
Seneca, Md. (Seneca Falls), which is a distance of about 17 mi.
The Piedmont province is the relatively low-relief area east of
the Blue Ridge that extends from Washington, D.C., to Point of
Rocks, Md. In general, the Culpeper basin and Frederick valley
sections form a lowland and the Westminster and Potomac ter-
ranes form dissected uplands. The boundary between the Pied-
mont and Blue Ridge provinces is at the foot of Catoctin and
Furnace Mountains. The Blue Ridge province extends from
Catoctin and Furnace Mountains west to Blue Ridge and Elk
Ridge. The Valley and Ridge province extends from Blue Ridge
and Elk Ridge to Cumberland, Md.; however, the Great Valley
section is contained between Blue Ridge and Elk Ridge on the
east and North Mountain on the west. The Great Valley section
contains the Shenandoah Valley in Virginia and the Hagerstown
Valley in Maryland. The Appalachian Plateaus extend westward
from Cumberland into western Maryland.

The Potomac River eroded the rocks of these distinct
provinces and sections and therefore had a direct bearing on
the landscape evolution of the river valley, and thus also upon
the engineering of the C&O Canal. The majority of the canal
was excavated in Quaternary alluvium adjacent to the Potomac
River, so good exposures of bedrock are not always evident.
Elsewhere, alluvium was thin or absent, and manual drilling
and blasting using black powder was necessary to excavate the
canal and its towpath through bluffs of bedrock.

Bedrock Geology

For over 100 years, the bedrock exposures along the
Potomac River valley have been studied in order to help
unravel the geological history of the central Appalachian
region. There are more than 100 bedrock formations identi-
fied along the Potomac River. Of these, there are 27 type local-
ities of rock formations along the river, 21 type localities near
the river, and 24 type localities elsewhere within the drain-
age basin. The type localities are areas where the rocks were
named and described because of good exposure. These rocks
record a complex developmental history of ocean-basin cre-
ation and destruction in response to plate-tectonic processes.

The geology of the C&O Canal originally was mapped at
1:24,000 scale by many workers (see Appendix 1). The geo-
logic units, faults, folds, and structural point data for this report
were assembled from those larger scale maps in order to pre-
pare a continuous geologic map for this report. On the detailed
maps in this report (plates 2 through 20), fold axes and structural
symbols for strike and dip of bedding, schistosity, and cleav-
age are not shown in order to clearly portray the geology; how-
ever, in order to understand the regional structure of the vari-
ous provinces through which the canal passes, a summary map
that shows just faults and folds is provided (fig. 3). Note that the

density of fault and fold symbols varies from province to prov-
ince and is based only on what has been mapped at the surface.
Larger scale representations of structures are shown in some of
the illustrations that accompany the Geologic Guide section of
the report. Tectonic events of this part of the central Appalachian
region are illustrated in figure 4 and are described from oldest to
youngest in the following paragraphs.

The Blue Ridge province exposes some of the oldest rocks
known from this region. These granitic gneisses were formed
more than 1 billion years ago during the Mesoproterozoic Gren-
ville orogeny (fig. 4A). These plutonic rocks were intruded in
several stages over a period of 100 million years (m.y.) (Aleini-
koff and others, 2000) to form a basement upon which all other
rocks of the Appalachian region were deposited. Metadiabase
and metarhyolite dikes that intrude these basement rocks and the
extrusive flows that overlie them are the result of Neoprotero-
zoic (700-545 Ma) continental rifting that produced the lapetus
Ocean. These volcanic rocks were intruded through cracks in
the granitic gneisses and extruded onto the land surface during
the breakup of the continental land mass (fig. 4B).

Fluvial and shallow-marine sediments were deposited on
the newly formed margin of the continent (fig. 4C). Today, these
sedimentary rocks are exposed on (from east to west) Catoc-
tin Mountain, Short Hill, South Mountain, Blue Ridge, and Elk
Ridge. They also occur in the western Piedmont (in the Sug-
arloaf Mountain anticlinorium and Frederick Valley synclino-
rium) and Great Valley section of the Valley and Ridge prov-
ince. The Cambrian and Ordovician (545-480 Ma) carbonate
rocks that make up much of the Great Valley section represent
a grand platform in a shallow sea that deepened to the east (fig.
4D). These shelly carbonate rocks are overlain by Ordovician
(450 Ma) shale. The shale was deposited by the erosion of a ris-
ing highland to the east and marks the beginning of the Taco-
nian orogeny (fig. 4E). This highland became one boundary
of the Appalachian basin, which was centered in what is now
West Virginia. During the Late Ordovician, oceanic sedimentary
rocks of the lapetus Ocean (found in the Potomac terrane of the
eastern Piedmont) were thrust westward onto other deepwater
sedimentary rocks of the western Piedmont (found in the West-
minster terrane) along the Pleasant Grove thrust fault. Moreover,
rocks of the Westminster terrane were thrust concurrently onto
the continental-margin rocks of the Sugarloaf Mountain anti-
clinorium and Frederick Valley synclinorium along the Martic
thrust fault. Sandstone, shale, siltstone, quartzite, and limestone
were then deposited in the shallow-marine to deltaic environ-
ment of the Appalachian basin. These rocks currently underlie
the Valley and Ridge province. Such shallow-marine to fluvial
sedimentation continued for a period of about 200 m.y. during
the Ordovician, Silurian, Devonian, Mississippian, Pennsylva-
nian, and Permian Periods (fig. 4F). Many of these rocks consist
of sediments shed from highlands that were rising to the east as
the result of tectonic events in the Ordovician (Taconian orog-
eny) and Devonian (Acadian orogeny).

The lapetus Ocean narrowed and closed up during the late
Paleozoic mountain-building event known as the Alleghanian
orogeny, during which the North American continental plate
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collided with the African continental plate to form the Appala-
chian Mountain belt (fig. 4G). The rocks were deformed by folds
and faults to produce the Sugarloaf Mountain anticlinorium and
the Frederick Valley synclinorium in the western Piedmont, the
Blue Ridge-South Mountain anticlinorium, the Massanutten syn-
clinorium in the Great Valley section, and the numerous anti-
clinoria and synclinoria of the rest of the Valley and Ridge prov-
ince. During this orogeny, rocks of the Great Valley section, Blue
Ridge, and Piedmont provinces were transported westward onto
younger rocks of the Valley and Ridge province along the North
Mountain fault (fig. 4G). Rocks that were already deformed in
the eastern Piedmont also were folded and faulted and existing
thrust faults were reactivated as both strike-slip and thrust faults.
After the Alleghanian orogeny, the deformed rocks of
the joined continents began to break apart, a process that took
place between 220 and 200 Ma in the Mesozoic (fig. 4H).
This episode of rifting or crustal fracturing initiated the forma-
tion of the current Atlantic Ocean (fig. 41). Large alluvial fans
and streams carried debris shed from the earlier uplifted Blue
Ridge and Piedmont provinces and deposited it in fault-created
troughs, such as the Culpeper basin in the western Piedmont.
The large faults that formed the western boundary of the Cul-
peper basin provided an escarpment that quickly became cov-
ered with such eroded debris. Igneous rocks were intruded into

Figure 4 (facing page).
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these strata as subhorizontal sheets (sills) and near-vertical
dikes that extend beyond the basin into adjacent rocks. After
these molten igneous rocks were emplaced at 200 Ma, the
region underwent a period of slow uplift and erosion. Thick
deposits of unconsolidated gravel, sand, and silt shed from
the eroded mountains were deposited as part of the Atlantic
Coastal Plain (fig. 41). The process continues today: the moun-
tains are eroded, sediment is deposited on the Coastal Plain,
and the landscape is dissected by rivers bordered by alluvial
terraces, thereby creating the landscape of the present valley
(fig. 4J). For additional technical information and abundant
references, see the summaries in Hatcher and others (1989).

Cenozoic Landscape and Surficial Deposits

Introduction

The landscape and geomorphology of the Potomac River
valley are the result of erosion and deposition from about the
middle part of the Cenozoic Era to the present (about the past 5
m.y.). The distribution of flood-plain alluvium and ancient flu-
vial terraces of the Potomac River and adjacent tributaries record
the historical development of the drainage system (fig. 5). There

Diagrammatic sketches showing the geologic history of the Potomac River valley over the past 1 billion years.

A, Granitic gneiss intrusions, metamorphism, and deformation related to the Grenvillian orogeny lasted 60 m.y., from 1.1 Ga to 950 Ma.

These rocks are found in the Blue Ridge province.

B, Continental rifting and volcanic activity in the Grenville terrane (the current Blue Ridge province) and turbidite deposition in a deep-
water basin to the east (the current Piedmont province) lasted about 200 m.y., from about 770 to 575 Ma.

C, The margin of the continent became stable with carbonate rocks deposited in quiet water (rocks of the current Great Valley and
Frederick Valley sections). To the east (the current Piedmont province), thrust sheets of the turbidite deposits created a sedimentary

mélange. Shelly fossils appeared at about 545 Ma.

D, Deepwater rocks were deposited into a basin east of the shelf margin for about 65 m.y. (the current western part of the Piedmont

province).

E, The stable shelf foundered as the Taconian orogeny (480 to 450 Ma) elevated the rocks to the east and provided a source for the clas-
tic material that makes up the shale of the Middle and Upper Ordovician Martinsburg Formation (the current center of the Great Valley
section). Rocks in the Piedmont province were intruded by plutonic rocks (near the Georgetown section of Washington, D.C.) and were
transported westward along the Pleasant Grove and Martic thrust faults.

F, A thick sequence of sedimentary rocks was deposited in a deepening Appalachian basin for 120 m.y. Most of these rocks are now
found in the Valley and Ridge province. At about 370 Ma, igneous rocks were intruded in older rocks near Great Falls.

G, At about 280 Ma, the continental tectonic plates of North America and Africa collided, resulting in the Alleghanian orogeny. Many of
the folds and faults in rocks west of the Piedmont province are related to this event.

H, About 60 m.y. later, continental rifting began and lasted for about 20 m.y. (220 to 200 Ma). Thick sequences of sedimentary rock were
deposited in fault-bounded basins, and there was volcanic activity. The end result was the creation of the Atlantic Ocean. The Culpeper
and Gettyshurg basins in the western Piedmont province also are the result of this event.

I, For the last 200 m.y., the landscape has eroded and rivers have carried the sediment eastward to deposit the thick strata of the Atlan-
tic Coastal Plain.

J, Further erosion has removed much of these extensive Coastal Plain deposits and sculpted the bedrock to create the modern land-
scape. Some patches of Coastal Plain deposits remain near the Fall Line of the Potomac River.
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Figure 6. Schematic cross sections of the Potomac River valley at
Cumberland, Md. (A-A’), and the Georgetown section of Washing-
ton, D.C. (B-B), showing the change in terrace morphology, topo-
graphic elevation, and surficial deposits along its course. Evidence
that the Potomac River migrated across the valley is best preserved

is no evidence that the river migrated laterally across a broad
region; rather, it has cut downward, mainly using its early course.
The distribution, thickness, and height above the pres-
ent river level of terraces and sediments deposited on the flood
plain varies from province to province and from rock type to
rock type (fig. 6). Elevations of terraces along the river show that
the slope angles of the ancient and modern river valley are sim-
ilar; this in turn suggests that the terraces formed as the result of
either eustatic sea-level drop or uplift (Zen, 1997a,b). The Plio-
cene (5.3 Ma) fluvial deposits at Tysons Corner, Va., occur over
330 ft above the Potomac River (470 to 500 ft elevation), and are
about 5 mi away, south of Great Falls. Mt. Sterling, near Sterling,
Va., is at about 270 ft elevation and is located about 3 mi south
of the Potomac River in the Culpeper basin. By analogy, some
of the high terraces along the Potomac River could be as old as
Miocene or Pliocene. In the absence of supportive data, the land-
forms and deposits probably formed during late Tertiary to Qua-
ternary time, when a wetter climate, sparse vegetation, and frozen
ground caused increased precipitation to run into the ancestral
river, enhancing downcutting and erosion (Zen, 1997a,b).

River Morphology

The morphology of the Potomac River changes as it
drops about 610 ft in elevation as it flows more than 190 mi
from the western part of the Valley and Ridge province to the
Coastal Plain in the District of Columbia (figs. 5 and 6). From
the tidal part of the Potomac near Theodore Roosevelt Memo-
rial Bridge to the Culpeper basin at Seneca Falls, the Potomac
River has cut a gorge into bedrock. From Great Falls west to
Seneca Falls, the gorge has numerous islands and a consider-
able amount of alluvium is preserved. Numerous flat-topped
islands are located around Great Falls Tavern along the C&O
Canal in Maryland and near Great Falls Park, Va. The islands
are bedrock strath terraces (remnants of bedrock in valley
floors) that formed when the Potomac River cut across the
ancient valley floor and incised channels into it. The riverbed

at Cumberland, Md.; Paw Paw Bends (river meanders near Paw
Paw, W. Va.); Williamsport, Md.; and near Seneca, Md., where
terrace gravels are preserved overlying shale bedrock. The modern
flood plain is the most extensive at Cumberland and Seneca. QTt,
Tertiary to Holocene terrace deposits; Qa, Holocene alluvium.

is rock with channels and depressions as much as 80 ft deep
(Reed, 1981). Some alluvium was deposited on the bedrock
terraces and radiocarbon dates on organic matter suggest that
they have been vegetated for more than 10,000 years (Reed,
1981). At Great Falls, the Potomac River drops 70 ft from
Olmstead Island, which is a strath terrace at 140 ft elevation.
The Potomac River then drops another 70 ft to sea level.

From Seneca Falls to Point of Rocks, Md., the Potomac
River drops about 300 ft in elevation; the channel is about 5 ft
deep and flows on bedrock with scattered cobbles and boul-
ders in the riverbed. The deepest part of the channel (the thal-
weg) is between the northern shore and the islands in the cen-
ter of the river. The modern flood plain is broad. Bedrock is
exposed in tributaries, which suggests that the alluvium is 2 to
20 ft thick at most. Terraces also are broad and can be as much
as 270 ft above and as far as 3 mi away from the present river.

From Point of Rocks, Md., to Harpers Ferry, W. Va., the
Potomac River flows across resistant bedrock ledges of the
Blue Ridge province. There are islands and flood plains con-
sisting of alluvium, but the few preserved terraces are located
along the north shore and slope to the flood plain. The river
drops about 40 ft, from 250 to 210 ft elevation.

From Harpers Ferry west to McCoys Ferry, Md., the
Potomac River drops about 130 ft in elevation. Entrenched
meanders cut into a plateau with near-vertical bluffs of carbon-
ate rock of the Great Valley section. The largest meander occurs
in the shale of the Martinsburg Formation at Williamsport, Md.,
where extensive gravel terraces are preserved as much as 220 ft
above the river. Along this section, there are no falls and there is
a lack of coarse alluvium because the river cuts into soft shale.

The section of the river with the most abandoned incised
meanders, entrenched meanders, and broadest terraces adja-
cent to the modern flood plain of the Potomac River is from
McCoys Ferry west to Cumberland, Md., in the Valley and
Ridge province. Along this section, the river is about 5 ft deep
and flows over bedrock with large amounts of coarse alluvium
in the riverbed. The river drops about 230 ft, from 610 to 380
ft elevation, in this region.
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Alluvial Terraces

On the geologic maps (plates 2 to 20), terraces that were
mapped at different elevation levels are shown as one group
because the four distinct terrace elevation levels are difficult to
correlate. Terrace formation can be understood by study of the
modern river system. The channel bottom of the Potomac River
is a nearly flat surface where the bedrock has been eroded by
running water. The bedrock surface has local irregularities—such
as ridges, swales, and potholes (figs. 7 and 8)—that formed by
differential erosion of various rock types. A veneer of boulders,
cobbles, gravel, sand, and some silt was deposited on the channel
bottom. In areas of low hydraulic energy (slack water), there are
thick deposits of fine material, whereas only a little coarse mate-
rial remains on the riverbed where the current is torrential. Fish
weirs constructed in the 18th century (Guzy, 1999) or perhaps
earlier by Native Americans (fig. 9) near Shepherdstown, W. Va.;
Sandy Hook and Brunswick, Md.; and near the Monocacy River
in Maryland indicate that the riverbed is shallow and that erosion
of and deposition in the bed did not affect their construction.

The river migrated over time across the alluvial plain and
cut down into the bedrock in response to changing climatic or
tectonic conditions. As a new channel was cut into bedrock,
the elevated former riverbed was exposed to weathering and
became vegetated. Subsequent erosion left an irregular patch-
work of terraces that represents stages in the river’s history.

One of the more common types of terraces of the Potomac
River is an inclined surface created as the river migrated from
a higher to a lower elevation along a continuous slope. Allu-
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vial material commonly is not preserved on these slopes. Good
examples may be seen along the South Branch of the Potomac
River, the Cacapon River, Little Cacapon River; and on the
meanders of the Potomac River north of Paw Paw, W. Va., and
east of Four Locks, Md. in the Great Valley section.

In general, alluvial terraces and deposits of mainly quartz
gravel, cobbles, and boulders are best developed and preserved
on areas underlain by siltstone and shale bedrock (fig. 10A). This
relationship holds true in the Great Valley and Culpeper basin
sections. Large alluvial boulders may have been transported by
ice rafting or by interference from tree roots (fig. 10B). The most
extensive deposits are found upstream of ridges capped by resis-
tant sandstone in the Valley and Ridge province. Their pres-
ence suggests that the former river may have been impounded
by the water gaps through the ridges. Such examples can be seen
around Cumberland, Md., just west of the Patterson Creek anti-
clinorium (MM 175). In this area, broad terraces underlie the
town, Mexico Farm Airport, and Death Valley (fig. 5).

Abandoned Entrenched Meanders

Abandoned entrenched meanders of the ancestral Potomac
River demonstrate how the river locally migrated into its pres-
ent position. An outstanding example of a former riverbed can be
seen near Paw Paw, W. Va., where West Virginia Route 51 fol-
lows Purslane Run. The distribution of strath terraces and mate-
rial deposited on them provide the chronologic development of
the landscape in this area (Braun, 1976; Fitzpatrick, 1987); the

77°13'30"

C&O0 Canal towpath

Maryland

MM 13

38°59' o
Virginia

[ ] Bedrock terrace

[ ] Bedrock island

I:l Erosional channel in bedrock
- Water in erosional channel

Widewater

EXPLANATION

or pothole

Figure 7. Sketch map show-
ing large water-filled potholes
and channels on the eastern
half of Bear Island near MM
13 and Widewater. Interpreted
from 5-ft-contour topographic
map compiled by the National
Park Service (NPS, unpub.
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Figure 8.
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B

Potholes in migmatite of the Neoproterozoic and (or) Lower Cambrian Mather Gorge Formation along the bluff of Mather

Gorge in Virginia, opposite MM 13 and Bear Island. A, View from across river channel; 16-ft-long canoe for scale; arrow points to area
shown in B. B, Close-up view of pothole from part A. Photographs by David F. Usher (U.S. Geological Survey).

Figure 9. Aerial photograph showing fish weirs constructed by
Native Americans; arrow points to a weir segment. The weirs are
constructed from alluvial boulders piled about 3 ft high on the bed
of the Potomac River.

meander at Reckley Flat and Purslane Run was abandoned when
the ancestral Potomac River eroded into the ancestral valley of
the Little Cacapon River (fig. 11A). The meander at Paw Paw was
abandoned as the meander neck was narrowed and eroded (fig.
11B). In addition, the canal at Four Locks (MM 109) occupies an
abandoned fluvial channel that bypassed a meander loop. To the
east, there is an “island” within an abandoned river meander adja-
cent to Conococheague Creek at Williamsport (MM 100).

A well-developed, abandoned channel may be seen at
Widewater (MM 13), which is a large body of water incor-
porated within the C&O Canal east of Great Falls. In Great
Falls Park, Va., the Potomac River flowed around an island
locally known as Glade Hill (fig. 12). The boulder deposit on
the crest of the hill indicates that the river previously flowed at
that higher level (fig. 13) (Reed and others, 1980; Zen, 1997a;
Southworth and others, 2000).

Recent Flood-Plain Alluvium

The areal distribution of the modern flood plain (Qa) was
determined by mapping the debris deposited by the floods of
January and September 1996. The flood plain of the Potomac
River is relatively broad (fig. 5) upstream from constrictions
such as (1) west of the Patterson Creek anticlinorium at Spring
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B

Remnants of Quaternary alluvial terraces. A, Alluvial terrace deposit of the Potomac River in the Valley and Ridge province

near Cumberland, Md., near MM 180. The large samdstone boulders are about 3 ft across. B, A large quartzite boulder of quartzite (pos-
sibly from the Lower Cambrian Weverton Formation of the Blue Ridge province) that was deposited on a terrace about 65 ft above and 1

mi away from the Potomac River near Sterling, Va.
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Figure 11. Sketch maps illustrating the evolution of the abandoned incised meanders of the Potomac and Little Cacapon Rivers near

Paw Paw, W. Va. (centered on MM 157), a process that occurred probably within the past 1 million years. A-C, Planimetric sketches.
D, Generalized surficial geologic map. Map-unit abbreviations are as follows: QTt, Tertiary to Holocene terrace deposits; Qa, Holocene

alluvium.

Gap near Cumberland, Md.; (2) west of Broadtop Mountain at
Oldtown, Md.; (3) west of North Mountain at McCoys Ferry,
Md.; (4) where the river meanders 90° to the south across
rocks of the Martinsburg Formation at Williamsport, Md.; (5)
where the river crosses rocks of the Culpeper basin west of
Seneca Falls; (6) upstream of where the river turns south 90°
near Swains Lock, Md. (MM 16.5); and (7) at the Fall Line,
where the Potomac River meets the Coastal Plain.

The thickness and size of the alluvial material also var-
ies. Along the shores and islands, as much as 20 ft of silt over-
lies several feet of gravel (fig. 14); drill holes on the flood plain
north of Whites Ferry, Md. (MM 35), show depths of 21 and 22

ft (Froelich, 1975). Radiocarbon dates indicate that this mate-
rial probably was deposited about 10,000 years ago as the cli-
mate warmed at the end of continental glaciation (Reed, 1981;
Froelich and others, 1992). Modern floods, such as those dur-
ing 1996, tend to scour existing deposits and then redeposit the
material elsewhere. During such floods, the surface of the tow-
path was locally scoured and sometimes breached through to
the canal. Thick deposits of silt and mud in the canal have been
accumulating since the canal was drained in 1928. Along the
river, coarse gravel and cobbles tend to be deposited in areas
where there is high-energy flow. Fine silt and sand tends to be
deposited in areas of low energy flow.
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Figure 12. Schematic maps of the Great Falls of the Potomac River showing the evolution of the abandoned channel of Widewater
and of Glade Hill. A, The area as it may have looked before the Pleistocene. The ancestral Potomac River was wide and Glade Hill was
merely a boulder-covered island in the channel. B, Narrower ancestral Potomac River, the deeply incised channel where Widewater
would eventually be located, and the beginnings of the bedrock strath terraces. C, Present-day features. The Potomac River channel is
currently incised into Mather Gorge and Widewater is separated from the Potomac River by a terrace (modified from Reed and others,
1980); the canal enginers incorporated Widewater into the canal construction. D, Schematic cross section shown in C.

Silt, clay,
and gravel

Silt and sand

Gravel

Figure 13. Rounded boulder of diabase (5 ft in diameter) depos-

ited by the Potomac River on terrace at south end of Glade Hill, Figure 14. Recent alluvium along the Monocacy River, near
approximately 135 ft above the present river level (south of MM 14 its confluence with the Potomac River near MM 42, consists of
in Virginia). Photograph by David F. Usher (U.S. Geological Survey).  gravel, sand, and silt as much as 20 ft thick.
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Colluvium

Colluvium is abundant on all slopes adjacent to ridges
that are underlain by sandstone, quartzite, and other resis-
tant rocks. The slopes have thin to thick veneers of colluvial
boulders and blocks that have been transported by gravity or
by freezing and thawing. Large rock streams and block fields
locally are shown on the geologic map, but none are found
near the canal. Near Rosslyn, Va., and the Georgetown section
of Washington, D.C., gravel derived from the Cretaceous and
Tertiary deposits of the Coastal Plain have been transported
down slope as colluvium.

On the west limb of the Patterson Creek anticlinorium,
east of Cumberland, Md. (MM 180), are fan-shaped depos-
its of coarse sandstone colluvial boulders that are intermixed
with alluvial deposits. Extensive alluvial fans along Mill Run,
northwest of Oldtown, Md. (MM 167), are composed of fine
colluvial sandstone cobbles that were eroded from Warrior
Mountain. Similar deposits and landforms are found from
Licking Creek to Fort Frederick in Maryland.

Karst Landforms

Karst landforms (sinkholes and caves) occur in areas
underlain by limestone, dolomite, and marble in the Great Val-
ley section of the Valley and Ridge province, and in the Fred-
erick Valley, Culpeper basin, and Westminster terrane in the
western Piedmont province (fig. 15). In the Great Valley, sink-
holes are developed throughout most of the carbonate rock
formations, but are mostly concentrated in the Elbrook, Con-
ococheague, and Stonehenge Limestones, Rockdale Run For-
mation, and Chambersburg Limestone. There are caves along
the canal and some have emergent springs (fig. 16). The Great
Valley also has travertine and tufa deposits. Karst landforms

Valley and Ridge

A EEN
| /n

Great Valley
section

are rare in the Blue Ridge province because marble occurs as
small bodies.

Kanawha Spring, which is in the Piedmont province east
of Point of Rocks, Md., flows from limestone of the Frederick
Formation, which underlies the flood plain. Limestone cobbles
within the conglomerate of the Leesburg Member of the Bull
Run Formation southeast of Point of Rocks dissolved to form
hummocky topography with abundant sinkholes and springs;
travertine and tufa deposits also may be seen here. These fea-
tures evolved as springs and streams that were supersaturated
with calcite discharged and flowed over rough channels where
the calcite was deposited and built up over time (White, 1988).
In addition, marble and limestone of the Westminster terrane
(exposed along Monocacy River north of Indian Flats) under-
lie linear valleys and contain abundant sinkholes to the north.

Fossils Along the C&0 Canal

Introduction

The rocks that are exposed along the C&O Canal con-
tain a variety of preserved remains, traces, tracks, or imprints
of ancient plants and animals. Although the Triassic and
Jurassic rocks of the Culpeper basin in the western Piedmont
province contain dinosaur footprints that are as old as 210 Ma,
many of the rocks farther to the west in the Valley and Ridge
province contain fossils that are much older, ranging in age
from 530 to 340 Ma. Along the C&O Canal, the most common
types of fossils are shells of creatures that inhabited the ancient
seas that covered this region hundreds of millions of years ago.
Less commonly, remains of animals and plants that lived on
land are preserved in some of the younger exposed rocks.

For an animal or plant to become a fossil, several things
must occur. First, the animal or plant must inhabit an environ-

Blue Ridge .
province Figure 15. Schematic map
showing the distribution of
Culpeper carbonate rocks (dark gray)
1 basin and noncarbonate rocks (light

10 MILES

Piedmont
province

/ Potomac terrane

gray) along the C&0 Canal and
Potomac River corridor. Car-
bonate rocks are susceptible
to the development of karst
landforms. Many caves and
sinkholes are known to exist in
the carbonate rocks along the
canal.
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Figure 16. The cave at Dam 4 near MM 83.5. The cave and emergent spring are in the Conococheague Limestone. A, View looking into

the cave. B, View looking out of the cave.

ment that is conducive to preservation. As a general rule, organic-

rich, dark-gray, fine-grained rocks (such as shale and limestone)
preserve fossils better than light-colored, coarse-grained rocks
(such as sandstone and conglomerate). A second prerequisite for
fossilization is rapid burial. Some of the best-preserved fossils
are of animals and plants that were buried alive by storms and
landslides, or that fell into sinkholes or tar pits. Once entombed
in sediment, the animal, plant, or imprint must remain undis-
turbed while the sediment becomes lithified into rock; this pro-
cess commonly takes place over millions of years.

Piedmont Province

Fossiliferous rocks are present in the Frederick Valley
and Culpeper basin in the western Piedmont. No fossils are
known within the rocks of the Westminster and Potomac ter-
ranes to the east; either these rocks were deposited prior to the
development of shelly organisms, or extreme deformation and
metamorphism destroyed any fossils that were present.

Fossils are present, but uncommon, in Frederick Valley
rocks. The Upper Cambrian Frederick Formation and Upper
Cambrian and Lower Ordovician Grove Formation were depos-
ited on the continental slope and edge, respectively, of a conti-
nental shelf. Well-preserved fossils in the limestone are mainly
parts of trilobites (fig. 17); however, because these rocks were
deposited in deep water, the abundance of fossils is low.

The Frederick and Grove Formations both contain con-
odonts, which are microscopic (0.1 to 1.0 mm) fossils that are
thought to be the teeth of an extinct group of marine animals
closely related to early vertebrates (fig. 17). Conodonts consist
of phosphatic material much like human teeth.

In the Culpeper basin in Virginia and Maryland, the red
sandstone and shale exposed from Seneca west to the Monocacy
River contain abundant fossils (Kranz, 1989). The Upper Trias-
sic Poolesville Member of the Manassas Sandstone in the east-
ern part of the basin in Fairfax County, Va., has yielded foot-
prints of crocodiles and a small bird-like animal (Weems and
Kimmel, 1993). Sandstone and siltstone of the Upper Trias-
sic Balls Bluff Member of the Bull Run Formation near Dulles
International Airport in Virginia have yielded bones and teeth
of a crocodile-like parasuchian (phytosaur) (Weems, 1979) and
a large coelacanth fish (Weems and Kimmel, 1993). Shale beds
that are interlayered with the Balls Bluff Siltstone to the south
were deposited in a lake and preserve the remains of arthro-
pods and fish, as well as probable lizard footprints (Gore, 1988).
Rocks exposed to the south in the Culpeper quarry have yielded
parasuchian (phytosaur) teeth and footprints of a medium-size
carnivorous dinosaur (Kayentapus minor) (fig. 18), two small
carnivorous dinosaurs, a primitive sauropod dinosaur, a small
ornithischian dinosaur, a prosauropod dinosaur, and a large
armadillo-like aetosaur (Weems, 1987, 1992).

Lower Jurassic strata that overlie the Balls Bluff Mem-
ber to the south in Virginia also contain fossils. In Fauquier
County, Va., siltstone of the Midland Formation contains abun-
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Figure 17. Fossils from rocks of the Frederick Valley section,
western Piedmont province. Fossils are catalogued and reposited
in the Carnegie Museum (CM) in Pittsburgh, Pa., or in the U.S.
National Museum (USNM) in Washington, D.C. Fossils 1 through
5 are trilobites and 6 through 9 are conodonts. 1, Olenellus sp.,
Middle and Lower Cambrian Araby Formation (CM 53211). 2,
Plethopeltis armatus (Billings), Upper Cambrian Grove Formation
(CM 35116). 3, Rasettia capax (Billings), Upper Cambrian Grove
Formation (CM 35110). 4, Westonaspis laevifrons Rassetti, Upper

dant fish remains (Olsen and others, 1982). Shale of the Tur-
key Run Formation has yielded footprints of a small carniv-
orous dinosaur, large prosauropod dinosaurs, and a crocodile
(Weems, 1992, 1993). Siltstones and shales represent sedi-
ments of ephemeral lakes and riverbanks where some reptiles
and dinosaurs typically lived. Rocks in the Culpeper basin also
contain plant impressions, pollen, and spores.

Blue Ridge Province

Rocks of the Blue Ridge province contain few known
fossils. Most shelly fossils did not appear until about 560 Ma.
The Neoproterozoic Catoctin Formation was dated at about

Cambrian Frederick Formation (CM 35122). 5, Acmarachis, lower
part of the Upper Cambrian Frederick Formation (CM 53212). 6,
Proconodontus muelleri Miller, Upper Cambrian Grove Formation
(USNM 488831). 7, Clavohamulus hintzei Miller, Upper Cambrian
Grove Formation (USNM 488826). 8, Cordylodus intermedius
Furnish, Lower Ordovician Grove Formation (USNM 521104).

9, Rossodus manitouensis, Lower Ordovician Grove Formation
(USNM 488819).

565 Ma (Badger and Sinha, 1988), but preserved fossils have
not been recognized either in this formation, which represents
ancient lava flows, or in the overlying quartzites of the Lower
Cambrian Weverton Formation.

The interval of time during which the rocks of the Wever-
ton Formation and overlying rocks of the Harpers and Antie-
tam Formations were deposited represents a major biologic
evolutionary episode. Although no fossil shells have been
recovered from rocks of either the Weverton or Harpers For-
mations, some of the oldest trilobites have been found within
the Antietam Formation. In places, metasiltstone of the Harp-
ers Formation contains abundant burrows of ancient soft-bod-
ied animals. The most common burrow trace, Skolithos lin-
earis, is oriented perpendicular to the stratification, which



Figure 18. Dinosaur tracks in the Upper Triassic Balls Bluff
Siltstone exposed in the Culpeper Stone Co. quarry near Culpeper,
Va., are of three-toed Kayentapus minor, a carnivorous dinosaur.
Quarter for scale. Although no dinosaur footprints are found in
the vicinity of the C&0 Canal, the rocks are similar to those near
Culpeper.

suggests that the burrows represent sites where the animal
once lived.

Valley and Ridge Province

From the Great Valley section westward through the rest
of the Valley and Ridge province, the rocks generally become

A B
Figure 19.
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younger, which is reflected by the abundance and diversity of fos-
sils (fig. 19, 20, and 21). For instance, fossils are extremely rare in
rocks of the Lower Cambrian Tomstown and Waynesboro Forma-
tions at the eastern margin of the Great Valley because not many
types of shelly animals lived during this period of time. Progress-
ing farther to the west, younger rocks are encountered and the
fossils are more abundant and diverse. This general trend contin-
ues through the Ordovician and into the Silurian and Devonian.

Cambrian Fossils

The oldest rocks of the Valley and Ridge province are
Cambrian and are restricted to the Great Valley section. Defor-
mation associated with the formation of the Blue Ridge-South
Mountain anticlinorium destroyed most of the fossils. As a
result, the best Cambrian fossils have been recovered from the
Elbrook and Conococheague Limestones on the western side
of the Great Valley (fig. 20).

The most common types of Cambrian fossils are trilo-
bites and stromatolites (algal colonies). Many of the trilobite
species found in the Conococheague Limestone also are found
in the Frederick Formation of the Frederick Valley in the west-
ern Piedmont province. The similar trilobite remains in both
formations indicate that these two different geologic units are
equivalent in time (that is, they are correlative). Even though
trilobites are the main biostratigraphic tools for correlating
Cambrian rocks, conodonts appear in the Late Cambrian and
supplant the trilobite as the most useful fossil for correlation.

Ordovician Fossils

Lower Ordovician rocks contain fossils that are very sim-
ilar to those found in the Upper Cambrian rocks (fig. 20), but
younger Ordovician rocks contain fewer trilobites and more
snails, brachiopods, and cephalopods. For instance, the Lower
Ordovician Stonehenge Limestone contains mainly trilobites
and conodonts. The transition to other fossil types is evident
in the overlying Lower and Middle Ordovician Rockdale Run

c

Brachiopods in Silurian and Devonian rocks. A, Brachiopod shell fragments from the Middle to Upper Silurian McKenzie

Formation. B, Internal molds of brachiopods in the Upper Devonian Foreknobs Formation. C, Internal molds of brachiopods in the Lower

Devonian Oriskany Sandstone.
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Figure 20 (facing page). Key index fossils present in the rocks
found along the C&0 Canal in the Valley and Ridge province.
Some of the individual specimens illustrated here are from other
regions in the Appalachians, and have been noted as such, but

all of these species have been recovered from formations in the
immediate vicinity of the C&0 Canal or from formations correlative
with those along the canal. Abbreviations are as follows: Miss.,
Mississippian; L., Lower; Dol., Dolomite; Fm., Formation; Ls., Lime-
stone; Sh., Shale; Ss., Sandstone.

. Glossopleura sp., Middle Cambrian, Elbrook Formation, X5.
. Elrathina sp., Middle Cambrian, Elbrook Formation, X4.

. Modocia sp., Upper Cambrian, Elbrook Formation, X4.

. Genevievella sp., Upper Cambrian, Elbrook Formation, X5.

1

2

3

4

5. Crepicephalus sp., Upper Cambrian, Elbrook Formation, X5.

6. Ptychaspis sp., Upper Cambrian, Conococheague Limestone, X4.

1. Calvinella sp., Upper Cambrian, Conococheague Limestone, X4.

8. Pseudosaratogia sp., Upper Cambrian, Conococheague Limestone, X3.
9. Bellefontia sp., Lower Ordovician, Stonehenge Limestone, X4.

10. Homagnostus sp., Lower Ordovician, Stonehenge Limestone, X7.

11. Finkelburgia stonehengensis Sando, Lower Ordovician, Rockdale Run
Formation (from Sando, 1957, pl. 12, fig. 26), X2.

12. Diaphelasma pennsylvanicum Ulrich and Cooper, Lower Ordovician, Rock-
dale Run Formation (from Sando, 1957 pl. 15, fig. 1), X2.

13. Ophileta sp., Lower Ordovician, Rockdale Run Formation (from Bassler,
1919, pl. 33, fig. 1.), X?2.

14. Diparelasma marylandicum Sando, Lower Ordovician, Rockdale Run For-
mation (from Sando, 1957, pl. 13, fig. 15), X2.

15. Calliops callicephala (Hall), Middle Ordovician, Chambersburg Limestone,
X4.

16. Echinospherites sp., Middle Ordovician, Chambersburg Limestone, X2.

17. Rhinidictya sp., Middle Ordovician, Chambersburg Limestone (from Bassler,
1919, pl. 44, fig. 11), X18.

18. Strophomena hallie (Miller), Middle Ordovician, Chambershurg Limestone
(from Bassler, 1919, pl. 54, fig. 8), X2.

19. Hebertella chaziensis Ruedemann, Middle Ordovician, Chambersburg
Limestone (from Bassler, 1919, pl. 38, fig. 5), X2.

20. Orthorhyncula, Middle Ordovician, Maysville Group, Cincinnati, Ohio (from
Bassler, 1919, pl. 57, fig. 10), X10.

21. Diplograptus, Middle Ordovician, Normanskill Shale, New York (from
Bassler, 1919, pl. 53, fig. 10), X3.

22. Rafinesquina alternata (Emmons), Upper Ordovician, Maysvile Formation,
Cincinnati, Ohio (from Bassler, 1919, pl. 57, fig. 18), X2.

23. Byssonychia praecursa Ulrich, Upper Ordovician, Lorraine Shale, New York
(from Bassler, 1919, pl. 57, fig. 28).

24. Schuchertella tenuis Hall, Silurian, Rochester Shale (from Swartz and oth-
ers, 1923, pl. 18, fig. 8), X10.

25. Uncnulus obtusiplicata (Hall), Silurian, McKenzie Formation (from Swartz
and others, 1923, pl. 21, fig. 8), X1.

26. Atrypa reticularis (Linne), Silurian, Rochester Shale (from Swartz and oth-
ers, 1923, pl. 21, fig. 8), X1.

21. Hormatoma hopkinsi Prouty, Silurian, McKenzie Formation (from Swartz
and others, 1923, pl. 29, fig. 23), X2.

28, Hormatoma rowei Swartz, Silurian, Tonoloway Limestone (from Swartz and
others, 1923, pl. 29, fig. 12), X2.

29. Cyathophyllum sp., Silurian, Keyser Limestone, X2.
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30. Dolichopterus cumberlandensis Swartz, Silurian, Wills Creek Formation
(from Swartz and others, 1923, pl. 47, fig. 1), X1.

31. Gypidula sp., Silurian, Keyser Formation, X2.

32. Stropheodonta varistriata (Conrad), Silurian, Tonoloway Limestone (from
Swartz and others, 1923, pl. 22, fig. 19), X2.

33. Camarotoechia tonolowayensis Swartz, Silurian, Tonoloway Limestone
(from Swartz and others, 1923, pl. 22, fig. 19), X2.

34. Calymene sp., Silurian, Keyser Limestone, X3.
35. Leperditia scalaris Swartz, Silurian, Keyser Limestone, X3.

36. Leptaena rhomboidalis (Wilckens), Lower Devonian, Helderberg Formation
(Swartz and others, 1913, pl. 16, fig. 16), X2.

37. Favosites sp., Silurian, Keyser Limestone, X4.

38. Schuchertella woolworthana (Hall), Lower Devonian, New Scotland Lime-
stone (from Swartz and others, 1913, pl. 51, fig. 7), X2.

39. Meristella arcuata (Hall), Devonian, New Scotland Formation (from Swartz
and others, 1913, pl. 74, fig. 5), X?.

40. Stropheodonta becki(Hall), Lower Devonian, New Scotland Limestone
(from Swartz and others, 1913, pl. 57, fig. 12), X3.

41. Tentaculites aculus Hall, Lower Devonian, Helderberg Formation (from
Swartz and others, 1913, pl. 86, fig. 7), X4.

42. Spirifer intermedus Hall, Lower Devonian, Oriskany Sandstone (from
Swartz and others, 1913, pl. 69, fig. 18), X?.

43. Cypricardinia indenta (Conrad), Middle Devonian, Hamilton Formation (from
Swartz and others, 1913b, pl. 34, fig. 6), X2.

44. Loxonema hamiltoniae Hall, Middle Devonian, Hamilton Formation (from
Swartz and others, 1913b, pl. 36, fig. 16), X1.25.

45. Polypora compacta (Hall), Lower Devonian, New Scotland Formation (from
Swartz and others, 1913, pl. 51, fig. 11), X2.

46. Cyclonema liratum Prosser, Middle Devonian, Hamilton Formation (from
Swartz and others, 1913b, pl. 36, fig. 8), X1.5.

47. Palaeoneilo fecunda Hall, Middle Devonian, Hamilton Formation (from
Swartz and others, 1913b, pl. 36, fig. 19), X1.25.

48. Mucrospirifer mucronatus (Conrad), Middle Devonian, Hamilton Formation
(from Swartz and others, 1913b, pl. 41, fig. 12), X2.

49. Cyclonema concinnum Hall, Upper Devonian, Foreknobs Formation (from
Swartz and others, 1913b, pl. 67, fig. 27), X?.

50. Pterinea chemungensis (Conrad), Upper Devonian, Foreknobs Formation
(from Swartz and others, 1913b, pl. 61, fig. 22), X1.

51. Productella lachryma (Conrad), Upper Devonian, Foreknobs Formation
(from Swartz and others, 1913b, pl. 50, fig. 22), X?.

52. Mucrospirifer mucronatus (Conrad), Upper Devonian, Foreknobs Formation
(from Swartz and others, 1913b, pl. 68, fig. 2), X1.

53. Loxonema terebrum Hall, Upper Devonian, Foreknobs Formation (from
Swartz and others, 1913b, pl. 69, fig. 3), X2.

54. Leptodesma medon Hall, Upper Devonian, Foreknobs Formation (from
Swartz and others, 1913b, pl. 63, fig. 15), X?.

55. Dalmanella sp., Upper Devonian, Foreknobs Formation (from Swartz and
others, 1913b, pl. 52, fig. 6), X3.

56. Rugosochonetes sp., Lower Mississippian, Riddlesburg Shale Member of
Purslane Formation (from Brezinski, 1988, pl. 1, fig. 1), Carnegie Museum 35565,
X3.

57. Macropotamorhyncus sp., Lower Mississippian, Riddlesburg Shale
Member of the Purslane Formation (from Brezinski, 1988, pl. 1, fig. 3), Carnegie
Museum 35569, X2.
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Figure 21 (facing page). Key guide conodonts to the strata of
the Valley and Ridge province. Some of the individual specimens
illustrated here are from other regions in the Appalachians and
are noted as such, but all of these species have been recovered
from formations in the immediate vicinity of the C&Q0 Canal or from
formations correlative with those along the canal. Abbreviations
are as follows: Miss., Mississippian; L., Lower; Dol., Dolomite; Fm.,
Formation; Ls., Limestone; Sh., Shale; Ss., Sandstone.

1. Phakelodus elongatus (An), Upper Cambrian, Nolichucky Shale, eastern
Tennessee, X55 (USNM 521105).

2. Westergaardodina matsushitai Nogami, Upper Cambrian, Nolichucky Shale,
eastern Tennessee, X40 (USNM 521106).

3. Proconodontus serratus Miller, Upper Cambrian, Lime Kiln Member of the
Frederick Formation, quarry at Lime Kiln, Md., X30 (USNM 521107).

4. Cambrooistodus minutus (Miller), Upper Cambrian, Lime Kiln Member of the
Frederick Formation, quarry at Lime Kiln, Md., X55 (USNM 521108).

5. Hirsutodontus simplex (Druce and Jones), Upper Cambrian, Grove Forma-
tion, Stup Farm section of Taylor and others (1996), Frederick, Md., X35 (USNM
521109).

6. Cordylodus angulatus Pander, Lower Ordovician, Stonehenge Limestone
(from Brezinski and others, 1999, fig. 3-T), X25 (USNM 507012).

7. Loxodus bransoni Furnish, Lower Ordovician, basal foot of Rockdale Run
Formation (from Brezinski and others, 1999, fig. 3-V), X40 (USNM 507014).

8. Rossodus manitouensis Repetski and Ethington, oistodontiform element,
Lower Ordovician, top foot of Stonehenge Limestone (from Brezinski and oth-
ers, 1999, fig. 3-W), X25 (USNM 507015).

9. Rossodus manitouensis Repetski and Ethington, coniform element, Lower
Ordovician, basal foot of Rockdale Run Formation (from Brezinski and others,
1999, fig. 3-X), X40 (USNM 507016).

10. Scolopodus sulcatus Furnish, Lower Ordovician, one foot above base of
Rockdale Run Formation (from Brezinski and others, 1999, fig. 3-Y), X25 (USNM
507017).

11. Eucharodus toomeyi (Ethington and Clark), Lower Ordovician, Rockdale Run
Formation, C&0 Canal section (from Brezinski and others, 1999, fig. 3-0), X20
(USNM 507007).

12. Oepikodus communis (Ethington and Clark), Lower Ordovician, Rockdale
Run Formation, C&0 Canal section (from Brezinski and others, 1999, fig. 3-M),
X35 (USNM 507005).

13. Pteracontiodus cf. Pt. gracilis Ethington and Clark, Middle Ordovician,
upper part of Rockdale Run Formation, C&0 Canal section (from Brezinski and
others, 1999, fig. 3-E), X40 (USNM 506997).

14. Tropodus comptus (Branson and Mehl), Lower Ordovician, Rockdale Run
Formation, C&0 Canal section (from Brezinski and others, 1999, fig. 3-P), X20
(USNM 507008).

15. Colaptoconus quadraplicatus (Branson and Mehl), Lower Ordovician,
Rockdale Run Formation, C&0 Canal section (from Brezinski and others, 1999,
fig. 3-R), X35 (USNM 507010).

16. Histiodella altifrons Harris, Middle Ordovician, uppermost one foot of
Rockdale Run Formation, C&0 Canal section (from Brezinski and others, 1999,
fig. 3-F), X55 (USNM 506998).

17. Cahabagnathus friendsvillensis (Bergstrom), Middle Ordovician, 39 m
above base of St. Paul near Worleytown, Franklin Co., Pa., USGS fossil locality
9306-C0, X25 (USNM 521110).

18. Leptochirognathus quadratus Branson and Mehl, Middle Ordovician, 48 ft
below top of Pinesburg Station Dolomite near Marion, Franklin Co., Pa. (from
Brezinski and others, 1999, fig. 3-C), X30 (USNM 506995).

19. Appalachignathus delicatulus Bergstrom and others, Middle Ordovician,
Lincolnshire Limestone, Tumbling Run section, Shenandoah Co., Va., X40
(USNM 521111).
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20. Amorphognathus tvaerensis Bergstrom, Upper Ordovician, Nealmont
Formation, Tyrone, Pa., X5 (USNM 521112).

21. Plectodina n. sp., Middle Ordovician, 260 ft below top of Rockdale Run
Formation, C&0 Canal section, X30 (USNM 507002).

22. Phragmodus undatus Branson and Mehl, Upper Ordovician, Jacksonburg
Limestone, Northampton Co., Pa., X30 (USNM 521113).

23. Panderodus gracilis (Branson and Mehl), Upper Ordovician, Jacksonburg
Limestone, Northampton Co., Pa., X5 (USNM 521114).

24. Oulodus sp., Upper Silurian, Tonoloway Limestone, 34 ft above base, Giles
Co., Va., USGS fossil locality 11569-SD of K. Denkler and A.G. Harris, X25
(USNM 521115).

25. Oulodus elegans (Walliser), Upper Silurian, upper part of the Keyser
Limestone, Lambert Gap, W. Va. (from Denkler and Harris, 1988, pl. 1, fig. U),
X40 (USNM 418600).

26. Ozarkodina remscheidensis eosteinhornensis (Walliser), Silurian, lower
limestone member of the Keyser Limestone, Lambert Gap, W. Va., USGS fossil
locality 10700-SD of K. Denkler and A.G. Harris, X30 (USNM 521116).

27. Ozarkodina remscheidensis remscheidensis (Zeigler), Tonoloway Lime-
stone, 39.5 ft above base, Giles Co., Va., USGS fossil locality 11572-SD of K.
Denkler and A.G. Harris, X35 (USNM 521117).

28. Icriodus claudiae Klapper, Lower Devonian, Licking Creek Limestone,
Frederick Co., Va. (from Harris and others, 1994), USGS fossil locality 12151-SD,
X20 (USNM 521118).

29. Icriodus difficilis Ziegler and Klapper, Upper Devonian, Harrell Shale, Min-
eral Co., W. Va. (from Weary and Harris, 1994), USGS fossil locality 12137-SD,
X30 (USNM 521119).

30. Polygnathus alatus Huddle, Upper Devonian, Harrell Shale, Mineral Co., W.
Va. (from Weary and Harris, 1994), USGS fossil locality 12137-SD, X25 (USNM
521120).

31. Mesognathus dengleri (Bischoff and Ziegler), Upper Devonian, Harrell
Shale, Grant Co., W. Va. (from Weary and Harris, 1994), USGS fossil locality
12137-SD, X20, (USNM 521123).

32, 35. Ancyrodella alata Glenister and Klapper, lower and upper views of
immature specimen (fig. 32) and upper view of mature specimen (fig. 35),
Upper Devonian, Harrell Shale, Allegany Co., Md. (from Weary and Harris,
1994), USGS fossil locality 12293-SD, pl. 2, figs. 11, 12, X20 (fig. 32) and X25 (fig.
35), (USNM 481789 and 521124, respectively).

34. Polygnathus linguiformis linguiformis Hinde, Upper Devonian, Scherr For-
mation, Greenland Gap Group, Randolph Co., W. Va., X20 (USNM 521121).

37. Polygnathus sp., Upper Devonian, Scherr Formation, Greenland Gap Group,
Randolph Co., W. Va., X25 (USNM 521122).

33. Palmatolepis sp., Upper Devonian, Scherr Formation, Greenland Gap Group,
Randolph Co., W. Va., X30, (USNM 521125).

36. Delotaxis sp., Upper Devonian, Scherr Formation, Greenland Gap Group,
Randolph Co., W. Va., X20, (USNM 521126).
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Formation that contains many snails and only a few trilobites.
The change is most obvious in the diverse fauna present in the
Echinosphaerites beds of the Middle Ordovician Chambers-
burg Limestone. These beds, which were named for an echino-
derm Echinosphaerites, contain abundant brachiopods, bryo-
zoans, and only a few trilobites. The changes observable in the
macrofossils are further illustrated by rapid changes in con-
odonts through the Ordovician, as illustrated in figure 21.

The diverse numbers of organisms that had inhabited the
clear waters during limestone deposition were replaced by a
group of organisms that could live in the muddy sea bottoms that
existed during deposition of the Martinsburg Formation in the
Middle and Late Ordovician. These include snails and clams;
brachiopods and bryozoans are absent. To exist on the muddy
sea floor, animals had to be able to filter out clay and silt.

Silurian Fossils

The Silurian was a time of great diversity in brachio-
pods; many Silurian units contain abundant brachiopod
remains. The units that best exemplify species diversity are
the Middle Silurian Rose Hill Formation, Middle and Upper
Silurian McKenzie Formation, and Upper Silurian and Lower
Devonian Keyser Limestone, all of which were deposited in
very shallow marine waters. Some of the thin beds of lime-
stone within the McKenzie Formation are made up com-
pletely of brachiopod or snail shells (see figure 19). This
highly fossiliferous limestone can be seen along the aban-
doned Western Maryland railroad bed near MM 133. The
limestone is interbedded with units such as the Upper Silu-
rian Bloomsburg and Wills Creek Formations, which were
deposited mostly above high tide and, as a result, contain
almost no fossil remains. The exception is the large ostra-
code Leperditia that is found in the Wills Creek Formation.
The Upper Silurian Tonoloway Limestone is known to con-
tain the rare remains of extinct arthropods known as euryp-
terids. These arthropods lived in shallow marine water and
looked like scorpions, so they are commonly called sea scor-
pions. Eurypterids flourished in the Late Silurian.

The Keyser Limestone was deposited during the latest
Silurian and earliest Devonian. This unit contains a diverse
fossil assemblage of brachiopods, bryozoans, corals, trilo-
bites, and stromatoporoids (sponge-like colonial animals).
During the Late Silurian, stromatoporoids formed small reefs
similar to the modern coral reefs off the coast of Florida.
Although no fossil reefs have been identified along the C&O
Canal, Brezinski (1996b) described a reef north of it near
the village of Flintstone, Md. Small stromatoporoids can be
found along the abandoned Western Maryland railroad grade
at Dam 6.

Devonian and Mississippian Fossils

Perhaps the most fossiliferous Lower Devonian forma-
tion along the C&O Canal is the Oriskany Sandstone. This
white sandstone contains abundant molds of brachiopod shells.

Because this sandstone is so porous, water dissolved the shell
material from these fossil fragments, leaving molds where the
shells once were (fig. 19C). Many of the younger Devonian
shales (Needmore, Marcellus, and Brallier Shales) as well as
sandstones of the Mahantango and Foreknobs Formations, con-
tain abundant clams, snails, brachiopods, and cephalopods,
most of which are preserved as molds (fig. 19). Conodonts are
common, but trilobites are uncommon in these Devonian rocks.
Mississippian rocks occur at only one location along the
C&O Canal. Near the Sideling Hill Creek Aqueduct, sand-
stone within the Lower Mississippian Riddlesburg Shale
Member, a marine unit of the Upper Devonian and Lower Mis-
sissippian Rockwell Formation, is exposed. This earliest Mis-
sissippian sandstone was deposited as beach sand and as such
contains no fossils. However, the black shale that is present
immediately above this sandstone represents mud deposited
in a nearshore lagoon and it contains a few brachiopods. Con-
odonts have been found in some of the rare carbonate horizons
in this shale unit.

Engineering Geology

Introduction

To fully understand the engineering achievement of the
C&O Canal, walk along the shore of the Potomac River in Vir-
ginia or West Virginia and envision what would be necessary
in order to transport 120 tons of cargo in a 92-ft-long boat in a
waterway that parallels the river. A 6-ft-deep canal that was 40
to 60 ft wide at the top had to be excavated. Small tributaries
of the river had to be crossed, using culverts to carry the tribu-
taries beneath the canal. Large tributaries required aqueducts to
carry the boats over the water (fig. 22; table 1). Where bedrock
bluffs adjoined the river, breaking rock with sledgehammers,
drilling with special bits, and blasting with black powder were
required to excavate a canal. Parallel to the canal and adjacent
to the river, an elevated towpath needed to be constructed. Dams
were required at strategic locations to divert river water into the
canal. Locks needed to be constructed at specific locations to
lift and lower the boats as the canal changed in elevation along
its length. Lock keepers needed lock houses to live in because
the canal would operate 24 hours a day. Necessary construc-
tion materials needed to be brought in, such as dimension stone
for locks, lock houses, culverts, and aqueducts; stone rubble for
towpath fill; clay to line the canal; cement for mortar; iron and
manganese for the production of iron for lock fittings; and lum-
ber for lock gates and forms.

The 184.5-mi-long canal and towpath eventually
required an infrastructure of over 74 lift locks and lock
houses, 11 aqueducts, more than 182 culverts and waste
weirs, 7 dams, and 1 tunnel through bedrock. As a result,
building stone was in great demand for the project. The fac-
ing of all locks, aqueducts, and culverts required cut or ham-
mer-dressed stone. Sandstone and limestone were highly
desired because the rocks could be easily split along bedding



surfaces, providing two smooth sides for a typical block. The
locations of locks, aqueducts, dams, and the known quarry
sites for building stone are shown on figure 22 (1828 to
1850). During construction, the dimension stone and cement
were transported to the canal by river barge, wagon, and rail.
Subsequent repairs to these structures have used stone, brick,
and concrete in modern time.

Construction of the canal, towpath, and other structures
between the Georgetown section of Washington, D.C., and
Cumberland, Md., took 22 years. Discussions and illustra-
tions of the engineering and construction of the canal are pro-
vided in the Chesapeake and Ohio Canal Official National
Park Handbook (National Park Service, 1991, p. 32-37) and in
Davies (1971, 1999).

Canal Excavation and Towpath

The dimensions of the canal are 6 ft deep, 48 ft wide at
the base, and 60 ft wide at the surface; upriver of Harpers Ferry,
the dimensions are slightly smaller. The canal was excavated
mostly by pick and shovel in unconsolidated Quaternary alluvial
gravel, sand, silt, and clay. These materials were dug out and
then placed on the riverside to form the towpath. Flood scour in
1996 revealed that the towpath locally is a stone crib of vertical
blocks filled with soil and capped with gravel. Stone embank-
ments and berms were constructed locally along the river, adja-
cent to the towpath (fig. 23), and sometimes even on the far side
of the canal to keep floodwaters out; examples may be seen at
the McKee-Besher Wildlife Management Area west of Seneca,
Md., and at Big Pool. The canal prism was lined with imper-
vious clay to hold water (fig. 24). The source of the clay is not
known. Karst in limestone must have caused local water loss
because today there are caves exposed in the dry canal.

Excavating the C&O Canal could not be accomplished
in the same exact manner as the 363-mi-long Erie Canal in
New York, which was under construction from 1817 to 1825
and is located almost entirely in thick unconsolidated glacial
till, outwash, and alluvium. About 34 mi of the C&O Canal
and towpath had to be drilled and blasted through bedrock
using sledgehammers, star-bit drill rods, and black powder
(fig. 25A). Many of the drillholes may still be seen along the
bluffs and in the canal bed. Men roped themselves to trees or
hung over cliffs and used sledgehammers to pound steel rods
(fig. 25B) held by other trustworthy men. Bedrock excavated
for the adjacent railroad and canal berm was used as fill to cre-
ate the towpath (fig. 25C).

A 3,118-ft-long tunnel (fig. 26) was excavated through
folded siltstone and shale of the Upper Devonian Brallier
Shale north of Paw Paw, W. Va., from 1836 to 1841 and from
1847 to 1850. The tunnel was the alternative to construct-
ing a canal along 6 mi of river meanders bordered by bed-
rock cliffs. As many as 44 men excavated 10 to 12 ft of tun-
nel each week using hand drills, picks, sledge hammers, and
black powder. There were two vertical shafts for access so
that the tunnel could be excavated from six positions. Debris
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hauled up the shafts was dumped in spoil piles above the
north portal.

Locks and Lock Stone

The water in the canal did not flow unimpeded from
Cumberland to Georgetown, like the water flows down the
Potomac River; instead, water in the canal was impounded at
a constant level and released 74 times as a boat made its trip.
There were 74 locks that raised westbound boats and lowered
eastbound boats an average of 8 ft to accommodate the change
in elevation of 605 ft along the length of the canal. The locks
are 100-ft-long, 15-ft-wide chambers made of stone on timber
foundations with watertight wooden gates at both ends.

There also were 12 river feeder locks and guard locks
that regulated the flow of water from the Potomac River into
the canal. Several of these river locks, such as at Goose Creek,
Va.; Shenandoah River in Harpers Ferry, W. Va.; and Shep-
herdstown, W. Va., were requested by the Virginia Legisla-
ture in 1833 to provide a means to transport Virginia prod-
ucts to market. The Goose Creek and Little River Navigation
provided access from the canal to as far west as Middle-
burg, Va. (Trout, 1991). The Shenandoah River lock at Harp-
ers Ferry was built by the Patowmack Company for access as
well. Skirting canals associated with the Patowmack Canal
remain on the Virginia shore opposite Seneca and Weverton,
Md. River locks also were used to take boats into the Potomac
River where bluffs prevented construction of a canal, such as
at Big Slackwater.

The dominant building material required for the C&O
Canal was dimension stone. Sandstone of the Lower Creta-
ceous Potomac Formation (informally called “Aquia Sand-
stone”) was quarried from Aquia Creek in Stafford County,
Va., and transported by barge over 35 mi up the Potomac River
for use in Locks 1 to 7 (fig. 27). Sandstone of the Upper Tri-
assic Poolesville Member of the Manassas Sandstone (infor-
mally called “Seneca Red Sandstone”) was quarried mostly at
Seneca, Md., (fig. 28) with smaller amounts quarried north of
MM 46 east of Point of Rocks, Md. This sandstone was used
in Locks 7 to 13, 15 to 24 (fig. 29), 25 to 30, 33, and 34. Ordo-
vician Ellicott City Granodiorite from the Patapsco River val-
ley in eastern Maryland was used in Locks 14, 28 (fig. 30)
to 30, 32, and 33. Lower Cambrian(?) Sugarloaf Mountain
Quartzite quarried from the southern base of Sugarloaf Moun-
tain was used in Lock 28.

Locks 31 and 33 used a combination of local Lower
Cambrian stones that included quartzite of the Weverton For-
mation (fig. 31), limestone, metasiltstone of the Harpers For-
mation, as well as Upper Triassic Manassas Sandstone. In the
Great Valley section, locally quarried limestone (fig. 32) was
used extensively from Lock 32 to Lock 53, as well as in Locks
56 and 57. Locks 53 to 57 used sandstone and limestone that
were excavated along the canal. Locks 58 to 67 used Devo-
nian sandstone and shale that also were locally excavated
along the canal. Some of these locks were lined with wood
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Table 1.
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Dimension stone used for the C&0 Canal locks and aqueducts and the source geologic unit.

[See figure 22 for locations of locks and aqueducts. Names in parentheses are informal names]

Lock number or aqueduct name

Dimension stone

Geologic unit

1-7 Sandstone
7-13, 15-27, 28-30, 33-34
14, 28-30, 32-33

Sandstone

Granodiorite

28 Quartzite
31, 33, 53-67 Mixture
32-53, 56-57 Limestone
68, 70-71 Sandstone
Seneca Creek Sandstone
Sideling Hill Creek, Town Creek Sandstone

Catoctin Creek Granodiorite

Monocacy River Quartzite

Antietam Creek, Conococheague Creek, Licking Limestone
Creek, Tonoloway Creek, Sideling Hill Creek,

Fifteen Mile Creek, Town Creek, and Evitts Creek

Potomac Group (Aquia Sandstone)

Poolesville Member of Manassas Sandstone (Seneca Red Sandstone)
Ellicott City Granodiorite

Sugarloaf Mountain Quartzite

Local stones quarried nearby

Variable. Limestone unit usually quarried nearby

Oriskany Sandstone

Poolesville Member of Manassas Sandstone (Seneca Red Sandstone)
Variable. Sandstone unit usually quarried nearby

Ellicott City Granodiorite

Sugarloaf Mountain Quartzite

Variable. Limestone unit usually quarried nearby

A B

c

Figure 23. Stone berms constructed to prevent erosion between the towpath and the Potomac River. A, Mary’s Wall (MM 14). Towpath
is above the wall. B, Near Blockhouse Point (MM 21). C, At Devil's Eyebrow, west of Hancock (MM 127.5). Historical photograph by

Charles D. Walcott (U.S. Geological Survey, 1897).

Figure 24. An example of modern erosion in the canal near Lock
34 (west of MM 62) that has exposed the clay liner (above the
rock hammer) that was placed above rubble fill (below the rock
hammer) to hold water. This clay was probably taken from the
residuum that developed on the carbonate rocks of the Tomstown
Formation near Fort Duncan to the immediate west.

planks (fig. 33) to help seal water that leaked from between
the masonry stones. Sandstone of the Lower Devonian Oris-
kany Sandstone was used in Locks 68, 70, and 71 because it
had been excavated to build the canal.

Cement

More than 500,000 barrels of cement were used to bond
the stone in the locks and aqueducts. From 1828 to 1837,
cement plants were built along or near the Potomac River
at Tuscarora, Md.; Shepherdstown, W. Va.; Hooks Mill and
Roundtop Hill near Hancock, Md.; Leopards Mill near Dam
6; and at Cumberland, Md. (Hahn and Kemp, 1994). Begin-
ning in 1837, limestone from the Upper Silurian Wills Creek
Formation was quarried or mined and used for cement by the
Round Top Cement Company, located west of Hancock along
the C&O Canal (fig. 34). This company provided cement not
only for the canal masonry, but also for the construction of the



26 Geology of the Chesapeake and Ohio Canal National Historical Park and Potomac River Corridor

Drill rod
A A
Drill holes
B B
c c
Figure 26. Historical photographs of Paw Paw Tunnel, near
Figure 25. Evidence of excavated bedrock. A, Drill holes and MM 155. A, View of the south portal, looking north (1904). Pho-

drill rod (indicated by arrow) stuck in a limestone cliff about 50 ft
above Big Slackwater (MIM 87.5). B, Drill holes in metagraywacke

over 50 ft above the canal at Blockhouse Point (MM 21). C, Histori-

cal photograph (around 1904-1906) showing that bedrock exca-
vated for the Western Maryland Railroad (on the left) was used to
fill the towpath of the C&0 Canal east of Oldtown, Md., near MM
164. Photograph courtesy of the National Park Service.

tograph courtesy of National Park Service (NPS). B, View of the
north portal, looking south (around 1900). The tunnel penetrates
the southeast limb of an anticline of shale and thin sandstone of
Upper Devonian Brallier Shale. The anticline’s crest is exposed
above the upper-right stonework of the north portal. Photograph
courtesy of NPS. C, Brick lining of the 3,118-ft-long tunnel. Photo-
graph courtesy of NPS.
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B

Figure 27. Examples of Lower Cretaceous Potomac Formation
(informally called “Aquia Sandstone”). A, Cut blocks of Potomac
Formation used in construction of Lock 6. B, Closeup of A showing
crossbedding and rounded quartz clasts. C, Grooves in the friable
Potomac Formation made by the rope that mules used to pull

C canal boats (penny for scale).

A B

Figure 28. Upper Triassic Poolesville Member of the Manassas Sandstone (informally called “Seneca Red Sandstone”) was drilled
and quarried for dimension stone along the bluffs west of Seneca, Md. A, View of quarry wall showing three vertical drill holes visible
in the quarry face. B, Dressed blocks (showing hammer and chisel marks) in the ruins of the Seneca Stone Cutting Mill, located 300 ft
north of MM 23.
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Smooth-cut
blocks

Rough-cut
blocks

A B

Figure 29. East end of Lock 24 (Rileys Lock at MM 23). A, Smooth-cut (wire saw) and rough-cut (hammer dressed) blocks of Upper Tri-
assic Poolesville Member of Manassas Sandstone (informally called “Seneca Red Sandstone”). B, Closeup of rough-cut block showing
beds of finer grained siltstone interbedded with sandstone.

Figure 30. Nonfoliated
Ordovician Ellicott City
Granodiorite. A, Blocks
of the granodiorite were
used in the construction
of Lock 28, near MM 49.
B, Closeup of A showing
a crystalline texture
exhibited by amphibole
(dark) and feldspar

A B (light) crystals.

A B

Figure 31. Quartzite of the Lower Cambrian Weverton Formation. A, Blocks of the quartzite were used to construct Lock 31 at MM 58.
B, Closeup of A showing the vitreous orthoquartzite variety of the Weverton Formation; elsewhere, the Weverton is a granular quartzite.



A B
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Figure 32. Limestone of the
Lower Cambrian Bolivar Heights
Member of the Tomstown For-
mation. A, Blocks of limestone
were used in the construction
of Lock 37 (Mountain Lock) just
south of MM 67. B, Closeup of A
showing beds (vertical) and bur-
rows accentuated by cleavage
(horizontal). Elsewhere in the
Valley and Ridge province, the
Bolivar Heights is a thin-bed-
ded, laminated limestone and
was a popular choice for dimen-
sion stone.

Figure 33. Lock 60 at MM
149.5, which was constructed
from locally quarried, rough-
cut sandstone of the Upper
Devonian Foreknobs Formation.
Wood planks lined the walls to
help prevent water from leak-
ing out of the canal through
the stone blocks. Photograph
courtesy of the National Park
Service.

Figure 34. Round Top Cement Company, west of Hancock, Md., where limestone was quarried, mined, and processed. A, Historical
photograph (not dated) provides view of the plant and its surroundings from downstream along the canal. B, Historical photograph

(1907) showing the plant buildings. Both photographs courtesy of National Park Service.
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Washington Monument in Washington, D.C., and the Cabin
John Bridge, which carries MacArthur Boulevard over the
Cabin John Parkway in Montgomery County, Maryland.

Aqueducts, Culverts, and Waste Weirs

With the exception of the Broad Run Trunk (Aqueduct)
that was made of wood planks, the other 10 aqueducts were
impressive structures made of stone that did not leak. The Alex-
andria Aqueduct carried boats over the Potomac River to the
Alexandria wharf in Virginia. The Seneca Creek Aqueduct (fig.
35) was constructed from Upper Triassic Manassas Sandstone
that was quarried to the immediate west. The Monocacy River
Aqueduct (fig. 36) used quartzite of the Lower Cambrian(?)
Sugarloaf Mountain Quartzite. This granular white rock was
quarried at the base of Sugarloaf Mountain near the Frederick-
Montgomery County line and hauled to the site by horse-drawn

B

Figure 35. Seneca Creek Aqueduct, just east of MM 23. A,
Historical photograph (undated) showing view of water-filled
aqueduct. Photograph courtesy of the National Park Service. B,
The aqueduct is constructed of smooth-cut Upper Triassic Manas-
sas Sandstone.

wagon and light rail. The Catoctin Creek Aqueduct, now in
ruins, used Ordovician Ellicott City Granodiorite from the Pat-
apsco River valley (in northern Maryland) and Manassas Sand-
stone from the Seneca Quarry. Parts or all of the aqueducts at
Antietam Creek, Conococheague Creek, Licking Creek, Tonolo-
way Creek, Sideling Hill Creek, Fifteenmile Creek, Town
Creek, and Evitts Creek were constructed of limestone quarried
nearby. The aqueducts at Sideling Hill Creek and Town Creek
also used locally quarried sandstone.

More than 200 culverts mostly were constructed from
local stone, lined with brick, and dressed with cut stone. The
culverts carried water from Potomac River tributaries beneath

B

Figure 36. The Monocacy River Aqueduct at MM 42. A, Histori-
cal photograph (undated) looking upstream at the Monocacy
River. Photograph courtesy of the National Park Service. B, The
aqueduct is constructed from smooth-cut blocks of Early Cam-
brian(?) Sugarloaf Mountain Quartzite.



the canal and towpath. Waste weirs were ditches and flumes
lined with stone that were used to control the water level in the
canal by diverting excess water around the locks.

Dams

Dams were constructed near the top of natural steep gra-
dients in the river in order to raise the level of water to feed the
canal. The seven dams have foundations that rest on bedrock
and all of the dams were constructed where resistant bedrock
(metagraywacke and sandstone) crops out as ledges to create
shallow falls.

Dam 1 was built in the 1750s at Little Falls in the east-
ern Piedmont. Dam 2 was built in 1828 at Seneca Falls, which
is located on metagraywacke of the Mather Gorge Formation,
at the eastern margin of the Culpeper basin in the eastern Pied-
mont. Both are rubble dams constructed of blocks and boul-
ders of local rock. Dam 3 (built in 1879 near Harpers Ferry),
which is located on sandstone of the Antietam Formation,
was a crib timber dam (fig. 37) that later was replaced with
masonry. Dam 4 (built between 1832 and 1834), Dam 5 (built
between 1833 and 1835), and Dam 6 (built in 1839 east of
Woodmont, Md., on the Oriskany Sandstone) (fig. 38) were
timber-framed dams that were filled with stone and covered
with wooden planks. Dam 8 at Cumberland was a masonry
dam that was removed in 1958 for flood control. Dam 7 was
planned for near Paw Paw, W. Va., but was not constructed for
unknown reasons.

Control of Geology on Engineering

Several engineering features are worth mentioning here
because they illustrate the challenge posed by the geology in
the construction of the C&O Canal.

(1) From near MM 2 in Georgetown to Great Falls Tavern
(MM 14), the canal and towpath were built on an incised chan-

Geologic Setting 1|

nel on a bedrock strath terrace of the Potomac River. From
near Cropley (MM 12) to MM 14, the canal used an aban-
doned channel of the Potomac River known as Widewater
(fig. 39). This channel was cut into the bedrock terrace by the
river, which later abandoned this course and migrated south
to its present course. Because the channel was wider than

the locks, timber abutments were used to fill the gaps. Chan-
nels from Widewater to the present river have wooden dams to
keep floodwaters away from the towpath and canal. The tow-
path was constructed along a rocky stretch of ground adjoin-
ing Widewater.

(2) At four locations, bedrock bluffs prevented construc-
tion of a canal and towpath. From MM 85.5 to MM 88.8 south
of Hagerstown, Md., the north shore of the Potomac River
is lined with high bluffs of Stonehenge Limestone and has
no flood plain. This problem was solved, at Dam 4 and Big
Slackwater, by having boats enter the Potomac River at Guard
Lock 4 and rejoin the canal 4 mi upriver at Lock 41. The tow-
path along this stretch is a narrow bench that was drilled and
blasted into the limestone bluff (fig. 40A). In order to avoid
river bluffs beyond MM 154, the canal and towpath were con-
structed in a ravine that is a tributary to the Potomac River.
This section then leads to the 3,118-ft-long tunnel through
shale and siltstone near Paw Paw, W. Va. The canal and tow-
path use the valley of Mill Run near Oldtown, Md., to bypass
bedrock cliffs; here, both the canal and towpath were exca-
vated through shale (fig. 40B).

(3) Four Locks (MM 108.5) routed the canal through an
abandoned channel that probably once was a tributary of the
Potomac River; the rerouting was necessary in order to cut off
the 7-mi-long “neck.”

(4) Big Pool (MM 113 to MM 114) and Little Pool (MM
120) are lakes that were created by building dikes, levees,
and berms on a broad low-lying flood plain, and then filling
the resulting structure with water diverted from the canal and
river. The towpath was located on a higher ridge or intervening
island; therefore, a canal prism did not have to be excavated
and constructed.

Figure 37. Historical photo-
graph (1936) of Dam 3, which
was a timber crib filled with
stone located north of Harpers
Ferry, W. Va., near MM 62.5.
View is to the south. Photo-
graph courtesy of the National
Park Service.
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Figure 38. Dam 6, which was
located north of Great Cacapon,
W. Va., near MM 134. A, Histori-
cal photograph (around 1900),
looking south, of the wood-
planked, stone-filled crib of
Dam 6. B, Historical photograph
(1938), looking north, of Dam 6
after being breached in the 1936
flood. In the upper-right back-
ground are west-dipping beds
of Lower Devonian Oriskany
Sandstone that provided rubble
for the fill. Both photographs are
courtesy of the National Park
Service.
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Figure 39. Historical photo-
graph (1940) showing recon-
struction of the towpath and
canal at Widewater. The canal
occupied an abandoned chan-
nel of the river. Photograph
courtesy of National Park
Service

Figure 40. Excavation of the
canal through bedrock. A,
View of the towpath adjacent
to the Potomac River at Big
Slackwater (MM 87.5), where
canal boats used the river.
Limestone cliffs adjacent to
the river prevented construc-
tion of the canal. B, West of
Oldtown, Md. (MM 168), both
the towpath and canal were
excavated through thin-bed-
ded fissile shale of the Devo-
nian Mahantango Formation.
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Geologic Guide

For the following Geologic Guide, please refer to
plates 2 through 20 for detailed geologic maps of the entire
C&O Canal and the Potomac River corridor. An index to
plates 2 through 20 is found on plate 1. Map-unit symbols
shown in this guide correspond to those used on plates 2
through 20.

Piedmont Province—Potomac Terrane

Georgetown Section of Washington, D.C., to
Seneca, Md. (MM 0 to MM 23)

Access Points

Georgetown section of Washington, D.C., south of M
Street, N.W.

Clara Barton Memorial Parkway

Carderock

MacArthur Boulevard

Great Falls Tavern Visitor Center

Swains Lock, off River Road

Wiatts Branch Park

Pennyfield Lock, off River Road

Violettes Lock, off River Road

Rileys Lock, off River Road

Introduction

The Potomac River has cut a beautiful gorge through the
complexly deformed crystalline metamorphic rocks of the
Potomac terrane (fig. 41). These rocks formed when sediments
and extrusive volcanic material were deposited in Neoprotero-
zoic and Early Cambrian time (about 550 Ma); the rocks sub-
sequently were transported and deformed along thrust faults.
Debris shed from the thrust sheets mixed with unconsolidated
sediments to form a tectonic mélange (mixture of rocks). A
modern analog would be the rock debris that calves off of the
front of an advancing glacier.

Along the Potomac River, Drake (1989) mapped the
Mather Gorge-Sykesville tectonic motif, which is a geologic
structure that formed when rocks of the older Mather Gorge
Formation overrode the younger Sykesville Formation along
the Plummers Island thrust fault. The Neoproterozoic and (or)
Lower Cambrian Mather Gorge Formation consists of quartz-
rich schist and metagraywacke (€zmg) that has been sheared
locally to form phyllonite (€zmp). These rocks originally
formed as turbidites deposited in a submarine fan (Drake and
Morgan, 1981). The complexly deformed and polymetamor-
phosed Mather Gorge Formation locally contains migmatite

(€zmm), which is rock that was partially melted due to heat and
pressure. The Mather Gorge Formation also contains mappable
bodies of ultramafic rock (such as serpentinite, talc, actinolite
schist mapped as €zu), and amphibolite (€za) that were derived
from oceanic crust. The Lower Cambrian Sykesville Formation
(€s) is a mélange that consists of quartz- and feldspar-rich sed-
imentary rock that contains fragments and blocks of phyllonite
derived from the Mather Gorge Formation. The Sykesville For-
mation also contains exotic blocks and cobbles of granitoids,
schist, and vein quartz that were incorporated into the giant sub-
marine-slide deposit (Drake and Morgan, 1981).

The Lower Cambrian Laurel Formation (€1, shown only
on plate 1) of the Loch Raven-Laurel tectonic motif is exposed
only at the ramp of Theodore Roosevelt Bridge in Washington,
D.C. The Laurel Formation resembles the Sykesville Forma-
tion, but differs in that it contains more numerous and a wider
variety of clasts.

East of the Plummers Island thrust fault, near the Amer-
ican Legion Bridge, four groups of igneous plutonic rocks
intrude the Sykesville Formation. They are, from oldest to
youngest based on isotopic dating (Aleinikoff and others,
2002), the Ordovician(?) Bear Island Granodiorite (Ob), and
Early to Middle Ordovician Dalecarlia Intrusive Suite (Odm,
0dt), Georgetown Intrusive Suite (Ogh, Ogb, Ogg, Ogu), and
Kensington Tonalite (Ok).

Regional metamorphism of the Mather Gorge Forma-
tion occurred at 490 Ma (Becker and others, 1993), which was
before the Taconian orogeny. Metamorphic mineral assem-
blages in rocks of the Potomac terrane range from chlorite grade
in the west to sillimanite grade in the east. Rocks of the Sykes-
ville Formation are at biotitexgarnet grade and rocks of the Lau-
rel Formation are at biotitexgarnet grade with local overgrowths
of staurolite. The deformation of these rocks started in Cam-
brian time during eastward subduction (Drake, 1989). The rocks
in the composite thrust sheets were then thrust onto the conti-
nental slope and rise deposits of the Westminster terrane during
subduction related to the Ordovician Taconian orogeny (fig. 4).

The spectacular scenery of the Potomac Gorge is a result
of the fairly recent incision by the Potomac River. Several dif-
ferent levels of strath terraces are cut into the bedrock. They
are mostly confined to the north shore of the Potomac River,
but some may be seen on the islands. These terraces are nearly
flat benches of bedrock with abundant potholes (see figures 8
and 9) and channels (Zen, 1997a). Upland areas, such as Card-
erock and the Palisades, are built upon such terraces. Upstream
of Great Falls, the river valley has a wide alluvial flood plain,
except for the area around Blockhouse Point, which forms a
promontory into the river.

Lower Cretaceous sand and gravel of the Potomac For-
mation (Kp) occur as erosional patches in Arlington, Va., and
Washington, D.C. Marine clay, silt, and sand of the lower and
middle Miocene Calvert Formation overlie the Potomac For-
mation. Elsewhere, gravel, sand, silt, and clay deposits range
in age from late Miocene to late Pliocene. These older deposits
are more weathered than the latest Tertiary(?) to late Pleistocene
alluvial terrace deposits (QTt) that occur at similar elevations.
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Georgetown to Glen Echo Park Area (MM 0 to
MM 7)

The east end of the C&O Canal is at sea level at Tide-
water Lock (Lock 1), which is located at the confluence of
Rock Creek and the Potomac River (fig. 41 and plate 2) in
the Georgetown section of Washington, D.C. Rock Creek was
used as the canal for about 0.38 mi, beyond which the canal
was excavated in bedrock. Near Lock 1 is a National Historical
Marker attached to a block of the Lower Cambrian Sykesville
Formation that shows rock fragments in a fine-grained matrix
(fig. 42). Theodore Roosevelt Island and bluffs in Washing-
ton, D.C., and Arlington County, Va., are underlain by similar
bedrock. Rocks of the Sykesville Formation (€s) first crop out
in the canal bed at the National Park Service’s (NPS) George-
town Visitor Center. Westward to near Three Sisters Islands
are igneous rocks of the Early to Middle Ordovician George-
town Intrusive Suite, which are mostly biotite-hornblende
tonalite (Ogh), with some gabbro (Ogg) and biotite tonalite
(Ogb) (fig. 43). Outcrops show drill holes from the canal exca-
vation; locally, the canal berm was excavated in bedrock.

The remains of the Alexandria Aqueduct, which carried
boats across the Potomac River to Alexandria, Va., may be

Figure 42. Part of a National Historical Marker where the C&0
Canal enters Rock Creek. Dark and light olistoliths (rock frag-
ments) occur in metagraywacke of the Lower Cambrian Sykesville
Formation to which the marker is bolted.

seen under Key Bridge. The lock stones consist of quartz frag-
ments in a sandy matrix that are typical of the Sykesville For-
mation. Near MM 1.7, the canal is partially excavated into a
bedrock terrace and the towpath is elevated; here the Capital
Crescent Trail (a hike-and-bike trail) descends onto a younger
lower terrace. Beginning about here are large bedrock terraces
above and north of the canal that extend to near Widewater.

From MM 2 to MM 5, the canal traverses rocks of the
Sykesville Formation, which contains rare blocks of gab-
bro and amphibolite. The canal bed along this stretch locally
was excavated in bedrock, but many cobbles of quartz derived
from the Cretaceous and Pleistocene upland and terrace depos-
its litter the canal bottom (fig. 44A). Some of these cobbles
are crossbedded sandstone (fig. 44B) that probably was trans-
ported by the Potomac River from the Valley and Ridge prov-
ince west of Harpers Ferry (MM 110).

Little Falls Dam at MM 5.8 is the first of the eight orig-
inal dams that provided water to the canal. At about MM 6.5,
good outcrops of light-colored monzogranite of the Early to
Middle Ordovician Dalecarlia Intrusive Suite (Odm) may be
seen along the canal.

Glen Echo Park Area to Swains Lock (MM 7 to
MM 16.6)

From MM 7 to almost MM 10, the canal crosses rocks
of the Lower Cambrian Sykesville Formation (€s) that locally
were intruded by rocks of the Early to Middle Ordovician
Georgetown and Dalecarlia Intrusive Suites (plate 3). From MM
7.5 west to Interstate Route 1-495, these rocks had to be drilled
and blasted to create the canal. Between MM 9.5 and MM 10
is a major rock boundary within the Potomac terrane (see fig-
ure 41). Metasedimentary rocks of the older Neoproterozoic
and (or) Lower Cambrian Mather Gorge Formation were trans-
ported westward over rocks of the younger Sykesville Forma-
tion along the Plummers Island thrust fault. From here west to
Violettes Lock (except for an area near MM 11.5) are metagray-
wacke and schist of the Mather Gorge Formation (€zmg) that
originated as turbidite deposits in deep marine water. Phyllonite
(€zmp), which was produced by shearing along the faults, and
migmatite (€zmm), which was produced by partially melting
rock, also occur in this interval. Some of the best outcrops of the
Mather Gorge Formation in this region are along this section of
the Potomac River on Bear Island; to see them, take the Billy
Goat Trail that begins near the east end of Widewater. Relatively
undeformed rocks of the Sykesville Formation (fig. 45) become
very sheared near the Plummers Island thrust fault (fig. 46). On
bedrock islands in the Potomac River, the rocks are so sheared
that the two formations cannot be readily distinguished. From
about MM 9 to MM 11, the canal was excavated into the margin
of a broad bedrock terrace above the Potomac River (at Carder-
ock) and its berm is lined with rock.

Building stone from the Sykesville Formation was quarried
at the Potomac Granite Mill in the early 1900s near MM 11.7;
the abandoned pits are immediately north of the canal. This
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Figure 43. Igneous rocks of the Early to Middle Ordovician Georgetown Intrusive Suite near Key Bridge in Washington, D.C. The canal
was excavated through these rocks, which include leucocratic and melanocratic varieties. A, Leucocratic (light-colored) granitoid. B,
Closeup of A showing quartz and plagioclase crystals. Quarter for scale. C, Melanocratic (dark-colored) gabbro. D, Closeup of C show-
ing the crystalline texture of amphibole and plagioclase crystals. Quarter for scale.
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A

B

Figure 44. Sandstone cobbles along canal. A, View of alluvial sandstone cobbles that litter the canal; cobbles were derived from ter-
race deposits near MM 5.5. B, Example of a cobble with crossbedded laminations. Cobbles probably were derived originally from early
Paleozoic sandstone found west of Harpers Ferry, W. Va.; were carried by the Potomac River to this site; were next deposited as part of
the terrace deposits; and, finally, were deposited in the canal by erosion of the terrace. Quarter for scale.

Figure 45.
brian Sykesville Formation at MM 9.8 contains olistoliths (clasts)
of older rocks derived from the Neoproterozoic and (or) Lower
Cambrian Mather Gorge Formation. Lens cap for scale.

rock, which is a sedimentary mélange with large rock clasts,
was long thought by geologists to be a granite that contained
abundant xenoliths. The rocks of the Sykesville Formation, last

seen just west of Interstate Route 1-495, are exposed here again.

The structurally overlying rocks of the Mather Gorge Forma-
tion have been eroded to expose the rocks beneath the Plum-
mers Island thrust fault in a tectonic window (Drake and Froe-
lich, 1997). As with the Plummers Island thrust fault near MM
9.5, the fault that frames the tectonic window here is a penetra-
tive shear zone in the rocks on either side of the fault.

Undeformed sedimentary mélange of the Lower Cam-

Figure 46. Sheared mélange of the Lower Cambrian Sykesville
Formation near MM 11.5. Note elongated fragments of quartzite
and quartz in a matrix of quartz and feldspar above a bed of white
quartzite. Knife and keys for scale.

To the west of the parking area opposite Old Anglers Inn
is Widewater (MM 13), which is a section of the canal that
uses an abandoned channel of the Potomac River (figs. 12 and
47). The towpath locally had to be constructed above the chan-
nel (see figure 39), but elsewhere it was excavated in the bed-
rock terrace. Bedrock is well exposed in this region (Reed and
others, 1980). Folded vein quartz and phyllonite of the Mather
Gorge Formation (€zmp) show that deformation predates the
intrusion of the Ordovician(?) Bear Island Granodiorite (Ob)
(fig. 48). Upright antiforms consisting of isoclinal folds in meta-
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A
Figure 47. The Great Falls of the Potomac River. A, Stereoscopic
pair of aerial photographs with some features labeled. B, Oblique
aerial photograph (looking north). Photograph by Abbie Rowe

B (1959), courtesy of the National Park Service.

Vein quartz
Granodiorite
A B

Figure 48. Phyllonite of the Neoproterozoic and (or) Lower Cambrian Mather Gorge Formation near MM 12.5. A, Phyllonite and folded
vein quartz (white body outlined by black line). Binoculars for scale. B, Intrusion of undeformed Ordovician(?) Bear Island Granodiorite (Ob)
(white body outlined by black line) into phyllonite .
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graywacke are seen opposite the concrete structure at the over-
flow of Widewater. Dismembered folds of migmatitic metagray-
wacke of the Mather Gorge Formation (€zmg) are exposed on
both sides of Widewater (fig. 49). Bodies of dark amphibolite
(€za) and light-colored Bear Island Granodiorite and pegmatite
contrast with the gray migmatite (€zmm) (fig. 50). The amphib-
olite is dark due to hornblende crystals (fig. 51).

Vein quartz intruded the migmatite near Lock 15 (fig. 52).
Between the canal and MacArthur Boulevard to the north, gold
was discovered in similar vein quartz in 1861 and was mined
sporadically until 1951 (fig. 53). Trenches and pits from this
gold mining activity remain today (Reed and Reed, 1970).

Near MM 13.8 is “Mary’s Wall” (fig. 33A) where a rock
berm was required to keep water in the canal and floodwa-
ter of the Potomac River out of the canal. An elevated bed-
rock terrace formed across the islands and the opposite shore;
the alluvial boulders deposited at the crest of a feature locally
known as Glade Hill (figs. 13 and 14) in Great Falls Park, Va.,
are evidence of this terrace. On Bear Island and along Mather
Gorge are some of the largest potholes formed by the ancient
Potomac River (see figures 8 and 9). Rare Devonian lampro-
phyre dikes (D1) composed of fine-grained biotite, quartz, and
plagioclase are exposed in the bluff of Mather Gorge (fig. 54).
The dikes intruded schist of the Mather Gorge Formation
(€zms) along a prominent set of fractures that have remained
open for 360 m.y. in spite of intervening tectonic activity.

A

Figure 49.
of metagraywacke. Pocket knives for scale.

The complex deformation that occurred before the Ordo-
vician Taconian orogeny may be seen in many outcrops on
Bear Island. The outcrops exhibit isoclinal folds of meta-
graywacke and schist that were refolded as upright antiforms
and then intruded by Ordovician pegmatite and granodiorite
(Drake, 1989) (fig. 55). From the approach to Great Falls Tav-
ern and westward to MM 16, the canal was excavated in allu-
vium deposited on a bedrock terrace.

Swains Lock to Seneca (MM 16.6 to MM 22.8)

From Swains Lock to Violettes Lock (plate 4), bluffs
consisting of metagraywacke and schist of the Neoprotero-
zoic and (or) Lower Cambrian Mather Gorge Formation
(€zmg) were drilled and blasted to construct the canal. The
best areas in which to see this feat of labor are near MM 19
and at Blockhouse Point (MM 21), where bedded metagray-
wacke shows near-vertical drill holes (see figure 25B). The
rocks along this section of the canal are complexly folded at
all scales. Isoclinal folds of metagraywacke and schist are
seen on the bluffs (fig. 56). Near Lock 23, the Upper Trias-
sic rocks of the Culpeper basin unconformably overlie schist
and metagraywacke of the Mather Gorge Formation. This
contact represents an interval of more than 320 m.y. of geo-
logic time.

B

Migmatite of the Neoproterozoic and (or) Lower Cambrian Mather Gorge Formation. A, Rootless, ductile folds. B, Thin layers
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Figure 50. Migmatite of the Neoproterozoic and (or) Lower Cambrian Mather Gorge Formation. A, Outcrop containing blocks of dark-
colored amphibolite intruded by light-colored Ordovician(?) Bear Island Granodiorite on an island in Mather Gorge along the Potomac
River south of MM 13. Photograph by David B. Usher (U.S. Geological Survey). B, Sketch of A with rock units labeled as follows: €Zmm,
migmatite of the Mather Gorge Formation; €za, amphibolite blocks within Mather Gorge Formation; Ob, Bear Island Granodiorite.
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Pegmatite Amphibolite

Pegmatite and
vein quartz

A B

Figure 51. Dark amphibolite within the Neoproterozoic and (or) Lower Cambrian Mather Gorge Formation intruded by white pegmatite
of the Ordovician(?) Bear Island Granodiorite. A, Qutcrop north of MM 13. B, Same outcrop as A shows amphibolite, which consists of
crystals of hornblende (dark) and plagioclase feldspar (light); the light-colored veins of pegmatite from the Bear Island Granodiorite and
quartz intrude the amphibolite. Pocket knife for scale.

Figure 52. Milky white,
fractured vein quartz intruding
metagraywacke of the Neopro-
terozoic and (or) Lower Cam-
brian Mather Gorge Formation

0 10 INCHES near Widewater near MM 13.5.

| ‘ Similar quartz contained gold
veins and was mined to the
immediate north.
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Figure 53. Underground gold mine north of Great Falls Tavern.
A, Block diagram based on illustration from Reed and Reed (1970).
B, Gold in a vein of quartz that measured 3 cm across. Photograph
courtesy of National Park Service.
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Figure 54. Late Devonian lam-
prophyre dikes intruding meta-
graywacke of the Neoprotero-
zoic and (or) Lower Cambrian
Mather Gorge Formation along
a prominent fracture system
(parallel to arrows) on Bear

Island south of Lock 16 at MM
/ / 13.8 (Reed and others, 1980).
Photograph by David F. Usher
Lamprophyre dikes in metagraywacke (U.S. Geological Survey).

Metagraywacke

=

Metagraywacke

Schist Intersection
lineation
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Figure 55. Folding in metagraywacke and schist of the Neoproterozoic and (or) Lower Cambrian Mather Gorge Formation (south of
MM 12.5in Virginia). A, Outcrop revealing the following events: recumbent folding (F:), upright folding (F,), and then intrusion by Ordovi-
cian(?) Bear Island Granodiorite (Ob) which also includes pegmatite (Reed and others, 1980; Drake, 1989). Ruler for scale, left of center.
Photograph by David F. Usher (U.S. Geological Survey). B, Sketch of A with features labeled as follows: Ob, Bear Island Granodiorite; F;,
first-generation recumbent fold; F,, second-generation upright fold.
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Figure 56. Folded metagraywacke of the Neoproterozoic and (or) Lower Cambrian Mather Gorge Formation, which is common from
Great Falls Tavern to Blockhouse Point. A, Bluffs at MM 19. B, Isoclinal folds of quartzite at Blockhouse Point (MM 21). C, Same location

as B, showing isoclinal upright folds. Lens cap for scale.

Piedmont Province—Culpeper Basin,
Westminster Terrane, and Frederick
Valley

Seneca, Md., to Point of Rocks, Md. (MM 22.8 to
MM 48.2)

Access Points

Seneca, Md.

McKee-Besher Wildlife Management Area, Md.
Edwards Ferry, Md.

Whites Ferry, Md.

Dickerson Regional Park, Md.

Monocacy River Aqueduct, Md.

Nolands Ferry, Md.

Point of Rocks, Md.

Introduction

From MM 22.8 to MM 48.2, the area of the C&O Canal
National Historical Park encompasses three sections of the
Piedmont province—the Culpeper basin, the Westminster ter-
rane, and the Frederick Valley. The towpath actually traverses
only the Culpeper basin and Frederick Valley, but other parts
of the park are located in the Westminster terrane. A discus-
sion of all three sections, from east to west, follows.

Culpeper basin.—At the end of the late Paleozoic, a con-
tinental collision (the Alleghanian orogeny) formed the Appa-
lachian Mountains. Some 10 m.y. later during the Meso-
zoic, extensional tectonics created rift basins on the continent,
which eventually caused the Atlantic Ocean to open. These
rift basins extended along the eastern edge of the Appalachian
orogen from Florida to Newfoundland, Canada. One of these
basins, the Culpeper basin, extends from central Virginia near
Culpeper, to Frederick, Md. The Culpeper basin once was con-
tinuous with the Gettysburg basin to the north of Frederick,
but the connecting rocks have since been eroded.
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The Culpeper basin is a half graben filled with strata that
dip westward into a border fault at the base of Catoctin Moun-
tain. Faulting occurred during and after sediment deposition in
the basin. Much later, the Potomac River followed a southeast-
erly course from Nolands Ferry (MM 44.5) to the mouth of the
Monocacy River (MM 42.2) along such a fault.

The Upper Triassic rocks in this part of the Culpeper basin
(fig. 41 and plates 4 through 7) consist of a basal conglomer-
ate overlain by and interbedded with sandstone and siltstone that
were deposited by rivers and lakes. There are two basal con-
glomerate units. The western part of the basin contains a varie-
gated limestone conglomerate of the Tuscarora Creek Member
of the Manassas Sandstone (kemt). The limestone clasts within
the conglomerate locally were derived from the Upper Cambrian
Frederick Formation and the Upper Cambrian and Lower Ordo-
vician Grove Formation. The basal conglomerate along the north
and east margin of the basin is the Reston Member of the Manas-
sas Sandstone (kRemr). This conglomerate is composed of locally
derived quartz and schist of the Potomac and \Westminster ter-
ranes. Overlying the Reston Member basal conglomerate is red
sandstone of the Poolesville Member of the Manassas Sandstone
(Remp) (informally known as the “Seneca Red Sandstone™). This
unit was quarried at Seneca and was one of the most widely used
building stones along the C&O Canal; it also was used to build
the original Smithsonian Institution building, popularly known
as “the castle” in Washington, D.C. The grain size of the sand-
stone becomes finer upward in the section to become the Balls
Bluff Member of the Bull Run Formation (kebb) (WWeems and
Olsen, 1997). Interbedded with the Balls Bluff Member from
near Whites Ferry, Md., to east of Furnace Mountain in Lou-
doun County, Va., is a variegated limestone conglomerate, the
Leesburg Member of the Bull Run Formation (kebl), which is
similar to the Tuscarora Creek Member of the Manassas Sand-
stone. Historical maps show quarries in the Leesburg Member
near Whites Ferry (Frye and Jefferson, 1775) and east of Point
of Rocks, Md. (Keith, 1894; Scheel, 1995). These conglomeratic
rocks are interpreted to be ancient debris-flow deposits on a large
alluvial fan that extended eastward from a highland near present-
day Catoctin Mountain (Smoot, 1989). Therefore, the limestone
conglomerate of the Tuscarora Creek Member and the Lees-
burg Member may be continuous in the subsurface. A significant
amount of Cambrian limestone must have been exposed on and
west of Catoctin Mountain in order to supply the abundant lime-
stone clasts for these units (Lindholm and others, 1979).

Near-vertical planar dikes and thick subhorizontal sills of
Early Jurassic diabase (Jd) intrude these Late Triassic sedimen-
tary rocks. Outcrops are scarce and the dike rocks commonly
occur only as a float of brown and gray cobbles and boulders.
Locally, the sedimentary rocks are altered by contact metamor-
phism that occurred when the molten diabase was intruded.

Within the Culpeper basin are some of the most exten-
sive alluvial-terrace deposits of the Potomac River. About 2
mi east of MM 37 and about 1 mi west of MM 41 in Loudoun
County, Va., these deposits lie at 288 and 240 ft, respectively,
above the Potomac River. Auger holes near Martinsburg, W.
Va., reveal deposits that are more than 40 ft thick; relief on the

terrace in Loudoun County suggests a thickness of over 100 ft
(Southworth, 1998).

The eastern margin of the Culpeper basin coincides with
the location of Dam 2 (MM 22.1), which was built where the
shallow, broad bed of the Potomac River crosses the resistant
metasedimentary rocks of the Mather Gorge Formation at Sen-
eca Falls (plate 4). The remains of a rubble dam, which was
constructed by placing local boulders on the bedrock ledges
in the riverbed, may be seen at Dam 2. On the Virginia shore
at Dam 2, a skirting canal that was variably called the “Seneca
Bypass,” “Seneca cut,” “Seneca break,” or “Washington cut,”
was used by George Washington’s Patowmack Company before
construction of the C&O Canal (Garrett and Garrett, 1987).

Westminster terrane.—Phyllite, metalimestone, and
metabasalt of unknown age occur north of the confluence of
the Potomac and Monocacy Rivers (plate 7). These rocks are
assigned, respectively, to the Neoproterozoic(?) and Lower
Cambrian(?) ljamsville Phyllite (€zi), Silver Run Limestone,
and Sams Creek Formation, and they were transported here
along the Martic thrust fault. These rocks are interpreted to be
deepwater deposits of the lapetus Ocean that were thrust west-
ward onto metasiltstone of the Lower and Middle Cambrian
Araby Formation (€ar) of the Frederick Valley. The Araby For-
mation and overlying Upper Cambrian Frederick Formation
were deposited on the continental shelf and subsequently were
folded into the Frederick Valley synclinorium (Southworth,
1996, 1998). The highly folded phyllite (fig. 57) and metalime-
stone (fig. 58) of the ljamsville Phyllite are best exposed along
the bluff of the Monocacy River immediately north of the canal
near MM 42.5, but there are rare outcrops within the flood
plain at Indian Flats. These rocks are truncated to the east along
a Mesozoic normal fault that juxtaposes Upper Triassic sand-
stone (Poolesville Member of the Manassas Sandstone) against
them. The terrace deposits at the north margin of Indian Flats
flood plain contain blocks of quartzite as much as 10 ft long
that were transported by the Potomac River during flood stages.

Frederick Valley.—Early to Late Cambrian metasedi-
mentary rocks are juxtaposed against older rocks of the east
limb of the Blue Ridge-South Mountain anticlinorium along
a Mesozoic normal fault that runs 22 mi from Furnace Moun-
tain, Va., to Catoctin Furnace, Md. (plate 6). These rocks con-
stitute the Frederick Valley synclinorium that is interpreted to
have formed along with the Blue Ridge-South Mountain anti-
clinorium during late Paleozoic deformation of the Allegha-
nian orogeny. The oldest rocks are quartz-rich metasiltstone
of the Lower and Middle Cambrian Araby Formation (€ar),
which was deposited in a basin (Reinhardt, 1974). The type
locality is to the north near the Monocacy River at Araby Sta-
tion. Overlying these rocks is limestone of the Upper Cam-
brian Frederick Formation (€f, €fa, €fr), which marks the
beginning of the development of the passive continental mar-
gin during Cambrian and Ordovician time. Mesozoic normal
faults along the Potomac River cause the bedrock in Virginia
to be quite different from that in Maryland.

East of Catoctin Mountain in Virginia and Maryland are
Cambrian rocks of the Antietam, Tomstown, and Frederick
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Formations that underlie the Furnace Mountain area. The iron-
and manganese-rich arkosic sandstone of the Lower Cambrian
Antietam Formation (€ca) was mined in the 1800s for man-
ganese. With the exception of the dark-gray, graphitic phyl-
lite exposed in excavations, this sequence of rocks is the same
as the sequence exposed on the westernmost limb of the Blue
Ridge-South Mountain anticlinorium west of Harpers Ferry,
W. Va.

Highly cleaved, tan and gray metasiltstone of the Lower
and Middle Cambrian Araby Formation (€ar) is exposed in
the railroad cut opposite the broad flood plain from MM 42.6
to MM 44 (fig. 59). Gray limestone of the Upper Cambrian
Frederick Formation occurs in several varieties: thin-bedded
limestone (€f) is exposed along New Design Road and along
Tuscarora Creek near Nolands Ferry (fig. 60A), limestone con-
glomeratic breccia (€fr) is exposed near the Monocacy River
(fig. 60B), and thin, folded argillaceous limestone interbed-
ded with shale (€fa) is exposed in Virginia (fig. 60C). Sim-
ilar limestone was used to build the water treatment facility
along the towpath near MM 44.5. North of Nolands Ferry, the
limestone is overlain by patches of limestone conglomerate of
the Upper Triassic Tuscarora Creek Member of the Manassas
Sandstone (Remt) as well as by coarse Quaternary alluvium.
Of note is the conical hill covered with rounded cobbles of
quartzite and sandstone north of the intersection of Maryland
Route 28 and New Design Road (fig. 61). The conical shape of

Figure 57. Sheared phyllite (to the right of the hammer) and
folded white vein quartz (to the left of the hammer) of the Neo-
proterozoic(?) and Lower Cambrian(?) ljamsville Phyllite that lies
above the Martic thrust fault along the Monocacy River, north of
Indian Flats campsite (MM 42.5).

the hill and the cobble deposit resulted when coarse alluvium
filled a sinkhole in limestone. The resistant quartz cobbles in
the alluvium protected the otherwise soluble limestone below.
As erosion progressed, the limestone elsewhere dissolved,
except for the protected depression. This process resulted in a
topographic inversion; that is, the depression became a hill.

Seneca to Edwards Ferry (MM 22.8 to MM 30.8)

The nature of the Potomac River changes dramatically
here (fig. 62). To the west of Seneca Creek, the river valley is
broad with many elevated terraces, but to the east, the Potomac
has cut a gorge with abundant outcrops forming the falls and
islands.

The Upper Triassic basal conglomerate of the Reston
Member of the Manassas Sandstone (kemr) is poorly exposed
north of River Road and contains cobbles of vein quartz and
schist (derived from the underlying Neoproterozoic and (or)
Lower Cambrian Mather Gorge Formation) in a matrix of
arkosic sandstone (fig. 63). Near MM 23, the Seneca Creek
Agueduct (fig. 35), lock keeper’s house, and Seneca Stone
Cutting Mill (fig. 28) are constructed from the red sandstone
of the Upper Triassic Poolesville Member of the Manassas
Sandstone (kRemp) (informally known as “Seneca Red Sand-
stone”). This rock was quarried extensively on the Potomac
River bluffs west of the aqueduct. The quarries opened in
1774 and operated until 1898 (Davies, 1999). The large water
impoundment between the towpath and bluffs was constructed
as a holding basin for the barges that transported the stone.
Along the bluffs from here to MM 24 are abandoned sand-
stone quarries, at least one of which also contained copper
deposits.

Near MM 24, siltstone is more dominant than sandstone,
so the rocks are assigned to the Upper Triassic Balls Bluff

Figure 58. Tightly folded, thin-bedded limestone within the ljams-
ville Phyllite along the Monocacy River. Hand lens for scale.
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Figure 59. Metasiltstone of the Lower and Middle Cambrian Araby
Formation showing foliation with near-vertical cleavage along the
CSXT railroad north of MM 43. View is about 1 foot across.

Member of the Bull Run Formation (kcbb). Finer grained
siltstone is rather poorly exposed along the canal but can be
seen at the member’s type locality in the bluffs of Balls Bluff
National Cemetery in Virginia, across the river from MM 34.

From MM 24 to MM 30, the canal and towpath cross the
broad flood plain within the McKee-Besher Wildlife Manage-
ment Area. The lowland required berms to be built above the
canal to keep out floodwater and overbank deposits of silt.

Near the Chisel Branch campsite, west of MM 30, is the
only siltstone exposed until almost MM 38. At Chisel Branch,
the rock had to be drilled and blasted to construct the canal.
Just to the west, the Goose Creek River Lock (Lock 25) con-
nected the C&O Canal with the Goose Creek and Little River
Navigation (Trout, 1991), a canal that was used to transport
goods as far away as Middleburg, Va.

Edwards Ferry to Monocacy Aqueduct (MM 30.8
to MM 42.2)

Near MM 32 are the remains of the Broad Run Trunk
(Aqueduct), the only aqueduct along the canal constructed
from wood. To the west beyond MM 32.5, the canal and tow-
path cross the flood plain. Scattered on the flood plain are large
blocks of quartzite that were transported by the Potomac River
during floods. At Whites Ferry (MM 35.5) are the remains of a
large bridge, constructed from red sandstone, that carried ferry

users across the canal to the river. From near MM 38 to west of
the Marble Quarry campsite (plate 6), graded beds of limestone
conglomerate (Upper Triassic Leesburg Member of the Bull
Run Formation, Rebl) (fig. 64) are interbedded with siltstone and
sandstone. These conglomerates are ancient distal debris flows
that brought carbonate clasts derived from north and west of
Catoctin Mountain into a basin of muddy silt. An Early Jurassic
diabase dike (Jd) intrudes the conglomeratic rock. Also present
within the Leesburg Member are limestone clasts derived from
the Frederick Formation. These clasts were metamorphosed
into white marble that was quarried for agricultural lime. Native
Americans lived on the islands and along the shore of this sec-
tion of the Potomac River; some of their most well preserved
fish weirs (fig. 10) are found here (Scheel, 1995; Guzy, 2000).
From near MM 41 north to the Monocacy River good
outcrops of siltstone interbedded with sandstone of the Pooles-
ville Member of the Manassas Sandstone (plate 7) may be
seen. These outcrops exhibit drill holes and the remnants
of small quarries (fig. 64). The Monocacy River Aqueduct
(fig. 36) was constructed from white Lower Cambrian(?) Sug-
arloaf Mountain Quartzite quarried from the southern part of
Sugarloaf Mountain in Frederick County, Md., and transported
here by horse and wagon and by light rail.

Monocacy Aqueduct to Point of Rocks (MM 42.2
to MM 48.2)

From MM 42 to near MM 47.5, the canal and towpath
cross a broad flood-plain deposit on Triassic rocks that are,
in part, downfaulted against older rocks of the Piedmont to
the north (plate 7). Limestone conglomerate of the Upper
Triassic Tuscarora Creek Member of the Manassas Sand-
stone (Remt) crops out on the flood plain of Indian Flats and
looks identical to conglomerate of the Upper Triassic Lees-
burg Member of the Bull Run Formation (Rebl) that occurs
near MM 47. The Leesburg Member, which was informally
called “Potomac marble” or “Calico rock” was quarried here
for the columns of Statuary Hall in the U.S. Capitol building
in Washington, D.C. (fig. 65B). Indian Flats was undoubtedly
the site of a major village of Native Americans. Upstream
of MM 43, a complex fish weir may be seen in the Potomac
River (fig. 9).

From about MM 47.5 to MM 48.2, the area is underlain
by limestone of the Lower Cambrian Tomstown Formation
(€1) (fig. 66A), which is exposed only in the Virginia portion
of the map. Extensive alluvial and colluvial deposits (fig. 66B)
mantle the bedrock so that only water-well records and drill
core (Hoy and Schumaker, 1956) reveal its presence in Mary-
land. Kanawha Spring (also known as “Big Spring”) dis-
charges from the limestone near MM 47.5. Stratigraphically
beneath the Tomstown Formation is a dark, carbonaceous,
and graphitic phyllite unit that produces a distinctive ashy soil
where exposed in excavations (fig. 67A). Similar black shales
are found locally within the limestone of the Upper Cam-
brian Frederick Formation (Southworth and Brezinski, 2003).
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Figure 60. Examples of the varieties of limestone in the Upper
Cambrian Frederick Formation. A, Thin-bedded limestone is
exposed in Tuscarora Creek north of Nolands Ferry. Pocket knife
for scale, top center. B, Platy limestone conglomerate breccia
near the Monocacy River, about 2 mi north of the map area. Brun-
ton compass for scale. C, Folded, thin limestone beds interbedded
with shale south of the Potomac River in Virginia, opposite MM
47.5.

Figure 61. Conical hill north
of Nolands Ferry and Mary-
land Route 28 representing
topographic inversion. A,
Broad view of the hill showing
its conical form. B, Closeup
view of the slopes of the coni-
cal hill showing the cobbles of
sandstone and quartzite that
were deposited in a sinkhole
in limestone. The surround-
ing limestone has since been
eroded while the resistant
sandstone and quartzite

gravel remained and armor
B the hill.
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Figure 62. Stereoscopic pair of aerial photographs showing the change in the morphology of the Potomac River valley in the Piedmont
province across the boundary (shown by the solid line) between the Culpeper basin (west) and Potomac terrane (east). Note that the
Potomac terrane is dissected and the Culpeper basin has a broader flood plain. The tonal change in the river is Seneca Falls and the
rubble remains of Dam 2. Seneca Break was a skirting canal constructed around Seneca Falls by George Washington's Patowmack
Company; canal towpath indicated by dashed white line.

Figure 63. Conglomerate of the Upper Triassic Reston Member
of the Manassas Sandstone that forms the base of the Culpeper
basin. The conglomerate includes rounded cobbles of vein quartz
and metamorphic rocks. Knife and keys for scale.
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A B

Figure 64. Limestone conglomerate interbedded with red siltstone of the Upper Triassic Leesburg Member of the Balls Bluff Siltstone.
A, Outcrop of Leesburg Member in bluffs opposite Marble Quarry campsite. Hammer's head lies on an Early Jurassic diabase dike that
intruded the conglomerate and locally metamorphosed the limestone clasts to marble. B, Conglomerate of the Leesburg Member, which
was excavated to create the floor of the canal. Quarter for scale.

A B

Figure 65. Limestone conglomerate of the Upper Triassic Leeshurg Member of the Bull Run Formation. A, Conglomerate near MM 47.
The canal was excavated through this unit, and it was quarried to the immediate east. B, Ornamental columns of Statuary Hall in the
U.S. Capitol Building formed from the Leesburg Member. Photograph courtesy of the National Park Service.
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The graphitic phyllites were deposited over metasandstone of ~ found west of Harpers Ferry, W. Va., but are more similar to

the Lower Cambrian Antietam Formation (€ca). These dirty the rocks of the Araby Formation. The facies change within
metasandstones (fig. 67B) are exposed in excavations along the Antietam Formation across the Blue Ridge province prob-
Furnace Mountain in Virginia. They are not composed of clean ably reflects a depositional change from a shallow-marine to a
quartz such as the metasandstone of the Antietam Formation deep-water-slope environment.

A B

Figure 66. Lower Cambrian Tomstown Formation. A, Folded beds of limestone and marble of the Tomstown Formation, which only
crops out south of the Potomac River in Loudoun County, Va. B, Colluvium of sandstone and vein quartz covering Tomstown Formation in
Maryland. The Tomstown is known in Maryland only from water-well records and drill cores.

A B

Figure 67. Lower Cambrian rocks of the Blue Ridge province. These two rock units are not exposed along the canal and river, but are
within the map area along U.S. Route 15 in Loudoun County, Va. A, Dark-gray to black, carbonaceous phyllite unit which forms ashy soil.
B, Arkosic metasandstone of the Antietam Formation, which was quarried for manganese in the 1700s along Furnace Mountain just
south of the river. In Pennsylvania, this unit contains trilobites and is the oldest fossil-bearing rock known in this region.



Blue Ridge Province

Point of Rocks, Md., to Fort Duncan (MM 48.2 to
MM 63)

Access Points

Point of Rocks, Md.
Lander, Md.
Brunswick, Md.
Weverton, Md.
Sandy Hook, Md.
Harpers Ferry, W. Va.
Pleasantville, Md.

Introduction

Some of the oldest rocks in the Appalachian Moun-
tains are exposed in the Blue Ridge province. The main struc-
ture is a large overturned fold known as the Blue Ridge-South
Mountain anticlinorium. This anticlinorium is defined by one
eastern and two western flanks that underlie Catoctin Moun-
tain, South Mountain-Short Hill Mountain, and Blue Ridge-
Elk Ridge, respectively (fig. 68); the latter two pairs of moun-
tains are continuous mountain ridges breached by the Potomac
River. The rocks were metamorphosed, folded, faulted, and
transported westward during the late Paleozoic Alleghanian
orogeny, which was the result of continental collision of North
America with Africa.

The rocks underlying Catoctin Mountain on the east limb
of the anticlinorium consist of resistant metabasalt of the Neo-
proterozoic Catoctin Formation (zecm) and quartzite of the
Lower Cambrian Weverton Formation (€cw). Likewise, the
same rocks underlie South Mountain-Short Hill Mountain and
Blue Ridge-Elk Ridge to the west, but the strata there are more
folded and are overturned. Blue Ridge-Elk Ridge is almost
a replica of South Mountain-Short Hill Mountain because a
regional fault duplicates the strata and resultant ridges. The
core of this anticlinorium contains 1.1 Ga granitic rocks that
were metamorphosed and deformed during the Mesoprotero-
zoic Grenville orogeny (Burton and Southworth 1996; South-
worth and others, 2006). These unnamed granitic rocks are
gneissic, well layered, and include the following varieties: bio-
tite granite gneiss (Ybg), leucocratic metagranite (Yg), garnetif-
erous leucocratic metagranite (Ygt), and hornblende monzonite
gneiss (Yhg). The 1.1 Ga age of these rocks was determined by
using uranium-lead (U-Pb) dating techniques on zircon crys-
tals that formed when the intrusive granite crystallized (Aleini-
koff and others, 2000).

The first strata deposited over the granitic basement rocks
were fluvial deposits that were later lithified and metamor-
phosed to form quartzite, metasandstone, schist (zss); phyllite
(zs), and rare marble (zsm) of the Neoproterozoic Swift Run
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Formation. The type locality of these rocks is Swift Run Gap
in the Shenandoah National Park to the southwest. The Cato-
ctin Formation, which overlies the Swift Run Formation, is
composed of metabasalt (metamorphosed basalt) (zcm), light-
colored metarhyolite, and some metasedimentary phyllite (zcs)
and marble similar to that found within the underlying Swift
Run Formation. The formation is named after Catoctin Moun-
tain in Maryland. The age of the volcanic rocks ranges from
571 Ma (from a rhyolite dike exposed along the Potomac
River opposite MM 52.5) to 565 Ma (from metabasalt in the
Shenandoah National Park area) (Badger and Sinha, 1988;
Aleinikoff and others, 1995).

Many metadiabase dikes (zmd) intruded the granitic
rocks within the core of the anticlinorium. These dikes repre-
sent fissures that fed basaltic lava through the granite to the
surface where it was extruded as lava flows. The lava flows
on top of the clastic sediments that would later become rocks
of the Swift Run Formation. The fissures and volcanic activ-
ity were the result of continental rifting of the land mass
referred to as Laurentia. The rifting in turn resulted in the for-
mation of the ancient lapetus Ocean between approximately
600 and 545 Ma.

Fossil soil, volcanic tuff, silt, and gravel were lithified to
collectively make up the rocks of the overlying Lower Cam-
brian Loudoun Formation (€clc, €clp). These rocks represent a
dramatic change in the depositional environment from a volca-
nic landscape to one dominated by rivers and deltas.

Fluvial sand and gravel shed from the continent east-
ward to its shore were lithified to form light and dark quartz-
ite of the Lower Cambrian Weverton Formation (€cw),
whose type locality is Weverton Cliffs, north of Lock 31.
Silty rocks within the quartzite increase stratigraphically
upward to form the Lower Cambrian Harpers Formation (€
ch, €chq), whose type locality is along the Shenandoah River
in Harpers Ferry National Historical Park in West Virginia,
south of MM 61. These dark, fine-grained rocks that form
the bold cliffs along the Potomac River at Harpers Ferry
probably are deltaic deposits (Southworth and Brezinski,
1996a). The siltstones of the Harpers are interbedded with
thin beds of sandstone near the top of the formation. Where
the sandstone rocks become dominant, the rocks are assigned
to the Lower Cambrian Antietam Formation (€ca), which is
named after Antietam Creek to the north where there are typ-
ical exposures. The tan metasandstone of the Antietam con-
tains the trace fossil Skolithos linearis. In rocks of the Antie-
tam Formation in Pennsylvania, the Olenellus trilobite is the
oldest shelly fossil recognized in all of the rocks of the Blue
Ridge province. Collectively, the Loudoun, Weverton, Harp-
ers, and Antietam Formations are part of the geographically
more extensive Chilhowee Group, which is named after Chil-
howee Mountain in Tennessee. The Olenellus trilobite is
the basis for the Early Cambrian age designation (Stose and
Stose, 1944).

The western boundary of the Blue Ridge province gen-
erally is considered to be the contact between the Antietam
Formation and the overlying limestone of the Lower Cam-
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Figure 68. Generalized structure map and cross section of a portion of the C&0 Canal National Historical Park and Potomac River cor-
ridor as it crosses the westernmost part of the Piedmont province, the Blue Ridge province, and the easternmost part of the Great Valley
section of the Valley and Ridge province. A, Structure map showing fold axes and major faults. B, Cross section showing folds and faults
from Point of Rocks, Md., westward to just past Harpers Ferry, W. Va. See plates 8 and 9 for detailed geologic maps of this portion. Geo-
logic units shown in cross section are generalized from the geologic map shown on plate 1.



brian Tomstown Formation (€t) of the Great Valley section.
The eastern boundary of the province is the foot of the slope
of Catoctin Mountain, west of the border fault of the Culpeper
basin. The complex geologic history of the region is illustrated
in figure 4.

Point of Rocks to Brunswick (MM 48.2 to MM 55)

Point of Rocks is a steep bluff of Neoproterozoic Cato-
ctin Formation metabasalt (zcm) that was exposed when the
Potomac River cut a water gap through Catoctin Mountain
(plates 7 and 8, fig. 69A). The Potomac River and flood plain
widen as the less resistant rocks of the Piedmont are crossed
(fig. 70). The steep bluff, which gives Point of Rocks its name,
left little room for both a canal and railroad, so a tunnel was
excavated through the metabasalt for the railroad. Just east of
the bridge, folded rocks of the Lower Cambrian Harpers For-
mation (€ch) were juxtaposed against the Catoctin Forma-
tion along a normal fault at about 200 Ma. Metabasalt crops
out in the middle of the Potomac River and is the dominant
rock exposed from Point of Rocks to Lander (MM 51). At the
railway tunnel (MM 48.4), both metabasalt with gas vesicles
(fig. 69B) and intrusive vein quartz were folded and broken by
faults (fig. 69C).

The linear creek that drains into the Potomac River
immediately east of Lander flows along the contact between
metabasalt of the Catoctin Formation and Mesoproterozoic
granite gneiss (Yg). Locally, the metabasalt contains small
pods of marble (fig. 71). From here west to Brunswick and
beyond to Weverton, the bedrock is a granite gneiss (Yg)
intruded by metadiabase dikes (zmd) (fig. 72). These poorly
exposed rocks can be seen just east of Catoctin Creek in the
railroad cut at MM 51.5.

Quaternary cobbles and boulders of sandstone and
quartzite that litter the embankment here were deposited by
the Potomac River in one of its now-abandoned meanders.
The Catoctin Creek Aqueduct (at about MM 51.6) collapsed
in 1973 when floodwaters scoured its supports. The remains
of the aqueduct, which was constructed from Ordovician ElI-
icott City Granodiorite, are present beneath the footbridge.
From Catoctin Creek to Brunswick is a large rail yard that
takes advantage of the broad low terrace of the flood plain of
the Potomac River.

Brunswick to Fort Duncan (MM 55 to MM 62.5)

From Brunswick to Knoxville (at about MM 57) and
beyond to Weverton (at about MM 58), the canal and towpath
are constructed on a broad low terrace of the Potomac River
(plate 9). Rocks of the Lower Cambrian Weverton Formation
(€cw) are located at Weverton Cliffs, which is at the southern
end of South Mountain, east of MM 58, where the Potomac
River cut through the western limb of the Blue Ridge-South
Mountain anticlinorium. This ridge is underlain by folded and
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Figure 69. Neoproterozoic Catoctin Formation. A, Historical
photograph (around 1920) of Point of Rocks, Md., showing cliffs of
the Catoctin Formation that form the north side of the water gap
of Catoctin Mountain. Note railroad tunnel entrance on right side
of photograph. Photograph by Consolidated Coal Co.; courtesy of
National Park Service. The Catoctin contains a variety of rocks

as illustrated in B and C. B, Vesicular metabasalt. C, Schist and
phyllite containing folded vein quartz. The vein quartz intruded the
Catoctin sometime before the late Paleozoic Alleghanian orogeny.
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Figure 71. Pods of marble in the Neoproterozoic Swift Run For-
mation found along the creek northeast of Lander, Md., and east of
Short Hill Mountain to the west. The pods probably resulted from
deposits of shallow-water limestone.

faulted quartzite and metasiltstone of the Weverton Forma-
tion and the rocks are mostly overturned to the west (fig. 73)
(Southworth and Brezinski, 1996b). Coarse pebble conglomer-
ate of the Lower Cambrian Loudoun Formation (€clc) (fig. 74)
is found at the base of the Weverton Formation north of the
Potomac River, but north of MM 57.5, only phyllite (€clp)
is exposed. The clasts in the conglomerate consist mostly of
quartz, but red jasper and metabasalt also are present and prob-
ably were derived from erosion of the underlying Neoprotero-
zoic Catoctin Formation.

The stone remains of Weverton Mills (MM 57.8), which
was constructed in 1834 for manufacturing, may be seen along

Figure 70. Stereoscopic pair
of aerial photographs and
sketch centered on Point of
Rocks, Md., which is on the
north side of the water gap

in Catoctin Mountain. A fault
separates the Blue Ridge and
Piedmont provinces; bar and
ball are on downthrown block.

Figure 72. Basement rocks of the Blue Ridge province. The core
of the anticlinorium in this area consists of Mesoproterozoic light
granitic gneiss intruded by numerous dark metadiabase dikes that
probably fed the basalt flows of the Neoproterozoic Catoctin For-
mation. Camera lens for scale. Photograph by William C. Burton
(U.S. Geological Survey).

the Potomac River (lower left part of figure 73A). The bedrock
ledge in the river and the mill ruins consist of quartzite. The
sandy flood plain from here to Knoxville was the location of a
“hobo jungle” during the Great Depression.

Just west of Lock 31, the poorly exposed trace of the
Short Hill-South Mountain fault duplicates the stratigraphic
sequence of the west limb of the Blue Ridge-South Mountain
anticlinorium by placing phyllitic metasiltstone of the Harp-
ers Formation (€ch) over garnetiferous leucocratic granite
(Yg) to the west. Drill core from a spot immediately north of
the canal indicates that the fault is an early Paleozoic normal
fault that was folded and reactivated as a thrust fault in the late
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Figure 73. Weverton Cliffs at the southern end of South Mountain in Maryland. A, White rocks are outcrops of quartzite beds of the
Lower Cambrian Weverton Formation. In the left foreground of the photograph are the stone ruins of the Weverton mills. B, Sketch of

Weverton Cliffs showing geologic units and other features.

Paleozoic (Southworth and Brezinski, 1996a,b). This fault is
unique to the region in that there is no other evidence of a nor-
mal fault and extensional event between the Neoproterozoic
(760-542 Ma) and Jurassic (about 220-200 Ma) Periods.
From MM 58 westward to Harpers Ferry, W. Va. (MM

60.5), the rock sequence that is crossed from Lander to Wever-
ton (granitic gneiss intruded by metadiabase dikes, overlain by
metabasalt, quartzite, and metasiltstone) is repeated. Outcrops

of gneiss and intrusive metadiabase dikes are covered with
soot along the adjacent railroad tracks to the north, but the
Mesoproterozoic (1 Ga) folded, light-colored, garnetiferous
granite (Ygt) can be seen in fresh exposures nearby (fig. 75).
The rust-colored massive body of rock exposed near MM 59 is
a Jurassic diabase dike (Jd) that intruded the older rocks when
North America was rifting apart to create the Atlantic Ocean;
a pyroxene crystal in the diabase here was dated at 200 Ma



58 Geology of the Chesapeake and Ohio Canal National Historical Park and Potomac River Corridor

Figure 74. Polymictic conglomerate of the Lower Cambrian Lou-
doun Formation north of the Potomac River on the east flank of
South Mountain. This unit was deposited locally stratigraphically
above phyllite and metabasalt of the Neoproterozoic Catoctin
Formation. The conglomerate may represent alluvial-fan and
channel deposits that preceded the deposition of the quartz-rich
sediments of the Lower Cambrian Weverton Formation.

A
Figure 75.

using the technique of analyzing the ratio of argon isotopes
(Kunk and others, 1992).

The flat uplands above the bluffs in Maryland and Vir-
ginia resemble river terraces, but no such deposits have been
found. Chips of Ordovician Ellicott City Granodiorite along
the towpath near Lock 32 (about MM 60.5) suggest that some
of the dimension stone was transported here from Ellicott City,
Md., as rough blocks that were dressed at the site.

The Harpers Ferry area is a spectacular water gap,
described by Thomas Jefferson as “worth the voyage across
the Atlantic” (Jefferson, 1982). A stereoscopic pair of aerial
photographs (fig. 76) shows the three-dimensional perspec-
tive of the gorge created where the Potomac and Shenandoah
Rivers converge to cross the Great Valley section into the Blue
Ridge province (fig. 76). Maryland Heights and Blue Ridge-
Elk Ridge are composed of erosion-resistant, hard quartz-
ite and metagraywacke of the Weverton Formation. Expo-
sures of folded and faulted rocks and coarse colluvium may
be seen in the blufs above the river (figs. 77 to 80). Figure 81
shows the westernmost, southward-plunging, overturned anti-
cline exposed during low-water conditions in the Potomac
River (see figure 76). The crossbedded quartzite provides good
examples of the overturned, folded strata (fig. 82). Much of
the canal across this section was excavated in this quartzite.
According to local folklore, workers built fires on the quartz-
ite bedrock and then quenched them with cold water hauled
from the river; this process shattered the quartzite. A tunnel
was required to accommaodate both the canal and the B&O
Railroad. The west portal to the tunnel (MM 60.5) is along the
near-vertical contact between the Weverton Formation and the

B

Mesoproterozoic rocks between Weverton, Md., and Harpers Ferry, W. Va. A, Historical photograph (date unknown) show-

ing bluffs of Mesoproterozoic granitic gneiss along the B&O railroad and C&0 Canal west of Weverton. These rocks are now covered
with soot. Photograph courtesy of the National Park Service. B, Fresh exposure of garnetiferous leucocratic granite in the roadcut

of southbound U.S. Route 340, north of Potomac River. Uranium-lead dating of zircon crystals (Aleinikoff and others, 2000) shows that

this granite formed over 1 hillion years ago and was then metamorphosed and folded during the Grenville orogeny. Shiny graphite and
almandine garnet in this rock suggest that an older suite of metasedimentary rocks melted to form the granite.
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Figure 76. Stereoscopic pair of aerial photographs and sketch centered on Harpers Ferry, W. Va., showing the Potomac River gorge

and water gap.

stratigraphically overlying Lower Cambrian Harpers Forma-
tion (€ch).

The point of land at the confluence of the Potomac and
Shenandoah Rivers was subjected to extensive erosion during
the numerous floods that affected the area. Historical photo-
graphs (Hahn, 1995) show many structures of the canal at this
location that no longer exist because they were destroyed by
flooding.

From Harpers Ferry westward to Lock 35 (MM 62.2), the
rocks consist of highly cleaved and folded metasiltstone of the
Harpers Formation (fig. 83). The canal along this stretch was
excavated locally in the metasiltstone and drill holes can still
be seen in the outcrops that served as canal berms (fig. 84A).
Slabby, consolidated colluvium was used to build walls around
the outcrops. A good example of bedding and cleavage may be

seen in an outcrop of Harpers Formation along the berm of the
canal near MM 61 (fig. 84B). Locally, the cleavage is folded
by later folding or faulting, such as seen above the canal near
MM 61.1 (fig. 85).

Lumpy, swirly patterns may be seen in blocks of lime-
stone from the Lower Cambrian Tomstown Formation in
Locks 34 to 36. These features are bioturbation structures that
formed when marine organisms mixed the sediments while
they were still soft and unconsolidated. The few blocks of
white Keedysville marble (informal name) in Locks 34 to 36
are from the Bolivar Heights Member at the base of the Tom-
stown Formation. The Keedsyville marble originally was a
limestone that became detached from the underlying Lower
Cambrian Antietam Formation and recrystallized as it moved
along a regional fault (Brezinski and others, 1996). All of the
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Figure 77.  Sketch of the bluffs of Elk Ridge north of the C&0 Canal showing folded quartzite beds within the Lower Cambrian Weverton
Formation that comprise the overturned west limb of the Blue Ridge-South Mountain anticlinorium. The two large folds on the east side
in the Buzzard Knob Member are shown in figure 78.
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Figure 78. View of eastern end of Elk Ridge showing overturned pairs of anticlines and synclines (traces shown by white lines) in
quartzite of the Lower Cambrian Buzzard Knob Member of the Weverton Formation.
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Figure 79. Historical photograph (around 1912) of the western- Figure 80. Historical photograph (around 1912) showing the east-
most overturned anticline of quartzite in the Lower Cambrian Buz-  ernmost overturned anticline in quartzite of the Lower Cambrian
zard Knob Member of the Weverton Formation as shown in figure Buzzard Knob Member of the Weverton Formation as shown in fig-
78. Photograph by George W. Stose (U.S. Geological Survey). ure 78. Photograph by George W. Stose (U.S. Geological Survey).

NW SE

Figure 81. View of the
westernmost overturned anti-
cline shown in figure 80. The
anticline plunges southward
toward the Potomac River and
can be seen in the river bed
during low-water conditions
from Loudoun Heights, Va., as
well as from the air (fig. 76).
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Figure 82. Crossbedding in quartzite of the Lower Cambrian Weverton Formation at Maryland Heights. Crossbeds are defined by layers
of dark heavy minerals in light quartz sand. The truncation of the beds is used to determine whether the rocks are upright or overturned.
A, Upright beds. B, Overturned beds. Mechanical pencil for scale in both photographs.
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Figure 83. Geologic sketch of the bluffs from about MM 61 to the Great Valley west of Lock 36 (MM 62.5). Rocks of the Lower Cambrian
Harpers Formation show penetrative cleavage, folds that are defined by bedding, and folded cleavage by deformation near thrust faults.

The rocks of the Lower Cambrian Antietam and Tomstown Formations are oriented either vertically or steeply dipping (overturned) to the
southeast.
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Figure 84. Folded and cleaved metasiltstone of the Lower Cambrian Harpers Formation, which was drilled and blasted to excavate the
canal near MM 61. A, Pervasive slaty cleavage dips at a low angle to the southeast, but bedding and drill-hole scars are nearly vertical.
B, In another outcrop near A, bedding dips to the northwest. The rightmost one-third of the photograph shows slabs of Harpers Forma-

tion stacked to construct the berm of the canal.

overlying rocks of the Great Valley section were transported

westward along this fault surface for some unknown distance.

The fault was active early in the tectonic history of the region
because it has been folded with the anticlinorium and is over-
turned and dips to the east.

From Lock 35 (MM 62.3) to Dam 3, stone berms were
constructed to elevate the canal and towpath above the flood
plain. Good exposures of cleaved metasiltstone interbedded
with metasandstone at the transitional contact of the Harp-

ers and stratigraphically overlying Antietam Formation (€ca)
(fig. 86) may be seen near the remains of Dam 3 and behind
Lock 35. The dark lines with raised centers that are perpen-
dicular to bedding in metasandstone of the Antietam Forma-
tion are the remains of the trace fossil Skolithos linearis. On
top of the hill of the meander bend above Lock 36 is the strate-
gic location of Fort Duncan, which was built by Union forces
in 1862 to defend Harpers Ferry. The foundation of the fort’s
ramparts is still preserved.
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Figure 85. Cleavage (nearly
horizontal) in metasiltstone of
the Lower Cambrian Harpers
Formation folded as the result
of motion along a thrust fault.
Spaced crenulation cleavage
dips to the northwest, parallel
to the late fold axes. Outcrop
is west of Hoffmeister Road,
immediately north of the canal
near MM 61.5. Pocket knife in
center for scale.

I/Bedding
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Figure 86. Outcrops of Lower Cambrian Harpers and Antietam Formations. A, Outcrop showing the transition from metasiltstone of the
Harpers Formation upward into metasandstone of the Antietam Formation between Dam 3 and Lock 35, just west of MM 62. Here, 2- to
3-inch-thick beds of clean metasandstone are interbedded with darker metasiltstone. B, Outcrop of Antietam Formation showing dark
lines (perpendicular to the laminated bedding) which indicate the presence of the trace fossil Skolithos linearis (tubular worm burrows
in sand that were filled in with finer grained silt in shallow water).
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Introduction

The Great Valley section (locally called the Shenandoah
Valley in Virginia, Hagerstown Valley in Maryland, or Cum-
berland Valley in Pennsylvania) of the Valley and Ridge sec-
tion is the broad area of low relief between the mountain-
ous regions of the Blue Ridge province to the east and the
remainder of the Valley and Ridge province (west of the
North Mountain thrust fault) to the west (fig. 87 and plate
10). Because the Great Valley is underlain primarily by lime-
stone and dolomite, caves and sinkholes are abundant (see
fig. 15).

Structurally, the Great Valley is a large syncline called the
Massanutten synclinorium, named after Massanutten Moun-
tain in the core or center of the fold where the youngest rocks
are found. The youngest rocks along the C&O Canal in this
province belong to the Middle and Upper Ordovician Martins-
burg Formation (Om), which consists primarily of shale with
lesser amounts of sandstone. The eastern flank of the Massa-
nutten synclinorium generally dips southeastward rather than
westward toward the center of the syncline; the overturned
fold is a limb of the Blue Ridge-South Mountain anticlino-
rium. Westward across the Great Valley, the rocks become less
intensely folded and faulted.

The western edge of the Great Valley is marked by the
North Mountain fault, which places Cambrian and Ordovi-
cian carbonate rocks over younger shale and sandstone of the
remainder of the Valley and Ridge province. The rocks of
the Great Valley section, Blue Ridge province, and Piedmont
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province have been transported tens of miles westward along
this fault.

Fort Duncan to Antietam Creek (MM 62.5 to
MM 69)

The bedrock along the meander bends of the Potomac
River is the Lower Cambrian Tomstown Formation (€t)

(plate 10). Between MM 63 and MM 63.5, the outcrop of
dark-gray dolomite is the type section of the Fort Duncan
Member (€tf) of the Tomstown. Some of the limestone near
MM 63.4 is assigned to the Bolivar Heights Member (€tbh)
of the Tomstown Formation. The type section of the Boli-
var Heights Member is along the CSXT railroad tracks about
3 mi to the south in West Virginia. The red “terra rosa” soil
exposed here characterizes the residuum that developed from
the weathered carbonate rock.

Between MM 63.5 and 65.2, shale and thin sandstone of
the Lower Cambrian Harpers Formation (€ch) are exposed.
By strict geologic definition, the Harpers actually is part of the
Blue Ridge province; therefore, along this stretch, the bound-
ary between the Blue Ridge province and Great Valley section
is crossed twice. The lime kiln at MM 65.2 burned high-cal-
cium limestone from the Bolivar Heights Member, which was
quarried from 1876 to 1910 just to the west (fig. 88). A sink-
hole filled with colluvium consisting of sandstone blocks of
the Lower Cambrian Antietam Formation in a red-brown mud
and clay matrix is located near the northeastern part of the
quarry. Blocks of the sandstone and fragments of the limestone
contain dark, nodular manganese that was discovered here dur-
ing excavation of the canal and then was quarried and used
to make steel (Hahn, 1985). The locations of additional small
quarries to the north were all confined to the Bolivar Heights
Member because the overlying Fort Duncan Member was not
suitable for the needs of the lime kiln operators.

Near MM 66, riprap fill for the towpath 6 contains blocks
of yellow jasper (a variety of quartz) that is usually found near
the contact between the Antietam and Tomstown Formations.
The jasper was prized by Native Americans for making tools.

The Bolivar Heights Member was quarried in order to
construct Lock 37 (Mountain Lock) to the north. The weath-
ered surface of the cut stone has a notable zigzag pattern (see
figure 32). These structures resulted when the small dolomi-
tized burrows within individual beds of limestone were folded
and aligned along penetrative cleavage. Outcrops near MM
67.5 show a similar relationship of bedding, cleavage, and the
distorted burrows (fig. 89).

The collapse breccia and calcium-carbonate-rich tufa
deposits of the Fort Duncan Member are exposed on the bluff
near MM 68 (fig. 90). Just west of MM 68, within the upper
part of the Bolivar Heights Member, is a tight fold where bed-
ding is obscured by cleavage. This cleavage is well developed
within the limestone of the Bolivar Heights Member (see fig-
ures 32 and 89), but is absent within the dolomite of the over-
lying Fort Duncan Member. A little farther to the west are
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Figure 87. Generalized structure map and cross section of a portion of the C&0 Canal National Historical Park and Potomac River
corridor as it crosses the western part of the Blue Ridge province and the Great Valley section of the Valley and Ridge province. A,
Structure map showing fold axes and major faults. B, Cross section showing folds, faults, and other features from west of Harpers Ferry,
W. Va., westward to the North Mountain fault. See plates 10 to 13 for detailed geologic maps of this portion. Geologic units shown in

cross section are generalized from the geologic map shown on plate 1.
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Figure 88. Geologic sketch from about MM 65.2 westward, across the overturned thrust fault contact (Keedysville detachment) of
metasandstone of the Antietam Formation (€a) with limestone of the Bolivar Heights Member of the Tomstown Formation (€tbh), and
another thrust fault cutting an upright anticline of the Bolivar Heights, Fort Duncan (€tf) and Benevola (€tb) Members of the Tomstown
Formation. Both thrust faults are marked by mylonite, marble, and cleavage. The lime kiln near MM 65.2 was for cooking locally mined
limestone in order to make cement and fertilizer. Manganese discovered during excavation of the canal was also mined near the over-
turned contact, near the sinkhole that is filled with colluvium.
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Figure 89. Limestone of the Lower Cambrian Bolivar Heights Member of the Tomstown Formation near MM 68. A, Outcrop shows
pervasive cleavage dipping at a low angle and beds dipping steeply to the northwest. B, Closeup of A showing that fossil burrows
(originally oriented perpendicular to beds) are disrupted and realigned by pervasive, nearly horizontal cleavage. Three-inch-long knife
for scale.

(1) outcrops of massive, light-gray dolomite of the Benevola bers (in ascending order): (1) the Red Run Member (€war),

Member (€tb) of the Tomstown; and (2) the type section of the  which consists of interbedded tan sandstone and dolomite; (2)

medium-bedded dolomite and limestone of the Dargan Mem- the Cavetown Member (€wak), which is composed mainly

ber (€td) (Brezinski, 1992), which is the uppermost member of limestone and dolomite; and (3) the Chewsville Mem-

of the Tomstown. ber (€wac), which consists of interbedded red shale, sand-
From MM 68.2 northwestward, the flood plain widens stone and tan dolomite (Brezinski, 1992). Near MM 69, the

and is covered with alluvium, thus hiding the Lower Cam- canal crosses the contact of the Waynesboro Formation with

brian Waynesboro Formation (fig. 91) that underlies this sec- the overlying Middle and Upper Cambrian Elbrook Limestone
tion. The Waynesboro Formation is made up of three mem- (€e), which also is not exposed.
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c

Antietam Creek to Big Slackwater (MM 69 to
MM 85.5)

The Antietam Creek Aqueduct was built in 1834 of lime-
stone and dolomite (Cavetown Member of the Lower Cam-
brian Waynesboro Formation) that was quarried about 0.75 mi
to the southeast (Davies, 1989). The rock is very finely lami-
nated and was deposited on an intertidal mudflat at about 530
Ma. Each lamination represents a single tidal cycle or storm
event. Blocks along the top of the aqueduct have fossil mud
cracks that also formed in a tidal-flat environment.

From the aqueduct to MM 73, opposite Shepherdstown,
W. Va., the Potomac River flood plain is wide and alluvium
obscures the interbedded thin limestone and shaly tan dolomite
of the Elbrook Limestone (€e) (Brezinski, 1996a) (plate 11).
Abundant algal stromatolites are common in the Elbrook; on
the West Virginia side of the Potomac River, opposite MM
71.5, good exposures of stromatolites may be seen along the

Figure 90. Examples of karst
features in the Fort Duncan
Member of the Tomstown
Formation near MM 68. A,
Collapse breccia of limestone
cemented by calcium carbon-
ate. B, Tufa deposits. C, One of
many small caves in the bluffs
of the Great Valley.

road that runs near the river. There are also abundant sinkholes
and caves developed in the Elbrook Limestone in this region.

To the north and south of the Potomac River, rounded
Quaternary gravel, cobbles, and boulders of sandstone and
conglomerate cover the hills. These are river-channel deposits
left by the Potomac River as it cut down to the modern chan-
nel. Kilns and abandoned limestone quarries were located on
both sides of the river near MM 71.5. The Botelers and Reyn-
olds Cement Mill (fig. 92) operated from 1828 to 1834 in
West Virginia, and the Potomac Cement Company operated in
Maryland from 1888 to 1903 (Davies, 1999).

From MM 72 to MM 85, nearly all of the bedrock is
the Upper Cambrian and Lower Ordovician Conococheague
Limestone (0€c). These rocks are characterized by ribbon-
like, thin layers of gray limestone (0.25 to 1.0 inches thick)
interbedded with layers of tan dolomite or dolomitic lime-
stone. Bedrock is exposed along steep bluffs that show abun-
dant drill holes and small caves. Shenandoah River Lock, near
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Figure 91. Qutcrops of Lower and Middle Cambrian Waynesboro
Formation in the vicinity of the C&0 Canal. A, Shale, sandstone,
and dolomite of the Chewsville Member northeast of MM 69.
Clipboard for scale. B, Limestone and dolomite of the Cavetown
Member in an outcrop on the Virginia side of the Potomac River
opposite MM 69.5. Jacobs staff (1 meter or about 3 ft long) for
scale. Along the canal, the Waynesboro is covered with alluvium.

Figure 92. Historical photo-
graph (about 1895) showing
Botelers and Reynolds Cement
Mill's quarries in near-vertical
limestone (in West Virginia
opposite MM 71.6) and
Botelers and Reynolds Dam
(on right) for mill race for the
cement mill (left background).
Before the Round Top Cement
Company plant was built, this
plant supplied the cement for
the canal masonry. Photo-
graph courtesy of National
Park Service.

MM 72. 6 provided access to Shepherdstown n the same man-
ner as the Goose Creek and Alexandria Locks by linking the
C&O Canal to commerce centers to the east.

On top of the bluffs seen east of MM 73 are large blocks
and cobbles of round sandstone and quartzite that were depos-
ited by the ancestral Potomac River during the Pleistocene. The
meander bends of the current river have extensive exposures on
the north (upstream) side where erosion is most severe. In these
areas, the berms to the towpath are often lined with stone for
protection. The south sides of the meanders have a gentler slope
and the terrace deposits are better preserved.

Near MM 75.7,a large overhang in the Conococheague
Limestone (known as Killiansburg Cave) served as a Civil War
shelter (fig. 93). Flowstone, or travertine, may be seen in the
cave. Several more caves may be found between here and MM
76.2 (Davies, 1999). Tufa deposits may be seen in the tribu-
taries of the Potomac River near Snyders Landing (MM 76.6).
On the shore in West Virginia, opposite MM 81, the land that
is enclosed by a large meander loop is known as Terrapin
Neck. This is the location of the National Conservation Train-
ing Center of the U.S. Fish and Wildlife Service. West of MM
83, the Potomac River cuts across the strike of the Conoco-
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cheague Limestone. Between MM 83 and Dam 4, the Conoco-
cheague is tightly folded.

At MM 83.3, the cave (locally known as Bergen’s Cave)
at Dam 4 discharges spring water at canal level (fig. 16). In the
bluffs at Dam 4, the near-flat-lying uppermost part of the Con-
ococheague Limestone shows drill holes and a stuck drill rod
(see fig. 25A).

Big Slackwater to Williamsport (MM 85.5 to
MM 99.5)

Because bluffs prevented the construction of a canal, the
canal boats entered the Potomac River (fig. 94) at MM 85.5.
This stretch is known as the Big Slackwater because the water
moved slowly enough to allow the canal boats to use the river.
Limestone and dolomite of the Upper Cambrian and Lower
Ordovician Conococheague Limestone (0€c) and Lower Ordo-

vician Stonehenge Limestone (Obs) along this section are well
exposed (plate 12 and fig. 95). Between Guard Lock 4 (MM
85.5) and McMahons Mill (MM 88), flooding severely eroded
the canal towpath on the river bank. Numerous small caves may
be found between MM 86.8 to MM 92 (Davies, 1999).

West of McMahons Mill (built in 1778) at the end of
Charles Mill Road, is a 400-ft interval of medium-bedded
limestone of the Stonehenge Limestone followed by a 120-
ft-wide interval of the Stoufferstown Member of the Stone-
henge (Obss). The rocks are characterized by paper-thin, paral-
lel, calcite and clay laminations (fig. 96), which resulted from
mylonitic foliation due to faulting.

Westward to Lock 41 (near MM 88.8), the bedrock con-
sists of the Lower and Middle Ordovician Rockdale Run For-
mation (Obrr) (fig. 95), which is characterizied by gray lime-
stone interbedded with tan to brown dolomite. These lithologies
are repeated in vertical succession from ribbony to sandy lime-
stone to tan, laminated dolomite. Although the relative thickness

Figure 93. Historical sketch
(about 1867) of soldiers and
citizens in and around Killians-
burg cave near MM 75.7. The
sketch suggests that the cave
is situated in the hinge of an
anticline of the Upper Cam-
brian and Lower Ordovician
Conococheague Limestone,
butitis actually developed in
the formation’s east-dipping
beds. From Hahn (1985); used
with permission.

Figure 94. Historical photo-
graph (date unknown) show-
ing location north of Dam 4
where canal boats entered
the Potomac River because
limestone cliffs prevented
construction of a canal (as
with Big Slackwater to the
west). Photograph courtesy of
National Park Service.




of the individual limestone or dolomite beds varies through the
succession, the sequence of limestone to dolomite is repeated
through the formation. The lithologic cycles reflect a change in
depositional environments from shallow subtidal (limestone) to
supratidal (dolomite). The cycles seen within these rocks indi-
cates that, during the time of deposition, sea level rose and fell
with considerable frequency and thus produced produce the
repeated sequence of lithologies. The original depositional fea-
tures (such as chert, burrows, crossbedding, graded beds, and
ripple marks (fig. 97)) may be seen within the limestones; mud
cracks are found within the dolomites.

Upstream of the Opequon Junction campsite and MM
91 are exposures of folded rocks of the Stonehenge Lime-
stone and Rockdale Run Formation. These rocks contain
abundant small caves (such as what is locally known as Del-
linger’s Cave at MM 92.14) and dissolution features (Davies,
1999). This is the midway point of the 184.5-mi-long canal.
To the west, the rock is Middle Ordovician Chambersburg
Limestone (Oc). A thrust fault places the rocks of the Rock-
dale Run Formation above the younger rocks of the Cham-
bersburg Limestone near MM 92. A stream valley overlies
the fault between the two units. Springs and tufa deposits are
common in this area.

Valley and Ridge Province—Great Valley Section n

The Chambersburg is the youngest carbonate rock of the
Great Valley section and perhaps the most fossiliferous. The
rocks contain abundant brachiopods, bryozoans, trilobites,
and, near its base, abundant remains of the echinoderm Echi-
nosphaerites (fig. 20, item 16).

The Chambersburg grades into shale of the overlying
Middle and Upper Ordovician Martinsburg Formation (Om)
west of MM 92.5. The Martinsburg consists of gray to brown
shale in its lower part and interbedded sandstone and shale in
its upper part. This shaly interval marks the end of the deposi-
tional epoch that spans Early Cambrian to late Middle Ordo-
vician time when only carbonate rocks were deposited. The
environment on the shelf of the continent was similar to that
east of Florida today. This stable environment resulted in
the deposition of a carbonate rock sequence that is nearly 2
mi thick over a period of approximately 100 m.y. Shale of
the Martinsburg marked the beginning of clastic-dominated
(sandstone-siltstone-shale) deposition that continued through
most of the middle and late Paleozoic over a period of about
200 m.y. The initiation of the shale deposition also represents
the beginning of a tectonic event known as the Taconian orog-
eny, which occurred near the end of the Ordovician Period.
During this period, a mountainous highland formed in the east-

WEST EAST
Limestone
FEET Beddi Thrust ~ McMahons
200 quarry edding Rockdale Run Chert Syncline fault Mill
200 Formation / Quarry ;r
100 i
0 / MM 88
) Caves
Lock 41 Canal figure 97 figure 96 Sﬂléfrfﬁg:trog}m
9 500 FEET Mylonitic Stonehenge
limestone Limestone
Figure 95. Geologic sketch from McMahons Mill near MM 88 westward to Lock 41 depicting Ordovician rocks of the older Stouffer-

stown Member of the Stonehenge Limestone thrust above limestone of the younger Rockdale Run Formation. The rocks are folded into a
syncline beneath the fault. There are several limestone quarries and caves in the bluffs, some of which are shown in this sketch.

Figure 96. Mylonitic limestone within the Lower Ordovician
Stoufferstown Member of the Stonehenge Limestone, immedi-
ately west of MM 88 and McMahons Mill. The mylonitic foliation
was produced as the rocks were thrust westward above rocks of
the Lower and Middle Ordovician Rockdale Run Formation. The
mylonitic foliation is defined by clay seams and recrystallized
limestone (parallel to the rock hammer handle). The mylonitic
foliation is kinked by later folds.
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Depositional features in the Lower and Middle Ordovician Rockdale Run Formation. A, Dark chert and limestone along the

bluffs near MM 88.5. Note the stylolites (irregular, bedding-parallel seams of concentrated insoluble material formed by compaction;
shown by arrow) that are parallel to beds. B, Ripple marks (3-inch spacing) on bedding plane in shaly limestone exposed on the bluff
near MM 88.5. The ripple marks indicate that the rocks were deposited in a shallow tidal-water environment.

ern Piedmont of Maryland that was the source of the sand and
clay in the Martinsburg Formation.

The contact between the Chambersburg Limestone and
Martinsburg Formation may be seen in a small shale quarry
east of MM 96. Scarce fossil remains of the trilobite Crypto-
lithus and fragments of graptolites occur here. These animals
favored habitation within the deepwater environments where
shale was deposited. The Martinsburg Formation is the young-
est and only noncarbonate rock in the northern Shenandoah
Valley and it forms the core of the Massanutten synclinorium.
Because of the meandering nature of the Potomac River, the
canal crosses the axial region (or center) of the Massanutten
synclinorium three times (near MM 93.5, MM 96, and at about
MM 100). A dramatic change in both physiography and land
use (from agriculture to pasture and woodland) occurs in the
area underlain by Martinsburg Formation because of the con-
trast in materials that result from weathering.

Good exposures of shale in the lower part of the Martins-
burg Formation may be seen from MM 95 to MM 96.5. At the
footbridge, dolomite of the Rockdale Run Formation (Obrr) is
thrust-faulted above shale of the younger Martinsburg Forma-
tion, and rocks of the Middle Ordovician St. Paul Group and
Chambersburg Limestone are missing.

At MM 97.1 are remnants of the piers for the old rail-
road trestle which were made of Triassic red sandstone similar
to the Upper Triassic Manassas Sandstone quarried at Seneca,
Md. These rocks most likely were quarried from the Gettys-
burg basin near Emmittsburg, Pa., and were transported here
by railroad.

The Stonehenge Limestone (Obs) is exposed from MM
97 to MM 99 near Williamsport (plate 13). Immediately east of
the powerplant (MM 99), shale of the Martinsburg Formation is
exposed beneath the same fault encountered near Lock 43 and

the footbridge near MM 96.5. This regional fault can be traced
northward into Pennsylvania and southward into West Virginia.
The steel drawbridge immediately north of the power plant
allowed coal trains to cross the canal to supply the plant.

A feature locally known as the Cushwa basin at the
National Park Service’s C&O Canal Visitor Center at Williams-
port was a transfer station for canal cargo, which was principally
coal from west of Cumberland (fig. 98). Like the basins at Sen-
eca and Cumberland, this basin was a large holding area where
canal boats and barges loaded or unloaded cargo. High (1997)
provides a photograph of a canal boat that crashed through the
Conococheague Creek Aqueduct at Williamsport in 1920.

Williamsport to McCoys Ferry (MM 99.5 to
MM 110)

Over the next two miles, the wide flood plain of the
Potomac River overlies the Middle and Upper Ordovician
Martinsburg Formation (plate 13). Incompetent, dark-gray,
silty shale of the unnamed lower member of the Martinsburg
Formation (Om) that was folded and faulted more easily than
the adjacent competent carbonate rocks may be seen along
the CSXT railroad tracks to the north. Approximately 2,000
ft of shale grades upward into more sandy beds that mark the
base of the unnamed upper member. The upper member of
the Martinsburg Formation consists of gray, silty shale inter-
bedded with gray to brown, fine- to medium-grained sand-
stone. The sandstone beds typically are less than 1 ft thick
(fig. 99A) in the lower part of the member and gradually
increase in thickness to more than 20 ft near the top. The
thinner beds exhibit basal scours and lineations (fig. 99B)
that are typical of distal deposits resulting from high energy
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caused by deepwater turbidity currents (McBride, 1962). The  this point westward to McCoys Ferry (MM 110), the same

thicker sandstones higher in the member were deposited in sequence of bedrock formations occurs on the eastern flank of
shallower water, closer to the sand source, as the depositional the fold. Rocks underlying the western limb of the synclino-
basin was filling. rium were not as severely deformed as those of the overturned

The last shale outcrop that marks the eastern limb of the eastern limb; therefore, sedimentary structures and fossils are
Massanutten synclinorium may be seen near MM 102. From better preserved in the western limb.

Shale
— bed

Sandstone

— bed

A B

Figure 98. Historical photo-
graph (about 1920) of Cushwa
basin at Williamsport (MM 100)
showing coal being loaded
into horse-drawn wagons. The
coal was transported down
the canal from Cumberland.
Photograph by Consolidated
Coal Co.; courtesy of National
Park Service).

Figure 99. Upper part of Middle Ordovician Martinsburg Formation along the railroad north of MM 101. A, Thin-bedded sandstone and
shale represent turbidites, which were deposited in a deepening basin at the onset of the Taconian orogeny during the Late Ordovician.
They were the first clastic rocks deposited after almost 100 million years of carbonate deposition on the continental shelf. B, Flute casts
at the base of a sandstone bed. These features formed where a trough, which formed as turbulent water scoured the surface, later filled

with sand. The water flowed parallel to the direction of the mechanical pencil.
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Figure 101.
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Mud-filled crack /

Mud crack
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Mudcracks on Upper Cambrian and Lower Ordovician Conococheague Limestone at MM 107.8. A, Plan view of mudcracks

developed on the top of the limestone. The polygonal shape (4 inches across) is very similar to present-day mudcracks that form in the
silty deposits after the Potomac River floods. B, Cross section of laminated Conococheague Limestone with mudcracks.

Westward from MM 102 to MM 103.2, the section con-
tains a nearly continuous bedrock exposure starting near the
base of the Martinsburg Formation and descending strati-
graphically (westward) to the top of the Lower Ordovician
Stonehenge Limestone (Obs) (fig. 100). The Middle Ordo-
vician Chambersburg Limestone (Oc), below the Martins-
burg, here consists of medium- to dark-gray, wavy- to nod-
ular-bedded, fossiliferous limestone that is shaly at its base
near the eastern wall of the active quarry immediately to the
north. To the west, the more gently dipping strata are part
of the Middle Ordovician St. Paul Group (Osnr) rocks (Neu-
man, 1951), which are actively being quarried. The St. Paul
Group, which consists of the Row Park and New Market
Limestones mapped as an undivided unit, consists mainly
of light-gray, thick-bedded limestone with thin interbeds of
tan dolomite. An interval of gray, fractured dolomite of the
Middle Ordovician Pinesburg Station Dolomite (Op) under-
lies the St. Paul Group and is exposed at the parking area at
MM 103.2. Along the meander immediately to the south are
scattered outcrops of folded rocks within the Conococheague
and Stonehenge Limestones.

At Dam 5 and Lock 45 north of MM 107, the exposed
rocks are the Upper Cambrian and Lower Ordovician Conoco-
cheague Limestone (0€c). Quaternary boulders and gravel lit-
ter a low river terrace. Approximately 1,000 ft west of Lock 45,
the rocks are highly cleaved due to a southeast-dipping thrust
fault that places the Conococheague Limestone over the Lower
and Middle Ordovician Rockdale Run Formation (Obrr). Imme-
diately to the west (MM 106.8) are the underlying rocks of the
Lower Ordovician Stonehenge Limestone (Obs); a complete
section (from top to bottom) of the Stonehenge is exposed from
here to the area between Locks 46 and 47 (MM 107.2). From
Lock 47 westward, the Conococheague Limestone is exposed
relatively continuously until MM 108, where the upper strata
of the underlying rocks of the Middle and Upper Cambrian
Elbrook Limestone (€e) occur in an anticline. Laminated Con-

ococheague Limestone with mud cracks is exposed near MM
107.8 (fig. 101). The Conococheague is exposed all the way to
Four Locks (MM 108.5) in a broad syncline (fig. 100).

At Four Locks, canal boats were lifted to pass through
the neck of a meander, thereby obviating about 4.5 mi of canal
construction. The elevated valley occupied by the canal and
towpath is an abandoned Pleistocene channel of a former trib-
utary to the Potomac River. Shaly and algal limestones with
stromatolites (fig. 102) exposed near the North Mountain
campsite characterize the Elbrook Limestone along the west-
ern limb of the Massanutten synclinorium (Brezinski, 1996a).

At MM 110 (plate 14) is an outcrop of very light gray to
white quartzite of the Upper Ordovician and Lower Silurian
Tuscarora Quartzite (sot) (fig. 103). The Tuscarora Quartzite
and the Elbrook Limestone are separated by the North Moun-
tain thrust fault, which is perhaps the most regionally sig-
nificant thrust fault in the central Appalachian region. This
thrust fault transported all of the rocks between here and

Figure 102. Stromatolites (fossilized algal remains) in the Middle
and Upper Cambrian Elbrook Limestone east of McCoys Ferry,
near MM 109.5. Knife for scale.
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Georgetown in Washington, D.C., westward over Silurian
and Devonian rocks. For the next 74.5 mi to the western ter-
minus of the canal at Cumberland, the Potomac River tran-
sects the rest of the Valley and Ridge province.

B

Figure 103. Upper Ordovician and Lower Silurian Tuscarora
Quartzite. The Tuscarora is highly fractured along the North
Mountain thrust fault. Rocks to the east were transported west-
ward, structurally above the fractured and brecciated quartzite.
To the south, this resistant quartzite underlies North Mountain. A,
Tuscarora Quartzite at McCoys Ferry (MM 110). B, Fractured and
brecciated Tuscarora Quartzite. Quarter for scale.

Valley and Ridge Province—West of
North Mountain Thrust Fault

McCoys Ferry to Cumberland, Md. (MM 110 to
MM 184.5)

Access Points

McCoys Ferry

Fort Frederick State Park
Big Pool

Little Pool

Hancock

Cohill

Woodmont

Pearre

Little Orleans

Green Ridge/Kasecamp Road
Twigg Hollow Road

Paw Paw Tunnel

Keifers

Town Creek

Oldtown

Spring Gap

North Branch

Wiley Ford

Cumberland

Introduction

The Valley and Ridge physiographic province west of the
Great Valley section consists of Ordovician to Permian sand-
stone, siltstone, shale, and limestone that were folded into
anticlinoria and synclinoria west of the North Mountain thrust
fault during the late Paleozoic Alleghanian orogeny (fig. 104).
Silurian, Devonian, and Mississippian rocks are exposed along
the C&O Canal; Ordovician rocks are exposed in the core of
the Wills Mountain anticline west of Cumberland; and Penn-
sylvanian and Permian rocks are exposed in the Appala-
chian Plateaus farther to the west. The limbs of the anticlino-
ria are underlain by resistant Upper Ordovician and Lower
Silurian Tuscarora Quartzite (SOt) and Lower Devonian Oris-
kany Sandstone (Do) that make up ridges. These rocks exhibit
bedforms such as ripple marks, crossbeds, and worm burrows
(Skolithos linearis) that indicate a beach environment that is
similar to that found along the Atlantic Coast today. Most of
the younger rocks are Devonian and consist of siltstone and
shale that form mostly broad valleys with low ridges under-
lain by sandstone. The youngest rocks are the Upper Devo-
nian and Lower Mississippian Rockwell Formation (MDr)
and the Lower Mississippian Purslane Formation (Mp), both
of which are preserved in the Sideling Hill syncline and are
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Cumberland, Md.
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Figure 104. Side-looking airborne radar (SLAR) image, generalized structure map, and cross section of a portion of the C&0 Canal
National Historical Park and Potomac River corridor as it crosses the Valley and Ridge province, including the westernmost part of the
Great Valley section. A, SLAR image illustrating the namesake physiography of the Valley and Ridge province. Erosion-resistant rocks

on the limbs of anticlines and synclines underlie the hills, ridges, and mountains. Easily eroded shale and limestone are in the valleys.

B, Structure map showing fold axes and major faults. C, Cross section showing folds and faults from the North Mountain fault westward
to the Wills Mountain anticline and the edge of the Appalachian Plateaus province. See plates 14 to 20 for detailed geologic maps of this
portion. Geologic units shown in cross section are generalized from the geologic map shown on plate 1.
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best exposed in the Interstate Route 68 roadcut at the State of
Maryland’s Sideling Hill Exhibit Center.

The oldest rocks along the C&O Canal in the Valley and
Ridge province are shale and sandstone of the Upper Ordovi-
cian Juniata Formation (Oj) which is exposed in the core of the
Wills Mountain anticline in The Narrows, a water gap north-
west of Cumberland. Silurian and Lower Devonian rocks are
exposed on North Mountain in the footwall of the North Moun-
tain thrust fault and in the following anticlinoria (from east to
west): Cacapon Mountain anticlinorium (between Tonoloway
Ridge and Warm Springs Ridge), Irons Mountain anticline of
the Patterson Creek anticlinoria, and Wills Mountain anticline
(fig. 104). The mostly Middle and Upper Devonian siltstone and
shale units are exposed (east to west) in the Meadow Branch
synclinorium, Sideling Hill syncline, Whip Cove anticlinorium,
Town Hill syncline, and Evitts Creek syncline. Erosion of these
rocks and their structures resulted in the classic valleys and
ridges that give this physiographic province its name.

The oldest rocks exposed along the canal west of North
Mountain are Silurian and range in age from about 443 to 418
Ma (Tucker and others, 1998). Shale and sandstone of the Mid-
dle Silurian Rose Hill Formation (Sr) are exposed along the canal
at Leopards Mill. These rocks are overlain by (in ascending
order) white Middle Silurian Keefer Sandstone (Sk), shaly lime-
stone of the Middle and Upper Silurian McKenzie Formation
(sm), and red shale and sandstone of the Upper Silurian Blooms-
burg Formation (Sb). The clastic rocks are overlain by shale of
the Upper Silurian Wills Creek Formation (Sw), Upper Silu-
rian Tonoloway Limestone (Stl), and Upper Silurian and Lower
Devonian Keyser Limestone (DSk). The boundary between the
Silurian and Devonian Periods is within the Keyser. These rocks
record a shallow marine sea that transgressed over and sub-
merged much of the Appalachian basin during the Late Silurian.

Devonian rocks range in age from about 418 to 362 Ma
(Tucker and others, 1998) and consist of the Lower Devonian
Oriskany Sandstone (Do), Lower and Middle Devonian Need-
more Shale and Middle Devonian Marcellus Shale (mapped
undivided as bmn), Middle Devonian Mahantango Forma-
tion (Dm), Upper Devonian Brallier Shale (Db), Upper Devo-
nian Foreknobs Formation (Df), and Upper Devonian Hamp-
shire Formation (Dh). The boundary between the Devonian
and Mississippian periods is located within the Rockwell For-
mation (MDr), which is the youngest unit exposed along the
canal in the Valley and Ridge province. Sideling Hill and Purs-
lane Mountain are underlain by younger rocks (350 Ma) of the
Lower Mississippian Purslane Formation (Mp).

The Oriskany Sandstone is interpreted as a beach sand
deposited during the regression of the sea that deposited the
underlying Keyser Limestone. Overlying the Oriskany Sand-
stone are shale, siltstone, and sandstone of the Needmore
Shale, Marcellus Shale, and Mahantango Formation that were
deposited as turbidites when another Early Devonian sea trans-
gressed over the region. During the Late Devonian, regional
regression of the sea led to the development of a broad
swampy lowland with deltas and rivers. Some of these rivers
carried debris from a rising highland to the east that may have

resulted from the Acadian orogeny (a tectonic event). Frag-
ments of metamorphic rocks and granitic gneiss that constitute
a diamicton (a bouldery deposit) at the Devonian-Mississip-
pian boundary may be derived from rocks of the Blue Ridge
and Piedmont that were exposed as the result of this orogeny;
the diamicton may be seen at the Sideling Hill roadcut along
Interstate Route 68 to the north of the canal.

All of the Devonian shale, siltstone, and sandstone
that was deposited above the Oriskany Sandstone is a rather
monotonous section of rock. The turbidite deposits are not lat-
erally extensive and there are abundant facies changes both
along and across strike that make defining unit contacts diffi-
cult. The transitional nature of these units and the inconsistent
definition and mapping of them is manifested in the varying
interpretations published in the geologic literature.

The Ordovician to Mississippian rocks were folded and
faulted during the late Paleozoic Alleghanian orogeny when
the North American tectonic plate collided with the African
tectonic plate. The resultant forces folded the rocks and trans-
ported them westward above thrust faults that are in the sub-
surface (figs. 4 and 104).

McCoys Ferry to Licking Creek Aqueduct
(MM 110 to MM 116)

Along this section of the C&O Canal, the Potomac River
has eroded a broad flood plain with sloping terraces along the
north shore that overlie mostly Devonian shales and siltstones
(plate 14). Abundant sandstone colluvium mantles the ridge
slopes. The combination of colluvium and alluvium on the
lower slopes forms an extensive Quaternary deposit that con-
ceals most of the bedrock. The canal along this section was
excavated in alluvium.

Much of the towpath was raised to prevent repeated dam-
age from floods. The large sandstone boulders that remain
along the lower terrace near MM 111 are evidence of ancient
floods in the region. Similar boulders deposited by the Potomac
River litter the uplands as much as 140 ft above the current
river level. They were used as building stones for the construc-
tion of Fort Frederick in 1756, north of MM 112 (fig. 105).

Big Pool (MM 112.5 to MM 114), located in a formerly
swampy area, is a feature unique to the C&O Canal. At this
spot, engineers used the swamps of the broad flood plain to
make the canal (fig. 106). Levees were constructed and water
was impounded within the enclosed swampy lowland. Little
Pool to the west is a similar feature. The swampy area near the
campground at Fort Frederick is probably what the areas near
Big Pool and Little Pool looked like prior to canal construction.

Licking Creek Aqueduct to Round Top Cement
Mill (MM 116 to MM 127.5)

Fossilized mud cracks, similar to those shown in fig-
ure 101, occur on top of several limestone blocks used in con-
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A
Figure 105.

B

Fort Frederick and Big Pool at MM 112. A, Aerial view of Fort Frederick (north of MM 112), which was built in 1756. View

looks to the southwest. Big Pool, the water body to the south, was a lowland that engineers used for the canal. Photograph by Abbie
Rowe, 1955; courtesy of the National Park Service. B, Colluvial and alluvial sandstone boulders that were gathered from the fields for

construction of the fort's walls.

Figure 106. Historical photograph (date unknown, probably
late 19th century) of workers and mules scraping the floor of Big
Pool after it was drained to remove silt. Photograph courtesy of
National Park Service.

structing the Licking Creek Aqueduct (near MM 116) (fig.
107A). Between the aqueduct and the overpass for Interstate
Route 70, limestone and chert of the Upper Silurian and Lower
Devonian Keyser Limestone (Dsk) (fig. 107B) are thrust over
shale of the Middle Devonian Mahantango Formation (Dm).
The thrust fault is not exposed. From here to the Tonoloway
Creek Aqueduct (plate 15) the canal was excavated in allu-
vium and the only rock that is exposed is the Upper Devonian
Brallier Shale (Db) at MM 119 (fig. 108) and Foreknobs For-
mation (Df) at MM 120. Little Pool, a swampy lowland used
for part of the canal channel, is located at MM 119 (see previ-
ous discussion).

Near MM 122, the towpath crosses the shale and siltstone
of the Upper Devonian Foreknobs and Hampshire Formations
(Dh) (fig. 109) in the Meadows Ground syncline. At the south-
east abutment of the Tonoloway Creek Aqueduct (MM 123)
is an outcrop of sandstone of the upper part of the Foreknobs
Formation. This location is a good example of the geomor-

phology of the flood plain. The modern flood plain was depos-
ited on shallow bedrock of the Foreknobs Formation, which
was leveled by the meandering Potomac River; the bedrock
was later exposed by downcutting of Tonoloway Creek, a trib-
utary of the Potomac. To the immediate north is the National
Park Service’s C&O Canal Hancock Visitor Center. Hancock
is situated on the east limb of the Cacapon Mountain anticlino-
rium (plate 15), a regional fold that extends for over 45 mi
from Virginia to Pennsylvania. The east limb of the Cacapon
Mountain anticlinorium is Warm Springs Ridge, which is
underlain by the Lower Devonian Oriskany Sandstone (Do).
This pure quartz sandstone is quarried commercially in West
Virginia for making glass. The Oriskany Sandstone also is a
major subsurface reservoir for natural gas throughout the cen-
tral Appalachians. Natural warm-water springs, such as Berke-
ley Springs to the south in West Virginia, are situated where
radiogenically heated ground water rises within the sandstone
and discharges at the surface. Dark, fissile shale of the Middle
Devonian Needmore Shale (Dmn) and the Lower and Middle
Devonian Marcellus Shale stratigraphically overlie the Oris-
kany. The uppermost part of the Marcellus contains limestone
nodules (fig. 110).

The Potomac River eroded through and deposited allu-
vium over the Oriskany Sandstone and older rocks from Little
Tonoloway Creek (MM 124.3) west to MM 127. White cliffs
of Oriskany Sandstone, locally known as Lovers Leap, crop
out southeast of MM 126 in West Virginia. North of the canal
near MM 127 (west of White Rock campsite), the creek flows
across broadly folded beds of white Middle Silurian Keefer
Sandstone (Sk).

The remains of the Round Top Cement Company’s mill
(fig. 34), as well as good outcrops of folded and faulted rock,
are located at about MM 127.5. As summarized by Glaser
(1987), the studies of these folds, cleavages, and faults here
and along the abandoned railroad cut above the canal by Cloos
(1951, 1958, 1964) and Geiser (1970, 1974) have advanced the
understanding of the mechanisms of structural geology. The
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B

Figure 107. Upper Silurian and Lower Devonian Helderberg
Limestone and Lower Devonian Shriver Chert. A, Helderberg
Limestone and limestone within the Shriver Chert, exposed north
of MM 116, are located above a blind thrust fault that places them
over shale of the Middle Devonian Mahantango Formation (not
shown). Note the two caverns (located in the Helderberg) on the
left side and center of the photograph. B, Licking Creek Aqueduct
at MM 116 was constructed from limestone blocks. Beneath the
aqueduct and alluvium is the Mahantango Formation, which at
this location also is located below the thrust fault.

anticline (locally called Devil’s Eyebrow) (figs. 111, 112, and
113) and adjacent folds (fig. 113) are in red sandstone, silt-

stone, and shale of the Upper Silurian Bloomsburg Formation
(Sb). Calcareous shale and limestone have weathered away to
form a cavelike recessed area in the hinge of the Devil’s Eye-

Sandstone bed Shale bed

Figure 108. Thin-bedded sandstone and shale of the Upper
Devonian Brallier Shale, east of the access trail to Little Pool (at
about MM 120.2), resemble turbidites of the Middle and Upper
Ordovician Martinsburg Formation near Williamsport (see figure
99). The stone berm of the canal is visible in the lower left of the
photograph.

brow anticline (fig. 112). High-calcium limestone of the over-
lying Upper Silurian Wills Creek Formation (Sw) was mined
(fig. 114) and processed for cement beginning in 1837.

Round Top Cement Mill to Sideling Hill Aqueduct
(MM 127.5 to about MM 137)

From MM 127.5 to MM 133, the Potomac River meanders
through complexly folded rocks in the core and along the north-
west limb of the Cacapon Mountain anticlinorium (plate 16).
The nearly flat-lying rocks excavated along the canal northeast
of Leopards Mill are from the axial region (or crest) of the main
anticline. The oldest rocks, Late Ordovician and Early Silurian
Tuscarora Quartzite (SOt), are exposed opposite the river near
Sir Johns Run in West Virginia. Outcrops of shale and sand-
stone of the Middle Silurian Rose Hill Formation (sr) (fig. 115)
and Keefer Sandstone (Sk) are located along the road and creek
northwest of MM 130; elsewhere, Quaternary colluvium and
alluvium cover the gentle slope and obscure bedrock. Near
MM 131.8, shale of the Rose Hill Formation contains drill holes
that resulted from excavation of the canal.

The Potomac River cuts across the strike of bedding
from near MM 133 to the Sideling Hill syncline near MM
137 (fig. 116). Folded Silurian and Devonian rocks on the
northwest limb of the Cacapon Mountain anticlinorium may
be seen from MM 133 west to Dam 6 and Tonoloway Ridge
(MM 134) (fig. 117). An anticline of tan Keefer Sandstone
(Sk) is located near MM 133 (fig. 118A). Also present in this
area are thrust faults that truncate sandstone beds (fig. 118B).
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Drill holes in the sandstone are oriented perpendicular to the
beds. Tubelike lines of trace fossil Skolithos linearis also are
present (fig. 118C). The intricately folded rocks along this
section of the canal (fig. 119) are best exposed to the south
along the Cacapon River at Fluted Rocks, W. Va. (fig. 120).
Here, the folds are secondary to the larger fold that under-
lies Cacapon Mountain to the east where the white Tuscarora
Quartzite is exposed. The folds in these fluted rocks show how
contrasting rock types, such as sandstone and shale, respond
differently to deformation. Differences in the geometry of the
folds (Lessing, 1988) reflect this competency contrast. In the
Potomac River near MM 133.5, Davies (1999) noted a fish
weir constructed by Native Americans.

Resistant, cherty, fossiliferous limestone of the Upper
Silurian and Lower Devonian Keyser Limestone (DSk)
(fig. 121) and overlying Lower Devonian Oriskany Sandstone
(Do) underlie Tonoloway Ridge west of MM 134. The Oris-
kany was quarried locally for silica-rich sand and dimension

Figure 109. Upper Devonian Foreknobs Formation. A,
Fissile, red shale interbedded with thin sandstone in the
Upper Devonian Foreknobs Formation. B, Thin-bedded,

red sandstone of the Foreknobs Formation. Both A and B
are characteristic of the Foreknobs, which is best exposed
south of the Potomac River on the limbs of the Meadows
Ground syncline. The sandstone beds become more massive
and thicker upsection into the Upper Devonian Hampshire
Formation in the core of the syncline. C, Thick red shale of
the Foreknobs Formation shown transitioning to thin-bedded
sandstone and shale of the Upper Devonian Brallier Shale,
which was last seen near MM 120.2 (see fig. 108).

stone. Like Dam 3 at Harpers Ferry, feeder Dam 6 was built
above resistant sandstone ledges and shallow waterfalls. Sand-
stone outcrops with fossil brachiopod molds (fig. 122) form
the base to the dam abutment. The original dam was a tim-

ber crib filled with sandstone rubble and then covered with
wooden planks, but only the rubble remains (fig. 38). Opposite
Dam 6 are well-developed fluvial terraces of both the Potomac
and Cacapon Rivers.

Stratigraphically above the Oriskany Sandstone are shale,
siltstone, and sandstone turbidite deposits of the Lower and
Middle Devonian Needmore Shale and Middle Devonian Mar-
cellus Shale (bmn) (fig. 123). Westward from MM 134, the
siltstone and sandstone are folded (fig. 124) (Cloos, 1951).
The axial region of the Sideling Hill syncline is crossed at the
Sideling Hill Creek Aqueduct. This syncline is best exposed
to the north along the Interstate Route 68 roadcut at the State
of Maryland’s Sideling Hill Exhibit Center (fig. 125). The east
end of the aqueduct is made up of sandstone taken from the
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Figure 110. Middle Devonian Marcellus Shale southeast of MM
125 in West Virginia. A, Fissile black shale dipping east on the limb
of the Cacapon Mountain anticlinorium and displaying west-dipping
cleavage. B, Local concretions of limestone in the Marcellus that
were deposited above the Lower Devonian QOriskany Sandstone.

Figure 111. Historical pho-
tograph (1897) of the Devil's
Eyebrow, an anticline in rocks
of the Upper Silurian Blooms-
burg Formation at MM 127.
The shallow cave in the core
of the anticline behind the
seated man was formed from
the weathering of limy shale
and limestone. Photograph
by Charles D. Walcott (U.S.
Geological Survey).
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Figure 112. Sketch of the Devil’s Eyebrow and ruins of Round Top Cement Company mill west of Hancock, Md. (modified from Davies,
1989).

A B

Figure 113. Folds in Upper Silurian Bloomsburg and Wills Creek Formations. In both photographs, note that the cleavage is nearly per-
pendicular to the folded beds. A, Lime kilns of the Round Top Cement Company mill situated above an anticline of Bloomsburg Formation
west of MM 127 and the Devil's Eyebrow, which is also composed of Bloomsburg. B, Historical photograph (1897) showing intervening
syncline in Wills Creek Formation. Photograph by Charles D. Walcott (U.S. Geological Survey).

Figure 114. Historical photograph (1897) looking
down the axis of an anticline. Limestone in the core
of the fold was mined on the side of Round Top.
Timber was used to support the rock during mining.
Photograph by Charles D. Walcott (U.S. Geological
Survey).
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Figure 115. Shale of the Middle Silurian Rose Hill Formation,
which was drilled and excavated near Leopards Mill (MM 130).
These are some of the oldest rocks exposed along the C&0 Canal
in the Valley and Ridge province. Note that bedding dips to the left
and joints dip to the right.

Figure 116. Historical photograph (date unknown) from the overlook on Cacapon Mountain in West Virginia, looking west toward the town
of Great Cacapon, W. Va. (on left side of photograph). Note the fresh rock exposed along the canal and railroad excavations in the lower
right (illustrated in figure 117). The nearly flat open pastures amid forests on the hills on either side of the Potomac River are terraces of the
ancestral river deposited during early Quaternary or possibly Tertiary time. Similar terraces south of the Potomac River (to the left, beyond
Great Cacapon), are younger in age and lower in elevation. Dam 6 and Lock 51 are located at the bend of the river at the end of Tonoloway
Ridge, in the center of the photograph. Photograph courtesy of the National Park Service.
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Figure 117. Geologic sketch of the bedrock along the section of the C&0 Canal from east of MM 133 west to Dam 6 and Tonoloway
Ridge (see figure 116), showing the folded and faulted Silurian and Devonian rocks on the west limb of the Cacapon Mountain anticlino-

rium. Locations of figures 118 and 119 are shown.
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Figure 118. Middle Silurian Keefer Sandstone. A, An anticline of
Keefer Sandstone exposed along the canal east of MM 133 (loca-
tions shown on figure 117). Compare the style of folding seen here
with the chevron folds shown in figure 120. The thrust fault on the
eastern limb of the fold is shown in B. Outcrop is about 15 ft high.
B, Thrust fault, which formed during flexural-slip folding of the
beds. Sandstone beds are fractured and truncated beneath the
fault, which is in the more ductile and cleaved shale. C, Qutcrop
showing Skolithos linearis (trace fossil worm burrows) perpen-
dicular to sandstone beds. Burrows are similar to those seen in
the Lower Cambrian Antietam Formation near Harpers Ferry, W.
Va. (fig. 86B). Quarter for scale.
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Figure 119. Geologic sketch (after Cloos, 1951) of folded and faulted rocks of the Upper Silurian Wills Creek Formation east of MM 134,
Outcrop is about 15 ft high.
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Figure 120. Folded and faulted strata at Fluted Rocks, along the
Cacapon River in West Virginia. A, Geologic sketch showing Silurian
rocks of the Rose Hill Formation, Keefer Sandstone, and McKenzie
Formation folded into anticlines and synclines (modified from Less-

ing, 1988). Band Care historical photographs (around 1910) show-

ing intricately folded and faulted rocks. Photographs by George W.

Stose (U.S. Geological Survey). Cc
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Chert
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Figure 121. Upper Silurian and Lower Devonian Helderberg Limestone. A, Chert within the Helderberg Limestone. B, Anthozoans (coral
fossils) are abundant in the Helderberg Limestone.
Figure 122. Brachiopods
in Lower Devonian Oriskany
Sandstone underlying Tonolo-
way Ridge at Dam 6. A, The
Oriskany Sandstone contains
abundant molds of Spiriferida
shells, which were deposited
on a sandy beach. Quarter
for scale. B, Cross sections of
A B brachiopod molds.
3 8 g
w
Figure 123. Outcrop of Lower and Middle Devonian Needmore Figure 124. Historical photograph (undated) showing folded and
Shale, which was the first shale unit deposited as part of the thick  faulted shale and sandstone of the Upper Devonian Brallier Shale
Devonian clastic sequence. The Needmore contains thin sand- exposed above the C&0 Canal along the railroad at MM 135 near
the Woodmont station. Chevron folds are in sandstone beds about

stone beds and is exposed above the Lower Devonian Oriskany
3in thick. Photograph by George W. Stose (U.S. Geological Survey).

Sandstone immediately west of Tonoloway Ridge near MM 134.2.
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adjacent outcrop of the basal part of the Upper Devonian and
Lower Mississippian Rockwell Formation (MDr) (fig. 126),
which is the youngest unit seen along the canal west of Point
of Rocks, Md. The best exposures of the Rockwell are along
the abandoned railroad just north of the canal.

Purslane

Formﬁn V
\V/Rockw_en
Coal Formation

Figure 125. Mississippian rocks of the Sideling Hill syncline
exposed in the Interstate Route 68 roadcut through Sideling Hill
at the State of Maryland’s Sideling Hill Exhibit Center. The black
seams are the oldest beds of coal deposited in the region.

Figure 126. Sandstone in the Upper Devonian and Lower Missis-
sippian Rockwell Formation exposed along the Sideling Hill Creek
Aqueduct at MM 136.5. The sandstone consists of cemented
vein-quartz gravel which may have been derived from rocks of
the Piedmont province exposed and eroded by tectonic activity
associated with the Acadian orogeny.

Sideling Hill Aqueduct to Paw Paw Tunnel
(MM 137 to MM 156)

The Broadtop synclinorium (the largest fold structure of
this region) occurs between the Cacapon Mountain anticlino-
rium (MM 133) and the Broadtop anticlinorium (MM 167 at
Oldtown) (fig. 104). The Broadtop synclinorium consists of
numerous secondary folds such as the Sideling Hill syncline,
Whip Cove anticlinoria, and Town Hill syncline. The Potomac
River meanders across the rocks of the Broadtop synclino-
rium to form the incised channels east of Paw Paw, W. Va. (fig.
104). A composite geologic sketch shows parts of the struc-
ture (fig. 127 and plate 17). From MM 137 to MM 138 are
east-dipping rocks of the Upper Devonian Hampshire For-
mation (Dh) on the west limb of the Sideling Hill syncline.
West of Indigo Neck campsite are the underlying rocks of the
Upper Devonian Foreknobs Formation (Df). From about MM
140 west to the old railroad bridge are folded rocks of the
Upper Devonian Brallier Shale (Db) that form an anticlino-
rium. Figure 127 also illustrates a tight anticline exposed west
of MM 143. Like the Devil’s Eyebrow anticline at the Round
Top Cement Company mill (MM 127.5), the hinge of this anti-
cline forms a “cave,” which actually is an overhang. In this
region, the shale bedrock and thin soil form a unique ecosys-
tem known locally as the shale barrens. Plants such as cactus
prefer the stratum and relatively dry climate. To the west, large
folds of the Foreknobs and Brallier are exposed along the cliffs
at MMs 145, 152 and 154.

Beyond Lock 62 (near MM 154.2) is the Paw Paw Tun-
nel, which is perhaps the most famous manmade structure asso-
ciated with the C&O Canal. The approach to the tunnel follows
the route of a former tributary through three lift locks, two of
which have fraction designations (Locks 63"5, 6475, and 66).
The tunnel was a solution to bypass the construction of a canal
along bedrock cliffs on four meanders of the Potomac River. In
order to retain the lock numbering system already in use to the
west, fraction numbers were required for the additional locks.
South of Lock 65 near MM 155, the canal was excavated at an
oblique angle to folded shale and sandstone beds of the Brallier
Shale. A cross section of the anticline is exposed at the north
portal to the tunnel (fig. 26). The towpath cuts across the axis
of the fold, but it mostly follows the northwest limb of the anti-
cline and the beds dip toward it (fig. 128A). Steel rock bolts
were installed by NPS to prevent bedrock landslides along bed-
ding planes onto the towpath. On the opposite wall of the canal,
the rocks dip into the slope. These rocks occasionally break
along joints and fall into the canal. These slope failures suggest
that the 12-year construction of the 3,118-ft-long tunnel was
both a major accomplishment and hazardous. Exposed along
the towpath are ancient mud cracks that are accentuated by
cleavage that refracts through them (fig. 128B). The shale beds
in the Brallier have fossil burrows and tracks (fig. 128C) made
by Devonian organisms that crawled through the mud before
it was lithified. Slickensides of vein quartz, which is parallel
to the shale beds, formed as the beds flexed and slipped during
folding (fig. 128D).



Valley and Ridge Province—West of North Mountain Thrust Fault 89

Foreknobs =~/

\ Foreknobs Hampshire W
. Formation Formation

Formation’ .
Yy

Location of part B

In(‘iigo Tunnel

Location of part C

-
- s
~_~

MM 143

Figure 127. Structuresin the
Upper Devonian Brallier Shale.
A, Composite geologic sketch
from MM 137 west to MM 138,
from Lock 57 west to the west
portal of Indigo Tunnel, and
from MM 143 west to the old
railroad bridge (MM 143.5),
illustrating the folded strata on
the west limb of the Sideling
Hill syncline. B, Detailed sketch
of the anticlinorium of Brallier
Shale centered on MM 143.
See part Cfor enlargement of
center fold west of MM 143.

C, Photograph and sketch of a
tight, upright anticline in thin
sandstone and shale of the
Brallier Shale west of MM 143.
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Canal

A

Figure 128. Upper Devonian Brallier Shale near MM 155. A, West limb

Cleavage

/

Bedding

— Slickensides

of an anticline, looking down from above the north portal of the Paw Paw

Tunnel. The towpath and canal transect the anticline (see figure 26) so that

bedrock of the west limb dips into the towpath and canal. The bedrock on

the dip slope required bolts to prevent gravity slides along the bedding plane.

B, Shale beds along the towpath north of the Paw Paw Tunnel with mud-

cracks accentuated by cleavage. Pen for scale. C, Burrows and trails made

by organisms before the mud was lithified to rock. Pen for scale. D, Quartz
slickensides along fault surfaces that are parallel to bedding. Pen for scale. D

Paw Paw Tunnel to Oldtown (MM 156 to MM 167)

West of the exit of the Paw Paw Tunnel, the area is under-
lain by the same Devonian shale, siltstone, and sandstone
sequence described between MM 135 and MM 156 (plate 18).
Abandoned incised meanders and gravel deposits from the
ancestral Potomac River and Little Cacapon River are found
in the valley of Purslane Run (MM 157.3) and at Reckley Flat
(around MM 159) (figs. 11 and 129) (see the previous dis-
cussion in the section on Abandoned Entrenched Meanders).
Folds on the west-dipping east limb of the Town Hill syn-
cline are seen at MM 159.5 before the axial region (center) is
crossed at about MM 161. From here to Lock 68 (Crabtrees
Lock at MM 164.7), the Devonian rocks dip east on the west
limb of the Town Hill syncline.

The Potomac River branches into the South Branch
Potomac River and the North Branch Potomac River west
of MM 164.5. Like the Cacapon (MM 133.5) and Little
Cacapon (MM 159) Rivers, there are well-developed incised
meanders near the confluence of these major tributaries and
the Potomac River. Near MM 161.5, the canal and towpath
cross the axial region of the Town Hill syncline. The red, fis-
sile shale and thin sandstone (fig. 130A), as well as crossbed-
ded sandstone (fig. 130B) are rocks of the Upper Devonian
Hampshire Formation (Dh). The Potomac River cut through
an anticline of the Lower Devonian Oriskany Sandstone (Do)
near MM 165 and parts of its northwest-dipping flank were
drilled and blasted to create the canal (fig. 131). Note the
pine trees and mountain laurel that prefer to grow on the thin
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Figure 129. Reckley Flat, north of MM 160. A, Reckley Flat is a terrace, as shown by the broad, open landscape. B, Fluvial silt, sand,
and gravel derived from sandstone above the shale bedrock that underlies Reckley Flat.

A

B

Figure 130. Devonian Hampshire Formation, exposed east of Town Creek on the limb of the Town Creek syncline, north of MM 161.5
along Maryland State Route 51. A, Red, fissile shale and thin sandstone beds. B, Thicker beds of crossbedded sandstone. Rocks shown

in A grade upward into the thicker beds shown in B.

Figure 131. Lower Devonian Oriskany Sandstone on the west
limb of the Broadtop anticline. The sandstone was excavated
locally to construct the C&0 Canal and towpath east of Oldtown
near MM 148. Pine trees and mountain laurel prefer the thin sandy
soil that develops on the sandstone.

sandy soil. From about MM 165.5, the canal diverges from
the Potomac River west to Oldtown, an early settlement and
river crossing for the Great Warrior Path, which was a prin-
cipal Native American east-west migration route over the
mountains.

Oldtown to Spring Gap (MM 167 to MM 173.5)

West of Oldtown, the Potomac River cuts across the strike
of Devonian rocks that form an unnamed syncline and rocks of
the Patterson Creek anticlinorium (plate 19). The canal at Old-
town was excavated in shale of the Middle Devonian Mah-
antango Formation (Dm) in an abandoned valley of Mill Run
because there are bluffs of shale along the Potomac River that
prevented construction of a canal and towpath. North of MM
168, both the canal and towpath were excavated through fis-
sile Lower and Middle Devonian Needmore Shale and Mid-
dle Devonian Marcellus Shale (Dmn) in order to rejoin the bank
of the Potomac River (fig. 40B; also see Engineering section).
From here west to Spring Gap (MM 173.5), the area is charac-
terized by shale barrens and a broad flood plain developed on an
anticline and syncline. There are good outcrops of folded Upper
Devonian Brallier Shale (Db) on the limb of the syncline near
MM 172 (fig. 132). Near Spring Gap, the canal crosses anti-
clines (part of the Patterson Creek anticlinorium) underlain by
resistant Lower Devonian Oriskany Sandstone (Do)

Spring Gap to Cumberland (MM 173.5to
MM 184.5)

Alluvial-terrace deposits left by the Potomac River, when
it flowed almost 100 ft higher in elevation than at present, may
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Figure 132. Upper Devonian Brallier Shale near MM 172. A,
Geologic sketch showing folded Brallier Shale (after Davies,
1999). Distance between C&0 Canal and Western Maryland
Railroad is about 20 ft. B, Recessed area of anticline illustrated
B on left side of A.

Figure 133. Historical photo-
graph (around 1920) showing
the C&0 Canal and wharf area
at Cumberland where boats
were loaded with coal for
transport eastward. Photo-
graph by Consolidated Coal
Company, courtesy of National
Park Service.




be seen north of MM 174 (plate 20). The Lower Devonian
Oriskany Sandstone (Do) is exposed again at MM 175. From
the west flank of the westernmost anticline, the Potomac River
meanders across the Upper Devonian Brallier Shale (Db) of the
broad Evitts Creek-Bedford syncline.

For the next 3 mi, the canal crosses a large meander of
the Potomac River now occupied by Mexico Farms, whose
surface contains large, rounded sandstone boulders depos-
ited by the river during the Pleistocene. To the south in West
Virginia, above the Potomac River, is an elevated abandoned
meander called Death Valley. To the north, the city of Cumber-
land and its municipal airport are built on similar elevated ter-
races. North of MM 180, hundreds of feet above the current
river level, are excellent roadcuts that reveal Quaternary allu-
vial deposits on bedrock (see figure 10). From MM 181 to the
National Park Service Cumberland Visitor Center, the canal
follows a meander bend and the only bedrock units exposed
are the Brallier Shale (Db) and the Middle and Lower Devo-
nian Needmore and Marcellus Shales (Dmn) near MM 184.

Historical photographs are all that remain to show what
this region looked like when the canal was in operation
(fig. 133) because much of the canal’s operating equipment
has been removed and the canal has been filled in. Although
this point represents the end of the east-to-west traverse, to
many of its past travelers, Cumberland was an outpost on the
western frontier where coal-filled canal boats began their jour-
ney eastward to supply the National capital region with heat-
ing fuel.
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Appendix 1

Sources of Data—Geologic Maps of 7.5-Minute Quadrangles

[Abbreviations are as follows: MGS, Maryland Geological Survey; USGS, U.S. Geological Survey; unpub., unpublished. See References Cited for complete

reference citation.]

Artemas

Kulander and others (1997)

J.D. Glaser (MGS) and S. Southworth (USGS) (unpub. data, 1996—
1997)

Bellegrove

Glaser (1994a)

Lessing and others (1997)

D.K. Brezinski (MGS) and S. Southworth (USGS) (unpub. data,
1996-1997)

Big Pool

Lessing and others (1995)

J.D. Glaser (MGS, unpub. data, 1996-1997)

D.K. Brezinski (MGS) and S. Southworth (USGS) (unpub. data,
1996-1997)

Buckeystown
Southworth and Brezinski (2003)

Charles Town

Nickelsen (1956)

D.K. Brezinski (MGS), R.C. Orndorff (USGS), and S. Southworth
(USGS) (unpub. data, 1996-1997)

Cherry Run

Dean and others (1995)

J.D. Glaser (MGS, unpub. data, 1996-1997)

S. Southworth (USGS, unpub. data, 1996-1997)

Cresaptown
Glaser (1994b)
S. Southworth (USGS, unpub. data, 1996-1997)

Cumberland
Glaser and Brezinski (1994)
S. Southworth (USGS, unpub. data, 1996-1997)

Evitts Creek
DeWitt and Colton (1964)
S. Southworth (USGS, unpub. data, 1996-1997)

Falls Church
Drake and Froelich (1997)
S. Southworth (USGS, unpub. data, 1996-1997)

Great Cacapon
Lessing and others (1997)
S. Southworth (USGS, unpub. data, 1996-1997)

Hancock

Dean and others (1995)

J.D. Glaser (MGS, unpub. data, 1996-1997)

D.K. Brezinski (MGS), S. Dickinson (USGS volunteer), and S.
Southworth (USGS) (unpub. data, 1996-1997)

Harpers Ferry
S. Southworth (USGS, unpub. data, 1996-1997)

Hedgesville

Dean and others (1987)

J.D. Glaser (MGS, unpub. data, 1996-1997)

D.K. Brezinski (MGS), R.C. Orndorff (USGS), and S. Southworth
(USGS) (unpub. data, 1996-1997)

Keedysville

Dean and others (1987)

Brezinski (1992)

D.K. Brezinski (MGS) and S. Southworth (USGS) (unpub. data,
1996-1997)

Leesburg
Lee (1979)
S. Southworth (USGS, unpub. data, 1996-1997)

Oldtown

Glaser (1994c)

Kulander and others (1997)
Southworth and Brezinski (1996b)

Patterson Creek
DeWitt and Colton (1964)
S. Southworth (USGS, unpub. data, 1996-1997)

Paw Paw

Glaser (1994d)

Kulander and others (1997)

D.K. Brezinski (MGS), S. Dickinson (USGS volunteer), and S.
Southworth (USGS) (unpub. data, 1996-1997)
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Point of Rocks

Burton and others (1995)

Burton and Southworth (1996)

D.K. Brezinski (MGS) and S. Southworth (USGS) (unpub. data,
1996-1997)

Poolesville
Southworth (1998)

Rockville
A.A. Drake, Jr. (USGS Scientist Emeritus, unpub. data, 1996-1997)
S. Southworth (USGS, unpub. data, 1996-1997)

Seneca
Drake and others (1999)
S. Southworth (USGS, unpub. data, 1996-1997)

Shepherdstown

Dean and others (1987)

D.K. Brezinski (MGS), R.C. Orndorff (USGS), and S. Southworth
(USGS) (unpub. data, 1996-1997)

Appendix 1

Sterling
Lee (1979)
S. Southworth (USGS, unpub. data, 1996-1997)

Vienna
Drake and Lee (1989)
S. Southworth (USGS, unpub. data, 1996-1997)

Washington West
Fleming and others (1994)
S. Southworth (USGS, unpub. data, 1996-1997)

Waterford
Burton and others (1995)
S. Southworth (USGS, unpub. data, 1996-1997)

Williamsport

Dean and others (1987)

D.K. Brezinski (MGS), R.C. Orndorff (USGS), and S. Southworth
(USGS) (unpub. data, 1996-1997)
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Plates 2-20.

Plates 2 through 20 are detailed geologic maps that roughly correspond to sections described in the Geologic Guide. An index to
the plates is found on plate 1 (in pocket). Sources of data are listed by 7.5-minute quadrangle in Appendix 1. Each plate consists
of a geologic map on the right-hand page, and a description of map units and explanation of symbols on the left-hand page.

The shaded-relief topography was derived from U.S. Geological Survey Digital Elevation Model (DEM) files. Selected hydrography
was derived from U.S. Geological Survey Digital Line Graph (DLG) files. Selected roads were based on the U.S. Geological
Survey's 1:100,000-scale planimetric maps of the Cumberland, Hagerstown, Winchester, Frederick, Washington West, and
Washington East quadrangles. These maps are not intended for navigation.

Plates 2-20. Geologic map of the Chesapeake and Ohio Canal National Historical Park and
Potomac River Corridor from:

2. Georgetown (MM 0) to near Glen Echo Park (about MM 7)

Near Glen Echo Park (about MM 7) to Swains Lock (MM 17)

Swains Lock (MM 17) to Seneca (MM 22.8)

Seneca (MM 22.8) to Edwards Ferry (MM 30)

Edwards Ferry (MM 30) to Monocacy River Aqueduct (MM 42.2)
Monocacy River Aqueduct (MM 42.2) to Point of Rocks (MM 48.2)

Point of Rocks (MM 48.2) to Brunswick (MM 55)

Brunswick (MM 55) to Fort Duncan (MM 62.5)

10.  Fort Duncan (MM 62.5) to Antietam Creek (MM 69)

11.  Antietam Creek (MM 69) to Big Slackwater (MM 85.5)

12.  Big Slackwater (MM 85.5) to Williamsport (MM 99.5)

13. Williamsport (MM 99.5) to McCoys Ferry (MM 110)

14. McCoys Ferry (MM 110) to Licking Creek Aqueduct (MM 116)

15.  Licking Creek Aqueduct (MM 116) to Round Top Cement Company mill (MM 127.5)
16.  Round Top Cement Company mill (MM 127.5) to Little Orleans (MM 141)
17.  Little Orleans (MM 141) to Paw Paw Tunnel (MM 156)

18. Paw Paw Tunnel (MM 156) to Oldtown (MM 167)

19.  Oldtown (MM 167) to Spring Gap (MM 173.5)

20.  Spring Gap (MM 173.5) to Cumberland (MM 184.5)

s T o Al
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