Overview of the Potential and Identified Petroleum Source Rocks of the Appalachian Basin, Eastern United States

By James L. Coleman, Jr., Robert T. Ryder, Robert C. Milici, and Stephen Brown

Chapter G.13 of
Coal and Petroleum Resources in the Appalachian Basin: Distribution, Geologic Framework, and Geochemical Character
Edited by Leslie F. Ruppert and Robert T. Ryder

Professional Paper 1708

U.S. Department of the Interior
U.S. Geological Survey
Contents

Abstract ... 1
Introduction .. 1

Potential Precambrian Source Rocks .. 2
Identified and Potential Cambrian Source Rocks ... 3
Identified and Potential Ordovician Source Rocks ... 3

Potential Silurian Source Rocks .. 8
Identified and Potential Devonian Source Rocks .. 8
Identified and Potential Mississippian Source Rocks ... 9
Identified and Potential Pennsylvanian Source Rocks .. 9

Potential Permian Source Rocks for Biogenic Methane ... 10
Summary .. 10
References Cited ... 10

Figures

[Figures follow References Cited]

1. Map of the Eastern United States showing locations of wells and outcrops from which samples were obtained ... 19
2. Map of the Eastern United States showing the extent of potential Precambrian petroleum source rocks in the Appalachian basin .. 21
3. Map of the Eastern United States showing the extent of identified and potential Cambrian petroleum source rocks in the Appalachian basin .. 23
4. Map of the Eastern United States showing the extent of identified and potential Ordovician petroleum source rocks in the Appalachian basin .. 25
5. Map of the Eastern United States showing the extent of potential Silurian petroleum source rocks in the Appalachian basin ... 27
6. Map of the Eastern United States showing the extent of identified and potential Devonian petroleum source rocks in the Appalachian basin .. 29
7. Map of the Eastern United States showing the extent of identified and potential Mississippian petroleum source rocks in the Appalachian basin .. 31
8. Map of the Eastern United States showing the extent of identified and potential Pennsylvanian petroleum source rocks in the Appalachian basin .. 33

Table

1. List of wells from Exlog/Brown and Ruth Laboratories, Inc. (undated) .. 4
Conversion Factors

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>meter (m)</td>
<td>3.281</td>
<td>foot (ft)</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gram (g)</td>
<td>0.03527</td>
<td>ounce, avoirdupois (oz)</td>
</tr>
<tr>
<td>kilogram (kg)</td>
<td>2.205</td>
<td>pound avoirdupois (lb)</td>
</tr>
</tbody>
</table>

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 1983).
Overview of the Potential and Identified Petroleum Source Rocks of the Appalachian Basin, Eastern United States

By James L. Coleman, Jr.,1 Robert T. Ryder,1 Robert C. Milici,1 and Stephen Brown2

Abstract

The Appalachian basin is the oldest and longest producing commercially viable petroleum-producing basin in the United States. Source rocks for reservoirs within the basin are located throughout the entire stratigraphic succession and extend geographically over much of the foreland basin and fold-and-thrust belt that make up the Appalachian basin. Major source rock intervals occur in Ordovician, Devonian, and Pennsylvanian strata with minor source rock intervals present in Cambrian, Silurian, and Mississippian strata.

Introduction

The first instance of commercial production of petroleum in the United States was in the Appalachian basin (de Witt and Milici, 1989; de Witt, 1993). The vast majority of the produced oil and natural gas (in all its forms and viscosities) is generated from petroleum source rocks interspersed within Paleozoic strata that contain both siliciclastic and carbonate reservoir rocks. The main source rock intervals, which have been geochemically typed to produced petroleum, are the Ordovician Utica Shale and the Upper and Middle Devonian and Lower Mississippian shale formations (including the Devonian Ohio Shale and the Mississippian Sunbury Shale). The source of coalbed methane is primarily the Pennsylvanian coals. Local accumulations of petroleum have been generated from other less prolific source rocks. Throughout the Appalachian basin, the generated petroleum ranges from crude oil to natural gas. Most of the analyzed petroleum fluids were thermogenically derived during the evolution of the Appalachian foreland basin and fold-and-thrust belt. The evolutionary sequence involving the biogenic formation of methane within the Appalachian basin is not completely understood and thus is not included in this review.

This report examines the currently identified and potentially recognized petroleum source rocks of the Appalachian basin within and adjacent to the Appalachian Basin Province (Province 67 of Dolton and others, 1995), for which Milici and others (2003) summarized the 2002 assessment of undiscovered oil and gas resources by the U.S. Geological Survey (USGS). For this report, the structural Appalachian basin includes strata of the Black Warrior basin because some petroleum resources extend across basin boundaries. The boundary of the Appalachian Basin Province is shown in figure 1.

Effective petroleum source rocks are typically considered to be stratigraphic intervals having an original total organic carbon (TOC) content that is greater than 1.0 weight percent (Dow, 1977, 1978; Tissot and Welte, 1984; Peters and Moldowan, 1993; Law, 1999; Peters and others, 2005). Although some studies (which were mainly conducted early in the analysis of a basin’s petroleum systems) suggest that thick intervals having an average TOC lower than 1 percent may be as effective in generating large amounts of petroleum as much thinner intervals that are substantially richer in organic matter (for example, Nwachukwu and Chukwura, 1985; Doust and Omatsola, 1989; Goddard and others, 2008), there is little evidence to indicate that thick, but lean, stratigraphic intervals are major source rocks that dominate the petroleum systems of a basin. In the Appalachian basin, the major source rocks identified to date are predominantly lithic shales rather than carbonaceous lime mudstones, although less extensive source rocks may be carbonaceous lime mudstones. Petroleum source rocks have been identified or hypothesized in each of the Paleozoic stratigraphic systems of the Appalachian basin.

The mere presence of a sedimentary unit that has a TOC content greater than 1.0 percent does not guarantee that it will be an effective source rock. Sufficient convertibility (S2, the second petroleum peak generated by pyrolysis) and thermal maturation (expressed as the percent vitrinite reflectance (%R0) or indicated by conodont color alteration indices (CAI)) are also required. Generally, levels of S2 equivalent to or greater than 5 milligrams of hydrocarbon per gram of dry rock (mgHC/g rock) and a thermal maturation equivalent to or greater than 0.65 %R0 are required for the efficient generation of liquid petroleum (oil) (Waples, 1980; Tissot and Welte, 1984; Peters, 1986). When and where these levels of S2 and vitrinite reflectance have not been reached, only the formation of biogenic methane is a reasonable possibility (Rice, 1993). Source rocks in which the kerogen is predominantly algal in

2GeoMark Research, Houston, Tex.
nature (Type I or II kerogen) tend to produce oil and some natural gas (Peters and others, 2005). However, source rocks that contain mainly woody (Type III) kerogen tend to produce natural gas, with some possible liquid component, if the kerogen content and temperature gradient over geologic time permit (Peters and others, 2005). High levels of thermal alteration (equivalent to or greater than 1.2 %R₀) will normally “crack” (breaking up complex, heavier, higher carbon number organic molecules into simpler, lighter, lower carbon number organic molecules) any remaining oil to gas (after it has converted the algal kerogen to oil and residual bitumen during the increase in pressure and temperature to 1.2 %R₀). Cracking eventually transforms the remainder of the convertible kerogen to gas, producing a high gas content petroleum charge (that is, more gas than oil) (Peters and others, 2005). Thermal alteration greater than 0.5 %R₀ and less than 1.2 %R₀ will commonly convert Type III kerogen to natural gas and possibly some associated natural gas liquids (Peters and others, 2005). All of the stratigraphic intervals discussed in this chapter have gone into thermal regimes high enough to generate oil at some point in space and time in the evolution of the Appalachian basin.

In the Appalachian basin, the source rocks deposited from the Precambrian to the Silurian are expected to contain lacustrine Type I or marine Type II kerogen, both of which are prone to initially generate oil. In part (or perhaps all) of the Appalachian basin, Devonian and younger source rocks commonly contain terrigenous Type III kerogen in addition to or instead of marine Type II kerogen (Peters and others, 2005).

In this study, recent USGS work by Milici (2005), Ryder and others (2005, 2007), and Milici and Swezey (2006) has been compiled with older work to develop a synthesis of the petroleum source rock potential for the Appalachian basin. Previously unpublished work by Repetski and others (2008; also see chapter F.1 of this volume) formed the basis for the interpretation of the source rock potential of the Ordovician and Devonian strata (fig. 1; also, see Repetski and others, 2008, and this volume, chap. F.1, for locations of Devonian samples used herein).

These data and reports were supplemented with data acquired through the purchase of a proprietary study by Exlog/Brown and Ruth Laboratories, Inc. (undated; herein-after referred to as “the Brown and Ruth study”). The Brown and Ruth study contained sample descriptions, TOC data, and pyrolysis data from 58 stratigraphically and regionally significant wells in the Appalachian basin as of 1984 (table 1). Not all wells contained samples from the entire Cambrian to Pennsylvanian stratigraphic interval, and not all wells with samples from a complete stratigraphic unit contained the main source rock. The Brown and Ruth study also included charts that depicted the lithostratigraphy and associated TOC and were examined for indications that intervals of source-rock quality might be present in the Paleozoic basin fill. If rocks in a selected interval had a TOC value of greater than 1.0 percent, then the entire interval was examined and a single TOC value that represented the interval was estimated. In order to accurately reflect the organic content of the Pennsylvanian and Mississippian carbonaceous shales, the high TOC values that were obviously associated with interspersed coal beds were excluded. In all of the maps presented in this study, the TOC values incorporated from the Brown and Ruth study are neither the maximum values recorded nor the arithmetic averages, so that neither the very few high values nor the very numerous low values overweigh the aggregate. The values from the Brown and Ruth study were incorporated along with additional data from outcrops, wells, and maps from Schmoker (1980); Snowdon (1984); Cole and others (1987); Wallace and Roen (1989); Carroll and others (1995); Ryder and others (1998, 2005, 2007); Milici and Swezey (2006); Patchen and others (2006); Robert C. Milici (USGS), Frank T. Dulong (USGS), Catherine B. Enomoto (USGS, formerly with Virginia Department of Mines, Minerals and Energy), James Leone (New York Geological Survey), John Harper (Pennsylvania Bureau of Topographic and Geologic Survey), Jaime Kostelnik (Pennsylvania Bureau of Topographic and Geologic Survey), Ronald Riley (Ohio Division of Geological Survey), Katharine Lee Avary (West Virginia Geological and Economic Survey), Brian Grothaus (West Virginia Geological and Economic Survey), David C. Harris (Kentucky Geological Survey), and William L. Lassetter (Virginia Department of Mines, Minerals and Energy), unpub. data, 2007; Repetski and others (2008; see also chapter F.1 of this volume); Ryder (2008); and Vermont Agency of Natural Resources (2009).

Potential Precambrian Source Rocks

Precambrian units are present in and near the Appalachian basin (fig. 2), but, to date, no confirmed Precambrian petroleum source rocks have been identified from the Appalachian basin. Elsewhere in the United States, Precambrian source rocks have been identified in the Midcontinent Rift (Hatch and Morey, 1985; Yarus and others, 1987; Imbus and others, 1990; Palacas, 1997; Burruss and Palacas, 1999; Peters and others, 2005), in the Chuar Group of the Grand Canyon area of Arizona and Utah (Uphoff, 1997; Peters and others, 2005), and in the Belt Supergroup of Idaho and Montana (Palacas, 1997). Seismic-reflection data and wildcat gas shows suggest the possibility of Precambrian source rocks in the Rough Creek graben of western Kentucky (Drahovzal, 1998; Shirley, 2002).

In the Appalachian basin, the Anakeesta Formation and generally equivalent strata of the Great Smoky Group are structurally in the most favorable position to be potential Precambrian source rocks (Aleinikoff and others, 2006). These strata, which crop out within the Great Smoky Mountains National Park of North Carolina and Tennessee, are metamorphosed, carbonaceous, black shales. The Anakeesta Formation in the central Great Smoky Mountains is almost 1,220
meters (m) thick (King, 1964). The TOC values of the Anakeesta Formation range from 0.03 to 1.6 percent (Nora Foley, USGS, written commun., 2007). The TOC values of similar but unidentified Precambrian black shales in the Great Smoky Mountains National Park range from 0.34 to 2.79 percent (Nora Foley, USGS, written commun., 2007). The metamorphic grade of the Anakeesta Formation ranges from slate to schist (King, 1964), which indicates that it is too thermally mature to be currently considered an effective, potential petroleum source rock. To date, no petroleum has been geochemically tied to the Anakeesta Formation or any of the other black shales in the Great Smoky Group.

A depleted metal content suggests that the Anakeesta may have contributed to the Mississippi Valley-type ore bodies of the Ordovician strata in eastern Tennessee, which locally have oil fluid inclusions and petroleum residue (Roedder, 1971; Haynes and Kesler, 1989; Furman, 1992; Foley and others, 2001). Oils produced in eastern Tennessee and southwestern Virginia that might be logically and spatially associated with a hypothetical Precambrian source rock, such as the Anakeesta Formation of the Great Smoky Mountains area, have been geochemically associated with an as-yet unidentified Paleozoic (possibly Ordovician) source (Dennen and others, this volume, chap. G.12).

Identified and Potential Cambrian Source Rocks

Cambrian petroleum source rocks in the Eastern United States have been identified in intracratonic areas and along the cratonic Precambrian to Cambrian rift margin. The intracratonic rifts are latest (?) Precambrian to Cambrian in age and extend from Pennsylvania to eastern Kentucky as the Rome trough (fig. 3) and to western Kentucky as the Rough Creek graben. Additional extensions of these main rift zones have been identified or suggested (Potter and Drahovzal, 1994; Stark, 1997; Sutton, 1981). Ryder and others (2005) documented shale that was rich in organic matter from the Cambrian Conasauga Group in the Rome trough of West Virginia and Kentucky that had TOC values ranging from 0.09 to 3.26 percent and S, values ranging from 0.01 to 13.61 mgHC/g of organic carbon (orgC). Elsewhere in the main part of the Appalachian basin, only one well (Orange County, New York) had TOC values greater than 1.0 percent (Exlog/Brown and Ruth Laboratories, Inc., undated). Silberman (1972) reported a Cambrian shale in Elliott County, Kentucky, that probably has high organic-matter content. This shale, which is located in the Rome trough about 20 mi west of the organic-matter-rich shale reported by Ryder and others (2005), has been identified as the source rock for the Homer field in Elliott County, Kentucky (Harris and others, 2004).

Unpublished work by J.L. Coleman, Jr., during the 1980s suggested that the Conasauga Formation in the southern Appalachian basin was a potential petroleum source rock. The Conasauga is located in the footwall of the Great Smoky thrust fault in outcrops in the Carters Dam area, Murray County, Georgia; the outcrop samples from the Carters Dam area had TOC values ranging from 1.1 to 1.4 percent. Other samples from outcrops and shallow cores in the Conasauga Formation of Alabama had substantially lower TOC values, suggesting that the potential for the Conasauga as a source rock might be extremely limited spatially.

In light of these earlier findings, a new gas play (the Conasauga shale gas play) was developed within the Conasauga Formation in the southern Appalachian fold-and-thrust belt of Alabama, where the Conasauga is highly fractured and faulted (Pashin and others, 2012); this play, however, is no longer active. Reservoir intervals within this new play are presumed to be self-sourced based on their structural position within a complex duplex zone (Thomas, 2001). No strata of source-rock quality were reported by Osborne and others (2000) in their examination of the stratigraphic framework and sedimentology of the Conasauga Formation and equivalent units in the Appalachian fold-and-thrust belt of Alabama. Limited TOC data from wells within the play trend range from 0.2 to 1.8 percent, with only one value greater than 1.0 percent (Pashin and others, 2012).

The thicknesses of potential Cambrian source rocks in the Appalachian basin are not well known. In selected wells in the Rome trough, intervals with a documented potential source-rock quality are about 38 m thick (Ryder and others, 2005); however, the Cambrian source rock at the Carters Dam outcrop is only a few meters thick. Within the Conasauga shale gas play in northeastern Alabama, the structurally thickened Conasauga is at least 2,835 m thick based on seismic and well-control data (Thomas, 2001). Across the Appalachian basin, the thermal maturity of Cambrian strata ranges from late oil to early gas generation in wells in the Rome trough to past peak gas to metamorphic grade in the footwall outcrops of the Great Smoky thrust fault in Georgia. The thermal maturity of the Conasauga in the Alabama Conasauga shale gas play ranges from 1.1 to 1.95 %R, (Pashin and others, 2012).

Identified and Potential Ordovician Source Rocks

In the Appalachian basin, source rocks within the Ordovician strata are richer and more widespread (fig. 4) than those in the underlying Cambrian strata (fig. 3). Wallace and Roen (1989), Ryder and others (1998), and Patchen and others (2006) illustrated the distribution of Ordovician source rocks in the northern part of the Appalachian basin. The source rocks are concentrated in the Utica Shale (or Formation) and equivalent Antes Shale (or Formation), which extend across the basin from northern West Virginia through eastern Ohio, most of Pennsylvania, and into southern and eastern New York. Their stratigraphic equivalents are the highly petroliferous Collingwood Member of the Lindsay Formation in Ontario,
Table 1. List of wells from Exlog/Brown and Ruth Laboratories, Inc. (undated).

[See figure 1 for a map of approximate sample locations (except for those in Vermont). List order is generally from north to south. The Exlog/Brown and Ruth Laboratories, Inc. (undated) report contains proprietary geochemical data that are included in the ranges of total organic carbon shown in figures 3 through 8. Operator and lease names are exactly as shown on source records and may not contain conventional spelling or punctuation]

<table>
<thead>
<tr>
<th>Operator name</th>
<th>Well number</th>
<th>Lease name</th>
<th>County</th>
<th>State</th>
<th>Latitude (decimal degrees)</th>
<th>Longitude (decimal degrees)</th>
<th>Source of Latitude and Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Petrofina and Falcon Seaboard Drilling Co.</td>
<td>1</td>
<td>Alburg</td>
<td>Grand Isle</td>
<td>Vermont</td>
<td>44.9186</td>
<td>73.28</td>
<td>Vermont Agency of Natural Resources (2009).</td>
</tr>
<tr>
<td>Vermont Natural Gas and Mineral Corp.</td>
<td>1</td>
<td>Gregoire</td>
<td>Chittenden</td>
<td>Vermont</td>
<td>44.5417</td>
<td>73.228</td>
<td>Vermont Agency of Natural Resources (2009).</td>
</tr>
<tr>
<td>Hoover Mobile C.</td>
<td>1</td>
<td>Frankish George C 1</td>
<td>Ontario</td>
<td>New York</td>
<td>42.812680</td>
<td>77.202550</td>
<td>New York State Department of Environmental Conservation (2013).</td>
</tr>
<tr>
<td>New York Natural Gas Co.</td>
<td>1</td>
<td>Danisevich J</td>
<td>Madison</td>
<td>New York</td>
<td>42.796370</td>
<td>75.404260</td>
<td>New York State Department of Environmental Conservation (2013).</td>
</tr>
<tr>
<td>Joyne Western Corp. (originally Fenix & Scisson)</td>
<td>1</td>
<td>Richards</td>
<td>Broome</td>
<td>New York</td>
<td>42.323530</td>
<td>75.947510</td>
<td>New York State Department of Environmental Conservation (2013).</td>
</tr>
<tr>
<td>Pennzoil Products Co. (originally Wolfs Head)</td>
<td>1</td>
<td>Harrington</td>
<td>Chautauqua</td>
<td>New York</td>
<td>42.183640</td>
<td>79.337540</td>
<td>New York State Department of Environmental Conservation (2013).</td>
</tr>
<tr>
<td>Arco Metals Co. (originally Arco Oil & Gas Corp.)</td>
<td>1</td>
<td>Aroc 1 Susi 1 (originally Susi Rudolph)</td>
<td>Ulster</td>
<td>New York</td>
<td>41.662510</td>
<td>74.126660</td>
<td>New York State Department of Environmental Conservation (2013).</td>
</tr>
<tr>
<td>Gulf Oil Corp.</td>
<td>1</td>
<td>Whole Earth</td>
<td>Orange</td>
<td>New York</td>
<td>41.425220</td>
<td>74.565300</td>
<td>New York State Department of Environmental Conservation (2013).</td>
</tr>
<tr>
<td>Texaco Incorporated</td>
<td>C–1</td>
<td>St Forest Lands</td>
<td>Pike</td>
<td>Pennsylvania</td>
<td>41.416528</td>
<td>75.141588</td>
<td>Pennsylvania Bureau of Topographic and Geologic Survey (2013).</td>
</tr>
<tr>
<td>Texaco Incorporated</td>
<td>1</td>
<td>Penn Forest Tr 285</td>
<td>Clinton</td>
<td>Pennsylvania</td>
<td>41.371292</td>
<td>77.566622</td>
<td>Pennsylvania Bureau of Topographic and Geologic Survey (2013).</td>
</tr>
<tr>
<td>Anschutz Corp.</td>
<td>1–A</td>
<td>Kramer</td>
<td>Wood</td>
<td>Ohio</td>
<td>41.342532</td>
<td>83.681783</td>
<td>Ohio Division of Oil and Gas Resources (2013).</td>
</tr>
<tr>
<td>Dominion East Ohio (originally East Ohio Gas Co.)</td>
<td>1–2468</td>
<td>Denny Eelden E</td>
<td>Columbiana</td>
<td>Ohio</td>
<td>40.875231</td>
<td>80.988417</td>
<td>Ohio Division of Oil and Gas Resources (2013).</td>
</tr>
</tbody>
</table>
Table 1. List of wells from Exlog/Brown and Ruth Laboratories, Inc. (undated).—Continued

[See figure 1 for a map of approximate sample locations (except for those in Vermont). List order is generally from north to south. The Exlog/Brown and Ruth Laboratories, Inc. (undated) report contains proprietary geochemical data that are included in the ranges of total organic carbon shown in figures 3 through 8. Operator and lease names are exactly as shown on source records and may not contain conventional spelling or punctuation]

<table>
<thead>
<tr>
<th>Operator name</th>
<th>Well number</th>
<th>Lease name</th>
<th>County</th>
<th>State</th>
<th>Latitude (decimal degrees)</th>
<th>Longitude (decimal degrees)</th>
<th>Source of latitude and longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschutz Corp.</td>
<td>1</td>
<td>Gracely Farms</td>
<td>Marion</td>
<td>Ohio</td>
<td>40.586316</td>
<td>83.254278</td>
<td>Ohio Division of Oil and Gas Resources (2013).</td>
</tr>
<tr>
<td>Historic owner (originally Lakeshore Pipeline)</td>
<td>1</td>
<td>W Marshall Comm</td>
<td>Guernsey</td>
<td>Ohio</td>
<td>40.036768</td>
<td>81.720457</td>
<td>Ohio Division of Oil and Gas Resources (2013).</td>
</tr>
<tr>
<td>Anschutz Corp.</td>
<td>1</td>
<td>Diffendahl</td>
<td>Pickaway</td>
<td>Ohio</td>
<td>39.615651</td>
<td>83.100425</td>
<td>Ohio Division of Oil and Gas Resources (2013).</td>
</tr>
<tr>
<td>Historic owner (originally Huggins Merle T)</td>
<td>1</td>
<td>M & H Hockman</td>
<td>Hocking</td>
<td>Ohio</td>
<td>39.398533</td>
<td>82.389389</td>
<td>Ohio Division of Oil and Gas Resources (2008).</td>
</tr>
<tr>
<td>Shell Oil Co.</td>
<td>1</td>
<td>R J Whetzel</td>
<td>Rockingham</td>
<td>Virginia</td>
<td>38.763806</td>
<td>78.956117</td>
<td>Virginia Division of Gas and Oil (2008).</td>
</tr>
<tr>
<td>Exxon Company, USA</td>
<td>1</td>
<td>Jay P Smith</td>
<td>Wayne</td>
<td>West Virginia</td>
<td>38.221803</td>
<td>82.534439</td>
<td>West Virginia Geological and Economic Survey (2013).</td>
</tr>
</tbody>
</table>
Table 1. List of wells from Exlog/Brown and Ruth Laboratories, Inc. (undated).—Continued

[See figure 1 for a map of approximate sample locations (except for those in Vermont). List order is generally from north to south. The Exlog/Brown and Ruth Laboratories, Inc. (undated) report contains proprietary geochemical data that are included in the ranges of total organic carbon shown in figures 3 through 8. Operator and lease names are exactly as shown on source records and may not contain conventional spelling or punctuation.]

<table>
<thead>
<tr>
<th>Operator name</th>
<th>Well number</th>
<th>Lease name</th>
<th>County</th>
<th>State</th>
<th>Latitude (decimal degrees)</th>
<th>Longitude (decimal degrees)</th>
<th>Source of latitude and longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal O&G Co Incorp.</td>
<td>1</td>
<td>Henry Stratton</td>
<td>Pike</td>
<td>Kentucky</td>
<td>37.482015</td>
<td>82.463083</td>
<td>Kentucky Geological Survey (2008).</td>
</tr>
<tr>
<td>California Co.</td>
<td>1</td>
<td>Kipps Anthracite</td>
<td>Montgomery</td>
<td>Virginia</td>
<td>37.186814</td>
<td>80.460526</td>
<td>Virginia Division of Gas and Oil (2008).</td>
</tr>
<tr>
<td>Gulf Oil Corp.</td>
<td>1</td>
<td>Russell Price</td>
<td>Russell</td>
<td>Virginia</td>
<td>36.872481</td>
<td>82.237308</td>
<td>Virginia Division of Gas and Oil (2008).</td>
</tr>
<tr>
<td>Arco Oil & Gas Corp.</td>
<td>1</td>
<td>Campbell W (Slemp)</td>
<td>Lee</td>
<td>Virginia</td>
<td>36.791556</td>
<td>82.848817</td>
<td>Virginia Division of Gas and Oil (2008).</td>
</tr>
<tr>
<td>Arco Oil & Gas Corp.</td>
<td>1</td>
<td>Sanford Heirs et al</td>
<td>Anderson</td>
<td>Tennessee</td>
<td>36.167861</td>
<td>84.167250</td>
<td>Tennessee Department of Environment and Conservation database (2008).</td>
</tr>
<tr>
<td>Weaver O&G Corp.</td>
<td>1</td>
<td>Lewis (Pope)</td>
<td>Sequatchie</td>
<td>Tennessee</td>
<td>35.435694</td>
<td>85.338861</td>
<td>Tennessee Department of Environment and Conservation database (2008).</td>
</tr>
</tbody>
</table>
Table 1. List of wells from Exlog/Brown and Ruth Laboratories, Inc. (undated).—Continued

[See figure 1 for a map of approximate sample locations (except for those in Vermont). List order is generally from north to south. The Exlog/Brown and Ruth Laboratories, Inc. (undated) report contains proprietary geochemical data that are included in the ranges of total organic carbon shown in figures 3 through 8. Operator and lease names are exactly as shown on source records and may not contain conventional spelling or punctuation]

<table>
<thead>
<tr>
<th>Operator name</th>
<th>Well number</th>
<th>Lease name</th>
<th>County</th>
<th>State</th>
<th>Latitude (decimal degrees)</th>
<th>Longitude (decimal degrees)</th>
<th>Source of latitude and longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonat Expl. Inc.</td>
<td>1</td>
<td>Brown</td>
<td>Dade</td>
<td>Georgia</td>
<td>34.921470</td>
<td>85.470610</td>
<td>Visually estimated from Coleman (1988).</td>
</tr>
<tr>
<td>Sonat</td>
<td>1</td>
<td>Cureton</td>
<td>Dade</td>
<td>Georgia</td>
<td>34.676944</td>
<td>85.523333</td>
<td>Swanson and Gernazian (1979)</td>
</tr>
<tr>
<td>Atlanta Gas Light Co.</td>
<td>3ST</td>
<td>Fee</td>
<td>Floyd</td>
<td>Georgia</td>
<td>34.260440</td>
<td>85.260060</td>
<td>Estimated from land district and land lot location information in well log header.</td>
</tr>
<tr>
<td>Saga-Petro US Incorp.</td>
<td>1</td>
<td>Hudson 16-7</td>
<td>Blount</td>
<td>Alabama</td>
<td>34.166310</td>
<td>86.434360</td>
<td>State Oil and Gas Board of Alabama (2012)</td>
</tr>
<tr>
<td>US Steel</td>
<td>1</td>
<td>Disposal</td>
<td>Jefferson</td>
<td>Alabama</td>
<td>33.533000</td>
<td>86.867000</td>
<td>Estimated from township-range-section location information in well log header.</td>
</tr>
<tr>
<td>Arco Oil & Gas Corp.</td>
<td>1</td>
<td>Arco-Anschutz 15-11</td>
<td>Shelby</td>
<td>Alabama</td>
<td>33.289670</td>
<td>86.528850</td>
<td>State Oil and Gas Board of Alabama (2008)</td>
</tr>
<tr>
<td>Shell Oil Co.</td>
<td>1</td>
<td>L H Sterling 17-14</td>
<td>Greene</td>
<td>Alabama</td>
<td>32.960050</td>
<td>88.017530</td>
<td>State Oil and Gas Board of Alabama (2008)</td>
</tr>
</tbody>
</table>
the Point Pleasant Formation in northwestern Ohio, the Gulf Stream Formation in New York (Lehmanna and others, 1995), and the Iberville Formation in Vermont. The TOC values from the Utica, Antes, and equivalent shale units range from 0.28 to 4.46 percent, with a median of 1.81 percent (Ryder and others, 1998). Martin and others (2005) discussed Utica samples from eastern New York, Ontario, and Quebec for which TOC values ranged from 2 to 15 percent. The TOC data from the Brown and Ruth study range from a low of 0.10 percent to a high of 3.00 percent, with a mean of 0.79 percent.

Ordovician shales with TOC values greater than 1.0 percent have also been found farther south in the southwestern Virginia thrust belt (Schultz, 1988). Similar values have been found in isolated, weathered outcrops and quarries in the Sevier and Athens Formations in Alabama, Georgia, and eastern Tennessee (Benson and Stock, 1986; Saunders and Savrda, 1993; and Robert C. Milici (USGS), Frank T. Dulong (USGS), Catherine B. Enomo (USGS, formerly with Virginia Department of Mines, Minerals and Energy), James Leone (New York Geological Survey), John Harper (Pennsylvania Bureau of Topographic and Geologic Survey), Jaime Kostelnik (Pennsylvania Bureau of Topographic and Geologic Survey), Ronald Riley (Ohio Division of Geological Survey), Katharine Lee Avary (West Virginia Geological and Economic Survey), Brian Grothaus (West Virginia Geological and Economic Survey), David C. Harris (Kentucky Geological Survey), and William L. Lasseter (Virginia Department of Mines, Minerals and Energy), unpub. data, 2007.

The Ordovician shales are the source rocks for oil and natural gas in Middle Ordovician to Silurian reservoirs throughout Ohio and Indiana as well as Ontario, Canada. Where structurally favorable, they also have been the source rocks for stratigraphically lower reservoirs, such as those formed at the Knox unconformity (Cole and others, 1987; Ryder and others, 1998; Coleman and others, 2006). On the basis of gas chromatograph signatures, oil from isolated fields in the southern Appalachian basin of southwestern Virginia and eastern Tennessee has also been geochemically tied to Ordovician source rocks (Dennen and others, this volume, chap. G.12). The spatial coincidence of Ordovician oil and Mississippi Valley-type lead-zinc deposits suggests that Ordovician strata were the primary sources of both the petroleum and the sulfide minerals in the southern Appalachian basin (Saunders and Savrda, 1993).

The thickness of Ordovician source-rock strata ranges from 60 m in western Ohio to between 90 and 120 m in the main generative basin area of Pennsylvania and eastern Ohio. The source-rock strata reach a maximum thickness of 180 to more than 200 m in the eastern reaches of the Appalachian thrust belt in eastern New York, southern Pennsylvania, northern West Virginia, and western Maryland (Wallace and Roen, 1989; Martin and others, 2005). In thrust-belt outcrops in Tennessee, Georgia, and Alabama, the thicknesses of the potential source-rock strata (Athens, Blockhouse, and Sevier Shales and generally equivalent strata) range from over 80 m in Alabama to as much as 300 m in Tennessee (Neuman, 1955; Benson and Stock, 1986). The thermal maturity of the Ordovician source rocks ranges from immature to past the peak of gas generation (Epstein and others, 1977; Harris and others, 1978; Patchen and others, 2006; Repetski and others, 2008, and this volume, chap. F.1).

Potential Silurian Source Rocks

Until recently, source rocks of Silurian age have not been well documented in the Appalachian basin. However, Ryder and others (2007) indicated the presence of Silurian source rocks on the basis of new TOC and pyrolysis data from samples from the interval spanning the Salina Formation (or Group), Wills Creek Formation (or Shale), and Tonoloway Formation (or Limestone). They reported five samples with TOC values greater than 1.0 percent from four wells in West Virginia and Pennsylvania. These samples consisted of dark-gray to black shale with locally interbedded brown, dark-gray, and (or) black limestone and dolomite; the potential thicknesses of the source-rock strata were estimated to range from 15 to 50 m. Figure 5 shows areas of potential Silurian source rocks.

Data from the Brown and Ruth study indicate that only one well in Ohio had Silurian strata containing TOC values greater than 1.0 percent. Cole and others (1987) investigated organic geochemistry and oil-source rock correlations in the Paleozoic strata of Ohio and reported that only 3 of 436 samples had TOC values greater than 1.0 percent and that the highest value was 1.31 percent in their interval containing Silurian and Lower Devonian strata. However, effective Silurian source rocks have been identified in the Michigan basin of Michigan and Ontario (Gill, 1979; Gardner and Bray, 1984; Powell and others, 1984; Obermajer and others, 1998; Hatch and others, 2004). On the basis of Devonian thermal maturity maps, the thermal maturity of the underlying Silurian strata ranges from peak oil generation in Ohio to past the peak of gas generation in Pennsylvania (Epstein and others, 1977; Harris and others, 1978; Repetski and others, 2008, and this volume, chap. F.1).

Identified and Potential Devonian Source Rocks

Devonian shale-rich source rocks that have yielded high-quality oil and gas are present throughout the Appalachian basin (fig. 6). The majority of the petroleum found to date and estimated as undiscovered in the Appalachian basin originated from these shale-rich rocks (de Witt and Milici, 1989; Klemme and Ulmishek, 1991; de Witt, 1993; Roen and Walker, 1996; Milici and Swezey, 2006). The TOC values from these source rocks range from <1.0 to 27 percent, whereas visual and log-based approximations range from 2 to 22 percent, with most values ranging from 2 to 4 percent (Conant and Swanson,
Mississippian source rocks are located in the Floyd Shale (and equivalent units) of the southern Appalachians and in the Sunbury Shale (and equivalent units) of the central Appalachians of Kentucky, Ohio, and West Virginia. In this report, the Sunbury is considered to be the Lower Mississippian genetic extension of the underlying Upper Devonian Chattanooga Shale, New Albany Shale, and Ohio Shale (all black shales) and is included with the Devonian strata in figure 6, whereas the Floyd Shale and Maccrady Formation represent synorogenic, Upper Mississippian outer-shelf, slope, and basinal shales and are included with the Mississippian strata in figure 7. The Floyd Shale is geographically restricted to the Appalachian basin of Alabama and Georgia and the Black Warrior basin of Mississippi and Alabama. The TOC values range from 0.5 to 10.0 percent with a mean of 1.8 percent from 19 samples in the Black Warrior basin (Carroll and others, 1995; Pawlewicz and Hatch, 2007). In eastern Ohio and western West Virginia, TOC values equal to or greater than 1.0 percent were recorded from two wells in strata above the Sunbury and its overlying sandstone units (Exlog/Brown and Ruth Laboratories, Inc., undated); the values indicated that the strata were relatively organically lean, but of source-rock quality. This interval is probably within the Maccrady Formation (or its stratigraphic equivalents) as inferred by a study of the Mississippian Cuyahoga Formation and its stratigraphic equivalents by Matchen (2004), who indicated that the Maccrady Formation is the only formation in this stratigraphic position that contains thin, discontinuous coal beds and associated organic-matter-rich shale.

The Floyd Shale ranges in thickness from near zero to over 60 m in the southern Appalachian and Black Warrior basins, where it ranges in thermal maturity from 0.9 to 1.6 %R, (Carroll and others, 1995; Pawlewicz and Hatch, 2007). The Maccrady Formation ranges in thickness from 0 to 15 m in West Virginia, where it is commonly cut out by the overlying Pennsylvanian to Mississippian unconformity (Matchen, 2004). In eastern Ohio and western West Virginia, the thermal maturity of the Maccrady ranges from 0.5 to 0.7 %R, (Exlog/ Brown and Ruth Laboratories, Inc., undated).

In the central Appalachians of Virginia, coal beds in the Price Formation have the potential for generating methane that may be trapped in adjacent reservoirs (Milici, 2004). Coal beds in the Price range from about 0.7 to 7 m or more in thickness (Stanley and Schultz, 1983). Vitrinite-reflectance values range from 1.2 to 2.7 %R, indicating that these coals are all at peak gas to past peak gas levels of thermal maturity (Lewis and Hower, 1990; Milici, 2004).

Identified and Potential Pennsylvanian Source Rocks

Organic-matter-rich strata in the Pennsylvanian of the Appalachian basin are associated with Pennsylvanian coal (fig. 8) and adjacent organic-matter-rich shale. These lithologies extend throughout the Appalachian basin and are known to be significant source rocks for natural gas in both shallow sandstone and coalbed-methane reservoirs. Locally, Pennsylvanian strata are the source rocks for the isolated shallow oil reservoirs in Pennsylvania and Ohio (Fettke, 1923; Martino, 2005). Milici (2004) analyzed the coalbed-methane potential for the Appalachian and Black Warrior basins. Presumably, where there are high gas generative coal beds and associated shales, there is high potential for gas-producing coals and shales.
The thermal maturity of the Pennsylvanian coals ranges from early (≤0.7 %R$_{o}$) to the peak level of gas generation (1.4 %R$_{o}$) in the Black Warrior basin (Hatch and Pawlewiecz, 2007). In the Appalachian basin, the thermal maturity of the Pennsylvanian coals ranges from immature (or pre-generation; 0.4 %R$_{o}$) along the western limb of the Appalachian basin to ultimately greater than past peak gas generation (>5.0 %R$_{o}$) in the anthracite region of eastern Pennsylvania (Levine, 1992; Ruppert, cited in Milici, 2004).

Potential Permian Source Rocks for Biogenic Methane

Coal beds within the uppermost Pennsylvanian to Lower Permian Dunkard Group lie within the phreatic groundwater zone in southwestern Pennsylvania and currently are not likely candidates for thermogenic petroleum source rocks because their thermal maturity is too low (Pennsylvania Department of Environmental Protection, Bureau of Mining Programs, 1999). The possibility does exist, however, for the development and accumulation of biogenic methane associated with these coal zones (Pittsburgh Geological Society, undated).

Summary

Petroleum source rocks (both proven and potential) are present throughout the late Precambrian and Paleozoic strata in the Appalachian basin. Localized occurrences of Precambrian and Cambrian organic-matter-rich shale indicate that the oldest potential source rocks may be very restricted geographically and may not have contributed substantially to the overall volume of generated and expelled Appalachian basin petroleum. Ordovician source rocks are present in the northern Appalachian basin of the United States and southern Canada and in the fold-and-thrust belt of the southern Appalachians. These Ordovician source rocks have been geochemically associated with much of the oil present within the lower Paleozoic reservoir rocks in the Appalachian basin trend. Silurian source rocks are relatively insignificant within the Appalachian basin, even though they are significant locally in the Michigan basin. The most important source rocks for Appalachian basin petroleum are the shales of Middle and Late Devonian and earliest Mississippian age. These shales range in thickness from just a few meters to several thousand meters and extend throughout the Appalachian basin from Alabama to New York. Whereas coal-bearing strata in the Mississippian rocks have some petroleum-generating capability in Virginia, West Virginia, and possibly Pennsylvania, the main source rocks for the Mississippian are the Upper Mississippian strata that are present only in the southernmost Appalachian basin and adjacent Black Warrior basin of Alabama and Mississippi. Coal beds within the Pennsylvanian are a source of significant volumes of natural gas throughout the Appalachian basin. Some Pennsylvanian shale beds appear to be capable of generating oil, but they appear to be geographically restricted to the shallow, and therefore thermodynamically cooler, portions of the basin in Ohio and Pennsylvania. Coal beds in the uppermost Pennsylvanian to Lower Permian Dunkard Group are within the phreatic groundwater zone and were probably never buried deeply enough to have generated thermogenic natural gas. Generation and migration of biogenic methane, however, might be possible from these Permian coals.

References Cited

Chapter G.13 Overview of the Potential and Identified Petroleum Source Rocks of the Appalachian Basin

11

Furman, F.C., 1992, Geochemical character of east Tennessee shales; Sources of adjacent Mississippi valley-type (MVT) mineralization [abs.], in Grauch, R.I., and Kettler, R.M., conveners, Abstracts from the 1991 annual meeting of the

Lewis, S.E., and Hower, J.C., 1990, Implications of thermal events on thrust emplacement sequence in the Appalachian fold and thrust belt; Some new vitrinite reflectance data: Journal of Geology, v. 98, no. 6, p. 927–942.

Ohio Division of Oil and Gas Resources, 2013, Ohio oil and well locator: Columbus, Ohio, Ohio Division of Oil and Gas Resources database accessed December 12, 2013, at http://oilandgas.ohiodnr.gov/well-information/oil-gas-well-locator.

Chapter G.13 Overview of the Potential and Identified Petroleum Source Rocks of the Appalachian Basin

Swanson, D.E., and Gernazian, Andrea, 1979, Petroleum exploration wells in Georgia: Georgia Department of Natural Resources, Environmental Protection Division, Information Circular IC–51, scale 1:1,091,000.

Figures 1–8
Boundary of study area for Ordovician rocks by Ryder and others (1998) and Patchen and others (2006)

Sample locations
- USGS Mississippian and Devonian sample locations
- USGS Ordovician sample locations
- Brown and Ruth Laboratories sample locations
- Outcrop sample locations
- Other well sample locations
Figure 1 (facing page). Map of the Eastern United States showing locations of wells and outcrops from which samples were obtained. Well and outcrop data are from Bentley and others (1966); Silberman (1972); J.L. Coleman, Jr., (USGS, unpub. data, 1980–1989); Benson and Stock (1986); Wallace and Roen (1989); Saunders and Savrda (1993); Carroll and others (1995); Ryder and others (1998, 2005, 2007); Harris and others (2004); Patchen and others (2006); Robert C. Milici (USGS), Frank T. Dulong (USGS), Catherine B. Enomoto (USGS, formerly with Virginia Department of Mines, Minerals and Energy), James Leone (New York Geological Survey), John Harper (Pennsylvania Bureau of Topographic and Geologic Survey), Jaime Kostelnik (Pennsylvania Bureau of Topographic and Geologic Survey), Ronald Riley (Ohio Division of Geological Survey), Katharine Lee Avery (West Virginia Geological and Economic Survey), Brian Grothaus (West Virginia Geological and Economic Survey), David C. Harris (Kentucky Geological Survey), and William L. Lassetter (Virginia Department of Mines, Minerals and Energy), unpub. data, 2007; Repetski and others (2008); and Exlog/Brown and Ruth Laboratories, Inc. (undated). The boundary of the Appalachian Basin Province, which was defined for the 1995 National Oil and Gas Assessment (and differs from the structural Appalachian basin), is from Dolton and others (1995).
EXPLANATION

- Cenozoic and Mesozoic igneous and sedimentary units
- Paleozoic sedimentary and metasedimentary units
- Upper Precambrian sedimentary and metasedimentary units
- Precambrian igneous and metamorphic units
- Boundary of Appalachian Basin Province

Base from U.S. Geological Survey digital data, 2001, 1:2,000,000
Albers Equal-Area Conic projection
Standard parallels 29°30’N and 45°30’N
Central meridian 96°00’W
Figure 2 (facing page). Map of the Eastern United States showing the extent of potential Precambrian petroleum source rocks in the Appalachian basin. Geology is simplified from Schruben and others (1998).
EXPLANATION
[TOC, total organic carbon]

- Cenozoic and Mesozoic igneous and sedimentary units
- Permian through Ordovician sedimentary and meta-sedimentary units
- Cambrian units
- Precambrian units
- Boundary of Rome trough—Includes only mature source rocks. Hachures point into the trough
- Boundary of Appalachian Basin Province
- Location of Monitor No. 1 Cecil Ison (Homer field)

Sample locations—TOC value falls into one of 11 ranges; not all ranges are represented; some samples yielded no value

- > 10.0
- 8.0 to 10.00
- 7.0 to 7.99
- 6.0 to 6.99
- 5.0 to 5.99
- 4.0 to 4.99
- 3.0 to 3.99
- 2.0 to 2.99
- 1.0 to 1.99
- 0.1 to 0.99
- No value

Base from U.S. Geological Survey digital data, 2001, 1:2,000,000
Albers Equal-Area Conic projection
Standard parallels 29°30'N and 45°30'N
Central meridian 96°00'W
Figure 3 (facing page). Map of the Eastern United States showing the extent of identified and potential Cambrian petroleum source rocks in the Appalachian basin. Well data are from Bentley and others (1966), J.L. Coleman, Jr. (USGS, unpub. data 1980–1989), Harris and others (2004), Ryder and others (2005), and Exlog/Brown and Ruth Laboratories, Inc. (undated). Locations of Rome trough and Monitor No. 1 Cecil Ison are from Ryder and others (2005). Location of Carter’s Dam is from Bentley and others (1966). Geology is simplified from Schruben and others (1998).
Figure 4 (facing page). Map of the Eastern United States showing the extent of identified and potential Ordovician petroleum source rocks in the Appalachian basin. The areas of Ordovician strata that have total organic carbon (TOC) values ≥ 1 percent (delineated by the purple line) and ≥ 3 percent (shown as dark-green units) were developed by assimilating data and maps from Exlog/Brown and Ruth Laboratories, Inc. (undated), Ryder and others (1998), Patchen and others (2006), and Wallace and Roen (1989). The data sources are from Wallace and Roen (1989), Ryder and others (1998), Patchen and others (2006) and Exlog/Brown and Ruth (undated). A close examination of these data shows that, in some cases, different analyses from the same wells (or at least from wells in close proximity to each other) yielded different TOC values. Consequently, the delineated areas of ≥ 1 percent and ≥ 3 percent may not strictly reflect all of the data displayed in this figure or in Wallace and Roen (1989), Ryder and others (1998), and Patchen and others (2006); rather, they summarize the results of these four studies. Geology is simplified from Schruben and others (1998).
Coal and Petroleum Resources in the Appalachian Basin

Cenozoic and Mesozoic igneous and sedimentary units
Silurian through Cambrian units
Permian through Ordovician sedimentary and meta-
sedimentary units
Precambrian units

Boundary of area within which TOC values from Ordovician samples are ≥3 percent

Area in which TOC values from Ordovician samples are ≥1 percent

Boundary of Appalachian Basin Province

EXPLANATION
[TOC, total organic carbon]

Cenozoic and Mesozoic igneous and sedimentary units
Permian through Ordovician sedimentary and metasedimentary units
Silurian through Cambrian units
Precambrian units

Boundary of Appalachian Basin Province

Sample locations—TOC value falls into one of 11 ranges; not all ranges are represented; some samples yielded no value

- > 10.0
- 8.0 to 10.00
- 7.0 to 7.99
- 6.0 to 6.99
- 5.0 to 5.99
- 4.0 to 4.99
- 3.0 to 3.99
- 2.0 to 2.99
- 1.0 to 1.99
- 0.1 to 0.99
- No value

Base from U.S. Geological Survey digital data, 2001, 1:2,000,000
Albers Equal-Area Conic projection
Standard parallels 29°30'N and 45°30'N
Central meridian 96°00'W

Legend:
- Cenozoic and Mesozoic igneous and sedimentary units
- Permian through Ordovician sedimentary and meta-sedimentary units
- Silurian through Cambrian units
- Precambrian units
- Area in which TOC values from Ordovician samples are ≥3 percent
- Boundary of area within which TOC values from Ordovician samples are ≥1 percent
- Boundary of Appalachian Basin Province
Figure 5 (facing page). Map of the Eastern United States showing the extent of potential Silurian petroleum source rocks in the Appalachian basin. Well data are from Ryder and others (2007) and Exlog/Brown and Ruth Laboratories (undated). The Silurian source rocks shown in southwestern Pennsylvania and northern West Virginia are from Ryder and others (2007). Geology is simplified from Schruben and others (1998).
Sample locations—TOC value falls into one of 11 ranges; not all ranges are represented; some samples yielded no value

- > 10.0
- 8.0 to 10.00
- 7.0 to 7.99
- 6.0 to 6.99
- 5.0 to 5.99
- 4.0 to 4.99
- 3.0 to 3.99
- 2.0 to 2.99
- 1.0 to 1.99
- 0.1 to 0.99
- No value

EXPLANATION

- Cenozoic and Mesozoic igneous and sedimentary units
- Permian through Mississippian sedimentary and meta-sedimentary units
- Upper and Middle Devonian units
- Devonian through Cambrian units
- Precambrian units
- Area in which TOC values from Devonian samples are ≥5 percent
- Area in which TOC values from Devonian samples are ≥3 percent

Boundary of area within which TOC values from Devonian samples are ≥1 percent

Boundary of Appalachian Basin Province
Figure 6 (facing page). Map of the Eastern United States showing the extent of identified and potential Devonian petroleum source rocks in the Appalachian basin. Data are from Carroll and others (1995), Repetski and others (2008; also see chapter F.1 of this volume), and Exlog/Brown and Ruth Laboratories, Inc. (undated). Geology is simplified from Schruben and others (1998).
EXPLANATION

<table>
<thead>
<tr>
<th>TOC, total organic carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample locations—TOC value falls into one of 11 ranges; not all ranges are represented; some samples yielded no value</td>
</tr>
</tbody>
</table>

- **Cenozoic and Mesozoic igneous and sedimentary units**
- **Permian through Mississippian sedimentary and meta-sedimentary units**
- **Upper Mississippian units**
- **Lower Mississippian through Cambrian units**
- **Precambrian units**
- **Boundary of postulated area**
- **Boundary of probable area**
- **Boundary of Appalachian Basin Province**

- **TOC value ranges**:
 - > 10.0
 - 8.0 to 10.00
 - 7.0 to 7.99
 - 6.0 to 6.99
 - 5.0 to 5.99
 - 4.0 to 4.99
 - 3.0 to 3.99
 - 2.0 to 2.99
 - 1.0 to 1.99
 - 0.1 to 0.99
 - No value
Figure 7 (facing page). Map of the Eastern United States showing the extent of identified and potential Mississippian petroleum source rocks in the Appalachian basin. Geology is simplified from Schruben and others (1998). Data points are from Carroll and others (1995) and Exlog/Brown and Ruth (undated). A postulated area is one in which the area around a single point suggests that a source rock with a TOC content of 1.0 percent or greater is likely present. A probable area is one in which the area around several points indicates more confidently that a source rock with a TOC content of 1.0 percent or greater is probably present.
EXPLANATION

[COC, total organic carbon]

Sample locations—TOC value falls into one of 11 ranges; not all ranges are represented; some samples yielded no value

- > 10.0
- 8.0 to 10.00
- 7.0 to 7.99
- 6.0 to 6.99
- 5.0 to 5.99
- 4.0 to 4.99
- 3.0 to 3.99
- 2.0 to 2.99
- 1.0 to 1.99
- 0.1 to 0.99
- No value

Cenozoic and Mesozoic igneous and sedimentary units
Permian sedimentary and metasedimentary units
Pennsylvanian units
Mississippian through Cambrian sedimentary and metasedimentary units
Precambrian units
Boundary of Appalachian Basin Petroleum Province

Base from U.S. Geological Survey digital data, 2001, 1:2,000,000
Albers Equal-Area Conic projection
Standard parallels 29°30'N and 45°30'N
Central meridian 96°00'W
Figure 8 (facing page). Map of the Eastern United States showing the extent of identified and potential Pennsylvanian petroleum source rocks in the Appalachian basin. Well data are from Exlog/Brown and Ruth Laboratories (undated). Geology is simplified from Schruben and others (1998).