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Chapter 22

Constraints on the Size, Overpressure, and Volatile 
Content of the Mount St. Helens Magma System from 
Geodetic and Dome-Growth Measurements During 
the 2004–2006+ Eruption

By Larry G. Mastin1, Evelyn Roeloffs1, Nick M. Beeler1, and James E. Quick2

Abstract
During the ongoing eruption at Mount St. Helens, Wash-

ington, lava has extruded continuously at a rate that decreased 
from ~7–9 m3/s in October 2004 to 1–2 m3/s by December 
2005. The volume loss in the magma reservoir estimated from 
the geodetic data, 1.6 –2.7×107 m3, is only a few tens of percent 
of the 7.5×107 m3 volume that had erupted by the end of 2005.

In this paper we use geodetic models to constrain the size 
and depth of the magma reservoir. We also ask whether the rela-
tions between extruded volume and geodetic deflation volume 
are consistent with drainage of a reservoir of compressible 
magma within a linearly elastic host rock. Finally, we com-
pare the time histories of extrusion and geodetic deflation with 
idealized models of such a reservoir. Critical parameters include 
erupted volume V

e
, dome density 

e
, reservoir volume V

C 
, initial 

reservoir overpressure 0
exp , pressure drop during the eruption ∆p, 

reservoir compressibility 
C 
≡  (1/V

C
)(dV

C
 / dp), magma density 


M
, and magma compressibility 

M  
≡ (1/

M
)(d

M 
/dp). Seismic 

velocity and reservoir geometry suggest 
C
 ≈ 2×10 –11 Pa–1, but 

mechanical considerations suggest 
C
 = 7–15×10 –11 Pa–1.

The geodetic data are best fit with an ellipsoidal source 
whose top is 5 ±1 km deep and whose base is ~10 –20 + km 
deep. In the absence of recharge, the decrease in magma-reservoir 
volume dV

C
 is theoretically related to the erupted volume V

e
 by 

V
e  
/ dV

C
 = (

M
 /

e
)(1+ 

M
 /

C
). For 

C
 = ~7–15×10 –11 Pa–1 and 

M
 ≈

e
, 

estimates of V
e
 and dV

C
 suggest that 

M
 = 1.4 –3.0×10 –10 Pa–1, cor-

responding to a magmatic gas content in the reservoir of v
g
 = 0 to 

1.8 percent by volume.
If we assume that effusion rate is linearly related to res-

ervoir pressure and that the recharge rate into the reservoir is 
constant, the effusion rate should decrease exponentially with 
time to a value that equals the recharge rate. Best-fit curves of 
this form suggest recharge rates of 1.2 –1.3 m3/s over the first 
500 days of the eruption. The best-fit constants include the 
product ( )0

ex
C C MV p +  , making it possible to constrain 

reservoir volume using values of 
C
 and 

M
 constrained from 

ratios of erupted volume to geodetic deflation volume. If, on 
the other hand, we assume a logarithmic pressure-effusion 
rate relation and a constant recharge rate, the dome volume-
time curve should follow a modified logarithmic relation, 
with the total erupted volume at a given time proportional to 

( )C C MV p∆ +  . Using 
C
 = 7–15×10 –11 Pa–1, results from log 

and exponential curves suggest a reservoir volume of at least 
several cubic kilometers if ∆p or p

0
ex is less than ~30 MPa. 

Similar results are obtained from numerical calculations that 
consider temporal changes in (1) magma compressibility, (2) 
the weight of the lava dome suppressing effusion, and (3) 
recharge rate. These results are consistent with the notion 
that the reservoir volume is at least a few times larger than 
the largest Holocene eruption of Mount St. Helens (4 km3 
dense-rock-equivalent + volume for the 3.4-ka Yn eruption).

Both the exponential and logarithmic models predict a 
history of reservoir decompression that imperfectly matches 
displacement data at GPS station JRO1. Neither model, for 
example, predicts the rapid radially inward movement at 
JRO1 during the first month of the eruption. Such move-
ment, followed by long-term linear deflation, suggests that 
erupted magma has been replaced in increasing proportions 
by recharge, but that the recharge rate remains somewhat less 
than the current (early 2006) effusion rate.
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Figure 1.  Geodetic stations and results. A, Map showing geodetic stations used to model the source of deflation at 
Mount St. Helens. B, Displacement radial to the Mount St. Helens crater versus time at geodetic stations. Outward radial 
displacements are positive. Error bars represent one standard deviation above and below the data point. Numbers 
beneath each station label indicate the map distance of each station from the crater center (46.2002° N, 122.1911° W).
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Introduction
The current Mount St. Helens eruption extruded about 

85 percent as much lava in 14 months (October 2004 to 
December 2005) as was extruded in 6 years to form the 
1980–86 lava dome. At the time of writing (spring 2006), 
there is no obvious indication of waning growth; indeed, 
compared with other dome-building eruptions worldwide, the 
current eruption of Mount St. Helens only slightly exceeds 
the median duration (540 days) and volume (3.5×107 m3) 
among historical dome-building eruptions (Newhall and Mel-
son, 1983, and updates, C. Newhall, written commun., 2005). 
This eruption hardly approaches the duration (>50 years) 
of the dome building at Bezymianny Volcano, Kamchatka, 
whose growth followed a sector collapse and lateral blast in 
1956 that resembled the 1980 Mount St. Helens sequence.

Dome-building eruptions, like eruptions of mafic lava 
flows, range in duration from days to decades and in volume 
from cubic meters to cubic kilometers. Eruption volume 
and duration are most strongly controlled by reservoir size, 
exsolved gas content, the amount of recharge into the magma 
system, and the composition and volatile content of recharging 
magma (Wadge, 1981; Newhall and Melson, 1983; Huppert 
and Woods, 2002; Woods and Huppert, 2003). In this study we 
use geodetic and growth-history data to constrain the volume, 
overpressure, history of recharge, and exsolved volatile con-
tent of the Mount St. Helens magma system.

Key Observations
Over several years prior to September 2004, campaign-

style geodetic surveys and measurements at the only con-
tinuous global positioning system (CGPS) site at Mount St. 
Helens (JRO1, fig. 1A) showed no discernable inflation signal 
(Dzurisin and others, this volume, chap. 14; Lisowski and 
others, this volume, chap. 15). Deflation at JRO1 began with 
the onset of seismicity on September 23, 2004; uplift on the 
crater floor was first noticed on about September 26 (Dzuri-
sin and others, this volume, chap. 14) and the first material 
at magmatic temperature on October 11. Eight new CGPS 
instruments installed between mid-October and early Novem-
ber 2004 (fig. 1A) have recorded more or less radially inward 
movement toward the crater (fig. 1), suggesting that the source 
of deflation (the magma reservoir) is roughly spherical or 
elliptical in shape rather than dike-shaped (Lisowski and oth-
ers, this volume, chap. 15).

Throughout the eruption, lava has extruded as spines or 
lobes of more or less solid, nearly holocrystalline lava, their 
surfaces covered by unconsolidated fault gouge on the order of 
1 m thick (fig. 2). The gouge thickness, considering relations 
between gouge thickness and displacement on tectonic faults 
(Robertson, 1983; Power and others, 1988), and petrologic 
information (Cashman and others, this volume, chap. 19) sug-
gest that the faulting may extend from perhaps tens of meters 
to several hundred meters into the subsurface.

Gouge

~50 m

B C

A

B

C

Figure 2.  Photos of the growing lava dome of Mount St. Helens. 
A, View of spine 4 from the northwest on February 22, 2005. 
USGS photo by S.P. Schilling. B, Close-up of striated fault gouge 
covering the exterior of spine 3 as it emerged from the ground 
on November 11, 2004. Approximate location of that spine on 
February 22, 2005, shown by box B on panel A. USGS photo by 
J.S. Pallister. C, Close-up of fresh rockfall scar (~100 m long 
and 50 m high), revealing gouge thickness in cross section. 
Approximate location shown by box C on panel A. USGS photo 
taken February 22, 2005, by S.P. Schilling.
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Geodetic Constraints on Reservoir Size and 
Pressure Drop

The amplitude of the geodetic signal scales with the 
product R2∆p/G, where R is the horizontal radius of the ellip-
soid, ∆p is the pressure drop, and G is the host-rock shear 
modulus. Best-fit values of this product are listed in table 1. 
Using formulas for ellipsoid volume V

C
 = (2/3)R2h (where h 

is ellipsoid height) and elastic volume change of the ellipsoid 
∆V

C
 = 3V

C 
∆p/(4G) (McTigue, 1987; Tait and others, 1989; 

Tiampo and others, 2000), we find that ∆V
C
 = (h/2)[R2∆p/G]. 

For the first time window, excluding sources at 4–7 km and 
10–14 km depth that clearly do not fit the data, estimates of 
volume shrinkage of the magma body are 2.1–3.5×106 m3. 
By comparison, the hot-rock volume (∆V

e
) erupted dur-

ing this time (Schilling and others, this volume, chap. 8; 
and fig. 3) was about 2.7×107 m3—eight to twelve times 
the volume shrinkage of the reservoir. For the second time 
window, ∆V

C
 = ~3–8×106 m3 (poorly constrained), whereas 

the change in dome volume was ∆V
e
 = 1.8×107 m3. For the 

entire eruption through late 2005, Lisowski and others (this 
volume, chap. 15) and Poland and Lu (this volume, chap. 
18) estimate ∆V

C 
 ~1.6–2.7×107 m3 from geodetic and InSAR 

data, whereas hot-rock erupted volume by mid-December 
2005 was about 7.3×107 m3 (Schilling and others, this vol-
ume, chap. 8). Differences in density of the erupted versus 
unerupted magma (estimated later) are not great enough to 
account for these discrepancies.

The reservoir volume and pressure drop can be con-
strained if the shear modulus G can be estimated. On the basis 
of estimated seismic P-wave velocity 

P
 = 6.7±0.2 km/s at 

8–15 km depth (Musumeci and others, 2002, fig. 5), host-rock 
density 

R
 = 2,700±200 kg/m3 (Williams and others, 1987), 

an assumed Poisson’s ratio ν of 0.25±0.03, and the formula 
G = 

R


P
2(1–2)/(2(1–)) (for example, Rubin, 1990), we 

obtain G = 40±4 GPa. Using this value and ∆V
C
 = 2.3×107 m3 

in the formula ∆V
C
 = 3V

C  
∆ p / (4G), we obtain V

C  
∆ p = 1.2×1018 

Pa·m3. If we further assume that the pressure drop since the 
start of the eruption is less than a few tens of megapascals, the 
reservoir volume would have to exceed about 41 km3—signifi-
cantly larger than previously hypothesized at Mount St. Helens 
(>10 km3 by Scandone and Malone, 1985; 5–7 km3 by Barker 
and Malone, 1991). Several factors considered later and in 
appendix 1 suggest that a lower value of G, and hence smaller 
reservoir volume, is more appropriate.

An Idealized Magma Reservoir
We idealize the magma system (fig. 5) as an ellipsoidal 

magma body several kilometers deep within linearly elastic 
host rock, connected to the surface and to a source of recharge 
through relatively narrow conduits. The reservoir contains 
magma of density  and has a total mass  V

C
. As long as 

the assumption of linear elastic host rock holds and the geom-
etry of the reservoir does not change, the relation between 

A series of digital elevation models (DEMs) based on 
1:12,000-scale aerial photographs records the growth of 
the lava dome (Schilling and others, this volume, chap. 8). 
These DEMs show that in early October 2004 the rate of 
uplift of cold rock and glacial ice was on the order of 8–9 
m3/s, with nearly 1.1×107 m3 uplifted by the time lava first 
became visible at the surface on October 11. Lava (“hot 
rock”) extrusion rates were initially ~6–7 m3/s in Novem-
ber 2004 but declined to less than 2 m3/s in March 2005. 
Since March 2005 (about 150 days into the eruption) the 
extrusion rate has continued to decline gradually, such that 
the volume-time curve can be nearly fit with a straight line 
(fig. 3). Overall, the history of lava-dome volume versus 
time (fig. 3) has defined a remarkably regular monotonic, 
concave-downward curve that was noted in early 2005 and 
could be fit using simple exponential (fig. 3C) and logarith-
mic (fig. 3A) curves. In this study we endeavor to find the 
physical basis for these curve forms.

Geodetic Source Models
Using data from eight continuous GPS stations (fig. 1), 

we estimate the depth, location, and size of the source of 
deflation (the magma reservoir) by comparing inward dis-
placements with those predicted for a vertical prolate ellip-
soid embedded in a homogeneous, isotropic, linearly elastic 
half-space, using the equations of Bonaccorso and Davis 
(1999) (table 1). We evaluate the displacements during two 
time windows: (1) November 4, 2004, to February 5, 2005, 
and (2) February 5, 2005, to July 14, 2005. The start and end 
dates of these windows were chosen to coincide with DEM 
acquisition dates. We use only two time windows because 
data quality is insufficient to allow subdivision into shorter 
time windows. The second time window ends in summer 
2005 because displacements since that time have been too 
small to be accurately modeled.

Measured displacements were adjusted for regional 
plate movement using the rates 3.461 mm/yr east, 5.91 mm/
yr north, 1.46 mm/yr down; and for seasonal changes using 
sinusoidal adjustments having east, north, and z (vertical) 
amplitudes of 1.9149, 1.667, and 1.5289 mm and phase 
angles relative to January 1, 2004, of 51.86, 132.89, and 
32.62 degrees, respectively (Lisowski and others, this vol-
ume, chap. 15). For the first time window, best-fit models 
place the top of the reservoir at 3–6 km below the mean 
altitude of the geodetic stations (which is ~1,300 m above 
sea level). In plan view the best-fit models lie 1.3–1.6 km 
east and 5–320 m south of the crater center (figs. 4, 5; table 
1). Placing the top deeper than about 6 km tends to under-
estimate the radial displacement at stations proximal to the 
crater and overestimate both radial and vertical displacement 
components in the distal stations. The depth to the bottom 
of the reservoir is not well constrained but likely lies some-
where below 10 km (fig. 4A). Data from the second time 
period provide significantly poorer constraints (fig. 4B).



22.  Constraints on the Size, Overpressure, and Volatile Content of the Magma System of Mount St. Helens    465

0 100 200 300 400 500

Ve = 3.57x107ln (1+0.0151t )

Log growth without recharge Log growth with recharge

Exponential growth without recharge Exponential growth with recharge

DAYS SINCE OCTOBER 1, 2004DAYS SINCE OCTOBER 1, 2004

Total volume
Hot-rock volume
Prediction on 12/11/04
2/1/05
3/10/05
6/15/05
12/15/05

0 100 200 300 400 500

0 100 200 300 400 500
DAYS SINCE OCTOBER 1, 2004DAYS SINCE OCTOBER 1, 2004

0 100 200 300 400 500

2004 2005

a = 1.8x107 m3

b = 8.5x104 m3/d
d = 7.7x105 m3/d

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

2004 2005

VO
LU

ME
, IN

 M
ILL

IO
N 

CU
BI

C 
ME

TE
RS

VO
LU

ME
, IN

 M
ILL

IO
N 

CU
BI

C 
ME

TE
RS

VO
LU

ME
, IN

 M
ILL

IO
N 

CU
BI

C 
ME

TE
RS

VO
LU

ME
, IN

 M
ILL

IO
N 

CU
BI

C 
ME

TE
RS

2004 2005

a

Ch. 22, Mastin, FIGURE 3

A B

C D

Ve = a ln[1–(d/b)(1–e(bt /a))]Ve = a ln (1+bt )

Ve = a (1–e–bt )

Ve = 8.29x107(1–e–0.0044t )

Ve = a (1–e–bt )+c t

Ve = 2.77x10 7(1–e–0.0178t )+1.09x105t

2006

20062006

Model Time period Depth to 
top (m)

Depth to 
bottom (m)

Distance 
east of crater 

center (m)

Distance 
north of crater  

center (m)

Scale factor 
pR 2/G

VCp
Pa•m3

×1017

VC
106 m3

1 11/4/04–2/5/05 3,419 20,000 1,541 -68 -135 -2.18 2.83
2 11/4/04–2/5/05 3,654 15,000 1,511 -85 -155 -1.72 3.69
3 11/4/04–2/5/05 4,294 10,000 1,448 -100 -236 -1.32 4.68
4 11/4/04–2/5/05 4,000 7,000 1,492 -5 -286 -0.84 1.80
5 11/4/04–2/5/05 6,000 10,000 1,390 -321 -459 -1.79 3.85
6 11/4/04–2/5/05 10,000 14,500 1,600 -500 -885 -3.89 8.34
7 2/5/05–7/14/05 3,500 15,500 1,400 -100 -113 -1.32 2.83
8 2/5/05–7/14/05 7,191 20,000 100 -3000 -286 -3.58 7.67

Figure 3.   Lava dome 
volume (red dots) 
and total surface-
deformation volume 
(green dots) versus time 
in days since October 1, 
2004. Error bars are ±5 
percent of the volume. 
Lines in each plot are 
fitted to a subset of data 
as of a certain date 
and then extrapolated 
onward as predictions. 
(Line of 12/11/04 is mostly 
extrapolation whereas 
line of 12/15/05 is mostly 
fitted.) Solid blue line fits 
volume measurements 
until about December 11, 
2004; dashed blue line, 
February 1, 2005; dotted 
blue line, March 10, 
2005; dot-dash blue line, 
June 15, 2005; solid red 
line, December 15, 2005. 
Plots A, B, C, and D show 
these best-fit curves 
using equations of 
different forms, shown in 
upper left corner of each 
plot. Terms a, b, c, and 
d in these equations are 
fitting coefficients; Ve is 
total erupted volume, and 
t is time since October 
1, 2004.

Table 1.  Parameters in geodetic source models plotted in figure 4.

[Parameters in plain type are specified by the user; those italicized are obtained by optimizing the fit between the model and the data.]
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between February 5 and July 14, 2005.
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reservoir pressure p and volume V
C
 is linear with a proportion-

ality given by the reservoir compressibility 
C 
:

	
V

V
j 	 (1)

For a sphere or prolate ellipsoid, 
C
 = 3/(4G) (McTigue, 1987; 

Tiampo and others, 2000). We also assume that the magma has 
a finite compressibility (

M
) given by:

	 1 M
M

M p
 



∂≡
∂

.	 (2)

Finally, we assume that the change in reservoir mass 
(dM

C
) equals the mass added by recharge (dM

i
 = 

i 
dV

i
) minus 

the mass erupted (dM
e
 ≈

e
dV

e
), where 

i
, 

e
, dV

i
, and dV

e
 are 

the densities and volumes of injected and erupted magma, 
respectively. In mathematical terms,

	 ( )M C M C C M

e e i i

d V dV V d

dV dV

= +
= − +



 

  .	 (3)

Adding terms for 
C
 and 

M 
into equation 3 and rearranging 

leads to:

	

1

i i e e
C

M
M

C

dV dV
dV

   



 

−=
 

+ 
 

.	 (4)

In the absence of recharge we have:

	 1e M M

C e C

dV

dV 





 
= − + 

 
.	 (5)

Equation 5 carries the important implication that the 
erupted volume should not equal the volume shrinkage in the 
magma body except in the limiting case where the densities 
of erupted and unerupted magma are equal and the magma 
is incompressible (

M
→0) (this was also pointed out by 

Johnson and others, 2000). If compressibility and density do 
not vary greatly with time during an eruption, equation 5 can 
be used to give the ratio of erupted volume V

e
 to the volume 

change of the magma reservoir ∆V
C 
. In spherical or ellipsoi-

dal reservoirs, magma compressibility is generally thought 
to greatly exceed the reservoir compressibility (for example, 
Huppert and Woods, 2002); hence erupted volume should 
greatly exceed ∆V

C 
.

In the absence of recharge, what value of dV
e
 / dV

C
 might 

one expect at Mount St. Helens? The answer requires careful 
estimation of 

M
, 

e
, 

M
, and 

C
, which we provide in the fol-

lowing several paragraphs.
The density of unerupted, volatile-saturated rhyolitic melt 

at ~200–250 MPa pressure is about 2,200 kg/m3 (estimated 

using the method of Ghiorso and Sack in the program Conflow 
of Mastin, 2002). Combined with roughly 45 volume percent 
plagioclase crystals (Pallister and others, this volume, chap. 
30) having a density of 2,600 kg/m3, the bulk density of the 
magma 

M
 would be about 2,380 kg/m3. Density measurements 

of most dome rock samples are about 2,300 –2,500 kg/m3 (K. 
Russell, written commun., 2006), although pores and voids 
could reduce the bulk density of the dome, 

e
, by perhaps 

10–20 percent below that of the dome rock. Within the uncer-
tainties, we estimate the ratio 

M
 /

e 
to be about 1.0 to 1.2. We 

use a reservoir compressibility of roughly 2×10–11 Pa–1 based 
on the formula 

C
 = 3/(4G) for an ellipsoidal reservoir and the 

earlier estimate of G = 40±4 GPa.

Magma Compressibility
Magma compressibility 

M
 depends on gas volume 

fraction, solubility, crystallinity, and rate of loading. When 
changes in pressure are much more rapid than rates of gas 
exsolution (for example, the time scale of seismic-wave 
disturbances), the crystal, melt, and gas phases can be 
regarded as inert, and the bulk compressibility is simply the 
sum of the compressibilities of the crystal, melt, and gas 
phases (

x
, 

m
, 

g
) multiplied by their respective volume frac-

tions (v
x
, v

m
, v

g
) (for example, Mastin, 2002):

	 M m m x x g gv v v= + +        .	 (6)

If, on the other hand, pressure changes occur over months 
or years, as in the current eruption, gas exsolution must be 
considered. Previous investigators (Tait and others, 1989; 
Huppert and Woods, 2002; Woods and Huppert, 2003) used a 
simple Henry’s solubility law for H

2
O and found an abrupt dis-

continuity in compressibility at the saturation pressure (~240 
MPa in fig. 6C). Huppert and Woods (2002) and Woods and 
Huppert (2003) suggested that this discontinuity could have a 
dramatic, rejuvenating effect on the course of an effusive erup-
tion once the magma reservoir reaches the saturation pressure.

The Mount St. Helens magma contains both H
2
O and 

CO
2
, and gas in such a two-component system should exsolve 

more gradually and over a wider range of pressures than it 
would if only H

2
O were present. We estimate exsolved volatile 

content and magma compressibility using petrologic con-
straints from other studies. Phase equilibrium experiments 
(Rutherford and Devine, this volume, chap. 31) suggest that 
the currently erupting magma last equilibrated at a temperature 
of ~850°C, a pressure of ~120 MPa, and a source depth near 
5 km. The crystallinity at this depth was 40 to 55 percent (Pal-
lister and others, this volume, chap. 30). The center of defla-
tion, however, is substantially deeper than 5 km, perhaps equal 
to that of the May 18, 1980, magma at around 8–9 km depth 
and 220 MPa pressure (Rutherford and Devine, 1988). Follow-
ing Gerlach and others (this volume, chap. 26), we assume that 
present-day magma properties at the source resemble those 
in 1980, with a temperature of about 900°C, pressure of ~220 
MPa, 30 percent crystals (Cashman and Taggart, 1983), and 
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a dissolved water concentration in the melt of about 5 weight 
percent (Blundy and Cashman, 2001).

Assuming that the CO
2
 emitted into the atmosphere dur-

ing this eruption originated from a mass of magma equal to 
that of the lava dome, Gerlach and others (this volume, chap. 
26) estimate a preeruptive CO

2
 concentration in the magma of 

about 1,100 ppm, or 1,900 ppm normalized to the melt alone 
(assuming 30 percent crystallinity). At 220 MPa pressure and 
900°C temperature, with 5 weight percent dissolved H

2
O, 

such a melt would contain roughly 350 ppm dissolved CO
2
; 

the remaining CO
2
 and H

2
O would be exsolved in bubbles 

composing roughly 1.2 volume percent of the magma (Gerlach 
and others, this volume, chap. 26). The total water content 
normalized to the melt plus fluid phases would be about 5.2 
weight percent. 

Using the solubility code VolatileCalc 1.1 (Newman and 
Lowenstern, 2002), we calculate mass fractions of exsolved 
H

2
O and CO

2
 over pressures ranging from 150 to 400 MPa, 

and we combine these results with ideal gas relations to obtain 
the volume fraction of exsolved gas (fig. 6A). We assume a melt 
density 

m
 = 2,200 kg/m3 and crystal density 

x
 = 2,600 kg/m3; 

the melt density corresponds to a water-saturated melt of 1980 
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composition (sample SH-084 of Rutherford and others, 1985), 
calculated by the method of Ghiorso and Sack (1995) using 
the program Conflow (Mastin, 2002). From these volume frac-
tions and phase densities we calculate the bulk density over the 
pressure range 150–400 MPa (fig. 6B) and then numerically 
calculate (1/

M
)( ∂

M
 /∂p) to obtain 

M
 (fig. 6C). We use a melt 

compressibility of 2.0×10 –10 Pa–1, estimated using the method 
of Ghiorso and Sack (1995) for water-saturated rhyolite at 
p = 220 MPa, and a crystal compressibility of 2×10 –11 Pa–1 
obtained for albite at T = 900°C and p = 220 MPa from the pro-
gram MELTS using the method of Elkins and Grove (1990).

Our calculations suggest that, over the pressure range of 
150–400 MPa, the magma may have a bubble volume frac-
tion of 0.0008 to 0.048 (fig. 6A). For comparison, we plot 
results for CO

2
 = 1,000 ppm and H

2
O = 5.3 weight percent of 

the melt+fluid phases and also for a single-component (H
2
O) 

volatile system using the Henry’s law solubility illustrated 
in figure 6A, with the H

2
O content (6.29 weight percent) set 

so that the volume fraction of gas at 220 MPa equals that of 
the two-component system. Both the two-component and the 
Henry’s solubility laws show nearly an order-of-magnitude 
variation in compressibility over this pressure range, but the 
two-component systems show little or no discontinuity in 

M
 

at the saturation pressure. At p = 220 MPa, the two-component 
system (1,900 ppm CO

2
, 5.2 weight percent H

2
O) gives 


M
 = 2.8×10 –10 Pa–1. We use this number as a starting point in 

our calculations. The relation between 
M
 and volume frac-

tion of gas for these two-component magma compositions is 
illustrated in figure 7.

Expected Ratio of Erupted Volume to Volume 
Change in the Reservoir

Using 
M
 /

e
 = 1, 

C
 = 2×10 –11 Pa–1, and 

M
 = 2.8×10 –10 Pa–1 

(~1.2 percent bubbles), then dV
e
 / dV

C
 predicted by equation 5 

should be about 16, which is somewhat higher than the ranges 
of 7.7–12.8 and 2–6 calculated for the first and second time 
windows, respectively. A temporal increase in 

M
 is suggested 

by the difference in apparent values of dV
e
 / dV

C
 between the 

first and second time windows, though uncertainties in these 
ratios are too great to make such an inference with confidence. 
For the overall eruption, the erupted volume by mid-December 
2005, 7.3×107 m3, was only about three times the reasonably 
well-constrained reservoir shrinkage dV

C
 of ~2.3×107 m3 esti-

mated by Lisowski and others (this volume, chap. 15). A ratio 
this low suggests a magma compressibility of ~4×10 –11 Pa–1, 
which is about one-fourth that of even a bubble-free magma 
of this crystallinity (fig. 7). If the magma reservoir is in fact 
bubble free, 

C
 must be ~8×10 –11 Pa–1 in order to have dV

e
 / 

dV
C 
≈3; if it contains roughly 1 volume percent bubbles at the 

source depth, as inferred by Gerlach and others (this volume, 
chap. 26), 

C
 must be ~1.4×10 –10 Pa–1. In either case, 

M
 is 

only a few to several times greater than 
C 
, which we take to 

indicate that the volume fraction of bubbles in the reservoir is 
zero or very small, consistent with the findings of Gerlach and 
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others (this volume, chap. 26). If the reservoir was partially 
recharged during the eruption (a factor we consider later), a 
still lower ratio of 

M
 /

C
 would be implied, suggesting still 

lower bubble content in the reservoir.

Idealized Models for History of 
Extrusion and Deflation

 Previous studies (Wadge, 1981; Stasiuk and others, 1993; 
Huppert and Woods, 2002) point out that drainage of an elastic 
magma reservoir through a Newtonian conduit results in an 
exponentially decreasing extrusion rate. When combined with 
constant recharge rate into the magma system, the resulting 
curve has the form of an exponentially decreasing rate super-
imposed on a constant rate (fig. 3D). If these processes are 
responsible for determining the dome-growth curve at Mount 
St. Helens, then some information on the magma reservoir and 
conduit properties should be embedded in the coefficients to 
these equations. Information on the magma-reservoir volume 
and driving pressure are of particular importance.

We know that processes besides Newtonian flow and 
elastic relaxation may affect the growth history. The highly 
crystalline magma at Mount St. Helens, for example, prob-
ably has a non-Newtonian rheology. The extrusion of lava as 
a nearly solid plug bounded by frictional faults may also limit 
the growth rate. Different constitutive laws may predict dif-

Figure 7. Compressibility versus volume fraction gas for a rhyolitic 
melt containing 30 percent crystals at 900°C temperature, using 
two different gas compositions.
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ferent growth curves for the lava dome. Some curves fit to the 
hot-rock data (fig. 3) that have simple analytical forms are: 

logarithmic (fig. 3A)	 ( )( )ln 1eV a b t c= + − ,	 (7)

exponential (fig. 3C)	 ( )( )1 e b t c
eV a − −= − ,	 (8)

modified log (fig. 3B)	
( )

ln 1 1
b t c

a
e

d
V a e

b

−  
= − −      

,	 (9)

and exponential plus linear (fig. 3D) 	

( )( ) ( )1 b t c
eV a e d t c− −= − + − .	 (10)

The terms a, b, c, and d are fitting coefficients; their best-
fit values are listed in table 2. (Parameter c, which represents 
the day of the eruption start, is used as a variable in these fits, 
even though its value is roughly known, making the number 
of truly unknown parameters equal to three.) Curve forms that 
fit the data best are equations 9 and 10, which, as shown later, 
assume a constant rate of recharge. The fitting errors are lower 
using these forms than using equations 7 and 8 (table 2). More 
importantly, however, curves of equations 9 and 10 have done 
a better job predicting future growth, as the best-fit coef-
ficients for equations 9 and 10 have changed relatively little 
since early 2005 (table 2).

Exponential Growth Curve

Exponential curve forms of equations 8 and 10 are 
derived from two main assumptions. The first is that the 
magma-reservoir pressure p is linearly related to the mass of 
magma in the reservoir:

	 ( )0 C e ip p M M= − − ,	 (11)

where M
e
 is the mass that leaves the reservoir (assumed to 

equal the erupted mass), M
i
 is the mass that enters the res-

ervoir as recharge, p
0
 is initial reservoir pressure, and C is a 

constant that represents the change in pressure with reservoir 
mass, ∂p/∂M

C
. By substituting equations 2 and 1 into equation 

3, and rearranging, we find that C = [(
C
+

M
)

m
V

C
]–1.

The second assumption is that the mass effusion rate eM  
is linearly related to magma reservoir pressure (p):

	 A BeM p= − ,	 (12)

where A and B are constants. This equation describes, among 
other possibilities, Newtonian (Poiseuille) flow (fig. 8A); 
Newtonian flow capped by a frictional plug (fig. 8C); flow of 
a solid mass through the conduit separated from the conduit 
walls by a Newtonian fluid (a “greased plug”; fig. 8B); and 
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greased-plug flow capped by a frictional plug (fig. 8D). We 
also assume that the linear relations in equations 11 and 12 do 
not change with time.

If one further assumes that the rate of mass recharge 
( )i iM Q=  is constant, equations 11 and 12 can be combined 
and integrated (appendix 2) to give the erupted mass as a func-
tion of time. Noting that the erupted volume (V

e
) is equal to 

M
e
 /

e
, we obtain:

	
( ) ( )0A B1

1
AC

i ACt i
e

e e

p Q Q
V e t

 
−− −

= − + .	 (13)

This equation has the same form as equation 10 with the fol-
lowing coefficients:

	
( )0A B

AC
i

e

p Q
a



− −
= ,	 (14)

	 ACb = , and	 (15)

	 i

e

Q
d


= .	 (16)

Differentiating equation 13 with respect to time, we 
find that this curve has an initial volumetric extrusion rate 

0t
eV =  = ab+d = (Ap

0
–B)/

e
 but asymptotically approaches a 

linear trend having the slope t
eV →∞  = d = Q

i
 /

e
. Best-fit values 

of a, b, and d for the growth curve (table 2) suggest that 
0t

eV =&  = ~7.0 m3/s (605,000 m3/day) and t
eV →∞  = ~1.26 m3/s 

(109,000 m3/day). The latter value (the recharge rate) is 
several times greater than the long-term magma-supply rate 
of 0.2 m3/s at Mount St. Helens, estimated by assuming that 
most of the volume of the edifice (~25 km3) was erupted in 
the past 4,000 years (Iverson and others, 2006). Finally, the 
volume constant a, roughly 2.8×107 m3, is the y-intercept 
of the long-term growth line in fig. 3D (the black dashed 
line). The y-intercept represents the volume of magma that 
has erupted and has not been replaced in the reservoir by 
recharge. The remaining volume, more than 4.5×107 m3, 
represents recharge. 

The physical significance of terms in a and b can be fur-
ther refined, depending on the type of flow in the conduit. For 
Poiseuille flow, the mass flow rate is (Mironer, 1979, p. 194):

	 ( )
4

8
e edM R

p gH
dt H







= − ,	 (17)

where H is the conduit length,  is the average viscosity, and 
  is the average magma density between the magma reser-
voir and the Earth’s surface. This equation assumes that the 
pressure at the top of the conduit is negligible (an assumption 
we will evaluate later). For Poiseuille flow, the constants in 
equation 12 are A = q

e
R4/(8H) and B = q

e
R4  g/(8). Insert-

ing these expressions into equation 13, we can recast a in the 
following form:

	 ( ) ( )
0

00

t t
e eM

C M Ct
e e

V V
a V p gH

V
  



 = →∞

=

 −= + − 
 

.	 (18)

Equation (18) can be generalized by noting that ( )0p gH−  is 
the initial pressure at the base of the conduit in excess of that 
required to initiate upward flow. Denoting this term as 0

exp , we 
can rewrite the equations as:

	 ( )
0

00

t t
exe eM

C M Ct
e e

V V
a V p

V






= →∞

=

 −= + 
 

& &

&
,	 (19)
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t
e e

ex
M C M C

V
b AC

V p



  

=

= =
+

.	 (20)

It can be shown (appendix 3) that these equations also apply to 
greased-plug flow (fig. 8B) and to flow of either a Newtonian 

Figure 8. Types of conduit flow that are considered in deriving 
theoretical lava-dome growth curves. See text for full explanation.
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fluid or a greased plug capped by a frictional plug (figs. 8C, 
8D; appendices 4, 5), so long as the plug’s geometry and coef-
ficient of friction do not change with time. If a frictional cap is 
present, 0

exp  represents the pressure in the magma reservoir in 
excess of both the pressure due to the weight of the overlying 
magma ( )gH  and the pressure required to overcome fric-
tional resistance of the plug.

Some important relations fall out of the equations above. 
In the absence of recharge, the final erupted volume is:

	 ( ) 0
exM

C M C
e

a V p


 


= + .	 (21)

Using 
C
 = 8×10 –11 Pa–1, 

M
 /

e
≈1, V

C
 = 10 km3, 0

exp  = ~30 MPa, 
and 

M
 = 1.6×10 –10 Pa–1 appropriate for a bubble-free magma, 

the volume a is 7.2×107 m3—roughly equal to the 7.3×107 
m3 that has erupted by the end of 2005. The time required 
for extrusion of 90 percent of this volume is about 3.5/b, or 
~416 days. Using a magma compressibility consistent with 1 
percent bubbles (

M
 = 2.8×10 –10 Pa–1) and 

C
 = 1.4×10 –10 Pa–1 (to 

maintain dV
e
 / dV

C 
≈3 following equation 5), we obtain a theo-

retical extrusion volume a = 1.26×108 m3 and duration of 2.0 
years. These results suggest that the eruption could continue 
beyond early 2006 without recharge, but only if the exsolved 
volatile fraction in the reservoir is significantly greater than ~1 
percent or if the reservoir is significantly larger than ~10 km3, 
or both.

For the case of recharge, taking t
eV →∞  = 1.26 m3/s and 

a = 2.8×107 m3 (table 2), the product ( )0
ex

C M CV p  +  obtained 
from equation 19 is about 3.4×107 Pa·m3. Constraining the 
reservoir volume and initial overpressure requires some addi-
tional constraint on magma compressibility, which is consid-
ered later.

Friction, Faulting, and the Growth Curve

A log-based formula having the form of equations 7 or 
9 would be predicted if the growth of the lava dome were 
controlled by frictional resistance of a solid mass in the upper 
conduit, with the coefficient of friction increasing with the rate 
of slip.

Although the coefficient of friction is commonly taken as 
a constant with a value of ~0.6–1.0 (Byerlee, 1978), it actually 
varies slightly with sliding rate and with time between sliding 
events (for example, Scholz, 1998). When  increases with 
displacement rate, acceleration is dampened out and stable slid-
ing (or fault creep) results. When  decreases with displacement 
rate, sliding can accelerate unstably, leading to earthquakes. In 
general, rate-strengthening friction is favored when the shear-
zone temperature is near the brittle-ductile transition (Chester, 
1994), when a thick gouge layer is present (Byerlee and Sum-
mers, 1976), and in near-surface conditions when normal stress 
on the fault plane is low (Marone and Scholz, 1988). These 
conditions all exist in the shallow conduit at Mount St. Helens.

On the other hand, experimental studies of the Mount St. 
Helens fault gouge at 25°C (Moore and others, this volume, 
chap. 20) suggest rate-weakening behavior when displacement 

rates are less than about 1×10–4 m/s and rate-strengthening 
behavior at rates above 5×10–4 m/s. Assuming a 100-m-diam-
eter conduit near the surface, the range of observed volumetric 
extrusion rates (~1–7 m3/s) translates into displacement rates 
of 1–9×10–4 m/s, crossing over the transition between these 
behavior types. We consider it likely that both rate-strength-
ening and rate-weakening sliding exist at shallow depth at any 
given time. Fault patches of rate-weakening gouge will slip 
abruptly to create small drumbeat earthquakes whereas other 
parts of the fault surface creep stably under rate-strengthening 
conditions. If rate-weakening behavior controls conduit flow, 
the appropriate friction coefficient to use in this model would 
be a value averaged over many stick-slip cycles. If that average 
doesn’t change with time, the long-term growth curve will be 
exponential. But if rate-strengthening behavior controls con-
duit flow, we need to consider the stress-strain rate relations of 
rate-strengthening fault creep.

The Logarithmic Curve

When the coefficient of friction is rate-dependent, the 
shear stress that resists slip on a fault plane is commonly 
expressed as (for example, Scholz, 1998):

	 1 lno n
o

A



  = + .	 (22)

Here 
n
 is normal stress at the wall and A

1
 is the rate depen-

dence of fault strength. The constant o is an arbitrary refer-
ence, the strength of the wall interface when the slip rate is o .

In order to derive a growth curve, we assume that the 
frictional plug of mass M

p
 and length H

2
 occupies a cylindri-

cal conduit of radius R (fig. 8C). The frictional force along the 
plug margin is 22 nRH  , where 

n  is the mean normal stress 
on the plug margin. The mass flow rate eM  is then related 
to o  by 2

e eM R  = , and pressure at the plug base (p) is 
related to mass flow rate as:

	 ln e
o

o

M
p p

M
= + ,	 (23)

where 1 22 /nA H R =  and 2
0 0 22 / /p H R Mg R = +  are 

constants.
Rearranging this equation yields:

	
( )

0 expM o
e

p p
M e

a

− 
=  

 
.	 (24)

Combining equation 24 with equation 11 (assuming recharge 
M

i
 = 0) and integrating leads to (appendix 6):

	 0ln 1e
e

tM
V D

D


 

 
= + 

 
,	 (25)
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where D = V
M
 (C + 

M
) and V

M
 is the volume of the magma 

reservoir plus conduit. This equation has the same form as 
equation 7, with ( )M C Ma V= +    and 0 /t

eb V a== .
If recharge into the magma reservoir is included, the 

equation has the form (appendix 6):

	 0ln 1 1
i

e

Q t

D
e

i

M
V D e

Q
 

  
 = − −     

.	 (26)

This equation has the form of equation 10, with a volume 
constant a = D = 1.47×107 m3 (by regression through the most 
recent data set, table 2), a recharge rate b = Q

i
 /

e
 = 1.0 m3/s, 

and an initial extrusion rate d =  0
0 / t

e eM V ==  = 8.9 m3/s 
(table 3). The recharge rate is about 30 percent less than the 
1.26 m3/s obtained from the exponential curve. By rearrang-
ing equation 23, substituting e e eM V= , 0

0
t

e eM V == , and 
a = D = V

M
(

C
+

M
), we can obtain a formula for the product 

of volume of the magma system and pressure drop from the 
beginning of the eruption until the time of the last data point 
used in this paper (December 15, 2005):

	 ( ) ( )0ln /t last
M C M e eV p a V V  =∆ + = .	 (27)

The parameters p and last
eV  are the pressure change at the 

base of the frictional plug and the extrusion rate at the end 
of this time period; the variable a is the numerical value 
of the fitting coefficient. From the first derivative of equa-
tion 9, last

eV  = 1.20 m3/s as of December 15, 2005 (table 3), 
giving ( )M C MV p  ∆ +  = 3.0×107 m3. It should be noted 
that this term contains slightly different parameters from 

( )0
ex

C C MV p  +  derived for the exponential curve: V
C
 repre-

sents reservoir volume, whereas V
M
 represents volume of the 

reservoir plus conduit below the frictional plug, and p repre-
sents pressure drop at the base of the plug, whereas p

0
ex gives 

the initial overpressure in the magma reservoir. Nevertheless, 
the values of these terms should be roughly comparable, and 

they are: V
M
p(C + M) = 3.0×107 m3 from the log fit (equa-

tion 9) versus ( )0
ex

C C MV p  +  = 3.4×107 m3 from the expo-
nential fit (equation 10). The fact that these values differ by 
only 10 to 15 percent suggests that inferences about magma-
reservoir size and overpressure do not depend strongly on the 
assumptions regarding factors that control conduit flow.

Additional Constraints from the Geodetic  
Time Series

On the basis of their fit to the dome-growth data, neither 
the logarithmic (equation 9) nor the exponential (equation 10) 
model can be confidently eliminated. Each, however, predicts 
a history of reservoir deflation that can be compared with 
geodetic data. For the case of exponential dome growth, differ-
entiating equation 13 with time under conditions of constant 
recharge and substituting in equations 4, 14, and 15 gives the 
following for reservoir deflation with time:

	
( )1

1

bt

e
C

M M

C

a e
V



 



−−
∆ = −

 
+ 

 

.	 (28)

The reservoir deflates with the same time constant as the 
dome-growth curve, implying, for the best-fit value of b with 
recharge through December 15, 2005 (2.06×10–7 s–1), that 90 
percent of the geodetic deflation should have occurred after 
about 200 days, by mid-April 2005, and that by late summer 
2005 the deflation should have essentially stopped. This is 
inconsistent with geodetic data, which show a nearly linear 
rate of inward displacement through at least the end of 2005.
The log curve can theoretically provide a better match to 
the geodetic data, but the predictions at some point become 
physically unrealistic. For the case of zero recharge, for 

VCp0
ex(M+C) exponential Log with recharge Log without recharge

With recharge
m3×106

Without recharge
m3×106

0=t
eV last

eV VMp (M+C) 0=t
eV last

eV VMp (M+C)
Date

m3/s m3/s m3×106 m3/s m3/s m3×106

12/11/2004 24 54 8.3 3.94 5.9 6.9 3.4 28

1/3/2005 67 47 7.5 2.52 33 7.6 2.5 33

2/1/2005 71 45 8.3 1.82 37 8.3 1.8 37
2/21/2005 33 48 8.4 1.64 40 8.2 1.7 40
3/10/2005 29 51 8.1 1.54 43 8.1 1.5 43
4/19/2005 29 55 8.3 1.40 39 7.8 1.3 48
6/15/2005 31 61 8.3 1.20 42 7.6 1.1 54
7/14/2005 32 64 8.4 1.14 42 7.5 1.0 57
8/10/2005 31 69 8.9 1.23 36 7.1 1.0 61
10/24/2005 31 78 9.4 1.24 33 6.4 0.9 68
12/15/2005 34 83 8.9 1.11 38 6.2 0.8 72

Table 3.  Calculations of VC p0
ex(M+C) or VM p (M+C) obtained from exponential or logarithmic best-fit solutions.
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example, combining equations 5 and 25 and substituting 
( )C C Ma V  = +  and 0 /t

eb V a== , the volume shrinkage of 
the magma system should follow the curve:

	
( )ln 1

1

e
C

M
M

C

a bt
V








+
∆ = −

 
+ 

 

.	 (29)

In other words, the volume shrinkage of the magma reservoir 
with time should look like a negative mirror image of the dome 
growth curve, adjusted by the constant 

e
 /(

M
(1+

M
 /

C
)). This 

curve leads to the physically unrealistic result that deflation 
continues indefinitely, even to negative reservoir volumes, at 
the same time that the lava dome keeps growing. This implica-
tion is an outcome of the logarithmic relation between stress 
and displacement rate (equation 22), which adequately fits 
experimental data on rate-dependent friction within the range 
of shear stresses applied during experiments but cannot be 
realistically extrapolated outside that range.

A More Realistic Model
We are therefore left with the result that neither the expo-

nential curve nor the logarithmic curve can adequately fit both 
the lava-dome growth curve and the geodetic deflation history. 
What additional processes might account for the dome growth 
and deflation histories? Some possibilities include:

The effect of the dome’s weight in suppressing further •	
extrusion.—Digital elevation models indicate that the 
dome rapidly grew to more than 200 m height in the first 
two months of the eruption, potentially adding several 
megapascals of increased pressure to the vent at the base 

of the dome. Our records on dome-height variations 
with time (fig. 9) can be used to constrain this effect.

Changes in magma compressibility with time.•	 —A 
decrease in reservoir pressure of 30 MPa can increase 
magma compressibility several tens of percent (fig. 
6C), increasing the ability of the magma reservoir to 
maintain a long-term eruption with time.

A nonconstant rate of recharge.•	 —A more realistic 
model would have recharge into the reservoir increas-
ing as reservoir pressure decreases.

These effects require a numerical solution to account for 
changing values with time. We solve the problem using dif-
ferential equations described below.

To account for the relation between mass eruption rate 
and reservoir pressure, we assume again that the effusion rate 
is linearly related to the reservoir overpressure. For Poi-
seuille or greased-plug flow, the overpressure pex is simply 
p gH− . If a frictional cap is present, the overpressure is

 ( )exp p gH F= − + , where F is the strength of the frictional 
cap (assumed constant). The growth of the lava dome changes 
the distance H from the reservoir to the free surface, and in 
order to account for this, we divide this term into two parts; 

0gH , where H0 is the distance from the top of the reservoir to 
the vent at the base of the lava dome, and 3e gH , where H

3
 is 

the height of the lava dome. The relation between pressure and 
effusion rate is then:

	
( )0 3

2
0 3

A ee
p gH gH FdM

dt H H

 − + + 
=  + 

.	 (30)

The constant A
2
 has the value 

e
R4/(8) for Poiseuille flow 

and 
e
R3r/(8) for greased-plug flow (appendix 4). This 

Figure 9. Maximum height of the Mount St. Helens lava dome above the 2003 crater floor (the Crater Glacier surface, 
approximately 2,115 m above sea level) during the course of the 2004–6 eruption.
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equation can be simplified by noting that, at t = 0, pex  = p
0
ex and 

dM
e
 / dt  =  0 /t

e eV = :

	 0 0 3

0

ex
te e

e ex

dV p p gH
V

dt p

= + ∆ −= .	 (31)

The initial extrusion rate 0t
eV = , the dome height H

3
, and the 

density 
e
 are constrained from measurements; the pressure 

change in the magma reservoir p is calculated by integra-
tion (below); and the initial overpressure 0

exp  is an adjust-
able parameter whose value is likely less than a few tens of 
megapascals.

The rate of pressure change in the reservoir is obtained 
by differentiating equation 11 with time and substituting 
C = [(

C
+

M
)

m
V

C
]–1:

	 ( )

i e
e

M C C M

dM dV
dp dt dt
dt V



  

−
=

+
.	 (32)

In this calculation, the terms 
C
 and 

e
 are considered known; 

dV
e
 / dt is obtained from equation 31, and the recharge rate 

dM
i
 / dt is calculated from a separate differential equation 

(below). The magma compressibility 
M
 at the beginning of 

the eruption is an adjustable parameter; during the course of 
the eruption, it increases with decreasing pressure at a rate that 
equals the average slope of the curve of 

M
 versus p in figure 

6C (for CO
2
 = 1,900 ppm, H

2
O = 5.2 weight percent). In each 

calculation, we use the magma density 
M
 shown in figure 6B 

at the given compressibility. Thus the magma density changes 
with pressure, though the changes are minor.

In accounting for recharge, we assume that the rate of 
input into the magma reservoir at the onset of the eruption was 
negligible but increased as reservoir pressure was depleted. 
The simplest such relation is linear, using an adjustable pro-
portionality constant Q

lt
:

	
0

i
lt ex

dM p
Q

dt p
∆

= – .	 (33)

The parameter p is the reservoir-pressure change since the 
start of the eruption (negative p implies a pressure decrease). 
Like Q

i
 in equation 13, Q

lt
 in equation 33 largely controls the 

long-term extrusion rate. The linear assumption implies lami-
nar flow of magma into the reservoir from some deeper source 
whose pressure remains constant. A more realistic model 
would consider a finite source whose pressure decreased 
over time, but we have no constraints on the rate of pressure 
decrease and hence ignore it under the assumption that the 
deeper reservoir is much larger than the shallow one that feeds 
the eruption.

Equations 31, 32, and 33 can be simultaneously integrated 
to yield both a dome-growth curve and deflation history. The 
calculations involve four adjustable constants: V

C 
, 0

exp , an initial 
value of 

M
, and Q

lt
. Our solution takes 

C
 to be a known quan-

tity, although its value is known only approximately. The above 
estimates of V

e
 /ΔV

C
 suggest 

C
 to be at least a few times greater 

than our initial estimate of 2×10–11 Pa–1, but best-fit values of 
( )0

ex
C C MV p  +  in table 3 constrain ( )C M +  to be less 

than about 5×10–10 Pa–1 for magma-reservoir volumes greater 
than about 5 km3 and initial overpressures exceeding about 10 
MPa. With these constraints, we run the model using two pos-
sible values of 7×10–11 and 1.5×10–10 Pa–1 for 

C
. In theory, the 

values of Q
lt
 and 

M
 can be uniquely determined, as they are 

the only factors that significantly affect the long-term eruption 
rate and the ratio V

e
 /V

C
, respectively. The values of V

C
 and 

p
0
ex are interdependent and nonunique, but ranges of possible 

combinations can be identified. 
In order to compare the deflation history to geodetic 

measurements, we convert the history of pressure change 
p into a history of magma-chamber shrinkage V

C 
, using 

 V
C 

 = (V
C 
/

C)p , and then convert V
C
 into a theoretical dis-

placement at JRO1 using one of the geodetic models in table 
1 (fig. 4). For the first time period (fig. 4A), model 5 in table 
1 (source depth 6–10 km) matches the JRO1 radial displace-
ments best and predicts a radial displacement of 5.32 mm for 
a volume loss 

 
V

C
 of 3.85×106 m3, or 1.4×10–6 mm displace-

ment per cubic meter volume loss.

Results
Numerical model results are compared with measure-

ment histories of lava-dome volume and radial displacement 
at JRO1 in figures 10A and 10B, respectively. The solid black 
line in fig. 10A gives model results that match the hot-rock 
data for V

C
 = 17 km3, p

0
ex  = 17 MPa, and Q

lt
 /

e
  =  1.7 m3/s. The 

dashed black line gives analytical results using the exponential 
curve of equation 10 with a = 2.77×107 m3, b = 2.06×10–7 s–1 
and d = 1.26 m3/s. These theoretical curves cannot be eas-
ily compared with the JRO1 data because deflation at JRO1 
began around September 23, 2004, 20 days before the first 
lava appeared and three days before the first visible surface 
deformation (Dzurisin and others, this volume, chap. 14). The 
deflation between September 26 and October 11 was prob-
ably associated with extrusion of cold rock ahead of the rising 
magma. Deflation before September 26 may have been associ-
ated with intrusion at shallow depth or gas escape, neither of 
which can be easily quantified.

In order to simultaneously fit both curves, we add the 
volume of cold rock extruded before October 11 to the cumu-
lative hot-rock volume (green data points, fig. 10A) and use 
September 27 as the start date (a date determined by a best-fit 
exponential curve through these new data). We also start with 
3 mm of deflation at t = 0, the approximate amount of deflation 
measured at JRO1 on September 27.

The blue dashed and solid lines in figure 10A represent 
best-fit analytical (using equation 10) and numerical curves 
through the modified dataset, respectively. Best-fit coefficients 
of the analytical curve give a = 3.61×107 m3, b = 2.2×10–7 s–1, 
and d = 1.28 m3/s. Using 

C
 = 7×10–11 Pa–1, 

M
 = 1.2×10–10 Pa–1 

(adjusted to match the deflation curve) and equation 28 to 
calculate magma-reservoir deflation with time, the calculated 
displacements (dashed blue line, fig. 10B) roughly match the 
measurements during the first few months of the eruption and 
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Figure 10.  Comparison of theoretical and measured lava-dome volume and magma-reservoir deflation with time at 
Mount St. Helens. A, Erupted volume from digital elevation models. Phrase “HR+def before 10/11/04” refers to data 
points that represent hot-rock volume of the dome plus volume of uplifted cold crater-floor material that appears 
before the beginning of lava extrusion on October 11, 2004. Phrase “Analytic, HR+def before 10/11/04” refers to an 
analytical best-fit line through these data. Details are explained in text. B, Radial displacement measured at JRO1 
continuous GPS station (fig 1A). Negative displacements are radially inward. Red vertical dashed lines in figure 10B 
refer to the start and end dates of time windows used in geodetic analysis (fig. 4 and table 1).

during the following summer (~250–400 days into the eruption), 
but they do not predict continued deflation that one would infer 
from a best-fit line through the JRO1 data after about 150 days.

A numerical solution (solid blue lines) provides a slightly 
better fit through the data using V

C
 = 17 km3, p0

ex = 18 MPa, 
Q

lt
 /

e
 = 1.7 m3/s, and 

M
 ranging from an initial value of 

1.85×10–10 Pa–1 to a final value of 1.98×10–10 Pa–1 (~0.40–0.48 
percent bubbles). In this solution, the total volume of erupted 
magma that has not been replaced by recharge is about 
3.9×107 m3. This amount is 1.3×107 m3 less than predicted 

by the analytical solution (fig. 10A). The lower total recharge 
implies more geodetic deflation; hence the numerical curve 
can be fit to the geodetic data using a slightly higher aver-
age 

M
 than required by the analytical solution. Over the time 

window of the simulation, the magma-reservoir pressure drops 
by about 11 MPa, so that the excess pressure ( )1p gH−  
by mid-December 2005 is about 7 MPa, three megapascals 
greater than the pressure 

e 
gH

3 
at the vent, owing to the weight 

of the overlying dome (taking 
e
 = 2300 kg/m3 and H

3
 = 167 m 

on December 15, 2005).

0

20

40

60

80

100

Recharge after 500 days = 38.7×106 m3

Numerical recharge

Analytical recharge

Hot-rock volume
HR+ def. before 10/11/04
Analytic hot-rock
Analytic, HR+ def before 10/11/04

Numerical, VC = 17 km3, p0  = 18.0 MPa

Numerical, VC = 17 km3, p0  = 17.0 MPa

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

-40

-30

-20

-10

0

10

pex =0

∆p=–11.2 MPa

�C=7.0x10–11 Pa–1

DAYS SINCE OCTOBER 1, 2004

JR
O

1 
R

AD
IA

L 
D

IS
PL

AC
EM

EN
T,

 IN
 M

IL
LI

M
ET

ER
S

JRO1, seasonally adjusted

A

B

ER
U

PT
ED

 V
O

LU
M

E,
 V

e, 
IN

 M
IL

LI
O

N
 C

U
BI

C
 M

ET
ER

S

Analytic, �M=1.2x10–10 Pa–1

�M=1.9x10–10 Pa–1

�M=1.9x10–10 Pa–1

ex

VC = 17 km3, p0  = 17.0 MPa

VC = 17 km3, p0  = 18.0 MPa

ex

ex

ex



478    A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004−2006

Other combinations of V
C 
, p0

ex, Q
lt
, and 

M
 that pro-

duce reasonable fits by numerical solution are listed in table 
4. All combinations require Q

lt
 /

e
 = 1.7±0.1 m3/s. Runs that 

use 
C
  = 7×10–11 Pa–1 require average values of 

M
 around 

1.6–1.9×10–10 Pa–1 (0.18–0.43 volume percent bubbles) and a 
magma-reservoir volume exceeding ~9 km3 for p0

ex<~30 MPa. 
Runs that use 

C 
 = 15×10–11 Pa–1 require 

M
  = 4.0–4.7×10–10 

Pa–1 (1.0–1.8 volume percent bubbles) and a magma-reservoir 
volume exceeding ~5 km3 for p0

ex less than about 30 MPa. 
Using a still larger reservoir compressibility (

C 
 = 3×10–10 Pa–1), 

a magma reservoir larger than 2 km3 (for p0
ex less than about 

30 MPa) can still fit the curves using 
M 

 = 8.9–9.4×10–10 Pa–1 
(2.8–3.8 percent bubbles). The results that involve 

C 
 = 7 to 

15×10–11 Pa–1 correspond to exsolved fluid contents in the 
source region that match most closely with gas emission data 
(Gerlach and others, this volume, chap. 26).

The Quandary of Continued Deflation

Like the exponential function, the numerical solution pre-
dicts that deflation should have nearly ended several months 
after the eruption began, which does not agree with the geo-
detic data. Factors that might keep both the extrusion rate and 
the deflation rate more or less constant include (1) decreasing 
magma viscosity or friction coefficient with time; (2) increas-
ing conduit diameter with time; and (or) (3) a nonlinear rela-
tion between extrusion rate and friction coefficient, similar to 
the logarithmic relation.

As of March 2006 there have been no obvious temporal 
changes in petrology or fault-gouge characteristics that might 
reflect changes in viscosity or friction coefficient (Pallister and 
others, this volume, chap. 30). Changes in conduit diameter 
cannot, however, be dismissed (our field observations are 
insufficient), nor can the possibility that conduit enlargement 
alone, in the absence of recharge, is responsible for sustained 
extrusion rates. Figure 11B shows a theoretical deflation curve 
calculated in the absence of recharge by solving equation 5 for 
reservoir volume loss dV

C
 using (

M
 /

e
) = 1, 

M
 = 3.3×10–10 Pa–1 

(adjusted to optimize fit), 
C
 = 7×10–11 Pa–1, and the erupted 

volume dV
e
 ( = V

e
) obtained from the best-fit curve, equation 

10, through modified hot-rock data (fig. 11A). The theoreti-
cal curve matches the long-term linear trend quite well but 
underestimates the deflation in the first few months of the 
eruption. The rapid early deflation implies that the volume 
removed from the reservoir per unit erupted volume was 
initially high but then decreased with time, a characteristic 
that could be explained by either increasing recharge or by 
increasing magma compressibility with time. Starting with a 
slightly lower compressibility (3.2×10–10 Pa–1) that increases 
to 4.1×10–10 Pa–1 over the course of the eruption (fig. 11B, red 
dashed line) does not appear to reconcile the difference.

The pressure change p is related to the volume shrink-
age dV

C
 by p = dV

C
 /(V

C


C
). For V

C
 = 15 km3, for example, 

the deflation in figure 11B represents a pressure drop of about 
15–16 MPa, requiring an initial overpressure above this value 
to sustain the eruption for the observed time period. The 

conduit radius R that could give the instantaneous growth rate 
in figure 11A with the pressure in figure 11B can be calcu-
lated from equation 17 by substituting 0 3

ex
ep p gH+ ∆ −  for 

( )p gH− , 0t
eV =  for ( )4

0 0 / 8exR p H  , and e eV  for dM
e
 / dt:

	

1/ 4

0
0 0

0 3

ex
e

t ex
e e

V p
R R

V p p gH=

   
=    + ∆ −   

.	 (34)

Here, R
0
 is the initial conduit radius. Calculating the change 

in R with time requires values of V
C
 and p0

ex  to be assumed 
in advance. For V

C  
 = 15 km3 and p0

ex  = 30 MPa, the observed 
extrusion history can be produced by a roughly 15-percent 
decrease in conduit radius in the first few months of the erup-
tion, followed by widening at a slow but accelerating rate (fig. 
11C). As the overpressure approaches zero, the conduit radius 
must approach infinity to keep the extrusion rate constant (for 
example, the line for p0

ex  = 15 MPa in fig. 11C).
These results suggest that the changes in conduit radius 

required to maintain the observed eruption rate without 
recharge are less than a few tens of percent and thus probably 
too small to be easily detected by observed variations in lithic 
content of the lava or ratios in linear to volumetric extrusion 
rate. The changes shown in figure 11, however, involve a 
seemingly unrealistic shrinkage in radius early in the eruption, 
when effusion rates are high, followed by enlargement at an 
accelerating rate when effusion rates are low. We cannot dis-
miss conduit-radius changes in the absence of recharge, but we 

C

Pa-1×10-11

VC

km3
p0

ex

MPa
avg M

Pa-1×10-10

Qlt /e

m3/s
p

MPa
Recharge

m3×106

7 6 41 1.6 1.7 -30.5 48.7
7 8 32 1.6 1.7 -23 46.7
7 10 27 1.8 1.7 -18.7 44.4
7 12 24 1.8 1.7 -16.3 42.9
7 14 21 1.9 1.7 -13.7 40.9
7 17 19 1.9 1.7 -12.0 39.0
7 20 16.5 1.9 1.7 -9.9 37.0
7 24 15 1.9 1.7 -8.6 34.9
7 27 14 1.9 1.7 -7.8 33.4

14 4 34 3.0 1.7 24.7 47.1
14 6 25 3.1 1.7 17.1 43.6
14 8 19 4.0 1.7 -12.0 39.2
14 10 16 4.1 1.7 -9.4 36.4
14 12 14.5 4.2 1.7 -8.2 34.2
14 14 13.3 4.2 1.7 -7.1 32.2
14 17 12 4.3 1.7 -6.0 29.6
14 20 11 4.7 1.7 -5.0 26.7
14 24 10.2 4.7 1.7 -4.3 24.3

Table 4.  Combinations of VC  , p0
ex , Qlt , and average value of M 

that yield reasonable fits to the growth curve and geodetic data by 
numerical calculation; also given are the pressure drop p in the 
magma reservoir and the recharge volume calculated after 500 
days of eruption.
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are inclined to consider them less likely than recharge-driven 
flow. Future developments may help distinguish these possi-
bilities: If extrusion is sustained by conduit widening without 
recharge, geodetic deflation will continue and the eruption 
will eventually wane, then stop. If it is sustained by recharge, 

geodetic deflation will soon stabilize, but the eruption may 
continue for years and end gradually as the deeper magma 
source is depleted.

Finally, one explanation for continued deflation may 
lie in the results of the numerical models. Model runs using 

Figure 11.  Modeled relation between extruded volume, magma pressure and overpressure, and conduit radius at 
Mount St. Helens. A, Erupted volume, Ve. Data points with error bars represent hot-rock volume of the lava dome 
plus volume of cold rock uplifted before October 11, 2004 (compare fig. 10A). Error bars are ±5 percent as in figures 
2 and 10. B, Station JRO1 radial displacements (dots) compared with the displacements predicted at this point for 
deflation of a 15-km3 ellipsoidal magma body at 6–10 km depth with C = 7×10–11 Pa–1 and (1) a constant M = 3.3×10–10 
(blue dashed line) or (2) M increasing from 3.2×10–10 to 4.2×10–10 as pressure drops by 15 MPa (dashed red line). 
Negative displacements are radially inward. C, Conduit radius, R, required to maintain extrusion rate illustrated in 
figure 11A, normalized to the initial conduit radius, R0. Magma pressure is inferred from deflation curve, assuming 
an initial overpressure of 30 MPa (blue line) or 15 MPa (black line). Method of calculating pressure change is 
explained in text.
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a small magma body show a rapid deflation curve at JRO1 
followed by stabilization as the recharge rate approaches the 
eruption rate. Runs that involve larger magma bodies show 
continued long-term deflation but cannot match the rapid 
deflation seen in the first several weeks of the eruption. The 
blue solid line in figure 10B represents an intermediate res-
ervoir size that shows a little deflation still after 500 days of 
eruption but not enough to match the data. The steep defla-
tion at short times and the long-term continued deflation at 
longer times may suggest that decompression initiated within 
a relatively small body of eruptible magma but expanded 
with time to a much larger volume that may include cooler or 
more crystalline, partially solidified material.

Discussion and Conclusions
Within the range of uncertainty, the above results are 

consistent with the view that the magma reservoir at Mount St. 
Helens is several to perhaps a few tens of cubic kilometers in 
size, that the pressure drop in the magma system is several to 
a few tens of megapascals, and that the reservoir contains less 
than a few volume percent exsolved gas at the source depth of 
8–9 km. Numerous uncertainties prevent us from more accu-
rate estimates of the size, overpressure, volatile content, and 
degree of recharge of the Mount St. Helens magma reservoir. 
The greatest limitation is the uncertainty in reservoir com-
pressibility 

C
, which appears to be at least a few times greater 

over the period of this eruption than during the very brief time 
scale of seismic wave disturbance. Our conclusion that 

C
 is 

only a few to several times less than magma compressibility 
contrasts with expectations (for example, Huppert and Woods, 
2002) that 

M
 would be much greater than 

C
 in deep, equant, 

volatile-saturated magma bodies. The similarity between 
M
 

and 
C
 during this eruption likely reflects both the lower rigid-

ity of the Earth over long time scales and the low exsolved 
volatile content of the magma.

The observation that geodetic deflation volume dV
C
 is 

less than erupted volume V
e 
is an expected consequence of the 

finite compressibility of magma, and need not imply recharge. 
We expect dV

C
 to be less than V

e
 during nearly all eruptions. 

Conversely, in a reservoir that is intruded before an erup-
tion, the injection volume V

i
 should be significantly greater 

than the resulting change in reservoir volume dV
C 
. Deep, stiff 

reservoirs containing volatile-rich magmas are likely to show 
the lowest ratios of dV

C
 /V

i 
, raising the question of whether 

preeruptive magma injection into a volatile-rich reservoir 
might fail to generate a detectable geodetic signal.

Finally, like Huppert and Woods (2002) and Woods and 
Huppert (2003), we find that the compressibility of magma, 
which is related to exsolved volatile content, has an over-
riding influence on the duration and final volume of effu-
sive eruptions. Our study, however, advances those works 
by showing that, when exsolution of both H

2
O and CO

2
 is 

considered, there is little or no discontinuity in compressibil-
ity at the saturation pressure, and hence no dramatic change 

in eruptive style or the rate of decrease in eruptive activity 
when the saturation pressure is reached in a magma reservoir.

The idealizations in this paper are necessary for develop-
ing a simple model. In testing our assumptions, we acknowl-
edge that many such idealizations are unrealistic. Our simple 
balloon-and-soda-straw cartoon of a magma reservoir may not 
even approximately resemble the complex of partially molten 
bodies that could make up the real magma system. Given this 
complexity, the question of whether the magma body is being 
recharged may be primarily a question of where one draws 
boundaries. We nevertheless hope that these simple models 
offer some insight.
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Appendix 1. Processes That Could 
Affect Reservoir Compressibility

The static shear modulus of large rock masses (kilome-
ters in size) is generally known to be up to an order of mag-
nitude less than that of laboratory-scale specimens (Pollard 
and Fletcher, 2005, p. 322). The reduction in shear modulus 
with increasing scale is generally attributed to the presence 
of fractures that can open or move (Rubin, 1990). In this 
paper we estimate host-rock shear modulus from the veloci-
ties of seismic waves whose wavelength is on the order of a 
kilometer and does not differ greatly from the dimensions of 
the rock mass under stress near the magma reservoir. On the 
other hand, seismic velocities are controlled by stress oscil-
lations that act over a time scale of milliseconds, whereas 
eruption-associated stress changes evolve over a period of 

years. Over the longer time scale, subcritical crack growth, 
poroelasticity, and inelastic creep could deform rock and 
therefore reduce the shear modulus, G. Because the geodetic 
signal is measured at the surface, a low shear modulus at 
shallow depth could perhaps also affect the geodetic signal. 
These effects are considered below.

Crack growth and poroelasticity.—Crack growth may 
greatly reduce G at <1–2 km depth (Rubin, 1990), but at 6–12 
km depth it is unclear whether cracks of any significant size 
exist. Near the hot reservoir, cracks are likely to anneal and 
seal off interstitial fluids (Fournier, 1999). Poroelastic effects 
theoretically have no effect on shear modulus, though they can 
decrease Poisson’s ratio with time and change estimates of G 
if such estimates are based on the formula G = 

R


P
2(1–2)/

(2(1–)) (for example, Rubin, 1990). Poroelastic effects, how-
ever, change G by only a few tens of percent at most; at depths 
of 6–12 km, interstitial fluids are likely sparse and these 
effects even smaller.

Elastic inhomogeneity.—Figure 5 shows variations in 
G with depth estimated from the seismic-velocity profile 
and density data (explained in the figure caption). In the 
uppermost 1–2 km the estimated value of G may drop to 
about 11 GPa; however, at depths below 1–2 km the value 
of G remains above about 35 GPa. Because the surface 
displacements are affected by the elastic properties of all 
materials between the magma reservoir and the surface, the 
lower elastic moduli of near-surface materials must affect 
displacements to some degree, but the relation between 
reservoir stress drop and displacement should be primarily 
controlled by rock properties near the magma body. For this 
reason we consider that the effect of less stiff near-surface 
materials on G is likely to be less than about 20 percent.

High-temperature inelastic deformation near the 
magma body.—In long-lived magma systems, such as Long 
Valley in eastern California, viscoelastic creep may reduce 
by about two-thirds the pressure change required for a 
given volume change (Newman and others, 2001; Newman 
and others, 2006). However, the Mount St. Helens magma 
system is relatively young and surrounded by cooler rock 
that is gabbroic in composition (Heliker, 1995) and resis-
tant to creep. Regional heat-flow studies suggest that the 
ambient temperature at 9–10 km depth in this region is 
about 350°C (Blackwell and others, 1990). If we assume 
the magma reservoir has existed at its present temperature 
for about 4,000 to 40,000 years, we can estimate the tem-
perature profile around the magma reservoir by numerically 
integrating the following one-dimensional transient equa-
tion for conductive heat flow:

	 R

R R

kT T
r

t c r r r

∂
∂ ∂ ∂

∂ ∂ =   
,	 (35)

where k
R
 and c

R
 are the thermal conductivity and specific heat, 

respectively, of the host rock, and r is the radial distance of a 
given point from the center of the magma body. Holding the 
temperature at the reservoir wall constant at 850°C and using 
k

R
 = 2 W/(m•K) (Clauser and Huenges, 1995) and c

R
 = 1,300 J/
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Figure 12.  Response of a 1-km-radius magma body through time, 
as a function of distance from reservoir walls. A, Temperature 
over increasing time periods since emplacement of the magma 
body. Temperatures were calculated by integrating equation 35 
with time. B, Circumferential (


) and radial (rr) normal stresses 

versus radial distance from the reservoir wall, calculated 
assuming elastic deformation at short time periods following a 
rapid pressure change in the magma body. C, Viscous relaxation 
time versus distance for hot rock. The solid blue curve shows 
relaxation time versus distance assuming the host rock has a 
uniform temperature of 350°C. Red curves give relaxation time 
assuming the host-rock temperature varies with distance from the 
reservoir wall as illustrated by corresponding curves in panel A.

(kg•K), we obtain the temperature profiles from a 1-km-radius 
magma body illustrated in figure 12A.

If decompression is rapid, the host rock will deform 
elastically, then relax with time as viscous creep reduces 
wall stress. The equations for the radial (

rr
) and normal (


) 

stresses near a cylindrical body in an infinite linear elastic 
medium under plane-strain conditions are (Jaeger and Cook, 
1979, p. 251):

	
2 2

1 2 2
1rr

R R
p

r r
 

   
= − +   

   
,	 (36)

	
2 2

1 2 2
1

R R
p

r r

   
= + −   

   
  ,	 (37)

where 
1
 is the far-field normal stress (assumed equal in all 

directions perpendicular to the cylinder axis), p is the inter-
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nal pressure in the reservoir, and R is the cylinder radius. For 


1
 = 240 MPa and p = 210 MPa, values of 

rr
 and 


 are plotted 

in figure 12B. Note that at the reservoir wall, the difference 



–

rr
 is equal to twice (

1
–p).

The dominant form of stress relaxation is likely to be 
dislocation creep (Turcotte and Schubert, 2002), which involves 
a power-law dependence between normal strain rate (   or  rr) 
and normal-stress difference (


−

rr
) (Turcotte and Schubert, 

2002, eq. 7-187):

	 ( ) /
1

a gn E R T
rr rrC e     −= − = − ,	 (38)

where C
1
, n, and E

a
 are fitting parameters, R

g
 is the gas 

constant, and T is temperature (in Kelvin). We use C
1
 = 520 

MPa–n/s, n = 3, and E
a
 = 356 kJ/mol, which are appropriate for 

diabase (Turcotte and Schubert, 2002, table 7-4). The power-
law dependence implies that viscosity is not constant at a 
given temperature; however, we can estimate a rough average 
viscosity from the relation:

	
( )

( )
/

1

1

aE RT
rr

eff n
rr rr

e

C









 

−

−

−
≈ =

−
.	 (39)

Using this viscosity and Young’s modulus 
( )( ) ( )2

P 1 2 1 / 1E    = − + −  = 1×1011 Pa, (where   = 0.25, 
t

P
 = 6.6 km/s and q  = 2,700 kg/m3), the viscous relaxation time 


 is:

	 eff

E
=


 .	 (40)

Rocks having 
eff

<~5×1018 Pa·s will relax in less time 
than the 1.5-year duration of the eruption to date (early 
2006). For a magma body that has existed for about 4,000–
40,000 years, rocks within ~110–250 m of the reservoir wall 
will relax within this time period. If these rocks are consid-
ered part of the mechanical magma reservoir, its effective 
volume would be about 20 percent to 50 percent greater than 
the volume of magma alone. By comparison, no host rock 
was hot enough to relax during the 24-hour period following 
the Mount St. Helens eruptions of May and June 1980 (fig. 
12C). Thus the aseismic body identified by Scandone and 
Malone (1985) could be as much as a few hundred meters 
smaller in diameter than the mechanical magma body that is 
deforming during the current eruption. 

Appendix 2. Derivation of the 
Exponential Equation

Derivation of the exponential relation involves differenti-
ating equation 11:

	 e
i

dMdp
C Q

dt dt
 = − −  

	 (41)

and substituting equation 12 into this equation to give:
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	 i

dp
BC CQ ACp

dt
= + − .	 (42)

Reversing the denominator in the left-hand term with the right-
hand side of the equation and integrating gives:

	 ( ) 2

1
ln iBC CQ ACp C t

AC
− + − + = ,	 (43)

where C
2
 is the constant of integration. We find a value for C

2
 

by noting that, at t = 0, p = p
0
; hence

iBC CQ ACp + −

iBC CQ ACp+ − 
 0

1
ln =−

AC

	
( )0

1 0

1
ln 1

AC p p
t

BC CQ ACp

− 
 −

+
+ =

− AC
.	 (44)

Further rearrangement leads to:

	 ( )0 0 1 ACtiB Q
p p p e

A
−+ = − − −  

.	 (45)

This equation can be substituted into equation 12 to give:

( )( )0 0 1 ACte
i

dM
Ap B Q Ap e B

dt
−= + + − − −

	 ( )0
ACt

i iQ B Q Ap e−= − + − ,	 (46)

which can be integrated to give:

	 0
2

ACti
e

B Q Ap
M Qt e C

AC
−+ −= + + ,	 (47)

where C
2
 is a constant of integration, which can be evaluated 

by noting that, at t = 0, M
e
 = 0. After evaluating C

2 
, we get:

	
( ) ( )0 1i ACt

e i

Ap B Q
M e Q t

AC
−− −

= − + .	 (48)

This equation can be expressed in eruptive volume (V
e
) by 

dividing by lava density q
e
:

	
( ) ( )01

1i ACt i
e

e

Ap B Q Q
V e t

AC e
−− −

= − + .	 (49)

Appendix 3. The Exponential Equation 
for “Greased Plug” Flow

The assumption of Newtonian flow implies that the flow 
profile in the conduit is parabolic. Given the high crystal con-
tent of the magma, a more realistic scenario may be that the 
magma in the center of the conduit moves upward as a solid 
plug and that shear is concentrated along the conduit margins 
(fig. 8B). If the material in the shear acts in a Newtonian man-
ner, a force balance leads to the following equation:

	 2 2 2
0edMH

R p g R H
R r dt

− − =
∆

 



,	 (50)

where r is the thickness of the shear zone and q is the magma 
density in the conduit. The first term is the upward force at 
the base of the conduit, the second is the weight of the magma 
plug, and the third is the viscous force resisting upward flow. 
The equation can be rearranged as:

	 ( )
3

2
edM R r

p gH
dt H






∆= − .	 (51)

In this case, the terms A and B in equation 12 have the value 
A = qR3r/(8H ) and B = R3rq2g/(8). Substitution of 
these terms into equations 14 and 15 leads to expressions for 
a and b that are identical to equations 18 and 20; hence the 
constraints on the product V

C
( p

0
–q

m 
gH ) are exactly the same 

for greased-plug flow as for Newtonian flow.

Appendix 4. Exponential Equation 
for Newtonian Flow Capped by 
a Frictional Plug with Constant 
Frictional Properties

The presence of fault gouge along the dome surface at 
Mount St. Helens suggests that, over some distance near the 
surface, magma moves upward as a solid plug with frictional 
sliding along its margins (fig. 8D). Assuming that flow below 
this plug is Newtonian, the equation for mass flux is:

	 ( )( )
4

1 1
18

edM R
p p gH

dt H

 



= − − ,	 (52)

where H
1
 is the length of conduit over which flow is Newto-

nian and p
1
 is the pressure at the base of the frictional plug 

(fig. 8C ). That pressure is a function of both plug weight and 
friction. We assume that the shear stress along the plug margin 
must exceed the normal stress (

n
) times a coefficient of fric-

tion ( ), which is assumed to be constant:

	 n ≥ .	 (53)

If the plug is cylindrical, vertical, of the same radius (R) as the 
conduit below, and of length H

2
, the pressure (p

1
) at the base 

of an upward-moving plug must exceed the sum of the plug 
weight and the frictional resistance: 

	 2
1 2

2 nH
p gH

R


≥ + .	 (54)

In this case, 
n  represents the mean normal stress on the con-

duit walls over the length of the plug. In solid rock, the hori-
zontal normal stress could vary greatly even at shallow depth, 
depending on the state of gas pressure and on geometric fac-
tors. On the other hand, at Mount St. Helens, the crater floor is 
composed primarily of unconsolidated fallback from the 1980 
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eruptions. If we take this material to be cohesionless, faults 
of favorable orientation will form when the ratio of effective 
normal to shear stress on any potential fault plane exceeds that 
allowed by the coefficient of friction of the material (

h
). Thus 

the ratio of most compressive (
1
) to least compressive (

3
) 

normal principal stress at any depth is limited to (Brace and 
Kohlstedt, 1980; Zoback and Healy, 1984):

	 ( )
21/ 21 2

3

1p
h h

p

p

p


 



−  ≤ + +  −
,	 (55)

where p
p
 is the pore pressure in the host rock. For 

h
 = 0.6 and 

p
p
 ranging from 0 to 

3
, 

1
 /

3
 ranges from 1 to ~3. For this 

reason, we consider the normal stress on the conduit wall to 
be one-third to three times the vertical stress, and express the 
normal stress as the vertical stress times a constant  of order 
1. If the frictional plug extends from the surface to a depth 
H

2
, the mean normal stress on the plug wall is 2 = / 2n gH  . 

We also assume that  ≅ 0.5; these simplifications allow us to 
rewrite equation 54 as:

	 2
1 2 1

H
p gH

R
  ≈ +  

.	 (56)

Inserting this value into equation 52 and noting that 
H

1
+H

2
 = H, we have:
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Hence A = 
e
R4/(8H

1
) and B = R4

e
2g(H+H

2
 /R)/(8H

1
). 

These terms lead to the following values of a and b:
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.	(59)

Appendix 5. Exponential Equation 
for “Greased Plug” Flow Capped 
by a Frictional Plug with Constant 
Frictional Properties

As with the case above (appendix 4), this case involves 
modifying the greased plug equation to include a term for the 
pressure at the base of the frictional plug:

	 ( )( )
3

1 1
12

edM R r
p p gH

dt H






∆= − − .	 (60)

Inserting the expression for p
1
 in equation 56, we have:
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12
edM HR r

p g H
dt H R

qp
q c



 ∆  = − +    
.	 (61)

Hence A = R3Dr /(2H
1
) and B = R3Dr2g(H+H

2
 /R)/(2H

1
).

Appendix 6. Derivation of Logarithmic 
Growth Curve

We envision a one-dimensional system consisting of a 
magma-filled reservoir and conduit system applying a pressure 
p to the base of an extruding solid rock plug of mass M

p
 and 

displacement rate   against gravity and frictional resistance 
to slip between the plug and the conduit wall. The rate of 
extrusion is controlled entirely by frictional resistance. That 
is, in this end-member model the magma below the plug has 
negligible viscosity.

Plug force balance.—Consider a “quasi-static” force bal-
ance for motion of a cylindrical plug (force resulting from accel-
eration is assumed to be negligible, 0M d dt ≈ ). This quasi-
static assumption is well justified by results of simulations in 
which inertia is considered; these “dynamic” simulations are not 
discussed in this appendix or elsewhere in this paper. The plug 
mass is assumed to be constant ( 0pdM dt ≈ ), resulting from a 
balance between the rate of surface erosion of the plug and an 
equivalent subsurface accretion rate (for example, Iverson and 
others, 2006). The force balance per unit cross-sectional area in 
the conduit is:

	 2
2

2pM g H
p

R R




= + ,	 (62)

where p is the fluid pressure of the magma applied to the 
base of the plug, R is plug radius, H

2
 is plug height, g is the 

acceleration due to gravity, and  is the shear resistance of the 
interface between the plug and the conduit wall. Because the 
mass is assumed constant, R and H

2 
are also constant.

Faults have a well-known second-order dependence of 
shear strength on slip rate   (Dieterich, 1979; Ruina, 1983) 
and related, somewhat complicated dependencies on accumu-
lated slip and time of contact (“state” effects in rate and state 
friction) (for example, Linker and Dieterich, 1992). However, 
fault strength can be assumed to be purely slip-rate depen-
dent when subject to sustained sliding if the ratio of asperity 
contact size to slip rate is small relative to the duration of 
sustained slip. Daily extrusion rates at Mount St. Helens from 
October 2004 to October 2005, converted to boundary slip 
rates, are in the range 70 to 7,000 m/s, assuming that the plug 
has radius in the range of 25 to 75 m. Taking asperity contact 
size to be no more than 20 m, as laboratory data on rock 
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friction suggest (for example, Dieterich and Kilgore, 1996), 
its ratio to slip rate is 0.29 to 0.0029 seconds, meaning that 
time-dependent and slip-dependent changes and friction can 
be ignored for sustained slip durations longer than 0.5 to 1.0 
seconds. Data on extruded volume are collected over intervals 
of a few weeks to a month. Therefore, we ignore complicated 
“state” effects on fault shear strength, and represent it by a 
simple slip-rate-dependent relation,

	 1 lno n
o

A


  


= + .	 (63)

Here 
n
 is normal stress at the wall and A

1
 is the rate depen-

dence of fault strength. The constant o is an arbitrary refer-
ence, the strength of the wall interface when the interface slip 
rate is o .

For shear of thick fault-gouge layers (for example, 
Byerlee and Summers, 1976; Marone and others, 1990), for 
shear near the brittle-ductile transition (for example, Blanpied 
and others, 1998), and for near-surface faulting (Marone and 
Scholz, 1988), fault strength increases with slip rate (veloc-
ity strengthening, rate strengthening). Because all of these 
conditions are present at the plug wall at Mount St. Helens, we 
expect that fault slip is predominantly rate strengthening, and 
thus A

1
 in equation 63 is a small positive constant, typically 

between 0.001 and 0.03 (Marone and Scholz, 1988; Blanpied 
and others, 1998).

The volume of extruded material V
e
 is the product of the 

conduit cross-sectional area and the slip at the wall, and the 
extruded mass M

e
 is proportional to the extruded volume, so 

equation 63 is equivalently

	 1 ln e
no

o

M
A

M
  = + ,	 (64)

where notation for the mass rate of extrusion e edM dt M=
 

is used. Combining equations 62 and 64 leads to a relation 
between magma pressure and the rate of plug extrusion

	 ln e
o

o

M
p p

M
= + ,	 (65)

where 1 22 /nA RH =  and 2
0 0 22 / /p H R Mg R = +  are 

constants.
Magma mass balance.—During plug extrusion, the 

volume and driving pressure of the magma will change. To 
characterize these changes we consider, in turn, mass and 
volume balances for the magma. We define the magma mass 

M M MM V=  as the mass of magma in the magma reservoir and 
in the conduit below the frictional plug. The rate of change of 
mass can be expressed as

	 M M M
M M

dM dV d
V

dt dt dt


= + ,	 (66)

where 
M
 and V

M
 are magma density and volume, respectively. 

The mass change rate is also equivalent to the difference 
between the rate of mass input to the system iQ  and the rate 
out of the system oQ , or

	 M
i o

dM
Q Q

dt
= − .	 (67)

Because magma is not being extruded at the surface, Q
o
 repre-

sents the magma-volume loss due to magma freezing onto the 
plug (Iverson and others, 2006). Combining and rearranging 
so that fluid volume is the dependent variable yields

	 i oM M M

M M M

Q QdV V d

dt dt



  
= − + − .	 (68)

Reference to the magma density and its time derivative can be 
replaced by the pressure dependence through expanding the 
density derivative in equation 68:

	 M Md dp

dt p dt

 ∂
∂

= 	 (69)

and using the definition of the elastic compressibility of the 
magma ( )( )1/ /M M M p  ≡ ∂ ∂ . Making these substitutions 
into equation 68 leads to

	
1 o iM

M M M M

Q QdVdp
dt V dt  

 
= − + − 

 
.	 (70)

Magma volume balance.—The volume of the magma 
system increases as the solid plug is extruded at a rate d Ve  / dt, 
and decreases as magma freezes to the plug at the rate −Q

o
 /q

M
. 

We also allow the walls of the magma system (reservoir and 
conduit) to respond elastically to changes in magma pressure 
using a representative reservoir and conduit compressibil-
ity c so that the rate of elastic change of magma volume is

 
c MV dp dt . The combined rate of magma volume change is 

then 

	 e oM
c M

M

dV QdV dp
V

dt dt dt



= − + .	 (71)

Combining equations 70 and 71 yields the relation between 
the mass rate of extrusion and the rate of change of the driving 
pressure

	 ( )
e e i M

M C M

M Qdp

dt V

 

 

−= −
+

,	 (72)

where the extruded mass is e e eM V = .

Solutions

Solutions for extrusion rate with time can be found by 
taking the time derivative of equation 65

	 e

e

dMdp

dt M dt

=
&

	 (73)

and equating to equation 71, resulting in the single differential 
equation

	
( )

21e e e i

M c M e M

dM M M Q

dt V    

 
= − − +  

.	 (74)
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If the magma volume is large relative to the extruded vol-
ume, then V

M
 can be treated as a constant and equation 74 is 

separable. In the solution that follows we assume negligible 
density contrast between the magma and plug, e =  M , as 
justified elsewhere in this paper.

No Recharge.—When Q
i
 = 0 the extrusion rate is:

	 0

0 /e
e

D M
M

tM D



 
=

+
,	 (75)

where 
0M  is the extrusion rate at t = 0, and ( )M C MD V  = + . 

The cumulative mass of extruded material goes as

	 0ln 1e e
e

tM
M D

D
 

 

 
= + 

 
.	 (76)

This is the logarithmic form that well characterizes stress 
relaxation due to fault slip in some laboratory experiments 

(Reinen and others, 1994) and during earthquake afterslip (for 
example, Marone and others, 1991; Schaff and others, 1999).

With recharge.—If Q
i 
> 0 the extrusion rate is

	

0

1 1
i

e

i
e Q t

Di

Q
M

Q
e

M
 

−=
 

− − 
 

.	 (77)

Note that equation 77 is for Q
i 
> 0 and does not easily reduce to 

equation 75 for Q
i
 = 0.

Cumulative extruded mass goes as

	





















−−= D

tQ

i
ee

e

i

e
Q

M
DM  11ln 0 .	 (78)

This expression can be converted to erupted volume V
e
 by 

dividing by 
e
.
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