Chapter 24

Hazard Information Management During the Autumn 2004 Reawakening of Mount St. Helens Volcano, Washington

By Carolyn L. Driedger1, Christina A. Neal2, Tom H. Knappenberger3, Deborah H. Needham4, Robert B. Harper5, and William P. Steele6

Abstract

The 2004 reawakening of Mount St. Helens quickly caught the attention of government agencies as well as the international news media and the public. Immediate concerns focused on a repeat of the catastrophic landslide and blast event of May 18, 1980, which remains a vivid memory for many individuals. Within several days of the onset of accelerating seismicity, media inquiries increased exponentially. Personnel at the U.S. Geological Survey, the Pacific Northwest Seismic Network, and the Gifford Pinchot National Forest soon handled hundreds of press inquiries and held several press briefings per day. About one week into the event, a Joint Information Center was established to help maintain a consistent hazard message and to provide a centralized information source about volcanic activity, hazards, area closures, and media briefings. Scientists, public-affairs specialists, and personnel from emergency-management, health, public-safety, and land-management agencies answered phones, helped in press briefings and interviews, and managed media access to colleagues working on science and safety issues. For scientists, in addition to managing the cycle of daily fieldwork, challenges included (1) balancing accurate interpretations of data under crisis conditions with the need to share information quickly, (2) articulating uncertainties for a variety of volcanic scenarios, (3) minimizing scientific jargon, and (4) frequently updating and effectively distributing talking points. Success of hazard information management during a volcanic crisis depends largely on scientists’ clarity of communication and thorough preplanning among interagency partners. All parties must commit to after-action evaluation and improvement of communication plans, incorporating lessons learned during each event.

Introduction

In late September 2004, a sudden and rapidly accelerating increase in seismicity beneath Mount St. Helens heralded the onset of the first volcanic event of consequence in the contiguous 48 states since 1986 (Dzurisin and others, 2005). In addition to its volcanologic significance, the 2004 eruption captured the attention of the public worldwide, who, even after 24 years, vividly recalled the images and impacts of Mount St. Helens’ catastrophic eruption on May 18, 1980. The 2004–2006 eruption was also the first in the contiguous 48 states since the establishment of widespread Internet use and development of the 24-hour international news cycle and its attendant around-the-clock demands. An Internet Web camera (VolcanoCam) installed and maintained by staff at the Gifford Pinchot National Forest (GPNF) gave unprecedented access to visual images of a Cascade Range eruption in near-real time. Real-time seismic information in the form of Internet-available seismograms maintained by the Pacific Northwest Seismic Network (PNSN) enabled the general public to monitor the volcano from home computers. At Mount St. Helens National Volcanic Monument (MSHNV), scenic overlooks, such as the Johnston Ridge Observatory (JRO), provided an unprecedented view for thousands of visitors (fig. 1). All of these factors combined to create an enormous and urgent demand...
for information and commentary regarding the volcano and its activity, hazards, likely outcomes, the daily activities of scientists, and any other available information about Mount St. Helens, one of the world’s most famous volcanoes. This chapter describes some of the pre-event planning, the real-time development of strategies to respond to this demand, significant challenges, and lessons learned. Additional details regarding the first few weeks of unrest and eruption can be found in other contributions in this volume (Scott and others, chap. 1; Moran and others, chap. 2; Qamar and others, chap. 3; Moran and others, chap. 6).

Pre-Event Coordination and Planning

Since the mid-1990s, the U.S. Geological Survey (USGS) has produced a series of modern volcano-hazard assessments for each potentially active volcano in Washington and Oregon, including Mount St. Helens (Wolfe and Pierson, 1995). Each assessment was written in a format accessible to both technical and lay audiences and was distributed to public officials, educators, and public libraries in areas at risk.

Soon after this series of publications was completed, USGS staff began working with partner agencies in Washington and Oregon to develop hazard-response plans based on the assessments. These response plans define the roles of individual agencies and protocols for cooperation during volcanic unrest, such as the plan for Mount St. Helens (Gifford Pinchot National Forest, 2003). As of spring 2006, volcano-response plans now exist for Mounts Baker, Rainier, St. Helens, and Hood, and for Glacier Peak. Similar plans are in progress for Mount Adams and for the volcanoes of central Oregon.

Ironically, the USGS was working with the GPNF and other agencies to update the Mount St. Helens plan when the 2004 volcanic unrest began.

In addition to collaborating on volcano response protocols, the USGS maintains active cooperation with its partners in hazard communication on the Federal, State, and local levels. This includes planning and practicing rapid initiation of a Joint Information Center (JIC), sharing expertise at news briefings, and assembling interagency-communication call-down lists. Since the 1980s unrest at Mount St. Helens, staff at the University of Washington’s (UW) PNSN in Seattle have coordinated with the USGS in the development and release of Volcano Information Statements and Volcanic Alert Level changes. This close collaboration, refined over the years, enabled separate but well-synchronized media responses to the rapidly evolving unrest at Mount St. Helens that began on September 23, 2004.

Chronology of Events

The initial earthquake swarm on the morning of September 23, 2004, now commonly viewed as the onset of volcanic unrest, was noted in a Cascade Range update posted on the USGS-Cascades Volcano Observatory (CVO) Web site at 1800 PDT, but it brought little immediate inquiry from the media. The following morning CVO and PNSN released an Information Statement regarding the earthquake swarm, and veteran public viewers of seismograms on the PNSN Web site began to recognize the potential significance of the seismicity. This recognition culminated in approximately one dozen media inquires per day during the next few days at CVO. The PNSN, which provided information to Seattle television and radio stations and newspapers, was inundated by requests regarding the earthquakes. The growing public interest in the unrest resulted in a deluge of requests for information from members of the local press and other media providers. The PNSN published a press release on its Web site that described the onset of the earthquake swarm and provided links to seismicity pages on its own Web site and to Web sites of CVO, GPNF, and other sources. The PNSN Seismology Lab staff extended their operation to seven days per week, often working late into the night. As seismicity increased, the PNSN placed a disclaimer on its Web site, noting that postings for recent earthquakes were incomplete because staff could not keep up with processing these seismic events during regular working hours.

On September 26, the USGS issued an official Alert Level 1: Notice of Volcanic Unrest (unusual activity detected; Dzurisin and others, 2005), prompting inquiries to increase at both CVO and UW from about one dozen to more than 40 per day. Scientists at the USGS and PNSN consulted one another early each day about the increasing seismicity. After these conversations, USGS staff wrote formal talking points for use by information scientists, who were scientists recruited to speak
to the media. On September 29, the USGS issued an Alert Level 2: Volcano Advisory (eruption likely but not imminent) and began to offer formal media briefings.

Staff at CVO and the USGS Office of Communications worked hard to address all inquiries in the face of increasing interest. Scientists identified the range of eruption potential. The ability to compile, synthesize, and understand the significance of the events was strained by mounting demands for information. The U.S. East Coast news cycle resulted in interviews at 0400 PDT, challenging USGS personnel as they struggled to maintain adequate 24-hour staffing. Only a few individuals rotating through the informal position of information scientist had the breadth of knowledge about all aspects of the volcanic unrest to answer all questions. Scientists found it challenging to interpret and distill the continuous stream of field data into timely public statements.

At the PNSN, television satellite trucks filled the parking lot, and staff and student volunteers struggled to keep up with phones and interview requests. In an attempt to make the monitoring and media response more sustainable, staff were ordered home after a 12-hour shift, and a number of key staff alternated on 12-hour shifts. By Monday, September 27, the PNSN Web site became completely congested, and system administrators were forced to configure high-capacity servers on the UW network backbone to serve the PNSN site.

During this time, USGS staff supplied information to the news media (many of whom kept satellite trucks present all day and night), critical operational partners, and other scientists, primarily by telephone and by the release of once- or twice-daily text updates by e-mail, faxes, and postings on the CVO Web site. Independently, colleagues at other USGS offices, the PNSN, the GPNF, and the Washington State Emergency Management Division (EMD) handled other inquiries. The communications landscape faced by USGS scientists is shown schematically in figure 2.

By September 28, five days into the event, USGS communications and technical staff were fielding 60 or more inquiries per day. It became apparent that media and public demands for information would soon exceed the capacity that could be managed effectively by any single agency. That notion, and the concern for the consistency and centralization of hazard messages, prompted the USGS to work with agency partners from the GPNF and the Washington EMD to plan and establish a JIC, described more completely later in this chapter. On September 29, GPNF officials and local emergency managers arriving at CVO to discuss the JIC encountered numerous media trucks in the parking lot and had to step over media cables that snaked through the CVO lobby, preventing the doors from closing at this normally secure government facility. It was clear that, in order for CVO staff to function, a JIC facility would need to be located away from CVO. The GPNF headquarters in Vancouver, only six miles distant, was chosen as a logical site.

During this time at the PNSN, UW Computing and Communications staff installed fiber-optic television circuits in the Seismology Lab to help meet the continually increas-
2006, no escalation of activity requiring JIC reactivation has occurred at Mount St. Helens.

Media interest in Mount St. Helens decreased owing to cessation of dramatic steam and ash explosions and the onset of cloudy weather, which blocked views of the volcano. Media managers were unwilling to pay for satellite trucks sitting idle and were less willing to report daily about lava dome-building events when interesting visual images were unavailable.

Development of Joint Operations Center and Joint Information Center

During the onset of volcanic unrest at Mount St. Helens, USGS and PNSN scientists and other public officials conducted their own hazard information dissemination according to each agency’s protocols. As unrest escalated and the demand

Figure 2. Graphic illustrating shared responsibilities of U.S. Geological Survey (USGS) scientists for communication with a broad range of individuals and agencies. CVO, Cascades Volcano Observatory.
for a more coordinated message grew, the agencies formally pooled their resources in a unified response that employed the precepts of the Incident Command System (ICS), a standard, on-scene, all-hazards incident management system already in use by emergency responders and codified nationally in 2004 as the National Incident Management System (NIMS; Federal Emergency Management Agency, 2004; Frenzen and Mataresse, this volume, chap. 23). Under this arrangement, agencies work together through designated members of a unified command (often the senior person from each agency) to establish a common strategy and a single Incident Action Plan (Federal Emergency Management Agency, 2004). In the case of the 2004 Mount St. Helens event, those stakeholder agencies created a Joint Operations Center (JOC; the term coined in present-day terms by NIMS is an “Incident Command Post”; Christine Jonientz-Trisler, oral commun., 2006). The JOC focused on operational aspects of the response (not scientific or research aspects) and took responsibility for the creation of the JIC.

This system of JOC and JIC (under NIMS terminology the JIC is called a “Joint Information System”) is a well-known tool used in the ICS today. The JOC-JIC system enables interagency coordination, support for decision makers, flexibility based on changing circumstances, and, through the JIC, development and delivery of consistent messages. The system includes plans and protocols to provide information during incidents. A JIC (there can be several, although one is preferable) generally exists in a location where PIOs from involved organizations collocate to provide critical emergency information, crisis communications, and public-affairs functions. Although the public can receive information from many sources, a JIC allows the various organizations with responsibility during an incident to come together to ensure clear, timely, and consistent hazard messages.

The JIC can be viewed as a central hub for communication, a “one-stop shopping” facility where representatives from cooperating agencies can address inquiries with a single voice. A JIC can be assembled when communications needs exceed the capacity of individual agencies. The JIC provides inter-agency coordination and integration, development and delivery of coordinated messages, support for decision makers, and flexibility to meet demands based on changing circumstances. The use of a JIC reduces confusion, inaccuracies, and duplication of efforts and can help address rumor control. Each organization maintains its own authority and policies but still contributes to an overall unified message to the public (Federal Emergency Management Agency, 2004). A general call center and other office resources are shared, and technical representatives from specific agencies address inquiries germane to their agency’s interest. The JIC is dynamic and can be resized to meet incident needs. To the detriment of the host agency, the JIC can displace normal agency operations for extended periods, such as the two weeks during 2004 that the headquarters conference room was unavailable to GPNF staff.

Physical Description, Responsibilities, and Operation of Joint Information Center

The Mount St. Helens JIC leadership (fig. 3) included the JIC Manager who reported to the Incident Commander at the JOC. The JIC Manager was responsible for functioning of the JIC and for maintaining records. Liaisons from Washington EMD, GPNF, and USGS were in constant contact with the JIC Manager or served in that role at some point during JIC operation. The Media Briefings Facilitator, Products Coordinator (news releases, for example), Call Center Supervisor, and PIOs at MSHNVM all reported to the JIC Manager, as did information scientists and other technical specialists. As needed, each agency in the command structure provided PIOs to coordinate their home agency’s information (both internally and externally), act as spokespeople, and provide appropriate technical expertise. The PIOs also sent talking points to other information outlets, such as the PNSN, USGS staff in other cities, and to MSHNVM visitor facilities.

![Organizational chart for the Joint Information Center indicating the external and internal command structure. GPNF, Gifford Pinchot National Forest; USGS, U.S. Geological Survey.](image-url)
The JIC staff used a conference room at the GPNF headquarters (fig. 4). The room was dividable by heavy, sound-proof curtains. During operation of the JIC, one-half of the room served as the Media Briefing Room, with areas reserved for television cameras, seating, and a podium. The other half of the conference room was arranged by function; one side housed the Call Center, and the other side housed the JIC Manager, technical experts, the news release production team, and the media briefings team.

The JIC Call Center consisted of a temporary six-line switchboard system that allowed call takers to simultaneously answer multiple incoming lines and to transfer media and public-affairs calls to the technical experts as needed. Call Center staff included employees of the GPNF and other national forests, USGS, Washington EMD, Oregon's Department of Geology and Mineral Industries, Washington's Department of Geology and Earth Resources, and many emergency-management and nontechnical public-affairs professionals from across the greater Portland-Vancouver metropolitan area. The Federal Emergency Management Agency (FEMA) also assisted with staffing and could have provided more formal assistance and resources had the incident escalated to an emergency or had an official Federal disaster declaration been issued. FEMA also pre-positioned management staff at the JOC and provided liaisons to the States of Washington and Oregon Emergency Operations Centers and a liaison to the USGS at CVO.

Call Center staff conveyed basic information about the current incident to media representatives, reading from daily talking points, updates compiled on a dry-erase whiteboard, and fact sheets compiled by the technical experts (fig. 5). This information satisfied many of the media callers. When an interview was requested and a technical expert was unavailable, the request was given to the Media Interview Coordinator. Detailed information (reporter name, media organization, publication or broadcast schedule or deadline, and nature of the questions) allowed the Media Interview Coordinator to prioritize pending requests and to assign USGS or other staff to the appropriate interview. This system was highly effective in meeting the vast majority of live interview requests. Technical experts, along with the JIC management from Washington...
EMD, the U.S. Department of the Interior Bureau of Land Management, and the GPNF and other national forests, posted new information prominently on the whiteboard so that it could be provided to media callers almost instantaneously. The Call Center’s close proximity to scientists ensured that the nontechnical PIOs used the appropriate scientific descriptions.

Whereas CVO provided daily updates on volcanic activity and alert levels on its Web site, the JIC distributed news releases by e-mail or fax from information derived largely from CVO. Staffers combined rosters of media contacts from several agencies and amended them continuously in an effort to maximize distribution of information and to assure media that they would be informed of changes of volcano status. The JIC also established a recorded phone message line that summarized the current volcano conditions. This telephone number was widely advertised to the media, and the message was updated daily and provided in English and Spanish. The JIC also provided general volcano-hazards information that previously had been translated into eight languages.

News briefings at the JIC became an important regular source of authoritative information. The JIC initiated a rigorous, controlled protocol for briefing time, participation, and followup interviews with scientists or other officials. Briefings were conducted live on camera by designated scientists from USGS, often with equipment and graphics to illustrate content. Out-of-area media and radio station representatives called in during live briefings by way of a telephone audio link. The audio link enabled remote listeners to ask questions of presenters after the briefing. USGS Office of Communications staff often managed the media briefings. The JIC conducted two briefings on most days and a single briefing as demand decreased. During a period of several weeks, approximately 38 formal briefings were given at the JIC and at MSHNVM (see below).

Information Centers at Mount St. Helens

In addition to the JIC in Vancouver and the PNSN in Seattle, several other information centers provided updates in close coordination with the JIC. These included the interpretive facilities of MSHNVM, especially the Coldwater Ridge Visitor Center and nearby Castle Lake Viewpoint (fig. 6). At its peak, the Castle Lake Viewpoint hosted 24 television satellite trucks and accompanying media. Six GPNF PIOs and USGS information scientists staffed the viewpoint and held twice-daily news briefings. The multitude of media and public visitors at this remote viewpoint was substantial, and MSHNVM staff were soon overtaxed with the strain of conducting media interviews and providing crowd control for thousands of tourists who flocked to the monument. Media preferred to operate from Castle Lake Viewpoint because of its proximity to Mount St. Helens; however, scientists and the JOC preferred indoor briefings at the JIC in Vancouver, in close proximity to CVO.

![Figure 5. Mount St. Helens Joint Information Center (JIC) housed at Gifford Pinchot National Forest headquarters, Vancouver, Wash. (USGS photos by C.L. Driedger, October 2004). A, Call Center, staffed by public-information officers from local agencies. B, JIC management and technical specialist center. C, Media Briefing Room.](image-url)
Help in providing information also came from several colleges and universities with knowledgeable Earth science faculty, from State geological surveys in Washington and Oregon, and from other USGS offices throughout the nation. We have no satisfactory method to quantify the load of inquiries on these outlets.

Joint Information Center and Web Site Statistics

To document and evaluate the work of the JIC, staff tracked the number and type of inquiries (table 1) and maintained a master list of participants. During its 11-day operation, the JIC was staffed by 70 people from 30 different emergency-management, health, safety, and land-management agencies and the USGS, most of whom came from the Portland-Vancouver area. These individuals responded to more than 750 e-mail inquiries and more than 800 telephone inquiries from media staff in 12 countries.

Not surprisingly, the number of inquiries increased with a rise in real-time seismic amplitude measurements (RSAM) that reflected increased seismicity at the volcano (fig. 7). Inquiry frequency spiked when the alert level was raised, when volcanic tremor occurred, and when there were visible events, such as steam and ash explosions. USGS–CVO Web site statistics illustrate the same intense and event-driven demand for online information.

Table 1. Sources and numbers of inquiries to the Joint Information Center, Gifford Pinchot National Forest headquarters, Vancouver, Wash., from October 3 to October 13, 2004.

<table>
<thead>
<tr>
<th>Sources of inquiries to the Joint Information Center</th>
<th>Number of inquiries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television (local and affiliate)</td>
<td>278</td>
</tr>
<tr>
<td>Print (specific news publications)</td>
<td>228</td>
</tr>
<tr>
<td>Other (Associated Press wire service, public, and others)</td>
<td>163</td>
</tr>
<tr>
<td>Radio (local and affiliate stations)</td>
<td>137</td>
</tr>
<tr>
<td>Web-based news services</td>
<td>6</td>
</tr>
</tbody>
</table>

The PNSN Web site, where information about seismic activity related to volcanic unrest was available, received 31 million hits on the Web servers (equaling approximately 10 million pages viewed) between September 28 and October 5. Early during the event, in anticipation of this intense interest, UW staff separated the public Web site servers from computer servers that process scientific information, potentially saving both systems from failure.

As at PNSN, the record high number of hits on the CVO Web site prompted USGS system administrators to add servers and then to contract with temporary commercial service providers to accommodate the demand for online information. In September 2004, before onset of the erup-

Figure 6. Castle Lake Viewpoint, Mount St. Helens National Volcanic Monument, Wash., located approximately 15 km from Mount St. Helens, served as a nexus for media representatives during October 2004. Monument staff directed all media representatives to this viewpoint, dubbed “Satellite City,” where media queries could be addressed efficiently by local staff and U.S. Geological Survey scientists. As many as 24 media trucks were on site at the height of media interest. USGS photo by L.G. Mastin, October 5, 2004.
tion, there were approximately 34,000 Web pages requested per day. During the steam and ash explosion on October 4, 2004, 1.43 million Web pages were requested—a 42-fold increase in daily CVO Web page requests. In the 2-week time period between September 24 and October 7, Web users requested 8.4 million pages, and 11.2 million pages were requested during October 2004. As of this writing in October 2006, the number of Web pages requested remains high. The volume of Web page requests has, on occasion, inexplicably risen tenfold, far exceeding October 2004 levels. CVO Web site access has yet to return to pre-October 2004 levels (Lyn Topinka, oral commun., 2006).

The majority of GPNF Web site hits were to the Mount St. Helens VolcanoCam Web page, which received an estimated 131 million hits (equaling approximately 18 million Web pages requested) between September 23 and October 31, 2004. The VolcanoCam’s popularity resulted in a manyfold increase in Web page requests to the GPNF Web site.

Update Protocols at Cascades Volcano Observatory

USGS scientific and communications staff generated text updates on the status of the volcano each morning on the basis of consensus at daily scientific meetings. Although the JIC staff relied upon these daily updates, volcanic events sometimes rendered them obsolete. For example, during a scheduled news briefing at the JIC, scientist Willie Scott was inter-

![Figure 7](image_url)

Figure 7. Relation between volcanic activity, alert levels, volume of media inquiries to the Cascades Volcano Observatory, and number of Web pages requested from the CVO Web site (Lyn Topinka, oral commun., 2005) during the first weeks of unrest at Mount St. Helens. Real-time seismic amplitude measurement (RSAM), in red, is a proxy for the level of seismicity at volcano. Media phone inquiries (daily counts, in tan) and public Web activity (hachured) generally increased with the rise in RSAM and spiked following changes of alert level and prominent volcanic events, such as steam and ash explosions.
rupted by a news reporter who announced that a steam and ash explosion was in progress. Scott was forced to abandon his prepared text and interpret the eruption as seen on a small monitor provided by one of the television stations.

Before the onset of the 2004 volcanic unrest at Mount St. Helens, CVO issued occasional written statements concerning volcanic activity and posted these to its Web site. Such statements were posted daily in the fall of 2004 and were supplemented by media advisories, information about news briefings, and notification of events released by fax and e-mail. In October 2004, CVO broadened daily update dissemination by e-mail to include media and aviation contacts; previously, e-mailed updates were sent primarily to government agencies. Broad update distribution has continued throughout 2006.

Hazard Information Management Through October 2006

Since cessation of the JIC on October 13, 2004, staff at CVO has replied to about 800 phone inquiries from the media, principally about the status of Mount St. Helens. As of October 2006, the combined number of media phone inquiries received by CVO and by the JIC during its 11 days of operation in 2004 exceeded 2,000. In addition to these general media inquiries, representatives of 41 documentary film projects contacted USGS–CVO for interviews, information, and graphics, mostly about the ongoing and 1980 eruptions at Mount St. Helens. Each year, the CVO staff has provided additional media briefings on the anniversary of the 2004 eruption and after significant explosive events. USGS staff assembled 10 rolls of video for use by media (b-rolls) between November 2004 and October 2006. As of this writing, the level of media interest is variable. The number of media inquiries rises with sightings of rockfall, with its subsequent suspension of dust and ash particles in the air, and with the onset of cold and clear weather, which initiates visible condensation plumes above the crater rim. CVO staff has taken the time to educate local media about these two phenomena. It is commonly accepted that this education has reduced the number of media inquiries considerably.

Challenges and Lessons Learned

The USGS and its partner agencies in emergency management faced a number of challenges in this episode of unrest at Mount St. Helens. Here, we present the most important challenges and lessons into four groupings: media and message management, JIC management, special needs of university cooperators, and organizational constraints. Many of these observations were compiled at an interagency after-action review of the eruption response, an important step in identifying lessons learned following any eruption crisis.

Media and Message Management

Pre-Event Planning for Communications with Media

A pre-event hazard communication and media management plan reduces the inevitable scramble to establish an effective information pipeline to the public and other constituencies (Peterson and Tilling, 1993; Newhall and Punongbayan, 1996). The plan should be written by agency representatives most likely to be in the “hot seat” during an event. Volcano observatories and cooperating scientific agencies need full-time scientists whose major roles are to manage media relations, community outreach, and education. These scientists should achieve a working understanding of emergency roles codified in NIMS, including their role in a JIC. The roles should address the following responsibilities:

1. Engage the media and educate them about hazards and agency roles in hazard response.
2. Prepare background information about a volcano and its hazards before a crisis begins and arrange for rapid development and dissemination of updated information, graphics, and maps required for briefings.
3. Maintain relations with media representatives so that they are prepared to reach broad audiences with agency messages. Media representatives should feel comfortable asking questions so that they can “get the story right.”
4. Establish, exercise, and review phone, e-mail, fax, and other crisis-communication protocols.
5. Identify scientists who can dedicate their time to communication needs and offer media training for key staff.
6. Establish a system for obtaining photography and video footage for inclusion in media b-rolls.
7. Acquire official agency logos and apparel.
8. Consider a system for tracking media inquiries and workload.
9. Isolate public Web sites, by serving them from computer systems independent of the computers used for processing scientific data, to reduce the potential that increasing demand will crash either system.

Tools for First Moments Following an Event

After months or years of volcanic quiet, an eruption or onset of dramatic unrest can be a chaotic time with respect
to media-communication protocols. Background fact sheets, FAQs, and other pre-event resources can help fill the immediate need for information. CVO developed a “Volcano Rapid Response Reference Page” that lists steps to be taken within the first few minutes of a visible volcanic event (fig. 8). The Reference Page can be customized for eruptions at any volcano.

Fighting Imaginations and Misperceptions

Agencies must devise a system to prepare, review, and update talking points that reinforce appropriate messages and terminology. A recurring challenge during the 2004 volcanic unrest concerned the widespread perception that any activity at Mount St. Helens was a prelude to another cataclysmic eruption resembling the event on May 18, 1980. Dispelling this image was a challenging exercise in wording and repetition. Once lodged in the public’s mind, such misperceptions are hard to remove.

Disseminating Updates to Remote Information Centers

Maintaining contact, continuity, consistency, and completeness of message with remote information centers is both a technical and a human challenge. Communication and sharing

Volcano Rapid Response Reference Page

<table>
<thead>
<tr>
<th>TASKS</th>
<th>First 10 MINUTES of volcanic event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Before Speaking To Media:</td>
</tr>
<tr>
<td></td>
<td>Visit operations room—obtain three known facts about situation for the development of talking points:</td>
</tr>
<tr>
<td></td>
<td>► What Is Happening? (Example - At 1725 PDT a small explosive eruption began).</td>
</tr>
<tr>
<td></td>
<td>► What Is The Impact? (Example - Ash from plume will fall east of volcano).</td>
</tr>
<tr>
<td></td>
<td>► What Are We Doing About It? (Example - USGS closely monitoring this event and advising local officials).</td>
</tr>
</tbody>
</table>

| 2. | Update Talking Points: |
| | Add some situation background. |

| 3. | Arrange Additional Help: |
| | For liaison between operations room and outreach staff. |

| 4. | Recorded Message: |
| | Place temporary messages on pertinent phone recorders, information lines, and Web sites. |

| 5. | Answer Inquiries: |
| | Keep talking points visible while providing telephone interviews; maintain a record of inquiries. |

| 6. | Request Assistance From Other Offices/Agencies: |
| | If it appears that a media event might overwhelm staff on hand. |

<table>
<thead>
<tr>
<th>ARRANGEMENTS</th>
<th>During first HOUR of volcanic event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>News Briefing Arrangements:</td>
</tr>
<tr>
<td></td>
<td>Establish time and place; announce the briefing; arrange for audio bridge; choose speakers; develop messages to greater depth and information; assemble agenda; address needs for graphics.</td>
</tr>
</tbody>
</table>

| 2. | Front Desk Duty: |
| | Arrange for staffing in evenings and early mornings as necessary. |

| 3. | Joint Information Center Planning: |
| | Initiate interagency arrangements as necessary. |

| 4. | Review Personal Needs For Outreach Staff: |
| | Food, family schedules, for example. |

| 5. | Off-Hours Arrangements: |
| | Advise duty scientists to check the front desk recorder for phone messages and respond to inquiries during nonwork hours. If inquiries require additional attention, contact outreach staff. |

| 6. | B-Roll: |
| | Encourage scientific observers to take video that can be used for media b-roll; arrange for b-roll preparation and distribution. |

| 7. | Web Site Information: |
| | Provide any necessary information about media briefings and b-roll to webmaster for b-roll preparation and distribution. |

Contact Information for Outreach Staff: Include contact information for additional help within office, within team and communication offices, and with partner agencies.

Figure 8. Volcano Rapid Response Reference Page illustrating how the Cascades Volcano Observatory addresses media inquiries during sudden volcanic events, such as steam-and-ash explosions and resultant plumes.
of talking points with PIOs and information scientists at Castle Lake Viewpoint were hampered by technological difficulties (fax and phone line service between information centers was intermittent) and the Viewpoint’s physical distance from the JIC.

The Media’s Need for Information, Now!

Agency representatives must be prepared to address nearly continuous information demands from the media for the 24-hour international news cycle. Scientists must create a steady stream of updated information to satisfy the appetite of media outlets and their constituencies. During the Mount St. Helens unrest, media photographers found it difficult to get close-range photographs because of temporary flight restrictions. At the request of the media, the 10 b-rolls released by the USGS provided close-up video coverage of the eruption, volcanologists working in the crater, and time-lapse and thermal-image video. Photographs taken by USGS observers were posted on the CVO Web site within a day of their being taken. There was a constant need for charts and illustrations for news briefings, especially for diagrams of volcano cross sections and schematics showing the relative sizes of the lava dome through time. Any media management plan should cover how these graphical products will be distributed efficiently.

Near-Simultaneous Observations by USGS Staff and Media

Scientists must often react to near-simultaneous observations by scientific staff and media. Today’s media outlets have access to and budgets for fly-bys of the volcano by helicopters, which often are outfitted with modern infrared sensors and cameras similar to those used by scientists. At Mount St. Helens, there was pressure to interpret observations made by media representatives before the extended group of monitoring scientists had seen or analyzed the information.

Maintaining Appropriate Distance Between Media and Operational Staff

Maintaining appropriate distance between media representatives and operational staff is a primary reason for positioning the JIC away from science facilities. Prior to the 2004 volcanic unrest, many media members had developed links with scientists and contacted them at will. The creation of the information-scientist role freed operational scientists who had responsibilities for monitoring and analysis. The founding of the JIC and its media briefings allowed controlled access to scientists.

Consistent and Careful Use of Nomenclature

Another important concern in sharing information with the media and public is consistent use of terminology and nomenclature. In one particular case, USGS scientists unwittingly fed public concern through their casual use of geographical terms. Constant repetition of the “bulging crater floor...on the south side...of the old lava dome” gave rise to a mistaken notion that the south flank of the entire volcano was bulging in a manner similar to the north flank prior to the catastrophic May 18, 1980, event. Another source of terminology confusion concerned use of the word “eruption.” For example, there were references to the events of early October 2004 as explosions, emissions, and eruptions. Although such distinctions appear trivial, and in many senses are purely semantic, to the reporting media representatives, these are important facts to get right.

The word “eruption” has a fairly specific image to many, and that includes visible lava, ash, and activity that is full of motion and potential danger. At this writing in October 2006, many people are unaware that Mount St. Helens continues to erupt. The same phenomenon occurred in Alaska during the 2005–6 eruption of Augustine Volcano. Once the volcano ceased ash-cloud production and began quietly producing lava flows, many people assumed the eruption had stopped altogether, despite the local volcano observatory’s constant repetition of messages that the eruption continued.

Joint Information Center Management

Development and Concept

Agencies must recognize the value of a JIC and then plan for it. At Mount St. Helens there was a hesitancy to form a JIC, caused in part by immediate needs but in greater part by not understanding a JIC’s value to all involved agencies. Volcano-response plans for each Cascade Range volcano refer to the use of a JIC, but, at the time of the 2004 event, no detailed plan existed for rapid development and staffing. It is important to understand the basics of the NIMS, each agency’s role during a crisis, and how a JIC may help.

Adequate Space for Necessities

A JIC requires large and small rooms with secure entry points. The Mount St. Helens JIC lacked distinct and secure entry points that were out-of-view of JIC operations. Access to the Media Briefing Room required passage of media representatives through the inner workings of the JIC, which exposed sensitive information not intended for public release, such as private phone numbers. This required JIC workers temporarily to “sanitize” whiteboards of sensitive information. Such security issues can be addressed with good JIC design. The Mount St. Helens JIC suffered from a lack of small rooms for individual media interviews.

Staffing and Logistics

Agencies must plan for the details of assembling people and technological facilities rapidly during establishment and maintenance of a JIC. At the Mount St. Helens JIC, staff from
the Clark Regional Emergency Services Agency took the initiative to locate call center personnel by announcing the need on an extensive PIO listserve in the Portland-Vancouver area. Many people responded to the call for help, but maintaining a refreshed staff of trained and knowledgeable call takers, technical specialists, and JIC managers was a constant challenge. Also of value was participation of volunteers from the City of Vancouver who could assist traveling media with requests for general local information. A JIC handbook of procedures and resources was extremely helpful for educating existing and newer personnel. Lines of authority were a subject of frequent discussion, with personnel adjusting to the roles placed upon them within the JIC. Security firewalls presented continuous technical roadblocks for communications, both within the JIC and to outside agencies. A general e-mail account could not be established, so staff had to use individual e-mail accounts for transmitting JIC business information.

Maintaining Consistent and Timely Messages

Agencies must consider that maintenance of a consistent, current message requires vigilance. At Mount St. Helens, volcanic events frequently eclipsed the Daily Update and necessitated hurried development of updated talking points, education of call takers and staff at other information outlets, and rumor control. An official JIC Daily Update required review by a representative of each agency. The duration of the production process often outlived the usefulness of the product. Early morning requests from East Coast media were most challenging because daily updates were not yet available. News briefings came too late for local morning news shows. There was demand for hourly updates, but no official process was available to provide this need. As a result of such media demands, the Alaska Volcano Observatory provided hourly status reports on its Web page during the height of the eruption of Augustine Volcano in early 2006. These were informal and nonreviewed snapshots of what was happening at the volcano, and they served to underscore that scientists were actively watching the volcano. Even remarking that nothing had changed in many hours apparently served to reassure Web users that the Observatory was aware of current conditions.

Special Needs of University Cooperators: Pacific Northwest Seismic Network

University cooperators must find the resources to protect monitoring capabilities while addressing media response. The greatest challenge faced by the PNSN was to find ways to satisfy the numerous requests for interviews while maintaining network operations and analyzing and interpreting data.

The PNSN PIO addressed media needs with support from student staff, who answered phones and organized requests for information and interviews. The PIO reviewed these requests and PNSN scientists monitoring the eruption were scheduled, when appropriate, to participate in interviews. The PNSN also received assistance from the UW Office of News and Information who assisted in scheduling interviews and disseminating press releases. At key moments, such as a change in alert level or following steam and ash explosions, reporters were pooled and the PNSN Director made a statement, answered questions for a few minutes, and then returned to work. National news outlets did not always get to talk to the scientist they requested, but all media requests were addressed. The PNSN concentrated their response onsite at the UW and turned down almost all requests for television-studio interviews. The PNSN also frequently referred many requests to the JIC, particularly those not directly related to seismicity.

Organizational Constraints

Staffing

The USGS volcano observatory system consists primarily of technical specialists with defined scientific roles and expertise to monitor volcanoes and assess hazards. For most staff, outreach and interaction with the media are ancillary duties; therefore, technical tasks may go unfinished when scientific staff are consumed by providing information. Even for observatories with professional communication and public-information specialists, a single eruption crisis can quickly overwhelm slim resources. To respond effectively and not diminish the technical efficacy of the observatory, it is key to call quickly for reinforcements from within and outside the USGS. It is helpful to have predetermined lists of staff available for temporary short-term duties to assist in this capacity. Crisis-related staffing should include information scientists, Web and illustration staff, and information technology support.

Cost

Establishing a JIC is not cost free. According to the GPNF, the total JIC operation costs for 11 days, including extra staffing by interpreters at MSHNVM, was approximately $88,400 in salaries and $7,500 in equipment and supplies. Most of the personnel who worked at the JIC either donated their time, or their agencies absorbed salary costs as a contribution to the regional response. For the Call Center, where 40 people rotated through various shifts to answer phones, the estimated cost of staff time alone totaled more than $17,000.

The State of Washington does not have a system to pay for JIC support without declarations of emergency or disaster, a situation common in other states. Once such a declaration exists, the State can request Federal resources from FEMA to support staff costs. Cultivating partnerships in advance, including the development of formal mutual-aid agreements, can help local offices deal with the staffing shortage during an information crisis. Although some agencies or jurisdictions were unable or unwilling to commit paid staff time to volunteer at the Mount St. Helens JIC, many others did donate personnel to the public-information effort. This volunteer
opportunity provided PIOs with skill-building advantages, because it is rare to get the chance to work within a JIC.

Another expense of JIC operation is technological outfitting of the facility. The Mount St. Helens JIC at the GPNF headquarters already had phone lines and extensions available, so the cost of installing a switchboard and other phone lines was minimal. However, it was necessary to install fiber-optic cable to serve the needs of the media satellite trucks, and this involved some major contract work. By pre-identifying a facility with critical infrastructure in place and securing an agreement in advance for free or low-cost emergency use of that facility, technical costs can be minimized.

Media Training Needs

Scientists rarely, if ever, are trained to work with the media. For those who are likely to be directly involved in providing information to the media, many resources are available to provide an appropriate level of training, including classes in basic crisis communication available through local emergency-management offices.

Conclusions

Preeruption planning contributed significantly to the readiness of the USGS, PNSN, GPNF, and other key agencies to deliver timely and effective hazard information about the evolving eruption at Mount St. Helens, one of the world’s most famous volcanoes. The success of the response speaks well of decisions by the USGS, a largely scientific agency, to enable communication planning to proceed on par with scientific response planning. Training of media representatives over the long term; practicing response plans; and ongoing communication among scientists, emergency managers, and community leaders about volcano hazards in the Pacific Northwest brings a cushion of support that bolstered effectiveness of the response. Despite this preparation, considerable flexibility, creativity, and rapid development of strategies to deal with unanticipated issues were essential. In particular, today’s widespread use of the Internet and the around-the-clock news cycle required a fast, sustained pace of information delivery that frequently pushed the limits of staffing and internal communications. Establishing a JIC within the ICS structure contributed substantially to managing these expectations. The JIC also insulated the JOC and CVO and PNSN scientists from media attention, freeing managers and scientists to deal with critical aspects of the crisis.

To our knowledge, this was the first time that a fully developed JIC was used to address volcanic unrest. Earlier volcanic responses have tended toward multiple agencies providing information independently by specialists, such as at Ruapehu volcano, New Zealand (David Johnston, oral commun., 2005) and Volcán Santa Ana, El Salvador (John Ewert, oral commun., 2005). An exception was a single source at Pinatubo volcano, Philippines (Chris Newhall, oral commun., 2005). Our 2004 experience at Mount St. Helens confirms that volcano and seismic observatories benefit from the availability of a full-time scientist focusing on the needs of media relations, community outreach, and education.

Acknowledgments

We thank all those who contributed to successfully managing the hazard message during the 2004 unrest and eruption. We also acknowledge the critical feedback and constructive criticism from our partners in the media, at other agencies, and our own colleagues, all of whom helped improve our communication with the public. This manuscript was reviewed by Maggie Mangan and Chris Jonientz-Trisler.

References Cited

